Трансформатор тока расчет: Онлайн расчет трансформатора тока

Содержание

КАК РАСЧИТАТЬ И ИЗГОТОВИТЬ ТРАНСФОРМАТОР ТОКА

КАК РАСЧИТАТЬ И ИЗГОТОВИТЬ ТРАНСФОРМАТОР ТОКА

Виктор Хрипченко пос. Октябрьский Белгородской обл.

      Занимаясь расчетами мощного источника питания, я столкнулся с проблемой - мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы - где найти такой расчет. Прочитал статью [1 ]; зная, что ошибки могут присутствовать, я детально разобрался с данной темой. Ошибки, конечно, присутствовали: нет согласующего резистора Rc (см. рис. 2) для согласования на выходе вторичной обмотки трансформатора (он и не был рассчитан) по току. Вторичная цепь трансформатора тока рассчитана как обычно у трансформатора напряжения (задался нужным напряжением на вторичной обмотке и произвел расчет).

Немного теории

      Итак, прежде всего немного теории [4]. Трансформатор тока работает как источник тока с заданным первичным током, представляющим ток защищаемого участка цепи. Величина этого тока практически не зависит от нагрузки вторичной цепи трансформатора тока, поскольку его сопротивление с нагрузкой, приведенное к числу витков первичной обмотки, ничтожно мало по сравнению с сопротивлениями элементов электрической схемы. Это обстоятельство делает работу трансформатора тока отличной от работы силовых трансформаторов и трансформаторов напряжения.

      На рис. 1 показана маркировка концов первичной и вторичной обмоток трансформатора тока, навитых на маг-нитопровод в одном и том же направлении (I1 - ток первичной обмотки, I2 -ток вторичной обмотки). Ток вторичной обмотки I2 пренебрегая малым током намагничивания, всегда направлен так, чтобы размагничивать магнитопровод.

      Стрелками показано направление токов. Поэтому если принять верхний конец первичной обмотки за начало то началом вторичной обмотки н также является ее верхний конец. Принятому правилу маркировки соответствует такое же направление токов, учитывая знак. И самое главное правило: условие равенства магнитных потоков.

      Алгебраическая сумма произведений I1 x W1 - I2 x W2 = 0 (пренебрегая малым током намагничивания), где W1 - количество витков первичной обмотки трансформатора тока, W2 - количество витков вторичной обмотки трансформатора тока.

      Пример. Пусть вы, задавшись током первичной обмотки в 16 А, произвели расчет и в первичной обмотке 5 витков - рассчитано. Вы задаетесь током вторичной обмотки, например, 0,1 А и согласно вышеупомянутой формулы I1 x W1 = I2 x W2 рассчитаем количество витков вторичной обмотки трансформатора.

W2 = I1 x W1 / I2

      Далее произведя вычисления L2 -индуктивности вторичной обмотки, ее сопротивление XL1, мы вычислим U2 и потом Rc. Но это чуть позже. То есть вы видите, что задавшись током во вторичной обмотке трансформатора I2, вы только тогда вычисляете количество витков. Ток вторичной обмотки трансформатора тока I2 можно задать любой - отсюда будет вычисляться Rc. И еще -I2 должен быть больше тех нагрузок, которые вы будете подключать

Трансформатор тока должен работать только на согласованную по току нагрузку (речь идет о Rc).

      Если пользователю требуется трансформатор тока для применения в схемах защиты, то такими тонкостями как направление намоток, точность резистивной нагрузки Rc можно пренебречь, но это уже будет не трансформатор тока, а датчик тока с большой погрешностью. И эту погрешность можно будет устранить, только создав нагрузку на устройстве (я и имею в виду источник питания, где пользователь собирается ставить защиту, применяя трансформатор тока), и схемой защиты установить порог ее срабатывания по току. Если пользователю требуется схема измерения тока, то как раз эти тонкости должны быть обязательно соблюдены.

      На рис. 2 (точки - начало намоток) показан резистор Rc, который является неотьемлимой частью трансформатора тока для согласования токов первичной и вторичной обмотки. То есть Rc задает ток во вторичной обмотке. В качестве Rc не обязательно применять резистор, можно поставить амперметр, реле, но при этом должно соблюдаться обязательное условие - внутреннее сопротивление нагрузки должно быть равным рассчитанному Rc.

      Если нагрузка не согласованная по току - это будет генератор повышенного напряжения. Поясняю, почему так. Как уже было ранее сказано, ток вторичной обмотки трансформатора направлен в противоположную сторону от направления тока первичной обмотки. И вторичная обмотка трансформатора работает как размагничивающая. Если нагрузка во вторичной обмотке трансформатора не согласованная по току или будет отсутствовать, первичная обмотка будет работать как намагничивающая. Индукция резко возрастает, вызывая сильный нагрев магнито-провода за счет повышенных потерь в стали. Индуктируемая в обмотке ЭДС будет определяться скоростью изменениями потока во времени, имеющей наибольшее значение при прохождении трапецеидального (за счет насыщения магнитопровода) потока через нулевые значения. Индуктивность обмоток резко уменьшается, что вызывает еще больший нагрев трансформатора и в конечном итоге - выход его из строя.

      Типы магнитных сердечников приведены на рис. 3 [3].

      Витой или ленточный магнитопровод - одно и то же понятие, также как и выражение кольцевой или тороидальный магнитопровод: в литературе встречаются и то, и другое.

      Это может быть ферритовый сердечник или Ш-образное трансформаторное железо, или ленточные сердечники. Ферритовые сердечники обычно применяется при повышенных частотах - 400 Гц и выше из-за того, что они работают в слабых и средних магнитных полях (Вт = 0,3 Тл максимум). И так как у ферритов, как правило, высокое значение магнитной проницаемости µ и узкая петля гистерезиса, то они быстро заходят в область насыщения. Выходное напряжение, при f = 50 Гц, на вторичной обмотке составляет единицы вольт либо меньше. На ферритовых сердечниках наносится, как правило, маркировка об их магнитных свойствах (пример М2000 означает магнитную проницаемость сердечника µ, равную 2000 единиц).

      На ленточных магнитопроводах или из Ш-образных пластин такой маркировки нет, и поэтому приходится определять их магнитные свойства экспериментально, и они работают в средних и сильных магнитных полях [4] (в зависимости от применяемой марки электротехнической стали - 1,5.. .2 Тл и более) и применяются на частотах 50 Гц.. .400 Гц. Кольцевые или тороидальные витые (ленточные) магнитопроводы работают и на частоте 5 кГц (а из пермаллоя даже до 25 кГц). При расчете S - площади сечения ленточного тороидального магнитопровода, рекомендуется результат умножить на коэффициент к = 0,7...0,75 для большей точности. Это объясняется конструктивной особенностью ленточных магнитопроводов.

      Что такое ленточный разрезной магнитопровод (рис. 3)? Стальную лента, толщиной 0,08 мм или толще, наматывают на оправку, а затем отжигают на воздухе при температуре 400.. .500 °С для улучшения их магнитных свойств. Потом эти формы разрезаются, шлифуются края, и собирается магнитопровод. Кольцевые (неразрезные) витые магнитопроводы из тонких ленточных материалов (пермаллоев толщиной 0,01.. .0,05 мм) во время навивки покрывают электроизолирующим материалом, а затем отжигают в вакууме при 1000.. .1100 °С.

      Для определения магнитных свойств таких магнитопроводов надо намотать 20...30 витков провода (чем больше витков, тем точнее будет значение магнитной проницаемости сердечника) на сердечник магнитопровода и измерить L-индуктивность этой обмотки (мкГн). Вычислить S - площадь сечения сердечника трансформатора (мм2), lm-среднюю длину магнитной силовой линии (мм). И по формуле рассчитать jll - магнитную проницаемость сердечника [5]:

(1) µ = (800 x L x lm) / (N2 x S) - для ленточного и Ш-образного сердечника.

(2) µ = 2500*L(D + d) / W2 x C(D - d) - для кольцевого (тороидильного) сердечника.

      При расчете трансформатора на более высокие токи применяется провод большого диаметра в первичной обмотке, и здесь вам понадобится витой стержневой магнитопровод (П-образный), витой кольцевой сердечник или ферритовый тороид.

      Если кто держал в руках трансформатор тока промышленного изготовления на большие токи, то видел, что первичной обмотки, навитой на магнитопровод, нет, а имеется широкая алюминиевая шина, проходящая сквозь магнитопровод.

      Я напомнил об этом затем, что расчет трансформатора тока можно производить, либо задавшись Вт - магнитной индукцией в сердечнике, при этом первичная обмотка будет состоять из нескольких витков и придется мучиться, наматывая эти витки на сердечник трансформатора. Либо надо рассчитать магнитную индукцию Вт поля, создаваемую проводником с током, в сердечнике.

      А теперь приступим к расчету трансформатора тока, применяя законы [6].

      Вы задаетесь током первичной обмотки трансформатора тока, то есть тем током, который вы будете контролировать в цепи.

      Пусть будет I1 = 20 А, частота, на которой будет работать трансформатор тока, f = 50 Гц.

Возьмем ленточный кольцевой сердечник OJ125/40-10 или (40x25x10 мм), схематично представленный на рис. 4.

Размеры: D = 40 мм, d = 25 мм, С = 10 мм.

      Далее идет два расчета с подробными пояснениями как именно расчитывается трансформатор тока, но слишком большое количество формул затрудняет выложить расчеты на странице сайта. По этой причине полная версия статьи о том как расчитать трансформатор тока была конвертирована в PDF и ее можно скачать воспользовавшись ССЫЛКОЙ.    

   


Адрес администрации сайта: [email protected]
   

 

Подбор трансформатора тока - ГОСТ, ПУЭ, таблицы, формулы

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд - ударный ток короткого замыкания

kу - ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях - 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт - полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф - однофазное, двухфазное, трехфазное).

В таблице выше:

zр - сопротивление реле

rпер - переходное сопротивление контактов

rпр - сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди - 57, алюминия - 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета - проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить - а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной - не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений - 0,4; 6,3; 10,5. И последние три столбца - это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы - инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока

пусковой и номинальный ток, пример на 10 кВ

Содержание статьи:

Суммарный нагрузочный ток на линию жилого, коммерческого объекта или предприятия в некоторых случаях может превышать ее фактические возможности. Правильный расчет трансформатора тока поможет обеспечить качество линейного преобразования, контроль и защиту электросети.

Причины для установки токовых трансформаторов

Трансформатор тока РТП-58

Устройство предназначено для трансформации первичного значения тока до безопасного для сети. Трансформаторы также эксплуатируются с целью:

  • разграничения низковольтной учетной аппаратуры и реле, подкинутых на вторичную обмотку, если в сети первичное высокое напряжение;
  • повышения или понижения показателей напряжения;
  • замера состояния электросети и параметров переменного тока;
  • обеспечения безопасности ремонтных и диагностических работ;
  • быстрой активации релейной защиты при коротких замыканиях;
  • учета энергозатрат – с ними обычно совмещен электросчетчик.

Для измерения понадобится подключить ТТ в разрыв провода, а на вторичную отметку подсоединить вольтметр или амперметр, совмещенный с резистором.

Разновидности трансформаторов тока

Выбирать прибор, подходящий под напряжение сети или конкретные работы, необходимо на основании классификации по разным признакам.

Назначение

Существуют такие трансформаторы:

  • измерительные – замеряют параметры цепи;
  • защитные – предотвращают перегрузки, выход оборудования из строя;
  • промежуточные – подключаются в цепь с релейной защитой, выравнивают токи в схемах дифзащиты;
  • лабораторные – отличаются высокой точностью.

У лабораторных моделей больше коэффициентов преобразования.

Тип монтажа

Для частного дома и квартиры можно подобрать аппарат, монтируемый внутри или снаружи помещения. Некоторые модификации встраиваются в оборудование, а также надеваются на проходную изоляцию. Для измерения и лабораторных тестов используются переносные модели.

Конструкция первичной обмотки

Существуют шинные, одновитковые (со стержнем) и многовитковые (с катушкой, обмоткой петлевого типа и «восьмеркой») устройства.

Тип изоляции

Бывают следующие преобразователи:

  • сухая изоляция – на основе литой эпоксидки, фарфора или бакелита;
  • бумажно-масляная – стандартная или конденсаторная;
  • газонаполненные – внутри находится неорганический элегаз с высоким пробивным напряжением;
  • компаундные – внутри находится заливка из термоактивной и термопластичной смолой.

Компаунд имеет самые высокие показатели влагостойкости.

В зависимости от количества ступеней трансформации можно подобрать одноступенчатые и каскадные модели. Вся линейка имеет рабочее напряжение более 1000 В.

Класс точности

Класс точности токового трансформатора прописан в ГОСТ 7746-2001 и зависит от его назначения, а также параметров первичного тока и вторичной нагрузки:

  • В условиях малого сопротивления происходит почти полное шунтирование намагниченной ветви. Прибор работает с большой погрешностью.
  • При повышении сопротивления также увеличивается погрешность. Причина – функционирование устройства на участке насыщения.
  • При минимальном номинале первичного тока трансформатор работает в нижней части намагниченной кривой, при максимальном – на участке насыщения.

Точный подбор трансформатора по классу точности можно произвести на основе таблицы.

Класс точности Номинал первичного тока в % Предел вторичной нагрузки в %
0,1 5, 20, 100-200 25-100
0,2
0,2 S 1,5, 20, 100, 120
0,5 5, 20, 100, 120
0,5 S 1, 5, 20, 100, 120
1 5, 20, 100-120
3 50-120 50-100
5
10

Для устройств защиты класс точности также определяется по таблице.

Класс точности Предельная погрешность Процент предельной вторичной нагрузки
тепловая угловая
мин ср
±1 ±60 ±1,8 5
10Р ±3 Норма отсутствует 10

Для энергоучета применяются модели с классом точности 0,2S – 0,5, для амперметров с минимальной чувствительностью – с 1-м или 3-м, для релейной защиты – 5P и 10Р.

Особенности выбора

В процессе выбора трансформатора тока необходимо руководствоваться базовыми параметрами:

  • Номинал сетевого напряжения. Номинальный показатель должен превышать или быть равным рабочему напряжению.
  • Ток первичной и вторичной обмотки. Первый показатель зависит от коэффициента трансформации, второй – зависит от того, какой счетчик.
  • Коэффициент преобразования. Подбирается по нагрузке в аварийных случаях, но ПУЭ устанавливают необходимость монтажа устройств с коэффициентом, большим, чем номинальный.
  • Класс точности. Зависит от целевого использования счетчика. На коммерческом предприятии оправданы приборы 0,5S, в частном доме – 1S.

Конструктивное исполнение определяется типом счетчика. Для моделей до 18 кВ подойдет однофазный или трехфазный аппарат. Если значение больше 18 кВ, используется трансформатор на одну фазу.

Подбор токового трансформатора для организации релейной защиты

Релейный токовый трансформатор отличается классом точности 10Р и 5Р. В ПУЭ установлено, что его погрешность не должна быть более 10 % по току и 7 градусов по углу. При превышении погрешности устанавливается дополнительное оборудование.

В нормальных условиях трансформаторное реле определяет тип поломки (низкое напряжение, повышенный/пониженный ток или частота). После измерения параметров и обнаружения отклонений активируется защита – сеть обесточивается.

Нюансы выбора устройств для цепи учета

К цепи учета для корректности замеров можно подключать приборы с классом точности не более 0,5(S). При наличии колебаний и аварий графики протекания тока и напряжения бывают некорректными. Несоблюдение класса точности может привести к завышению показателей счетчика.

В п. 1.5.17 ПУЭ установлено, что при завышенном коэффициенте трансформатор для цепи учета должен иметь вторичный ток:

  • при максимальной нагрузке – не более 40 %;
  • при минимальной нагрузке – не более 5 %;
  • класс точности – от 25 до 100 % от номинала.

Коэффициент ТТ по мощности бывает от 1 до 5 % первички.

Таблица предварительного выбора трансформатора тока по мощности и току

Табличный подбор оборудования целесообразно производить после уточнения технических параметров аппарата. Если они известны, стоит выбрать ТТ по таблице, где указана мощность, нагрузка и трансформационный коэффициент.

Максимальная мощность при расчете, кВА Сеть 380 В
Нагрузка, А Коэффициент трансформации, А
10 16 20/5
15 23 30/5
20 30 30/5
25 38 40/5
35 53 50/5 или 75/5
40 61 75/5
50 77 75/5 или 100/5

Для сети с напряжением 1,5 кВ применяется аналогичная таблица.

Максимальная мощность при расчете, кВА Сеть 1,5 кВ
Нагрузка, А Коэффициент трансформации, А
100 6 10/5
160 9 10/5
180 10 10/5 или 15/5
240 13 15/5

При табличном способе нужно учитывать, что вторичный ток прибора не должен быть больше 110 % от номинала.

Надежность измерительных трансформаторов напряжения в сети с изолированной нейтралью

Простой измерительный аппарат предназначен для понижения номиналов напряжения, которое подается на измерители и защитные реле, подключенные к сети 6-10 кВ. Трансформатор исправно работает только в условиях заземления нейтрали.

При феррорезонансных реакциях (обрыв фазы ЛЭП, прикосновение ветвями, стекание капель росы по проводам, некорректная коммутация) существуют риски поломок трансформаторов напряжения.  Частота сбоев составляет 17 и 25 Гц. В этих условиях через первичную обмотку протекает сверхток и она перегорает.

Если используется схема «Звезда-Звезда», в условиях повышения напряжения повышается индукция магнитопровода. Прибор перегорает. Предотвратить этот процесс можно при помощи:

  • уменьшения показателей рабочей индукции;
  • подключения в сети устройств, демпфирующих сопротивление;
  • создания трехфазного устройства с общей магнитной пятистержневой системой;
  • эксплуатации аппаратов, подключенный в сеть при размыкании треугольника;
  • заземления нейтрали посредством реактора-токоограничителя.

Простейший вариант – использовать специальные обмотки или релейные схемы.

Расчет трансформатора тока по мощности

Токовый трансформатор ставится на 3 жилы провода, но модели с классом точности 0,5S, где одно кольцо идет на одну фазу, можно подключать к одножильному кабелю. Перед установкой прибора производится его расчет.

Пример расчета на 10 кВ

Модели на 10 кВ подходят для коммерческого учета энергии. Для вычислений можно использовать онлайн-программу – калькулятор. После ввода данных в поля и нажатия кнопки расчета появится нужная информация.

Если программы нет, рассчитать параметры устройства можно самостоятельно. Понадобится перевести трехсекундный ток термической стойкости в односекундный. Для этого используется формула I3с=I1с/1,732.

Сложность применения данного аппарата – минимальный, около 10 А, силовой ток цепи.

Трансформаторы тока, устанавливаемые на производстве или в жилом многоквартирном доме, самостоятельно не рассчитываются. Понадобится обратиться в компанию энергоснабжения для получения ТУ с моделью узла учета и типом устройства, номиналом автоматов. Это исключает сложности самостоятельных вычислений.

https://

Указания по расчету нагрузок трансформаторов тока

Содержание

1. Общая часть

Всем доброго времени суток! Представляю Вашему вниманию типовую работу «Указания по расчету нагрузок трансформаторов тока» №48082-э «Теплоэлектропроект».

Вторичная нагрузка на трансформаторы тока (ТТ) складывается из:

  • а) сопротивления проводов — rпр;
  • б) полного сопротивления реле и измерительных приборов — Zр и Zп;
  • в) переходного сопротивления принимаемого равным — rпер = 0,05 Ом.

Согласно ГОСТ трансформаторы тока должны соответствовать одному из следующих классов точности: 0,5; 1; 3; 5Р; 10Р.

Класс точности 0,5 должен обеспечиваться при питании от трансформатора тока расчетных счетчиков. При питании щитовых измерительных приборов класс точности трансформаторов тока должен быть не ниже 3. При необходимости для измерения иметь более высокий класс точности трансформаторы тока должны выбираться по классу точности на ступень выше, чем соответствующий измерительный прибор.

Например: для приборов класса 1 трансформаторов тока должен обеспечивать класс 0,5; для приборов — 1,5 трансформаторов тока должен обеспечивать класс точности 1,0.

Требования к трансформаторам тока для релейной защиты рассмотрены ниже.

При расчете нагрузки на ТТ в целях упрощения допускается сопротивления элементов вторичной цепи ТТ складывать арифметически, что создает некоторый расчетный запас.

Потребление токовых обмоток релейной и измерительной аппаратуры приведено в разделе «7. Справочные данные по потреблению релейной аппаратуры». Для удобства и упрощения расчета в указанных приложениях потребление дано в Омах. Для тех приборов и реле, для которых в каталогах указано их потребление в ВА, сопротивление в Омах определяется по выражению

где:
S – потребляемая мощность по токовым цепям, ВА;
I – ток, при котором задана потребляемая мощность, А.

При расчете сопротивления проводов (кабеля) во вторичных цепях ТТ используется:

где:

  • rпр — активное сопротивление проводов (жилы кабеля) от трансформатора тока до прибора или реле, Ом;
  • l – длина провода (кабеля) от трансформатора тока до места установки измерительных приборов или релейной аппаратуры, м;
  • S – сечение провода или жилы кабеля, мм2;
  • γ –удельная проводимость, м/Ом.мм2(для меди γ = 57, для алюминия γ =34,5).

2. Определение нагрузки на трансформаторы тока для измерительных приборов

Нагрузка на ТТ для измерительных приборов складывается из сопротивлений последовательно включенных измерительной аппаратуры, соединительных проводов и переходных сопротивлений в контактных соединениях.

Величина расчетной нагрузки Zн зависит также от схемы соединения ТТ.

При расчете определяется нагрузка для наиболее загруженной фазы ТТ.

В случае включения релейной аппаратуры последовательно с измерительной в расчетную нагрузку вводится также сопротивление реле. При этом расчетная нагрузка не должна превосходить допустимую в требуемом классе точности данного ТТ для измерительных приборов.

При соединении трансформаторов тока в звезду.

При соединении трансформаторов тока в неполную звезду.

При соединении ТТ в треугольник и включении измерительных приборов последовательно с реле во всех линейных проводах.

где:

— сопротивление нагрузки, включенной в линейном проводе трансформатора тока.

При соединении трансформаторов тока в треугольник и включении измерительного прибора последовательно с прибора последовательно с реле только в одном линейном проводе (например, в фазе А).

При использовании только одного ТТ.

В выражениях (3-7) известны сопротивления измерительных приборов Zп, сопротивления реле Zр, переходное сопротивление rпер и неизвестно сопротивление проводов rпр.

Поэтому расчет нагрузки на ТТ сводится к определению сопротивления соединительных проводов rпр.

Сопротивление rпр. определяется из условия обеспечения работа ТТ в требуемом классе точности при расчетной нагрузке. Поэтому должно быть Zн < Zдоп. Принимая Zн=Zдоп и пользуясь выражениями (3-7), определяется rпр для соответствующих схем соединения:

По найденному значению rпр определяется допустимое сечение соединительных проводов, пользуясь выражением (2).

Если в результате расчета сечение S окажется меньше 2,5 мм2, то оно должно быть принято равным 2,5 мм2 из условия механической прочности проводов в токовых цепях ТТ.

3. Определение напряжения на вторичной обмотке трансформатора тока

Сопротивление нагрузки трансформатора тока для измерительных приборов и релейной защиты по условию допустимого напряжения на вторичной обмотке трансформатора тока должно быть таким, чтобы при любом возможном виде короткого замыкания в месте установки трансформаторов тока измерения или защиты и любом возможном первичном токе трансформатора тока напряжение на зажимах вторичной обмотки трансформатора тока установившемся режиме не превышало 1000 В.

Это условие считается выполненным, если при любом виде к.з.

где:

  • I1- наибольший возможный первичный ток при к.з.;
  • nт – номинальный коэффициент трансформации трансформатора тока;
  • Zн – фактическое сопротивление вторичной нагрузки трансформатора тока с учетом сопротивления принятого провода (жилы кабеля)

Если в результате расчета оказалось, что при Zн напряжение больше 1000 В, то следует перейти на большее сечение соединительных проводов (жил кабеля) до 10 мм2 включительно.

Если при S=10 мм2 напряжение окажется больше 1000 В, то следует перейти на больший коэффициент трансформации и расчет для определения Zн должен быть повторен.

4. Определение нагрузки на трансформаторы тока для релейной защиты

Нагрузка на ТТ для релейной защиты складывается из последовательно включенных сопротивлений релейной аппаратуры , соединительных проводов и переходных сопротивлений в контактных соединениях. Величина вторичной нагрузки зависит также от схемы соединения ТТ и от вида КЗ.

Релейная защита в условиях КЗ обычно работает при больших токах, которые во много раз превышают номинальный ток ТТ. Расчетами и опытом эксплуатации установлено, что для обеспечения правильной работы релейной защиты погрешности ТТ не должны превышать предельно допустимых значений.

По ПУЭ эта погрешность, как правило, не должна быть более 10%.

В ГОСТ 7746-88 точность ТТ, используемых для релейной защиты, нормируется по их полной погрешности (ε), обусловленной током намагничивания. По условию ε < 10% построены кривые предельных кратностей ТТ.

При этом наибольшее отношение первичного тока к его номинальному значению, при котором полная погрешность при заданной вторичной нагрузке не превышает 10%, называется предельной кратностью (К10).

Согласно тому же ГОСТ заводы-поставщики ТТ обязаны гарантировать значение номинальной предельной кратности (К10н), при которой полная погрешность ТТ, работающего с номинальной вторичной нагрузкой, не превышает 10%.

Чтобы найти допустимую нагрузку по кривым предельных кратностей, необходимо предварительно определить расчетную кратность тока К.З., т. е. отношение тока КЗ в расчетной точке к минимальному току ТТ (Красч.)

5. Определение расчетной кратности (Красч.) для выбора допустимой нагрузки (Zдоп.) на трансформаторы тока по кривым предельных кратностей

Для правильного выбора допустимой нагрузки на ТТ необходимо выбрать соответствующий режим и место короткого замыкания.

Расчетным режимом является КЗ, при котором ток к.з. имеет максимальную для данного ТТ величину Iмакс. в заданном месте КЗ.

Величины Iмакс. Выбираются различно для разных типов защиты зависимости от принципа их работы.

5.1 Токовые защиты с независимой характеристикой

Для максимальной токовой защиты с независимой характеристикой Iмакс = 1,1*Ic.з., поскольку для этих защит точная работа ТТ требуется лишь при токе их срабатывания.

Расчетная кратность определяется в условиях срабатывания защиты:

где:

  • 1,1 – коэффициент, учитывающий 10%-ную погрешность ТТ при срабатывании защиты;
  • Iс.з. – первичный ток срабатывания защиты;
  • I1н – первичный номинальный ток ТТ.

5.2 Токовые отсечки

Для токовой отсечки Iмакс = 1,1*Ic.з., поскольку для этих защит точная работа ТТ требуется лишь при токе их срабатывания.

Расчетная кратность определяется в условиях срабатывания защиты:

где: n=1,2-1,3

5.3 Максимальные токовые защиты с зависимой характеристикой

Для МТЗ с зависимой характеристикой Iмакс должен соответствовать току КЗ, при котором производится согласование по времени защит смежных элементов.

Расчетная кратность:

Iк.з.макс.- максимальный ток короткого замыкания, при котором производится согласование смежных защит;
n=1,2-1,3

5.4 Направленные токовые и дистанционные защиты

Для предотвращения излишних срабатываний, многоступенчатых защит Iмакс определяется при КЗ в конце зоны первой ступени защит или в конце линии.

Расчетная кратность:

n – коэффициент, принимается при минимальном времени действия защиты: менее 0,5 сек равным 1,4-1,5, а при времени больше 0,5 сек равным 1,2-1,3.

5.5 Дифференциальные токовые защиты

Для предотвращения срабатывания защиты от токов небаланса Iмакс определяется при наибольшем токе внешнего КЗ.

Расчетная кратность:

I1расч.- максимальный ток при внешнем коротком замыкании;
n – коэффициент, принимается при выполнении защиты на реле с БНТ равным 1, а при реле без БНТ равным 1,8-2.

5.6 Дифференциально-фазные высокочастотные защиты

Для предотвращения срабатывания защиты от токов небаланса Iмакс определяется при наибольшем токе внешнего КЗ.

Расчетная кратность:

I1расч.- максимальный ток при коротком замыкании в конце защищаемой линии;
n — принимается 1,6-1,8.

5.7 Продольные дифференциальные токовые защиты линий

Для предотвращения срабатывания защиты от токов небаланса Iмакс определяется при наибольшем токе внешнего КЗ.

Расчетная кратность:

I1расч.- максимальный ток при коротком замыкании в конце защищаемой линии;
n – принимается 1,8-2,0.

По расчетной кратности, пользуясь кривыми предельных кратностей (по данным заводов-изготовителей трансформаторов тока) находится допустимое сопротивление Zдоп для трансформаторов тока рассматриваемой защиты.

В тех случаях, когда из-за отсутствия кривых предельных кратностей при проектировании вынужденно используются кривые 10%-ных кратностей, необходимо для учета возможного их завышения по сравнению с действительно допустимыми значениями по кривым предельных кратностей полученное по выражениям (13-19) значение Красч. увеличивать в 1,25 раз.

6.Определение расчетной нагрузки Zн

Расчетная нагрузка для трансформаторов тока релейной защиты определяется по выражениям, приведенным в таблице №1. В расчете принимается Zн=Zдоп.

По значению Zн можно определить сопротивление соединительных проводов (жил кабеля) во вторичных цепях трансформаторов тока.

Таблица 1 – расчетные формулы для определения вторичной нагрузки и сопротивления соединительных проводов трансформаторов тока для релейной защиты

7.Определение сопротивления соединительных проводов

В Таблице №1 приведены расчетные выражения, для определения сопротивления соединительных проводов во вторичных цепях трансформаторов тока в зависимости от их схем соединения и от вида КЗ.

При этом сопротивление релейной аппаратуры, подключенной к трансформаторам тока, может быть найдено по Справочные данные по потреблению релейной аппаратуры или по другим заводским данным.

По найденному значению rпр определяется допустимое сечение соединительных проводов.

Если в результате расчета S окажется менее 2,5 мм2, то оно должно быть принято равным 2,5 мм2 из условия механической прочности проводов в токовых цепях ТТ, после чего определяется фактическое сопротивление проводов по выражению (2).

Если в результате расчета сечение кабеля окажется чрезмерно большое (более 10 мм2), то для его уменьшения можно рекомендовать следующие мероприятия:

1. Применить последовательное соединение двух обмоток трансформаторов тока рассматриваемой защиты. При последовательном соединении одинаковых сердечников трансформаторов тока нагрузка на каждый сердечник ТТ уменьшается в 2 раза. При последовательном соединении разных сердечников трансформаторов тока расчетная нагрузка на ТТ уменьшается, так как она распределяется между обмотками трансформаторов тока пропорционально их ЭДС.

2. Изменить схему соединения трансформаторов тока вместо неполной звезды перейти к полной звезде; вместо схемы на разность токов перейти к схеме неполной звезды и т.п.

3. Применить другой трансформатор тока, допускающий большую вторичную нагрузку.

4. Установить дополнительный комплект трансформаторов тока и перевести на него часть вторичной нагрузки.

8.Справочные данные по потреблению релейной аппаратуры

Реле тока серии РТ-40

№ п/пТип релеПределы уставок, А Сопротивление обмотки реле, ОмПримечание
1РТ40/0,20,05-0,1
0,1-0,2
80
2РТ40/0,60,15-0,3
0,3-0,6
8,9
2,2
3РТ40/20,5-1
1-2
0,8
0,2
4РТ40/61,5-3
3-6
0,22
0,055
5РТ40/102,5-5
5-10
0,08
0,02
6РТ40/205-10
10-20
0,02
0,005
7РТ40/5012,5-25
25-50
0,0051
0,00128
8РТ40/10025-50
50-100
0,00288
0,00072
9РТ40/20050-100
100-200
0,0032
0,0008
10РТ40/Ф1,75-3,5
2,9-5,8
4,4-8,8
8,8-17,6
0,090
0,036
0,020
0,008

Реле тока серии РТ-40/1Д

№ п/п Пределы уставок, А Полное сопротивление, Ом
Фазы
А В С
1 0,15 40 20 21
2 0,4 25 13 13
3 1 14 7 7
4 2 9 5 5
5 4 6 2,5 2,8
6 5 5 2 2

Реле тока серии РТ 40/Р-1

Зависимость величины полного сопротивления от величины подаваемого тока при питании всех трех обмоток реле

№ п/п Пределы уставок, А Полное сопротивление, Ом
Фазы
А В С
1 0,15 40 20 21
2 0,4 25 13 13
3 1 14 7 7
4 2 9 5 5
5 4 6 2,5 2,8
6 5 5 2 2

Реле тока серии РТ 40/Р-5

Зависимость величины полного сопротивления от величины подаваемого тока при питании всех трех обмоток реле

№ п/п Пределы уставок, А Полное сопротивление, Ом
Фазы
А В С
1 1 1,6 0,9 0,92
2 3 0,8 0,35 0,36
3 5 0,5 0,25 0,26
4 7 0,4 0,17 0,18
5 15 0,25 0,08 0,1
6 25 0,15 0,06 0,08

Реле тока серии РТ 80

№ п/п Тип реле Сопротивление обмотки реле при разных уставках Примечание
Iном, А Z, Ом
1 РТ81/1 4 0,62
2 РТ81/1У 5 0,4
3 РТ82/1 6 0,28
4 РТ82/1У 7 0,204
5 РТ83/1 8 0,156
6 РТ83/1У
7 РТ84/1 9 0,123
8 РТ84/1У
9 РТ85/1 10 0,1
10 РТ85/1У
11 РТ86/1
12 РТ86/1У
13 РТ81/2 2 2,5
14 РТ81/2У
15 РТ82/2 2,5 1,6
16 РТ82/2У
17 РТ83/2 3 1,11
18 РТ83/2У 3,5 0,82
19 РТ84/2 4 0,625
20 РТ84/2У
21 РТ85/2 4,5 0,495
22 РТ86/2 5 0,4

Реле тока серии РТ 90

№ п/п Тип реле Сопротивление обмотки реле при разных уставках Примечание
Iном, А Z, Ом
1 РТ91/1 4 1,56
2 РТ91/1 5 1
3 РТ91/1У 6 0,695
4 РТ91/1У 7 0,51
5 РТ95/1 8 0,39
6 РТ95/1У 9 0,308
7 РТ95/1У 10 0,25
8 РТ91/2 2 6,25
9 РТ91/2 2,5 4
10 РТ91/2У 3 2,78
11 РТ91/2У 3,5 2,03
12 РТ95/2 4 1,56
13 РТ91/2У 4,5 1,24
14 РТ91/2У 5 1

Фильтр-реле тока обратной последовательности серии РТФ

№ п/п Тип реле Сопротивление обмотки реле при разных уставках Примечание
Iном, А Z, Ом
1 РТФ 1М 5 0,22 На фазу
2 РТФ 1М 1 5,5 На фазу
3 РТФ 7/1 5 0,8 На фазу
4 РТФ 7/1 10 0,2 На фазу
5 РТФ 7/2 5 0,6 На фазу
6 РТФ 7/2 1 15 На фазу
7 РТФ 6М 5 0,4 На фазу
8 РТФ 6М 10 0,1 На фазу

Реле токовые дифференциальные

№ п/п Тип реле Наименование обмоток Сопротивление обмоток, Ом Примечание
1 РНТ 565 Рабочая 0,1 При полностью включенных витках
Первая уравнительная 0,1 При полностью включенных витках
Вторая уравнительная 0,1 При полностью включенных витках
2 РНТ 566 Первая рабочая 2,5 При полностью включенных витках
Вторая рабочая 1,5 При полностью включенных витках
Третья рабочая 0,25 При полностью включенных витках
3 РНТ 566/2 Первая рабочая 1,5 При полностью включенных витках
Вторая рабочая 0,1 При полностью включенных витках
4 РНТ 567 Первая рабочая 0,05 При полностью включенных витках
Вторая рабочая 0,05 При полностью включенных витках
5 РНТ 567/2 Первая рабочая 0,5 При полностью включенных витках
Вторая рабочая 0,5 При полностью включенных витках
Выбор трансформаторов тока для присоединения расчетных счетчиков

Для правильного выбора трансформаторов тока (ТТ) для расчетных счетчиков, нам нужно правильно выбрать коэффициент трансформации трансформатора тока, исходя из того, что расчетная нагрузка присоединения, будет работать в аварийном режиме.

Коэффициент трансформации считается завышенным, если при 25%-ной нагрузке присоединения в нормальном режиме, ток во вторичной обмотке будет меньше 10% от номинального тока подключенного счетчика – 5 А.

Для того, чтобы присоединенные приборы, работали в требуемом классе точности (напоминаю что для счетчиков коммерческого учета класс точности трансформаторов тока должен быть – 0,2; 0,2S; для технического учета – 0,5; 0,5S), необходимо чтобы, подключаемая вторичная нагрузка Zн не превышала номинальной вторичной нагрузки трансформатора тока, для данного класса точности, при этом должно выполняться условие Zн ≤ Zдоп. Подробно это рассмотрено в статье: «Выбор трансформаторов тока на напряжение 6(10) кВ».

Еще одним условием правильности выбора трансформаторов тока, является проверка трансформаторов тока на токовую ΔI и угловую погрешность δ.

Угловая погрешность учитывается только в показаниях счетчиков и ваттметров, и определяется углом δ между векторами I1 и I2.

Токовая погрешность определяется по формуле [Л1, с61]:

где:

  • Kном. – коэффициент трансформации;
  • I1 – ток первичной обмотки ТТ;
  • I2 – ток вторичной обмотки ТТ;

Пример выбора трансформатора тока для установки расчетных счетчиков

Нужно выбрать трансформаторы тока для отходящей линии, питающей трансформатор ТМ-2500/6. Расчетный ток в нормальном режиме составляет – 240,8А, в аварийном режиме, когда трансформатор будет перегружен на 1,2, ток составит – 289А.

Выбираем ТТ с коэффициентом трансформации 300/5.

1. Рассчитываем первичный ток при 25%-ной нагрузке:

2. Рассчитываем вторичный ток при 25%-ной нагрузке:

Как видим, трансформаторы тока выбраны правильно, так как выполняется условие:

I2 > 10%*Iн.счетчика, т. е. 1 > 0,5.

Рекомендую при выборе трансформаторов тока к расчетным счетчикам использовать таблицы II.4 – II.5.

Таблица II.5 Технические данные трансформаторов тока

Таблица II.4 Выбор трансформаторов тока

Максимальная расчетная мощность, кВА Напряжение
380 В 10,5 кВ
Нагрузка, А Коэффициент трансформации, А Нагрузка, А Коэффициент трансформации, А
10 16 20/5
15 23 30/5
20 30 30/5
25 38 40/5
30 46 50/5
35 53 50/5 (75/5)
40 61 75/5
50 77 75/5 (100/5)
60 91 100/5
70 106 100/5 (150/5)
80 122 150/5
90 137 150/5
100 152 150/5 6 10/5
125 190 200/5
150 228 300/5
160 242 300/5 9 10/5
180 10 10/5 (15/5)
200 304 300/5
240 365 400/5 13 15/5
250 14 15/5
300 456 600/5
320 487 600/5 19 20/5
400 609 600/5 23 30/5
560 853 1000/5 32 40/5
630 960 1000/5 36 40/5
750 1140 1500/5 43 50/5
1000 1520 1500/5 58 75/5

Примечание.

Учитывая необходимость подключения трансформаторов тока для питания измерительных приборов и реле, для которых нужны различные классы точности, высоковольтные трансформаторы тока выполняются с двумя вторичными обмотками.

Литература:

1. Справочник по расчету электрических сетей. И.Ф. Шаповалов. 1974г.

Поделиться в социальных сетях

Выбор трансформаторов тока для электросчетчика 0,4кВ

Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.

1 Номинальное напряжение трансформатора тока. 

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

2 Класс точности.

Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0.

3 Номинальный ток вторичной обмотки.

Обычно 5А.

4 Номинальный ток первичной обмотки.

Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.

Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.

А сейчас вспомним математику и рассмотрим на примере данные требования.

Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.

Выполним проверку измерительного трансформатора Т-066  200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Как видим 3,5А>2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100 – 35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Вывод: измерительный трансформатор Т-066  200/5 для нагрузки 140А выбран правильно.

По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.

При выборе трансформаторов тока можно руководствоваться  данными таблицы:

Выбор трансформаторов тока по нагрузке

Обращаю ваше внимание, там есть опечатки

Советую почитать:
Правильный выбор трансформатора тока для счетчика

Узнайте, как выбрать трансформатор тока для счетчика по мощности и другим параметрам.


При организации электроснабжения предприятий, жилых и коммерческих объектов, в тех случаях, когда суммарный ток нагрузки многократно превышает возможности узла учета, или же необходимо произвести учет электроэнергии высоковольтных потребителей, устанавливаются дополнительные узлы преобразования — трансформаторы тока (ТТ) и напряжения (ТН). Они позволяют произвести линейное преобразование и осуществить учет или контроль проходящего тока с помощью обычных однофазных или трехфазных электросчетчиков, амперметров, а также организовать систему защиты линии с помощью них. В этой статье мы узнаем как выбрать трансформатор тока для счетчика электроэнергии по мощности и другим параметрам. Содержание:

Разновидность устройств

При выборе трансформатора нужно учитывать его место расположение (закрытые или открытые распределительные установки, встраиваемые системы), а также конструктивные особенности исполнения (проходные, шинные, опорные, разъемные).

Проходной ТТ устанавливают в комплексных РУ и используют в качестве проходного изолятора. Опорные используют для установки на ровной поверхности. Шинный ТТ устанавливается непосредственно на токоведущие части. В роли первичной обмотки трансформатора выступает участок шины. Встроенные модели как элемент конструкции, устанавливаются в силовые трансформаторы, масляные выключатели и пр. Разъемные ТТ выполнены разборными для быстрой установки на жилы кабеля, без физического вмешательства в целостность электрических сетей.

Кроме того, разделение также проходит по типу используемой изоляции:

  • литая;
  • пластмассовый корпус;
  • твердая;
  • вязкая компаудная;
  • маслонаполненная;
  • газонаполненная;
  • смешанная масло-бумажная.

И различают по спецификации и сфере применения:

  • коммерческий учет и измерения;
  • защита систем электроснабжения;
  • измерения текущих параметров;
  • контроль и фиксация действующих значений;

Также различаются трансформаторы по напряжению: для электроустановок до 1000 Вольт и выше.

Правила выбора

При выборе трансформатора его напряжение не должно быть меньшим, чем номинальное напряжение счетчика.

U ном ≥ U уст

Аналогично поступаем при выборе ТТ по току, который должен быть равен или больше максимального тока контролируемой установки. С учетом аварийных режимов работы.

 I ном ≥ I макс.уст

В ПУЭ описаны правила и нормативные требования к устройствам коммерческого учета счетчиками, а также уделено не мало внимания трансформаторам тока и нормам расчетных мощностей. Детально ознакомится можно в пункте ПУЭ 1.5.1.

Помимо этого существуют следующие правила выбора трансформатора тока для счетчика:

  1. Длина и сечение проводников от ТТ к узлу учета должны обеспечивать минимальную потерю напряжения (не более 0.25% для класса точности 0.5 и 0.5% для трансформаторов точностью 1.0). Для счетчиков, используемых для технического учета, допускается падение напряжения 1.5% от номинального.
  2. Для систем АИИС КУЭ трансформаторы должны иметь высокий класс точности. Для установки в такие системы используют ТТ класса S 0.5S и 0.2S, позволяя увеличить точность учета при минимальных первичных токах.
  3. Для коммерческого учета нужно выбрать класс точности ТТ не более 0.5. При использовании счетчика точностью 2.0 и для технического учета, допускается применение трансформатора класса 1.0.
  4. Выбор ТТ с завышенной трансформацией допускается, если при максимуме тока нагрузки, ток в трансформаторе не меньше 40% от I ном электросчетчика.
  5. При расчете количества потребленной энергии необходимо учитывать коэффициент преобразования.
  6. Расчет мощности ТТ производится в зависимости от сечения проводника и расчетной мощности.

Пример расчета:

По таблице ниже, согласно получившимся расчетным параметрам выбираем ближайший ТТ:

При заключении договора с энергоснабжающей организацией, в случае когда для производства учета необходима установка трансформаторов тока, для организации узла учета, выдаются технические условия, в которых указано модель узла учета а также тип ТТ, номинал автоматических выключателей место их установки для конкретной организации. В результате самостоятельные расчеты ТТ производить не нужно.

Напоследок советуем читателям https://samelectrik.ru просмотреть полезное видео по теме:

Надеемся, теперь вам стало понятно, как выбрать трансформаторы тока для счетчиков и какие варианты исполнения ТТ бывают. Надеемся, предоставленная информация была для вас полезной и интересной!

Наверняка вы не знаете:

  • Как установить счетчик электроэнергии
  • Как выбрать кабель для электропроводки
  • Схема подключения испытательной коробки


НравитсяПравильный выбор трансформатора тока для счетчика0)Не нравитсяПравильный выбор трансформатора тока для счетчика0)

Расчет тока повреждения трансформатора

Transformer Fault Current Calculation Расчет тока повреждения трансформатора

Импеданс трансформатора

Импеданс трансформатора измеряется в Процентное сопротивление , это процент от номинального первичного напряжения, приложенного к первичной обмотке трансформатора, для того, чтобы номинальная вторичная ток полной нагрузки протекала во вторичной обмотке (этот тест предварительно с первичной обмоткой, подключенной к Variac или переменному источнику питания, а вторичная обмотка закорочена).

Значения сопротивления трансформатора могут отличаться, но обычно трансформаторы Blakley Electrics составляют от 4 до 5% от первичного напряжения.

Для получения более подробной информации, пожалуйста, свяжитесь с Blakley Electrics ‘Технический отдел.

Напряжение импеданса V z = (Первичное напряжение V x Процентное сопротивление Z%) / 100


Максимальный ток короткого замыкания трансформатора с учетом импеданса Loog

Чтобы рассчитать максимальный ток повреждения , который может быть достигнут в цепи, питаемой от трансформатора, мы используем следующую формулу.

Maximum Fault Current

Эта формула вычисляет полное сопротивление контура на конце цепи, питаемой от вторичной обмотки трансформатора. При расчете импеданса контура неисправности выберите правильный тип трансформатора выше. Трехфазные трансформаторы делят значения для вторичного напряжения на √3 и ВА на 3.

Для трансформаторов с центральным ответвлением на землю ( C TE ) значения делятся пополам на Vs и VA. Времена отключения RLV / 110 В C TE и цифры Z с относятся к BS 7671: 2008, 411.8 Таблица 41.6.

Transformer Fault Current Calculation

Связанные материалы EEP со спонсорскими ссылками

,
пускового тока трансформатора: ограничение 40 ВА трансформатора

Вы когда-нибудь включали трансформатор и слышали громкий гудящий звук? А что с перегоревшим предохранителем или сработавшим автоматическим выключателем? Эти знаки могут указывать на пусковой ток трансформатора.

Пусковой ток трансформатора описывает скачок тока, который происходит при первом включении трансформатора. Этот всплеск может быть до 10 раз выше, чем нормальный ток. Почему возникает пусковой ток? Это может произойти, потому что большие трансформаторы требуют большого количества тока при подаче напряжения.Пока индуктивное сопротивление и магнитное поле не нарастают, они, по сути, действуют как короткие замыкания. Это объясняет, почему вы можете испытывать искаженных звуков, (гудение или жужжание) или , с легкостью перегорать предохранитель .

Проблемные последствия пускового тока трансформатора

Пусковой ток в трансформаторе может вызвать несколько проблем. Это не только мешает работе цепей , но это может привести к отрицательным последствиям для трансформатора.Искажение вольт или формы волны, известной как гармоники, является еще одним побочным эффектом броска тока. При неправильном управлении пусковой ток может привести к сбою компонентов цепи , сокращению срока службы трансформатора или даже к повреждению .

Давайте посмотрим на рисунок ниже. Если волна переменного тока проходит через нулевое значение, потребляемый ток будет очень высоким и превысит ток насыщения (рисунок 1). В этой ситуации защита пускового тока становится необходимой для правильной работы трансформатора.

Transformer inrush current wave

Рисунок 1. Трансформатор потребляет пусковой ток, который может превышать ток насыщения, влияя на магнитные свойства сердечника.

Решение пускового тока трансформатора

Какое практическое решение этой проблемы? Одним из удобных способов ограничения пускового тока в трансформаторе является использование термистора NTC. На фото ниже показан термистор NTC, размещенный на плате для обеспечения оптимальной защиты от бросков (Рисунок 2).

Transformer inrush current limiter in circuit

Рисунок 2: Термистор NTC расположен последовательно с входной линией для ограничения пускового тока в трансформаторе.

Расчет пускового тока трансформатора

Здесь, в Ametherm, у нас есть расчет, который мы используем, чтобы помочь нашим клиентам выбрать правильный номер детали термистора NTC . Мы подумали, что поделимся этим с вами, чтобы вы могли сделать математику для себя, если хотите.

7-шаговый процесс, описанный ниже, проведет вас через расчеты, которые мы выполнили для 40VA трансформатора .Вы можете применить эти расчеты и к вашему собственному трансформатору. Просто введите свои собственные характеристики приложения (см. Шаг 1) и следуйте уравнениям. Если вы готовы, возьмите ручку и бумагу, и начнем!

Шаг 1: Определите характеристики вашего трансформатора

Трансформатор 40 ВА имеет следующие заданные значения. Если вы делаете эти вычисления для своего собственного приложения, эти значения будут отличаться.

Приведенные значения:

  1. кВА или ВА трансформатора = 40 ВА
  2. Входное напряжение = 110 В перем.В зависимости от формы вашего трансформатора, вы будете использовать 10 или 30 в первом предположении (см. Примечание).

    Допущения:

    1. Пусковой ток = 30 x Стационарный ток (SSI)
    2. Максимально допустимый пусковой ток = 1/5 пускового тока
    3. Частота = 50 Гц

    Примечание :

    • Использование 10 x SSI, если геометрия сердечника является прямоугольной
    • Используйте 30 x SSI, если геометрия является тороидальной (то есть, в форме бублика)
    • Это типичные значения, которые мы видели на основе трассировки объема
    • Максимально допустимый пусковой ток уменьшает пусковой ток на 80

    Шаг 3: Расчет установившегося тока трансформатора

    Теперь, когда у нас есть данные значения и допущения для нашего приложения, мы готовы начать вычисления.Сначала мы вычислим установившегося тока трансформатора во время нормальной работы, используя заданные значения, найденные в Шаг 1 .

    Шаг 4: Расчет пускового тока

    Во-вторых, мы рассчитаем пусковой ток, возникающий при включении трансформатора. Вы можете найти объяснение этого расчета в Шаг 2 .

    Шаг 5: Расчет индуктивного сопротивления

    В-третьих, мы собираемся вычислить индуктивное сопротивление.Это величина сопротивления катушке и сердечнику электрическому току.

    Шаг 6: Рассчитать энергию

    Далее, мы рассчитаем количество энергии, необходимое термистору для предотвращения его самоуничтожения.

    Шаг 7: Рассчитать минимальное сопротивление холода термистора

    Наконец, мы собираемся вычислить минимальное сопротивление холода термистора.

    Выбор правильного термистора NTC

    Теперь, когда шаги с 1 по 7 выполнены, вы можете использовать параметры напряжения, SSI и энергии для просмотра таблицы на диаграмме ниже. Лист данных направит вас к правильному номеру детали для вашего термистора.

    Для этого примера мы рекомендуем использовать термистор SL03 12101, поскольку он отвечает всем необходимым требованиям для этого применения.

    Have Questions? Ask an Engineer

    Facebook icon Twitter icon Linkedin icon Youtube icon

    .

    Выбор трансформаторов тока - электроника Janitza

    Коэффициент трансформации

    Коэффициент трансформации - это соотношение между номинальным током первичной обмотки и номинальным током вторичной обмотки, которое указывается на паспортной табличке в качестве упрощенной дроби.

    Чаще всего используются трансформаторы тока х / 5 А. Большинство измерительных приборов имеют высший класс точности при 5 А. По техническим и, кроме того, экономическим причинам, рекомендуется использовать трансформаторы тока х / 1 А с большой длиной измерительного кабеля.Потери в линии с 1-А трансформаторами составляют всего 4% по сравнению с 5-А трансформаторами. Однако измерительные устройства здесь часто демонстрируют более низкую точность измерений.

    Номинальный ток

    Номинальный или номинальный ток (более раннее обозначение) - это значение первичного и вторичного тока, указанное на паспортной табличке (первичный номинальный ток, вторичный номинальный ток), для которого рассчитан трансформатор тока. Стандартизированные номинальные токи (кроме классов 0.2 S и 0,5 S) 10 - 12,5 - 15 - 20 - 25 - 30 - 40 - 50 - 60 - 75 A, а также десятичные кратные и их доли. Стандартизированные вторичные токи составляют 1 и 5 А, предпочтительно 5 А.

    Стандартные номинальные токи для классов 0,2 S и 0,5 S составляют 25–50–100 А и их десятичных кратных, а также вторичные (только) 5 А.

    Правильный выбор первичного номинального тока важен для точности измерений. Рекомендуется соотношение, немного превышающее измеренный / определенный максимальный ток нагрузки (In).

    Пример: In = 1154 A; выбранное соотношение трансформаторов = 1250/5.

    Номинальный ток также можно определить исходя из следующих соображений:

    • В зависимости от номинального тока трансформатора сетевого питания прибл. 1.1 (следующий размер трансформатора)
    • Защита (номинальный ток предохранителя = первичный ток ТТ) измеряемой части системы (LVDSB, перераспределительные щиты)
    • Фактический номинальный ток, умноженный на 1,2 (если фактический ток лежит значительно ниже номинального тока трансформатора или предохранителя, следует выбрать этот подход)

    Следует избегать чрезмерных размеров трансформатора тока, в противном случае точность измерения значительно снижается, особенно при малых токах нагрузки.

    Fig.: Calculation of the rated power Sn (Copper line 10 m) Рис .: Расчет номинальной мощности Sn (Медная линия 10 м)

    Номинальная мощность

    Номинальная мощность трансформатора тока является произведением номинальной нагрузки и квадрата вторичного номинального тока и указывается в ВА. Стандартизированные значения составляют 2,5 - 5 - 10 - 15 - 30 ВА. Также допустимо выбирать значения более 30 ВА в зависимости от случая применения. Номинальная мощность описывает способность трансформатора тока «возбуждать» вторичный ток в пределах погрешности через нагрузку.

    При выборе подходящей мощности необходимо учитывать следующие параметры: потребляемая мощность измерительного устройства (с последовательным соединением), длина линии, поперечное сечение линии. Чем длиннее линия и чем меньше поперечное сечение линии, чем выше потери при питании, т. е. номинальная мощность ТТ должна быть выбрана такой, чтобы она была достаточно высокой.

    Потребляемая мощность должна быть близка к номинальной мощности трансформатора. Если энергопотребление очень низкое (недогрузка), то коэффициент перегрузки по току будет увеличиваться, и измерительные устройства будут недостаточно защищены в случае короткого замыкания при определенных обстоятельствах.Если потребляемая мощность слишком высока (перегрузка), это отрицательно влияет на точность.

    Трансформаторы тока часто уже встроены в установку и могут использоваться в случае дооснащения измерительным устройством. В этом случае необходимо отметить номинальную мощность трансформатора: достаточно ли этого для привода дополнительных измерительных приборов?

    Прецизионные классы

    Трансформаторы тока делятся на классы в соответствии с их точностью.Стандартные классы точности 0,1; 0,2; 0,5; 1; 3; 5; 0,1 с; 0,2 с; 0,5 S. Знак класса соответствует кривой ошибок, относящихся к текущим и угловым ошибкам.

    Классы точности трансформаторов тока связаны с измеренным значением. Если трансформаторы тока работают с низким током по отношению к номинальному току, то точность измерения снижается. В следующей таблице приведены значения пороговых ошибок с учетом номинальных значений тока:

    Fig.: Calculation of the rated power Sn (Copper line 10 m)

    Мы всегда рекомендуем трансформаторы тока с одинаковым классом точности для измерительных приборов UMG.Трансформаторы тока 1 с более низким классом точности приводят во всей системе - трансформатор тока + измерительное устройство - к более низкой точности измерения, которая в этом случае определяется классом точности трансформатора тока. Однако использование трансформаторов тока с меньшей точностью измерения, чем измерительное устройство, технически осуществимо.

    Fig.: Calculation of the rated power Sn (Copper line 10 m)

    Измерительный трансформатор тока против защитного трансформатора тока

    Хотя измерительные трансформаторы тока предназначены для достижения точки насыщения как можно быстрее, как только они превышают свой рабочий диапазон тока (выраженный коэффициентом перегрузки по току FS) - во избежание увеличения вторичной обмотки ток с неисправностью (е.грамм. короткое замыкание) и для защиты подключенных устройств. С защитными трансформаторами насыщение должно лежать как можно дальше.

    Защитные трансформаторы

    используются для защиты системы вместе с требуемым распределительным устройством. Стандартные классы точности для защитных трансформаторов 5P и 10P. «P» здесь означает «защита». Номинальный коэффициент перегрузки по току помещается после обозначения класса защиты (в%), поэтому, например, 10P5 означает, что при пятикратном номинальном токе отрицательное отклонение вторичной стороны от ожидаемого значения будет не более 10% в соответствии с коэффициент (линейный).

    Использование измерительных трансформаторов тока настоятельно рекомендуется для работы измерительных приборов UMG.

    Стандартная шина трансформатора тока

    Fig.: Calculation of the rated power Sn (Copper line 10 m) Fig.: Calculation of the rated power Sn (Copper line 10 m) ,
    Как рассчитать / найти номинальные характеристики трансформатора в кВА

    Рассчитать и найти номинальные значения однофазных и трехфазных трансформаторов в кВА

    Мы знаем, что трансформатор всегда рассчитан в кВА. Ниже приведены две простые формулы для определения номинала однофазных и трехфазных трансформаторов .

    Найти номинальное значение однофазного трансформатора

    Номинальное значение однофазного трансформатора:

    P = V x I.

    Номинальное значение однофазного трансформатора в кВА

    кВА = (В x I) / 1000

    Номинал трехфазного трансформатора

    Номинал трехфазного трансформатора:

    P = √3.V x I

    Номинальная мощность трехфазного трансформатора в кВА

    кВА = (√3. V x I) / 1000

    Но подождите, здесь возникает вопрос ... Посмотрите на общую табличку с номинальными характеристиками трансформатора 100 кВ. How to Calculate/Find the Rating of Transformer in kVA (Single Phase and Three Phase)? How to Calculate/Find the Rating of Transformer in kVA (Single Phase and Three Phase)?

    Вы что-то заметили? В любом случае, мне все равно, каков ваш ответ;) но позвольте мне попытаться объяснить.

    Вот этот рейтинг трансформатора составляет 100кВА .

    Но первичное напряжение или высокое напряжение (H.V) составляет 11000 В = 11 кВ.

    А Первичный ток на стороне высокого напряжения равен 5.25 ампер.

    Также вторичное напряжение или низкое напряжение (LV) составляет 415 Вольт

    А Вторичный ток (ток на стороне низкого напряжения) составляет 139,1 Ампер.

    Проще говоря,

    Номинальная мощность трансформатора в кВА = 100 кВА

    Первичные напряжения = 11000 = 11 кВ

    Первичный ток = 5,25 A

    Вторичные напряжения = 415 В

    Вторичный ток = 139,1 Ампер.

    Теперь рассчитайте номинальную мощность трансформатора в соответствии с

    P = V x I (Первичное напряжение х первичный ток)

    P = 11000 В x 5.25A = 57 750 ВА = 57,75 кВА

    Или P = V x I (Вторичные напряжения х Вторичный ток)

    P = 415 В x 139,1A = 57 726 ВА = 57,72 кВА

    Еще раз мы заметили, что рейтинг трансформатора (на паспортной табличке) - 100 кВА, , но согласно расчету ... это примерно , 57 кВА, ...

    ,

    . Разница возникает из-за незнания того, что мы использовали однофазную формулу вместо трехфазной формулы.

    Теперь попробуйте эту формулу:

    P = √3 x V x I

    P = √3 Vx I (первичное напряжение х первичный ток)

    P = √3 x 11000V x 5.25A = 1,732 x 11000 В x 5,25 A = 100 025 ВА = 100 кВА

    Или P = √3 x V x I (Вторичные напряжения х Вторичный ток)

    P = √3 x 415 В x 139,1 A = 1,732 x 415 В x 139,1 A = 99 985 ВА = 99,98 кВА

    Рассмотрим (следующий) следующий пример.

    Напряжение (линия к линии) = 208 В .

    Ток (линейный ток) = 139 A

    Теперь рейтинг трехфазного трансформатора

    P = √3 x V x I

    P = √3 x 208 x 139A = 1.732 x 208 x 139

    P = 50077 ВА = 50 кВА

    Примечание. Это сообщение было сделано по запросу нашего поклонника Пейджа Анил Виджай.

    .

Отправить ответ

avatar
  Подписаться  
Уведомление о