Трансформатор повышающий импульсный: Повышающий импульсный трансформатор

Содержание

Повышающий преобразователь 12-24 | КОНВЕРТОР™

Повышающий преобразователь напряжения 12/24 В. На что следует обратить внимание при покупке.

Повышающие импульсные преобразователи 12-24 В. есть два типа: двухтактные преобразователи напряжения с отводом от середины обмотки трансформатора работающие по схеме “push-pull” и работающие по дроссельной схеме “boost converter”. Дроссельные повышающие преобразователи шире представлены на рынке за счет более простой принципиальной схемы и низкой себестоимости, чем трансформаторные преобразователи. Корпус у такого устройства небольших размеров изготовленный из прочного алюминия, но при всех достоинствах, дроссельные преобразователи имеют один недостаток – низкая номинальная мощность до 340 Вт, что соответствует номинальному току на выходе 14А. Однако такой постоянной мощности хватает для подключения устройств с невысоким потребления номинального тока, к примеру 24-вольтовые воздушные автономные отопители для обогрева салона микроавтобуса с напряжением бортовой сети 12В.

Важным параметром повышающего преобразователя – теплоотдача его корпуса. Он должен иметь массивный радиатор либо увеличенную площадь ребристой поверхности корпуса для охлаждения дросселя или трансформатора и силовых электронных компонентов – транзисторов и диодов.

Повышающие двухтактные трансформаторные преобразователи 12-24 обладают более усложненной принципиальной схемой преобразования, в которой КПД в разы больше относительно дроссельной схемы и увеличенными габаритами корпуса, соответственно и более высокой себестоимостью, чем дроссельные преобразователи. Благодаря таким характеристикам, трансформаторные преобразователи не так чувствительны к высокому максимальному импульсному току, что выдерживают скачки почти в два раза превышающие показатель номинального тока в отличии от дроссельного типа преобразователей. Это делает их работу эффективной и надежной при подключении оборудования требующего постоянного высокого номинального тока.

Если при подключении 24-вольтового оборудования с невысоким потреблением постоянного тока, к примеру до 8А, корпус может иметь небольшие размеры и его будет достаточно для охлаждения, с чем дроссельный преобразователь легко справится, то если необходимо подключить оборудование с номинальным током потребления 10А и выше, а эта задача посильна трансформаторному преобразователю, тогда следуют помнить про принцип охлаждения корпуса преобразователя.

Более подробно об охлаждении корпуса и какая разница между номинальным (постоянным) током и максимальным током можно прочитать в статье “Выигрыш качества”.

Категории:12-24 Без рубрики

Импульсные преобразователи напряжения переменного тока

Введение

Изменение величины напряжения переменного тока требуется в электромеханических системах автоматики, в электропитании и во многих других областях. Для этого традиционно применяют магнитные усилители, многообмоточные силовые трансформаторы с тиристорной коммутацией обмоток, различные тиристорные схемы, изменяющие величину напряжения за счет искажения формы синусоиды [1]. Указанные устройства отличаются неудовлетворительными массогабаритными показателями или не обеспечивают требуемые пределы и плавность регулирования, синусоидальную форму напряжения. Устройство, использующее автотрансформатор, управляемый двигателем, обладает плавностью регулирования напряжения и не искажает его форму, но громоздко, дорого и имеет низкое быстродействие.

Прогресс в силовой полупроводниковой технике привел к широкому распространению систем регулирования переменного напряжения по схеме «выпрямитель — широтно регулируемый инвертор». Возможность плавного регулирования амплитуды и частоты напряжения вызвала бурное развитие высококачественных регулируемых приводов переменного тока. Если же необходимо регулировать только величину переменного напряжения, эта схема становится экономически невыгодной. При питании от однофазной сети габариты указанной схемы существенно увеличивает фильтр выпрямленного напряжения. Другим существенным недостатком схемы «выпрямитель — широтно регулируемый инвертор» оказывается невозможность рекуперации энергии в сеть переменного тока в силу односторонней проводимости выпрямителя.

Известны импульсные преобразователи постоянного напряжения [2], принцип действия которых поясняют рис. 1-3. Ключ К переключается с высокой частотой/из положения 1 в положение 2. Регулирование выходного напряжения осуществляется изменением относительной длительности пребывания ключа К в положении 1:γ

γ= τ/T = τf, T=1/f, 0< γ <1,      (1)

где τ — время нахождения ключа в положении 1 в течение периода переключений Т.

Рис. 1

Рис. 2

Рис. 3

При известных допущениях средние значения выходных напряжений определяются соответственно выражениями [2]:

Современные силовые полевые транзисторы (MOSFET) и биполярный транзисторы типа IGBT допускают частоту переключений fв десятки и сотни килогерц при напряжениях в сотни вольт и токах в десятки и сотни ампер. Вследствие высокой частоты коммутации и малых потерь в транзисторных ключах массогабаритные и энергетические показатели преобразователей напряжения постоянного тока весьма высоки.

Очевидно, что при достаточно высокой частоте коммутации эти устройства могут преобразовывать и переменное напряжение, например, промышленной частоты. Разумеется, ключи К при этом должны проводить ток в обе стороны. Пример такого ключа на силовых полевых транзисторах представлен на рис. 4.

Рис. 4

Принцип работы импульсного преобразователя напряжения переменного тока проще пояснить на примере схемы рис. 1. Напряжение на выходе ключа К (точка «0») относительно общей точки схемы представляет собой последовательность импульсов с регулируемым параметром γ = τ/T, амплитуды которых модулированы синусоидой входного напряжения (рис. 5). Основная гармоника последовательности импульсов согласно (2) имеет амплитуду U2m= γU1m. Высшие же гармоники легко отфильтровываются фильтром из дросселя Др и конденсатора С, поскольку их частоты на два и более порядков выше частоты основной гармоники.

Рис. 5

Очевидно, что возможности современных полевых транзисторов MOSFET и биполярных транзисторов IGBT позволяют создавать импульсные преобразователи напряжения переменного тока промышленной частоты, имеющие широкую область применения в регуляторах и стабилизаторах переменного напряжения.

Первые попытки создания импульсных регуляторов и стабилизаторов напряжения переменного тока предпринимались еще в 60-х и 70-х годах прошлого века [3, 4]. Однако недостаточное быстродействие полупроводниковых приборов не позволяло достичь высоких показателей. Другим препятствием было почти полное отсутствие теоретического исследования подобных устройств. Если первое препятствие к настоящему времени практически снято, то второе во многом остается в силе.

Поэтому актуальна задача данной работы — познакомить читателей с результатами теоретического исследования установившихся режимов при синусоидальном входном напряжении в устройствах (рис. 1-3), называемых в дальнейшем импульсными преобразователями напряжения переменного тока, и принципами их использования в регуляторах и стабилизаторах переменного напряжения.

1. Основные результаты
анализа установившегося
режима импульсных преобразователей напряжения переменного  тока

В общем случае в n-м периоде переключений импульсный преобразователь напряжения описывается двумя различными векторно-матричными уравнениями:

где Хт= [x1, x2, …. , xm]— вектор фазовых координат, в качестве которых выбраны токи в ин-дуктивностях и напряжения на конденсаторах, непрерывные в моменты коммутации ключа К, полагаемого идеальным, А1и A2-mxm— квадратные матрицы, элементами которых являются параметры анализируемых цепей, полагаемые постоянными, Um и Ω— амплитуда и частота преобразуемого гармонического напряжения, T0 = 2π/Ω-го период, h1T=k1cT, h2T

= k2cT, cT = [1, 0,…, 0]– m — мерные векторы, T-знак транспонирования, k1 и k2 — постоянные, T = T0/N — период коммутации ключа К, NL1 — целое число.

Для удобства анализа введем в рассмотрение комплексный вектор X*=ReX*+jImX*, мнимая часть которого удовлетворяет уравнениям (5) и (6), то есть ImX*=X, а вещественная часть удовлетворяет тем же уравнениям, в правой части которых синусоидальное напряжение заменено косинусоидальным напряжением той же фазы, амплитуды и частоты. Очевидно, для комплексного вектора X* можно записать следующие уравнения, являющиеся исходными для анализа установившегося режима.

В результате анализа установившегося режима импульсных преобразователей напряжения переменного тока математическими методами установлено, что при исчезающе малом периоде коммутации ключа К комплексный вектор фазовых координат X* изменяется по закону:

X*(t)=X*(jΩγ)UmejΩt     (9)

где

  (10)

где E — единичная матрица, «-1» означает обратную матрицу.

Заметим, что согласно принятой в теоретической электротехнике терминологии вектор X*(jΩγ)Um можно назвать вектором комплексных амплитуд фазовых координат импульсного преобразователя напряжения. Можно показать, что отклонения от предельных законов изменения фазовых координат имеют относительно Т порядок малости не ниже первого. Это позволяет при достаточно сильном неравенстве

T= T0/NKT0, (NL 1)             (11)

анализ свойств импульсных преобразователей напряжения проводить по их непрерывным моделям, описываемым в общем виде выражениями (9), (10).

2. Непрерывные модели основных схем преобразователей напряжения

А. Рассмотрим вначале повышающий преобразователь напряжения (рис. 2), представленный расчетной схемой на рис. 6. Для положений переключателя 1 и 2 повышающий преобразователь напряжения описывается следующими двумя системами дифференциальных уравнений соответственно:

где u1 = Umsin(Ωt)— преобразуемое напряжение, u2 — выходное напряжение, Rн, Lн — активное сопротивление и индуктивность нагрузки, С— емкость конденсатора фильтра, L и r — индуктивность и активное сопротивление дросселя Др, в которые можно включить активную и индуктивную составляющие выходного сопротивления источника преобразуемого напряжения щ, Т— период коммутации.

Рис. 6

Обозначив фазовые координаты преобразователя напряжения

х1 = iL,, x2 =

и2, х3 = iн,             (14)

можно системы уравнений (12) и (13) представить соответственно в виде двух векторно-матричных уравнений (5) и (6), где

Подстановка выражений (15) в (10) позволяет из (9) получить для установившегося режима

где zn=Rn+jΩLn,  zдр=r+jΩL, zc=(jΩC)-1

Б. Рассмотрим инвертирующий преобразователь напряжения (рис. 3), полагая источник входного напряжения идеальным. Согласно расчетной схеме, представленной на рис. 7, при первом и втором положениях ключа преобразователь напряжения описывается двумя системами дифференциальных уравнений, аналогичными системам уравнений повышающего преобразователя напряжения (12), (13):

Рис. 7

Использовав те же обозначения фазовых координат (14), получаем матрицы, векторы и коэффициенты уравнений (5) и (6):

Подстановка выражений (19) в (10), согласно (9), дает для установившегося режима:

при тех же обозначениях, что и в формулах (16). В. Понижающий преобразователь напряжения, представленный на рис. 3, рассмотрим, также полагая источник входного напряжения идеальным. Согласно расчетной схеме, представленной на рис. 8, ниже записаны системы дифференциальных уравнений преобразователя напряжения для положения переключателя 1 и 2 соответственно:

Рис. 8

Матрицы, векторы и коэффициенты систем (5) и (6) при тех же, что и выше, обозначениях фазовых координат (14) имеют вид:

Согласно (9) при подстановке (23) в (10) получаем для установившегося режима:

Для практических приложений большое значение имеет выходное сопротивление реального источника входного напряжения, имеющего, как правило, активно-индуктивный характер. Для защиты транзисторного ключа от перенапряжений, вызванных ЭДС самоиндукции внутреннего сопротивления источника входного напряжения, включают конденсатор на входные зажимы инвертирующей и понижающей схем. В повышающей же схеме ток источника входного напряжения не прерывается, и защиту ключа от перенапряжений в моменты коммутации обеспечивают снабберные цепи, которые при анализе установившегося режима не учитываются. В двух же других схемах емкость на входе преобразователя напряжения имеет существенную величину и должна быть во многих случаях учтена, поскольку влияет на входное напряжение преобразователя.

Г. Расчетная схема инвертирующего преобразователя напряжения, учитывающая выходное сопротивление источника входного напряжения и конденсатор на входе, представлена на рис. 9. Схему преобразователя напряжения описывают следующие две системы дифференциальных уравнений для двух положений ключа 1 и 2:

Рис. 9

Рис. 10

Обозначив фазовые координаты

х1 = i1, х2 = u1, х3= iL, х4 = и25 = iн, (27)

получаем матрицы, векторы и коэффициенты систем уравнений (5), (6):

Подставив (29) в (10), согласно (9) находим для установившегося режима:

где

Д. Расчетная схема понижающего преобразователя напряжения, учитывающая выходное сопротивление источника входного напряжения и конденсатор на входе, представлена расчетной схемой на рис. 10. Соответствующие системы дифференциальных уравнений схемы для положений ключа 1 и 2 приведены ниже:

Рис. 9

При тех же обозначениях, что и в (27), получаем из (31), (32):

Подстановка (33) в (10) согласно (9) дает для установившегося режима:

где

3. Анализ свойств основных схем преобразователей напряжения

Запишем согласно x*2 формул (16), (20) и (24) выражения для комплексной амплитуды выходного напряжения в виде

где z нс = zнzс( z н+zс )1— комплексное сопротивление нагрузки и параллельно включенного конденсатора фильтра C.

Согласно (35) непрерывную модель преобразователя напряжения можно рассматривать как источник регулируемого напряжения переменного тока, ЭДС Em и выходное сопротивление z вых которого определяются выражениями:

Очевидно, что выражения для ЭДС повторяют формулы выходного напряжения соответствующих импульсных преобразователей напряжения постоянного тока (2, 3, 4). Выходное сопротивление повышающего и инвертирующего преобразователей оказывается переменным, увеличивающимся вместе с ростом ЭДС, причем значительно быстрее последней. Это обстоятельство — следствие различия структуры преобразователей напряжения в первой и второй части периода коммутации. У понижающего же преобразователя напряжения структура не изменяется, и поэтому выходное сопротивление его постоянно. Во всех схемах zвых имеет активно-индуктивный характер со значительно преобладающей индуктивной составляющей, что характерно для дросселей.

Нетрудно показать, используя исходные формулы (16, 20, 24), что несмотря на стремление ЭДС повышающего и инвертирующего преобразователей к бесконечности при у, стремящейся к 1, выходное напряжение их при этом стремится к нулю, что объясняется более быстрым стремлением к бесконечности выходного сопротивления. Физическая же причина этого заключена в ограничении тока дросселя:

iL<Um/(r22L2)

тогда как при стремлении γ к 1 ток дросселя должен неограниченно расти, чтобы за исчезающе малое время (1- γ )/T компенсировать разряд конденсатора С током нагрузки iн за время γ T

Сказанное означает, что для повышающего и инвертирующего преобразователей напряжения существует критическое значение γ-γкр, при котором выходное напряжение (его амплитуда или действующее значение) при фиксированных значениях z др, z н, zс , достигает максимальной величины. Для определения γкр необходимо исследовать на экстремум по γ выражения амплитуды выходного напряжения

где x=1- γ, α =Re{zдр/zнс}, β=Im{zдр/zнс}

Исследование на экстремум первого выражения дает γкр для повышающего преобразователя напряжения

Этому значению у соответствует максимальная амплитуда выходного напряжения

Для инвертирующего же преобразователя напряжения

γкр=1-xкр ,                (39)

где x кр — положительный корень уравнения

      (40)

Несложно показать, что в силу условия α<0 уравнение (40) имеет единственный положительный корень 0 < x кр <0,5 и, следовательно, для инвертирующего преобразователя напряжения

0,5< γкр <1 .

При построении регуляторов и стабилизаторов переменного напряжения на основе повышающего или инвертирующего преобразователя необходимо ограничивать величину γ сверху неравенством

γ< γкр ,                (41)

поскольку превышениевместо увеличения выходного напряжения вызовет его уменьшение под действием обратной связи вплоть до 0 при γ=1

У повышающих преобразователей напряжения при одинаковых γкр, то есть при одинаковых | z др/zнс| отношение (U2m)max/Um имеет разные значения, лежащие в пределах

        (42)

Нижний предел соответствует zдр/zнс= α, α =0, верхний — α =0, zдр/zнс=jβ

В инвертирующем преобразователе γкр зависит не только от модуля z/z нс, но и от его вещественной части, причем при одинаковом модуле большему значению вещественной части (α) соответствуют меньшие x к и (U2m)max/Um и большее γкр. При вещественном z /zнс (z/zнс= α) положительный корень уравнения (40) x к и соответствующие ему γкр и (U2m)max/Um имеют аналитические выражения:

Полученные выражения могут служить при известном значении | z /zнс| оценкой снизу для xкр и (U2m)max/Um и оценкой сверху для γкр

Для выбора силовых транзисторов, образующих ключевой элемент преобразователей напряжения, изображенных на рис. 1-3, например представленный на рис. 4, необходимо знать наибольший коммутируемый ими ток. Во всех схемах силовые транзисторы коммутируют ток дросселя iL, амплитуда которого и должна учитываться при выборе транзисторов ключевого элемента.

При исчезающе малом периоде коммутации Т из выражений (14), (16), (20) и (24) несложно выразить отношение комплексных амплитуд токов дросселя и тока нагрузки:

При выполнении условия (11) |zн/zс| K1 можно амплитуду тока дросселя считать в  (1- γ )-1 раз превосходящей амплитуду тока нагрузки в повышающей и инвертирующей схемах, а в понижающей схеме можно амплитуды токов считать равными.

В реальных схемах при конечном Т необходимо учесть еще и пульсации тока дросселя, накладывающиеся на полезную (гладкую) составляющую тока.

Точное определение пульсаций тока дросселя требует построения установившегося процесса при реальном конечном периоде коммутации Т. Поскольку при расчете преобразователя напряжения значения его параметров zдр, zс, Т не известны и подлежат определению, необходимо оценить величину пульсации более простым способом, позволяющим выбрать индуктивность дросселя и частоту коммутации, а затем уточнить величину пульсаций.

Максимальный размах пульсаций тока дросселя (удвоенную амплитуду пульсаций) в повышающей и инвертирующей схемах (рис. 2 и 3) можно оценить, полагая ее совпадающей по фазе с амплитудой входного напряжения. Очевидно, она равна приращению тока дросселя за время его прямого подключения к входному напряжению в течение времени τ = γ T, что дает

ΔLLm=UmγT/L   (45)

Для повышающей схемы следует принять γ =1-Um/U2m, а для инвертирующей — γ =U2m/(Um+U2m

Максимальный размах пульсаций тока дросселя в понижающей схеме (рис. 1) можно оценить, полагая ее совпадающей по фазе с амплитудой выходного напряжения и равной уменьшению тока дросселя под его действием за время  (1- γ)T, что дает

ILm= U2m(1–γ)T/L = Umγ(1–γ)T/L,   (46)

где γ =U2m/Um

При известной частоте коммутации f= 1/ T и допустимом размахе пульсаций ΔILm можно найти индуктивность дросселя из выражений (45), (46). Очевидно, что при большей частоте коммутации необходимая индуктивность дросселя оказывается меньше и соответственно меньше выходное сопротивление преобразователя напряжения.

Максимальный размах пульсаций выходного напряжения (удвоенную амплитуду пульсаций) в повышающей и инвертирующей схемах (рис. 2 и 3) можно оценить по величине уменьшения напряжения на конденсаторе под действием максимального тока нагрузки. Этот ток разряжает конденсатор в течение времени γT, что с учетом I нm = U2m/| zн| дает

ΔU2max = Iнm(1–γ)T/C = U2m(1–γ)T/[|zн|C].    (47)

Очевидно, что в повышающей и инвертирующей схемах пульсации имеют пилообразную форму — это вызвано скачками тока конденсатора в моменты коммутации.

Ток конденсатора в понижающей схеме рис. 1 непрерывен, поскольку представляет собой разность непрерывных токов:

iC = iLiн.

Поэтому пульсации выходного напряжения понижающего преобразователя напряжения оказываются более гладкими, чем пилообразные: непрерывна в этом случае и производная выходного напряжения. Оценить наибольший размах пульсаций можно, положив, что пилообразная пульсирующая составляющая тока дросселя целиком замыкается через конденсатор [5]:

ΔU2max=Um γ(1-γ)T2/(8LC)  (48)

Из полученных выражений следует, что в понижающем преобразователе напряжения уменьшение пульсаций пропорционально квадрату частоты коммутации. В повышающем же и инвертирующем преобразователях пульсации уменьшаются пропорционально только первой степени частоты.

Выбрав значения индуктивности дросселя и емкости конденсатора, можно уточнить оценку размаха пульсаций, используя формулы, полученные на основе принципа разделения установившегося процесса на быструю составляющую (пульсации, происходящие с частотой коммутации f) и медленную (колебания токов и напряжений с частотой входного напряжения f 0).

Учитывая выполнение в практически важных случаях сильного неравенства fLf0, медленную составляющую можно определять по формулам, полученным для бесконечно малого периода коммутации Т, и считать при определении пульсационной составляющей напряжений и токов, что она в каждом периоде не имеет постоянной составляющей. Ее роль выполняет медленная, практически постоянная в течение периода коммутации, составляющая.

Максимальный размах пульсаций тока дросселя и выходного напряжения в повышающей схеме определяют следующие уточненные формулы:

Заметим, что максимальные пульсации тока дросселя совпадают по фазе с максимумом медленной составляющей выходного напряжения u2 и сдвинуты относительно максимума медленной составляющей тока дросселя на угол, определяемый аргументом комплексного сопротивления zнс. Наибольший размах пульсаций выходного напряжения сдвинут по фазе относительно амплитуды его медленной составляющей на угол, равный аргументу комплексного сопротивления z нс, взятому с противоположным знаком.

В случае инвертирующего преобразователя аналогичные (49) и (50) выражения имеют соответственно вид

Сдвиг по фазе между амплитудным значением тока дросселя и максимумом пульсаций равен аргументу комплексного сопротивления z=zдр+(1–γ)zнс. Максимум пульсаций выходного напряжения сдвинут по фазе относительно амплитуды его медленной составляющей на угол, равный аргументу комплексного сопротивления zнс, взятому с противоположным знаком, как и в повышающей схеме.

Для понижающейся схемы аналогично получены формулы

ΔILm = Umγ(1–γ)T/L.      (53)

ΔU2max = Umγ(1–γ)T/[|(zдр+(1–γ)2zнс)|C] = U2m T/[|zнс|C].      (54)

Максимум пульсаций тока дросселя сдвинут по фазе относительно максимума его амплитуды на угол, равный аргументу комплексного сопротивления z=zдр+zнс. Максимальный размах пульсаций выходного напряжения совпадает по фазе с максимальным размахом пульсаций тока дросселя и, следовательно, сдвинут по фазе относительно амплитуды выходного напряжения на угол, равный аргументу комплексного сопротивления z нс, взятому с противоположным знаком.

В выражения (49-54) следует подставлять значения γ, определенные из одного из уравнений (36) для соответствующей схемы преобразователя напряжения. Заметим, что решение уравнений для повышающего и инвертирующего преобразователей дает два значения γ, меньшее из которых лежит слева, а большее — справа от γкр, соответствующего максимуму статической характеристики преобразователя напряжения. Очевидно, следует выбрать меньшее значение γ, соответствующее возрастающей ветви статической характеристики.

При выборе емкости конденсатора С можно в случае постоянной или достаточно мало изменяющейся нагрузки исходить не из получения допустимых пульсаций, а из компенсации индуктивной составляющей тока нагрузки. Очевидно, в этом случае потребуется конденсатор большей емкости

C = Lн/[(ΩLн)2 + Rн2] = Lн/|zн|2.

Благодаря этому ток дросселя, а следовательно, и транзисторного ключа, станет меньше тока нагрузки без учета изменения γ в | zн| /Rн раз.

В заключение оценим влияние выходного сопротивления zвых источника входного напряжения и шунтирующего его защитного конденсатора С 1 (рис. 9 и 10) на свойства импульсного преобразователя напряжения переменного тока. Из полученных выше формул (40) и (44) с учетом принятых обозначений (38) можно записать выражение для комплексной амплитуды выходного напряжения инвертирующего и понижающего преобразователей напряжения

где zис 1= zиzс1(zи+ zс 1 )–1 — выходное сопротивление источника входного напряжения, нагруженного на конденсатор С1. С учетом zи и zс 1 непрерывная модель преобразова-теля также представляет собой управляемый источник переменного напряжения, ЭДС которого E1mи выходное сопротивление zвых имеют значения (56).

Вследствие изменения структуры преобразователя напряжения в течение периода коммутации (рис. 10) становится переменным и выходное сопротивление понижающего преобразователя напряжения.

4. Принципы построения устройств регулирования и стабилизации напряжения переменного тока

Возможны два варианта использования рассмотренных схем для регулирования и стабилизации напряжения переменного тока, отличающиеся способом его измерения.

В первом из них контролируется действующее, среднее или амплитудное значение напряжения. Для его определения необходим интервал наблюдения, равный или кратный половине периода этого напряжения. Недостаток первого варианта — невысокое быстродействие, определяемое периодом измерения регулируемого параметра, и отличие неконтролируемых параметров от соответствующих контролируемому параметру значений, вызванное отклонением формы входного напряжения от синусоидальной.

Второй вариант требует контроля мгновенных значений выходного напряжения и возможности изменения γ в каждом периоде срабатывания ключа. Его достоинство в возможности исправлять отклонения формы входного напряжения от синусоидальной [3] и обеспечивать соответствие между параметрами напряжения (действующим, средним и амплитудным), а также значительно большее быстродействие, определяемое периодом срабатывания ключа. Недостаток второго варианта — необходимость в синусоидальном задающем сигнале, непрерывном или дискретном, синхронном с входным напряжением.

В качестве стабилизатора выходного напряжения наиболее подходит инвертирующая схема, не требующая использования силового трансформатора сетевой частоты. Соответствующее изменение γ относительно γ=0,5 при отклонении выходного напряжения от номинального значения в любую сторону позволяет поддерживать величину выходного напряжения постоянной. Недостаток инвертирующей схемы — необходимость в высоком допустимом напряжении ключа (порядка удвоенной амплитуды входного напряжения) и передача через преобразователь напряжения полной мощности нагрузки.

Менее жесткие требования к ключу предъявляет известная схема стабилизатора с вольтдобавкой, в которой напряжение вольтдобавки регулируется одной из рассмотренных схем. В качестве одного из возможных примеров практического применения импульсного способа регулирования переменного напряжения рассмотрим стабилизатор с выходными параметрами Uвых = 220 В, 50 Гц, Iвых≤5А, построенный по функциональной схеме рис. 11 [6].

Рис. 11

Нестабильное сетевое напряжение Uс (220 В, 50 Гц) поступает на обмотки W, W1 автотрансформатора АТ. Стабильное выходное напряжение представляет собой сумму напряжения на основной обмотке W, равного UcW /(W+W1), и выходного напряжения импульсного преобразователя рис. 1, подключенного к «вольтдобавочной» обмотке W2, равного γUcW 2/(W+W1). В зависимости от величины сетевого напряжения стабилизатор автоматически подбирает величину γ таким образом, что остается постоянным выходное напряжение:

Uвых = Uc(WW2)/(W+W1).

В состав стабилизатора входят двухполупериодный выпрямитель В и устройство выборки и хранения УВХ, синхронизированное с напряжением сети, которые обеспечивают измерение амплитуды выходного напряжения Um в каждом его полупериоде. Интегральный регулятор Р интегрирует отклонение амплитуды выходного напряжения от заданной величины Umз и управляет относительной длительностью выходных импульсов широтно-импульсного модулятора (ШИМ), которые через драйвер Д поступают на силовые полевые транзисторы типа IRF640, реализующие ключ К.

С точки зрения теории автоматического управления стабилизатор можно достаточно точно представить хрестоматийной амплитудно-импульсной системой с «прямоугольным» импульсным элементом, работающим с периодом 0,01 с, и непрерывной частью в виде идеального интегрирующего звена.

Интегральный регулятор обеспечивает отсутствие статической ошибки при изменении как Uc , так и Iвых. Динамические свойства стабилизатора могут быть достаточно высокими, если выбрать параметр регулятора таким образом, чтобы корень характеристического уравнения системы стал равным нулю. Этим будет обеспечена длительность переходных процессов, равная периоду дискретности (0,01 с).

Описанный стабилизатор был реализован в ООО «Мегатех» (Санкт-Петербург). Его испытания подтвердили высокие точность и динамические свойства. Габаритные показатели и КПД вследствие импульсного способа регулирования также оказались достаточно высокими, в то время как пульсации выходного напряжения практически полностью сглаживались фильтром Ф, имеющим незначительные габариты.

Можно значительно улучшить весогабаритные показатели рассмотренного стабилизатора, отказавшись от сетевого автотрансформатора и заменив его и импульсный понижающий преобразователь на преобразователь, построенный по описанному в [7] способу.

 

Выводы

  • Предложенная методика позволяет получить в конечном виде математическое описание установившегося режима импульсного преобразователя напряжения с учетом нагрузки и выходного сопротивления источника входного напряжения и фильтров на входе и выходе преобразователя напряжения.
  • Импульсный преобразователь переменного напряжения при достаточно высокой частоте коммутации можно рассматривать как регулируемый источник переменного напряжения, ЭДС и выходное сопротивление которого растут при увеличении относительной длительности импульсов γ.
  • Зависимость выходного напряжения повышающего и инвертирующего преобразователей от γ имеет максимум вследствие более быстрого роста выходного сопротивления, чем ЭДС, и стремится к 0 при стремлении γ к 1 даже в случае нулевого активного сопротивления дросселя.
  • Пульсация тока дросселя и выходного напряжения повышающего и инвертирующего преобразователей напряжения имеют пилообразный характер, причем размах «пилы» периодически изменяется. С уменьшением периода коммутации пропорционально уменьшаются и пульсации.
  • В понижающем преобразователе напряжения пульсации тока дросселя также пилообразные, а пульсации выходного напряжения имеют на единицу более высокий порядок гладкости и малости относительно Т.

Пример

Рассчитаем «электронный повышающий трансформатор» U1/U2 = 110/220, выполненный по схеме повышающего преобразователя напряжения, представленной на рис. 2. Рассмотрим два варианта нагрузки мощностью 1100 ВА (220 В, 5 А): zн1 = 40+18,33j, zн2=18,33+40j (|z|=U2/Iн=220/5=44Ом). Частоту коммутации f примем равной 50 кГц, то есть в 103 раз выше частоты сети f0 = 50 Гц. Допустимый размах пульсаций (удвоенную амплитуду) положим для тока дросселя равным ΔILmax= 0,225 А, а для выходного напряжения ΔI2max = 5 В.

Рассчитаем индуктивность дросселя и емкость конденсатора фильтра, приняв согласно (3) γ=1-U1/U2=0,5. По формулам (45) и (47) получаем:

Для уточнения значения γ необходимо решить относительно γ уравнение

|zнс[zдр/(1–γ)2+zнс]–1(1–γ)–1| = U2/U1,

 полученное из первой из формул (35). Последнее уравнение, обозначив x=1- γ, легко преобразовать к виду

|x+a/x| = U1/U2,

 где  a = zдр/zнс= jΩL(1+jΩCzн)/zн.

 Вычисление модуля комплексного числа x+a/x позволяет свести полученное уравнение к биквадратному:

x 4+ [Re(a)–(U1/U2)2]x2+| a|2 = 0.

Комплексный коэффициент a принимает значение a 1= 0,010917+0,044878j при zн1 и a2 = 0,035229+0,020565j при zн2. Решение биквадратного уравнения дает пары положительных корней: x1= 0,4673, x 2 = 0,0988 (= 0,5327,  = 0,9012) при a 1 и x1 = 0,4120, x2 = 0,0990 (γ1 =0,5880, γ2 = 0,9010) при a2. Из пары полученных значений следует выбрать меньшее, соответствующее возрастающей ветви статической характеристики преобразователя напряжения U2=f(γ). Статические характеристики преобразователя напряжения в относительных единицах для указанных значений нагрузки z н1 и z н2 представлены на рис. 12 (кривые 1 и 2 соответственно).

Рис. 12

По формулам (49) и (50) уточнен размах пульсаций

где zнс = zн1/(1+jΩCzн1) = 45,6959+11,1151j = 47,0284xe, φ = 13,67°.

При этом максимум пульсаций тока дросселя сдвинут по фазе относительно максимума тока дросселя на угол φ = 13,67° в сторону опережения, а максимум пульсаций напряжения отстает от максимума напряжения на такой же угол.

Аналогично вычислено и для нагрузки z н2

где zнс = zн2 /(1+ jΩCzn2)= 26,8443+45,9852j = 53,2471xe, φ= 59,73°.

При этом максимум пульсаций тока дросселя сдвинут по фазе относительно максимума тока дросселя на угол φ = 59,73° в сторону опережения, а максимум пульсаций напряжения отстает от максимума напряжения на такой же угол.

Согласно формуле (44) максимальный коммутируемый ключом К (рис. 2) ток, равный амплитуде тока дросселя, превышает амплитуду тока нагрузки в (1–γ)–1|1+zн/zс| раз, что составляет 2,0021 при z н1 и 2,0057 при z н2.

Существенный выигрыш в коммутируемом токе можно получить при zн2, выбрав емкость конденсатора фильтра из условия компенсации реактивной составляющей тока нагрузки согласно формуле

Такой выбор емкости делает сопротивление z нс чисто активным и равным 105,62 Ом, то есть почти в 2 раза большим, чем |zнс| при предыдущем ее выборе. Аналогично вышеизложенному получаем значения γ1 = 0,5017 и γ2=0,9587. Максимальный коммутируемый ключом К ток в этом случае превышает амплитуду тока нагрузки в 0,836 раза, то есть меньше ее в 1,196 раза. Существенно снижаются и пульсации выходного напряжения, составляющие

Статическая характеристика имеет в этом случае больший максимум и большее значение γкр (кривая 3 на рис. 12). Значения γкр, рассчитанные по формуле (37) для рассмотренных случаев, составляют: 0,7851, 0,7980 и 0,8566.

Значительный интерес представляет моделирование импульсных преобразователей напряжения переменного тока с учетом импульсного характера процессов. Это моделирование позволяет проверить результаты расчетов, основанных на использовании непрерывных моделей. В качестве базы моделирования удобно использовать систему MATLAB 6.5 с версиями пакетов Simulink 5.0 и SimPowerSystem 2.3 [8].

Моделирование ключа с двухсторонней проводимостью на реальных элементах (рис. 4) вызывает определенные трудности. Поэтому проще использовать идеальный ключ (Ideal Switch) из библиотеки силовых элементов полупроводниковых преобразователей (Power Electronics), позволяющий учесть внутреннее сопротивление реального ключа и снабберные цепи. Схема моделирования представлена на рис. 13. Обе половинки ключа управляются импульсами генератора (Discrete Pulse Generator) из библиотеки (Sources), поступающими на ключи в противофазе и имеющими заданную частоту f и скважность γ.

Рис. 13

Результаты моделирования и расчетов хорошо совпадают, что можно видеть из осциллограмм тока дросселя и напряжения нагрузки, представленных на рис. 14 для случая zн2,С= 14,14 мкФ.

Рис. 14

Литература
  1. Миловзоров В. П., Мусолин А. К. Дискретные стабилизаторы и формирователи напряжения. М.: Энергоатомиздат. 1986.
  2. Источники вторичного электропитания / С. С. Букреев, В. А. Головацкий, Г. Н. Гуля-кович и др.; под ред. Ю. И. Конева. М.: Радио и связь. 1983.
  3. Крапивников В. В. Способ управления двигателем переменного тока. Авт. свид. СССР № 248834.
  4. Тимченко Н. М., Жуков В. И. Импульсный стабилизатор переменного напряжения. Авт. свид. СССР № 472339.
  5. Коршунов А. Динамический расчет стабилизированного понижающего преобразователя напряжения постоянного тока // Силовая электроника. 2005. № 3.
  6. Коршунов А. И. Импульсный стабилизатор переменного напряжения. Авт. свид. РФ № 2246127.
  7. Коршунов А. И. Способ регулирования величины и изменения фазы напряжения переменного тока. Авт. свид. РФ № 2266608.

Подборка схем импульсных преобразователей напряжения DC-DC

Преобразователь DC-DC это устройство, призванное из напряжения одного уровня получить одно или несколько напряжений другого уровня. Иногда это бывает совершенно необходимо в нашей практике, например если мы конструируем устройство с низковольтным питанием от Li-Ion аккумулятора а в схеме этого устройства есть операционные усилители, требующие питания от двухполярного источника ∓15В. Или другой пример. Предположим нам нужно питать устройство на микроконтроллере с номинальным напряжением 5 вольт от литий ионного аккумулятора. В этом и подобных случаях на разработчику приходится использовать преобразователи постоянного напряжения.

В этой статье речь пойдет об импульсных преобразователях, имеющих очевидные преимущества, главное из которых — высокий КПД. Импульсные преобразователи нпаряжения — это очень широкий класс устройств. Они могут быть стабилизированные или нестабилизированные, с гальванической развязкой входа от выхода или без таковой. также преобразователи можно разделить на повышающие, понижающие и инвертирующие (например преобразователь, который, питаясь от напряжения +5В дает на выходе напряжение -5В)

Сейчас производители электронных компонентов выпускают большой ряд специальных микросхем для использования в приложениях DC-DC. Преобразователи, собранные на таких чипах имеют стабильные характеристики и высокую надежность. тем не менее импульсный преобразователь можно собрать и на обычных дискретных транзисторах. В этой статье приводятся несколько очень простых схем, которые можно использовать для решения несложных конструкторских задач.

Очень распространенная микросхема MAX232 служит для преобразования интерфейса UART в сигналы стандарта интерфейса RS232. В составе этой микросхемы уже есть встроенные преобразователи напряжения, которые мы можем использовать в своих корыстных целях.

Схема 1. Необычное использование микросхемы MAX232

схема двухполярного преобразователя DC-DC на микросхеме MAX232

такой преобразователь может обеспечить напряжение ∓9В при небольшом токе 5. .8 мА. Такой преобразователь можно использовать для питания одного — двух операционных усилителей. основное преимущество — это простота. Целесообразно применять эту схему если что-то нужно сделать быстро, а под рукой нет ничего кроме микросхемы MAX232

Схема 2. Простой нестабилизированный преобразователь на двух транзисторах

Трансформатор T1 — самодельный. Его можно намотать на ферритовом кольце из материала 2000НМ размером 10х6х4. первичная обмотка состоит из 20 витков с отводом от середины. Вторичная — 140 витков также с отводом от середины. Диаметр провода — не менее 0.2 мм. Транзисторы можно заменить на BC546 или другие. если к преобразователю не подключена нагрузка, он практически не потребляет ток от источника питания. В этом одно из его преимуществ (кроме простоты).

Схема 3. Простой нестабилизированный преобразователь — мультивибратор

Следующая практическая схема — это двухтактный преобразователь на четырех транзисторах. сердцем схемы является обычный мультивибратор на двух транзисторах VT1 и VT2

Драйверами для обмоток импульсного трансформатора служат транзисторы VT3 и VT4. Ко вторичной обмотке импульсного трансформатора подключен однополупериодный выпрямитель на диоде VD3. Пульсации выходного напряжения сглаживаются конденсатором C3. Выходное напряжение этого преобразователя можно менять в широких пределах изменением числа витков вторичной обмотки трансформатора.

Схема 4. Стабилизированный преобразователь на двух транзисторах

Интересная схема, позволяющая питать от низковольтного источника (например от одного щелочного элемента 1.5 В.) например, небольшое устройство на микроконтроллере, требующем питания 5 В. Схема пытается поддерживать на выходе постоянное напряжение около 4.7 В. Сигнал обратной связи снимается с резистора R2 и подается на базу первого транзистора VT1. трансформатор Т1 можно намотать на ферритовом кольце диаметром 7 мм. Обе обмотки одинаковые, по 20 витков провода диаметром 0. 3 мм. Можно намотать обмотки в два провода. При подключении необходимо учитывать начало и конец обмоток. Если ошибиться, то преобразователь не заработает. В этом случае поменяйте местам провода одной из обмоток. Катушка L1 — любой дроссель с индуктивностью в районе 10 мкГн. Дроссель можно использовать промышленный или намотать самому. Измерить индуктивность можно с помощью вот этого недорогого прибора. Дроссель совместно с конденсатором C3 сглаживает пульсации выходного напряжения.

Схема 4. Стабилизированный 3 В. → 12 В. DC-DC преобразователь на MAX734

Этот довольно качественный и удобный преобразователь построен на основе специализированной микросхемы от компании MAXIM. Можно применить для получения напряжения +12 вольт в устройстве, работающем от единственного источника питания с напряжением от 3 до 5 вольт. Дроссель L1 можно намотать на небольшом ферритовом кольце или на маленьком ферритовом стержне. Индуктивность катушек удобно измерять вот этим приборчиком. Схема обеспечивает на выходе ток 120 мА. Микросхему MAX734 можно заказать здесь

Схема 5. Очень простой преобразователь на специализированном чипе

Еще один DC-DC преобразователь с использованием микросхемы от MAXIM. Главное преимущество — исключительная простота и неприхотливость этой схемы. В устройстве всего 4 детали, включая микросхему МАХ631. Главное и очевидное предназначение такого преобразователя — питание схемы, рассчитанной на 5 В. от источника с более низким напряжением 3.2 вольта. Например от одного Li-Ion аккумулятора.

Схема 6. Стабилизированный DC-DC преобразователь с двухполярным выходом ∓12 В

Эта очень полезная схема может пригодиться если в вашей конструкции есть только один источник питания 4..5 вольт, но вам необходимо использовать компоненты, требующие двухполярного питания. например операционные усилители (ОУ). Сердцем преобразователя является микросхема LM2587-12. Импульсный трансформатор можно реализовать на ферритовом кольце или на броневом сердечнике. Индуктивность первичной обмотки должна быть около 22 мкГ (измерить можно этим прибором), а отношение чисел витков первичной обмотки к вторичным = 1:2.5. То есть, например, индуктивность 22 мкГ на сердечнике который есть у вас в наличии получается при числе витков 50. Тогда число витков каждой из вторичных обмоток буде 2.5 * 50 = 125

Готовый DC-DC преобразователь на LM2587-12 можно заказать по ссылке

Схема 7. Стабилизированный DC-DC преобразователь на два разных напряжения

Если в вашей конструкции есть цифровые микросхемы с напряжением питания как 5 так и 3.3 В то может пригодиться этот преобразователь. Схема работает от напряжения в районе 3 В и позволяет получить на выходе напряжения 3.3 и 5 В. Ток нагрузки по каждому выходу может достигать 150 мА. Как видим из схемы, в устройстве применяются 2 микросхемы MCP1252 от компании MICROCHIP

Схема 8. DC-DC преобразователь на два разных напряжения на микросхемах компании YCL Elektronics

DC-DC преобразователи на разные напряжения можно собрать на чипах, которые выпускает компания YCL Elektronics. В данном случает это микросхемы DC-102R в канале минус 5 В и DC-203R в канале +12 В. По выходу -5 В ток нагрузки может достигать 360 мА. По выходу +12 В ток меньше — 150 мА.

Схема 9. DC-DC повышающий преобразователь на MAX1724EZK33

Этот DC-DC преобразователь на микросхеме MAX1724EZK33 от фирмы MAXIM может работать от очень низкого входного напряжения 1.2 В. Например от одного никель — кадмиевого аккумулятора. На выходе получаем стабилизированное напряжение +3.3 В при токе до 150 мА. Работоспособность сохраняется при снижении входного напряжения примерно до 0.9 В. Если вы ходите получить на выходе напряжение +5В то используйте аналогичную микросхему MAX1724EZK50

Схема 10. Импульсный регулируемый стабилизатор на напряжение +2.8 — +5 В

Это понижающий импульсный стабилизатор. работает он от входного напряжения 12.6 В (стандартное напряжение автомобильного аккумулятора). на выходе получаем стабилизированное напряжение от 2. 8 до 5 вольт при токе до 500 мА. Стабилизатор собран на микросхеме TL497. Эту недорогую но полезную микросхему можно заказать в Китае. Очевидно, что главное назначение такого стабилизатора — обеспечение питания и зарядки пятивольтовых гаджетов от бортовой сети автомобиля напряжением 12.6 в. Подстроечным резистором R3 можно регулировать выходное напряжение а от номинала резистора R1 зависит порог срабатывания внутренней сземы ограничения тока короткого замыкания. Ток КЗ задается формулой:
Iкз(А)= 0,5/R1(Ом)

Схема 11. Импульсный инвертор постоянного напряжения

Простейшая схема, которую вы можете использовать если в вашей конструкции кроме напряжения питания +5 В нужно еще отрицательное напряжение -5 В. Собрано устройство на микросхеме ICL7660. Ток по цепи -5 В может достигать 20 мА

Схема 12. Нестабилизированный двухступенчатый DC-DC преобразователь напряжения

Схема 13. Импульсный стабилизированный повышающий DC-DC преобразователь напряжения

Это стандартная схема включения MAX1674, взятая из даташита микросхемы. Преобразователь может работать от низкого напряжения питания — вплоть до 1 вольта. На выходе имеем стабильное напряжение +5В при токе до 200 мА. КПД преобразователя составляет 94%. Купить микросхему можно недорого в Китае

Импульсный стабилизированный преобразователь напряжения для автомобильного усилителя

Схемку нашел на сайте Интерлавки. Собрал я данный преобразователь и в принципе остался им доволен, так как заявленную мощность в 500 Ватт он без труда отдаёт даже с ключевыми транзисторами IRFZ44N.
Сначала хочу рассказать про импульсный трансформатор — именно он, а собственно его изготовление отбивает у большинства радиолюбителей желание изготовить данный девайс, либо всё остаётся, но пол-пути!
В моём варианте силовой импульсный трансформатор намотан на трёх, склеенных китайским супер-клеем, ферритовых кольцах М-2000НМ-1, типоразмером К40×25х11 (по мощности двойной запас).
Цитата с Интерлавки:
Данный преобразователь напряжения предназначен для питания оборудования напряжением выше бортового напряжения автомобиля 12 В. Преобразователь имеет четыре независимых стабилизированных (по одному плечу) постоянных напряжения с величиной не более 50 В, поскольку в качестве выпрямительных диодов вторичного питания используются диоды Шотки. Выходные напряжения преобразователя могут соединяться последовательно, для получения двух двуполярных источников питания, используемого в большинстве усилителей мощности звуковой частоты, а так же могут соединяться параллельно, для получения более сильноточного однополярного источника, который может использоваться, например, для питания усилителей мощности радиостанций, а так же комбинировано (см ниже).
Преобразователь развивает на нагрузке суммарную мощность до 500 Вт и использует в качестве силовых ключей две пары транзисторов IRF3205. Частоту преобразования — 60…70 кГц.
Рисунок 1 — принципиальная схема автомобильного преобразователя напряжения
На схеме ошибка! 15 нога микросхемы подключена не к 16, а к 14 ноге (опорное напряжение)

Выходное напряжение преобразователя контролируется оптроном IC1, яркость свечения светодиода которого пропорциональна выходному напряжению. Соответственно изменяется и степень открытия транзистора оптрона, который подает опорное напряжения 5 В, генерируемое самой микросхемой, на вход усилителя ошибки. Если сопротивление нагрузки уменьшается, уменьшается и выходное напряжение, поскольку увеличивается ток. Пропорционально уменьшается яркость свечение светодиода оптрона, транзистор оптрона призакрывается и из за уменьшения напряжения на входе 1 усилителя ошибки микросхемы TL494 увеличивает длительность управляющих импульсов силовых ключей. В результате увеличения длительности импульсов увеличивается действующее напряжение на нагрузке, т.е. она возвращается к первоначальной, установленной подстроечным резистором R4 величине.
При увеличении сопротивления нагрузки происходит обратный процесс — светодиод оптрона светит ярче, тем самым сильнее открывая транзистор оптрона и увеличивая напряжение на входе усилителя ошибки микросхемы TL494 и уменьшая длительность управляющих силовыми ключами импульсов.
Поскольку выходной ток ключевых транзисторов микросхемы ограничен 200 мА в преобразователе используются дополнительные драйверные ключи на транзисторах VT3-VT6. К особенностям данного преобразователя напряжения стоит отнести несколько не обычную цепочку между драйверными транзисторами и силовыми. Эта цепочка позволяет получить на затворах силовых ключей отрицательное напряжение, которое быстрей закрывает силовые ключи, тем самым уменьшая температуру самого силового транзистора.
Кроме этого данный преобразователь напряжения оснащен защитой от перегрузки, датчиком тока которой служит токовый трансформатор TV1, снимаемое напряжение с которого подается на управляющий электрод тиристора VS1. В момент перегрузки наводимое напряжение на токовом трансформаторе откроет тиристор и он зашунтирует управляющее напряжение, подаваемое извне. Транзистор VT2 закроется, закрывая и транзистор VT2 и питание микросхемы TL494 будет снято. Однако оставшееся напряжение на конденсаторе С7 некоторое время будет удерживать TL494 в работоспособном состоянии. Для ускорения разрядки С7 резистор R19, через который тиристор так же будет зашунтировано и напряжение питания микросхемы TL494. Таким образом достигается минимальное время работы преобразователя в критической ситуации.

Получившийся магнитопровод, перед намоткой был хорошенько заизолирован лакотканью.
Далее Первичная обмотка моталась в 8 проводов диаметром 1,5 мм. и состоит из 4 витков (из рассчёта 3 вольта на 1 виток)

После намотки методом прозвонки разделил на две обмотки, каждая из которых состоит из 4 проводов.

Далее всё было хорошенько обмотано той-же лакотканью и намотана вторичная силовая обмотка, она намотана виток к витку в 8 проводов диаметром 0,65 мм. и состоит из 15 витков (на 45 Вольт) (с запасом в 2 витка для лучшей стабилизации при частично разряженном аккумуляторе и падении напряжения питания до 9…9,5 Вольт.
И поверх всех силовых обмоток намотана обмотка питания всей схемы ШИМ и драйверов ключей.
Намотана она в два провода диаметром 0,55 мм. и состоит из 8 витков. Далее прозвонкой определяем конец и начало и соединяем по схеме.
Собственно с трансформатором завершено. Обматываем его хорошенько лакотканью! Получилось СУПЕР!

Далее изготовление платы!

Я изготовлял лазерно-утюжным способом! Берем обратную сторону от самоклеющейся декоративной плёнки (мелованная бумага, чаще всего попадается с надписью "333») и клеим её обратной стороной на плотную бумагу для принтера.

Далее с помощью программы SPRINT LAYOUT печатаем лазерным принтером на получившемся листе. Фольгированный стеклотекстолит сначала следует зачистить мелкой шкуркой (800) и обезжирить ацетоном. Прикладываем ровно наш получившийся рисунок и хорошенько разглаживаем утюгом.
После остывания не на долго помещаем нашу продукцию в воду (чтобы отмочилась бумага, около 1 минуты).

Потом аккуратно, начиная с уголка, отлепляем от текстолита бумагу, платку осматриваем, если есть «косяки», то подправляем (дорисовываем лаком НЦ из шприца), после чего помещаем, а раствор хлорного железа. После того, как платка протравилась, промываем её водой (лучше в мыльном растворе), кладем сушить, далее ацетоном и тряпочкой смываем оставшуюся краску, после чего советую немного зачистить шкуркой!


Получилось в принципе неплохо!

Далее процедура сверления, лужения и набивания детальками. Получилось вот так:

Убедившись, что собранная схема нормально работает можем приступать к впаиванию трансформатора. Получилось вот так:

Немного о дросселях.
Дроссель L1 намотан в 3 провода диаметром 1,5 мм. на жёлтом кольце от компьютерного БП (Компенсационный дроссель) и содержит 15 витков.
Дроссели L2, L3, L4, L5 намотаны на кольцах М3000НМ-1 (К12×6х5) проводом диаметром 1,2 мм., каждый содержит по 20 витков.

Думаю, что моя статейка кому-то понадобиться! По крайней мере это первая моя статья и я старался…!

Чертеж ПП:
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

 

Импульсные и линейные преобразователи

Импульсный преобразователь напряжения

Для трансформации напряжения из одного уровня в другой применяются импульсные преобразователи постоянного напряжения, в работе которых используются индуктивные накопители. В таких конверторах мощность на выходе регулируются благодаря изменениям временного промежутка воздействия на нагрузку одним из двух способов:

• частотно-импульсным;

• широтно-импульсным.

Принцип действия импульсного повышающего преобразователя напряжения состоит в создании такого режима транзистора, во время которого вся цепь подачи мощности в нагрузку будет периодически прерываться. Таким образом, импульсный преобразователь 24 12 позволяет упорядочить колебания продолжительности выходящих импульсов при их неизменяющемся периоде изменения. Однотактный импульсный преобразователь напряжения может работать в диапазоне мощностей от 0 до 100 Вт. Если же требуется устройство большей мощности, то применяют многотактный импульсный преобразователь напряжения.

Импульсный преобразователь dc dc

Во всех типах импульсных преобразователей dc dc открывание полупроводниковых ключей происходит во время передачи на транзистор специальных импульсов, с последующим запиранием этих транзисторов, в том числе и за счет возникающего напряжения от перезарядки конденсатора. Поэтому коммутирующий блок в таких конверторах отличается от таких же устройств в независимых инверторах.

Как правило, импульсный преобразователь dc dc помогает на нагрузке осуществить контроль за постоянным напряжением во время подключения к электросети постоянного тока за счет регулирования снижения напряжения на открытом полупроводниковом ключе. В этом случае небольшие показатели тока позволяют установить высокий уровень коэффициента полезного действия (КПД), достигающего 90-95%, импульсного конвертора постоянного напряжения при небольших размерах и весе. Такие показатели считаются существенными преимуществами, поэтому импульсный преобразователь нашел широкое применение в таких конструкциях, в которых изначально источником тока является контактная сеть, батарейки, аккумуляторы.   

Импульсный повышающий преобразователь с 12 В на 220 В

Очень часто возникают ситуации, когда отсутствует источник электропитания, но необходимо запитать бытовые электроприборы, например, от сети автомобиля. В этом случае используют импульсный повышающий преобразователь. Существует много схематических конструкций, в которых импульсный преобразователь 12 220 работает на повышенной частоте питающего напряжения. К такому импульсному повышающему преобразователю могут подсоединяться любые бытовые приборы, работающих на частоте 50 Гц, мощность которых не превышает максимальную и имеет защиту от перегрузки в сети по напряжению. Такое решение имеет свои преимущества, среди которых основные:

• длительный режим работы даже при максимальной загруженности;

• регулирование выходной мощности происходит автоматически;

• за счет повышенного КПД достигается высокая надежность и нормальный режим работы устройства.  

Простые повышающие DC/DC преобразователи своими руками, схемы

Устройствами с батарейным питанием сейчас уже никого не удивишь, всевозможных игрушек и гаджетов питающихся от аккумулятора или батарейки найдется с десяток в каждом доме. Между тем, мало кто задумывался над количеством разнообразных преобразователей, которые используются для получения необходимых напряжений или токов от стандартных батарей. Эти самые преобразователи делятся на несколько десятков различных групп, каждая со своими особенностями, однако в данный момент времени мы говорим про понижающие и повышающие преобразователи напряжения, которые чаще всего называются AC/DC и DC/DC преобразователями. В большинстве случаев для построения таких конвертеров используются специализированные микросхемы, позволяющие с минимальным количеством обвязки построить преобразователь определенной топологии, благо микросхем питания на рынке сейчас великое множество.

Рассматривать особенности применения данных микросхем можно бесконечно долго, особенно с учетом целой библиотеки даташитов и аппноутов от производителей, а также бесчисленного числа условно-рекламных обзоров от представителей конкурирующих фирм, каждая из которых старается представить свой продукт наиболее качественным и универсальным. В этот раз мы будем использовать дискретные элементы, на которых соберем несколько простейших повышающих DC/DC преобразователей, служащих для того, чтобы запитать небольшое маломощное устройство, к примеру, светодиод, от 1 батарейки с напряжением 1,5 вольт. Данные преобразователи напряжения можно смело считать проектом выходного дня и рекомендовать для сборки тем, кто делает свои первые шаги в удивительный мир электроники.

Итак, схема первая:


Схема простого DC/DC
преобразователя №1

На данной схеме представлен релаксационный автогенератор, представляющий собой блокинг-генератор со встречным включением обмоток трансформатора. Принцип работы данного преобразователя следующий: при включении , ток протекающий через одну из обмоток трансформатора и эмиттерный переход транзистора – открывает его, в результате чего он открывается и больший ток начинает течь через вторую обмотку трансформатора и открытый транзистор. В результате в обмотке, подключенной к базе транзистора наводится ЭДС, запирающая транзистор и ток через него обрывается. В этот момент энергия, запасенная в магнитном поле трансформатора, в результате явления самоиндукции, высвобождается и через светодиод начинает протекать ток, заставляющий его светиться. Затем процесс повторяется.

Компоненты, из которых можно собрать этот простой повышающий преобразователь напряжения, могут быть совершенно различными. Схема, собранная без ошибок, с огромной долей вероятности будет корректно работать. Мы пробовали использовать даже транзистор МП37Б – преобразователь отлично функционирует! Самым сложным является изготовление трансформатора – его надо намотать сдвоенным проводом на ферритовом колечке, при этом количество витков не играет особой роли и находится в диапазоне от 15 до 30. Меньше – не всегда работает, больше – не имеет смысла. Феррит - любой, брать N87 от Epcos не имеет особого смысла, также как и разыскивать M6000НН отечественного производства. Токи в цепи протекают мизерные, поэтому размер колечка может быть очень небольшим, внешнего диаметра в 10 мм будет более чем достаточно. Резистор сопротивлением около 1 килоома (никакой разницы между резисторами номиналом в 750 Ом и 1,5 КОм обнаружено не было). Транзистор желательно выбрать с минимальным напряжением насыщения, чем оно меньше – тем более разряженную батарейку можно использовать. Экспериментально были проверены: МП 37Б, BC337, 2N3904, MPSh20. Светодиод – любой имеющийся, с оговоркой, что мощный многокристальный будет светиться не в полную силу.

Собранное устройство выглядит следующим образом:

Размер платы 15 х 30 мм, и может быть уменьшен до менее чем 1 квадратного сантиметра при использовании SMD-компонентов и достаточно маленького трансформатора. Без нагрузки данная схема не работает.

Вторая схема - это типовой степ-ап преобразователь, выполненный на двух транзисторах. Плюсом данной схемы является то, что при её изготовлении не надо мотать трансформатор, а достаточно взять готовый дроссель, но она содержит больше деталей, чем предыдущая.


Схема простого DC/DC преобразователя №2

Принцип работы сводится к тому, что ток через дроссель периодически прерывается транзистором VT2, а энергия самоиндукции направляется через диод в конденсатор C1 и отдается в нагрузку. Опять же, схема работоспособна с совершенно различными компонентами и номиналами элементов. Транзистор VT1 может быть BC556 или BC327, а VT2 BC546 или BC337, диод VD1 – любой диод Шоттки, например, 1N5818. Конденсатор C1 – любого типа, емкостью от 1 до 33 мкФ, больше не имеет смысла, тем более, что можно и вовсе обойтись без него. Резисторы – мощностью 0,125 или 0,25 Вт (хотя можно поставить и мощные проволочные, ватт эдак на 10, но это скорее расточительство чем необходимость) следующих номиналов: R1 - 750 Ом, R2 - 220 КОм, R3 – 100 КОм. При этом, все номиналы резисторов могут быть совершенно свободно заменены на имеющие в наличии в пределах 10-15% от указанных, на работоспособности правильно собранной схемы это не сказывается, однако влияет на минимальное напряжение, при котором может работать наш преобразователь.

Самая важная деталь - дроссель L1, его номинал также может отличаться от 100 до 470 мкГн (экспериментально проверены номиналы до 1 мГн – схема работает стабильно ), а ток на который он должен быть рассчитан не превышает 100 мА. Светодиод – любой, опять же с учетом того, что выходная мощность схемы весьма невелика.Правильно собранное устройство сразу же начинает работать и не нуждается в настройке.

Напряжение на выходе можно стабилизировать, установив стабилитрон необходимого номинала параллельно конденсатору C1, однако следует помнить, что при подключении потребителя напряжение может проседать и становиться недостаточным. ВНИМАНИЕ! Без нагрузки данная схема может вырабатывать напряжение в десятки или даже сотни вольт! В случае использования без стабилизируещего элемента на выходе, конденсатор C1 окажется заряжен до максимального напряжения, что в случае последующего подключения нагрузки может привести к её выходу из строя!

Преобразователь также выполнен на плате размером 30 х 15 мм, что позволяет прикрепить его на батарейный отсек типа размера AA. Разводка печатной платы выглядит следующим образом:

Обе простые схемы повышающих преобразователей можно сделать своими руками и с успехом применять в походных условиях, например в фонаре или светильнике для освещения палатки, а также в различных электронных самоделках, для которых критично использование минимального количества элементов питания.

 

Импульсный преобразователь. Импульсные преобразователи напряжения. Схема, описание

Говоря о преобразовании электрической энергии, можно вспомнить разнообразные трансформаторы, генераторы, блоки питания различных бытовых приборов, зарядные устройства электронных гаджетов, сварочные инверторы и даже атомные электростанции. Во всех случаях в том или ином виде происходит преобразование электрической энергии. Можно сказать, что нас в повседневной жизни окружают разные виды электрических преобразователей, и трудно себе представить их полное отсутствие в современном мире.

Преобразователи напряжения постоянного тока получили особенно широкое распространение в последние двадцать лет. Это связано со стремительным развитием полупроводниковой промышленности и электроники в целом.

Высокочастотные импульсные преобразователи почти вытеснили с рынка блоки питания с низкочастотными трансформаторами, которые можно встретить теперь разве что в старых телевизорах и других старинных приборах, или в некоторых современных усилителях звуковой частоты.

Высокочастотный трансформатор (или дроссель) имеет значительно меньшие габариты, чем низкочастотный трансформатор на железе, рассчитанный на работу от сети 50-60 Гц, именно поэтому импульсные блоки питания так компактны. Так или иначе, преобразователи напряжения постоянного тока все же содержат в своей конструкции трансформатор (или дроссель), но это уже совсем не тот тяжелый и шумный трансформатор.

Ассортимент современных DC-DC конвертеров (а именно так называются преобразователи постоянного напряжения в постоянное напряжение) достаточно широк. Давайте рассмотрим более подробно, какие именно бывают DC-DC конвертеры .

1. Миниатюрный регулируемый преобразователь

Этот крохотный понижающий преобразователь размером 43мм х 21мм, и другие подобные модели, стоят на китайских торговых площадках от одного доллара. Данный экземпляр работает на микросхеме LM2596 , и его выходные параметры могут регулироваться. На вход подается постоянное напряжение в диапазоне от 4,5 до 40 вольт, а на выходе получается постоянное напряжение от 1,3 до 35 вольт.

Максимальный ток, который можно получить от данного преобразователя составляет 3 ампера, однако в этом случае требуется радиатор, если же преобразователь используется без радиатора, средний ток не должен превышать 2 ампер. Эффективность такого преобразователя может достигать 92%.

Данный преобразователь собран по топологии step-down (buck) converter, и на плате видны все его главные составные части: , дроссель, регулировочный резистор и сама микросхема в корпусе TO-263-5. На приведенной выше принципиальной схеме не изображен регулировочный резистор, но на плате он есть.

Без этого резистора схема не даст на выходе больше 5 вольт, однако если обратную связь снимать не напрямую с выходного конденсатора фильтра, а через делитель напряжения, который как раз и собран здесь с использованием этого регулировочного резистора, можно существенно расширить диапазон выходных напряжений, что и реализовано на данной плате.

Сфера применения этих преобразователей ограничена лишь фантазией разработчика. Здесь и питание светодиодов, и зарядка различных портативных устройств, и многое другое.

Бывают и повышающие преобразователи такого типа, выполненные по топологии step-up (boost) converter.

На приведенном изображении (красная плата) регулируемый повышающий преобразователь максимальной мощностью до 150 ватт (требуется дополнительное охлаждение), на вход которого можно подавать от 10 до 30 вольт, а на выходе получать от 12 до 35 вольт.

Как и в предыдущем примере, этот преобразователь имеет на выходе регулировочный резистор, который и отвечает за получение на выходе нужного значения напряжения. Управляющая микросхема расположена на обратной стороне платы. Сама плата имеет размер 65мм х 35мм. Стоимость такого преобразователя раза в 3 выше предыдущего примера.

Этот блок питания имеет прочный литой водонепроницаемый корпус, залитый эпоксидным компаундом, что позволяет применять его как на транспорте, так и с любым другим оборудованием, где требуется надежность и безопасность. Преобразователь имеет защиту от пониженного напряжения, от перенапряжения, от короткого замыкания, и от перегрузок.

Диапазон входного напряжения в разных моделях весьма широк, и в данном примере от 9 до 24 вольт, при этом на выходе получаем 24 вольта с максимальным током 5 ампер (в данном примере). Размер корпуса на фото 75мм х 75 мм, высота 31мм. Стоимость таких преобразователей порядка 10 – 50 долларов, в зависимости от мощности.

Преобразователи такого типа производятся на мощность от 15 до 360 ватт, на входное напряжение до 60 вольт, и на выходное напряжение от 5 до 48 вольт. Они также весьма распространены на многочисленных торговых площадках.

Обычно эти блоки питания изготавливают по схеме обратноходового, двухтактного или полумостового импульсного преобразователя. Они бывают на входное напряжение от 19 до 72 вольт и выше, а выход обычно от 5 до 24 вольт. Мощность преобразователей такого типа может достигать 1000 ватт. Размеры корпуса от 78мм х 51мм х 28мм до 295мм х 127мм х 41мм.

Такие блоки питания выпускаются многими фирмами-производителями, а их стоимость может доходить до нескольких сотен долларов. Довольно часто подобные блоки применяются для питания светодиодных лент. Они обладают возможностью точной подстройки выходного напряжения и имеют защиту от перегрузки.

Есть на рынке аналогичные модели преобразователей с питанием напрямую от сети переменного тока, называемые AC-DC преобразователями , однако там все равно напряжение сети сначала выпрямляется, фильтруется, то есть делается постоянным, а только после преобразуется посредством стандартного высокочастотного преобразования и выпрямления в постоянное напряжение другого уровня, более низкого, то есть опять же использован модуль DC-DC конвертера .

4. DC-DC конвертор для монтажа на печатную плату

Эти миниатюрные блоки питания обладают мощностью от 0,25 до 100 ватт. Они допускают разброс входного напряжения: 3-3,6В, 4,5-9В, 9-18В, 13-16,6В, 9-36В, 18-36В, 18-72В, 36-72В, и 36-75В. В зависимости от фирмы – производителя диапазоны питающих напряжений могут отличаться. Некоторые преобразователи допускают регулировку выходного напряжения и перевод блока в режим ожидания. Стандартный же ряд выходных напряжений блоков: 5В, 12В, 15В.

DC-DC конвертеры для монтажа на печатную плату имеют электрически прочную изоляцию (1500 В), а максимально допустимая температура может достигать 90 градусов по Цельсию. Наибольший интерес для разработчиков представляют преобразователи мощностью 3 ватта. Стоимость таких конвертеров – от единиц до десятков долларов.

У всех современных промышленных импульсных DC-DC преобразователей значение рабочей частоты лежит выше 50кГц, и достигает 300кГц. Это утверждение справедливо для импульсных трансформаторов и дросселей на феррите, поскольку для применяемых в описанных преобразователях трансформаторов и дросселей везде задействованы именно ферритовые сердечники.

Выпускаемые промышленностью специализированные интегральные микросхемы для импульсных преобразователей очень часто имеют строго установленную частоту, которая всегда выше 50кГц. Если используется ШИМ контроллер , то соответствующая частота задается внешними компонентами.

Есть две категории любых импульсных преобразователей напряжения:
С трансформатором
С накопительным дросселем
Преобразователь любой из этих двух категорий может быть как понижающим, так и повышающим, в устройствах с накопительным дросселем это зависит от схемы включения, в устройствах с трансформатором от коэффициента трансформации.
Импульсные преобразователи напряжения с накопительным дросселем
На выходе таких схем всегда будет или постоянное или пульсирующее напряжение.
Переменное напряжение на их выходе не получить.


Сигнал который необходимо подавать в точку А1 по отношению к общему проводу:

Как работают импульсные преобразователи с накопительным дросселем?
Рассмотрим на примере повышающего преобразователя.
Накопительный дроссель L1 подключен так, что при открывании транзистора T1 через них начинает протекать ток от источника "+ПИТ", при этом ток возрастает в дросселе не мгновенно, так как энергия запасается в магнитном поле дросселя.
После того как транзистор T1 закрывается, запасённой в дросселе энергии необходимо высвободится, это следует из физики явлений происходящих в дросселе, соответственно единственный путь этой энергии пролегает через источник +ПИТ, диод VD1 и нагрузку подключенную к ВЫХОДу.
При этом максимальное напряжение на выходе зависит только от одного - сопротивления нагрузки.
Если у нас идеальный дроссель и если нагрузка отсутствует, то напряжение на выходе будет бесконечно большим, однако мы имеем дело с далёким от идеала дросселем, по этому без нагрузки напряжение просто будет очень большим, возможно настолько большим что случиться пробой воздуха или диэлектрика между клеммой ВЫХОД и общим проводом, но скорее пробой транзистора.

Если дроссель желает высвобождает всю энергию которую накопил (за вычетом потерь), то как же регулировать напряжение на выходе таких преобразователей?
Очень просто - запасать в дросселе ровно столько энергии, сколько необходимо, что бы создать нужное напряжение на известном сопротивлении нагрузки.
Регулировка запасённой энергии производится длительностью импульсов открывающих транзистор (временем в течении которого открыт транзистор).

В понижающем преобразователе в дросселе происходят точно те же процессы, однако в этом случае при открывании транзистора дроссель не даёт напряжению на выходе увеличиться мгновенно, а после его закрывания, высвобождая запасённую энергию с одной стороны через диод VD1 а с другой через нагрузку подключенную к ВЫХОДу поддерживает напряжение на клемме ВЫХОД.
Напряжение на выходе такого преобразователя не может оказаться больше чем напряжение +ПИТ.

Импульсные преобразователи напряжения с трансформаторами
Само преобразование происходит в трансформаторе, при этом не важно на железе он - для низких частот; или на феррите - для высоких от 1кГц до 500 и выше кГц.
Суть процессов всегда одинакова: если в первой обмотке трансформатора 10 витков, а во второй 20 и мы приложим переменное напряжение 10 вольт к первой, то во второй мы получим переменное напряжение той же частоты но 20 вольт и соответственно с 2 раза меньшим током чем течёт в первой обмотке.

То есть задача сводится к получению переменного напряжения, которое необходимо приложить к первичной обмотке, от источника постоянного тока питающего преобразователь.

Работает следующим образом:
когда транзистор T1 открыт, ток течёт через верхнюю половину обмотки - L1.1, затем транзистор T1 закрывается и открывается транзистор T2, ток начинает протекать через нижнюю половину обмотки - L1.2, так как верхняя половина обмотки L1 включена своим концом к +ПИТ а нижняя началом, то магнитное поле в сердечнике трансформатора при открытии T1 течёт в одну сторону, а при открытии T2 в другую, соответственно на вторичной обмотке L2 создаётся переменное напряжение.
L1.1 и L1.1 выполняются как можно более идентичными друг другу.
Преимущества:
Высокая эффективность при работе от низкого напряжения питания (через каждую половину обмотки и транзистор протекает только половина необходимого тока).
Недостатки:
Выбросы напряжения на стоках транзисторов равные удвоенному напряжению питания (например когда T1 открыт, а T2 закрыт, то ток течёт в L1.1 в свою очередь в L1.2 магнитное поле создаёт напряжение равное напряжению на L1.1 которое суммируясь с напряжением источника питания воздействует на закрытый T2).
То есть необходимо выбирать транзисторы на большее допустимое максимальное напряжение.
Применение:
Преобразователи, питающиеся от низкого напряжения (порядка 12 вольт).

Работает следующим образом:
когда транзистор T1 открыт, ток течёт через первичную обмотку трансформатора (L1) заряжая конденсатор C2, затем он закрывается и открывается T2, соответственно теперь ток течёт через L1 в обратном направлении, разряжая C2 и заряжая C1.
Недостатки:
Напряжение подводимое к первичной обмотке трансформатора в два раза ниже напряжения +ПИТ.
Приемущества:
Применение:
Преобразователи, питающиеся от бытовой осветительной сети, сетевые блоки питания (например: блоки питания компьютеров).

Работает следующим образом:
когда транзисторы T1 и T4 открыты, ток течёт через первичную обмотку трансформатора в одном направлении, затем они закрываются и открываются T2 и T3 ток через первичную обмотку начинает течь в обратном направлении.
Недостатки:
Необходимость установки четырёх мощных транзисторов.
Удвоенное падение напряжения на транзисторах (падения напряжения на смежных T1 T4/ T2 T3 транзисторах складываются).
Приемущества:
Полное напряжение питания на первичной обмотке.
Отсутствие выбросов удвоенного напряжения свойственных пуш-пулу.
Применение:
Мощные преобразователи, питающиеся от бытовой осветительной сети, сетевые блоки питания (например: импульсные сварочные "трансформаторы").

Общими проблемами для преобразователей на трансформаторах являются те же проблемы что и преобразователей на базе накопительных дросселей: насыщение сердечника; сопротивление провода из которого выполнены обмотки; работа транзисторов в линейном режиме.

Обратноходовые и прямоходовые импульсные преобразователи

Обратноходовой и прямоходовой импульсный преобразователь напряжения - это "гибриды" преобразователя на базе накопительного дросселя и трансформатора, хотя в сути своей это преобразователь на базе накопительного дросселя и об этом никогда не стоит забывать.
Принцип работы такого преобразователя схож с повышающим преобразователем на накопительном дросселе, с той лишь разницей, что нагрузка включена не непосредственно к дросселю, а к ещё одной обмотке, намотанной на сам дроссель.
Как и в повышающем преобразователе, в случае включения его без нагрузки, его выходное напряжение будет стремиться к максимуму.
Недостатки:
Выбросы напряжения на ключевом транзисторе создающие необходимость применения ключевых транзисторов на напряжение значительно превышающее +ПИТ.
Высокое напряжение на выходе в отсутствии нагрузки.
Преимущества:
Гальваническая развязка цепи питания и цепи нагрузки.
Отсутствие потерь связанных с перемагничиванием сердечника (магнитное поле течёт в сердечнике всегда в одну сторону).

Явления, о которых необходимо помнить при конструировании преобразователей напряжения (и импульсных устройств вообще)
Насыщение сердечника (магнитопровода) - момент когда магнитопроводящий материал сердечника дросселя или трансформатора уже настолько намагничен, что более уже не оказывает влияние на процессы протекающие в дросселе или трансформаторе. При насыщении сердечника индуктивность обмоток расположенных на нём стремительно падает, а ток через первичные обмотки начинает увеличиваться, при этом максимальный ток ограничен только сопротивлением проволоки обмотки, а оно выбирается как можно меньшим, соответственно насыщение как минимум приводит к нагреву и обмоток дросселя и силового транзистора, как максимум к разрушению силового транзистора.

Сопротивление проводов обмоток - вносит в процесс потери, так как препятствует запасанию и высвобождению энергии в магнитном поле, вызывает нагрев провода обмотки дросселя.
Решение: использование провода с минимальным сопротивлением (более толстый провод, провод из материалов обладающих малым удельным сопротивлением).

Работа силовых транзисторов в линейном режиме - в случае если генератор сигналов используемый для управления транзисторами выдаёт не прямоугольные импульсы, а импульсы с медленным нарастанием и спадом напряжения, что может быть если ёмкость затвора силовых транзисторов велика, а драйвер (специальный усилитель) не способен выдавать значительный ток для зарядки этой ёмкости, появляются моменты, когда транзистор находится в линейном режиме, то есть обладает неким сопротивлением отличным от нуля и бесконечно большого, в связи с чем через него течёт ток и на нём выделяется тепло ухудшая КПД преобразователя.

Специфические проблемы преобразователей напряжения с использованием трансформаторов
Впрочем, эти проблемы присущи любым устройствам с мощным двухтактным выходным каскадом.

Сквозной ток
Рассмотрим на примере схемы полумоста - если по какой то причине транзистор T2 откроется ранее чем полностью успел закрыться T1, то возникнет сквозной ток от +ПИТ на общий провод, которые будет протекать через оба транзистора приводя к бесполезному выделению тепла на них.
Решение: создание задержки между тем как снизился до нуля потенциал на входе Г1 (см. схему полумоста) и возрос потенциал на входе Г2.
Такое время задержки называют дедтайм (dead time) и графически это можно проиллюстрировать осциллограммой:

Эффект Миллера
Опять же, рассмотрим на примере полумоста - когда транзистор T1 открывается то к транзистору T2 прикладывается напряжение, которое быстро возрастает (со скоростью открывания T1), так как это напряжение велико, то даже незначительная внутренняя ёмкость между затвором и истоком заряжаясь создаёт значительный потенциал на затворе, который открывает T2, пусть и на короткое время, но создавая сквозной ток, даже при наличии дедтайма.
Решение: применение мощных драйверов транзисторов, способных не только отдавать, но и принимать большие токи.

О чём не следует забывать
Понижающий преобразователь с накопительным дросселем, полумост и мост - схемы, которые не так просты, как кажутся на первый взгляд, прежде всего потому, что исток транзистора в понижающем преобразователе и истоки верхних по схеме транзисторов в мосте и полумосте находятся под напряжением питания.
Как мы знаем, управляющее напряжение на затвор транзистора нужно подавать относительно его истока, для биполярных на базу относительно к эмиттера.
Решения:
Использование гальванически развязанных источников питания цепей затворов (баз):


Генератор G1 вырабатывает противофазные сигналы и формирует дедтайм, U1 и U2 драйверы полевых транзисторов, оптрон гальванически развязывает входную цепь верхнего драйвера с выходом генератора, который питается от другой обмотки трансформатора.

Применение импульсного трансформатора для гальванической развязки цепей затворов (баз):

Гальваническая развязка обеспечивается за счёт введения ещё одного импульсного трансформатора: GDT.

Есть и ещё один метод - "бустреп", но и он вам вряд ли понравится, для получения подробностей смотрите документацию к микросхеме IR2153, в частности метод получения напряжения питания для управления верхним по схемам ключевым транзистором.

Проектируя преобразователь, необходимо учитывать, что это импульсное устройство по проводникам которого текут значительные токи, которые резко изменяются и это устройство в котором создаются сильные магнитные поля - всё это создаёт благоприятную почву для возникновения целой серии помех в широком спектре.
При разводке печатных плат следует стремиться сделать все силовые проводники цепи максимально короткими и прямыми, электролитические конденсаторы шунтировать плёночными или керамическими на ёмкость 0,1 ... 1мкф в непосредственной близости от силовых элементов, для предотвращения просачивания высокочастотных помех в осветительную сеть, если устройство питается от сети, устанавливать по цепи подводки сетевого напряжения LC фильтры нижних частот.

Несмотря на множество непростых моментов, импульсные преобразователи напряжения применяются широко, а работающие на высокой частоте (десятки-сотни килогерц) обладают рядом преимуществ, так:
Высокий КПД, вплоть до 97%;
Малая масса;
Малые габариты.

Для питания различной электронной аппаратуры весьма широко используются DC/DC преобразователи. Применяются они в устройствах вычислительной техники, устройствах связи, различных схемах управления и автоматики и др.

Трансформаторные блоки питания

В традиционных трансформаторных блоках питания напряжение питающей сети с помощью трансформатора преобразуется, чаще всего понижается, до нужного значения. Пониженное напряжение выпрямляется диодным мостом и сглаживается конденсаторным фильтром. В случае необходимости после выпрямителя ставится полупроводниковый стабилизатор.

Трансформаторные блоки питания, как правило, оснащаются линейными стабилизаторами. Достоинств у таких стабилизаторов не менее двух: это маленькая стоимость и незначительное количество деталей в обвязке. Но эти достоинства съедает низкий КПД, поскольку значительная часть входного напряжения используется на нагрев регулирующего транзистора, что совершенно неприемлемо для питания переносных электронных устройств.

DC/DC преобразователи

Если питание аппаратуры осуществляется от гальванических элементов или аккумуляторов, то преобразование напряжения до нужного уровня возможно лишь с помощью DC/DC преобразователей.

Идея достаточно проста: постоянное напряжение преобразуется в переменное, как правило, с частотой несколько десятков и даже сотен килогерц, повышается (понижается), а затем выпрямляется и подается в нагрузку. Такие преобразователи часто называются импульсными.

В качестве примера можно привести повышающий преобразователь из 1,5В до 5В, как раз выходное напряжение компьютерного USB. Подобный преобразователь небольшой мощности продается на Алиэкспресс - http://ali.pub/m5isn .

Рис. 1. Преобразователь 1,5В/5В

Импульсные преобразователи хороши тем, что имеют высокий КПД, в пределах 60..90%. Еще одно достоинство импульсных преобразователей широкий диапазон входных напряжений: входное напряжение может быть ниже выходного или намного выше. Вообще DC/DC конвертеры можно разделить на несколько групп.

Классификация конвертеров

Понижающие, по английской терминологии step-down или buck

Выходное напряжение этих преобразователей, как правило, ниже входного: без особых потерь на нагрев регулирующего транзистора можно получить напряжение всего несколько вольт при входном напряжении 12…50В. Выходной ток таких преобразователей зависит от потребности нагрузки, что в свою очередь определяет схемотехнику преобразователя.

Еще одно англоязычное название понижающего преобразователя chopper. Один из вариантов перевода этого слова - прерыватель. В технической литературе понижающий конвертер иногда так и называют «чоппер». Пока просто запомним этот термин.

Повышающие, по английской терминологии step-up или boost

Выходное напряжение этих преобразователей выше входного. Например, при входном напряжении 5В на выходе можно получить напряжение до 30В, причем, возможно его плавное регулирование и стабилизация. Достаточно часто повышающие преобразователи называют бустерами.

Универсальные преобразователи - SEPIC

Выходное напряжение этих преобразователей удерживается на заданном уровне при входном напряжении как выше входного, так и ниже. Рекомендуется в случаях, когда входное напряжение может изменяться в значительных пределах. Например, в автомобиле напряжение аккумулятора может изменяться в пределах 9…14В, а требуется получить стабильное напряжение 12В.

Инвертирующие преобразователи - inverting converter

Основной функцией этих преобразователей является получение на выходе напряжения обратной полярности относительно источника питания. Очень удобно в тех случаях, когда требуется двухполярное питание, например .

Все упомянутые преобразователи могут быть стабилизированными или нестабилизированными, выходное напряжение может быть гальванически связано с входным или иметь гальваническую развязку напряжений. Все зависит от конкретного устройства, в котором будет использоваться преобразователь.

Чтобы перейти к дальнейшему рассказу о DC/DC конвертерах следует хотя бы в общих чертах разобраться с теорией.

Понижающий конвертер чоппер - конвертер типа buck

Его функциональная схема показана на рисунке ниже. Стрелками на проводах показаны направления токов.


Рис.2. Функциональная схема чопперного стабилизатора

Входное напряжение Uin подается на входной фильтр - конденсатор Cin. В качестве ключевого элемента используется транзистор VT, он осуществляет высокочастотную коммутацию тока. Это может быть транзистор структуры MOSFET, IGBT либо обычный биполярный транзистор. Кроме указанных деталей в схеме содержится разрядный диод VD и выходной фильтр - LCout, с которого напряжение поступает в нагрузку Rн.

Нетрудно видеть, что нагрузка включена последовательно с элементами VT и L. Поэтому схема является последовательной. Как же происходит понижение напряжения?

Широтно-импульсная модуляция - ШИМ

Схема управления вырабатывает прямоугольные импульсы с постоянной частотой или постоянным периодом, что в сущности одно и то же. Эти импульсы показаны на рисунке 3.


Рис.3. Импульсы управления

Здесь tи время импульса, транзистор открыт, tп - время паузы, - транзистор закрыт. Соотношение tи/T называется коэффициентом заполнения duty cycle, обозначается буквой D и выражается в %% или просто в числах. Например, при D равном 50% получается, что D=0,5.

Таким образом D может изменяться от 0 до 1. При значении D=1 ключевой транзистор находится в состоянии полной проводимости, а при D=0 в состоянии отсечки, попросту говоря, закрыт. Нетрудно догадаться, что при D=50% выходное напряжение будет равно половине входного.

Совершенно очевидно, что регулирование выходного напряжения происходит за счет изменения ширины управляющего импульса tи, по сути дела изменением коэффициента D. Такой принцип регулирования называется (PWM). Практически во всех импульсных блоках питания именно с помощью ШИМ производится стабилизация выходного напряжения.

На схемах, показанных на рисунках 2 и 6 ШИМ «спрятана» в прямоугольниках с надписью «Схема управления», которая выполняет некоторые дополнительные функции. Например, это может быть плавный запуск выходного напряжения, дистанционное включение или защита преобразователя от короткого замыкания.

Вообще конвертеры получили столь широкое применение, что фирмы производители электронных компонентов наладили выпуск ШИМ контроллеров на все случаи жизни. Ассортимент настолько велик, что просто для того чтобы их перечислить понадобится целая книга. Поэтому собирать конвертеры на дискретных элементах, или как часто говорят на «рассыпухе», никому не приходит в голову.

Более того готовые конвертеры небольшой мощности можно купить на Алиэкспрес или Ebay за незначительную цену. При этом для установки в любительскую конструкцию достаточно припаять к плате провода на вход и выход, и выставить требуемое выходное напряжение.

Но вернемся к нашему рисунку 3. В данном случае коэффициент D определяет, сколько времени будет открыт (фаза 1) или закрыт (фаза 2) . Для этих двух фаз можно представить схему двумя рисунками. На рисунках НЕ ПОКАЗАНЫ те элементы, которые в данной фазе не используются.


Рис.4. Фаза 1

При открытом транзисторе ток от источника питания (гальванический элемент, аккумулятор, выпрямитель) проходит через индуктивный дроссель L, нагрузку Rн, и заряжающийся конденсатор Cout. При этом через нагрузку протекает ток, конденсатор Cout и дроссель L накапливают энергию. Ток iL ПОСТЕПЕННО ВОЗРАСТАЕТ, сказывается влияние индуктивности дросселя. Эта фаза называется накачкой.

После того, как напряжение на нагрузке достигнет заданного значения (определяется настройкой устройства управления), транзистор VT закрывается и устройство переходит ко второй фазе - фазе разряда. Закрытый транзистор на рисунке не показан вовсе, как будто его и нет. Но это означает лишь то, что транзистор закрыт.


Рис.5. Фаза 2

При закрытом транзисторе VT пополнения энергии в дросселе не происходит, поскольку источник питания отключен. Индуктивность L стремится воспрепятствовать изменению величины и направления тока (самоиндукция) протекающего через обмотку дросселя.

Поэтому ток мгновенно прекратиться не может и замыкается через цепь «диод-нагрузка». Из-за этого диод VD получил название разрядный. Как правило, это быстродействующий диод Шоттки. По истечении периода управления фаза 2 схема переключается на фазу 1, процесс повторяется снова. Максимальное напряжение на выходе рассмотренной схемы может быть равным входному, и никак не более. Чтобы получить выходное напряжение больше, чем входное, применяются повышающие преобразователи.

Пока только следует напомнить собственно о величине индуктивности, которая определяет два режима работы чоппера. При недостаточной индуктивности преобразователь будет работать в режиме разрывных токов, что совершенно недопустимо для источников питания.

Если же индуктивность достаточно большая, то работа происходит в режиме неразрывных токов, что позволяет с помощью выходных фильтров получить постоянное напряжение с приемлемым уровнем пульсаций. В режиме неразрывных токов работают и повышающие преобразователи, о которых будет рассказано ниже.

Для некоторого повышения КПД разрядный диод VD заменяется транзистором MOSFET, который в нужный момент открывается схемой управления. Такие преобразователи называются синхронными. Их применение оправдано, если мощность преобразователя достаточно велика.

Повышающие step-up или boost преобразователи

Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 12…15В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».


Рис.6. Функциональная схема повышающего преобразователя

Входное напряжение Uin подается на входной фильтр Cin и поступает на последовательно соединенные L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка Rн и шунтирующий конденсатор Cout.

Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы (Рис.3). Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.

Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания Uin. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.

В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе Cout. Естественно, что напряжение на выходном конденсаторе падает.

Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор Cout, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.

По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.

Универсальные преобразователи - SEPIC (single-ended primary-inductor converter или преобразователь с несимметрично нагруженной первичной индуктивностью).

Подобные преобразователи применяются в основном, когда нагрузка имеет незначительную мощность, а входное напряжение изменяется относительно выходного в большую или меньшую сторону.


Рис.7. Функциональная схема преобразователя SEPIC

Очень похожа на схему повышающего преобразователя, показанного на рисунке 6, но имеет дополнительные элементы: конденсатор C1 и катушку L2. Именно эти элементы и обеспечивают работу преобразователя в режиме понижения напряжения.

Преобразователи SEPIC применяются в тех случаях, когда входное напряжение изменяется в широких пределах. В качестве примера можно привести 4V-35V to 1.23V-32V Boost Buck Voltage Step Up/Down Converter Regulator. Именно под таким названием в китайских магазинах продается преобразователь, схема которого показана на рисунке 8 (для увеличения нажмите на рисунок).


Рис.8. Принципиальная схема преобразователя SEPIC

На рисунке 9 показан внешний вид платы с обозначением основных элементов.


Рис.9. Внешний вид преобразователя SEPIC

На рисунке показаны основные детали в соответствии с рисунком 7. Следует обратить внимание на наличие двух катушек L1 L2. По этому признаку можно определить, что это именно преобразователь SEPIC.

Входное напряжение платы может быть в пределах 4…35В. При этом выходное напряжение может настраиваться в пределах 1,23…32В. Рабочая частота преобразователя 500КГц.При незначительных размерах 50 x 25 x 12мм плата обеспечивает мощность до 25 Вт. Максимальный выходной ток до 3А.

Но тут следует сделать замечание. Если выходное напряжение установить на уровне 10В, то выходной ток не может быть выше 2,5А (25Вт). При выходном напряжении 5В и максимальном токе 3А мощность составит всего 15Вт. Здесь главное не перестараться: либо не превысить максимально допустимую мощность, либо не выйди за пределы допустимого тока.

По свету ходит много мифов о высокочастотных силовых трансформаторах и дросселях. Постараемся их развенчать. К несчастью, с магнитными компонентами связана наименее членораздельная часть учебников и руководств, усложняющая в общем-то простые обыденные предметы и явления. Да, много неизвестных переменных, да, много тонкостей, которые надо знать, но как раз о них теория умалчивает, а популярная литература врет, предлагая эмпирические формулы для конкретных задач как решения на все случаи жизни. Например.

Миф первый . Чем больший процент площади окна сердечника заполнен медью - в идеале 100% - тем лучше. Неверно. Во многих конструкциях 100% заполнение, по сравнению со скажем 75% (то же число витков, разное сечение провода) приведет на ВЧ к бОльшим потерям. Нельзя слепо переносить методы расчета с 50 Гц на 500 кГц.

Миф второй . В оптимальном трансформаторе потери на сопротивлении обмотки и потери в сердечнике совпадают. Неверно. Часто одна цифра потерь отличается от другой на 1-2 порядка. Ну и что - это вовсе не главный критерий для конструктора. Этот подход также наследствие "пятидесяти Герц" - так обеспечивают температурное равновесие в массивных сетевых трансформаторах. А у нас вся обмотка - один или два слоя, и условия теплообмена намного упрощаются.

Миф третий . Индуктивность рассеивания должна составлять 1% от индуктивности намагничивания. Неверно. Она должна быть настолько низкой, насколько возможно - без существенного ухудшения других важных параметров. Сможете довести до 0.1% - прекрасно. А, бывает, и на 10% приходится остановиться.

Миф четвертый . Индуктивность рассеивания есть функция проницаемости сердечника. Неверно. Индуктивность рассеивания обмотки практически не зависит от того, есть ли в витке сердечник или нет. Точнее, вся разница укладывается в 10% (и это при мю в несколько тысяч!). Можете проверить.

Миф пятый . Оптимальная плотность тока в обмотках - 2А на кв.мм. Или 4А. Или 8А. А пес с ним. Плотность тока не имеет значения. Имеет значение тепловыделение в проводе, и способность, или неспособность, конструкции в целом обеспечить тепловой баланс на допустимой температуре. В зависимости от эффективности охлаждения (от излучения в вакуум до охлаждения в кипящей фазе) - допустимая плотность тока изменяется на два порядка. Ridley cтроит трансформаторы 20 лет, но мы так и не узнали "оптимальную плотность тока" - для нас важна только температура трансформатора.

Миф шестой . В оптимальном трансформаторе потери в первичке и во вторичке равны. Неверно. А если не равны, тогда что? Главное, чтоб ни одна не перегревалась.

Миф седьмой . Если диаметр провода меньше глубины скин-эффекта, то существенных потерь на ВЧ нет. Очень вредное утверждение. В многослойных обмотках даже при очень тонком проводе - потери будут.

Миф восьмой . Резонансная частота трансформаторной цепи в отсутствии нагрузки должна существенно превышать частоту преобразования. Неверно. Она не играет значения. В идеальном трансформаторе - индуктивность стремится к бесконечности, стало быть резонансная частота на обрыв стремится к нулю … и что? А то, что важен резонанс не на обрыв, а на КЗ вторичной цепи. Вот этот резонанс должен отстоять от несущей частоты на два порядка вверх, не менее.

Вариант подключения прибора


В данной конфигурации анализатор отображает импеданс трансформатора от 10Гц до 15 МГц, для состояний короткорго замыкания нагрузки и обрыва нагрузки. Для импульсных трансформаторов с короткими обмотками необходимо обеспечить КЗ по кратчайшему пути с минимальными потерями. Ведь замыкающее полукольцо даже диаметром несколько сантиметров уже имеет индуктивность, сравнимую с индуктивностью рассеяния первички. Индуктивность рассеивания зависит от частоты! В качестве балласта Rsense R=0.1..1 Ом. Омическое сопротивление обмоток измеряйте только низкоомным мостом или омметром с генератором тока. Проведя цикл измерений, можно определить:

Индуктивность намагничивания - Сопротивление обмотки - Индуктивность рассеивания - Частоту и добротность резонанса на КЗ и на обрыв - Емкость обмотки (до 3 пФ на виток).


Потактное ограничение тока, правильно реализованное, позволяет создать неубиваемый ПН. Для этого датчик тока должен быть быстрым (задержка несколько наносекунд), и быть нагружен непосредственно на управляющий вход ИС контроллера.

Контроллеры с отключением защиты на переднем фронте импульса также не панацея. Те 100 нс задержки (или около того), в течение которых защита слепа - также могут убить ПН. Поэтому бывает целесообразно принудительно ограничить скорость переключения транзистора (что также снижает уровень наводок и излучения как в датчик тока, так и в пространство).

Как протестировать токовую защиту?

Закоротите выход ПН - после выпрямителя и выходного фильтра. К сожалению, при КЗ в самом выпрямителе вашим транзисторам никакая токовая защита не поможет.

Подключите щуп к датчику тока. Постепенно повышайте питающее напряжение до момента, когда контроллер начинает генерировать несущую. На осциллографе вы должны наблюдать узкие пики - схема защиты должна быстро отключать открытые транзисторы. Амплитуда импульсов должна соответствовать порогу срабатывания защиты. Повышайте напряжение питания до максимума. Длительность импульсов должна сузится. Амплитуда может подрасти (за счет задержек распространения токовой ОС) но не существенно. А если растет пропорционально входному напряжению - стоп, ваша ОС слишком медленная.

Затем - это принципиально - цикл измерений следует повторить при минимальных и максимальных температурах воздуха

Вот это важно: параметры феррита, на котором намотан трансформатор тока, могут так уплыть с температурой, что мало не покажется.

Снаббер (snubber - успокоитель) - RC цепь, параллельная обмотке - для шунтирования ВЧ звона. Звон обязательно должен быть подавлен, иначе возможны отказы, излишние наводки и неустойчивость преобразователя. Как правило, RC шунт достаточен для успокоения непокорных обмоток, если частота звона превышает несущую примерно на два порядка или выше. А если нет - то надо искать обходные пути, ведь тогда в полосу пропускания шунта попадет и существенная доля несущей и ее ближайших гармоник.

Второе. Рассчитайте эквивалентный RLC контур под частоту и добротность колебаний. Со стороны первички, известна (должна быть известна!) индуктивность рассеивания. Со стороны вторички - известны емкости диодов.

Характеристическое сопротивление Z = 2 * Pi * f * L (для известной L), Z = 1 / (2 * Pi * f * C) для известной С

Третье. Для начала, попробуем только R-шунт, R=Z. Посчитаем тепловые потери на шунте. Если они неприлично высоки, дополняем звено емкостью С=1 / (Pi * f * R). Увеличение емкости бесполезно - потери растут, подавление звона не улучшается (емкость на ВЧ полностью проводит).

Четвертое. Пересчитаем мощность потерь на R: P = 2* C * V * Fнесушая - это потери только несущей без выделения тепла на звоне. Проверяем в реальной схеме. Первое приближение - как правило - сразу подходит для большинства случаев.

Расположение компонентов и разводка трасс рядом с ИС принципиально важны! Это повторяют в каждом даташите, но не мешает и снова повторить.

Прежде всего - частотозадающая емкость генератора. Разместите ее у самой ноги ИС. Не в пяти миллиметрах, а чем ближе - тем лучше. Иначе, возможны необъяснимые явление - например, схема, рассчитанная на 100 кГц, загенерит на мегаГерцах, из Яузы вылезет русалка и т.п. Причем на прототипе она может и не выплыть, а в серийной плате - проявится во всей красе.

Во-вторых - емкости в цепях питания - также распаять как можно ближе к ногам ИС.

Выход пилы генератора (там, где он доступен извне) не любит когда его нагружают (как и я). Поэтому при отборе сигнала с этого выхода будьте осторожны - даже 100 кОм нагрузка может изменить форму пилы. Правильнее всего генерить пилу параллельно, не подключаясь к первичной цепи генератора.

ИС 3842, 3843 позволяют устанавливать паузу между импульсами от 5% до 30% периода. 3844, 3845 - до 70%. Если необходимо удлинить паузу, можно обойти эти ограничения, изменив времязадающите R, C. Затем добавьие еще один резистор с вывода RTCT на плюс питания - это ускорит заряд и замедлит разряд, удлиняя доступное время паузы.

ИС UC3825 - минимальное время паузы (абсолютное, в миллисекундах) жестко задается емкостью Сt, смотри документацию. Но возможно поступать и так, как описано выше - подключая резистор к Сt. Вот только время это будет плавать всесте с питающим напряжением.

Выходные драйверы ИС не любят индуктивные нагрузки - например, изолирующие трансформаторы - что приводит к дребезгу сигнала на затворе. Причем если оно не проявляется в лаборатории, то в реальной жизни обязательно выплывет в самый неподходящий момент. Ведь параметры трансформатора плавают… Поэтому рекомендуется защищать затвор диодами, а параллельно первичке транчформатора - резистором.

Контроллеры первого поколения, особенно старых лет выпуска, бывают исключительно нестабильны как по опорным напряжениям (с этим можно жить), так и по временным параметрам, вплоть до неверной последовательности срабатывания триггеров и чрезмерного дрейфа несущей частоты (зависит от \стабильности опорных уровней). Если хотите - используйте ИС либо недавнего года выпуска, либо с суффиксами, указывающими на "улучшенные" варианты. Т.е. TL594 а не TL494 и т.д.

Например, недокументированная особенность брянских ИС КР1156ЕУ2 (аналог 3825) - при 12В питании, правильной разводке, при запрещающем уровне на входе ILIM выход 14 в низком уровне (норма) а на выход 11 пролезают короткие, примерно 100нс пики - "недорезанные" фронты несущей амплитудой до 9В. Где-то триггер не работает как надо. А ведь этих обрезков достаточно, чтоб открыть затвор и (а вдруг) убить схему.

Об измерении коэффициента усиления ПН с замкнутой петей ОС - лучше всего измерять ее так, как изложено в следующем разделе, используя анализатор спектра (генератора не достаточно).

Для прямоходных и обратноходных ПН при управлении по напряжению - частота среза должна быть не более четверти частоты нуля передаточной функции на правой половине комплексной плоскости. Если выполнение этого условия не позволяет надежно стабилизировать выход - значит, надо переделывать выходной фильтр.

Для всех ПН - частота среза не должна превышать1/8 несущей частоты.

Самое главное - частота среза ОС не самоцель. Важно выходное сопротивление в диапазоне частот, требуемых нагрузкой, подавление нестабильности входного напряжения, и подавление входных шумов.

Обязательно измерьте поведение петли ОС прежде чем запустить прибор в эксплуатацию.

Прибор, о котором говорится далее - вводит в разрыв цепи ОС (точки 1-2) источник напряжения (свип-генератор). Затем записываются спектры сигнала в двух любых точках схемы и выводится АЧХ отношения этих спектров. Отношение выходного спектра к входному и есть передаточная характеристика (по амплитуде). Можно повторить устройство качественно, используя генератор с трансформаторным выходом и стабилизацией напряжения на вторичной обмотке, и осциллограф.

Измерение параметров петли анализатором спектра АР102В - ПН с оптронной развязкой

Точки подключения щупов каналов А и В позволяют измерить различные передаточные функции

  • А-1 B-2: петлевое усиление
  • А-3 В-4: усиление силового узла и модулятора
  • А-4 В-2: усиление (ослабление) оптрона и цепи частотной коррекции
  • А-1 В-3: усиление ОУ, встроенного в ИС контроллера.

    Измерение параметров петли - ПН без гальванической развязки

    А-1 B-2: петлевое усиление

    А-3 В-2: усиление силового узла и модулятора

    А-1 В-3: усиление (ослабление) цепи частотной коррекции

    Всегда заземляйте измеряемую схему. Если ее первичная цепь гальванически связана с сетью, включите измерительные приборы в сеть через изолирующий 1:1 трансформатор (но не ЛАТР). Если же заземлить невозможно - изолируйте входы анализатора. Лучше не просто емкостью (она может вылететь) но через специальный развязывающий усилитель.

    На низших частотах используйте максимальный выходной сигнал генератора, а при переходе через частоту среза ОС его стоит снизить, при этом удостоверьтесь, что схема не вошла в перевозбуждение. Выше 30 кГц измерения мало надежны изза проблем с заземлением и наводками. В любом случае, сигнал генератора должен впрыскиваться в ту часть схемы, в которой мало переменных составляющих как от несущей частоты ПН, так и от сетевой частоты.

    Пример АЧХ устройства


    Очень неприятные явления. Многие компоненты импульсного ПН работают на пределе области безопасной работы, и когда летит один элемент, за ним гибнут и другие, уничтожая саму причину, по которой произошел отказ. И искать ее впотьмах - невесело. Вот краткий перечень основных причин, известных профессионалам (которые, тем не менее, молчат…).

    А. Перегрузка ключа по току - или гибнет кристалл транзистора, или сгорает проволочка между кристаллом и ногой. Поэтому необходима оперативная защита по току, независимо от мощности. Отсутствие токовой защиты часто сокращает жизнь устройства.

    Зная построение ПН автомобильных усилителей, как правило не имеющих потактной токовой защиты (ИС TL494), читатель вправе возмутиться! Собака, как мне кажется, вот где порылась. С одной стороны, ПН с токовой защитой предъявляет более высокие требования к точности и согласованию всех компонентов тракта, а выполнить их в автомобильном температурном диапазоне - приведет к удорожанию усилителя. А с другой - при 12В первичного питания и реальном (кратковременном) пределе МДП по току порядка 50…250А на плечо (1...4 хороших транзисторов) ток - с учетом всех сопротивлений цепи - просто не способен достичь разрушительных значений (другой вопрос - долговременная работа на КЗ, которая и приведет к фатальному перегреву). Сравните это с сетевым БП, где на первичке 300В, а предел по току (при тех же мощностях в нагрузку) - 5…25А.

    Б. Перегрузка по напряжению затвор-сток. МДП-транзисторы из хороших домов - IR, Motorola (добавим в список SGS-Thomson и Infineon) убить не так-то просто. Они держат перегрузки по току и напряжению сток-исток, но перегрузки на затворе и их погубят. Драйвер затвора должен гарантированно удерживать напряжение в безопасной зоне, если надо - ставьте стабилитроны. Мы не рекомендуем использовать интегральные драйверы верхнего плеча в высоковольтные схемы. Лучше - трансформаторы, они и к помехам более устойчивы.

    В. Чаще всего схема гибнет при включении. Ведь при включении выходная емкость разряжена - схема "видит" КЗ. Ваша токовая защита должна достаточно быстро сработать даже при предельно большом входном напряжении. "Мягкий запуск" контроллера не спасает от этой напасти!

    Г. Встроенный "антипараллельный" диод МДП ключа - источник проблем. Он медленный. Пусть этот диод проводит ток, это не смертельно, но во время проводимости диода недопустимо быстрое изменение напряжения на обратное, если в момент изменения на затвор не подается отпирающее напряжение. Подобный отказ часто происходит в полномостовой схеме. По завершении проводящего состояния, индуктивность рассеивания порождает дребезг, и на первом его пике напряжение истока может превысить напряжение питания - диод откроется. Ну и ладно, сейчас этим транзисторам так и так открываться. Но вот если на втором - отрицательном - пике дребезга - и на противоположном плече диоды также откроются, не миновать пробоя. Решение - ставьте снабберы.

    Д. Проверьте - правильно ли работает защита контроллера от недостаточного напряжения питания при включении. В ИС контроллеров она достаточно надежна. А в остальных компонентах (комараторы, драйверы и т.п.) - неизвестно. Требование простое - при включении питания контроллер в целом должен установиться в дежурное состояние, на затворах всех силовых ключей - строго запирающий уровень.

    Е. Отказы высоковольтных емкостей при высоких температурах.

    Ж. Отказ диодов Шотки изза избыточного обратного напряжения (при условии достаточного теплоотвода). Понижающий коэффициент 80% по напряжению - полезная подстраховка.

    Поясняю. Особенность ДШ - экспоненциальный рост обратного тока с температурой. Во многих применениях мощность рассеяния на обратном токе сопоставима с потерями на прямом токе (до 20%)! Далее идет цепной разогрев и диод умирает. Поэтому силовые ДШ более критичны к теплоотводу чем обычные диоды.

    З. Пользуйтесь правильным инструментом. Необходим скоростной запоминающий осциллограф, фиксирующий одиночные импульсы. Ведь МДП ключ может разрушиться за 10 наносекунд, и это надо уметь увидеть. Важно правильно подключить и землю осциллографа.

    Если в схеме пара транзисторов, транс и выпрямитель, почему бы не взять и не промоделировать ее в лоб? Уж не сложнее чем промоделировать БИСину на миллион транзисторов. Хороший вопрос, нельзя и все - просто нет подходящего софта, а данные для расчета моделей трансформаторов все равно придется снимать вручную.

    Из известного науке и практике лучше всего для наших целей подойдет аналоговый компьютер, который придется построить самому - Макетная Плата. И ничего с ним не сравнится. Во-первых, никакое моделирование не учтет множество критических для ПН параметров, особенно выходящих за границы реальных проводов и компонентов (теплообменные процессы, ЭМ излучение). Ведь многие из этих факторов определяются расположением компонентов и трасс на плате - их нельзя учесть, не построив ее. То же сопротивление и индуктивность провода от ключа до обмотки - критический компонент любого БП. А, во-вторых, модели внутри традиционного САПРа не предназначены для корректной отработки импульсов большой амплитуды, и нередко просто не сходятся к решению.

    Роль моделирования в цикле проектирования. Стоит тогда вообще с моделированием связываться? Стоит, только всегда надо помнить (и знать, конечно) ограничения САПРовских моделей. Вот как рекомендуется ими пользоваться

  • Используйте компьютер для ввода схемы, трассировки платы и т.п. До начала испытания в железе возможно завершить 90% этих работ
  • Определите параметры силового трансформатора и петли управления
  • Смоделируйте формы напряжений и токов в критических точках схемы. Исходя из этих напряжений и токов - определите требования к компонентам по максимальным режимам. Прежде всего - трансформатор, емкости фильтра, силовые ключи.
  • Повторите моделирование для выбранных приборов
  • Соберите и запустите макет по технологии, приближенной к промышленной плате
  • Обнаружив непредвиденное поведение в схеме - вернитесь к моделированию и попытайтесь восстановить увиденное в модели. Не надо особой точности - главное, уловить физическую суть процесса.

    Публикация: www.klausmobile.narod.ru, www.cxem.net

    Смотрите другие статьи раздела .
  • ГОУ СПО Кировский Авиационный техникум

    ДОКЛАД

    по электропитанию СВТ

    «Однотактные импульсные преобразователи»

    Студента группы ВП-34

    Беляева П.Ю.

    1 Введение. Некоторые понятия. 3
    2 Первичные ИИП 5
    5
    8
    10
    2.4 Мостовой преобразователь 11
    3 Вторичные ИИП 13
    4 Импульсные преобразователи 15
    15
    4.2 Импульсный однотактный преобразователь постоянного напряжения. Конвертор 16
    5 Заключение 19
    5.1 Электромагнитные и радиопомехи, создаваемые ИИП. 19
    5.2 Интегральные микросхемы для ИИП. 19
    5.3 Режим повторных включений ИИП. 20
    5.4 ИИП с поддержкой питания 21
    6 Литература 22
    1 Введение. Некоторые определения

    Импульсные (ключевые) источники питания - ИИП (SMPS) - это современные источники питания с высоким КПД. Традиционные линейные источники питания с последовательным регулирующим элементом сохраняют постоянное выходное напряжение при изменении входного напряжения или тока нагрузки благодаря изменению своего сопротивления. Линейный регулятор (стабилизатор) поэтому может быть очень неэффективным. Импульсный источник питания, однако, использует высокочастотный ключ (транзистор) с переменными величинами включенного-выключенного состояний, чтобы стабилизировать выходное напряжение. Пульсации выходного напряжения, вызванные ключевым режимом, отфильтрованы LC фильтром.

    ИИП могут понижать напряжение питания, так же, как и линейные. В отличие от линейного регулятора(стабилизатора), однако, ИИП может также увеличивать напряжение питания и инвертировать выходное напряжение. Типовые схемы применения даются ниже.

    Типовое применение для понижающего импульсного (ключевого) регулятора:

    Формирование напряжения 5 В для питания цепей ТТЛ от 12 В батареи (особенно если 12 В батарея ограниченной емкости, поскольку ключевые стабилизаторы гораздо более эффективны чем линейные стабилизаторы).

    Типовое применение для повышающего импульсного регулятора:

    Формирование 25 В от напряжения 5 В для питания программируемого ПЗУ.

    Типовое применение для инвертирующего импульсного регулятора:

    Формирование двуполярного напряжения от однополярного для питания операционных усилителей.

    Формирование отрицательного смещения для микросхем динамического ОЗУ.

    Термин импульсный регулятор используется для описания схемы, которая преобразует постоянное напряжение в выходной сигнал также постоянного напряжения той же самой или противоположной полярности более низкого или более высокого напряжения. Импульсные регуляторы используют дроссели и не обеспечивают гальванической развязки между входом и выходом.

    Термин импульсный преобразователь используется для описания схемы, которая преобразует постоянное напряжение в один или несколько выходных сигналов также постоянного напряжения более низкого или более высокого напряжения. Импульсные преобразователи используют трансформатор и обеспечивают гальваническую развязку (изоляцию) между входом и выходами, а также между выходами.

    Термин импульсный источник питания - ИИП (SMPS) используется для описания импульсных регуляторов и преобразователей.

    2 Первичные ИИП

    2.1 Прямоходовые и обратноходовые преобразователи

    При обсуждении ИИП различной топологи часто упоминаются прямоходовые и обратноходовые преобразователи.

    В прямоходовом ИИП источник энергии подает ток к выходному конденсатору, когда ключ замкнут.

    Обратноходовой ИИП передает энергию от дросселя к выходному конденсатору, когда ключ разомкнут.

    Прямоходовый (forward) преобразователь

    Рисунок 1.

    Дополнительная обмотка трансформатора прямоходового преобразователя гарантирует, что к моменту включения ключа магнитное поле сердечника трансформатора нулевое. При отсутствии дополнительной обмотки после нескольких периодов переключения сердечник трансформатора войдет в насыщение, ток первичной обмотки чрезмерно увеличится, таким образом ключ (то есть транзистор) выйдет из строя.

    Временные диаграммы напряжений и токов для прямоходового преобразователя показаны на рисунке 2.

    Намагничивающий ток

    Рисунок 2.

    Выходное напряжение прямоходового преобразователя равно среднему значению напряжения на входе LC фильтра и равно:

    V out = V in x (n2/n1) x (T on x f)

    где:

    T on - время включенного состояния ключа
    f - частота переключения

    Обратноходовый (flyback) преобразователь

    Рисунок 3.

    Выходное напряжение для обратноходового преобразователя (трапецеидальная форма электрического тока) может быть рассчитано следующим образом:

    V out =V in x (n2/n1) x (T on x f) x (1/(1-(T on x f)))

    где:
    n2 - число витков вторичной обмотки T1
    n1 - число витков первичной обмотки T1
    T on - время включенного состояния ключа Q1

    Cхема управления контролирует V out и управляет скважностью (временем включенного состояния ключа Q1).

    Если V in увеличивается, схема управления уменьшит скважность, чтобы сохранить постоянное выходное напряжение. Аналогично, если ток нагрузки уменьшится и V out увеличится, схема управления будет действовать таким же образом. Наоборот, уменьшение V in или увеличение тока нагрузки увеличит скважность.

    Заметим, что выходное напряжение меняется, когда изменяется коэффициент заполнения, T on x f. Однако зависимость между выходным напряжением и коэффициентом заполнения - не линейна, как имела место в прямоходовом преобразователе, это - гиперболическая функция.

    Ток в обратноходовом преобразователе может иметь или трапецеидальную, или пилообразную форму. Трапецеидальная форма тока будет в том случае, если ключевой транзистор включается до того, как ток во вторичной обмотке спадет до нуля. Если пилообразный ток во вторичной обмотке успевает достичь нуля, то появляется "мертвое время", когда нет никакого тока ни в вторичной обмотке, ни в первичной.

    Рисунок 4.

    2.2 Двухтактный (Push Pull) преобразователь

    Рисунок 5.

    Двухтактный преобразователь относится к числу прямоходовых. Как показано на рисунке 5, когда ключ Q1 включен, ток течет через верхнюю половину первичной обмотки T1 и магнитное поле в сердечнике T1 растет. Растущее магнитное поле в T1 индуцирует напряжение во вторичной обмотке T1 такой полярности, что диод D2 смещен в прямом, а D1 - в обратном направлении. D2 проводит и заряжает выходнй конденсатор C2 через дроссель L1. L1 и C2 составляют схему фильтра. Когда ключ Q1 выключается, магнитное поле в трансформаторе T1 спадает, и после времени паузы (зависящего от скважности ШИМ), Q2 включается, ток течет через нижнюю половину первичной обмотки T1 и магнитное поле в сердечнике T1 растет в противоположном направлении. Растущее магнитное поле в T1 индуцирует напряжение во вторичной обмотке T1 такой полярности, что диод D1 смещен в прямом, а D2 - в обратном направлении. D1 проводит и заряжает выходной конденсатор C2 через дроссель L1. После окончания мертвого времени включается ключ Q1 и процесс повторяется.

    Имеются два важных соображения, касающиеся двухтактного преобразователя:

    1. Оба транзистора не должны проводить одновременно, поскольку это было бы эквивалентно короткому замыканию источника питания. Это означает, что время включенного состояния каждого ключа не должно превышать половину периода, иначе наложатся проводящие состояния ключей.
    2. Магнитный режим обеих половин первичной обмотки (вольт-секундные площадки) должен быть строго одинаков, иначе трансформатор может войти в насыщение, и это вызвало бы выход из строя ключей Q1 и Q2.

    Эти критерии должны удовлетворяться схемой управления и драйвером.

    Выходное напряжение V out равно среднему значению напряжения на входе LC фильтра:

    V out = V in x (n2/n1) x f x (T on, q1 + T on, q2)

    где:
    V out - среднее выходное напряжение - В
    V in - Напряжение питания - В
    n2 - число витков вторичной обмотки
    n1 - половина общего числа витков первичной обмотки
    f - частота переключения - Гц
    T on, q1 - время включенного состояния ключа Q1 - с
    T on, q2 - время включенного состояния ключа Q2 - с

    Cхема управления контролирует V out и управляет включенным состоянием ключей Q1 и Q2.

    Если V in увеличивается, схема управления уменьшит скважность, чтобы сохранить постоянное выходное напряжение. Аналогично, если ток нагрузки уменьшится и V out увеличится, схема управления будет действовать таким же образом. Наоборот, уменьшение V in или увеличение тока нагрузки увеличит скважность. Временные диаграммы на рисунке 6 показывают токи двухтактного преобразователя.

    Рисунок 6.

    2.3 Полумостовой преобразователь

    Рисунок 7.

    Полумостовой преобразователь подобен двухтактному преобразователю, только не требуется делать отвод от середины первичной обмотки. Изменение направления магнитного поля достигается изменением направление тока первичной обмотки. Этот тип преобразователя применяется в преобразователях большой мощности.

    Для полумостового преобразователя выходное напряжение V out равно среднему значению напряжения на входе LC фильтра.

    V out = (V in /2) x (n2/n1) x f x (T on,q1 + T on,q2)

    где:

    f - рабочая частота - Гц

    Заметим, что T on,q1 должно быть равно T on,q2 и что Q1 и Q2 никогда не должны проводить одновременно.

    Схема управления полумостового преобразователя подобна схеме управления двухтактного преобразователя.

    2.4 Мостовой преобразователь

    Рисунок 8.

    Мостовой преобразователь подобен двухтактному преобразователю, только не требуется делать отвод от середины первичной обмотки. Изменение направления магнитного поля достигается изменением направление тока первичной обмотки. Этот тип преобразователя применяется в преобразователях большой мощности.

    Для мостового преобразователя выходное напряжение V out равно среднему значению напряжения на входе LC фильтра.

    V out = V in x (n2/n1) x f x (T on,q1 + T on,q2)

    где:
    V out - выходное напряжение - В
    V in - входное напряжение - В
    n2 - 0.5 x количество витков вторичной обмотки
    n1 - количество витков первичной обмотки
    f - рабочая частота - Гц
    T on,q1 - время включенного состояния ключа Q1 - с
    T on,q2 - время включенного состояния ключа Q2 - с

    Диагональные пары транзисторов поочередно проводят, таким образом достигая изменения направления тока в первичной обмотке трансформатора. Это можно пояснить следующим образом - когда включены ключи Q1 и Q4, ток будет течь "вниз" через первичную обмотку трансформатора (втекать в начало обмотки), а когда включены ключи Q2 и Q3, ток будет течь "вверх".

    Схема управления контролирует Vout и управляет скважностью импульсов управления ключей Q1, Q2, Q3 и Q4.

    Схема управления работает так же, как и для двухтактного и полумостового преобразователя, за исключением того, что надо управлять четырьмя транзисторами, а не двумя.

    3 Вторичные ИИП

    Импульсный источник питания, который дает низкое напряжение, изолированный от первичного источника, часто называется вторичным ИИП. Типичная блок-схема такого источника питания показана на рисунке 9.

    Рисунок 9.

    Фильтр, показанный в левой части блок-схемы, необходим для предотвращения попадания в сет помех из источника питания. Он также помогает предохранять цепи ИИП от импульсов напряжения (или скачки напряжения) в сети переменного тока.

    Типовая силовая часть такой схемы показана на рисунке 10.

    Рисунок 10.

    Конденсатор при питании от сети переменного тока 220 В заряжается до напряжения приблизительно 310 В (340 В для 240 В). Резистор R1 - низкоомный (номинал от 2 до 4 Ом), который предохраняет схему от бросков тока при заряде конденсатора C1 во время подачи питания. Q1 - высоковольтный МОП-транзистор, который используется в качестве быстродействующего ключа, переключающего импульс питающего тока в ферритовом высокочастотном трансформаторе T1. Частота переключения обычно лежит в диапазоне от 25 до 250 кГц. Элементы R2 и C2 составляют защитную цепь (snubber), которая уменьшает выбросы напряжения и шумы переключателя. Стабилизация достигается благодаря контролю за выходным напряжением в точке "FB" и регулирования ширины входных импульсов драйвера ключа Q1. Предохранитель FS2 необходим для защиты от короткого замыкания и перегрузки. FS2 иногда заменяется датчиком тока, который запирает при перегрузке драйвер ключа Q1.

    4 Импульсные преобразователи

    В регулируемом линейном источнике питания силовой трансформатор промышленной частоты используется для изоляции, а затем выпрямитель и линейный регулятор используются для формирования выходного напряжения.

    В управляемом ИИП изоляция и регулирование объединены в единое целое, имеющее высокий КПД. В ИИП используется маленький высокочастотный трансформатор, обычно работающий в диапазоне частот от 25 до 250 кГц (хотя в маломощных ИИП до 1 МГц).

    Трансформаторы и дроссели, используемые для ИИП, имеют ферритовые сердечники в противоположность листовым железным сердечникам их более низкочастотных двойников. Трансформаторы ИИП вообще имеют меньшее количество витков в обмотках чем трансформаторы промышленной частоты.

    4.1 Однотактный преобразователь напряжения

    Однотактный преобразователь напряжения содержит трансформатор, первичная обмотка которого состоит из двух частей с числом витков w1 и w2, первый транзистор, соединенный с блоком управления, и второй транзистор, шунтированный обратным диодом. Между эмиттерами транзисторов включен конденсатор. Коллекторы первого и второго транзисторов соединены с крайними выводами обмоток трансформатора. Кроме того, коллектор первого транзистора через резистор, шунтированный последовательной RC-цепью, образующие токозадающую цепь, соединен с входом управления второго транзистора.

    В качестве первого и второго транзисторов в данном преобразователе могут быть использованы любые другие ключевые элементы, например, МОП транзисторы и т.д.

    Однотактный преобразователь постоянного напряжения работает следующим образом.

    При поступлении отпирающего сигнала на базу транзистора последний открывается, к обмотке трансформатора прикладывается входное напряжение. При этом к управляющему переходу транзистора прикладывается запирающее напряжение, практически равное напряжению конденсатора, и он запирается. Через второй транзистор протекает сумма токов намагничивания сердечника трансформатора и нагрузки. По окончании управляющего импульса транзистор запирается, ток намагничивания замыкается через диод, конденсатор и обмотку. К управляющему электроду второго транзистора прикладывается отпирающее напряжение, равное разности коллекторного напряжения первого транзистора и напряжения конденсатора. Второй транзистор отпирается, обеспечивая протекание тока намагничивания в обратном направлении.

    Благодаря конденсатору ток намагничивания протекает непрерывно в течение всего периода следования импульсов с блока управления и среднее значение этого тока равно нулю. Это приводит к тому, что размагничивающее напряжение прикладывается к обмотке в течение всего времени запертого состояния первого транзистора, а перемагничивание сердечника трансформатора осуществляется по полному циклу с малой амплитудой тока намагничивания.

    Таким образом, в предложенном устройстве уменьшены потери мощности на резисторе, включенном в управляющей цепи дополнительного ключа, за счет снижения напряжения на нем.

    4.2 Импульсный однотактный преобразователь постоянного напряжения . Конвертор.

    Импульсные преобразователи постоянного напряжения (ИППН) регулируют выходное напряжение (напряжение на нагрузке) путём изменения времени подачи напряжения Uo на нагрузку Zн. Чаще всего применяют широтно-импульсный (ШИР) и частотно-импульсный (ЧИР) способы регулирования. Принцип действия ИППН основан на ключевом режиме транзистора или тиристора, которые периодически прерывают цепь подачи напряжения U0 в нагрузку (Рисунок 11). При широтно-импульсном способе выходное напряжение регулируют изменением длительности выходных импульсов tи (рисунок 12) при неизменном периоде их следования Т. Тогда среднее значение выходного напряжения преобразователя будет определяться по формуле Uн.ср=(tи/T)*Uо. Следовательно, выходное напряжение регулируют от нуля (при tи=0) до Uо(tи=T).

    Рисунок 11.

    Рисунок 12.

    На рисунке 13 изображена схема широко распространённого ИППН . Такой преобразователь называют однотактным. В качестве ключа служит тиристор. Между нагрузкой Z н и тиристором включен сглаживающий LC-фильтр.

    Рисунок 13.

    Диод Д, выполняющий функции обратного диода, необходим для создания электрической цепи для тока нагрузки при выключенном тиристоре.

    Однотактные ИППН работают при мощности 100 кВт. Если требуется большая мощность, прибегают к многотактным ИППН.

    Во всех ИППН отпирание проводниковых ключей производится путём принудительной подачи на тиристор (транзистор) коммутирующих импульсов, запирание же тиристоров осуществляется напряжением периодически перезаряжаемого конденсатора. Естественно, что коммутационный блок в ИППН имеет некоторое отличие от подобных блоков в автономных инверторах.

    Отметим, что регулирование постоянного напряжения на нагрузке при питании от сети переменного тока можно осуществить с помощью ИППН. Небольшое падение напряжения на открытом полупроводниковом ключе и очень малый ток при его запертом состоянии определяют высокий КПД импульсных преобразователей постоянного напряжения. В этом отношении неуправляемый выпрямитель, работающий в паре с ИППН, успешно конкурирует с управляемым выпрямителем.

    Преимущество импульсных преобразователей постоянного напряжения по сравнению с конверторами с самовозбуждением является то, что в ИППН в качестве ключей применяют тиристоры, которые в настоящее время выпускаются на напряжения до нескольких киловольт. Это позволяет создать конверторы большой мощности (свыше 100 кВт) с высоким КПД, меньшими габаритами и массой. Конверторы получили широкое применение в установках, в которых первичным источником электропитания являются контактная сеть, аккумуляторы, солнечные и атомные батарейки, термоэлектрические генераторы.

    5 Заключение

    5.1 Электромагнитные и радиопомехи, создаваемые ИИП

    Известно, что импульсные источники питания создают электромагнитные и радиопомехи. НЧ фильтры в подводящих проводах жизненно важны для уменьшения наводок по цепям питания. Экран Фарадея между обмотками трансформатора и вокруг чувствительных компонентов вместе с правильным расположением в блоке цепей, компенсирующим поля, также уменьшают электромагнитные и радиопомехи. Проблема сглаживания тока пилообразной формы требует применения фильтрового конденсатора. Индуктивность и сопротивление (последовательно включенные) стандартных электролитических конденсаторов влияют на пульсации и напряжения шума в выходных сигналах. Линейные источники питания не имеют себе равных в маломощных и очень малошумящих с низкими пульсациями в выходных сигналах источниках.

    5.2 Интегральные микросхемы для ИИП

    Mullard:
    TDA2640
    TDA2581

    SGS:
    L4960

    Диапазон входного напряжения - 9 - 50 В постоянного тока

    Регулируемое выходное напряжение - от 5 до 40 В

    Максимальный выходной ток - 2.5 А

    Максимальная выходная мощность - 100 Вт

    Встроенная схема плавного включения

    Стабильность внутреннего опорного источника - +\- 4 %

    Требует очень небольшого числа навесных компонентов

    Коэффициент заполнения - 0 - 1

    Высокий КПД - выше 90 %

    Встроенная тепловая защита от перегрузки: микросхема выключается, когда температура pn-перехода достигает 150 град. C.

    Встроенный ограничитель тока для защиты от короткого замыкания

    L4962 (16-выводной DIP корпус. Выходной ток до 1.5 А)
    L4964 (специальный 15- выводной корпус. Выходной ток до 4 А)

    Texas Instruments:
    TL494
    TL497

    TL497 имеет генератор с фиксированным временем включенного состояния, но с переменной выходной частотой. Это дает минимальное количество навесных элементов. Время включенного состояния определяется значением емкости конденсатора, подключенного между выводом 3 и землей.

    Рисунок 14.

    5.3 Режим повторных включений ИИП

    В импульсных источниках питания такой режим часто используется для ограничения выходного тока. Если ИИП перегружен, схема выключается. После некоторого интервала времени он включается, если перегрузка все еще существует, он немедленно выключается. На некоторых конструкциях, если это случается несколько раз, питание отключается, пока не будет сброшена блокировка схемы.

    5.4 ИИП с поддержкой питания

    Некоторые "более автономные" ИИП разработаны так, чтобы сохранить устойчивое выходное напряжение более чем несколько периодов при отключении входного питания. Это может быть достигнуто установкой входного конденсатора большой емкости, такой, что его напряжение не будет существенно падать в течение перерывов подачи энергии. Период времени, в течение которого ИИП поддерживает выходное напряжение, когда отсутствует входное, часто называют "временем поддержки питания".

    6 Литература
    1. INTERNET:

    SGS Power Supply Application manual

    Motorola Power MOSFET Transistor Databook

    Unitrode Semiconductor Databook

    Unitrode Applications Handbook

    Transformer Core Selection for SMPS, Mullard

    Soft Ferrites - Properties and Applications, E.C. Snelling

    Switchmode - A Designer"s Guide, Motorola

    SMPS Technology and Components, Siemens

    Texas Instruments Linear Circuits Databook

    Analogue Electronics Handbook, T.H. Collins

    Smith, K.L. Ph.D. (University of Kent), "D.C. Supplies from A.C. Sources", Electronics & Wireless World, September 1984.

    Иванов В.С., Панфилов Д.И. Компоненты силовой электроники фирмы MOTOROLA. - М.: ДОДЭКА, 1998

    Силовые полупроводниковые приборы International Rectifier. Пер. п/р В.В.Токарева. - Воронеж, 1995

    Микросхемы для импульсных источников питания и их применение. Изд. 2-е. - М.: ДОДЭКА, 2000

    Поликарпов А.Г., Сергиенко Е.Ф. Однотактные преобразователи напряжения в устройствах электропитания РЭА. - М.: Радио и связь, 1989

    Поликарпов А.Г., Сергиенко Е.Ф. Импульсные регуляторы и преобразователи постоянного напряжения. - М.: Изд-во МЭИ, 1998

    Высоковольтные импульсные трансформаторы с воздушным сердечником (Технический отчет)

    Рохвайн, Г. Дж. Высоковольтные импульсные трансформаторы с воздушным сердечником . США: Н. П., 1981. Интернет. DOI: 10.2172 / 6165455.

    Рохвайн, Г. Дж. Высоковольтные импульсные трансформаторы с воздушным сердечником . Соединенные Штаты. https://doi.org/10.2172/6165455

    Рохвайн, Дж. Дж. Сб. «Высоковольтные импульсные трансформаторы с воздушным сердечником». Соединенные Штаты. https://doi.org/10.2172/6165455. https://www.osti.gov/servlets/purl/6165455.

    @article {osti_6165455,
    title = {Высоковольтные импульсные трансформаторы с воздушным сердечником},
    author = {Rohwein, G J},
    abstractNote = {Высоковольтные импульсные трансформаторы с воздушным сердечником лучше всего подходят для приложений, выходящих за пределы нормальных диапазонов обычных трансформаторов с магнитным сердечником.Как правило, они включают перенос заряда на высоких уровнях мощности и быструю генерацию импульсов со сравнительно низкой энергией. При правильном проектировании и изготовлении они способны обеспечить высокую эффективность передачи энергии и продемонстрировать превосходную стойкость к высоким напряжениям. Описаны общие типы, предназначенные для генерации импульсов высокого напряжения и передачи энергии. Особое внимание уделяется импульсным системам зарядки, работающим в диапазоне до нескольких мегавольт. (WHK)},
    doi = {10.2172/6165455},
    url = {https://www.osti.gov/biblio/6165455}, журнал = {},
    номер =,
    объем =,
    place = {United States},
    год = {1981},
    месяц = ​​{8}
    }

    Импульсный трансформатор

    - купить импульсный трансформатор с бесплатной доставкой на AliExpress

    Отличные новости !!! Вы попали в нужное место для импульсного трансформатора.К настоящему времени вы уже знаете, что все, что вы ищете, вы обязательно найдете на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

    Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

    AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший импульсный трансформатор в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели импульсный трансформатор на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

    Если вы все еще не уверены в импульсном трансформаторе и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

    А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести импульсный трансформатор по самой выгодной цене.

    У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

    4 преимущества использования высоковольтного импульсного трансформатора

    Одним из наиболее широко используемых заказных трансформаторов в различных областях промышленности является импульсный трансформатор, который предназначен для выдерживания высоких нагрузок для распределения мощности.Они способны передавать большую мощность, чем обычный передатчик того же размера, и могут работать на высоких частотах. Вот четыре основные причины, по которым промышленные предприятия должны рассмотреть возможность использования импульсных трансформаторов.

    1. Способность передавать высокую энергию Основное преимущество нестандартных трансформаторов - это возможность заставить более мелкие компоненты работать больше. Высокая энергия может эффективно передаваться с коротким временем нарастания и большой шириной импульса в импульсном трансформаторе.Высокая магнитная проницаемость ферритового сердечника помогает снизить индуктивность рассеяния. Его высокое сопротивление напряжению делает его практичным для крупномасштабных операций.

    2. Другие обмотки Импульсные трансформаторы с более чем двумя обмотками используют несколько транзисторов одновременно. Это помогает ограничить фазовые сдвиги или задержки. Меньшее количество оборотов означает меньшее сопротивление и большую мощность.

    3. Предотвращает блуждающие токи Импульсные трансформаторы имеют гальваническую развязку между обмотками, предотвращающую прохождение паразитных токов.Это также позволяет первичной цепи управления и вторичной цепи управления использовать разные потенциалы. Гальваническая развязка находится в диапазоне от 4 кВ для небольших трансформаторов до 200 кВ для машин очень большой мощности.

    4. Обеспечивает изоляцию и контроль Абразивные смолы в импульсных трансформаторах помогают контролировать электрическое сопротивление или любые вибрации внутри трансформатора. Они являются частью процесса, известного как вакуумная заливка, при котором используются термореактивные пластмассы или гель силиконового каучука.Компаунд для заливки обеспечивает изоляцию и уменьшает занимаемое пространство за счет большей эффективности.

    Заключение Изготовленные на заказ трансформаторы, такие как импульсные трансформаторы, позволяют повысить энергоэффективность во многих отраслях промышленности, таких как коммунальные и телекоммуникационные компании. Для повышения или понижения мощности до определенных уровней требуются импульсные трансформаторы. Ключом к индивидуальным проектам является твердая изоляция, которая защищает трансформатор от повреждений из-за чрезмерного напряжения.

    Международный союз компонентов

    Allied Components International специализируется на разработке и производстве широкого спектра стандартных магнитных компонентов и модулей, таких как индукторы для микросхем, магнитные индукторы на заказ и трансформаторы на заказ. Мы стремимся предоставлять нашим клиентам продукцию высокого качества, обеспечивать своевременные поставки и предлагать конкурентоспособные цены.

    Мы - растущее предприятие в магнитной промышленности с более чем 20-летним опытом.

    Преобразователи постоянного тока в постоянный

    | Пико

    DC - DC Converter Трансформаторы используются в повышающих или понижающих преобразователях. Эти трансформаторы могут использоваться в приложениях с самонасыщением или с прямоугольной волной и имеют диапазоны входного напряжения 5 В, 12 В, 24 В и 48 В и выходное напряжение до 300 В постоянного тока. Номинальная мощность до 7.5 Вт для поверхностного монтажа и до 40 Вт для сквозных трансформаторов. Версия трансформатора со сквозным отверстием имеет магнитное экранирование. Преобразователи постоянного тока в постоянный ток компании Pico Electronics работают в диапазоне температур от -55 ° C до + 105 ° C. Все трансформаторы соответствуют стандарту MIL - PRF - 27, класс 5, класс S. Эти сверхминиатюрные трансформаторы отличаются долговечностью и сохраняют свои электрические характеристики. Доступны индивидуальные конструкции для увеличения или уменьшения вторичных напряжений, а также любых конкретных входных напряжений.Pico Electronics является утвержденным источником QPL.

    Примечание. Все продукты PICO могут быть изменены в соответствии с вашими требованиями. Пожалуйста, свяжитесь с нами для получения информации.

    Чтобы просмотреть полную серию и технические характеристики, щелкните номер детали. Результаты поиска: 246 совпадений на основе вашего выбора
    Каталожный номер Входное напряжение (В постоянного тока) Минимальный диапазон входного напряжения (вольт) Максимальный диапазон входного напряжения (вольт) Д.C. Выходной мост (вольт) Выход постоянного тока, полная волна (вольт) Двойной мост постоянного тока (± В) Выходное напряжение (В) Максимальная выходная мощность от -55 ° C до + 105 ° C (Вт) Максимальная выходная мощность от -55 ° C до + 70 ° C (Вт) Приблизительная частота переключения при самонасыщении (кГц) Приблизительная частота коммутации прямоугольных импульсов ** Частота переключения (кГц) ПЕРВИЧНАЯ ИНДУКТИВНОСТЬ (мкГ @ 0A) КОЭФФИЦИЕНТ ОБОРОТА (Np / Ns) ПЕРВИЧНЫЙ DCR (<МОм) ВТОРИЧНЫЙ DCR (<МОм) РАЗМЕР Цена (долл. США)
    31021 5 10 5 5 1.5 3 15 От 30 тыс. До 60 тыс. 1 76.20
    31041 5 12 6 6 1.5 3 15 От 30 тыс. До 60 тыс. 1 76.20
    31061 5 28 14 14 1.5 3 15 От 30 тыс. До 60 тыс. 1 76.20
    31081 5 48 24 24 1.5 3 20 От 40 тыс. До 60 тыс. 1 76.20
    31101 5 100 50 50 1.5 3 20 От 40 тыс. До 60 тыс. 1 76.20
    31121 12 12 6 6 1.5 3 15 От 30 тыс. До 60 тыс. 1 76.20
    31141 12 24 12 12 1.5 3 15 От 30 тыс. До 60 тыс. 1 76.20
    31161 12 28 14 14 1.5 3 15 От 30 тыс. До 60 тыс. 1 76.20
    31181 12 48 24 24 1.5 3 20 От 40 тыс. До 60 тыс. 1 76.20
    31201 12 100 50 50 1.5 3 20 От 40 тыс. До 60 тыс. 1 76.20

    Страницы

    трансформаторов | Производство и обслуживание

    Специальные типы трансформаторов

    Для некоторых приложений требуется стандартный трансформатор, а для других требуется индивидуальное решение. Наша команда трансформаторов может работать с вами, чтобы определить точные спецификации, которые вам нужны, и у нас есть знания и опыт, чтобы настроить ваш трансформатор, когда это необходимо. Доступные специальные функции включают:

    • Однофазные трансформаторы от 25 кВА до трехфазных 7500 кВА
    • 480 вольт до 69 кВ класс
    • Конструкции для нестандартных частот и условий высоких гармоник
    • Подавление переходных процессов
    • Минеральное масло или огнестойкая изолирующая жидкость
    • Конструкции для экстремальных условий:
      • Экстремальные температуры окружающей среды
      • Опасные места
      • Большая высота
      • Системы окраски для экстремальных условий окружающей среды

    Реактор плавного пуска

    Разработано для пуска больших двигателей, это устройство обнаруживает падения напряжения и реагирует на них.Устройство плавного пуска включает в себя вакуумный контактор и схемы синхронизации для автоматического байпаса реактора после того, как двигатель достигает полной скорости, и имеет переключатель ответвлений для согласования реактивного сопротивления с применением.

    Многоканальные трансформаторы (серия FACT®)

    Наша серия FACT® (трансформаторы на полную мощность) представляет собой широкую линейку однофазных и трехфазных распределительных трансформаторов. Они в первую очередь предназначены для жестких условий эксплуатации погружных скважинных насосов, поверхностных насосов и приводов с регулируемой скоростью.

    Однофазные трансформаторы: Однофазные понижающие трансформаторы FACT® доступны с одним первичным напряжением (FACT® 125) или двумя первичными напряжениями (FACT® 225).

    Трехфазные трансформаторы: Наша серия FACT® III представляет собой трехфазные повышающие конструкции с первичным напряжением 480 В.

    Трансформаторы со сдвигом фазы

    Наши фазосдвигающие трансформаторы преобразуют трехфазное сетевое напряжение для обеспечения 12, 18 или 24 (или более) импульсов, необходимых для питания современных многоимпульсных частотно-регулируемых приводов (VFD).Используя многоимпульсный частотно-регулируемый привод, вы можете уменьшить потребность в дорогостоящих фильтрах гармоник. Наши фазосдвигающие трансформаторы представлены в различных моделях, чтобы соответствовать размеру частотно-регулируемого привода и многоотводного трансформатора FACT®, подключенного к его выходу.

    Полиавтоматический трансформатор: 12-импульсный фазосдвигающий трансформатор, этот многоугольный автотрансформатор предназначен для питания 12-пульсного двигателя и снижает потребность в дорогостоящих фильтрах гармоник.

    18- и 24-пульсные модели: Мы также предлагаем 18-пульсные и 24-пульсные фазосдвигающие трансформаторы (и выше) в индивидуальном исполнении.Для получения более подробной информации свяжитесь с нами.

    Китай повышающий / понижающий трансформатор, импульсный трансформатор, трансформатор освещения, производитель и поставщик трансформаторов тока

    Высокочастотные силовые трансформаторы, высокочастотный трансформатор, импульсный трансформатор, трансформатор тока, фильтры электромагнитных помех, высокочастотный трансформатор тока, высокочастотные измерительные трансформаторы тока, высокочастотный трансформатор тока с выводами провода, высоковольтный высокочастотный трансформатор, высокочастотный изолирующий трансформатор, высоковольтный импульс трансформатор, высокомощный высокочастотный трансформатор, трансформатор переменной частоты, низкочастотный трансформатор

    • Трансформатор ETD34

    Тип ETD Высокочастотный трансформатор

    Трансформатор ETD34

    * Высоконадежный, компактный и легкий
    * Компактный, с большой индуктивностью
    * Предотвращение шума, исходящего от других компонентов.

    2015-09-22


    • Трансформатор EPC

    трансформатор силовой трансформатор серии EPC

    Трансформатор EPC

    спецификация:
    1.Высокое качество и конкурентоспособность
    2. Хорошее послепродажное обслуживание
    3. Устойчивость к высоким температурам
    4. Бесплатные образцы

    2015-08-10



    Конструкция импульсного трансформатора - Часть I

    Некоторое время назад я написал статью о различных типах импульсных источников питания.Перед прочтением этого поста важно, может быть, сначала прочитать его. Важно понимать, для какого импульсного приложения вы разрабатываете. Это играет очень важную роль при выборе наилучшей топологии импульсного трансформатора. Этот пост будет посвящен определенным ключевым аспектам, чтобы показать, как мыслить и подходить к проектированию импульсных трансформаторов.

    Давайте теперь посмотрим на идеальный трансформатор и на то, что происходит в практическом, реальном трансформаторе. Нас учили, что намагничивание и индуктивность рассеяния являются наиболее заметными различиями между идеальным и настоящим трансформатором.Когда дело доходит до импульсных трансформаторов, вводится третий аспект: емкость трансформатора. В большинстве случаев индуктивностью намагничивания в импульсных трансформаторах можно пренебречь, а индуктивность рассеяния, межвитковая емкость и межобмоточная емкость являются доминирующими характеристиками трансформатора. На диаграмме ниже показано соотношение между индуктивностью рассеяния и эквивалентной емкостью трансформатора для идеальных и реальных трансформаторов.

    Идеальный трансформатор не имеет индуктивности рассеяния или паразитной емкости.В результате идеальный трансформатор имеет бесконечную полосу пропускания. К сожалению, в реальном мире этого не происходит. Практичный, реальный трансформатор имеет конечную индуктивность рассеяния и емкость. В большинстве случаев невозможно минимизировать оба количества одновременно. Меньшая индуктивность рассеяния подразумевает более плотно упакованную конфигурацию обмоток с более высокой паразитной емкостью. Меньшая емкость в большинстве случаев подразумевает большее расстояние между обмотками и большую индуктивность рассеяния. Для заданного набора конструктивных параметров (например,грамм. напряжение, коэффициент трансформации и т. д.) произведение индуктивности рассеяния на общую эквивалентную емкость трансформатора остается более или менее постоянным. В этом отношении коэффициент качества конструкции DQ может быть определен:

    DQ = L утечка x C пар. ,

    , где L утечка - эквивалентная индуктивность рассеяния, а C par - полная эквивалентная емкость трансформатора на входе (первичной или вторичной) трансформатора.Коэффициент DQ переводится в полосу пропускания импульсного трансформатора. Меньшие коэффициенты DQ подразумевают более быстрые трансформаторы с большей полосой пропускания. Хорошо спроектированный импульсный трансформатор будет иметь относительно небольшой коэффициент DQ - хорошие характеристики DQ . В большинстве случаев коэффициент DQ становится больше при больших передаточных числах. Для высоковольтных импульсных трансформаторов коэффициент DQ также больше из-за больших изоляционных расстояний, необходимых между витками трансформатора и обмотками.Различные топологии импульсных трансформаторов будут иметь более или менее одинаковые коэффициенты DQ , но относительный размер индуктивности рассеяния и эквивалентной емкости трансформатора может сильно различаться.

    Коэффициент трансформации, емкость трансформатора и коэффициент DQ

    Паразитная емкость трансформатора не может быть рассчитана с использованием упрощенных электростатических методов. Главное - посмотреть на разницу напряжений внутри трансформатора. Большая разница напряжений приведет к большим токам смещения и большим эквивалентным емкостям.Емкость трансформатора делится на межвитковые и межобмоточные. На диаграмме ниже показана межобмоточная емкость. Простой однослойный трансформатор с электронным сердечником используется для демонстрации концепции.

    Межобмоточная емкость

    Первичная обмотка синего цвета, а вторичная обмотка оранжевого цвета. Напряжение на первичной обмотке составляет В p , а результирующее выходное напряжение на вторичной обмотке составляет В s = a.V p , где a - передаточное число. Межобмоточная емкость состоит из отдельных локальных межобмоточных емкостей, как показано на схеме. Нижние первичный и вторичный витки (обозначены как 1 ) имеют более или менее одинаковый потенциал 0 В. Разница напряжений между ними почти равна нулю, и влиянием емкости между обмотками можно пренебречь. Напряжение между верхними обмотками (обозначено как N и M соответственно), однако, определяется отношением витков и равно (a-1) V p .При соотношении витков 1 напряжение будет равно 0, и межобмоточную емкость можно полностью игнорировать. Однако чем больше соотношение витков, тем больше будет эта разница напряжений. Эффект Миллера можно использовать для преобразования этой емкости в эквивалентную параллельную емкость на входе первичной обмотки. Для большого отношения витков это определяется как:

    C между обмотками, eq, p ~ a 2 x C между обмотками ,

    где C между обмотками - это емкость, которая может измерять мультиметром между первичной и вторичной обмотками.Это основная причина трудностей создания высоковольтных повышающих импульсных трансформаторов. Передаточное число отрицательно влияет на коэффициент DQ .

    Межвитковая емкость показана на рисунке ниже.

    Межвитковая емкость

    Общая межвитковая емкость состоит из комбинации нескольких локальных межвитковых емкостей. Эти емкости соединены последовательно, и эквивалентная емкость обычно намного ниже по сравнению с емкостью между обмотками.Однако для трансформаторов с меньшим числом витков и ленточных обмоток межвитковая емкость может быть значительной. Эквивалентная параллельная межвитковая емкость, наблюдаемая на первичном входе, может быть приблизительно выражена следующим образом:

    C между витками, уравнение, p ~ a 2 x C между витками, s + C между- Turn, p ,

    , где Cinter-turn, p и Cinter-turn, s - это эквивалентные последовательно первичные и вторичные межвитковые емкости, соответственно.Полная эквивалентная паразитная емкость трансформатора определяется суммой эквивалентных межобмоточных и межвитковых емкостей.

    C par, p = a 2 C par, s = C между витками, eq, p + C между обмотками, eq, p

    Подведем итог: визуализируйте емкости в терминах разницы напряжений. Чтобы уменьшить емкость, попробуйте увеличить расстояние между частями трансформатора с большой разницей напряжения. Для больших передаточных чисел ( a > 5) коэффициент DQ будет приблизительно пропорционален квадрату a .

    Индуктивность утечки и высоковольтная изоляция

    Индуктивность утечки возникает из-за силовых линий магнитного поля, которые не проходят через отверстия первичной и вторичной обмоток (или не соединяются с ними). Большинство силовых линий внутри сердечника трансформатора связаны как через первичную, так и через вторичную обмотки. Некоторые силовые линии между сердечником и обмотками не связаны из-за окантовки. Большинство силовых линий между пространствами первичной и вторичной обмоток не соединены.В высоковольтном трансформаторе требуется достаточное изоляционное пространство между первичной и вторичной обмотками. Это неизбежно увеличивает индуктивность рассеяния и коэффициент DQ . Высоковольтные импульсные трансформаторы в большинстве случаев имеют больший коэффициент DQ по сравнению с низковольтными трансформаторами.

    Топологии импульсных трансформаторов

    Ниже приведены наиболее распространенные топологии импульсных трансформаторов:

    • Тороидальный сердечник
    • Многослойные чередующиеся обмотки
    • Разделенные обмотки
    • U-образные разделенные обмотки

    Этот список отнюдь не полный.Две из наиболее экзотических топологий - распределенный и коаксиальный трансформаторы - не рассматриваются в этом посте. Ниже представлены изображения различных топологий.

    На приведенной ниже диаграмме показана производительность DQ в различных топологиях.

    Трансформаторы с тороидальным сердечником имеют лучшие характеристики DQ (т.е. сравнительно небольшой коэффициент DQ ), т.е.е. самая высокая пропускная способность (= быстрая). Благодаря специальной конфигурации обмотки наименьшая индуктивность рассеяния может быть получена с трансформаторами с тороидальным сердечником. Однако они, как правило, имеют относительно большую емкость трансформатора. Многослойные трансформаторы с чередующимися обмотками имеют несколько более низкие характеристики DQ . Они, как правило, меньше по размеру, но изоляция от высокого напряжения может быть проблематичной. Для напряжений выше 10 кВ требуются специальные методы намотки. Трансформаторы с разделенными обмотками - лучший выбор для многоцелевых трансформаторов с хорошим балансом между индуктивностью рассеяния и паразитной емкостью.На фотографии выше трансформатор был сконструирован с четырьмя вторичными отсеками, зажатыми между двумя первичными отсеками. Расстояние между обмотками можно изменять для увеличения электрической изоляции или уменьшения индуктивности рассеяния. Трансформаторы с разъемными обмотками с U-образным сердечником используются только тогда, когда требуется очень низкая емкость трансформатора или для улучшения электрической изоляции в системах с очень высоким напряжением.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *