Трансформатор постоянного тока повышающий: Повышающий трансформатор постоянного тока — Морской флот

Содержание

Повышающий трансформатор постоянного тока - Морской флот

Преобразование напряжения присутствует повсеместно в любой области нашей жизни и деятельности. Вырабатываемое на электростанции напряжение повышается до нескольких киловольт, чтобы быть переданным с наименьшими потерями через линии электропередач на многие тысячи километров. А потом оно снова понижается на трансформаторных подстанциях до привычных нам значений в 380/220 вольт.

Самые простые и понятные примеры для простого человека: сетевое зарядное устройство для автомобильного аккумулятора, блок питания в компьютерной и другой технике, инвертор для автономного электроснабжения 220 вольт от низковольтных источников питания, понижающие трансформаторы 220-115 и т.д.

В общем, есть много устройств, в которых установлен трансформатор напряжения. Рассмотрим его немного подробнее, не погружаясь в излишние сложности.

Трансформатор напряжения

Все обмотки намотаны на общем сердечнике (магнитопроводе). Если число витков у вторичной обмотки больше, чем у первичной, то это повышающий трансформатор, если меньше — понижающий.

Мощность трансформатора напряжения зависит от сечения проводов обмоток, а габариты и вес — от типа сердечника и материала проводов (медь или технический алюминий). По исполнению он может быть одно- и трёхфазным. Самым компактным и лёгким является автотрансформатор, в котором всего одна обмотка.

Повышающий трансформатор

Первая мысль, которая приходит на ум, когда напряжение в сети всё чаще и чаще становится низким, поставить повышающий трансформатор. На первый взгляд кажется, что это — простое и отличное решение, и теперь, наконец-то, будет нормальное напряжение, яркое освещение и стабильно работающие электроприборы.

Но не всё так просто в сказочном королевстве, и прежде чем купить повышающий трансформатор напряжения, цена на который уж очень привлекательна, задумайтесь об одной особенности его работы: он имеет постоянный коэффициент повышения напряжения (коэффициент трансформации). Рассмотрим это на примере.

Предположим, что у вас сетевое напряжение порядка 170 вольт. Чтобы повысить его до 220, нужен трансформатор с коэффициентом трансформации 1.29 (220/170). Вроде бы всё хорошо и логично получается, за исключением одного: если напряжение в сети станет нормальным 220 вольт, то на выходе трансформатора будет уже очень высокое напряжение 285 вольт (220*1.29)! Не все электрические приборы способны выдержать такое перенапряжение в течение даже небольшого времени. Так и до пожара недалеко!

Как вариант, можно приобрести регулируемый автотрансформатор, т.н. ЛАТР, в котором предусмотрен ручной регулятор выходного напряжения. Но и он не будет являться надёжным решением, т.к. придётся постоянно контролировать значение выходного напряжения по индикатору и корректировать его вручную, особенно во время максимальной нагрузки электросети со стороны соседей. Если вовремя этого не делать, то при первом же скачке в электросети напряжение на выходе ЛАТРа тоже резко повысится, и подключенные электроприборы вполне могут перегореть.

Поэтому повышающие трансформаторы напряжения применимы лишь тогда, когда в сети ВСЕГДА существенно меньше 220 вольт, а такого практически никогда и не бывает.

Заключение

Задачу автоматического поддержания напряжения на постоянном уровне решает


но прежде нужно в обязательном порядке выявить истинную причину низкого напряжения в сети, а затем уже принимать какие-либо решения.

Говоря о преобразовании электрической энергии, можно вспомнить разнообразные трансформаторы, генераторы, блоки питания различных бытовых приборов, зарядные устройства электронных гаджетов, сварочные инверторы и даже атомные электростанции. Во всех случаях в том или ином виде происходит преобразование электрической энергии. Можно сказать, что нас в повседневной жизни окружают разные виды электрических преобразователей, и трудно себе представить их полное отсутствие в современном мире.

Преобразователи напряжения постоянного тока получили особенно широкое распространение в последние двадцать лет. Это связано со стремительным развитием полупроводниковой промышленности и электроники в целом.

Высокочастотные импульсные преобразователи почти вытеснили с рынка блоки питания с низкочастотными трансформаторами, которые можно встретить теперь разве что в старых телевизорах и других старинных приборах, или в некоторых современных усилителях звуковой частоты.

Высокочастотный трансформатор (или дроссель) имеет значительно меньшие габариты, чем низкочастотный трансформатор на железе, рассчитанный на работу от сети 50-60 Гц, именно поэтому импульсные блоки питания так компактны. Так или иначе, преобразователи напряжения постоянного тока все же содержат в своей конструкции трансформатор (или дроссель), но это уже совсем не тот тяжелый и шумный трансформатор.

Ассортимент современных DC-DC конвертеров (а именно так называются преобразователи постоянного напряжения в постоянное напряжение) достаточно широк. Давайте рассмотрим более подробно, какие именно бывают DC-DC конвертеры .

1. Миниатюрный регулируемый преобразователь

Этот крохотный понижающий преобразователь размером 43мм х 21мм, и другие подобные модели, стоят на китайских торговых площадках от одного доллара. Данный экземпляр работает на микросхеме LM2596 , и его выходные параметры могут регулироваться. На вход подается постоянное напряжение в диапазоне от 4,5 до 40 вольт, а на выходе получается постоянное напряжение от 1,3 до 35 вольт.

Максимальный ток, который можно получить от данного преобразователя составляет 3 ампера, однако в этом случае требуется радиатор, если же преобразователь используется без радиатора, средний ток не должен превышать 2 ампер. Эффективность такого преобразователя может достигать 92%.

Данный преобразователь собран по топологии step-down (buck) converter, и на плате видны все его главные составные части: входной и выходной конденсаторы, дроссель, диод Шоттки, регулировочный резистор и сама микросхема в корпусе TO-263-5. На приведенной выше принципиальной схеме не изображен регулировочный резистор, но на плате он есть.

Без этого резистора схема не даст на выходе больше 5 вольт, однако если обратную связь снимать не напрямую с выходного конденсатора фильтра, а через делитель напряжения, который как раз и собран здесь с использованием этого регулировочного резистора, можно существенно расширить диапазон выходных напряжений, что и реализовано на данной плате.

Сфера применения этих преобразователей ограничена лишь фантазией разработчика. Здесь и питание светодиодов, и зарядка различных портативных устройств, и многое другое.

Бывают и повышающие преобразователи такого типа, выполненные по топологии step-up (boost) converter.

На приведенном изображении (красная плата) регулируемый повышающий преобразователь максимальной мощностью до 150 ватт (требуется дополнительное охлаждение), на вход которого можно подавать от 10 до 30 вольт, а на выходе получать от 12 до 35 вольт.

Как и в предыдущем примере, этот преобразователь имеет на выходе регулировочный резистор, который и отвечает за получение на выходе нужного значения напряжения. Управляющая микросхема расположена на обратной стороне платы. Сама плата имеет размер 65мм х 35мм. Стоимость такого преобразователя раза в 3 выше предыдущего примера.

2. Водонепроницаемый блок питания

Этот блок питания имеет прочный литой водонепроницаемый корпус, залитый эпоксидным компаундом, что позволяет применять его как на транспорте, так и с любым другим оборудованием, где требуется надежность и безопасность. Преобразователь имеет защиту от пониженного напряжения, от перенапряжения, от короткого замыкания, и от перегрузок.

Диапазон входного напряжения в разных моделях весьма широк, и в данном примере от 9 до 24 вольт, при этом на выходе получаем 24 вольта с максимальным током 5 ампер (в данном примере). Размер корпуса на фото 75мм х 75 мм, высота 31мм. Стоимость таких преобразователей порядка 10 – 50 долларов, в зависимости от мощности.

Преобразователи такого типа производятся на мощность от 15 до 360 ватт, на входное напряжение до 60 вольт, и на выходное напряжение от 5 до 48 вольт. Они также весьма распространены на многочисленных торговых площадках.

3. Импульсный блок питания постоянного напряжения в кожухе

Обычно эти блоки питания изготавливают по схеме обратноходового, двухтактного или полумостового импульсного преобразователя. Они бывают на входное напряжение от 19 до 72 вольт и выше, а выход обычно от 5 до 24 вольт. Мощность преобразователей такого типа может достигать 1000 ватт. Размеры корпуса от 78мм х 51мм х 28мм до 295мм х 127мм х 41мм.

Такие блоки питания выпускаются многими фирмами-производителями, а их стоимость может доходить до нескольких сотен долларов. Довольно часто подобные блоки применяются для питания светодиодных лент. Они обладают возможностью точной подстройки выходного напряжения и имеют защиту от перегрузки.

Есть на рынке аналогичные модели преобразователей с питанием напрямую от сети переменного тока, называемые AC-DC преобразователями , однако там все равно напряжение сети сначала выпрямляется, фильтруется, то есть делается постоянным, а только после преобразуется посредством стандартного высокочастотного преобразования и выпрямления в постоянное напряжение другого уровня, более низкого, то есть опять же использован модуль DC-DC конвертера .

В отличие от других конвертеров, преобразователи с питанием от сети переменного тока обязательно имеют гальваническую развязку вторичной обмотки высокочастотного импульсного трансформатора от первичной . Как правило, цепь обратной связи в таких блоках развязана с применением оптопары. Справедливости ради нужно отметить, что маломощные блоки такого типа бывают и в бескорпусном исполнении.

4. DC-DC конвертор для монтажа на печатную плату

Эти миниатюрные блоки питания обладают мощностью от 0,25 до 100 ватт. Они допускают разброс входного напряжения: 3-3,6В, 4,5-9В, 9-18В, 13-16,6В, 9-36В, 18-36В, 18-72В, 36-72В, и 36-75В. В зависимости от фирмы – производителя диапазоны питающих напряжений могут отличаться. Некоторые преобразователи допускают регулировку выходного напряжения и перевод блока в режим ожидания. Стандартный же ряд выходных напряжений блоков: 5В, 12В, 15В.

DC-DC конвертеры для монтажа на печатную плату имеют электрически прочную изоляцию (1500 В), а максимально допустимая температура может достигать 90 градусов по Цельсию. Наибольший интерес для разработчиков представляют преобразователи мощностью 3 ватта. Стоимость таких конвертеров – от единиц до десятков долларов.

У всех современных промышленных импульсных DC-DC преобразователей значение рабочей частоты лежит выше 50кГц, и достигает 300кГц. Это утверждение справедливо для импульсных трансформаторов и дросселей на феррите, поскольку для применяемых в описанных преобразователях трансформаторов и дросселей везде задействованы именно ферритовые сердечники.

Выпускаемые промышленностью специализированные интегральные микросхемы для импульсных преобразователей очень часто имеют строго установленную частоту, которая всегда выше 50кГц. Если используется ШИМ контроллер , то соответствующая частота задается внешними компонентами.

предназначен для подключения к бытовой электросети (220 вольт) светодиодных ламп и ленты, рассчитанных на пониженное напряжение (12V, 24V, 36V) постоянного или переменного тока.

Каждый из представленных светодиодных трансформаторов 220 – 12 обеспечивает стабильное выходное напряжение 12V, что гарантирует долгий срок службы подключённого светодиодного оборудования. Также имеется несколько моделей электромагнитных трансформаторов на 24 и 36 вольт.

Каталог трансформаторов 220 – 12 вольт

Как определить нужную мощность понижающего трансформатора?

Выбрать трансформатор очень просто: сложите мощности всех низковольтных источников света, которые Вы собираетесь подключить к трансформатору, и к полученному числу добавьте 20%. В результате вы получите минимальную номинальную мощность необходимого светодиодного трансформатора.

Диапазон мощностей, имеющихся у нас в продаже понижающих трансформаторов 220 – 12/24/36 вольт, позволяет подобрать трансформатор для любого случая.

Понижающие трансформаторы 12 вольт. Разные виды и ракурсы.

Мы не рекомендуем производить установку трансформатора в местах с повышенной влажностью и/или температурой, например, в сауне или бассейне.

Зачем трансформатор, если проще установить лампы на 220 вольт?

Возможно, что и проще, но мы всегда рекомендуем по возможности устанавливать светодиодные лампы на 12 вольт в паре с 12-и вольтовым трансформатором постоянного тока. Первичные затраты у Вас не увеличатся, так как лампы на 12 вольт стоят дешевле своих 220-и вольтовых аналогов, и эта разница покрывает цену трансформатора. Но при этом Вы получаете существенный плюс – надёжность. Светодиодные лампы работают долго, но срок службы 12-и вольтовых светодиодных ламп, как правило, ещё больше, т.к. они дополнительно защищены (от электронных шумов и бросков напряжения в электросети) внешним мощным понижающим трансформатором.

Где купить понижающий трансформатор 220 – 12/24/36 вольт?

В нашем интернет-магазине Вы можете выбрать и купить понижающий трансформатор 220 – 12/24/36 вольт. Мы осуществляем доставку по России и СНГ.

Вы спрашивали – мы отвечали

  • Здравствуйте! Подскажите, если в 2-х комнатную квартиру установить встроенные потолочные светодиодные светильники, то насколько далеко можно разнести местоположения трансформаторов и светодиодных ламп?
    Не повлияет ли удалённость трансформатора от светодиодной лампы на срок службы и работу последней, если расстояние между ними составляет 10-15 метров?
    Обычно рекомендуется не превышать 5 метров длины от трансформатора до лампы.
  • Рассматриваю вопрос установки трансформатора 220/12 и использования светодиодных ламп в помещении парилки и помывочной комнаты в бане. Подскажите, есть ли у трансформаторов гальваническая развязка? Возможно ли их применение в таких условиях?Нет, трансформаторы нельзя использовать в помещениях с повышенной влажностью.
  • Здравствуйте, не подскажете, как правильно подключить трансформатор ps200w?Клеммы всех трансформаторов 220-12 подписаны одинаково.
  • У меня в люстре стоят 12 ламп галогеновых 12v цоколь G4. Хочу заменить галоген на LED.
    При замене галогенок (12шт х 20ватт) на LED (12шт х 2 ватт) хочу поменять трансформатор на понижающий 220 -12 вольт постоянного тока.
    Хватит ли мне трансформатора 30 ватт или запас нужно делать больше? Спасибо большое.
    Если речь идёт о наших светодиодных лампах G4 на 2 ватта, то трансформатора такой мощности заведомо хватит.
  • Для 50 светильников со светодиодными лампами 5вт какой мощности нужен понижающий трансформатор?Мощность трансформатора рассчитать просто: нужно сложить мощности всех подключённых светодиодных ламп и увеличить .
  • У меня установлен трансформатор на 150 Ватт, к нему подключено 4 точечных светильника по 35 Вт (4х35=140Вт). Хочу заменить лампы на LED. Мощность ламп будет, например 4х3=12 Ватт. Вопрос: что делать с трансформатором?Мы уже отвечали на подобный вопрос, но касательно ламп с цоколем G4.
  • У меня в квартире установлено много галогеновых ламп на 12 вольт. Это лампы с отражателем диаметром 50мм и маленькие пальчиковые лампы, цоколь у них, кажется, G4. При замене этих ламп на LED G4 нужно ли мне будет менять установленные понижающие трансформаторы?Если у Вас установлены старые электронные трансформаторы (их легко опознать – они всегда маленькие, трансформатор на 50 .

Задайте свой вопросРАСПРОДАЖА! Цены снижены до 60%! Подходят для:Светодиодные лампы Е27 на 12, 24, 36, 48 вольтСветодиодная лента 12 вольтСветодиодные прожекторы 12 вольт, 12V – 24VРасстояние от трансформатора до ленты или лампыВопросы покупателей Вы спрашивали – мы отвечалиНаши ответы на несколько сотен самых распространённых вопросов: как не ошибиться при выборе, как правильно подключить, решения проблем.Популярные статьи

  • Чем грозит покупка дешевых светодиодных ламп?Зачем платить больше, если лампу той же мощности можно на рынке купить дешевле? Мы купили на рынке три дешёвые лампы, разобрали их и покажем Вам, что Вы реально получите вместе с подобными "изделиями".
  • Что такое светодиодная лампа?Короткий ответ на этот вопрос и несколько слов о наших светодиодных лампах ТАУРЭЙ.
  • Недостатки светодиодных лампУ светодиодных ламп есть и недостатки. Для кого-то они могут оказаться существенными.
  • Температура света – что это?Популярно о цветовой температуре, что это такое, и как получилось, что свет измеряется в градусах.

Новости и акции

  • 05.06.2019Ожидается поступление светодиодных матриц и прожекторов мощностью до 500 ватт с белым нейтральным светом, для сетей 110/127/220 вольт и для 12-24 вольт.
  • 22.11.2018Новая продукция – линейка цветных светодиодных прожекторов на 220 и 12-24 вольт: синие, жёлтые, зелёные и красные.
  • 02.10.2018Очередное поступление низковольтных светодиодных ламп Е27 на 12, 24, 36 вольт мощностью от 3 до 12 ватт.
    Новые мощные прожекторы на 500 ватт.
  • 01.10.2018Новая продукция – линейка низковольтных светодиодных прожекторов на 12-24 вольт пополнилась моделями на 60 ватт. Также в продаже новые драйверы на 70 и 80 ватт.
  • 28.09.2018Поступление новых недорогих светодиодных ламп Е27 на 24/36/48 вольт. Две модели бренда «Край Света» на 8 и 10.5 ватт.

Повышающий трансформатор – история создания знакового устройства и пошаговая инструкция.

Любая сфера человеческой деятельность связана с определенными устройствами, предметами, символизирующими эту область. Судостроение, мореплавание – развивающиеся паруса, длинные яхты, корабли, морские волны. Авиация – крыло самолета, пропеллер. Автомобильная отрасль осталась бы смутной мечтой, не изобрети когда-то человек колесо. Многие вещи, которые сегодня кажутся нам привычными, естественными, были изобретены в творческих муках, трудах, но стали поворотным моментом развития не только отдельной сферы, но и всего человечества.

Повышающий трансформатор: история создания

Таким символом электротехники является повышающий трансформатор тока. Принцип, ставший основой его работы, был открыт Майклом Фарадеем еще в 1831 году. Открытое им явление электромагнитной индукции оказало несравнимое влияние на весь человеческий быт, способы производства продукции. Но использовано открытие было лишь спустя почти полвека - в 1876 году отечественным изобретателем Яблочковым П. Н., который стал владельцем патента на трансформатор.

Принцип работы и разновидности

Трансформатор – это электрический прибор, который преобразует ток входящей сети в ток с другими показателями напряжения. Работает прибор только с напряжение переменного тока, потому что лишь при изменении электромагнитного поля становится возможным использования эффекта индукции. Его устройство не отличается сложностью: пара обмоток размещается на незамкнутом сердечнике, что позволяет преобразовывать показатели напряжения тока. Передача энергии происходит посредством перевода электрической энергии в магнитное поле, а затем снова в ток с новыми показателями. Чтобы повысить параметры, необходимо иметь такую вторичную обмотку, количество оборотов которой больше чем у первичной. Чтобы понизить – наоборот. Трансформатор повышающий напряжение был первым изобретенным видом этого прибора.

По габаритам современные устройства отличаются как от первого изобретения, так и друг от друга. Сегодня используются повышенные трансформаторы размером менее одного сантиметра у небольших приборов, а также размером с двухэтажный дом для крупных промышленных комплексов. Их производство, продажа, обслуживание являются самостоятельной областью промышленности. Изобретение русского ученого используется электротехническими лабораториями, промышленностью, нефтегазовой отраслью и многими другими. Современные модели повышающих трансформаторов позволяют получать напряжение 220 В, подходящее подавляющему числу бытовых, профессиональных приборов, при минимальном входном питании сети.

Сделать самому или купить повышающий трансформатор?

Решением некоторых задач может стать преобразователь, собранный своими руками. Например, если для гаражных работ нужно подключить оборудование с питанием 220 В, а сеть имеет напряжение лишь 36 В, то собранный самостоятельно повышающий трансформатор позволит решить эту проблему.

Собираем повышающий трансформатор своими руками

  1. Первым делом определяем мощность первичной обмотки будущего преобразователя. Для этого нужно узнать мощность прибора, который мы будем подключать. Обычно эти данные указывают в паспорте устройства. Например, возьмем среднее значение 100 Вт. Следует учитывать, что потребуется некоторый запас, т.к. коэффициент полезного действия будет равен примерно 0,8 -0,9. Нам подойдет мощность 150 Вт.
  2. Нужно подобать магнитопровод. Если не прибегать к услугам специализированных магазинов, то можно взять сердечник по форме буквы «О» из, например, старого телевизора. Но придется рассчитать сечение по формуле: A1= C*C/1,44 , где A1 – мощность будущего преобразователя (Вт), а C – поперечное сечение (кв. см). У нас С должно быть равно 10,2 кв. см.
  3. Определяем число витков на 1 В. Рассчитываем по формуле: K=50/C, у нас это 50/10,2, т.е. 4,9 витков на 1 В. После мы легко рассчитаем количество оборотов первичной и вторичной обмоток. В первом случае умножаем имеющиеся напряжение питания сети на 4,9, получаем 176 витков. Во втором умножаем требуемое напряжение (220 В) на 4,9, получаем 1078.
  4. Следующий шаг – расчет тока каждой обвивки. За исходные показатели берем мощность равную 150 Вт. Тогда для первичной обвивки нужен ток в 4,2 А, вторичной – 0,7 А. Рабочий показатель равен мощности деленной на напряжение.
  5. Для правильной работы устройства важно не только количество оборотов, но и диаметр обмоток. Рассчитываем этот параметр по формуле: рабочий ток обмотки умноженный на коэффициент 0,8. У нас получается 1,64 мм и 0,67 мм для первичной и вторичной обмоток соответственно. Подбираем максимально похожие на наши диаметры из представленных магазином.
  6. Вырезаем два каркаса для магнитопровода. Берем половину первичной обмотки, плотно укладываем на каркасы. После укладки изолируем стеклотканью.
  7. Берем половину вторичной обмотки, также укладываем, изолируем.
  8. Собираем магнитопровод, стягиваем его отдельные части хомутом. Части устройства рекомендуем проклеить специальным клеем с содержанием ферропорошка, тогда оборудование не будет издавать лишних звуков во время эксплуатации. Устройство готово!

Если вы далеки от физики, самодеятельности или не обладаете свободным временем, рекомендуем просто купить готовый трансформатор в нашем интернет-магазине. Также стоит учесть, что промышленные, производственные задачи способен решить лишь прибор, собранный профессионалами. Использование самодельного устройства не всегда безопасно! Будьте осторожны.

Разница между повышающим трансформатором и усилителем напряжения

Усилитель напряжения? Похоже или нет?

Переходный трансформатор в основном увеличивает величину первичного приложенного напряжения, что увеличивает амплитуду формы волны напряжения. Усилитель напряжения делает то же самое.

Удлинительный трансформатор Altec Peerless 4722 MC

Чем очень странный, но мыслимый вопрос, какова разница между ними, и можем ли мы использовать небольшой повышающий трансформатор вместо усилителя напряжения и наоборот?

Различия

трансформаторУсилитель
Трансформаторы не могут усилить (повышать) входное напряжение переменного тока, не уменьшая (уменьшая) его текущую способность.Усилитель может одновременно усиливать ток и напряжение. У нас может быть 1V на 1uA, чтобы управлять входом, но также может получить много вольт на многих усилителях на выходе.
Обмотки катушки трансформатора никогда не требуют постоянного напряжения для работы. Иногда напряжение постоянного тока может присутствовать в обмотке трансформатора для вспомогательных устройств, но постоянный ток не требуется для работы трансформатора.Усилитель почти всегда требует постоянного напряжения постоянного тока для работы.
Трансформатор имеет больше обмотки, добавленной к вторичной обмотке, для получения усиления напряжения.Усилитель фактически модулирует постоянный источник постоянного тока. Напряжение в ответ на вход переменного тока. Напряжение для получения выходного напряжения.
Входной ток трансформатора пропорционален его току нагрузки.Входной ток усилителя обычно почти не зависит от его тока нагрузки.
Трансформатор похож на коробку передач, тогда как усилитель подобен двигателю. Коробка передач преобразует энергию как трансформатор.Усилитель подобен двигателю, который потребляет топливо для обеспечения выхода. Аналогичным образом усилитель потреблял питание постоянного тока, чтобы обеспечить выход.
Переходный трансформатор может усиливать определенный тип входа, который является синусоидальным входом или изменяющим во времени входом, и добавляет, что диапазон ввода трансформатора очень гибкий в диапазоне.Усилитель может усилить любой сигнал, и в то время как усилитель будет иметь ограниченный диапазон, тогда в состоянии насыщения.
Выходной импеданс идеального трансформатора равен импедансу источника, умноженному на квадрат коэффициента поворота.Усилитель может иметь выходной импеданс, который не зависит от импеданса источника.

Как работает усилитель - Концепция

Трансформатор не является усилителем, потому что:

Выходные и входные мощности одинаковы, и нет другого источника, кроме сигнала (входящего переменного напряжения ). Усилитель может усиливать напряжение сигнала без снижения выходного тока.

Трансформатор следует принципу индукции, где в качестве усилителя следует принцип усиления сигнала (напряжения или тока). Фактически, усилитель генерирует совершенно новый выходной сигнал на основе входного сигнала. Мы можем понимать эти сигналы как две отдельные схемы.

Выходная цепь генерируется источником питания усилителя, который потребляет энергию от батареи или электрической розетки.

Связанные электрические направляющие и изделия

Преобразователи напряжения. Виды и устройство. Работа

Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжения могут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.

Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения. Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.

Устройство

Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:

  • Инвертирующие.
  • Повышающие.
  • Понижающие.
Общими для указанных видов преобразователей являются пять элементов:
  • Ключевой коммутирующий элемент.
  • Источник питания.
  • Индуктивный накопитель энергии (дроссель, катушка индуктивности).
  • Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
  • Блокировочный диод.

Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.

Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.

Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение другого значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.

Устройство трансформатора включает следующие элементы:
  • Магнитопровод.
  • Первичная и вторичная обмотка.
  • Каркас для обмоток.
  • Изоляция.
  • Система охлаждения.
  • Другие элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).

Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.

Существуют и другие виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.

Принцип действия

Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.

Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.
  • Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
  • Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
  • В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
  • Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
  • Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
  • В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.
Виды

Преобразователи можно классифицировать по ряду направлений.

Преобразователи напряжения постоянного тока:
  • Регуляторы напряжения.
  • Преобразователи уровня напряжения.
  • Линейный стабилизатор напряжения.
Преобразователи переменного тока в постоянный:
  • Импульсные стабилизаторы напряжения.
  • Блоки питания.
  • Выпрямители.
Преобразователи постоянного тока в переменный:
Преобразователи переменного напряжения:
  • Трансформаторы переменной частоты.
  • Преобразователи частоты и формы напряжения.
  • Регуляторы напряжения.
  • Преобразователи напряжения.
  • Трансформаторы разного рода.
Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:
  • На пьезоэлектрических трансформаторах.
  • Автогенераторные.
  • Трансформаторные с импульсным возбуждением.
  • Импульсные источники питания.
  • Импульсные преобразователи.
  • Мультиплексорные.
  • С коммутируемыми конденсаторами.
  • Бестрансформаторные конденсаторные.
Особенности
  • При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
  • Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми. При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.
  • По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора. Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.

Применение
  • Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6—24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение. Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.
  • Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.
  • Для питания различных цепей;

— автоматики в телемеханике, устройств связи, электробытовых приборов;
— радио- и телевизионной аппаратуры.

Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.

  • Преобразователи напряжения практически всех типов широко применяются в быту. Блоки питания многих бытовых приборов, сложных электронных устройств, инверторные блоки широко используются для обеспечения требуемого напряжения и обеспечения автономного энергоснабжения. К примеру, это может быть инвертор, который может быть использован для аварийного или резервного источника питания бытовых приборов (телевизор, электроинструмент, кухонная техника и так далее), потребляющих переменный ток напряжением 220 Вольт.
  • Наиболее дорогими и востребованными в медицине, энергетике, военной сфере, науке и промышленности являются преобразователи, которые имеют выходное переменное напряжение с чистой формой синусоиды. Подобная форма пригодна для работы устройств и приборов, которые имеют повышенную чувствительность к сигналу. К ним можно отнести измерительную и медицинскую аппаратуру, электрические насосы, газовые котлы и холодильники, то есть оборудование, в составе которых имеются электромоторы. Преобразователи часто необходимы и для продления времени службы оборудования.
Достоинства и недостатки
К достоинствам преобразователей напряжения можно отнести:
  • Обеспечение контроля входного и выходного режима тока. Эти устройства трансформируют переменный ток в постоянный, служат в качестве распределителей напряжения постоянного тока и трансформаторов. Поэтому их часто можно встретить в производстве и быту.
  • Конструкция большинства современных преобразователей напряжения имеет возможность переключения между разным входным и выходным напряжением, в том числе предполагает выполнение подстройки выходного напряжения. Это позволяет подбирать преобразователь напряжения под конкретный прибор или подключаемую нагрузку.
  • Компактность и легкость бытовых преобразователей напряжения, к примеру, автомобильных преобразователей. Они миниатюрны и не занимают много места.
  • Экономичность. КПД преобразователей напряжения достигает 90%, благодаря чему существенно экономится энергия.
  • Удобство и универсальность. Преобразователи позволяют подключать быстро и легко любой электроприбор.
  • Возможность передачи электроэнергии на дальние расстояния благодаря повышению напряжения и так далее.
  • Обеспечение надежной работы критических узлов: охранных систем, освещения, насосов, котлов отопления, научного и военного оборудования и так далее.
К недостаткам преобразователей напряжения можно отнести:
  • Восприимчивость преобразователей напряжения к повышенной влажности (кроме преобразователей, специально созданных для работы на водном транспорте).
  • Занимают некоторое место.
  • Сравнительно высокая цена.
Похожие темы:

Повышающий трансформатор - Большая Энциклопедия Нефти и Газа, статья, страница 3

Повышающий трансформатор

Cтраница 3

Повышающие трансформаторы Т-1 и Т-2 обычно устанавливают на открытом воздухе. Распределительное устройство напряжением 35 - 110 кв может быть выполнено открытым или закрытым.  [31]

Повышающие трансформаторы Т-2 и Т-3: Sr ном 20 Мва, ик 10 5 %, нормально включены оба трансформатора.  [32]

Повышающий трансформатор теплоты, работающий по циклу Карно, из воды, предварительно подогретой до 104 С, вырабатывает 2 3 кг / с насыщенного пара давлением 2 МПа используя теплоту конденсации насыщенного водяного пара давлением 0 8 МПа.  [33]

Повышающий трансформатор ТА имеет на вторичной обмотке среднюю точку и переключатель на два положения 300 и 600 в. В качестве выпрямителя используется кенотрон Л типа 5ЦЗС или 5Ц4С, накал которого должен питаться обязательно от отдельного трансформатора ТН 220 / 5 в, включенного до регулирующего устройства.  [35]

Повышающие трансформаторы тепла, преобразующие тепло низкого потенциала в тепло более высокого потенциала.  [36]

Повышающий трансформатор Tpl подключен вторичной стороной к линии передачи, а трансформатор Тр2 понижает высоковольтное напряжение до номинального напряжения сети.  [38]

Повышающий трансформатор небольшой мощности 2 питается от сети переменного тока через реостат. В цепь вторичной обмотки включен конденсатор 3, который заряжается по мере повышения напряжения сети в начале каждого полупериода. В этом контуре возникают затухающие высокочастотные колебания, которые через повышающий трансформатор 6 подаются на электроды 8 и ионизируют дуговой промежуток. Первичной обмоткой трансформатора служит катушка колебательного контура, а вторичная обмотка 7 включается в цепь дуги. Конденсатор 9 замыкает цепь вторичной обмотки трансформатора и препятствует попаданию высокочастотных колебаний в сеть.  [40]

Повышающие трансформаторы блочных электростанций не имеют устройств для регулирования напряжения под нагрузкой, а так. Напряжение на сборных шинах электростанции регулируют изменением тока возбуждения генераторов. При изменении напряжения на сборных шинах высшего напряжения в соответствии с режимом электростанции и соответствующем изменении коэффициента трансформации автотрансформатора изменяется и напряжение обмотки низшего напряжения.  [42]

Повышающие трансформаторы большой мощности ( 250 - 360 MB-А), работающие в блоке с турбогенера - fopaMH, выполняются без регулировочных отпаек. Регулирование напряжения в этом случае производится изменением возбуждения генераторов.  [44]

Все повышающие трансформаторы или автотрансформаторы, кроме двухобмоточных трансформаторов, включенных в блоки с генераторами, применяются с регулированием напряжения под нагрузкой на одном из напряжений.  [45]

Страницы:      1    2    3    4    5

Работа трансформатора, повышающего или понижающего напряжение. Что делает повышающий трансформатор

Трансформатор, устройство, которое передает электрическую энергию от одной части схемы к другой за счет магнитной индукции и, как правило, с изменением величины напряжения. Трансформаторы работают только с переменным электрическим током (AC).

Трансформаторы имеют важное значение в распределении электроэнергии. Они повышают напряжение, вырабатываемое на электростанциях до высоких значений с целью эффективной передачи электроэнергии. Другие трансформаторы понижают это напряжение в местах потребления.

Многие бытовые приборы оборудованы трансформаторами, для того чтобы по мере необходимости повысить или понизить напряжение поступающее из домашней электросети. Например, для работы телевизора и аудиоусилителя необходимо повышение напряжения, а для работы дверного звонка или термостата низкое напряжение.

Как работает трансформатор

Как правило, простой трансформатора состоит из двух катушек намотанных изолированным проводом. В большинстве трансформаторов, провода намотаны на стержень из железа, называемый сердечником.

Одна из обмоток, ее еще называют первичной обмоткой, подключается к источнику переменного тока, что в свою очередь приводит к появлению постоянно переменного магнитного поля вокруг обмотки. Это переменное магнитное поле, в свою очередь, создает переменный ток в другой обмотке (вторичной обмотке).

Величина, определяемая как отношение числа витков в первичной обмотке к числу витков во вторичной обмотке, определяет масштаб понижения или повышения напряжения во вторичной обмотки. Данную величину еще называют коэффициентом трансформации.

Например, если у трансформатора имеется 3 витка первичной обмотке и 6 витков во вторичной обмотки, то напряжение во вторичной обмотке будет в 2 раз больше, чем в первичной. Такой трансформатор называется повышающий трансформатор.

И на оборот, если есть 6 витков в первичной обмотке и 3 виток во вторичной, то напряжение снимаемое с вторичной обмотки будет в 2 раз ниже чем в первичной обмотке. Этот вид трансформатора носит название понижающий трансформатор.

Так же следует иметь ввиду, что соотношение тока в обеих катушках находится в обратной зависимости к соотношению их напряжений. Таким образом, электрическая мощность (напряжение умноженное на силу тока) является одинаковой в обеих катушек.

Импеданс (сопротивление потоку переменного тока) первичной катушки зависит от импеданса вторичной цепи и коэффициента трансформации. При правильном соотношении витков трансформатора можно добиться практически одинакового сопротивления обоих контуров.

Согласованные сопротивления имеют важное значение в стерео системах и других электронных систем, потому это позволяет передавать максимальное значение энергии от одного блока схемы другому.

Своим появлением трансформатор обязан английскому ученому Майклу Фарадею. В 1831 году физик описал явление, которое назвал «электромагнитная индукция». Оно заключается в том, что в близко расположенных катушках (обмотках) проявляется ярко выраженная

электромагнитная взаимосвязь. То есть, если в первой катушке (первичной обмотке) создать переменный ток, то во второй катушке (вторичной обмотке) возбуждается напряжение с аналогичной частотой и мощностью, зависящей от многих параметров, которые рассмотрим далее.

Трансформаторы напряжения назначение и принцип действия

Трансформаторы напряжения предназначены для преобразования энергии источника напряжения в напряжение с нужным нам значением (амплитудой). Нужно заметить, что такие трансформаторы работают только с переменным напряжением и его частота остается неизменной.

Для чего нужен трансформатор напряжения?

Трансформаторы напряжения, в силу своей универсальности, необходимы в блоках питания, устройствах обработки сигналов, передающих устройствах, аппаратах передачи электроэнергии и во многом другом оборудовании.

По коэффициенту трансформации эти устройства могут делиться на 3 типа:

  1. трансформатор напряжения понижающий – на выходе устройства напряжение ниже входного (n>1), например, применяется в блоках питания;
  2. повышающий трансформатор – на выходе устройства напряжение выше, чем напряжение на входе (n
  3. согласующий – трансформатор параметры напряжения не изменяет, происходит только гальваническая развязка цепей (n~1), например, применяется в звуковых усилителях.

В основе работы трансформатора лежит принцип электромагнитной индукции и для наиболее полной передачи энергии, для уменьшения потерь при трансформации, устройство обычно выполняется на магнитопроводе.

Как правило, первичная катушка одна, а вот вторичных может быть несколько, все зависит от назначения трансформатора.

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения.

Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n». Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличается трансформатор тока от трансформатора напряжения?

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы напряжения и тока

При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Дополнительная информация

Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству. Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести . Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Чтобы питать электроприборы, нужно обеспечить номинальные значения параметров электропитания, заявленные в их документации. Безусловно большинство современных электроприборов работают от сети переменного тока 220 Вольт, но бывает так, что нужно обеспечить питание приборов для других стран, где напряжение другое или запитать что-нибудь от бортовой сети автомобиля. В этой статье мы рассмотрим, как повысить напряжение постоянного и переменного тока и что для этого нужно.

Повышение переменного напряжения

Повысить переменное напряжение можно двумя способами – использовать трансформатор или автотрансформатор. Основная разница между ними состоит в том, что при использовании трансформатора есть гальваническая развязка между первичной и вторичной цепью, а при использовании автотрансформатора её нет.

Интересно! Гальваническая развязка – это отсутствие электрического контакта между первичной (входной) цепью и вторичной (выходной).

Рассмотрим часто возникающие вопросы. Если вы попали за границы нашей необъятной родины и электросети там отличаются от наших 220 В, например, 110В, то чтобы поднять напряжение со 110 до 220 Вольт нужно использовать трансформатор, например, такой как изображен на рисунке ниже:

Следует сказать о том, что такие трансформаторы можно использовать «в любую сторону». То есть, если в технической документации вашего трансформатора написано «напряжение первичной обмотки 220В, вторичной – 110В» – это не значит, что его нельзя подключить к 110В. Трансформаторы обратимы, и, если на вторичную обмотку подать, те же 110В – на первичной появится 220В или другое повышенное значение, пропорциональные коэффициенту трансформации.

Следующая проблема, с которой многие сталкиваются – , особенно часто это наблюдается в частных домах и в гаражах. Проблема связана с плохим состоянием и перегрузкой линий электропередач. Чтобы решить эту проблему – вы можете использовать ЛАТР (лабораторный автотрансформатор). Большинство современных моделей могут как понижать, так и плавно повышать параметры сети.

Схема его изображена на лицевой панели, а на объяснениях принципа действия мы останавливаться не будем. ЛАТРы продаются разных мощностей, тот что на рисунке примерно на 250-500 ВА (вольт-амперы). На практике встречаются модели до нескольких киловатт. Такой способ подходит для подачи номинальных 220 Вольт на конкретный электроприбор.

Если вам нужно дёшево поднять напряжение во всем доме, ваш выбор — релейный стабилизатор. Они также продаются с учетом разных мощностей и модельный ряд подходит для большинства типовых случаев (3-15 кВт). Устройство основано также на автотрансформаторе. О том, мы рассказали в статье, на которую сослались.

Цепи постоянного тока

Всем известно, что на постоянном токе трансформаторы не работают, тогда как в таких случаях повысить напряжение? В большинстве случаев постоянку повышают с помощью , полевого или биполярного транзистора и ШИМ-контроллера. Другими словами, это называется бестрансформаторный преобразователь напряжения. Если эти три основных элемента соединить как показано на рисунке ниже и на базу транзистора подавать ШИМ сигнал, то его выходное напряжение повысится в Ku раз.

Ku=1/(1-D)

Также рассмотрим типовые ситуации.

Допустим вы хотите сделать подсветку клавиатуры с помощью небольшого отрезка светодиодной ленты. Для этого вполне хватит мощности зарядного от смартфона (5-15 Вт), но проблема в том, что его выходное напряжение составляет 5 Вольт, а распространенные типы светодиодных лент работают от 12 В.

Тогда как повысить напряжение на зарядном устройстве? Проще всего повысить с помощью такого устройства как «dc-dc boost converter» или «импульсный повышающий преобразователь постоянного напряжения».

Такие устройства позволяют повысить напряжение с 5 до 12 Вольт, и продаются как с фиксированной величиной, так и регулируемые, что позволит в большинстве случаев поднять с 12 до 24 и даже до 36 Вольт. Но учтите, что выходной ток ограничен самым слабым элементом цепи, в обсуждаемой ситуации – током на зарядном устройстве.

При использовании указанной платы выходной ток будет меньше входного во столько раз, во сколько поднялось напряжение на выходе, без учета КПД преобразователя (он в районе 80-95%).

Подобные устройства строят на базе микросхем MT3608, LM2577, XL6009. С их помощью можно сделать устройство для проверки реле регулятора не на генераторе автомобиля, а на рабочем столе, регулируя значения с 12 до 14 Вольт. Ниже вы видите видео-тест такого устройства.

Интересно! Любители самоделок часто задают вопрос «как повысить напряжение с 3,7 В до 5 В, чтобы сделать Power bank на литиевых аккумуляторах своими руками?». Ответ прост – использовать плату-преобразователь FP6291.

На подобных платах с помощью шелкографии указано назначение контактных площадок для подключения, поэтому схема вам не понадобится.

Также часто возникающая ситуация — необходимость подключить к автомобильному аккумулятору 220В прибор, а бывает что за городом очень нужно получить 220В. Если бензинового генератора у вас нет – используйте автомобильный аккумулятор и инвертор, чтобы повысить напряжение с 12 до 220 Вольт. Модель мощностью в 1 кВт можно купить за 35 долларов – это недорогой и проверенный способ подключить 220В дрель, болгарку, котёл или холодильник к 12В аккумулятору.

Если вы водитель грузовика, вам не подойдёт именно указанный выше инвертор, из-за того, что в вашей бортовой сети скорее всего 24 Вольта. Если вам нужно поднять напряжение с 24В до 220В – то обратите на это внимание при покупке инвертора.

Хотя стоит отметить, что есть универсальные преобразователи, которые могут работать и от 12, и от 24 вольт.

В случаях, когда нужно получить высокое напряжение, например, поднять с 220 до 1000В, можно использовать специальный умножитель. Его типовая схема изображена ниже. Он состоит из диодов и конденсаторов. Вы получите на выходе постоянный ток, учтите это. Это удвоитель Латура-Делона-Гренашера:

А так выглядит схема несимметричного умножителя (Кокрофта-Уолтона).

С его помощью вы можете повысить напряжение в нужное число раз. Это устройство строится каскадами, от числа которых зависит сколько вольт на выходе вы получите. В следующем видео описан принцип работы умножителя.

Кроме этих схем существует еще множество других, ниже изображены схемы учетвертителя, 6- и 8-кратных умножителей, которые используются для повышения напряжения:

В заключении хотелось бы напомнить о технике безопасности. При подключении трансформаторов, автотрансформаторов, а также работе с инверторами и умножителями будьте аккуратны. Не касайтесь токоведущихчастей голыми руками. Подключения следует выполнять при отключенном питании от устройства, а также избегать их работы во влажных помещениях с возможностью попадания воды или брызг. Также не превышайте заявленный производителем ток трансформатора, преобразователя или блока питания, если не хотите, чтобы он у вас сгорел. Надеемся, предоставленные советы помогут вам повысить напряжение до нужного значения! Если возникнут вопросы, задавайте их в комментариях под статьей!

Наверняка вы не знаете:

Нравится(0 ) Не нравится(0 )

Вам понадобится

  • - отвертка;
  • - молоток;
  • - мультиметр;
  • - намоточный станок со счетчиком;
  • - обмоточный провод;
  • - паяльник, припой и нейтральный флюс;
  • - мегомметр

Инструкция

Убедитесь, что трансформатор является разборным. Если его сердечник собран склейкой лаком, или, тем более, сваркой, а также если прибор герметизирован любым способом, то для перемотки он непригоден.

У некоторых трансформаторов имеется несколько вторичных обмоток. Соединяя их последовательно, можно получать различные напряжения. Если некоторые из таких обмоток не задействованы, включив их последовательно с уже использующимися, можно повысить выходное напряжение , не прибегая к разборке трансформатора.Все перепайки выполняйте при отключенном питании. Если снимаемое напряжение после переделки не увеличилось, а уменьшилось, значит, дополнительная обмотка подключена в неправильной фазировке. Поменяйте местами ее выводы.

Убедившись в том, что трансформатор имеет разборную конструкцию, можно приступить к его разборке. Сняв крепление сердечника, разберите его легкими ударами молотка, запоминая расположение пластин.Освободив катушку от сердечника, намотайте на нее измерительную обмотку, имеющую несколько десятков витков. Изолируйте ее, выводы вытащите наружу, после чего соберите трансформатор.

Подключите к измерительной обмотке мультиметр, работающий в режиме измерения переменного напряжения, подайте на первичную обмотку трансформатора номинальное напряжение питания. Разделив число витков измерительной обмотки на измеренное напряжение, вы получите число витков на вольт.

Рассчитайте число витков новой вторичной обмотки, которую необходимо включить последовательно с имеющейся, по следующей формуле:Nдоп=(U2-U1)*(Nизм/Uизм), где:
Nдоп - искомое число витков дополнительной обмотки;
U2 - напряжение, которое необходимо получить;
U1 - напряжение имеющейся вторичной обмотки;
Nизм - число витков измерительной обмотки;
Uизм - напряжение, снятое с измерительной обмотки.Снова разберите трансформатор, смотайте измерительную обмотку и вместо нее намотайте дополнительную. Используйте провод того же сечения, что и у имеющейся вторичной обмотки, при этом, следите, чтобы диаметр катушки не увеличился слишком сильно, иначе сердечник будет невозможно надеть. Если соблюсти это требование не получается, от переделки трансформатора придется отказаться.

Изолируйте дополнительную обмотку, соберите трансформатор, после чего включите новую обмотку последовательно с вторичной. Обеспечьте ее правильную фазировку способом, описанным выше.

После переделки трансформатора ни в коем случае не снимайте с него мощность, превышающую ту, на которую он был рассчитан изначально. Рассчитать эту мощность можно, умножив снимаемое напряжение на потребляемый ток.

С помощью мегомметра убедитесь, что утечка между первичной и вторичной обмотками, а также между каждой из них и сердечником отсутствует даже после длительного прогрева при номинальной снимаемой мощности. Удостоверьтесь, что в ходе испытания не появляются запах гари, дым.

Иногда случается так, что напряжение в сети несколько ниже того, которое необходимо для нормального функционирования приборов. Из этого положения есть выход. Повысить напряжение можно очень просто. Для этого достаточно элементарных знаний по электротехнике.

Вам понадобится

  • Трансформатор

Инструкция

Для того чтобы повысить напряжение , понадобятся простой по и трансформатор ( именно – станет ясно после некоторых нехитрых расчетов, указанных ниже). Итак, первичная обмотка трансформатора должна быть на , а вторичная его обмотка должна быть рассчитана на то напряжение , на которое как раз и нужно повысить напряжение в сети.

Теперь возьмите и проанализируйте следующие :Iн = Рн? Uн и P = U2 ? I2. При помощи первой формулы вычислите ток вторичной обмотки трансформатора. После того как в результате расчетов станет известна P, то по полученным результатам подберите трансформатор, наиболее подходящий по параметрам (мощность и выходное напряжение ).

Далее поработайте с этими формулами:Uвых = Uвх ± (Uвх? Ктр) и Ктр = U1 ? U2. Благодаря этим формулам становится понятным, что для правильного результата достаточно просто фазировать (первичной или вторичной).

Полученное устройство установите в таком месте, из которого оно не будет мешать, так как в процессе работы от трансформатора исходит довольно гул. Поэтому целесообразно устанавливать трансформатор где- в подвале или в подсобном помещении.

Видео по теме

Обратите внимание

Следует также учесть тот факт, что в случае стабилизации напряжения в сети и достижения его нормального значения (220 вольт), на выходе этого трансформатора все равно будет напряжение повышенное, что может привести к выходу из строя бытовых приборов. Поэтому для того, чтобы перестраховаться, используйте в процессе эксплуатации получившегося прибора специальные розетки, реагирующие на изменения напряжения в сети и способные в нужный момент отключить трансформатор от сети.

Источники:

  • как поднять напряжение в 2019

Очень сложно придумать что-либо более интригующее, нежели трансформатор Теслы . В свое время, когда автор данного изобретения – сербский ученый Никола Тесла – продемонстрировал его широкой публике, он получил репутацию колдуна и мага. Самое удивительное, что собрать трансформатор Теслы без особого труда можно у себя дома, а затем, при демонстрации этого агрегата, вызывать шоковое состояние у всех своих знакомых.

Инструкция

Для начала нам будет любой источник тока напряжения. Нужно найти генератор или трансформатор с напряжением не менее 5 кВ. Иначе эксперимент не получится. Затем данный источник тока необходимо подключить к конденсатору. Если емкость выбранного будет большой, то тогда также будет необходим мост. Затем нужно создать так называемый «искровой промежуток». Для этого нужно взять два медных провода, концы которых согнуть в стороны, а основание крепко обмотать изолентой.

Далее необходимо изготовить Теслы . Для этого нужно обмотать проводом любую круглую деталь без сердечника (так, чтобы посередине была пустота). Первичная обмотка должна состоять из трех-пяти толстого медного провода. Вторичная обмотка должна содержать не менее 1000 витков. В итоге, должны получиться катушки в форме чечевицы.

Затем необходимо подключить провода к первичной обмотке катушки, а также источнику . Самый простой трансформатор Теслы готов. Он сможет давать разряды не менее 5 сантиметров, а также создать «корону» вокруг катушек. Стоит только отметить, что явления, создаваемые трансформатор ом Теслы , пока не изучены. Если же вы изготовили трансформатор Теслы , который дает разряды до одного , то ни в коем случае не становитесь под этот разряд, хоть это и безболезненно. Токи высоких энергий не вызывают сенсорной реакции , но могут сильно разогревать ткани. Последствия от подобных экспериментов скажутся с годами.

Видео по теме

Источники:

  • как собрать катушку тесла в 2019

В радиолюбительской практике нередко возникает необходимость изготовить трансформатор с нестандартными значениями тока и напряжения. Хорошо, когда удается найти готовое устройство с требуемыми обмотками, в другом случае изготовить его придется самостоятельно.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

ПОВЫШАЮЩИЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ

ПОВЫШАЮЩИЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ

Лукашов Н.М. 1

1

Поваляев Б.А. 1Австриевских Н.М. 1

1

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

 

Введение.

В современном мире, с растущими показателями потребления и как следствие - ограниченными энергоресурсами, стремительные обороты набирает развитие технологий добычи энергии из альтернативных, возобновляемых источников. К таким источникам относятся, в первую очередь, солнечная и ветровая энергии, геотермальное тепло, энергия морских волн и приливов.

Сегодня альтернативные источники энергии уже широко используются для решения проблем энергоснабжения не только в промышленных масштабах, но и в частном секторе. Доступность технологий получения энергии из неисчерпаемых источников позволяет строить энергонезависимые дома с экологически чистой инфраструктурой в удаленных районах и решать проблемы энергоснабжения уже существующих объектов. Наша работа освещает изучение физических явлений на более глубоком уровне. Новизна, актуальность и сложность данной научно-исследовательской работы была в том, что данная тема является неосновным, но с более детальным изучением данного явления в курсе физики, приобретенный опыт позволит использовать данный прибор для устройства дополнительного и аварийного освещения непосредственно в темных помещениях, при этом получив аварийное и дополнительное освещение.

В своей работе мы использовали различные источники информации (научная и учебная литература, Интернет). Проводя эксперимент, мы пришли к выводу, что, используя в своих опытах устройство аварийного и дополнительного освещения можно использовать в экстренных случаях, когда нет электричества, использовав повышающий преобразователь напряжения, чтобы использовать обычные лампы сети 220 вольт. Оригинальность нашей работы была в создании модели по схеме, в интеграции предметов (физики, электротехники, экологии). Создав модель и проводя эксперименты, мы более глубоко изучили техническое содержание темы, более детально изучили некоторые физические явления (альтернативные источники энергии). То есть была доказана взаимосвязь теории с практикой. Знания и умения, которые мы получили в ходе работы с измерениями оставили огромный след в нашей жизни и чувство эстетического наслаждения. То есть была доказана взаимосвязь теории с практикой.

Преобразователь напряжения

Простейший преобразователь напряжения состоит из стального сердечника и двух обмоток - первичной с числом витков w1 и вторичной с числом витков w2. Если к первичной обмотке преобразователь напряжения подвести переменное синусоидальное напряжение, то из-за нелинейной магнитной характеристики ферримагнитного сердечника ток в этой обмотке преобразователя напряжения окажется несинусоидальным. Об этом несколько подробнее будет сказано ниже. Отметим, что при рассмотрении процессов в преобразователе напряжения несинусоидальные токи в его обмотках заменяются так называемой эквивалентной синусоидой — синусоидальным током, эквивалентным по действующему значению несинусоидальному. Это дает возможность применять к исследованиям и расчетам преобразователь напряжения теорию синусоидальных токов. Таким образом, преобразователь напряжения преобразует подведенное к нему напряжение в соответствии с соотношением числа витков его обмоток. Идеализированный преобразователь напряжения передает форму преобразуемого переменного напряжения без искажения. Получается векторная диаграмма идеального трансформатора.

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ПРЕОБРАЗОВАТЕЛЯ НАПРЕЖЕНИЯ

В отличие от электрических машин, преобразователь напряжения не имеет движущихся частей, поэтому он не имеет и механических потерь при работе. К потерям, имеющим место при работе преобразователя напряжения, относятся потери на гистерезисе (в результате постоянного циклического перемагничивания сердечника), на вихревые токи и на нагревание проводов обмоток. Других потерь в преобразователе напряжения практически нет. Коэффициент полезного действия преобразователь напряжения — это отношение отдаваемой активной мощности к потребляемой. Таким образом, для практического определения КПД преобразователь напряжения при номинальной нагрузке необходимо измерить мощности в первичной и вторичной обмотках. Это измерение можно значительно упростить, включив во вторичную обмотку активную нагрузку. Тогда поток рассеяния невелик и мощность Р2 может быть вычислена по показаниям амперметра и вольтметра, включенным во вторичную цепь. Такой метод определения КПД получил название метода непосредственных измерений. Этот метод весьма прост, но имеет два существенных недостатка: мала точность и он неэкономичен. Малая точность обусловлена тем, что КПД трансформаторов очень высок (до 99% и выше) и в некоторых случаях (особенно у преобразователя напряжения большой мощности) мощности Р2 и Р1 мало отличаются, поэтому незначительные ошибки в показаниях приборов повлекут за собой значительные искажения результата вычисления КПД. Неэкономичность этого способа состоит в большом расходе электроэнергии за время испытания, так как трансформаторы приходится нагружать до номинальных мощностей. Поэтому метод непосредственных измерений не нашел промышленного применения, но может быть использован для преобразователя напряжения малой мощности с небольшим КПД. На практике КПД преобразователя напряжения определяют косвенным методом, путем раздельного определения потерь, исходя из того, что КПД трансформатора можно представить так: η=Р2/P2+Pст+Рмгде Рст — потери в стали (в сердечнике) и Рм — потери в меди (в обмотках) измеряют в опытах холостого хода и короткого замыкания соответственно. Для определения потерь преобразователя напряжения обычно пользуются двумя опытами - опытом холостого хода и опытом короткого замыкания. В опыте холостого хода, в котором на первичную обмотку I подают номинальное напряжение, а вторичную II оставляют разомкнутой, определяют потери в стали преобразователя напряжения, потери на гистерезис и на вихревые токи. Эти потери зависят от частоты тока и от значения магнитного потока. Так как частота тока постоянна, а магнитный поток при номинальном напряжении на первичной обмотке также практически постоянен, то независимо от того, нагружен преобразователь напряжения или нет, потери в стали — для него величина постоянная. Таким образом, можно считать, что в холостом режиме энергия, потребляемая преобразователем напряжения из сети, расходуется только на потери в стали, поэтому мощность этих потерь измеряют ваттметром, включенным в первичную цепь. Правда, при этом не учитываются потери нагревания провода первичной обмотки током холостого хода. Но этот ток незначителен и потери от него также незначительны. В этом опыте определяется также коэффициент трансформации k и ток холостого хода. Если вторичную обмотку преобразователь напряжения замкнуть накоротко, а на первичную обмотку подать такое пониженное напряжение (в школьной практике, например, от Рмш), при котором токи в обмотках не превышают их номинальных значений, то энергия, потребляемая трансформатором из сети, расходуется в основном на тепловые потери в проводах обмоток трансформатора. В самом деле, при короткозамкнутой вторичной обмотке к первичной подводится пониженное напряжение, поэтому магнитный поток очень мал и потери в стали, зависящие от значения магнитного потока, также малы. Этот опыт называют опытом короткого замыкания. Следовательно, ваттметр, включенный в первичную цепь трансформатора в опыте короткого замыкания, покажет мощность, соответствующую потерям в меди.

Повышающий преобразователь напряжения.

Данный преобразователь предназначен для преобразования низковольтного постоянного напряжения от аккумуляторных батарей в высоковольтное напряжение. Именно это напряжение является конечным результатом разработанного и изготовленного устройства.

Цель работы: разработать и изготовить преобразователь для энергосберегающих ламп напряжением ~220 В, мощностью до 25 Вт, работающий от аккумулятора = 6 В с техническими параметрами:

1. Напряжение аккумулятора =6-7 В

2. Потребляемый ток от аккумулятора (в зависимости от мощности лампы) - до 5А

3. Выходное напряжение ~220 В.

4. Частота выходного напряжения 50-60 Гц.

Задачи:

1. Разработать и изготовить преобразователь с помощью симметричного генератора-мультивибратора.

2. Применить обычные готовые трансформаторы от бытовой радиоаппаратуры.

Гипотеза:

А можно ли применить модель повышающего трансформатора в устройство дополнительного освещения?

Методы:

• Эксперимент и наблюдение

• Сборка устройства по схеме, а также теоретический анализ научной литературы по данной проблеме.

Обычно преобразователь напряжения изготавливается по схеме блокинг-генератора с положительной трансформаторной обратной связью, с помощью которой и вырабатываются электрические импульсы через интервалы времени.

Однако блокинг-генератор при применении в преобразователе имеет недостатки:

1. Блокинг-генератор вырабатывает прямоугольные импульсы и получить «модернизированную синусоиду» вторичного высоковольтного напряжения, близкой к сетевой, довольно трудно.

2. Необходим специально изготовленный импульсный трансформатор.

Разработаем принципиальную электрическую схему, рис. 1. Мультивибратор выполним на транзисторах VT1-VT4. Для получения большей мощности и КПД соединим транзисторы по схеме составного транзистора. Время зарядной цепочкой являются резисторы R3, R4 и конденсаторы С1, С2, которые и задают частоту генерации мультивибратора. В качестве импульсного трансформатора Т1 используем готовый трансформатор от бытовой радиоаппаратуры (магнитофона, усилителя и т.д.) с первичным напряжением ~220 В и двумя вторичными напряжениями по ~6-9 В. Вторичные обмотки Т1 (II, III) соединяются последовательно ( можно применить трансформатор с вторичной обмоткой со средней точкой). Диоды VD1, VD2 защищают мощные транзисторы VT3, VT4 от возможных обратных импульсов при переходных процессах генерации. В схему введены конденсаторы фильтра С3, С4. Включается преобразователь с помощью тумблера SA1. По питанию в схему введен предохранитель FU1.

Конструкция.

Конструктивно преобразователь выполнен в виде стенда, фото 1.

Данный разработанный повышающий преобразователь напряжения, как рационализаторское предложение, внедрен в практическую научно-исследовательскую работу «Устройство аварийного освещения» Автор: Нагорная А. И., обучающаяся в Детском оздоровительно- образовательном центре г. Ельца, объединение: радиоконструирование и МБОУ Гимназия №11, 11 класс.

Преобразователь входит в общую конструкцию и изготовлен в виде стенда - наглядного работающего пособия для радиотехнических средних и высших учебных заведений, фото 2,3.

Фото 1.

Фото 2.

Фото 3.

Порядок работы

  1. Поставить тумблеры в положение «Сеть», «Заряд аккумулятора».

  2. Включить вилку в сеть переменного тока, загорается лампа.

  3. Переключить первый тумблер в положение «Вкл. преобразователь».

  4. Переключить второй тумблер в положение «Преобразователь», лампа будет работать от преобразователя.

  5. Выключить вилку из сети. Лампа продолжит работу.

  6. Поставить первый тумблер в положение «Сеть», второй – «Заряд аккумулятор» - исходное состояние.

Вывод:

Работа по разработанной схеме преобразователя содержит новизну и преимущество:

1. Вместо обычной схемы блокинг-генератора в преобразователе применена схема мощного мультивибратора, что позволило получить синусоиду высокого напряжения, близкую к сетевой, а, следовательно, увеличить КПД устройства (графики рис. 2, рис. 3)

2. В качестве импульсного трансформатора используется стандартный.

3. Данный разработанный повышающий преобразователь напряжения, как рационализаторское предложение, внедрен в практическую научно-исследовательскую работу «Устройство аварийного освещения» Автор: Нагорная А. И., обучающаяся в Детском оздоровительно- образовательном центре г. Ельца, объединение: радиоконструирование и МБОУ Гимназия №11, 11 класс.

Литература

  1. Ишлинский А.Ю. «Новый политехнический словарь», издательство: М.: Большая Российская энциклопедия.

  2. Кизлюк А.И. «Справочник по устройству и ремонту телефонных аппаратов зарубежного и отечественного производства (Глава: диоды и транзисторы)», издательство: Библион.

  3. Белкин В.Г., Бондаренко В.К. «Справочник радиолюбителя-конструктора», издательство: Москва, «Радио и связь»

Просмотров работы: 907

Руководство по проектированию цепей для преобразователей постоянного / постоянного тока (1/10)

Что такое преобразователь постоянного тока в постоянный?

В этом руководстве содержатся советы по проектированию цепей преобразователей постоянного тока в постоянный. Как спроектировать схемы преобразователя постоянного тока в постоянный, которые удовлетворяют требуемым спецификациям при различных ограничениях, описано с использованием как можно большего количества конкретных примеров.

Свойства цепей преобразователя постоянного / постоянного тока (такие как КПД, пульсации и переходная характеристика нагрузки) могут быть изменены с помощью их внешних частей.Оптимальные внешние части обычно зависят от условий эксплуатации (входных / выходных характеристик). Цепь источника питания часто используется как часть цепей коммерчески доступных продуктов и должна быть спроектирована таким образом, чтобы удовлетворять ограничениям, таким как размер и стоимость, а также требуемым электрическим характеристикам. Обычно стандартные схемы, перечисленные в каталогах, были разработаны путем выбора таких деталей, которые могут обеспечить приемлемые свойства в стандартных условиях эксплуатации.Эти детали не обязательно оптимальны для индивидуальных условий эксплуатации. Следовательно, при разработке отдельных продуктов стандартные схемы должны быть изменены в соответствии с их индивидуальными техническими требованиями (такими как эффективность, стоимость, монтажное пространство и т. Д.). Разработка схемы, удовлетворяющей требованиям спецификации, обычно требует большого опыта и знаний. В этом руководстве с использованием конкретных данных описано, какие части следует изменить и как их изменить для выполнения требуемых операций без специальных знаний и опыта.Вы сможете быстро и успешно управлять схемами преобразователя, не выполняя сложных расчетов схем. Вы можете проверить свой проект либо путем тщательного расчета позже самостоятельно, либо с помощью специалистов, обладающих знаниями и опытом, если вы чувствуете себя неуверенно.

Типы и характеристики DC / DC преобразователей

Преобразователи постоянного тока в постоянный ток

доступны с двумя типами схем:

  1. Неизолированные типы:
    • Базовый (одна катушка) тип
    • Емкостная муфта (двухкатушечная) типа ―― SEPIC, Zeta и др.
    • Нагнетательный насос (без переключаемого конденсатора / катушки) тип
  2. Изолированные типы:
    • Типы трансформаторной муфты―― Передний трансформатор типа
    • Типы трансформаторной муфты ―― Обратный трансформатор типа

Характеристики отдельных типов приведены в таблице 1.

Таблица 1. Характеристики цепей преобразователя постоянного тока в постоянный
Тип цепи №деталей
(Монтажная площадка)
Стоимость Выходная мощность Пульсация
Неизолированный Базовый Малый Низкий Высокая Малый
SEPIC, Zeta Средний Средний Средний Средний
Нагнетательный насос Малый Средний Малый Средний
Изолированный Трансформатор передний Большой Высокая Высокая Средний
Обратный трансформатор Средний Средний Средний Высокая

В схеме базового типа работа ограничивается либо повышением, либо понижением, чтобы минимизировать количество деталей, а входная и выходная стороны не изолированы.На рисунке 1 показана повышающая схема, а на рисунке 2 - понижающая. Эти схемы обеспечивают такие преимущества, как небольшой размер, низкая стоимость и небольшая пульсация, и спрос на них растет в соответствии с потребностями в уменьшении размеров оборудования.

Рисунок 1: Повышающая схема

Рисунок 2: Понижающая схема

С SEPIC и Zeta конденсатор вставляется между V IN и V OUT повышающей цепи и понижающей схемой основного типа, и добавляется одна катушка.Они могут быть сконфигурированы как повышающие или понижающие преобразователи постоянного / постоянного тока с использованием повышающей ИС контроллера постоянного тока и понижающего контроллера постоянного тока, соответственно. Однако, поскольку некоторые ИС контроллеров постоянного / постоянного тока не предполагается использовать с этими типами цепей, убедитесь, что ваши ИС контроллеров постоянного / постоянного тока могут использоваться с этими типами цепей. Конденсаторный тип связи с двумя катушками имеет преимущество, позволяющее обеспечить изоляцию между V IN и V OUT . Однако увеличенные катушки и конденсаторы снизят эффективность.В частности, во время понижения эффективность существенно снижается, обычно примерно до 70-80%.

Тип нагнетательного насоса не требует змеевика, что позволяет минимизировать площадь и высоту установки. С другой стороны, этот тип не обеспечивает высокую эффективность для приложений, которым требуется широкий спектр выходных мощностей или больших токов, и ограничивается приложениями для управления белыми светодиодами или для питания ЖК-дисплеев.

Цепь изолированного типа также известна как первичный источник питания (основной источник питания).Этот тип широко используется для преобразователей переменного тока в постоянный, которые генерируют мощность постоянного тока в основном из имеющегося в продаже источника переменного тока (от 100 В до 240 В), или для приложений, в которых требуется изоляция между входной и выходной сторонами для устранения шумов. В этом типе входная и выходная стороны разделены с помощью трансформатора, а повышением, понижением или реверсом можно управлять, изменяя коэффициент трансформации трансформатора и полярность диода. Таким образом, вы можете отключить множество источников питания из одной цепи питания.Если используется обратный трансформатор, схема может состоять из относительно небольшого количества частей и может использоваться в качестве цепи вторичного источника питания (местного источника питания). Однако обратный трансформатор требует наличия пустот, чтобы предотвратить магнитное насыщение сердечника, увеличивая его размеры. Если используется прямой трансформатор, можно легко найти большой источник питания. Эта схема, однако, требует схемы сброса на первичной стороне, чтобы предотвратить намагничивание сердечника, увеличивая количество частей.Кроме того, стороны входа и выхода IC контроллера должны быть заземлены отдельно.

Основные принципы работы преобразователей постоянного тока в постоянный

Принципы работы повышения и понижения в цепях преобразователя постоянного / постоянного тока будут описаны с использованием самого основного типа. Схемы других типов или схемы, использующие катушки, могут считаться составленными из комбинации повышающей схемы и понижающей схемы или их прикладных схем.

На рисунках 3 и 4 показаны операции повышающей схемы.На рисунке 3 показан ток при включении полевого транзистора. Пунктирная линия показывает небольшой ток утечки, который снижает эффективность при малой нагрузке. Электрическая энергия накапливается в L, пока полевой транзистор включен. На рисунке 4 показан ток при выключенном полевом транзисторе. Когда полевой транзистор выключен, L пытается сохранить последнее значение тока, а левый край катушки принудительно фиксируется на V IN для подачи питания для увеличения напряжения до V OUT для работы в режиме повышения.Следовательно, если полевой транзистор включен дольше, в L накапливается гораздо больший электрический ток, что позволяет получить большую мощность. Однако, если полевой транзистор включен слишком долго, время подачи питания на выходную сторону становится слишком коротким, и потери в течение этого времени увеличиваются, что снижает эффективность преобразования. Следовательно, значение максимальной нагрузки (отношение времени включения / выключения) обычно определяется таким образом, чтобы поддерживать соответствующее значение.

В повышающем режиме токи, показанные на рисунках 3 и 4, повторяются:

Рисунок 3: Ток при включении полевого транзистора в повышающей цепи

Рисунок 4: Ток при отключении полевого транзистора в повышающей цепи

На рисунках 5 и 6 показаны операции понижающей схемы.На рисунке 5 показан ток при включении полевого транзистора. Пунктирная линия показывает небольшой ток утечки, который ухудшит эффективность в условиях малой нагрузки. Когда полевой транзистор включен, электрическая энергия накапливается в L и подается на выходную сторону. На рисунке 6 показан ток, когда полевой транзистор выключен. Когда полевой транзистор выключен, L пытается сохранить последнее текущее значение и включает SBD. В это время напряжение на левом крае катушки принудительно падает ниже 0 В, уменьшая напряжение на V OUT .Следовательно, если полевой транзистор включен дольше, в L накапливается гораздо больший электрический ток, что позволяет получить большую мощность. С понижающей схемой, когда полевой транзистор включен, питание может подаваться на выходную сторону, и нет необходимости определять максимальную нагрузку. Следовательно, если входное напряжение ниже, чем выходное напряжение, полевой транзистор остается включенным. Однако, поскольку операция повышения отключена, выходное напряжение также снижается до уровня входного напряжения или ниже.

В режиме понижения токи, показанные на рисунках 5 и 6, повторяются:

Рисунок 5: Ток при включении полевого транзистора в понижающей цепи

Рисунок 6: Ток при отключении полевого транзистора в понижающей цепи

4 критических момента при проектировании схем преобразователя постоянного тока в постоянный

Среди технических требований для цепей преобразователя постоянного / постоянного тока критическими считаются следующие:

  1. Стабильная работа (не может быть нарушена из-за сбоя в работе, такого как ненормальное переключение, перегорание или перенапряжение)
  2. Высокая эффективность
  3. Малая пульсация на выходе
  4. Хорошая реакция на переходные процессы при нагрузке

Эти свойства можно до некоторой степени улучшить, изменив ИС преобразователя постоянного тока в постоянный и внешние детали.Вес этих четырех свойств зависит от конкретного приложения. Далее рассмотрим, как выбирать отдельные детали для улучшения этих свойств.

Следующая страница

Выбор частоты коммутации DC / DC преобразователя

Как успешно применять повышающие (повышающие) регуляторы постоянного тока

Питание портативных электронных устройств, таких как смартфоны, системы GPS-навигации и планшеты, может поступать от низковольтных солнечных панелей, батарей или переменного тока. источники питания постоянного тока.Системы с батарейным питанием часто устанавливают ячейки последовательно для достижения более высоких напряжений, но это не всегда возможно из-за нехватки места. Импульсные преобразователи используют магнитное поле катушки индуктивности, чтобы поочередно накапливать энергию и передавать ее нагрузке с другим напряжением. С низкими потерями они являются хорошим выбором для высокой эффективности. Конденсаторы, подключенные к выходу преобразователя, уменьшают пульсации выходного напряжения. Преобразователи Boost или повышающие , о которых здесь говорится, обеспечивают более высокое напряжение; Преобразователи buck или понижающие преобразователи , описанные в предыдущей статье 1 , обеспечивают более низкое выходное напряжение.Переключающие преобразователи, которые включают в себя внутренние полевые транзисторы в качестве переключателей, называются переключающими регуляторами, 2 , в то время как устройства, требующие внешних полевых транзисторов, называются переключающими контроллерами. 3

На рисунке 1 показана типичная система с низким энергопотреблением, питающаяся от двух последовательно соединенных батареек AA. Полезный выход батареи варьируется от 1,8 В до 3,4 В, тогда как для работы ИС требуется 1,8 В и 5,0 В. Повышающие преобразователи, которые могут повышать напряжение без увеличения количества ячеек, питают WLED-подсветку, микро-жесткие диски, аудио и периферийные устройства USB, а понижающий преобразователь питает микропроцессор, память и дисплей.

Рисунок 1. Типичная портативная система малой мощности.

Способность катушки индуктивности сопротивляться изменениям тока позволяет использовать функцию усиления. При зарядке индуктор действует как нагрузка и накапливает энергию; при разряде действует как источник энергии. Напряжение, возникающее во время фазы разряда, связано со скоростью изменения тока, а не с исходным зарядным напряжением, что позволяет использовать разные уровни входного и выходного напряжения.

Регуляторы

Boost состоят из двух переключателей, двух конденсаторов и катушки индуктивности, как показано на рисунке 2.Неперекрывающиеся приводы переключателей обеспечивают одновременное включение только одного переключателя, чтобы избежать нежелательного сквозного тока. На этапе 1 ( t ON ) переключатель B разомкнут, а переключатель A замкнут. Индуктор подключен к земле, поэтому ток течет от V IN к земле. Ток увеличивается из-за положительного напряжения на катушке индуктивности, а энергия накапливается в катушке индуктивности. На этапе 2 ( t OFF ) переключатель A разомкнут, а переключатель B замкнут. Индуктор подключен к нагрузке, поэтому ток течет от В, , В, , к нагрузке.Ток уменьшается из-за отрицательного напряжения на катушке индуктивности, и энергия, накопленная в катушке индуктивности, разряжается в нагрузку.

Рис. 2. Топология понижающего преобразователя и рабочие формы сигналов.

Обратите внимание, что работа импульсного регулятора может быть непрерывной или прерывистой. При работе в режиме непрерывной проводимости (CCM) ток индуктора никогда не падает до нуля; при работе в режиме прерывистой проводимости (DCM) ток индуктора может упасть до нуля.Пульсация тока , показанная как Δ I L на рисунке 2, рассчитывается с использованием Δ I L = ( V IN × t ON ) / L . Средний ток катушки индуктивности течет в нагрузку, а ток пульсации течет в выходной конденсатор.

Рис. 3. Повышающий регулятор объединяет в себе генератор, контур управления ШИМ и переключающие полевые транзисторы. Регуляторы

, которые используют диод Шоттки вместо переключателя B, определены как асинхронный (или несинхронный), в то время как регуляторы, которые используют полевой транзистор в качестве переключателя B, определены как синхронный .На рисунке 3 переключатели A и B были реализованы с внутренним полевым транзистором и внешним диодом Шоттки, соответственно, для создания асинхронного повышающего регулятора. Для маломощных приложений, требующих изоляции нагрузки и низкого тока отключения, можно добавить внешние полевые транзисторы, как показано на рисунке 4. Если на контакте EN устройства ниже 0,3 В, регулятор отключается и полностью отключается вход от выхода.

Рисунок 4. Типовая схема приложений ADP1612 / ADP1613.

Современные маломощные синхронные понижающие стабилизаторы используют широтно-импульсную модуляцию (ШИМ) в качестве основного режима работы.ШИМ поддерживает постоянную частоту и изменяет ширину импульса ( t ON ) для регулировки выходного напряжения. Средняя передаваемая мощность пропорциональна рабочему циклу D, что делает это эффективным способом подачи питания на нагрузку.

В качестве примера для желаемого выходного напряжения 15 В и доступного входного напряжения 5 В

D = (15-5) / 15 = 0,67 или 67%.

Энергия сохраняется, поэтому входная мощность должна равняться мощности, подаваемой на нагрузку, за вычетом любых потерь.Предполагая очень эффективное преобразование, небольшую потерю мощности можно не учитывать при основных расчетах мощности. Таким образом, входной ток может быть приблизительно равен

.

Например, если ток нагрузки составляет 300 мА при 15 В, I IN = 900 мА при 5 В - в три раза больше выходного тока. Следовательно, доступный ток нагрузки уменьшается по мере увеличения напряжения наддува.

В повышающих преобразователях

для регулирования выбранного выходного напряжения используется обратная связь по напряжению или по току; контур управления позволяет выходу поддерживать регулирование в ответ на изменения нагрузки.Регуляторы повышения мощности малой мощности обычно работают в диапазоне от 600 кГц до 2 МГц. Более высокие частоты переключения позволяют использовать катушки индуктивности меньшего размера, но эффективность падает примерно на 2% с каждым удвоением частоты переключения. В повышающих преобразователях ADP1612 и ADP1613 (см. Приложение) частота переключения выбирается по выводам: 650 кГц для максимальной эффективности или 1,3 МГц для самых маленьких внешних компонентов. Подключите FREQ к GND для работы на 650 кГц или к VIN для работы на 1,3 МГц.

Катушка индуктивности, ключевой компонент регулятора наддува, накапливает энергию в течение времени on переключателя питания и передает эту энергию на выход через выходной выпрямитель в течение времени off .Чтобы сбалансировать компромисс между низкой пульсацией тока катушки индуктивности и высокой эффективностью, в спецификации ADP1612 / ADP1613 рекомендуются значения индуктивности в диапазоне от 4,7 мкГн до 22 мкГн. Как правило, индуктор с более низким значением имеет более высокий ток насыщения и более низкое последовательное сопротивление для данного физического размера, но более низкая индуктивность приводит к более высоким пиковым токам, которые могут привести к снижению эффективности, более высокой пульсации и увеличению шума. Часто лучше запускать наддув в режиме прерывистой проводимости, чтобы уменьшить размер индуктора и улучшить стабильность.Пиковый ток индуктора (максимальный входной ток плюс половина пульсационного тока индуктора) должен быть ниже номинального тока насыщения индуктора; а максимальный входной постоянный ток регулятора должен быть меньше действующего значения номинального тока катушки индуктивности.

Key Boost Regulator Технические характеристики и определения

Диапазон входного напряжения : диапазон входного напряжения повышающего преобразователя определяет наименьшее используемое входное напряжение питания. В технических характеристиках может быть указан широкий диапазон входного напряжения, но входное напряжение должно быть ниже V OUT для эффективной работы.

Ток заземления или покоя : постоянный ток смещения не подается на нагрузку ( I q ). Чем ниже I q , тем выше эффективность, но I q можно указать при многих условиях, включая выключение, нулевую нагрузку, работу PFM или работу PWM, поэтому лучше смотреть на работу эффективность при определенных рабочих напряжениях и токах нагрузки, чтобы определить лучший регулятор наддува для применения.

Ток выключения : Входной ток, потребляемый, когда разрешающий контакт установлен в положение ВЫКЛ. Низкий I q важен для длительного времени ожидания, когда устройство с батарейным питанием находится в спящем режиме.

Switch Duty Cycle : Рабочий цикл должен быть ниже максимального рабочего цикла, иначе выходное напряжение не будет регулироваться. Например, D = ( V OUT - V IN ) / V OUT .Для В ВХОД = 5 В и В ВХОД = 15 В, D = 67%. ADP1612 и ADP1613 имеют максимальный рабочий цикл 90%.

Диапазон выходного напряжения : Диапазон выходных напряжений, поддерживаемых устройством. Выходное напряжение повышающего преобразователя может быть фиксированным или регулируемым с использованием резисторов для установки желаемого выходного напряжения.

Предел тока : В повышающих преобразователях обычно указывается предел пикового тока, а не ток нагрузки.Обратите внимание, что чем больше разница между V IN и V OUT , тем ниже доступный ток нагрузки. Предел пикового тока, входное напряжение, выходное напряжение, частота переключения и значение индуктивности - все это устанавливает максимальный доступный выходной ток.

Регулировка линии : Регулировка линии - это изменение выходного напряжения, вызванное изменением входного напряжения.

Регулировка нагрузки : Регулировка нагрузки - это изменение выходного напряжения для изменения выходного тока.

Плавный пуск : для регуляторов повышения важно иметь функцию плавного пуска , которая регулирует выходное напряжение при запуске, чтобы предотвратить чрезмерные выбросы выходного напряжения при запуске. Плавный запуск некоторых повышающих преобразователей можно регулировать с помощью внешнего конденсатора. Когда конденсатор плавного пуска заряжается, он ограничивает допустимый пиковый ток. Благодаря регулируемому плавному запуску время запуска может быть изменено в соответствии с требованиями системы.

Тепловое отключение ( TSD ): если температура перехода поднимается выше указанного предела, цепь теплового отключения отключает регулятор. Постоянно высокие температуры перехода могут быть результатом сильноточной работы, плохого охлаждения печатной платы или высокой температуры окружающей среды. Схема защиты включает гистерезис, поэтому устройство не вернется к нормальной работе до тех пор, пока температура на кристалле не упадет ниже заданного предела после теплового отключения.

Блокировка пониженного напряжения ( UVLO ): Если входное напряжение ниже порога UVLO, ИС автоматически отключает выключатель питания и переходит в режим пониженного энергопотребления. Это предотвращает потенциально неустойчивую работу при низких входных напряжениях и предотвращает включение силового устройства, когда схема не может им управлять.

Заключение

Повышающие стабилизаторы

избавляют от беспокойства при переходе с преобразователя постоянного тока в постоянный за счет проверенной конструкции.Расчетные расчеты доступны в разделе «Приложения» спецификации, а средство проектирования ADIsimPower 4 упрощает задачу для конечного пользователя. За дополнительной информацией обращайтесь к разработчикам приложений Analog Devices или посетите EngineerZone на ez.analog.com за помощью. Руководства по выбору буст-регуляторов, спецификации и примечания по применению от Analog Devices можно найти на сайте www.analog.com/power.

ПРИЛОЖЕНИЕ

Повышающие импульсные преобразователи постоянного тока
работают на частотах 650/1300 кГц

Повышающие преобразователи ADP1612 и ADP1613 способны подавать более 150 мА при напряжении до 20 В при работе, соответственно, от одной единицы.Питание от 8 до 5,5 В и от 2,5 до 5,5 В. При интеграции силового переключателя 1,4-A / 2,0-A, 0,13 Ом с токовым режимом с широтно-импульсной модуляцией их выход изменяется менее чем на 1% при изменении входного напряжения, тока нагрузки и температуры. Рабочая частота выбирается выводом и может быть оптимизирована для достижения высокого КПД или минимального размера внешних компонентов: при 650 кГц они обеспечивают КПД 90%; на частоте 1,3 МГц их схемная реализация занимает наименьшее пространство, что делает их идеальными для использования в условиях ограниченного пространства портативных устройств и жидкокристаллических дисплеев.Регулируемая схема плавного пуска предотвращает пусковые токи, обеспечивая безопасные и предсказуемые условия пуска. ADP1612 и ADP1613 потребляют 2,2 мА в состоянии переключения, 700 мкА в состоянии без переключения и 10 нА в режиме отключения , . Доступные в 8-выводных корпусах MSOP, они рассчитаны на температуру от –40 ° C до + 85 ° C и стоят 1,50 долл. США / 1,20 долл. США за 1000 шт.

Рисунок A. Функциональная блок-схема ADP1612 / ADP1613.

Рекомендации

() Информацию обо всех компонентах ADI можно найти на сайте www.analog.com. )

1 http://www.analog.com/en/analog-dialogue/articles/applying-dc-to-dc-step-down-buck-regulators.html.

2 www.analog.com/en/power-management/switching-regulators-integrated-fet-switches/products/index.html.

3 www.analog.com/en/power-management/switching-controllers-external-switches/products/index.html.

4 www.analog.com/en/design-center/interactive-design-tools/adisimpower.html

Ленк, Джон Д. Упрощенная конструкция импульсных источников питания . Elsevier / Newnes. 1996.

Мараско, К. «Как успешно применять понижающие (понижающие) регуляторы постоянного тока». Аналоговый диалог . Выпуск 45. Июнь 2011.

.

Мараско, К. «Как успешно применять регуляторы с малым выпадением». Аналоговый диалог . Том 43, Номер 3. 2009 г.

Повышающий трансформатор с 12 на 24 В постоянного тока

Отличные новости !!! Вы находитесь в нужном месте для повышающего трансформатора постоянного тока с 12 В на 24 В.К настоящему времени вы уже знаете, что все, что вы ищете, вы обязательно найдете на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы найдете новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как этот лучший повышающий трансформатор с 12 В на 24 В станет одним из самых востребованных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели повышающий трансформатор с 12 В на 24 В постоянного тока на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в повышающем трансформаторе постоянного тока с 12 В до 24 В и думаете о выборе аналогичного продукта, AliExpress - отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

И, если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести step up transformer 12v to 24v dc по самой выгодной цене.

Мы всегда в курсе последних технологий, новейших тенденций и самых обсуждаемых лейблов.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

(PDF) Высокоэффективные повышающие преобразователи постоянного тока в постоянный

А. Томашук и А. Крупа

9

ПРИЛОЖЕНИЕ A Символы

n - коэффициент трансформации трансформатора или спаренного индуктора

D - рабочий цикл

- функция, за которой в скобках указаны ее параметры.

r

f

- резонансная частота

с

f

- частота переключения

o

V

- выходное напряжение DC

o

I

- выходной ток I

- выходной ток I

В

- входное напряжение пост. системное напряжение шины

СПРАВОЧНАЯ ИНФОРМАЦИЯ

[1] F.Блаабьерг, Ф. Иов, Т. Керекес, Р. Теодореску, «Тенденции в

силовой электронике и управлении системами возобновляемой энергии»,

14-я Международная конференция по силовой электронике и управлению движением

(EPE / PEMC), IEEE K- 1 по К-19 (2010 г.).

[2] EPIA, «Перспективы мирового рынка фотоэлектрической энергии до 2013 года»,

Европейская ассоциация фотоэлектрической промышленности, (2010).

[3] Стандарт IEEE для соединения распределенных ресурсов с

Electric Power Systems IEEE Std 1547, (2003).

[4] J.H.R. Энслин, «Роль силовой электроники и накопителей в повышении уровня проникновения возобновляемых источников энергии в

», Power and Energy

Общее собрание общества - Преобразование и поставка электроэнергии

Энергия в 21 веке, IEEE 1-2 (2008) .

[5] М. Кале, В.Г. Агелидис, «Многоуровневые преобразователи для однофазных фотоэлектрических систем

, подключенных к сети - обзор», Международный симпозиум

по промышленной электронике (ISIE), IEEE 224-229 (1996).

[6] К. Чуньлю, В. Чэнхуа, Х. Фэн, «Исследование повышающего преобразователя

с чередованием и четырьмя повышающими ячейками», Азия

Тихоокеанская конференция по последипломным исследованиям в области микроэлектроники и

Электроника (PrimeAsia ), IEEE 396-399 (2009).

[7] S.-H. Парк, С.-Р. Парк, Ж.-С. Ю., Ю.-К. Юнг, Ч.-Й. Вон,

«Анализ и проектирование повышающего преобразователя с плавным переключением и вспомогательной резонансной схемой HI-Bridge

», Transaction on Power

Electronics, IEEE 2142-2149 (2010).

[8] E.S. да Силва, Л. душ Рейс Барбоса, Дж. Б. Виейра-младший, L.C. de Freitas,

V.J. Фариас, «Улучшенный повышающий преобразователь

с одной коммутацией и мягким переключением ШИМ с низкими напряжениями и токами», Transactions on

Industrial Electronics, IEEE 1174-1179 (2001).

[9] R. J. Wai, R.Y. Дуан, «Высокоэффективный преобразователь постоянного тока в постоянный ток с высоким коэффициентом усиления

» IEE Proceedings - Electric Power Applications,

IEEE 793-802 (2005).

[10] W. Yu, C. Hutchens, J.-S. Лай, Дж. Чжан, Г. Лиси, А. Джаббари, Г.

Смит, Т. Хегарти, «Высокоэффективный преобразователь с подкачкой заряда и соединенный индуктор

для фотоэлектрического модуля переменного тока с широким входом

», Конгресс по преобразованию энергии and Exposition (ECCE),

IEEE 3895-3900 (2009).

[11] W. Li, Y. Zhao, Y. Deng, X. He, «Interleaved Converter With

Voltage Multiplier Cell for High Step-Up and High Efficiency

Conversion», Транзакции по силовой электронике, IEEE 2397-2408

(2010).

[12] W. Li, X. Li; Y. Deng; Дж. Лю; X. He, «Обзор изолированных повышающих преобразователей постоянного тока в постоянный ток, отличных от

, в приложениях для возобновляемых источников энергии

», 24-я ежегодная конференция по прикладной силовой электронике

и выставка (APEC), IEEE 364-369 (2009) .

[13] W. Qian, J.G. Cintrón-Rivera, F.Z. Peng, D. Cao,

«Многоуровневый преобразователь постоянного тока в постоянный с высоким коэффициентом усиления и уменьшенным числом компонентов

», 26-я ежегодная конференция и выставка по электронике Applied Power

(APEC), IEEE 1146-1152

(2011).

[14] Т. Эсрам, П. Л. Чепмен «Сравнение методов отслеживания точки максимальной мощности

на фотоэлектрических решетках», Транзакции по преобразованию энергии

, IEEE 439-449 (2007).

[15] Qun Zhao, F.C. Ли, «Высокоэффективные преобразователи постоянного тока в постоянный ток

с высоким коэффициентом увеличения», «Транзакции по силовой электронике», IEEE 65-73 (2003).

[16] И Чжао, В. Ли, Й. Дэн, Х. Хе, «Анализ, проектирование и эксперименты

изолированного повышающего преобразователя ZVT со связанными индукторами

», Транзакции по силовой электронике, IEEE 541- 550

(2011).

[17] Л. Гертмар П. Карлссон О. Семуэльссон, «О вводе постоянного тока в сети переменного тока

из распределенных генераторов», Европейская конференция по силовой электронике и приложениям

, IEEE (2005).

[18] К. Ли, П. Вольфс, «Обзор топологий однофазного фотоэлектрического преобразователя

с тремя различными конфигурациями звена постоянного тока

», Транзакции по силовой электронике IEEE

1320-1333 (2008) .

[19] Ж.-М. Квон Б.-Х. Квон К.-Х. Нам, «Высокоэффективный модуль -

интегрированная система фотоэлектрического кондиционирования» IET Journals

IEEE 410-420 (2009).

[20] М. Дельшад Х. Фарзанехфард, «Высокое повышающее нулевое напряжение

, коммутирующий преобразователь постоянного тока с изолированной широтно-импульсной модуляцией с питанием по току

» Журналы IET IEEE 316-322 (2008).

[21] А. Итохер, Т. Мейер, А. Нагель, «Новая концепция интегрируемого в панель инвертора

для фотоэлектрических систем, подключенных к сети»,

Международный симпозиум по промышленной электронике (ISIE), IEEE 827-

831 (1996).

[22] К. Ли, П. Вольфс «Анализ резонансного полумостового сдвоенного преобразователя

, работающего в непрерывном и прерывистом режимах» 33-я ежегодная конференция специалистов по силовой электронике

(PESC), IEEE

1313-1318 ( 2002).

[23] Д. Ли, Б. Лю, Б. Юань, Х. Ян, Дж. Дуань, Дж. Чжай «Высокий шаг -

Мультирезонансный преобразователь с повышающим током и выходным напряжением

Удвоитель» 26-е Конференция по прикладной силовой электронике и выставка

(APEC), IEEE (2011)

[24] B.Юань, X. Ян, Д. Ли, «Многорезонансный преобразователь с высокой эффективностью питания

для повышающего преобразования энергии в

возобновляемых источниках энергии», Конгресс по преобразованию энергии и выставка

(ECCE), IEEE 2637 -2641 (2010).

[25] CP Dick, FK Titiz, RW De Doncker, «A High-Efficient

LLCC Series-Parallel Resonant Converter», 25th Annual Applied

Power Electronics Conference and Exposition (APEC), IEEE 696-

701 (2010).

[26] В. Чой, С. Ким, С. Парк, К. Ким и Ю. Лим «Повышающий уровень

DC / DC преобразователь с высоким КПД для фотоэлектрического модуля

Integrated Converter Systems», 31st Международная

Телекоммуникационная энергетическая конференция (INTELEC), IEEE (2009).

[27] W. Li, W. Li, M. Ma, Y. Deng, X. He, «неизолированный повышающий преобразователь с высоким уровнем

со встроенным трансформатором, полученный из его изолированного аналога

» , 36-я ежегодная конференция IEEE Industrial

Electronics Society (IECON), IEEE 3173-3178 (2010).

[28] Ф. Блаабьерг, С. Б. Кьяер, Дж. К. Педерсен, «Обзор однофазных инверторов, подключенных к сети

для фотоэлектрических модулей»,

Transactions on Industry Applications, IEEE 1292-1306 (2005).

Энергия | Бесплатный полнотекстовый | Многоступенчатый DC-DC повышающий самобалансирующийся и безмагнитный преобразователь для фотоэлектрических систем: аппаратная реализация

1. Введение

Возобновляемые источники энергии становятся популярными и модными в связи с увеличением спроса и стоимости энергии.Правильное использование энергетических ресурсов - один из важнейших вопросов нынешнего века. Существуют различные возобновляемые источники энергии, включая солнечную, приливную, ветровую, био-, ядерную и геотермальную, с нулевыми выбросами загрязняющих веществ. Солнечная энергия - это бесплатный, неисчерпаемый источник энергии, который становится все более конкурентоспособным по сравнению с другими источниками энергии. Эта энергия используется с помощью массивов, состоящих из ряда солнечных панелей, соединенных последовательно [1,2,3]. В прошлом для минимизации соотношения затрат и эффективности применялись различные методы или структуры фотоэлектрических систем.В [4,5,6,7,8] структура фотоэлектрического центрального инвертора (PV-CIS) используется для подачи фотоэлектрической энергии в электрическую сеть. В PV-CIS PV-линии расположены параллельно и подключены к одному центральному инвертору, как показано на рисунке 1. Недостатками CIS являются: (i) требуется большое количество панелей, что увеличивает стоимость системы; (ii) необходимо большее количество кабелей постоянного тока с высоким номинальным напряжением; (iii) потери в линии; (iv) потеря мощности из-за несоответствия модуля; (v) используется обычное отслеживание точки максимальной мощности (MPPT); (vi) надежность системы зависит от одного инвертора.В [4,5,6,7,8] структура фотоэлектрического струнного инвертора (PV-SIS) используется для подачи фотоэлектрической энергии в электрическую сеть. В PV-SIS используются несколько фотоэлектрических линий, которые состоят из нескольких последовательно соединенных фотоэлектрических панелей, как показано на Рисунке 2. Все фотоэлектрические линии подключены к отдельным инверторам через преобразователь постоянного тока в постоянный, а выходы инвертора соединены между собой. параллельно и подавать в электрическую сеть. Недостатками системы PV-SIS являются: (i) требуется большое количество панелей для проектирования нескольких линий PV; (ii) для питания сети требуется большое количество преобразователей; (iii) стоимость высока из-за отдельной MPPT и сложной схемы управления, необходимой для синхронизации всех инверторов.В [4,5,6,7,8] обсуждается структура фотоэлектрического модуля переменного тока (PV-ACMS) для подачи фотоэлектрической энергии в электрическую сеть, и она обеспечивает жизнеспособное решение для преодоления недостатков PV-CIS и PV-SIS. . В PV-ACMS одна фотоэлектрическая панель подключается к электрической сети через инвертор, как показано на рисунке 3a. Недостатками PV-ACMS являются: (i) для этого требуется несколько модульных инверторов, что увеличивает стоимость системы; (ii) для каждой панели требуется отдельный MPPT; (iii) общая эффективность низкая.В [4,5,6,7,8] обсуждается структура фотоэлектрического многострунного инвертора (PV-MSIS) для преодоления недостатков структур PV-CIS, PV-SIS и PV-SIS. В PV-MSIS несколько фотоэлектрических панелей подключены к одному инвертору, подключенному через несколько преобразователей постоянного тока в постоянный, как показано на рисунке 3b. Эта структура сочетает в себе функции PV-SIS и PV-ACMS. Недостатком концепции PV-MSIS является: (i) требовалось несколько преобразователей постоянного тока в постоянный для передачи энергии на инвертор; (ii) высокая стоимость из-за большего количества преобразователей и отдельного MPPT.Выходной сигнал, получаемый от фотоэлектрического элемента / массива, обычно низкий, поэтому перед подачей этого напряжения на инвертор для практических целей его необходимо повысить с помощью обычного повышающего преобразователя постоянного тока [1,2,3,4,5, 6,7,8,9,10,11,12,13,14,15]. С увеличением рабочего цикла переключателя и сопротивления утечки индукторов производительность преобразователя ухудшается. Из-за этих практических проблем обычные преобразователи постоянного тока в постоянный не могут обеспечить приемлемые решения для приложений с повышающим напряжением [15].Теоретически, когда рабочий цикл приближается к 100%, с помощью обычного повышающего преобразователя достигается бесконечный коэффициент преобразования напряжения, но на практике сопротивление утечки индуктора ограничивает преобразование напряжения преобразователя [16], поэтому традиционные преобразователи не может использоваться, если требуемый коэффициент преобразования составляет четыре или более [16]. Более того, достижение высокого коэффициента преобразования за счет использования большого рабочего цикла ставит под угрозу использование высокой частоты для широтно-импульсной модуляции (ШИМ) из-за присущей полупроводниковым устройствам задержки переключения.К сожалению, большая реактивная сеть следует ограниченной частоте коммутации, которая используется для защиты от пульсации напряжения и тока [17]. Традиционный повышающий-понижающий преобразователь ненадежен из-за прерывистого входного тока, что приводит к низкому использованию входного источника [13,15]. Увеличивая частоту переключения преобразователя, можно преодолеть проблему сопротивления утечки для определенных значений пульсаций. Конечное время переключения в обычном силовом устройстве ограничивает частоту переключения, если коэффициент заполнения слишком велик или слишком мал, поэтому для устранения вышеуказанных проблем и одновременного получения необходимого высокого напряжения можно задействовать изолированные преобразователи.Со временем было предложено множество изолированных и неизолированных топологий преобразователей, в которых используются индукторы, связанные индукторы и трансформаторы [16,17,18,19,20,21,22,23,24,25,26,27]. Высокое напряжение, возникающее из-за индуктивности рассеяния трансформатора, приводит к коммутационным потерям и проблемам с электромагнитными помехами (EMI), что приводит к снижению эффективности обычных преобразователей. Преобразователи с жестким переключением неудобны для использования в приложениях с высоким напряжением из-за сложности схемы, более высокого напряжения на переключателе и повышенной стоимости преобразователя.Следовательно, для изолированных топологий размер, вес и потери силовых трансформаторов являются ограничивающими факторами. В последнее время появились различные комбинации связанных катушек индуктивности, умножителей напряжения или умножителей на переключаемых конденсаторах [23,24,25,26,27,28,29,30,31,32,33,34,35] вместе с переключаемым индуктором (SI), переключаемый конденсатор (SC), переключаемый индуктор с повышением напряжения (VLSI) и модифицированные принципы VLSI были использованы для выполнения необходимости [15,26]. На рис. 4a – c показаны новейшие индуктивные сети SI, VLSI и модифицированные VLSI.Для получения высокого коэффициента усиления вводится каскадный подход. Для разработки каскадного повышающего преобразователя (CBC) необходим ряд катушек индуктивности, что является наиболее сложной частью. Кроме того, потери и повышенная пульсация тока оказываются препятствием для достижения высокого коэффициента преобразования и повышения эффективности [36,37,38]. С целью получения высокого усиления по напряжению всего лишь с помощью одного переключателя был предложен квадратичный повышающий преобразователь (QBC), хотя в QBC требуются переключатели с более высоким номинальным напряжением с более высоким R DS-ON , поскольку напряжение поднятый на переключателе равен выходному напряжению [39,40,41].Многоуровневые преобразователи обеспечивают подходящее решение для преобразования энергии из-за низкого напряжения на каждом устройстве [42]. Высокое напряжение достигается многоуровневыми преобразователями постоянного тока с использованием конденсаторов и диодной схемы на выходе, а уровень выходного напряжения может быть увеличен без фактического нарушения схемы. Изменяя количество выходных уровней и рабочий цикл, можно изменять коэффициент усиления по напряжению многоуровневых преобразователей [43,44]. Для обычных многоуровневых преобразователей проектирование магнитных компонентов, таких как индукторы, является сложной задачей, которая также вызывает шум электромагнитного излучения.Помимо этих проблем, наличие катушек индуктивности и трансформаторов в силовой цепи ухудшает возможности интеграции и увеличивает стоимость, вес и размер преобразователей. Силовые цепи с коммутируемыми конденсаторами (SC) обеспечивают хорошую интегрируемость из-за их небольшого объема и веса, поскольку магнитные компоненты, такие как трансформаторы и катушки индуктивности, не требуются для проектирования преобразователя SC [33]. В этой статье новый магнитный компонент без компонентов (трансформатор) DC-DC преобразователь предлагается для преодоления недостатков PV-CIS, PV-SIS, PV-ACMS, PV-MSIS и рассмотренной выше топологии преобразователя.Предлагаемый преобразователь обеспечивает жизнеспособное решение для существующих фотоэлектрических прикладных систем, где напряжение необходимо повышать без магнитных компонентов перед передачей энергии на многоуровневый инвертор. Единственного предлагаемого преобразователя достаточно для передачи энергии многоуровневому инвертору, как показано на рисунке 5.

Предлагаемая фотоэлектрическая система (PV-система) состоит из фотоэлектрических модулей, предлагаемого преобразователя постоянного тока в постоянный, батареи и многоуровневого инвертора (MLI), который преобразует аккумулятор / предлагаемый преобразователь постоянного напряжения в постоянное напряжение переменного тока для питания нагрузок переменного тока / подачи в электрическую сеть.Некоторое количество энергии теряется при преобразовании фотоэлектрической энергии в электрическую. Максимальная выходная мощность фотоэлектрического устройства (произведение напряжения и тока) описывается точкой максимальной мощности (MPP), а также зависит от условий окружающей среды (обычно от температуры и условий освещения). Трекер максимальной мощности обязателен для обеспечения максимальной выходной мощности (P max ) солнечной фотоэлектрической установки. Устройство отслеживания точки максимальной мощности можно использовать для регулировки входного напряжения для использования максимальной выходной мощности фотоэлектрических элементов и последующего преобразования этой мощности для обеспечения меняющихся требований к напряжению.Когда фотоэлектрическое напряжение увеличивается, ток в конечном итоге уменьшается, а когда фотоэлектрический ток увеличивается, напряжение в конечном итоге уменьшается. В зависимости от таких параметров, как освещенность и температура, MPP кривой I-V фотоэлектрического модуля изменяется динамически. Следовательно, MPP должен быть обнаружен с помощью алгоритма отслеживания, поскольку он заранее не известен.

Для достижения максимальной передачи мощности от фотоэлектрического модуля к нагрузке необходимо согласовать сопротивление нагрузки R L с максимально возможным выходным сопротивлением фотоэлектрического модуля R PV (R mpp = V mpp / I мпп ).Характерные графики или кривые мощности-напряжения и тока-напряжения показаны на рисунке 6а. Выходная мощность фотоэлектрического модуля будет равна нулю, когда фотоэлектрический ток (I PV ) равен току короткого замыкания (I SC ) или фотоэлектрическое напряжение (V PV ) равно напряжению холостого хода (V OC ). Таким образом, можно отслеживать точку максимальной мощности (MPP) фотоэлектрического элемента, регулируя рабочее напряжение V PV . В [45] отслеживание точки максимальной мощности обсуждается для реконфигурируемого преобразователя с переключаемыми конденсаторами, а в [46] обсуждается алгоритм возмущения и наблюдения (P&O) для преобразователей постоянного тока, подключенных к фотоэлектрическим генераторам.Концепция управления мощностью многокаскадного преобразователя постоянного тока без магнитных компонентов поясняется на рис. 6b – f. Таким образом, для регулирования рабочего напряжения V PV , время включения конденсатора и количество каскадов (если структура реконфигурируется) являются двумя контролируемыми параметрами в предлагаемой системе, поэтому он заставляет контроллер заряда MPPT извлекать максимальную мощность. Фотоэлектрический модуль должен работать при напряжении, близком к точке максимальной мощности, что заставляет его потреблять максимальную доступную мощность от фотоэлектрического модуля.

Предлагаемый преобразователь также подходит для применения в цепи постоянного тока в системах постоянного и переменного тока, где балансировка напряжения конденсаторов является основной проблемой. Предлагаемый преобразователь также обеспечивает жизнеспособное решение для приложений с низким энергопотреблением, поскольку для проектирования предлагаемого преобразователя не требуются катушки индуктивности и трансформаторы.

4. Расчет конструкции конденсаторов предлагаемого преобразователя

Для объяснения расчетного расчета предлагаемого преобразователя рассматривается предлагаемый 1-ступенчатый преобразователь.Схема питания предлагаемого одноступенчатого преобразователя показана на рисунке 19а. Эквивалентная схема включенного и выключенного состояний предлагаемого одноступенчатого преобразователя изображена на рисунках 19b, c соответственно, где R D - прямое сопротивление диода, R S - прямое сопротивление переключателя, I Sb - это ток через переключатель S b , а I Sa - ток через переключатель S a . Первоначально напряжение на конденсаторе C 12 и C 11 равно нулю.Конденсатор C 12 заряжается через сопротивление R D и R S от напряжения питания V в , когда переключатель S b замкнут. Напряжение на C 12 не увеличивается до V в мгновенно, а растет экспоненциально, а не линейно.

Vin = C12d (vC12) dt (RD + RS) + vC12d (vC12) Vin − vC12 = dt (RD + RS) C12}

(16)

∫d (vC12) Vin − vC12 = ∫dt (RD + RS) C12log (Vin − VC12) = - t (RD + RS) C12 + K, K = logVinVC12 = Vin (1 − e − tT), T = ( RD + RS) C12}

(17)

iC12 = d (C12vC12) dt = C12d (vC12) dt

(18)

Вин = iC12 (RD + RS) + vC12

(19)

По аналогии:

iSb = Vin (RD + RS) e − tT

(20)

Конденсатор C 11 заряжается через сопротивление R D и R S от конденсатора C 12 напряжением, когда переключатель S a замкнут.Таким образом, когда переключатель S a замкнут, конденсаторы C , 11, и C , 12, заряжаются и разряжаются, соответственно.

VC12 = iC11 (RD + RS) + vC1VC12 = iC12 (RD + RS) + vC11}

(21)

VC12 = C11d (vC11) dt (RD + RS) + vC11d (vC11) VC12 − vC11 = dt (RD + RS) C11}

(22)

∫d (vC11) VC12 − vC11 = ∫dt (RD + RS) C11log (VC12 − VC11) = - t (RD + RS) C11 + K, K = logVC12VC11 = VC12 (1 − e − tT), T = ( RD + RS) C11}

(23)

По аналогии:

iSa = VC12 (RD + RS) e − tT

(24)

В установившемся режиме и при высокой частоте переключения напряжение на конденсаторе C 11 и C 12 в любой момент во время зарядки циклически изменяется, как указано в уравнениях (25) и (26), где VC'11 и VC'12 равны начальное напряжение конденсатора С 11 и С 12 .Если начальное напряжение хранения C 11 и C 12 положительное:

VC12 = (Vin − VC′12) (1 − e − tT) + VC′12VC11 = (VC12 − VC′11) (1 − e − tT) + VC′11}

(25)

Если начальное напряжение хранения C 11 и C 12 отрицательное:

VC12 = (Vin + VC′12) (1 − e − tT) −VC′12VC11 = (VC12 + VC′11) (1 − e − tT) −VC′11}

(26)

Время, необходимое конденсатору C 12 для достижения любого значения V C12 во время цикла зарядки, указано в уравнениях (27) и (28).

Когда начальное напряжение на конденсаторе положительное:

t = Tlog (Vin-VC′12Vin-VC12) = (RD + RS) C12log (Vin-VC′12Vin-VC12)

(27)

Когда начальное напряжение на конденсаторе отрицательное:

t = Tlog (Vin + VC′12Vin-VC12) = (RD + RS) C12log (Vin + VC′12Vin-VC12)

(28)

Время, необходимое конденсатору C 11 для достижения любого значения V C11 во время цикла зарядки, указано в уравнениях (29) и (30).

Когда начальное напряжение на конденсаторе положительное:

t = Tlog (VC12-VC′11VC12-VC11) = (RD + RS) C11log (VC12-VC′11VC12-VC11)

(29)

Когда начальное напряжение на конденсаторе отрицательное:

t = Tlog (VC12 + VC′11VC12-VC11) = (RD + RS) C11log (VC12 + VC′11VC12-VC11)

(30)

C12 = 12πfsXC12 = 12πfsVC12IC12 = IC122πfsVC12C11 == 12πfsXC11 = 12πfsVC11IC11 = IC112πfsVC11}

(31)

Напряжение и ток всех конденсаторов одинаковы в течение полного цикла переключения.Таким образом, одинаковые номиналы всех конденсаторов подходят для разработки предлагаемого преобразователя, номинальное напряжение которого превышает входное напряжение.

6. Результаты экспериментов и моделирования предлагаемого самобалансирующегося многокаскадного преобразователя постоянного тока без магнитных компонентов

В этом разделе обсуждаются результаты моделирования и экспериментальных результатов предлагаемого многокаскадного преобразователя постоянного тока без магнитных компонентов и самобалансировки. . Предлагаемый многоступенчатый преобразователь рассчитан на четыре ступени номинальной мощностью 60 Вт, частотой коммутации 100 кГц, выходным напряжением 100 В и напряжением питания 24 В.Переключатели S a (здесь S 1 ) и S b (здесь S 2 ) работают дополнительно с рабочим циклом 50%. Высокая частота переключения используется для уменьшения номинала конденсатора.

Форма выходного напряжения и тока с идеальными составляющими (падение напряжения на переключателе и диоде равно нулю) показаны на рисунке 21a. Замечено, что время установления выходного напряжения предлагаемого преобразователя с идеальными компонентами (прямое сопротивление диода равно 0) составляет менее 2 мс.Влияние падения напряжения на диоде анализируется в предыдущем разделе. Форма выходного напряжения и тока (при условии падения напряжения на переключателе и диоде 1 В) показаны на рисунке 21b. Наблюдается, что время установления выходного напряжения предлагаемого преобразователя с практическими компонентами составляет примерно 4 мс из-за прямого сопротивление диода и переключателя. Таким образом, практическая форма сигнала отличается от идеальной формы сигнала из-за постоянной времени (R D + R S ) C, как описано в разделе 4.Форма волны выходной мощности и напряжения переключения показаны на рис. 22а, б соответственно. Формы выходного и входного напряжения с идеальными составляющими (падение напряжения на переключателе и диоде равны нулю) показаны на рисунке 22c. Форма выходного напряжения и входного напряжения (при условии падения напряжения на переключателе и диоде 1 В) показаны на рисунке 22d. Видно, что выходное напряжение 120 В достигается от входного источника питания 24 В. Таким образом, в идеале коэффициент усиления по напряжению предлагаемого преобразователя равен 5, что равно количеству ступеней +1.Если учесть падение напряжения на диоде, выходное напряжение 100 В достигается от источника питания 24 В. Напряжение на переключателе равно входному напряжению питания (24 В). Напряжение на всех конденсаторах одинаково, что равно входному напряжению питания (24 В), если не учитывать падение напряжения на диоде. Напряжение на всех диодах одинаковое (24 В) при обратном смещении диода. Напряжение на диодах показано на рисунке 22e – f. Напряжение на конденсаторах показано на рисунке 23.Предлагаемый 4-каскадный самобалансирующийся магнитный преобразователь постоянного тока в постоянный ток был исследован экспериментально, и результат хорошо согласуется с результатами моделирования. Компоненты оборудования перечислены в таблице 7. PIC18F45K20 используется для генерации импульсов, а TLP250 используется в качестве ИС драйвера. Аппаратный прототип предлагаемого преобразователя показан на рисунке 24. Импульсы генерируются контроллером PIC, а выходной сигнал драйвера затвора показан на рисунке 25a, b, соответственно. Форма выходного и входного напряжения показана на рисунке 25c.Замечено, что выходное напряжение 100 В достигается от входного источника питания 24 В. Форма выходного тока показана на рисунке 25d, и видно, что выходной ток составляет 0,619 А. Напряжение на каждом конденсаторе показано на рисунке 26a-h. Замечено, что напряжение на каждом конденсаторе почти одинаково и немного меньше входного напряжения 24 В (влияние диода). Напряжение напряжения на каждом диоде показано на Рисунке 27a – h. Замечено, что напряжение на диоде примерно одинаково, а пиковое напряжение на диоде немного меньше входного напряжения (24 В) (эффект падения напряжения).Напряжения всех конденсаторов и всех диодов немного отличаются из-за прямого сопротивления диода и переключателя. Конденсаторы нижних ступеней (сторона истока) заряжаются по пути, который содержит меньше диодов, тогда как по мере увеличения количества ступеней путь, по которому проходит зарядка конденсаторов более высокого этапа (движущихся к нагрузке), содержит больше диодов. Таким образом, наблюдается практически небольшая разница в напряжении конденсаторов.

Как сделать повышающий трансформатор

Что такое трансформатор?

Трансформатор - это статическое устройство, которое используется в электрических или электронных схемах для изменения напряжения в источнике переменного тока (AC).Он преобразует электрическую энергию из одной цепи в другую с помощью взаимной индукции между первичной и вторичной обмотками. Обычно частота входного сигнала не изменяется, но напряжение может быть увеличено или уменьшено в зависимости от необходимости.

Типы трансформаторов

Как было сказано выше, существует два основных типа трансформаторов:

  • Повышающий трансформатор: Повышающий трансформатор увеличивает выходное напряжение по отношению к входному напряжению.В трансформаторе этого типа количество витков на вторичной обмотке больше, чем количество витков на первичной обмотке.
  • Понижающий трансформатор: Понижающий трансформатор снижает выходное напряжение по отношению к входному напряжению. Этот тип трансформатора противоположен вышеуказанному, количество витков на вторичной обмотке меньше количества витков на первичной обмотке.

Детали трансформатора

Прежде чем приступить к созданию повышающего трансформатора, давайте разберемся с основными частями трансформатора:

  • Первичная обмотка - изготовлена ​​из магнитной проволоки
  • Магнитный сердечник - выбирается в зависимости от мощности и частоты входного сигнала
  • Вторичная обмотка - изготовлена ​​из магнитной проволоки

Вещи, необходимые для создания очень простого повышающего трансформатора

Перед началом строительства вам потребуются следующие компоненты:

  • Лента электроизоляционная
  • Медный провод с покрытием (т.е.е. магнитный провод)
  • Материал сердечника (например, стальной болт может использоваться для представления сердечника)
  • Резистивный элемент (например, лампочка)
  • Источник питания переменного тока

Создание электрического повышающего трансформатора

Следующие шаги подробно объясняют процесс создания повышающего трансформатора:

  • В качестве магнитопровода трансформатора используйте большой стальной болт.Сначала проверьте болт на намагничивание, прижав его к кухонному магниту. Если магнит заедает, стальной болт можно использовать в качестве сердечника.

  • Оберните болт изолентой, чтобы изолировать обмотки от «сердечника». Разрежьте медную проволоку с покрытием на два отрезка одинаковой длины и зачистите их с концов. Использование того же провода поможет вам убедиться, что количество обмоток катушки сопоставимо.

  • Оберните два медных провода несколько раз (не менее 12 витков) вокруг концов «сердечника» (стального болта).Эти проволочные катушки будут действовать как первичная и вторичная обмотки трансформатора. Убедитесь, что оголенные концы проводов оставлены свободными. Также сохраняйте зазор между первичной и вторичной обмотками. Закрепите изолентой.

  • Теперь подключите оголенные концы вторичной катушки к контактным выводам резистивного элемента (лампы). Следите за тем, чтобы они не касались друг друга контактами лампы, потому что короткое замыкание не позволит лампочке загореться.При необходимости можно использовать изоляционную ленту, чтобы удерживать провода на месте.

  • Наконец, подключите оголенные концы первичной катушки к источнику переменного тока. Выбор источника питания переменного тока с выключателем питания, регулируемым напряжением и предохранителем на входе поможет обеспечить безопасность и изоляцию от «настенного» питания. Начните с минимального уровня мощности переменного тока и постепенно увеличивайте его, чтобы увидеть изменение яркости лампочки. Лампочка должна загореться при включении питания.Если нет, проверьте соединения и попробуйте еще раз.

  • Если вы почувствуете запах гари, немедленно отключите концы первичной обмотки от источника питания. Однако это маловероятная ситуация, поскольку трансформатор должен обеспечивать сопротивление, достаточное для предотвращения прохождения слишком большого тока.

  • Если вы чувствуете запах гари, проверьте, не вызвано ли короткое замыкание контактом между оголенными проводами.Закройте оголенные провода изолентой и попробуйте еще раз.

  • Обратите внимание, что яркость лампы будет увеличиваться при увеличении конфигурации. Более того, сердечник трансформатора начнет работать как электромагнит. Это можно проверить, приложив к нему металлические предметы.

Совет: Для изготовления промышленного повышающего трансформатора необходимо, чтобы вторичная обмотка имела больше витков, чем первичная.Более того, если вы хотите, чтобы у трансформатора было вдвое больше напряжения и вдвое меньше тока на вторичной обмотке, вставьте в два раза больше витков во вторичную обмотку.

Сопутствующие товары

Как только повышающая конфигурация успешно завершена, попробуйте изменить передаточное число катушки на обратное. Это позволит вам сравнить работу трансформатора в понижающем и повышающем режимах. Вы также можете протестировать обе конфигурации на разных резисторных нагрузках.

Повышающий преобразователь постоянного тока с 5 В на 12 В

Повышающий DC-DC преобразователь основан на LM2577-ADJ IC, этот проект обеспечивает выход 12 В с использованием входа 5 В, максимальная выходная нагрузка 800 мА. LM2577 - это монолитные интегральные схемы, которые обеспечивают все функции питания и управления для повышающих (повышающих), обратных и прямых импульсных регуляторов преобразователя. Устройство доступно в трех вариантах выходного напряжения: 12В, 15В и регулируемое.

Для этих регуляторов требуется минимальное количество внешних компонентов, они экономичны и просты в использовании.В этом техническом описании перечислено семейство стандартных катушек индуктивности и обратных трансформаторов, предназначенных для работы с этими импульсными регуляторами. На микросхеме находится переключатель NPN 3,0 А и связанная с ним схема защиты, состоящая из ограничения тока и температуры, а также блокировки пониженного напряжения. Другие функции включают в себя генератор с фиксированной частотой 52 кГц, который не требует внешних компонентов, режим плавного пуска для уменьшения пускового тока во время запуска и управление режимом тока для улучшенного подавления переходных процессов входного напряжения и выходной нагрузки.

Характеристики

  • Требуется несколько внешних компонентов
  • Вход 5 В постоянного тока
  • Выход 12 В постоянного тока
  • Выходная нагрузка 800 мА
  • Работа в токовом режиме для улучшения переходных характеристик, стабилизации линии и ограничения тока
  • Внутренний осциллятор, 52 кГц
  • Функция плавного пуска снижает пусковой ток при запуске
  • Выходной выключатель защищен ограничением по току, блокировкой при пониженном напряжении и тепловым отключением
  • Размеры печатной платы: 45.72 x 34.29 мм

Проект основан на LM2577-ADJ IC для гибкости получения других выходных напряжений путем изменения номинала резисторов обратной связи R2 и R3

Формула выходного напряжения В Out = 1,23 В (1 + R2 / R3) (Дополнительную информацию о величине индуктивности, конденсаторе, резисторах обратной связи, выходном токе и напряжении см. В листе технических данных)

Схема

Как это работает

LM2577 включает и выключает свой выход с частотой 52 кГц, и это создает энергию в катушке индуктивности L1.

Когда переключатель NPN включается, ток в катушке индуктивности заряжается со скоростью vin / L1, сохраняя ток в катушке индуктивности. Когда переключатель выключается, нижний конец катушки индуктивности летит над Vin, разряжая свой ток через диод в выходной конденсатор со скоростью (Vout-Vin) / L1. Таким образом, энергия, запасенная в

Индуктор

во время включения переводится на выход во время выключения. Выходное напряжение регулируется количеством передаваемой энергии, которое, в свою очередь, регулируется путем модуляции пикового тока индуктора.Это делается путем подачи части выходного напряжения обратно на усилитель ошибки, который усиливает разницу между напряжением обратной связи и опорным напряжением 1,23 В. Выходное напряжение усилителя ошибки сравнивается с напряжением, пропорциональным току переключения (т. Е. Току индуктора во время включения).

Компаратор завершает время включения, когда два напряжения равны, тем самым управляя пиковым током переключения для поддержания постоянного выходного напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *