Трансформатор напряжения это – Трансформатор напряжения — Википедия

Содержание

Трансформатор напряжения — Википедия

Антирезонансный трансформатор напряжения

Трансформа́тор напряже́ния — одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.

Используется в измерительных цепях, преобразуя высокое напряжение линий электропередач генераторов в удобное для измерения низковольтное напряжение.

Кроме того, применение трансформатора напряжения позволяет изолировать низковольтные измерительные цепи защиты, измерения и управления от высокого напряжения, что, в свою очередь, позволяет использовать более дешёвое оборудование в низковольтных сетях и удешевляет их изоляцию.

Так как трансформатор напряжения не предназначен для передачи через него мощности, основной режим работы трансформатора напряжения — режим холостого хода.

Измерительный трансформатор напряжения по принципу выполнения мало отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. В результате изготовления должен быть достигнут необходимый класс точности: по амплитуде и углу. Трехфазные трансформаторы напряжения с выведенными нулевыми выводами выполняются на пятистержневом магнитопроводе, чтобы при коротком замыкании на стороне высокого напряжения суммарный магнитный поток замыкался по стали сердечника (при замыкании по воздуху возникает большой ток, приводящий к перегреву трансформатора). Трёхфазные трансформаторы с трёхстрежневым магнитопроводом исходя из вышеуказанных причин не имеют внешних нулевых выводов и не применяются для регистрации «замыканий на землю». Чем меньше нагружена вторичная обмотка трансформатора напряжения (то есть чем ближе режим к режиму холостого хода либо, другими словами, чем больше сопротивление цепи вторичной обмотки), тем фактический коэффициент трансформации Кт ближе к номинальному значению. Это особенно важно при подключении ко вторичной цепи измерительных приборов, так как коэффициент трансформации влияет на точность измерений. В зависимости от нагрузки один и тот же трансформатор напряжения может работать в разных классах точности: 0,5; 1; 3.

  • Заземляемый трансформатор напряжения — однофазный трансформатор напряжения, один конец первичной обмотки которого должен быть наглухо заземлён, или трёхфазный трансформатор напряжения, нейтраль первичной обмотки которого должна быть наглухо заземлена (трансформатор с ослабленной изоляцией одного из выводов — однофазный ТН типа ЗНОМ или трёхфазные ТН типа НТМИ и НАМИ).
  • Незаземляемый трансформатор напряжения — трансформатор напряжения, у которого все части первичной обмотки, включая зажимы, изолированы от земли до уровня, соответствующего классу напряжения.
  • Каскадный трансформатор напряжения — трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединённых секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток.
  • Ёмкостный трансформатор напряжения — трансформатор напряжения, содержащий ёмкостный делитель.
  • Двухобмоточный трансформатор — трансформатор напряжения, имеющий одну вторичную обмотку напряжения.
  • Трёхобмоточный трансформатор напряжения — трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную.

При наличии нескольких вторичных обмоток в трехфазной системе основные соединяются «в звезду», образуя выходы фазных напряжений

a, b, c и общую нулевую точку о, которая обязательно должна заземляться для предотвращения последствий пробоя изоляции со стороны первичной обмотки (на практике чаще всего заземляется фаза «b» обмотки НН трансформатора напряжения). Дополнительные обмотки обычно соединяются по схеме «разомкнутый треугольник» с целью контроля напряжения нулевой последовательности. В нормальном режиме это напряжение находится в пределах 1-3 В за счет погрешности обмоток, резко возрастая при аварийных ситуациях в цепях высокого напряжения, что дает возможность простого подключения быстродействующих устройств релейной защиты и автоматики (для цепей с изолированной нейтралью — обычно на сигнал). Для регистрации земли в сети необходимо заземление нулевого вывода обмотки ВН трансформатора напряжения (для прохождения гармоник нулевой последовательности).

Особенности работы трансформаторов напряжения регламентируются главой 1.5 Правил устройства электроустановок. Так, нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений. Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25 % номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5 % при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков. Потери напряжения от трансформаторов напряжения до счетчиков технического учета должны составлять не более 1,5 % номинального напряжения.

Особенности работы ТН в сетях с изолированной и заземлённой нейтралями[править | править код]

В сетях с заземлённой нейтралью при замыкании на землю напряжение повреждённой фазы около места замыкания уменьшается до нуля, вектор 3U0{\displaystyle 3U_{0}} получается сложением векторов фазных напряжений (сложение фазных векторов, расположенных 120° относительно друг от друга), и следовательно напряжение 3U0{\displaystyle 3U_{0}} возрастает до фазного напряжения.

В сетях с изолированной нейтралью при замыкании на землю все фазные напряжения (относительно нулевой точки) остаются без изменения, но относительно земли фазные напряжения увеличиваются до линейного, при этом трансформируясь во вторичную обмотку (при обязательном заземлении нулевой точки первичной обмотки ТН) они геометрически суммируются. При этом вектора этих напряжений расположены друг относительно друга на 60°, то 3U0=3Ub=3Uc{\displaystyle 3U_{0}={\sqrt {3}}U_{b}={\sqrt {3}}U_{c}}, где Ub{\displaystyle U_{b}},Uc{\displaystyle U_{c}} — напряжения неповреждённых фаз относительно земли. Поскольку напряжения неповреждённых фаз относительно земли увеличились до 3{\displaystyle {\sqrt {3}}}, то 3U0=3Uf{\displaystyle 3U_{0}=3U_{f}}, то есть 3U0{\displaystyle 3U_{0}} возрастает до утроенного значения фазного напряжения относительно нуля.

Исходя из вышеуказанных особенностей у ТН для работы в сетях с заземлённой нейтралью дополнительная обмотка выполняется на 100 В, а для сетей с изолированной нейтралью 100/3 В.

Трансформаторы напряжения в сетях с изолированной нейтралью могут входить в феррорезонанс с паразитными ёмкостями распределительных сетей (особенно это нежелательное явление характерно для кабельных сетей), что может приводить к их отказу. Для предотвращения порчи трансформаторов напряжения в результате феррорезонанса разработаны антирезонансные трансформаторы напряжения типа НАМИ.

Параметры трансформатора напряжения[править | править код]

На шильдике трансформатора напряжения указываются следующие параметры:

  • Напряжение первичной обмотки.
  • Напряжение основной вторичной обмотки: для однофазных ТН равно 100 В, для трёхфазных фазное напряжение вторичной обмотки 100/3{\displaystyle {\sqrt {3}}} В.
  • Напряжение дополнительной вторичной обмотки: для сетей с заземлённой нейтралью 100 В, для сетей с изолированной нейтралью 100/3 В.
  • Номинальная мощность трансформатора, в ВА, в соответствии с классом точности.
  • Максимальная мощность трансформатора, в ВА.
  • Напряжение короткого замыкания, в процентах.

Отечественные трансформаторы напряжения имеют следующее буквенные обозначения:

  • Н — трансформатор напряжения;
  • Т — трёхфазный;
  • О — однофазный;
  • С — сухой;
  • М — масляный;
  • К — каскадный либо с коррекцией;
  • А — антирезонансный;
  • Ф — в фарфоровом корпусе;
  • И — контроль Изоляции;
  • Л — в литом корпусе из эпоксида;
  • ДЕ — с ёмкостным делителем напряжения;
  • З — с заземляемой первичной обмоткой.
  • В. Н. Вавин Трансформаторы напряжения и их вторичные цепи М., «Энергия», 1977
  • ГОСТ 18685-73. Трансформаторы тока и напряжения. Термины и определения
  • Правила устройства электроустановок. Издание седьмое.

Трансформатор

ru.wikipedia.org

Что такое трансформатор напряжения / Описание

Трансформатор напряжения это электромагнитное устройство которое предназначено для преобразования одного переменного напряжения в переменное напряжение которое имеет другое назначение.  Иными словами говоря с помощью трансформатора напряжения происходит соединение цепей высокого и низкого напряжения. Кроме вышесказанного трансформаторы напряжения также применяют для обеспечения безопасности жизни персонала который занимается периодическим проведением обслуживающих профилактических и ремонтных работ на вторичных цепях трансформаторной подстанции. Также трансформатор тока исполняет важную роль в защите реле и приборов от высокого напряжения.

Трансформаторы тока ЗНОЛ-СЭЩ

Трансформатор напряжения работает на повышение или понижения электрической энергии, от сюда и исходят его два основных вида: трансформаторы понижающего и трансформаторы повышающего типа. Благодаря именного трансформатору напряжения конечный потребитель получает электрическую энергию нужного значения.

Трансформаторы напряжения имеют для своего обозначения следующие аббревиатуры:

  • ТН — трансформатор напряжения
  • Т — трансформатор трехобмотачный
  • Д и Е — делитель имеющий определенную емкость
  • Т и О — буквы  обозначающие количество фаз
  • З — наличие в трансформаторе напряжения заземляющего вывода
  • Л — литая изоляция трансформатора
  • С — сухая изоляция трансформатора
  • У1 — климатическое исполнение и категория размещения
  • М — естественное охлаждение трансформатора
  • И — трансформатор содержит дополнительные подключенные к нему приборы
  • К — дополнительная обмотка

Устройство трансформатора напряжения является относительно простым. Конструктивно он состоит из сердечника (магнитопровода), который собран из изолированных листов специальной электротехнической стали, и расположенных в нем обмоток, как правило не менее двух. Применение изолированной электротехнической стали в сердечнике трансформатора напряжения обуславливается тем, что благодаря ей снижаются вихревые токи.

Трансформаторы напряжения имеют различные виды, которые отличаются друг от друга своим внутренним строением, областью применения и характеристиками. Об этом по порядку.

Виды трансформаторов напряжения:

  1. Заземляемый трансформатор напряжения. Является электромагнитным однофазным или трехфазным устройством. Свое название заземляемый трансформатор напряжения получил из за одной особенности, один конец трансформатора напряжения, а именно нейтраль первичной обмотки подвергается обязательному заземлению.
  2. Двухобмотачный трансформатор напряжения. Имеет в своем внутреннем строении два вида обмоток: первичную и вторичную.
  3. Каскадный трансформатор напряжения. Внутренне строение каскадного трансформатора напряжения представляет собой первичную обмотку строго разделенную на определенное число секций. Свое название каскадный трансформатор напряжения он получил именно из за секций которые расположены в виде каскада на разном уровне от земли. Соединение всех этих составляющих частей между собой происходит с помощью дополнительных связующих обмоток.
  4. Емкостный трансформатор напряжения. Свое название емкостный трансформатор напряжения получил из за дополнительной встраиваемой в него детали — емкостного делителя.
  5. Трансформатор напряжения малой мощности. Служит в основном для питания различной бытовой техники, а также используется для различных электронных устройств в их схемах.
  6. Силовой трансформатор напряжения. Имеют большую мощность. Область их применения это сфера электроснабжения. Делятся на два вида: повышающего и понижающего. Повышающий силовой трансформатор напряжения способен передавать электрическое напряжение на большое расстояние, понижающий силовой трансформатор напряжения работает на уменьшение электрической энергии по потребительской.
  7. Измерительные трансформаторы напряжения. Применяются для измерительных целей, а также предназначены для расширения пределов измерения электронных приборов.
  8. Не заземляемый трансформатор напряжения. Данный вид трансформатора получил свое название из за того что он не подвергается заземлению. В не заземляемом трансформаторе в обязательном порядке изолируются все уровни включая и зажимы. Отдельные части трансформатора нужно поднимать на некоторую высоту, высота поднимаемых частей зависит напрямую от уровня напряжения. Конструкция не заземляемого трансформатора напряжения располагается полностью на поверхности земли.
  9. Трехобмотачный трансформатор напряжения. Имеет в своем строении одну первичную обмотку и две вторичные.

tr-ktp.ru

Трансформатор напряжения , назначение и принцип действия

Трансформатор напряжения — это одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.

измерительный трансформатор напряжения

Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.

Трансформатор напряжения назначение и принцип действия

Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.

Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чего он обеспечивает безопасность их обслуживания на подстанции.

Основное принципиальное отличие измерительных трансформаторов напряжения (ТН) от трансформаторов тока (ТТ) состоит в том, что они, как и все силовые модели, рассчитаны на обычную работу без закороченной вторичной обмотки.

В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.

измерительный трансформатор напряжения

Принципы работы трансформатора напряжения

Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:

  • первичной;
  • вторичной.

Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.

Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.

Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.

Устройство однофазного трансформатора напряжения

устройство однофазного трансформатора напряжения

Устройство однофазного трансформатора напряжения:

  • а — общий вид трансформатора напряжения;
  • б — выемная часть;
  • 1,5 — проходные изоляторы;
  • 2 — болт для заземления;
  • 3 — сливная пробка;
  • 4 — бак;
  • 6 — обмотка;
  • 7 — сердечник;
  • 8 — винтовая пробка;
  • 9 — контакт высоковольтного ввода

Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.

Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.

Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).

Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.

У трансформаторов напряжением 10 — 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).

Пример назначение и область применение трансформаторов напряжения ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий. Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

схема включения обмоток трансформатора напряжения ЗНОЛ-НТЗ

Схемы включения  трансформаторов напряжения

Измерительные трансформаторы применяются для замера линейных и/или фазных первичных величин. Для этого силовые обмотки включают между:

  • проводами линии с целью контроля линейных напряжений;
  • шиной или проводом и землей, чтобы снимать фазное значение.

Важным элементом безопасности измерительных трансформаторов напряжения является заземление их корпуса и вторичной обмотки.

На заземление трансформаторов напряжения обращается повышенное внимание, ведь при пробое изоляции первичной обмотки на корпус или во вторичные цепи в них появится высоковольтный потенциал, способный травмировать людей и сжечь оборудование.

Преднамеренное заземление корпуса и одной вторичной обмотки отводит этот опасный потенциал на землю, чем предотвращает дальнейшее развитие аварии.

Трансформатор напряжения при напряжении до 35 кВ

Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение Ub a напряжение вторичной обмотки U2 подведено к измерительному прибору.

рис. 2.1  Схема включения однофазного трансформатора напряжения

Трансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц. Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5 8) — с заземленной нейтралью.

В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные ТН. Выбор того или иного типа трансформатора напряжения  зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения трансформатора напряжения (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).

Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы систем измерения, защиты и автоматики электроустановок, заменяются емкостными делителями напряжения.

По изоляции различают трансформаторы напряжения с сухой и масляной изоляцией.

Обозначение трансформатора напряжения на схеме

Обозначение трансформатора напряжения на схеме

Предохранители  трансформаторов осуществляют защиту трансформаторов напряжения от повреждения в случае их работы в ненормальном режиме — при однофазном замыкании на землю, при возникновении в сети феррорезонансных явлений или в случае наличия короткого замыкания в первичной обмотке трансформатора напряжения.

Видео: Трансформаторы напряжения

Технические характеристики трансформаторов напряжения, схемы включения. Факторы, влияющие на класс точности. Виды трансформаторов напряжения, расшифровка маркировки.

transformator220.ru

Трансформатор напряжения что это – назначение и принцип действия

Давайте разберемся, для чего нужен трансформатор напряжения и какие функции он выполняет? Данное устройство необходимо службам, занимающимся учетом электроснабжения. Функция электросетей – выработка энергии, передача ее на большие расстояния и перераспределение электрической энергии между потребителями. Именно для этих целей существует данный прибор.

Трансформаторы промышленного типа широко используются на электроподстанциях. Более мелких размеров трансформаторы находят свое применение во многих цепях бытовых электроприборов. Такие устройства изменяют напряжение – увеличивают либо понижают его. Появления трансформатора стало возможным после того, как Майкл Фарадей открыл в 1831 году электромагнитную индукцию.

В статье информация о всех особенностях трансформаторов напряжения, описаны их технические характеристики. В качестве бонуса, в статье содержится видеоролик о трансформаторах, а также материл на данную тему.

Трансформатор напряжения.

Расшифровка аббревиатур устройств

Различаются и по способу изоляции, сухая, она же литая и масляной. У каждого свое, буквенное обозначение трансформатора. Есть на разные классы напряжения, такие как, нтми-10,  ном-10, зном-35, ном-35, нкф-110, нами-10. В предыдущем предложении, цифры означают номинальное напряжение. Начнём с самой важной буквы, которая находится в самом начале практически всех аббревиатур, это буква Н. Она как раз и означает трансформатор напряжения. Кстати говоря, его сокращённо называют просто ТН.

Следующие по списку и по важности буква это, Т и О, которые означаю количество фаз. Трехфазный и однофазный соответственно. У буквы Т есть ещё одно значение, она означает что, трансформатор трёх обмоточный. Следующие буквы, относятся к изоляции и способам охлаждения. Она может быть, литой (Л), С сухой, Естественное мысленно охлаждение, маркируется буквой М.

Следующие значения, можно отнести к дополнительным функциям. Для подключения измерительных приборов, наносится (И).  Если видим (К), следует понимать, что в трансформаторе напряжения есть дополнительная обмотка, которая уменьшает угловую погрешность или каскад. «З» – наличие заземляющего вывода. Активную часть, часто помещают в фарфоровую покрышку, поэтому присутствует символ «Ф». (У) — относится к установки в умеренно климате. Д, Е – делитель, имеет определённую ёмкость.

Расшифровка аббревиатур.

Виды и их особенности

Кроме рассмотренных выше понижающих и повышавших приборов выпускаются и другие модели:

  • тяговые;
  • лабораторные, в которых возможно регулировать напряжение;
  • для выпрямительных установок;
  • источники питания для радиоаппаратуры.

Все они относятся к одной большой группе трансформаторов – силовым. Есть еще одна разновидность такого оборудования. Это устройства, используемые для подключения к цепям высокого напряжения различных электроизмерительных приборов. Они получили название измерительных трансформаторов напряжения. Также эти приборы находят широкое применение при электросварке. Имеют отличия и в конструктивном исполнении. В зависимости от этого различают двух и многообмоточные измерительные трансформаторы тока и напряжения. Такие приборы используются для проведения измерений и питания цепей автоматики, релейной защиты. Они могут быть одно- или трехфазные с масляным или воздушным охлаждением.

Влияет на классификацию, и форма магнитопровода. Он может быть:

  1. стержневой;
  2. броневой;
  3. тороидальный.

При этом различают два вида конструкции обмоток:

  • Концентрический;
  • Дисковый.

По классу точности устройства подразделяются на 4 категории:

Еще одним параметром, влияющим на специфику применения измерительных трансформаторов тока и напряжения, является способ установки. В зависимости от него изделия бывают следующих типов:

  • внутренние;
  • наружные;
  • для КРУ.

Виды трансформаторов.

Критерии выбора оборудования

Трансформатор напряжения состоит из двух обмоток и сердечника. Обмотки также подразделяются на первичную и вторичную. Вот тут и начинаются различия, если сравнивать трансформатор напряжения с трансформатором тока. Первичная обмотка трансформатора напряжения содержит значительно больше витков, чем вторичная.

На первичную обмотку подается напряжение, которое нам нужно измерить а к вторичной обмотке подсоединяется вольтметр. Обычно приобретая оборудование ориентируются не его основные параметры. Для трансформатора таковыми являются:

  • напряжения обмоток, которые указываются на щитке;
  • коэффициент трансформации;
  • угловой погрешности.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Необходимо также ориентироваться на условия эксплуатации. Поэтому самыми важными параметрами при выборе оказываются нагрузка, сфера применения и напряжение короткого замыкания трансформатора. На первом этапе необходимо убедиться в том, что мощности модели будет достаточно для того чтобы справиться не только с поставленной задачей, но и возможными перегрузками. Неплохо иметь прибор, параметры которого могут быть изменены в процессе эксплуатации.

Но ориентироваться только на эти характеристики недопустимо. Так как для эффективной работы трансформатора напряжения 110 кВ важны и его технические характеристики:

  1. частота тока;
  2. фазность;
  3. способ установки;
  4. место расположения;
  5. нагрузка.

Кроме этого нужно определить подходит ли вам цена устройства, а также стоимость его дальнейшего обслуживания. Параметры выбора трансформаторов тока приведены в таблице ниже.

Таблица выбора трансформаторов тока.

Как работает

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения. Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n».  Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличаются

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы

При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству.  Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести. Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

Феррорезонанс и способы защиты от него

Феррорезонансный контур в сети с изолированной нейтралью — это контур нулевой последовательности с нелинейной характеристикой намагничивания. Трехфазный заземляемый трансформатор напряжения, по конструктиву, это три однофазных трансформатора, соединенные по схеме звезда/звезда, с обособленной магнитной системой. При перенапряжениях в сети индукция в магнитопроводе увеличивается, как минимум в 1,73 раза.

В таких режимах возможно насыщение магнитопровода и, как следствие, возникновение феррорезонанса в сети. По данным служб энергоснабжения, ежегодно в эксплуатации повреждается 7–9% трансформаторов напряжения по причине феррорезонанса.

Существует множество способов защиты ТН от резонансных явлений в сети:

  • изготовление ТН с максимально уменьшенной рабочей индукцией;
  • включение в цепь ВН и НН дополнительных демпфирующих сопротивлений;
  • изготовление трехфазных трансформаторов напряжения с единой магнитной системой в пятистержневом исполнении;
  • применение специальных устройств, включаемых в цепь разомкнутого треугольника;
  • заземление нейтрали трехфазного трансформатора напряжения через токоограничивающий реактор;
  • применение специальных компенсационных обмоток и т.д.;
  • применение специальных релейных схем, для защиты обмотки ВН от сверхтоков.

Все эти меры в той или иной степени защищают измерительный трансформатор напряжения, но не решают проблему в корне.

Заземляемые устройства

Заземляемые трансформаторы напряжения применяются в сетях с изолированной нейтралью. Заземление нейтрали ТН позволяет осуществлять контроль изоляции сети с помощью дополнительных вторичных обмоток, соединенных по схеме звезда/треугольник. На наш взгляд, это основная функция заземляемых трансформаторов, функция измерения и учета — дополнительная.

Зачастую, в электрических сетях эксплуатируются заземляемые трансформаторы напряжения, у которых защитные обмотки не используются. Применение заземляемых трансформаторов без использования функции контроля изоляции сети — неоправданный риск. Это связано с тем, что:

  • заземляемые трансформаторы напряжения подвержены влиянию феррорезонансных явлений;
  • изоляцию обмотки ВН невозможно испытать в условиях эксплуатации приложенным одноминутным напряжением промышленной частоты.

Незаземляемые приборы

Для решения всех вопросов, связанных с эксплуатацией заземляемых трансформаторов напряжения в сетях с изолированной нейтралью, на нашем предприятии разработана новая трехфазная группа. Трехфазная 3хНОЛ.08-6(10)М группа, состоящая из трех незаземляемых трансформаторов, соединенных по схеме треугольник/треугольник. Основное преимущество 3хНОЛ.08-6(10)М — отсутствие заземляемого вывода с ослабленной изоляцией.

Это значит, что трансформатор не подвержен влиянию феррорезонанса и не требует дополнительных защит от его воздействия. Также изоляцию этого трансформатора возможно испытать приложенным одноминутным напряжением промышленной частоты в условиях эксплуатации, так как в этом случае нет необходимости в источнике повышенной частоты.

Интересный материал для ознакомления: полезная информация о трансформаторах тока.

У незаземляемых трансформаторов нет высоковольтных выводов с ослабленной изоляцией, что так-же позволит избежать нарушений, которые зачастую случаются в эксплуатации, при определении сопротивления изоляции вывода «Х», так как есть разночтения в нормативной документации. На сегодняшний день большое количество пунктов коммерческого учета (ПКУ) имеют в своем составе заземляемые трансформаторы напряжения со встроенными предохранителями (ЗНОЛП). При однофазных замыканиях на землю, а они как указывалось выше, случаются достаточно часто в воздушных распределительных сетях, срабатывает встроенное защитное предохранительное устройство (ЗПУ). Встраиваемое ЗПУ, прежде всего, предназначено для защиты трансформатора напряжения от коротких замыканий во вторичных цепях.

Так как ток срабатывания предохранителя достаточно мал, то при различных перенапряжениях, вызванных, в том числе, и однофазными замыканиями на землю, — происходит отключение ТН. ЗПУ защищает обмотку ВН от сверхтоков, которые возможны при различных технологических нарушениях в электрических сетях. При срабатывании предохранителя учет электроэнергии будет отсутствовать. Для восстановления учета, необходимо заменить плавкую вставку ЗПУ.

Ремонт оборудования

Что касается ремонтных работ, то для их проведения прибор должен быть отключен от сети. Запрещено эксплуатировать трансформатор с незаземленным цоколем, а все неисправности должны устраняться специалистами. Исправное оборудование в процессе работы издает равномерный звук без треска и резких шумов. Кроме того, в сетях до 10 кВ случаются резонансные повышения напряжения. Причиной их появления считается многократные разряды емкости, получающиеся в результате дугового замыкания. Это в свою очередь приводит к образованию феррорезонанса в трансформаторе напряжения и выходу его из строя. Избежать этого можно при заземлении нейтрали через резистор.

Заключение

В данной статье были рассмотрены основные особенности трансформаторов  напряжения и трансформаторов тока. Больше информации можно найти в скачиваемой версии учебника по электромеханике “Различия трансформаторов напряжения и трансформаторов тока”. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.generatorvolt.ru

www.elec.ru

www.popayaem.ru

www.podvi.ru

www.leg.co.ua

www.energytik.net

electroinfo.net

устройство, классификация, принцип работы, видео

Трансформатор напряжения – это один из видов трансформаторов, который еще называют измерительным, предназначеннный для отделения первичных цепей высокого и сверх высокого напряжений и цепей измерений, РЗ и А. Также их используют для понижения высоких напряжений (110, 10 и 6 кВ) до стандартных нормируемых величин напряжений вторичных обмоток – 100 либо 100/√3.

Помимо этого, применение трансформаторов напряжение в электроустановках позволяет изолировать маломощные низковольтные измерительные приборы и устройства, что удешевляет стоимость и позволяет использовать более простое оборудование, а также обеспечивает безопасность обслуживания электроустановок.

Трансформаторы напряжения нашли широкое применение в силовых электроустановках высокого напряжения

От точности их работы зависит правильность коммерческого учета электроэнергии, селективность действия устройств РЗ и противоаварийной автоматики, также они служат для синхронизации и питания автоматики релейной защиты ЛЭП от коротких замыканий, и др.

  1. силовых трансформаторов. Он состоит из обмоток: первичной и одной либо нескольких вторичных и стального сердечника, набранного листами электротехнической стали. Первичная обмотка имеет большее количество витков, в сравнении со вторичной. На первичную — подается напряжение, которое требуется измерить, а ко вторичным — подключаются ваттметр и пр. измерительные аппараты. Поскольку ваттметр имеет значительное сопротивление, то по вторичной принято считать, что протекает малый ток. Поэтому полагают, что измерительный трансформатор напряжения функционирует в режимах близких к холостому ходу. Такие трансформаторы оснащают разъемами для подключения: первичная обмотка присоединяется к цепям силового напряжения, а ко вторичной могут подключены — реле, обмотки вольтметра или ваттметра и пр. приборы. Принцип действия у них аналогичен силовому трансформатору: трансформирование напряжения в измерительном трансформаторе производится переменным магнитным полем. Интересное видео о работе и принципе устройста трансформаторов тока смотрите ниже: Потери намагничивания обуславливают некоторую погрешность в классах точности. Погрешность определяется: конструкцией магнитопровода; проницаемостью стали; коэффициентом мощности, т.е. зависит от вторичной нагрузки. Конструкцией предусматривается компенсация погрешности по напряжению благодаря уменьшению количества витков первичной обмотки, устранению угловой погрешности с помощью компенсирующих обмоток. Простейшая схема включения трансформатора напряжения Классификация трансформаторов напряжения Трансформаторы напряжения принято разделять по следующим признакам: По количеству фаз: однофазные; трехфазные. По числу обмоток: 2-х-обмоточные; 3-х-обмоточные. По способу действия системы охлаждения: электрические устройства с масляным охлаждением; электрические устройства с воздушной системой охлаждения ( с литой изоляцией либо сухие). По способу установки и размещения: для наружной установки; для внутренней; для комплектных РУ. По классу точности: по нормируемым величинам погрешностей. Виды трансформаторов напряжения Рассмотрим несколько трансфомраторов напряжения разных производителей: Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11 Производиель — Невский трансформаторный завод «Волхов». Назначение и область применение ЗНОЛ-НТЗ Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции. Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх. Рисунок — Габаритные размеры трансформатора Рисунок — схемы подключения обмоток трансформаторов Характеристики: Класс напряжения по ГОСТ 1516.3, кВ — 27 35 27 Наибольшее рабочее напряжение, кВ — 30 40,5 40,5 Номинальное напряжение первичной обмотки, кВ — 15,6 20,2 27,5 Номинальное напряжение основной вторичной обмотки, В — 57,7 100 Номинальное напряжение дополнительной вторичной обмотки, В — 100/3, 100 127 Номинальные классы точности основной вторичной обмотки — 0,2; 0,5; 1; 3 Ещё одно интересное видео о работе трансформаторов тока: Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И) Производитель «Свердловский завод трансформаторов тока» Назначение 3хЗНОЛПМ(И) Трансформаторы предназначены для установки в комплектные устройства (КРУ), токопроводы и служат для питания цепей измерения, защиты, автоматики, сигнализации и управления в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью. Трансформаторы изготавливаются в климатическом исполнении «УХЛ» категории размещения 2 по ГОСТ 15150. Рабочее положение — любое. Расположение первичного вывода возможно как с лицевой так и с тыльной стороны трансформатора. Трехфазная группа может комплектоваться в 4-ех вариантах: из трех трансформаторов ЗНОЛПМ — 3хЗНОЛПМ-6 и 3хЗНОЛПМ-10; из трех трансформаторов ЗНОЛПМИ — 3хЗНОЛПМИ-6 и 3хЗНОЛПМИ-10; из одного трансформатора ЗНОЛПМ (устанавливается по середине) и двух трансформаторов ЗНОЛПМИ (устанавливаются по краям) — 3хЗНОЛПМ(1)-6 и 3хЗНОЛПМ(1)-10; из двух трансформаторов ЗНОЛПМ (устанавливаются по краям) и одного трансформатора ЗНОЛПМИ (устанавливается по середине) — 3хЗНОЛПМ(2)-6 и 3хЗНОЛПМ(2)-10. Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополниетльные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4А. Внимание! При заказе трансформаторов напряжения для АИСКУЭ обязательно заполнение опросного листа. Гарантийный срок эксплуатации — 5 (пять) лет со дня ввода трансформатора в эксплуатацию, но не более 5,5 лет с момента отгрузки с завода-изготовителя. Срок службы — 30 лет. НАМИТ-10-2 Производитель ОАО «Самарский Трансформатор» Назначение и область применения Трансформатор напряжения НАМИТ-10-2 УХЛ2 трехфазный масляный антирезонансный является масштабным преобразователем и предназначен для выработки сигнала измерительной информации для измерительных приборов в цепях учёта, защиты и сигнализации в сетях 6 и 10 кВ переменного тока промышленной частоты с изолированной нейтралью или заземлённой через дугогасящий реактор. Трансформатор устанавливается в шкафах КРУ(Н) и в закрытых РУ промышленных предприятий Технические параметры трансформатора напряжения НАМИТ-10-2 Номинальное напряжение первичной обмотки, кВ — 6 или 10 Наибольшее рабочее напряжение, кВ — 7,2 или 12 Номинальное напряжение основной вторичной обмотки (между фазами), В — 100 (110) Ннапряжение дополнительной вторичной обмотки (аД — хД), не более, В — 3 Класс точности основной вторичной обмотки — 0,2/0,5 Рисунок — Габаритные размеры и схема подключения
  2. Классификация трансформаторов напряжения
  3. Виды трансформаторов напряжения
  4. Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11
  5. Назначение и область применение ЗНОЛ-НТЗ
  6. Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И)
  7. Назначение 3хЗНОЛПМ(И)
  8. НАМИТ-10-2
  9. Назначение и область применения
  10. Технические параметры трансформатора напряжения НАМИТ-10-2

силовых трансформаторов. Он состоит из обмоток: первичной и одной либо нескольких вторичных и стального сердечника, набранного листами электротехнической стали. Первичная обмотка имеет большее количество витков, в сравнении со вторичной. На первичную — подается напряжение, которое требуется измерить, а ко вторичным — подключаются ваттметр и пр. измерительные аппараты. Поскольку ваттметр имеет значительное сопротивление, то по вторичной принято считать, что протекает малый ток. Поэтому полагают, что измерительный трансформатор напряжения функционирует в режимах близких к холостому ходу.

Такие трансформаторы оснащают разъемами для подключения: первичная обмотка присоединяется к цепям силового напряжения, а ко вторичной могут подключены — реле, обмотки вольтметра или ваттметра и пр. приборы. Принцип действия у них аналогичен силовому трансформатору: трансформирование напряжения в измерительном трансформаторе производится переменным магнитным полем.

Интересное видео о работе и принципе устройста трансформаторов тока смотрите ниже:

Потери намагничивания обуславливают некоторую погрешность в классах точности.

Погрешность определяется:

Конструкцией предусматривается компенсация погрешности по напряжению благодаря уменьшению количества витков первичной обмотки, устранению угловой погрешности с помощью компенсирующих обмоток. Простейшая схема включения трансформатора напряжения

Классификация трансформаторов напряжения

Трансформаторы напряжения принято разделять по следующим признакам:

  1. По количеству фаз:
    • однофазные;
    • трехфазные.
  2. По числу обмоток:
    • 2-х-обмоточные;
    • 3-х-обмоточные.
  3. По способу действия системы охлаждения:
    • электрические устройства с масляным охлаждением;
    • электрические устройства с воздушной системой охлаждения ( с литой изоляцией либо сухие).
  4. По способу установки и размещения:
    • для наружной установки;
    • для внутренней;
    • для комплектных РУ.
  5. По классу точности: по нормируемым величинам погрешностей.

Виды трансформаторов напряжения

Рассмотрим несколько трансфомраторов напряжения разных производителей:

Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11

Производиель — Невский трансформаторный завод «Волхов».

Назначение и область применение ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

Рисунок — Габаритные размеры трансформатора

Рисунок — схемы подключения обмоток трансформаторов

Характеристики:

  1. Класс напряжения по ГОСТ 1516.3, кВ — 27 35 27
  2. Наибольшее рабочее напряжение, кВ — 30 40,5 40,5
  3. Номинальное напряжение первичной обмотки, кВ — 15,6 20,2 27,5
  4. Номинальное напряжение основной вторичной обмотки, В — 57,7 100
  5. Номинальное напряжение дополнительной вторичной обмотки, В — 100/3, 100 127
  6. Номинальные классы точности основной вторичной обмотки — 0,2; 0,5; 1; 3

Ещё одно интересное видео о работе трансформаторов тока:


Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И)

Производитель «Свердловский завод трансформаторов тока»

Назначение 3хЗНОЛПМ(И)

Трансформаторы предназначены для установки в комплектные устройства (КРУ), токопроводы и служат для питания цепей измерения, защиты, автоматики, сигнализации и управления в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью.

Трансформаторы изготавливаются в климатическом исполнении «УХЛ» категории размещения 2 по ГОСТ 15150.

Рабочее положение — любое.

Расположение первичного вывода возможно как с лицевой так и с тыльной стороны трансформатора.

Трехфазная группа может комплектоваться в 4-ех вариантах:

  • из трех трансформаторов ЗНОЛПМ — 3хЗНОЛПМ-6 и 3хЗНОЛПМ-10;
  • из трех трансформаторов ЗНОЛПМИ — 3хЗНОЛПМИ-6 и 3хЗНОЛПМИ-10;
  • из одного трансформатора ЗНОЛПМ (устанавливается по середине) и двух трансформаторов ЗНОЛПМИ (устанавливаются по краям) — 3хЗНОЛПМ(1)-6 и 3хЗНОЛПМ(1)-10;
  • из двух трансформаторов ЗНОЛПМ (устанавливаются по краям) и одного трансформатора ЗНОЛПМИ (устанавливается по середине) — 3хЗНОЛПМ(2)-6 и 3хЗНОЛПМ(2)-10.

Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополниетльные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4А.

Внимание! При заказе трансформаторов напряжения для АИСКУЭ обязательно заполнение опросного листа.

Гарантийный срок эксплуатации — 5 (пять) лет со дня ввода трансформатора в эксплуатацию, но не более 5,5 лет с момента отгрузки с завода-изготовителя.

Срок службы — 30 лет.


НАМИТ-10-2

Производитель ОАО «Самарский Трансформатор»

Назначение и область применения

Трансформатор напряжения НАМИТ-10-2 УХЛ2 трехфазный масляный антирезонансный является масштабным преобразователем и предназначен для выработки сигнала измерительной информации для измерительных приборов в цепях учёта, защиты и сигнализации в сетях 6 и 10 кВ переменного тока промышленной частоты с изолированной нейтралью или заземлённой через дугогасящий реактор. Трансформатор устанавливается в шкафах КРУ(Н) и в закрытых РУ промышленных предприятий

Технические параметры трансформатора напряжения НАМИТ-10-2
  1. Номинальное напряжение первичной обмотки, кВ — 6 или 10
  2. Наибольшее рабочее напряжение, кВ — 7,2 или 12
  3. Номинальное напряжение основной вторичной обмотки (между фазами), В — 100 (110)
  4. Ннапряжение дополнительной вторичной обмотки (аД — хД), не более, В — 3
  5. Класс точности основной вторичной обмотки — 0,2/0,5

Рисунок — Габаритные размеры и схема подключения

pue8.ru

Трансформатор напряжения - это... Что такое Трансформатор напряжения?

        измерительный Трансформатор электрический, предназначенный для преобразования высокого напряжения в низкое в цепях измерения и контроля. Применение Т. н. позволяет изолировать цепи вольтметров, частотометров, электрических счётчиков, устройств автоматического управления и контроля и т.д. от цепи высокого напряжения и создаёт возможность стандартизации номинального напряжения контрольно-измерительной аппаратуры (чаще всего его принимают равным 100 в). Т. н. подразделяются на трансформаторы переменного напряжения (обычно их называют просто Т. н.) и трансформаторы постоянного напряжения.         Первичная обмотка (ПО) трансформатора переменного напряжения (см. рис. 1, а, б) состоит из большого числа (w1) витков и подключается к цепи с измеряемым (контролируемым) напряжением U1 параллельно. К зажимам вторичной обмотки (ВО) с числом витков w2 (w2 1) подсоединяют измерительные приборы (или контрольные устройства). Так как внутреннее сопротивление последних относительно велико, Т. н. работает в условиях, близких к режиму холостого хода, что позволяет (пренебрегая потерями напряжения в обмотках) считать U1 и U2 приблизительно равными соответствующим эдс и пропорциональными w1 и w2, то есть U1w2U2w1. Зная отношение (Трансформации коэффициент), можно по результатам измерения низкого напряжения в ВО определять высокое первичное напряжение. Приближённый характер соотношения между U1 и U2 обусловливает наличие погрешности по напряжению и угловой погрешности найденной величины U1. В компенсированных Т. н. производится компенсация этих погрешностей. Т. н. устанавливают главным образом в распределительных устройствах (См. Распределительное устройство) высокого напряжения. Их выпускают в однофазном и трёхфазном исполнении. Большинство Т. н. на напряжения свыше 6 кв — маслонаполненные. Т. н. на напряжения свыше 100 кв делают, как правило, каскадными. Лабораторные Т. н. — обычно многопредельные.

         Лит.: Вавин В. Н., Трансформаторы напряжения и их вторичные цепи, Л., 1967; Электрические измерения, под ред. Е. Г. Шрамкова, М., 1972.

         Г. М. Вотчицев.

        Измерительный трансформатор напряжения. Схема включения.

        Рис. 1б. Измерительный трансформатор напряжения. Трансформатор напряжения на 400 кв.

dic.academic.ru

Для чего нужны ТНы

Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:

  • уменьшения величины напряжения до величины, которую безопасно и удобно использовать в цепях измерения (вольтметры, ваттметры, счетчики), защиты, автоматики, сигнализации
  • защиты от высокого напряжения вторичных цепей, а следовательно и человека
  • повышения напряжения при испытаниях изоляции различного эо
  • на подстанциях ТН используют для контроля изоляции сети, работы в составе устройства сигнализации или защиты от замыканий на землю

Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений. Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды…. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения. Отвлеклись, продолжаем.

Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.

Значит на рисунке сверху у нас приходит напряжение на выводы А, Х трансформатора напряжения на первичную обмотку(1). Это напряжение номинальное напряжение, первичное напряжение. Далее оно трансформируется до величины вторичного напряжения, которое находится на вторичной обмотке (3). Выводы вторичной обмотки - а, х. Вывод вторичной обмотки заземляются. В - это вольтметр, но это может быть и другое устройство. (2) - это магнитопровод ТНа.

Принцип работы ТН

Принцип действия трансформатора напряжения аналогичен принципу работы трансформатора тока. Обозначим это еще раз. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток. Магнитный поток пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключена нагрузка, то по ней начинает течь ток, который возникает из-за действия ЭДС. ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе. Более подробно это показано в статье про векторную диаграмму трансформатора напряжения.

Если на ТН подавать постоянное напряжение, то ЭДС не создается постоянным магнитным потоком. Поэтому ТНы выпускают на переменное напряжение. Коэффициентом трансформации трансформатора напряжения называют естественно отношение напряжения первичной обмотки к напряжению вторичной и записывают через дробь. Например, 6000/100. Когда приходят молодые студенты, они иногда на вопрос какой коэффициент отвечают 60. Не стоит так делать.

Классификация трансформаторов напряжения

ТНы классифицируются по следующим параметрам:

  • напряжение первичной обмотки (3, 6, 10 … 750кВ)
  • напряжение основной вторичной обмотки (100 В - для однофазных, включаемых между фазами, трехфазных; 100√3 - однофазных, включаемых между фазой и землей напряжение дополнительной вторичной обмотки (100В - однофазные в сети с заземленной нейтралью, 100√3 - однофазные в сети с изолированной нейтралью
  • число фаз (однофазные, трехфазные)
  • количество обмоток (двухобмоточные, трехобмоточные)
  • класс точности (0,1 0,2 0,5 1 3 3Р 6Р)
  • способ охлаждения (сухие, масляные, газонаполненные)
  • изоляция (воздушно-бумажная, литая, компаунд, газ, масло, фарфор)

На напряжение 6, 10кВ используют литые ТНы, залитые эпоксидной смолой. Эти аппараты устанавливают в распредустройствах. Они занимают меньшие габариты, по сравнению с масляными. Также к их плюсам стоит отнести меньшее количество ухода за ними.

электромагнитные и емкостные

Если открыть объемы и нормы испытаний электрооборудования на странице ТНов, то можно увидеть, что трансформаторы напряжения там разделяются на электромагнитные и емкостные. В чем же состоит различие этих типов оборудования.

Электромагнитными считаем все ТНы в которых преобразование происходит по принципу, описанному выше (магнитные потоки, ЭДС и так далее). Индукционный ток, в брошюрах западных производителей их называют индуктивными, в противоположность емкостным. По моему всё именно так.

А вот емкостные трансформаторы напряжения, или же всё таки емкостные делители напряжения… Тут история умалчивает. Принцип работы такого оборудования можно понять, если нарисовать схему.

Вот, например схема ТН марки НДЕ-М. Они выпускаются на напряжение выше 110кВ. Состоит из емкостного делителя и электромагнитного устройства. Емкостной делитель состоит из конденсаторов С1 и С2. Принцип емкостного делителя в следующем. Напряжение линии Л делится обратно пропорционально величинам емкостей С1 и С2. То есть мы подключаем к С2 наш ТН и напряжение на нем пропорционально входному, которое идет по Л, но гораздо меньше его. Раз рассматриваем НДЕ, то вот табличка величин напряжения для разных классов оборудования.

Электромагнитное устройство состоит из понижающего трансформатора, реактора и демпфера.

Реактор предназначен для компенсации емкостного сопротивления и следовательно уменьшения погрешности.

Электромагнитный демпфер предназначен для устранения субгармонических колебаний, которые могут возникать при включениях и коротких замыканиях в обмотках ТНа.

Чем выше класс напряжения, тем емкостные трансформаторы напряжения выгоднее своих собратьев. За счет снижения размеров изоляции и материалов.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

pomegerim.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о