Трансформатор напряжение: Трансформаторы напряжения: устройство, принцип действия, виды

Содержание

Что такое трансформатор напряжения / Описание

Трансформатор напряжения это электромагнитное устройство которое предназначено для преобразования одного переменного напряжения в переменное напряжение которое имеет другое назначение.  Иными словами говоря с помощью трансформатора напряжения происходит соединение цепей высокого и низкого напряжения. Кроме вышесказанного трансформаторы напряжения также применяют для обеспечения безопасности жизни персонала который занимается периодическим проведением обслуживающих профилактических и ремонтных работ на вторичных цепях трансформаторной подстанции. Также трансформатор тока исполняет важную роль в защите реле и приборов от высокого напряжения.

Трансформаторы тока ЗНОЛ-СЭЩ

Трансформатор напряжения работает на повышение или понижения электрической энергии, от сюда и исходят его два основных вида: трансформаторы понижающего и трансформаторы повышающего типа. Благодаря именного трансформатору напряжения конечный потребитель получает электрическую энергию нужного значения.

Трансформаторы напряжения имеют для своего обозначения следующие аббревиатуры:

  • ТН — трансформатор напряжения
  • Т — трансформатор трехобмотачный
  • Д и Е — делитель имеющий определенную емкость
  • Т и О — буквы  обозначающие количество фаз
  • З — наличие в трансформаторе напряжения заземляющего вывода
  • Л — литая изоляция трансформатора
  • С — сухая изоляция трансформатора
  • У1 — климатическое исполнение и категория размещения
  • М — естественное охлаждение трансформатора
  • И — трансформатор содержит дополнительные подключенные к нему приборы
  • К — дополнительная обмотка

Устройство трансформатора напряжения является относительно простым. Конструктивно он состоит из сердечника (магнитопровода), который собран из изолированных листов специальной электротехнической стали, и расположенных в нем обмоток, как правило не менее двух. Применение изолированной электротехнической стали в сердечнике трансформатора напряжения обуславливается тем, что благодаря ей снижаются вихревые токи.

Трансформаторы напряжения имеют различные виды, которые отличаются друг от друга своим внутренним строением, областью применения и характеристиками. Об этом по порядку.

Виды трансформаторов напряжения:

  1. Заземляемый трансформатор напряжения. Является электромагнитным однофазным или трехфазным устройством. Свое название заземляемый трансформатор напряжения получил из за одной особенности, один конец трансформатора напряжения, а именно нейтраль первичной обмотки подвергается обязательному заземлению.
  2. Двухобмотачный трансформатор напряжения. Имеет в своем внутреннем строении два вида обмоток: первичную и вторичную.
  3. Каскадный трансформатор напряжения. Внутренне строение каскадного трансформатора напряжения представляет собой первичную обмотку строго разделенную на определенное число секций. Свое название каскадный трансформатор напряжения он получил именно из за секций которые расположены в виде каскада на разном уровне от земли. Соединение всех этих составляющих частей между собой происходит с помощью дополнительных связующих обмоток.
  4. Емкостный трансформатор напряжения. Свое название емкостный трансформатор напряжения получил из за дополнительной встраиваемой в него детали — емкостного делителя.
  5. Трансформатор напряжения малой мощности. Служит в основном для питания различной бытовой техники, а также используется для различных электронных устройств в их схемах.
  6. Силовой трансформатор напряжения. Имеют большую мощность. Область их применения это сфера электроснабжения. Делятся на два вида: повышающего и понижающего. Повышающий силовой трансформатор напряжения способен передавать электрическое напряжение на большое расстояние, понижающий силовой трансформатор напряжения работает на уменьшение электрической энергии по потребительской.
  7. Измерительные трансформаторы напряжения. Применяются для измерительных целей, а также предназначены для расширения пределов измерения электронных приборов.
  8. Не заземляемый трансформатор напряжения. Данный вид трансформатора получил свое название из за того что он не подвергается заземлению. В не заземляемом трансформаторе в обязательном порядке изолируются все уровни включая и зажимы. Отдельные части трансформатора нужно поднимать на некоторую высоту, высота поднимаемых частей зависит напрямую от уровня напряжения. Конструкция не заземляемого трансформатора напряжения располагается полностью на поверхности земли.
  9. Трехобмотачный трансформатор напряжения. Имеет в своем строении одну первичную обмотку и две вторичные.

Трансформатор

Трансформатор состоит из двух отдельных обмоток, называемых первичной и вторичной обмотками. Входное напряжение переменного тока прикладывается к первичной обмотке и создает изменяющееся магнитное поле. Это магнитное поле взаимодействует со вторичной обмоткой, индуцируя в ней напряжение переменного тока (точнее, ЭДС). Напряжение, индуцируемое во вторичной обмотке, имеет ту же частоту, что и входное напряжение, но его амплитуда определяется соотношением числа витков вторичной и первичной обмоток.

Если входное напряжение на выводах первичной обмотки = V1
выходное напряжение на выводах вторичной обмотки = V2
число витков первичной обмотки = T1
число витков вторичной обмотки = T2

то

Кроме того, I1/ I2 = T1/ T2, где I1 и I2 – токи первичной и вторичной обмоток соответственно.

 

Коэффициент полезного действия (КПД) трансформатора

Приведенные выше соотношения предполагают, что трансформатор имеет 100%-ный КПД, т. е. полностью отсутствуют какие-либо потери мощности. Следовательно,
Входная мощность I1•V1 = Выходная мощность I2•V2.
На практике трансформаторы имеют КПД около 96-99%. Для увеличения КПД трансформатора его первичная и вторичная обмотки наматываются на одном магнитном сердечнике (рис. 7.10).

 

Повышающий и понижающий трансформаторы

Повышающий трансформатор вырабатывает на выходе (во вторичной обмотке) более высокое напряжение, чем приложено на входе (к первичной обмотке). Для этого число витков вторичной обмотки делается больше числа витков первичной обмотки.
Понижающий трансформатор вырабатывает на своем выходе меньшее напряжение, чем на входе, поскольку его вторичная обмотка имеет меньшее число витков по сравнению с первичной.

 

Коэффициент приведения сопротивления

Трансформатор, изображенный на рис. 7.11, имеет в цепи вторичной обмотки нагрузочный резистор r2. Сопротивление r2 можно пересчитать или, как говорят, привести к первичной обмотке, т. е. к сопротивлению трансформатора r1 со стороны первичной обмотки. Отношение r1/ r2 называется коэффициентом приведения сопротивления. Этот коэффициент можно рассчитать следующим образом. Поскольку r1 = V1 / I1 и r2 = V2 / I2, то

Рис. 7.10. Трансформатор.

Рис. 7.11. Коэффициент приведения
сопротивления


r1/ r2 = Т12/ Т22 = n2.

Рис. 7.12. Автотрансформатор.

 


Рис. 7.13. Автотрансформатор с несколькими отводами.

 

Но V1 / V2 = T1 / T2 = n и I2 / I1 = T1 / T2 = n, поэтому

r1 / r2 = n2

Например, если сопротивление нагрузки r2 = 100 Ом и отношение числа витков обмоток (коэффициент трансформации) T1 / T2 = п = 2 : 1, то со стороны первичной обмотки трансформатор можно рассматривать как резистор с сопротивлением r1 = 100 Ом • 22 = 100 • 4 = 400 Ом.

 

Автотрансформатор

Трансформатор может иметь одну-единственную обмотку с одним отводом от части витков этой обмотки, как показано на рис. 7.12. Здесь T1 — число витков первичной обмотки и T2 — число витков вторичной обмотки. Напряжения, токи, сопротивления и коэффициент трансформации определяются теми же формулами, которые применимы к обычному трансформатору.

На рис. 7.13 показан еще один трансформатор с единственной обмоткой, в котором сделано несколько отводов от этой обмотки. Все соотношения для напряжений, токов и сопротивлений по-прежнему определяются коэффициентом трансформации (V1/Va = Т1/Тa, V1/Vb = Т1/Тb и т. д.).

 

Трансформатор с отводом от средней точки вторичной обмотки

На рис. 7.14 изображен трансформатор с отводом от середины его вторичной обмотки. С верхней и нижней половин вторичной обмотки снимаются выходные напряжения Va и Vb, Отношение входного напряжения (на первичной обмотке) к каждому из этих выходных напряжений определяется отношением числа витков, причем

V1/Va = Т1/Тa V1/Vb = Т1/Тb

где Т1, Тa и Тb — число витков первичной, вторичной а и вторичной b обмоток соответственно. Поскольку отвод сделан от середины вторичной обмотки, напряжения Va и Vb равны по амплитуде. Если средняя точка заземлена, как в схеме на рис. 7.14, то выходные напряжения, снимаемые с двух половин вторичной обмотки, находятся в противофазе.


Пример

Обратимся к рис. 7.15. (а) Рассчитайте напряжение между выводами В и С трансформатора, (б) Если между выводами А и В намотано 30 витков, то сколь¬ко всего витков имеет вторичная обмотка трансформатора?
Решение
a) VBC = VAD – VAB – VCD = 36 В – 6 В – 12 В = 18 В.
Число витков между А и В
b) VAB / VAD == ———————————————
Число витков между А и D

Следовательно, 6 В/36 В = 30/ TAD, отсюда TAD = 30 • 36/6 = 180 витков.

Рис. 7.14. Трансформатор с отводом от средней точки вторичной обмотки.

Рис. 7.15. VAD = 36 В, VAB = б В,
VCD = 12 В.

 

Магнитная цепь

Принято говорить, что в магнитной цепи магнитный поток (или магнитное поле), измеряемый в теслах, создается силой, называемой магнитодвижущей силой (МДС). Магнитная цепь обычно сравнивается с электрической цепью, причем магнитный поток сопоставляется с током, а магнитодвижущая сила с электродвижущей силой. Точно так же, как говорят о сопротивлении R электрической цепи, можно говорить о магнитном сопротивлении S магнитной цени; эти понятия имеют аналогичный смысл. Например, такой магнитомягкий материал, как ковкое железо, обладает низким магнитным сопротивлением, т. е. низким сопротивлением для магнитного потока.

 

Магнитная проницаемость

Магнитная проницаемость материала это мера легкости его намагничивания. Например, ковкое железо и другие электромагнитные материалы, такие, как ферриты, обладают высокой магнитной проницаемостью. Эти материалы применяются в трансформаторах, катушках индуктивности, реле и ферритовых антеннах. В отличие от них немагнитные материалы имеют очень низкую магнитную проницаемость. Магнитные сплавы, такие, как кремнистая сталь, обладают способностью сохранять состояние намагниченности в отсутствие магнитного поля и поэтому применяются в качестве постоянных магнитов в громкоговорителях (динамических головках), магнитоэлектрических измерительных приборах с подвижной катушкой и т. д.

 

Экранирование

Рассмотрим полый цилиндр, помещенный в магнитное поле (рис. 7.16). Если этот цилиндр изготовлен из материала с низким магнитным сопротивлением (магнитомягкого материала), то магнитное поле будет концентрироваться в стенках цилиндра, как показано на рисунке, не попадая в его внутреннюю область.

Рис. 7.16. Магнитное экранирование.

Рис. 7.17. Электростатическое экранирование в трансформаторе.

Следовательно, если в эту область поместить какой-либо предмет, он будет защищен (экранирован) от влияния магнитного поля в окружающем пространстве. Такое экранирование, называемое магнитным экранированием, применяется для защиты от внешних магнитных полей электронно-лучевых трубок, магнитоэлектрических измерительных приборов с подвижной катушкой, динамических головок громкоговорителей и т. п.
В трансформаторах иногда применяется другой тип экранирования, называемый электростатическим или электрическим экранированием. Между первичной и вторичной обмотками трансформатора размещается экран из тонкой медной фольги, как показано на рис. 7.17. При заземлении такого экрана сильно уменьшается влияние емкости между обмотками, которая возникает из-за разности потенциалов этих обмоток. Электростатическое экранирование применяется также в коаксиальных кабелях и всюду, где проводники имеют разные потенциалы и находятся в непосредственной близости друг от друга.

В этом видео рассказывают о том, что такое трансформатор:

Добавить комментарий

Что такое трансформатор напряжения?

Главной транспортной системой электроэнергии являются высоковольтные сети. Именно от них электричество поступает к коммунальным службам, на производства и в жилые дома. Однако конечные потребители не используют электроэнергию с высоким напряжением в чистом виде. Большинство энергоснабжающих систем нуждается в понижении напряжения до определенного уровня. Именно эта функция возлагается на трансформатор напряжения.

Свое применение трансформаторы напряжения нашли в таких отраслях как жилищная сфера и коммунальное хозяйство, системы освещения и сигнализации. Без трансформаторов напряжения не обходится ни одно производство, где для питания станочного оборудования и других электротехнических устройств требуется стабильное пониженное напряжение. В частности, понижающий трансформатор незаменим в тяжелой промышленности, металлургии, на предприятиях нефтеперерабатывающей и химической отрасли, в медицинских и научных лабораториях, в системах измерения и контроля. Суда, сухогрузы, плавсооружения и другие транспортные средства также используют трансформаторы напряжения. В общем, для работы практически любого промышленного, коммунального и прочего оборудования необходим понижающий трансформатор.

Принцип работы

Суть работы трансформатора напряжения достаточно проста и заключается в том, чтобы преобразовывать высоковольтное напряжение до стандартного значения. С этой целью электрический ток с высоковольтных проводов подается на первичную обмотку с большим числом витков. А выходное напряжение, т.е. уже пониженное до нужного значения, берется с одной или нескольких вторичных обмоток. Между собой обмотки соединены специальным магнитопроводом. В соответствие с правилами безопасности один из выходов вторичной обмотки обязательно должен быть заземлен.

Основные параметры

Любой трансформатор напряжения имеет строго определенные параметры. Главными из них являются напряжение первичной и вторичной обмотки, либо основной вторичной обмотки, если таковых несколько. Не менее существенным можно считать номинальную и максимальную мощность трансформатора. Также к числу основных параметров относится напряжение короткого замыкания, которое указывается в процентах. Если понижающий трансформатор предназначен для измерений, то в дополнение к основных параметрам он характеризуется классом точности в диапазоне значений от 0,1 до 3,0. А защитные трансформаторы напряжения, используемые в системах автоматики и сигнализации, соответствуют классу точности 3P или 6P.

Конструкция

По конструкции данные устройства можно разделить на трехфазный и однофазный трансформатор. Трехфазные модели предназначены, как правило, для электропитания силового промышленного оборудования и станков. Однофазный трансформатор имеет более широкую сферу применения, он может быть использован для контрольно-измерительных, сварочных, строительных, коммунальных и бытовых нужд, а также для целого ряда других сфер.

Конструкция трансформатора различается и по числу обмоток. Так, можно выделить одно-, двух-, трех- и многообмоточные трансформаторы. Наличие нескольких вторичных обмоток позволяет использовать понижающий трансформатор для работы сразу нескольких видов потребителей. Например, для одновременного электропитания инструмента (220В и 110В), низковольтных осветительных приборов (24В), систем автоматики и сигнализации (12В).

По виду используемого охладителя трансформатор напряжения может быть в сухом или масляном исполнении. Сухая система охлаждения предназначена для энергосистем с напряжением до тысячи вольт. Если в масляных конструкциях для изоляции и охлаждения обмоток с магнитопроводом служит трансформаторное масло, то для изоляции в сухих трансформаторах используют электрокартон. Зато понижающий трансформатор с сухой системой охлаждения более прост в эксплуатации, обслуживании и ремонте.

В зависимости от назначения можно выделить измерительные, силовые, импульсные трансформаторы, а также более специфические — автотрансформаторы и пиковые трансформаторы напряжения. Одной из разновидностей силовых трансформаторов является регулируемый трансформатор. Особенность его конструкции заключается в том, что обмотки состоят из нескольких катушек с одинаковым числом витков. Благодаря этому регулируемый трансформатор позволяет изменять выходную мощность равными частями в пределах от номинального до максимального напряжения.

От чего зависит напряжение на выходе трансформатора

Автор: Владимир Васильев · Опубликовано 20 января 2016 · Обновлено 29 августа 2018

Своим появлением трансформатор обязан английскому ученому Майклу Фарадею. В 1831 году физик описал явление, которое назвал «электромагнитная индукция». Оно заключается в том, что в близко расположенных катушках (обмотках) проявляется ярко выраженная

электромагнитная взаимосвязь. То есть, если в первой катушке (первичной обмотке) создать переменный ток, то во второй катушке (вторичной обмотке) возбуждается напряжение с аналогичной частотой и мощностью, зависящей от многих параметров, которые рассмотрим далее.

Трансформаторы напряжения назначение и принцип действия

Трансформаторы напряжения предназначены для преобразования энергии источника напряжения в напряжение с нужным нам значением (амплитудой). Нужно заметить, что такие трансформаторы работают только с переменным напряжением и его частота остается неизменной.

Для чего нужен трансформатор напряжения?

Трансформаторы напряжения, в силу своей универсальности, необходимы в блоках питания, устройствах обработки сигналов, передающих устройствах, аппаратах передачи электроэнергии и во многом другом оборудовании.

По коэффициенту трансформации эти устройства могут делиться на 3 типа:

  1. трансформатор напряжения понижающий – на выходе устройства напряжение ниже входного (n>1), например, применяется в блоках питания;
  2. повышающий трансформатор – на выходе устройства напряжение выше, чем напряжение на входе (n Как работает трансформатор напряжения?

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения.

Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n». Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличается трансформатор тока от трансформатора напряжения?

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы напряжения и тока

При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Дополнительная информация

Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству. Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести. Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

Большинство электрических бытовых устройств работает от сети питания 220 В. Иногда необходимо понизить это напряжение до определенного значения, чтобы подключить низковольтные потребители нагрузки. Такими потребителями могут быть галогенные светильники, низковольтные нагреватели, светодиодные ленты и множество других.

Такое снижение напряжение могут выполнить понижающие трансформаторы, которые приобретают в магазине, или изготавливают самостоятельно. Такие трансформаторы популярны в электротехнике и радиоэлектронике, а также в бытовых условиях.

Особенности конструкции

Основной частью трансформатора выступает ферромагнитный сердечник, на котором расположены две обмотки, намотанные медным проводником. Эти обмотки разделяют на первичную и вторичную, в зависимости от принципа действия. На первичную обмотку подается сетевое напряжение, а с вторичной – снимается пониженное напряжение для потребителей нагрузки.

Обмотки связаны между собой переменным магнитным потоком, который наводится в ферромагнитном сердечнике. Между обмотками нет электрического контакта. Первичная обмотка имеет большее количество витков, чем вторичная. Поэтому напряжение на выходе понижено.

Обычно понижающие трансформаторы со всеми элементами находятся в корпусе. Однако не все модели его имеют. Это зависит от фирмы изготовителя, а также назначения понижающего трансформатора.

Обозначение на схеме

Принцип действия

Работу понижающего трансформатора можно описать следующим образом. Действие трансформатора основывается на принципе электромагнитной индукции. Напряжение, подключенное на первичную обмотку, образует в ней магнитное поле, которое пересекает витки вторичной обмотки. В ней образуется электродвижущая сила, под действием которой возникает напряжение, отличное от входного напряжения.

Разница в количестве витков первичной и вторичной обмоток определяет разницу между входным и выходным напряжением понижающего трансформатора. В процессе функционирования трансформатора возникают некоторые потери электроэнергии, которые неизбежны, и составляют около 3% мощности.

Чтобы вычислить точные величины параметров трансформатора, нужно сделать определенные расчеты его конструкции. Электродвижущая сила может возникать при подключении трансформатора только к переменному току. Поэтому большинство бытовых электрических устройств работает от сети переменного тока.

Понижающие трансформаторы входят в состав многих блоков питания, стабилизаторов и других подобных устройств. Некоторые модели трансформаторов могут содержать несколько выводов на вторичной обмотке для разных групп соединений. Такие виды приборов стали популярными, так как являются универсальными, и обладают многофункциональностью.

Разновидности

Понижающие трансформаторы имеют различные исполнения, в зависимости от конструкции и принципа действия.

  • Тороидальные . Такой вариант модели трансформатора (рисунок «а») также применяется для незначительных мощностей, имеет сердечник формы в виде тора. Он отличается от других моделей малым весом и габаритами. Применяется в радиоэлектронных устройствах. Его конструкция позволяет достичь более высокой плотности тока, так как обмотка хорошо охлаждается на всем сердечнике, показатели тока намагничивания самые низкие.
  • Стержневые . На рисунке «б» изображен стержневой вид трансформатора, в конструкции которого обмотки охватывают сердечники магнитопровода. Такие модели чаще всего выполняют для средней и большой мощности приборов. Их устройство довольно простое и дает возможность легче изолировать и ремонтировать обмотки. Их преимуществом является хорошее охлаждение, вследствие чего требуется меньше проводников для обмоток.
  • Броневые . В этом виде трансформатора (рисунок «в») магнитопровод охватывает обмотки в виде брони. Остальные параметры идентичны стержневому виду, за исключением того, что броневые трансформаторы в основном выполняют маломощными, так как они имеют меньший вес и цену в сравнении с предыдущим вариантом, из-за простой сборки и меньшего количества катушек.
  • Многообмоточные . Наиболее популярными являются двухобмоточные 1-фазные понижающие трансформаторы.

Для получения нескольких различных величин напряжений от одного трансформатора применяют несколько вторичных обмоток на сердечнике. Эти обмотки разные по числу витков и выдаваемому напряжению.

  • Трехфазные . Такая модель применяется для понижения напряжения трехфазной сети. Такие понижающие трансформаторы применяются не только в промышленности, но и для бытовых нужд.

Они могут быть изготовлены из 3-х однофазных трансформаторов на общем сердечнике. Магнитные потоки всех фаз в сумме равны нулю. Промышленные образцы проходят испытания по определенным параметрам. Результаты испытаний сравнивают с документацией. Если нет соответствия, то трансформатор подлежит выбраковке. 3-фазный трансформатор имеет соединение обмоток по схеме треугольника или звезды. Схема звезды характерна общим узлом выводов всех фаз. Соединение треугольником выполняется последовательной схемой фаз в кольцо.

  • Однофазные . Такие трансформаторы имеют подключение питания от однофазной сети, фаза и ноль поступают на одну первичную обмотку. Принцип их работы аналогичен всем остальным видам трансформаторов. Это наиболее популярный вид устройств.

Основные свойства

Маркировка трансформаторов зависит от его свойств. Основными свойствами понижающих трансформаторов являются:

  • Мощность.
  • Напряжение выхода.
  • Частота.
  • Габаритные размеры.
  • Масса.

Частота тока для разных моделей трансформаторов будет одинаковой, в отличие от других перечисленных характеристик. Габаритные размеры и масса будут больше при повышении мощности модели. Максимальная величина мощности у промышленных образцов понижающих трансформаторов, так же как габаритные размеры и масса.

Напряжение на выходе вторичных обмоток может быть различным, и зависит от назначения прибора. Модели трансформаторов для бытовых нужд имеют малые габариты и вес. Их легко устанавливать и перевозить.

Обмотки трансформатора

Обмотки находятся на магнитопроводе прибора. Ближе к сердечнику располагают низковольтную обмотку, так как ее легче изолировать. Между обмотками укладывают изоляционные прокладки и другие диэлектрики, например электротехнический картон.

Первичная обмотка соединяется с сетью питания переменного напряжения. Вторичная обмотка выдает низкое напряжение и подключается к потребителям электроэнергии. К одному трансформатору можно подключать сразу несколько бытовых устройств.

Для намотки катушек применяют изолированные провода, с изоляцией каждого слоя кабельной бумагой. Проводники бывают различных форм сечения:

  • Круглая.
  • Прямоугольная (шина).

По способу намотки обмотки делят:

  • Концентрические, на стержне.
  • Дисковые, намотанные чередованием.
Достоинства и недостатки

Достоинства

  • Применение понижающих трансформаторов, как в промышленности, так и в домашних условиях можно объяснить необходимостью уменьшения рабочего напряжения до 12 вольт для создания безопасности человека.
  • Другой причиной применения низкого напряжения является нетребовательность трансформаторов к значению входного напряжения, так как они могут функционировать, например, при 110 В, при этом обеспечивая стабильное напряжение на выходе.
  • Компактные размеры.
  • Малая масса.
  • Удобство транспортировки и монтажа.
  • Отсутствие помех.
  • Плавная регулировка напряжения.
  • Незначительный нагрев.

Недостатки

  • Недолгий срок службы.
  • Незначительная мощность.
  • Высокая цена.
Как выбрать понижающие трансформаторы

Торговая сеть электротехнических изделий предлагает модели бытовых понижающих трансформаторов на все случаи жизни. При выборе конкретного устройства, рекомендуется воспользоваться следующими критериями выбора:

  • Величина напряжения на входе. На корпусе устройства обычно есть маркировка входного напряжения 220, либо 380 вольт. Для бытовой сети подходит модель на 220 В.
  • Величина напряжения выхода. Зависит от назначения и применения устройства. Обычно это 12 или 36 вольт, о чем также должна быть маркировка.
  • Мощность устройства. Чтобы правильно подобрать стабилизатор по мощности, нужно сложить мощности всех планируемых к подключению потребителей, и добавить резервное значение 20%.
Эксплуатация и ремонт

Основным условием правильной и надежной эксплуатации понижающего трансформатора является специально оборудованное место для его монтажа и функционирования.

Понижающие трансформаторы необходимо содержать в чистоте, сухом виде, защищать от пыли и влаги. В домашних бытовых условиях для трансформатора используют специальный шкаф или металлический корпус. Заземление для понижающего трансформатора является обязательным условием.

Трансформатор требует периодического обслуживания и ухода, в зависимости от выполняемых им задач и условий эксплуатации.

Чаще всего обслуживание включает в себя следующие работы:

  • Наружный осмотр, очистка от пыли и грязи.
  • Осмотр деталей уплотнения, колец, прокладок, подтяжка клемм.
  • Проверка изоляции на пробой.

В трансформаторе могут появиться неисправности и повреждения обмоток в виде трещин секций катушек. При этом не требуется демонтировать трансформатор. На поврежденную изоляцию накладывают лакоткань. При серьезных неисправностях, связанных с обрывом или коротким замыканием, осуществляют снятие трансформатора и его ремонт в электромастерской.

Трансформатор относится к категории статических электромагнитных устройств, способных преобразовывать переменный ток с одним значением напряжения в переменный ток с другим напряжением, сохраняя при этом одну и ту же частоту. Эти приборы успешно используются в электрических сетях для передачи и распределения энергии, а также являются неотъемлемой частью многих электроустановок. В связи с этим, особенно актуальным становится вопрос, как работает трансформатор, в зависимости от количества обмоток, фаз, способов охлаждения и других конструктивных особенностей, от которых напрямую зависит применение данных устройств.

Действие понижающего трансформатора

Существуют различные типы понижающих трансформаторов. Они могут быть одно-, двух- или трехфазными, что позволяет использовать их в различных областях энергетики. Конструкция этих устройств включает в себя две обмотки и шихтованный сердечник, для изготовления которого используется электротехническая сталь. Отличительной особенностью понижающего трансформатора является различное число витков в первичной и вторичной обмотке. Для того, чтобы правильно использовать устройство, нужно хорошо представлять себе, как работает понижающий трансформатор.

Напряжение, подаваемое на вход трансформатора, вызывает появление в обмотке электродвижущей силы, которая, в свою очередь приводит к возникновению магнитного поля. В результате пересечения этим полем витков второй катушки, в ней появляется собственная электродвижущая сила самоиндукции. Под ее воздействием во второй катушке появляется напряжение, отличающееся от первичного на разницу количества витков в обеих обмотках.

Для определения точных параметров, необходимо выполнить расчеты понижающего трансформатора. Следует учитывать, что возникновение электродвижущей силы самоиндукции возможно лишь под действием переменного напряжения. Поэтому все бытовые электрические сети работают только на переменном токе.

В современных условиях все чаще возникает необходимость в преобразовании высокого напряжения в низкое. Это связано с тем, что электростанции вырабатывают ток высокого напряжения, обеспечивающий потребности какого-то участка. Поэтому на каждом таком участке начальное напряжение преобразуется до значения, допустимого к применению в бытовых условиях. Кроме того, понижающие трансформатора довольно часто используются в бытовых условиях, чтобы адаптировать низковольтные устройства к сетевому току 220В. Они являются конструктивными элементами различных блоков питания, адаптеров, стабилизаторов и других аналогичных устройств.

Приобретая понижающий трансформатор, следует обратить внимание на такие параметры, как мощность и количество витков в обеих обмотках. Необходимо учитывать важный показатель – коэффициент трансформации напряжения. Этот параметр зависит от соотношения количества витков в первичной и вторичной обмотках трансформатора. Таким образом, определяется соотношение напряжений на обеих обмотках.

В понижающем трансформаторе число витков первичной обмотки превышает количество витков во вторичной обмотке, выдающей пониженное выходное напряжение. В некоторых устройствах имеется несколько выводов, означающих наличие сразу нескольких групп соединений. Формирование нужной схемы в них осуществляется в зависимости от величины входного и выходного тока. Такие трансформаторы являются универсальными и многофункциональными, пользующиеся широкой популярностью у потребителей.

Принцип работы трансформатора напряжения

Основная функция трансформаторов напряжения заключается в преобразовании энергии источника в нужное значение напряжение. Данные устройства могут работать лишь при переменном напряжении с неизменной частотой.

В соответствии с коэффициентом трансформации существует три типа трансформаторов напряжения:

  • Понижающий. В этих устройствах напряжение на выходе меньше, чем входное. Используется в блоках питания, стабилизаторах и т.д.
  • Повышающий. Здесь ток на выходе больше, чем на входе. Применяется, в основном, в усилительных устройствах.
  • Согласующий. Работа этих приборов происходит без изменений параметров напряжения, все действия ограничиваются лишь гальванической развязкой. Используется в схемах звуковых усилителей.

Для того чтобы правильно использовать ту или иную конструкцию, необходимо точно знать, как работает трансформатор тока. Известно, что основой работы этих устройств является электромагнитная индукция. Для снижения потерь в процессе трансформации и максимальной передачи энергии в трансформаторах используются магнитопроводы. В конструкции имеется одна первичная катушка, в то время как вторичных катушек бывает несколько, в зависимости от назначения каждого прибора.

После возникновения в первичной обмотке переменного тока, в магнитопроводе появляется магнитный поток, возбуждающий напряжение во вторичной обмотке. Основным параметром считается коэффициент трансформации, равный отношению напряжения в первичной обмотке, к напряжению во вторичной обмотке. Таким же образом соотносится число витков, имеющихся в первой и второй катушках.

С помощью этого коэффициента выполняется расчет параметров для конкретного трансформатора. Например, если в первичной обмотке имеется 2000 витков, а во вторичной – 100, коэффициент трансформации будет равен 20. Следовательно, при входном сетевом напряжении 240 В, выходное напряжение составит 12 В. Таким же способом определяется необходимое количество витков при заданных значениях входного и выходного напряжения.

Одним из типов таких устройств, широко применяемых на практике, являются измерительные трансформаторы напряжения. Они используются в оборудовании, потребляющем большие токи и высокие рабочие напряжения с целью проведения контрольных измерений. С помощью этих устройств, измеряемые величины снижаются до уровня, позволяющего выполнить необходимые замеры.

Трансформатор напряжения — устройство и принцип работы

Что такое трансформатор напряжения

Продолжаем разговор про измерительные трансформаторы. Доброго время суток, дорогой читатель. Статьей раньше я рассказывал про трансформаторы тока. Мы узнали как можно измерять большие величины тока в цепи.Но, есть еще, электрическая величина — напряжение. Так вот, в технике высоких напряжений, измерение производится с помощью двух приборов: трансформатор напряжения и вольтметр. Трансформатор напряжения можно заменить шунтами и добавочными резисторами, но, скажу сразу, это очень трудоемкая штука. К тому же, шунты и добавочные сопротивления получатся громоздкими и дорогими, а прикосновение к ним в сетях высокого напряжения опасно для жизни!

Устройство трансформатора напряжения

Трансформатор напряжения состоит из двух обмоток и сердечника. Обмотки также подразделяются на первичную и вторичную. Вот тут и начинаются различия, если сравнивать трансформатор напряжения с трансформатором тока. Первичная обмотка трансформатора напряжения содержит значительно больше витков, чем вторичная. На первичную обмотку подается напряжение, которое нам нужно измерить а к вторичной обмотке подсоединяется вольтметр.

Принцип работы

Поскольку у вольтметра сопротивление большое, то по вторичной обмотке течет небольшой ток. Можно считать, что трансформатор напряжения работает в режиме холостого хода (трансформатор работает без нагрузки). Фаза вторичного напряжения противоположна фазе первичного. Выводы трансформатора напряжения обозначаются следующим образом: выводы первичной -А, Х, вторичной — а, х. Я много раз сталкивался с трансформаторами напряжения и заметил, что они практически все изготавливаются с номинальным напряжением 100 В на вторичной обмотке.

Маленький совет: в целях безопасности вас и обслуживающего персонала, один зажим вторичной обмотки и стальной кожух трансформатора напряжения обязательно заземлите. Это делается для того, чтобы при пробое изоляции между обмотками провод с высоким потенциалом оказался замкнутым на землю. Еще я заметил, что трансформатор напряжения очень похож на силовой трансформатор маленькой мощности.

Ну вот, в принципе, всё, что сегодня я хотел вам поведать об одной из самой важной теме электротехники — трансформаторе напряжения. Буду рад вас видеть вновь на моем сайте podvi.ru. Много полезного, связанного с электромонтажными работами и электротехникой вы можете найти на карте сайта. Так же, много хороших и полезных марок трансформаторов тока и напряжения, вы можете найти на этом сайте. Пишите комментарии, делитесь своим опытом. Если что-то пропустил, добавляйте в комментариях. Всего вам хорошего.

Трансформатор — напряжение — Большая Энциклопедия Нефти и Газа, статья, страница 4

Трансформатор — напряжение

Cтраница 4

Трансформаторы напряжения употребляются для питания защит, действующих при ненормальных режимах или повреждениях, не сопровождающихся значительными изменениями междуфазных напряжений, и для сигнализации. Применение трансформатора напряжения как источника оперативного тока ограничивается его малой мощностью и вторичным напряжением 100 В, на которое выпускается не вся аппаратура вторичной коммутации.  [46]

Трансформатор напряжения или собственных нужд как единственный источник оперативного тока ненадежен, так как при близких к. Надежность питания вторичных цепей обеспечивается применением на подстанции двух трансформаторов, питающихся от разных секций РУ или от разных вводов.  [47]

Трансформаторы напряжения имеют большое конструктивное сходство с силовыми трансформаторами и служат для питания цепей напряжения различных приборов ( ваттметров, счетчиков и других) и реле. Первичные обмотки трансформаторов напряжения включают параллельно в сеть.  [48]

Трансформаторы напряжения изготовляют однофазными и трехфазными. Трехфазные трансформаторы бывают трех — или пятистержневыми. Схемы включения однофазных и трехфазных трансформаторов напряжения выбирают в зависимости от системы сети, исполнения трансформатора и его назначения в данной электроустановке.  [49]

Трансформатор напряжения, цепи которого нужно проверить, отключается с высокой стороны от сети, и вместо отводов Ж — 3 подается напряжение 220 или 380 В. При этом вся вторичная схема цепей напряжения должна быть собрана, приборы и реле подключены, автоматические выключатели или плавкие вставки предохранителей должны нормально замыкать цепь, вспомогательные контакты разъединителей должны быть включены. Теперь, проходя повеем цепям напряжения, проверяют, что во вторичных цепях только данного трансформатора и только в тех, которые имеют марки А600 и В600, появилось уменьшенное напряжение с известным коэффициентом трансформации. Аналогичную проверку следует проделать и для сочетания других напряжений: 3 — К и Ж — Я.  [50]

Трансформатор напряжения в этом случае был бы непригоден, так как в момент короткого замыкания напряжение сети падает, и питание отключающей катушки от него не может быть надежно обеспечено.  [52]

Трансформаторы напряжения служат для присо единения к ним обмоток напряжения измерительных приборов и рел ( вольтметров, счетчиков, ваттметров, реле напряжения, мощности и др.) Трансформаторы тока.  [54]

Трансформаторы напряжения строят, как правило, на номинальное вторичное напряжение 100 в. Вторичные обмотки трансформаторов напряжения и их корпуса заземляют.  [56]

Трансформаторы напряжения, как правило, защищают плавкими предохранителями.  [57]

Трансформаторы напряжения имеют такую же конструкцию, как и силовые трансформаторы, и также включаются в сеть, но отличаются от них меньшими размерами и предназначены для питания обмоток напряжения счетчиков, вольтметров, реле напряжения, ваттметров.  [58]

Трансформаторы напряжения перед их монтажом на территории ОРУ подлежат внешнему и внутреннему осмотру, при котором вынимают их сердечники.  [59]

Трансформаторы напряжения ( рис. 106, о) конструктивно представляют собой обычные трансформаторы малой мощности.  [60]

Страницы:      1    2    3    4    5

схемы соединения и принцип работы

Трансформатор напряжения – предназначен для понижения первичного напряжения до значений удобных для измерительных приборов и реле, а также для отделения цепей измерений и защиты от первичных цепей высокого напряжения. Используется в цепях переменного тока частотой 50 или 60 Гц с номинальными напряжениями от 0,22 до 750 кВ.

Высоковольтный ТН(слева) и низковольтный ТН(справа)

Принцип работы

Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и 1-ой или 2-х вторичных обмоток(конструкцию конкретного устройства можно посмотреть в паспорте или каталоге от производителя).

В результате изготовления должен быть достигнут необходимый класс точности по:

  • амплитуде,
  • углу.

Измерительный трансформатор напряжения по принципу работы не отличается от силового понижающего трансформатора или от трансформатора тока.

Ещё раз опишем работу трансформатора тока. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток, который пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключить нагрузку, то по ней начнёт течь ток, который возникает из-за действия ЭДС(электродвижущая сила). ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе.

Принцип работы трансформатора

Такие устройства работаю только на переменном напряжение. Если на ТН подавать постоянное напряжение, т.к. ЭДС не будет создаваться постоянным магнитным потоком.

Расшифровка ТН

Расшифровка маркировки:

  • Н — трансформатор напряжения;
  • Т — трёхфазный;
  • О — однофазный;
  • С — сухой;
  • М — масляный;
  • К — каскадный либо с коррекцией;
  • А — антирезонансный;
  • Ф — в фарфоровом корпусе;
  • И — контроль Изоляции;
  • Л — в литом корпусе из эпоксида;
  • ДЕ — с ёмкостным делителем напряжения;
  • З — с заземляемой первичной обмоткой.

Коэффициент трансформации

Коэффициент трансформации – показывает во сколько раз увеличивается или уменьшается первичное значение напряжение.

Формула по вычислению коэффициента трансформации

Вторичное напряжение

Напряжения на вторичной обмотки:

  • 100 В,
  • 100/√3 В,
  • 100/3.

Классы точности

Классы точности:

  • 0,1;
  • 0,2;
  • 0,5 – применяется для измерений;
  • 1,0;
  • 3,0;
  • 3Р или 6Р – предназначены для защиты, управление, автоматика или сигнализация.

Номинальные мощности трансформаторов для любого класса точности следует выбирать из ряда(В·А): 10; 15; 25; 30; 50; 75; 100; 150; 200; 300; 400; 500; 600; 800; 1000; 1200.

Виды и классификации

Основные классификации трансформаторов:

  1. По числу фаз.
  2. По наличию или отсутствию заземления вывода,
  3. По принципу действия.
  4. По числу ступеней трансформации.
  5. По наличию компенсационной обмотки или обмотки для контроля изоляции сети.
  6. По виду изоляции:
  7. По особенностям конструктивного исполнения.
Старый 3-х фазный масляный ТН

Место установки:

  • наружная,
  • внутренняя,
  • встроенный в силовой трансформатор,
  • установка отдельным элементом.

Основные признаки трансформаторов и их обозначения приведены в таблице:

Трёхобмоточный трансформатор следует изготовлять с двумя вторичными обмотками:

  • основной,
  • дополнительной.

Условия выбора ТН

Устройство выбирается по следующим критериям:

  1. Номинальное напряжение ТН = Напряжение уставки.
  2. Схема соединение обмоток должна совпадать со схемой приборов.
  3. По классу точности.
  4. Вторичной нагрузке ТН ⩽ нагрузке приборов.

Более подробно можете прочитать в учебнике(со страницы 301): Смотреть

Режим работы

ТН работает в режиме близко к холостому ходу, так как нагрузка на выходную катушку минимальная.

Цена трансформаторов напряжения

Цены сильно зависят от конструкции и класса напряжения:

  • 0,66 кВ(660В) – от 1 000 до 15 000 руб,
  • 10 кВ,
  • 35 кВ,
  • 110 кВ и выше цены нужно уточнять у производителей.

Схемы подключения

Схемы соединений однофазных ТН:

Схемы соединений трёхфазных ТН:

Схемы и группы соединений обмоток трёхфазных трёхобмоточных трансформаторов с основной и дополнительной вторичными обмотками

Испытания на устойчивость к токам короткого замыкания

К первичным обмоткам трансформаторов подводят напряжение, равное 0,9-1,05 номинального, при разомкнутых вторичных обмотках. Затем одну из вторичных обмоток с помощью специального устройства закорачивают и выдерживают режим в течение 1 с. При этом напряжение на выводах первичной обмотки должно сохраняться в указанных пределах.

Видео

Видео про трансформатор напряжения ЗНОЛ.06-10.

Основы работы с трансформаторами и принципы работы с трансформаторами

Одна из основных причин, по которой мы используем переменные напряжения и токи переменного тока в наших домах и на рабочих местах, заключается в том, что источники переменного тока можно легко генерировать при подходящем напряжении, преобразовывать (отсюда и название трансформатор) в гораздо более высокие напряжения, а затем распространять по стране с использованием национальная сетка пилонов и кабелей на очень большие расстояния.

Причина преобразования напряжения на гораздо более высокий уровень заключается в том, что более высокие напряжения распределения подразумевают более низкие токи при той же мощности и, следовательно, более низкие потери I 2 * R в сетевой кабельной сети.Эти более высокие напряжения и токи передачи переменного тока затем могут быть снижены до гораздо более низкого, безопасного и пригодного для использования уровня напряжения, где его можно использовать для питания электрического оборудования в наших домах и на рабочих местах, и все это возможно благодаря базовому трансформатору напряжения .

Типовой трансформатор напряжения

Трансформатор напряжения можно рассматривать как электрический компонент, а не как электронный компонент. Трансформатор в основном представляет собой очень простое статическое (или стационарное) электромагнитное пассивное электрическое устройство, которое работает по принципу закона индукции Фарадея, преобразуя электрическую энергию из одного значения в другое.

Трансформатор делает это путем соединения двух или более электрических цепей с помощью общей колеблющейся магнитной цепи, которая создается самим трансформатором. Трансформатор работает на принципах «электромагнитной индукции» в форме взаимной индукции.

Взаимная индукция — это процесс, при котором катушка с проволокой индуцирует напряжение в другой катушке, расположенной в непосредственной близости от нее. Тогда мы можем сказать, что трансформаторы работают в «магнитной области», а трансформаторы получили свое название от того факта, что они «преобразуют» один уровень напряжения или тока в другой.

Трансформаторы

способны увеличивать или уменьшать уровни напряжения и тока источника питания без изменения его частоты или количества электроэнергии, передаваемой от одной обмотки к другой через магнитную цепь.

Однофазный трансформатор напряжения в основном состоит из двух электрических катушек, одна из которых называется «Первичная обмотка», а другая — «Вторичная обмотка». В этом руководстве мы определим «первичную» сторону трансформатора как сторону, которая обычно принимает питание, а «вторичную» как сторону, которая обычно подает питание.В однофазном трансформаторе напряжения первичной обмоткой обычно является сторона с более высоким напряжением.

Эти две катушки не находятся в электрическом контакте друг с другом, а вместо этого намотаны вместе вокруг общей замкнутой магнитной железной цепи, называемой «сердечником». Этот сердечник из мягкого железа не является твердым, а состоит из отдельных пластин, соединенных вместе, чтобы помочь снизить потери сердечника.

Две обмотки катушки электрически изолированы друг от друга, но магнитно связаны через общий сердечник, что позволяет передавать электрическую мощность от одной катушки к другой.Когда электрический ток проходит через первичную обмотку, создается магнитное поле, которое индуцирует напряжение во вторичной обмотке, как показано.

Однофазный трансформатор напряжения

Другими словами, для трансформатора нет прямого электрического соединения между двумя обмотками катушки, что дало ему название также изолирующий трансформатор . Обычно первичная обмотка трансформатора подключается к источнику входного напряжения и преобразует или преобразует электрическую энергию в магнитное поле.В то время как работа вторичной обмотки заключается в преобразовании этого переменного магнитного поля в электрическую энергию, производящую требуемое выходное напряжение, как показано.

Конструкция трансформатора (однофазный)

  • Где:
  • V P — первичное напряжение
  • V S — вторичное напряжение
  • N P — количество первичных обмоток
  • N S — количество вторичных обмоток
  • Φ (phi) — это потокосцепление

Обратите внимание, что две обмотки катушки не связаны электрически, а связаны только магнитно.Однофазный трансформатор может увеличивать или уменьшать напряжение, подаваемое на первичную обмотку. Когда трансформатор используется для «увеличения» напряжения на его вторичной обмотке относительно первичной, он называется повышающим трансформатором . Когда он используется для «уменьшения» напряжения на вторичной обмотке относительно первичной, он называется понижающим трансформатором .

Однако существует третье условие, при котором трансформатор создает на своей вторичной обмотке такое же напряжение, какое прикладывается к его первичной обмотке.Другими словами, его выход идентичен по передаваемому напряжению, току и мощности. Этот тип трансформатора называется «трансформатором импеданса» и в основном используется для согласования импеданса или изоляции прилегающих электрических цепей.

Разница в напряжении между первичной и вторичной обмотками достигается за счет изменения количества витков катушки в первичной обмотке (N P ) по сравнению с количеством витков катушки на вторичной обмотке (N S ).

Поскольку трансформатор в основном является линейным устройством, теперь существует соотношение между количеством витков первичной катушки, деленным на количество витков вторичной катушки. Это соотношение, называемое коэффициентом трансформации, более широко известно как «коэффициент трансформации» трансформаторов (TR). Это значение коэффициента трансформации определяет работу трансформатора и соответствующее напряжение на вторичной обмотке.

Необходимо знать соотношение количества витков провода на первичной обмотке по сравнению с вторичной обмоткой.Передаточное число витков, которое не имеет единиц измерения, сравнивает две обмотки по порядку и записывается с двоеточием, например 3: 1 (3-к-1). В этом примере это означает, что если на первичной обмотке 3 вольта, то на вторичной обмотке будет 1 вольт, а на 1 вольт — 3 вольта. Тогда мы можем видеть, что если соотношение между числом витков изменится, результирующие напряжения также должны измениться в таком же соотношении, и это правда.

Трансформаторы — все о «соотношениях». Соотношение первичной и вторичной обмоток, отношение входа к выходу и коэффициент трансформации любого данного трансформатора будет таким же, как и его коэффициент напряжения.Другими словами, для трансформатора: «коэффициент трансформации = коэффициент напряжения». Фактическое количество витков провода на любой обмотке, как правило, не важно, просто соотношение витков, и это соотношение дается как:

A Трансформаторы, коэффициент трансформации

Предполагая идеальный трансформатор и фазовые углы: Φ P ≡ Φ S

Обратите внимание, что порядок чисел при выражении трансформаторов коэффициент трансформации очень важен, так как соотношение витков 3: 1 выражает совсем другое соотношение трансформатора и выходное напряжение, чем то, в котором соотношение витков задано как 1: 3 .

Основы трансформатора, пример №1

Трансформатор напряжения имеет 1500 витков провода на первичной обмотке и 500 витков провода на вторичной обмотке. Каким будет коэффициент трансформации (TR) трансформатора.

Это соотношение 3: 1 (3 к 1) просто означает, что на каждую вторичную обмотку приходится три первичные обмотки. По мере того, как соотношение перемещается от большего числа слева к меньшему числу справа, значение первичного напряжения, следовательно, понижается, как показано.

Основы трансформатора, пример №2

Если к первичной обмотке того же трансформатора, указанного выше, приложено 240 В (среднеквадратичное значение), каким будет результирующее вторичное напряжение холостого хода.

Еще раз подтверждая, что трансформатор является «понижающим» трансформатором, поскольку первичное напряжение составляет 240 вольт, а соответствующее вторичное напряжение ниже на 80 вольт.

Тогда основная цель трансформатора — преобразовывать напряжения с заданными соотношениями, и мы можем видеть, что на первичной обмотке есть заданное количество или количество витков (витков провода) на ней, чтобы соответствовать входному напряжению.Если вторичное выходное напряжение должно быть таким же, как входное напряжение на первичной обмотке, то на вторичный сердечник должно быть намотано такое же количество витков катушки, как и на первичном сердечнике, что дает равное соотношение витков 1: 1. (1 к 1). Другими словами, одна катушка включает вторичную обмотку, а другая — первичную.

Если выходное вторичное напряжение должно быть больше или выше, чем входное напряжение (повышающий трансформатор), то на вторичной обмотке должно быть больше витков, обеспечивающих соотношение витков 1: N (1-к-N), где N представляет собой число передаточного числа витков.Аналогичным образом, если требуется, чтобы вторичное напряжение было ниже или ниже первичного (понижающий трансформатор), то количество вторичных обмоток должно быть меньше, обеспечивая соотношение витков N: 1 (N-к-1). .

Действие трансформера

Мы видели, что количество витков на вторичной обмотке по сравнению с первичной обмоткой, соотношение витков, влияет на величину напряжения, доступного от вторичной обмотки. Но если две обмотки электрически изолированы друг от друга, как создается это вторичное напряжение?

Ранее мы говорили, что трансформатор в основном состоит из двух катушек, намотанных на общий сердечник из мягкого железа.Когда переменное напряжение (V P ) прикладывается к первичной катушке, ток течет через катушку, которая, в свою очередь, создает вокруг себя магнитное поле, называемое взаимной индуктивностью , посредством этого протекания тока согласно закону Фарадея из электромагнитная индукция. Сила магнитного поля нарастает по мере увеличения тока от нуля до максимального значения, которое задается как dΦ / dt.

По мере того, как магнитные силовые линии, устанавливаемые этим электромагнитом, расширяются наружу от катушки, сердечник из мягкого железа формирует путь и концентрирует магнитный поток.Этот магнитный поток связывает витки обеих обмоток, когда он увеличивается и уменьшается в противоположных направлениях под влиянием источника переменного тока.

Однако сила магнитного поля, индуцированного в сердечнике из мягкого железа, зависит от силы тока и количества витков в обмотке. Когда ток уменьшается, напряженность магнитного поля уменьшается.

Когда магнитные линии потока проходят вокруг сердечника, они проходят через витки вторичной обмотки, вызывая наведение напряжения во вторичной катушке.Величина индуцированного напряжения будет определяться: N * dΦ / dt (закон Фарадея), где N — количество витков катушки. Также это индуцированное напряжение имеет ту же частоту, что и напряжение первичной обмотки.

Тогда мы можем видеть, что одинаковое напряжение индуцируется в каждом витке катушки обеих обмоток, потому что один и тот же магнитный поток связывает витки обеих обмоток вместе. В результате общее индуцированное напряжение в каждой обмотке прямо пропорционально количеству витков в этой обмотке. Однако пиковая амплитуда выходного напряжения, доступного на вторичной обмотке, будет уменьшена, если магнитные потери сердечника высоки.

Если мы хотим, чтобы первичная катушка создавала более сильное магнитное поле, чтобы преодолеть магнитные потери сердечника, мы можем либо послать через катушку больший ток, либо сохранить тот же ток, и вместо этого увеличить количество витков катушки (N P ) обмотки. Произведение ампер на витки называется «ампер-витки», которое определяет силу намагничивания катушки.

Предположим, что у нас есть трансформатор с одним витком в первичной обмотке и только с одним витком во вторичной.Если один вольт приложен к одному витку первичной катушки, при условии отсутствия потерь, должно протекать достаточно тока и генерироваться достаточно магнитного потока, чтобы индуцировать один вольт в одном витке вторичной обмотки. То есть каждая обмотка поддерживает одинаковое количество вольт на виток.

Поскольку магнитный поток изменяется синусоидально, Φ = Φ max sinωt, то основное соотношение между наведенной ЭДС, (E) в обмотке катушки из N витков определяется выражением:

ЭДС = количество оборотов x скорость изменения

  • Где:
  • ƒ — частота потока в Герцах, = ω / 2π
  • Ν — количество витков катушки.
  • Φ — количество флюса в полотнах

Это известно как уравнение ЭДС трансформатора . Для ЭДС первичной обмотки N будет числом витков первичной обмотки (N P ), а для ЭДС вторичной обмотки N будет числом витков вторичной обмотки (N S ).

Также обратите внимание, что, поскольку трансформаторы требуют переменного магнитного потока для правильной работы, трансформаторы, следовательно, не могут использоваться для преобразования или подачи постоянного напряжения или тока, поскольку магнитное поле должно изменяться, чтобы индуцировать напряжение во вторичной обмотке.Другими словами, трансформаторы НЕ работают с установившимся постоянным напряжением , а только с переменным или пульсирующим напряжением.

Если первичная обмотка трансформатора была подключена к источнику постоянного тока, индуктивное реактивное сопротивление обмотки было бы равно нулю, поскольку постоянный ток не имеет частоты, поэтому эффективное полное сопротивление обмотки будет очень низким и равным только сопротивлению используемой меди. . Таким образом, обмотка будет потреблять очень высокий ток от источника постоянного тока, вызывая ее перегрев и, в конечном итоге, сгорание, потому что, как мы знаем, I = V / R.

Основы трансформатора, пример №3

Однофазный трансформатор имеет 480 витков на первичной обмотке и 90 витков на вторичной обмотке. Максимальное значение плотности магнитного потока составляет 1,1 Тл, когда на первичную обмотку трансформатора подается напряжение 2200 В, 50 Гц. Вычислить:

а). Максимальный поток в сердечнике.

б). Площадь поперечного сечения сердечника.

в). Вторичная наведенная ЭДС.

Так как номинальное вторичное напряжение равно вторичной наведенной ЭДС, другой более простой способ рассчитать вторичное напряжение из отношения витков дается как:

Электрическая мощность в трансформаторе

Еще одним из основных параметров трансформатора является его номинальная мощность. Номинальная мощность трансформатора получается простым умножением тока на напряжение, чтобы получить номинальную мощность в Вольт-ампер , (ВА). Небольшие однофазные трансформаторы могут быть рассчитаны только на вольт-амперы, но более мощные силовые трансформаторы рассчитаны на единицы киловольт-ампер , (кВА), где 1 киловольт-ампер равен 1000 вольт-амперам, а единицы Мега-вольт-ампер , (МВА), где 1 мегавольт-ампер равен 1 миллиону вольт-ампер.

В идеальном трансформаторе (без учета потерь) мощность, доступная во вторичной обмотке, будет такой же, как и мощность в первичной обмотке, они являются устройствами постоянной мощности и не изменяют мощность, а изменяют только отношение напряжения к току. Таким образом, в идеальном трансформаторе коэффициент мощности равен единице, поскольку напряжение V, умноженное на ток, I останется постоянным.

То есть электрическая мощность на одном уровне напряжения / тока на первичной стороне «преобразуется» в электрическую энергию на той же частоте с тем же уровнем напряжения / тока на вторичной стороне.Хотя трансформатор может повышать (или понижать) напряжение, он не может повышать мощность. Таким образом, когда трансформатор увеличивает напряжение, он снижает ток и наоборот, так что выходная мощность всегда равна входной мощности. Тогда мы можем сказать, что первичная мощность равна вторичной мощности (P P = P S ).

Мощность в трансформаторе

Где: Φ P — это первичный фазовый угол, а Φ S — вторичный фазовый угол.

Обратите внимание, поскольку потеря мощности пропорциональна квадрату передаваемого тока, то есть: I 2 R, увеличение напряжения, скажем, удвоение (× 2) напряжения уменьшит ток на ту же величину, (÷ 2) при подаче того же количества мощности на нагрузку и, следовательно, уменьшении потерь в 4 раза. Если бы напряжение было увеличено в 10 раз, ток уменьшился бы в том же разы, уменьшив общие потери в 100 раз.

Основы трансформатора

— КПД

Трансформатору не требуются движущиеся части для передачи энергии.Это означает, что отсутствуют потери на трение или ветер, связанные с другими электрическими машинами. Однако трансформаторы действительно страдают от других типов потерь, называемых «потерями в меди» и «потерями в стали», но, как правило, они довольно малы.

Потери в меди, также известные как I 2 R потери — это электрическая мощность, которая теряется при нагреве в результате циркуляции токов вокруг медных обмоток трансформатора, отсюда и название. Потери в меди представляют собой самые большие потери в работе трансформатора.Фактические потери мощности в ваттах можно определить (в каждой обмотке) возведением в квадрат ампер и умножением на сопротивление обмотки в омах (I 2 R).

Потери в железе, также известные как гистерезис, представляют собой запаздывание магнитных молекул внутри сердечника в ответ на переменный магнитный поток. Это запаздывающее (или не синфазное) состояние связано с тем, что для обращения магнитных молекул требуется мощность; они не меняют направление, пока поток не достигнет достаточной силы, чтобы повернуть их вспять.

Их перестановка приводит к трению, а трение вызывает тепло в сердечнике, что является формой потери мощности. Гистерезис внутри трансформатора можно уменьшить, сделав сердечник из специальных стальных сплавов.

Интенсивность потерь мощности в трансформаторе определяет его КПД. Эффективность трансформатора отражается в потерях мощности (мощности) между первичной (входной) и вторичной (выходной) обмотками. Тогда результирующий КПД трансформатора будет равен отношению выходной мощности вторичной обмотки P S к потребляемой мощности первичной обмотки P P и, следовательно, будет высоким.

Идеальный трансформатор имел бы 100% КПД, передавая всю электрическую энергию, которую он получает с первичной стороны, на вторичную. Но настоящие трансформаторы, с другой стороны, не на 100% эффективны. При работе с полной нагрузкой их максимальный КПД составляет от 94% до 96%, что все еще неплохо для электрического устройства. Для трансформатора, работающего при постоянном напряжении и частоте переменного тока, его КПД может достигать 98%. КПД трансформатора η определяется как:

КПД трансформатора

Где: вход, выход и потери выражены в единицах мощности.

Обычно при работе с трансформаторами первичные ватты называются «вольт-ампер», ВА, , чтобы отличить их от вторичных ватт. Тогда приведенное выше уравнение эффективности можно изменить на:

Иногда легче вспомнить взаимосвязь между входом, выходом и эффективностью трансформатора с помощью изображений. Здесь три величины VA, W и η наложены в треугольник, дающий мощность в ваттах вверху, вольт-амперах и КПД внизу.Это расположение представляет собой фактическое положение каждой величины в формулах эффективности.

Треугольник КПД трансформатора

и транспонирование вышеуказанных величин треугольника дает нам следующие комбинации одного и того же уравнения:

Затем, чтобы найти Вт (выход) = VA x эфф., Или найти VA (вход) = W / eff., Или найти КПД, эфф. = Вт / ВА и т. Д.

Основные сведения о трансформаторе

Подведем итоги этого учебника по основам работы с трансформатором.Трансформатор изменяет уровень напряжения (или уровень тока) на своей входной обмотке на другое значение на выходной обмотке с помощью магнитного поля. Трансформатор состоит из двух электрически изолированных катушек и работает по принципу «взаимной индукции» Фарадея, согласно которому ЭДС индуцируется во вторичной катушке трансформатора магнитным потоком, создаваемым напряжениями и токами, протекающими в обмотке первичной катушки.

Как первичная, так и вторичная обмотки катушки намотаны вокруг общего сердечника из мягкого железа, сделанного из отдельных пластин, чтобы уменьшить вихревые токи и потери мощности.Первичная обмотка трансформатора подключена к источнику переменного тока, который должен быть синусоидальным по своей природе, в то время как вторичная обмотка подает электроэнергию на нагрузку. При этом трансформатор можно использовать в обратном направлении с источником питания, подключенным к вторичной обмотке, при условии соблюдения номинальных значений напряжения и тока.

Мы можем представить трансформатор в виде блок-схемы следующим образом:

Базовое представление трансформатора

Соотношение первичной и вторичной обмоток трансформатора относительно друг друга дает либо повышающий трансформатор напряжения, либо понижающий трансформатор напряжения с отношением количества витков первичной обмотки к числу вторичных витков, называемым «витками». коэффициент »или« коэффициент трансформации ».

Если это отношение меньше единицы, n <1, тогда N S больше, чем N P , и трансформатор классифицируется как повышающий трансформатор. Если это отношение больше единицы, n> 1, то есть N P больше, чем N S , трансформатор классифицируется как понижающий трансформатор. Обратите внимание, что однофазный понижающий трансформатор также можно использовать в качестве повышающего трансформатора, просто поменяв местами соединения и сделав обмотку низкого напряжения первичной, и наоборот, пока трансформатор работает в пределах своей первоначальной проектной мощности в ВА.

Если отношение витков равно единице, то есть n = 1, то и первичная, и вторичная обмотки имеют одинаковое количество витков катушки, поэтому напряжения и токи будут одинаковыми для первичной и вторичной обмоток.

Этот тип трансформатора 1: 1 классифицируется как изолирующий трансформатор, поскольку первичная и вторичная обмотки трансформатора имеют одинаковое количество вольт на виток. КПД трансформатора — это отношение мощности, которую он передает нагрузке, к мощности, которую он потребляет от источника питания.В идеальном трансформаторе нет потерь, поэтому нет потери мощности, тогда P IN = P OUT .

В следующем руководстве, посвященном Transformer Basics , мы рассмотрим физическую конструкцию трансформатора и рассмотрим различные типы магнитных сердечников и пластинки, используемые для поддержки первичной и вторичной обмоток.

Krieger Трансформатор напряжения 150 Вт, повышающий понижающий преобразователь напряжения с 110/120 В до 220/240 В, американские и европейские розетки переменного тока, одобрено MET в соответствии с UL и CSA: Электроника

У нас есть 5 из 7 ватт (с полдюжины или более из 150-ваттного блока), которые предлагаются для трансформатора Кригера, от 150 до 1700 Вт.В настоящее время мы находимся на четвертом году из 7-летнего развертывания в Бельгии, и я не против сказать вам, что мы скучаем по нашим американским устройствам больше, чем по чему-либо еще. Хорошо, Costco, Sprouts и Home Depot тоже занимают высокие места в списке пропущенных, но все дело в том, чтобы жить в Европе и иметь какое-то американское электрическое устройство, которое намного превосходит свои европейские аналоги. Бельгийцы прекрасны, но жить в Европе — это трудный переходный период, если вы делаете что-то большее, чем работа и сон.

Для нашей довольно значительной коллекции электрических устройств без двойного напряжения, которые мы просто не хотели выкупать здесь или оставлять позади, мы используем трансформаторы Кригера.Сюда входят пылесосы, принтеры, телевизоры, ресиверы, вентиляторы и т. Д. Некоторые из них нам в конечном итоге пришлось заменить, и были жизнеспособные варианты на 220 В, но некоторые вещи, например, фанаты, мы должны придерживаться предложений США.

Конечно, нашим двигателям вентиляторов Air King, вероятно, не нравится переключатель 50/60 Гц, но пока у них все в порядке, и о боже, мы их используем, потому что европейские фанаты едва ли могут пошевелить на полной скорости. Вы можете видеть, где это может быть проблемой, поскольку в Бельгии могут быть очень высокие летние температуры, и все же вся страна, похоже, страстно ненавидит центральный кондиционер.Итак, вы застряли в доме с портативными кондиционерами, которые не совсем выдающиеся исполнители, когда они достигают трехзначной температуры F, и фанаты, каждый раз, когда слишком тепло, чтобы справиться с ними, просто открыв окна. Спасибо Krieger Tranformers за все, что вы делаете для моих напольных фанатов Air King!

Кстати об окнах, знаете ли вы, что Европе, похоже, не нравятся ЭКРАНЫ на окнах? А здесь москитный центр! Я закончил тем, что сделал свои собственные вставки в экран для окон нашего дома, чтобы бороться с заражением демоническими комарами, благодаря моей сложной торцовочной пиле и…. как вы уже догадались … Krieger Tranformer мощностью 1700 ватт. Да, и детали, необходимые для изготовления оконных экранов, любезно предоставлены Amazon US и их политикой доставки APO.

Так что поверьте мне, эти трансформаторы Krieger — настоящая вещь, они могут работать круглосуточно, без перегрева, и поддерживать работу так долго, как вам это нужно. Настоятельно рекомендуется.

Понимание трансформаторов | Beckett Corp.

Запальный трансформатор принимает 120 вольт переменного тока и преобразует его в 10000 вольт переменного тока для зажигания капель масла.

Есть несколько способов проверить выходное напряжение трансформатора. Самый точный — использовать вольтметр, способный измерять 10 000 вольт. При 120 вольт на входе трансформатора на выходе должно быть примерно 10 000 вольт. Если ниже 9000 вольт, трансформатор слабый и его необходимо заменить.

Существуют и другие типы тестеров, у которых есть шкала, показывающая, является ли трансформатор «хорошим» или «плохим».

Некоторые используют отвертку, чтобы нарисовать дугу для проверки трансформатора.Это не рекомендуется из-за риска поражения электрическим током. Однако, если этот метод не будет продолжительным, он не должен причинить вреда.

Большой зазор между электродами, превышающий 1/8 ″ — 5/32 ″, может быть проблемой. Любой зазор, превышающий указанный размер, не рекомендуется по двум причинам. Во-первых, превышение всех требований к настройке может привести к неправильной работе масляной горелки. Во-вторых, по мере увеличения зазора повышается напряжение высокого напряжения на вторичной обмотке, что может сократить срок службы трансформатора.

Чрезмерная влажность может вызвать проблемы. Поверхностная влага на керамических изоляторах может вызвать искрение между клеммами или заземлением, что в конечном итоге приведет к повреждению трансформатора. Влага также может попасть внутрь трансформатора. Эта влага вызывает внутреннюю дугу внутри трансформатора, что приводит к повреждению или преждевременному выходу из строя.

Случайной проблемой является утечка смолы из-за чрезмерного теплового излучения от сгорания и длительных циклов при высоких температурах окружающей среды. При некоторых внутренних сбоях трансформатор также может перегреться и привести к расплавлению гудрона.

Трансформаторы не будут создавать помех для радио и телевидения, если они правильно настроены. Для предотвращения этого они имеют внутреннее экранирование. Но при неправильной настройке преждевременное искрение в системе зажигания (см. Пункты 9 и 10 диаграммы) может вызвать помехи от телевизора или снизить энергию, необходимую для воспламенения масла. Изменение цвета вторичных выходных клемм указывает на плохое соединение.

Обозначение Описание Советы по обслуживанию
1.Входные провода 120 В переменного тока Подает 120 вольт на первичную обмотку. Провода не должны прижиматься к корпусу при замкнутом трансформаторе.
2. Первичная обмотка Ток в этой катушке создает магнитное поле.
3. Железный стержень Переносит магнитное поле во вторичную катушку.
4. Вторичная обмотка Магнитное поле от сердечника индуцирует напряжение в этой катушке.
5.Изоляционный состав Не пропускает влагу, проводит тепло. Не должно вытекать.
6. Металлический кожух Защищает внутренние детали трансформатора. Не допускать проколов или сильных вмятин.
7. Монтажная опорная плита Устанавливает трансформатор на корпус горелки. Не должен изгибаться и вызывать утечку воздуха вокруг трансформатора.
8. Выход трансформатора Керамический изолятор Изолирует высокое напряжение от земли и противоположной клеммы.Удерживает размеры пружины зажигания. Не должно иметь трещин. Должен быть полностью чистым.
9. Клеммы пружины зажигания Подает высокое напряжение на электродные стержни. Должен обеспечивать хороший чистый контакт со стержнями электродов.
10. Электродные стержни Передает высокое напряжение на наконечники электродов. Должен быть чистым.
11. Изоляторы электродные Устанавливает электроды и изолирует каждый электрод от земли. Должен быть чистым и без трещин.
12. Дуговый разрядник и электроды Указанный зазор (1/8 ″ — 5/32 ″) позволяет дуге перескакивать на другой вывод и воспламенять капли масла. Слишком близкое положение вызывает задержку зажигания. Слишком широкий угол приведет к отсутствию возгорания и возможному повреждению вторичной обмотки. Очистите и правильно отрегулируйте.

Operation (Как, черт возьми, они работают?) — Руководство электрика по однофазным трансформаторам

Пришло время узнать правду

  • Входной стороной всегда является первичная обмотка.Это сторона, которая всегда подключена к источнику напряжения.

  • Выходной стороной всегда является вторичная обмотка. Это та сторона, которая всегда подключается к грузу.

Рисунок 3. Первичная и вторичная обмотки

Напряжение

Когда первичная обмотка запитана от источника переменного тока без нагрузки на вторичной обмотке, она действует как индуктор.

Самоиндукция создает CEMF для ограничения тока до 2% –5% от первичного тока полной нагрузки.Этот небольшой ток называется возбуждающим током (также известным как ток намагничивания).

Напряжение вторичной обмотки зависит от напряжения первичной обмотки и витков, а также от витков вторичной обмотки. Соотношение между первичным и вторичным напряжением такое же, как соотношение между первичным и вторичным витками.

Что означает:

Первичное напряжение на виток = вторичное напряжение на виток

Сколько вольт на виток трансформатора с номинальным напряжением
600 В – 20 В, если обмотка высокого напряжения содержит 240 витков?

=

= 2.5 вольт на виток

Сколько витков будет в низковольтной обмотке трансформатора, рассматриваемого в вопросе 1?

N S = 48 витков

Когда дело доходит до использования вольт / виток, хорошо помнить, что вольт / включение первичной обмотки равно вольт / повороту вторичной обмотки, но иногда это может сбивать с толку при использовании этого в расчетах. Более простой метод — использовать метод коэффициента трансформации.

Если вы возьмете большее количество витков и разделите его на меньшее количество витков, вы получите коэффициент. Например:

Трансформатор со 100 витками первичной обмотки и 50 витками вторичной обмотки будет иметь коэффициент трансформации 2: 1. Следовательно, если на первичной обмотке будет 120 вольт, то на вторичной будет подаваться 60 вольт.

Видео оповещение!

В этом видео рассказывается, как использовать коэффициент трансформации для расчета напряжения на первичной или вторичной обмотке.

Текущий

Самый простой способ рассчитать ток — это также использовать коэффициент поворотов.

Единственное отличие состоит в том, что более высокие витки означают меньший ток, поэтому вы будете использовать обратное соотношение витков.

Трансформатор имеет 600 витков на первичной обмотке и 120 витков на вторичной. На первичную обмотку подается 300 Вольт, а на вторичной обмотке циркулирует ток в 40 ампер. Вычислить:

  1. Передаточное число
  2. Вторичное напряжение
  3. Первичный ток

600/120 = передаточное число витков 5: 1

300 В / 5 (соотношение) = 60 В на вторичной обмотке

4 ампера / 5 (коэффициент) = 8 ампер на первичной

Видео оповещение!

В этом видео показано, как использовать коэффициент трансформации для расчета тока.Он также показывает другой метод, который многим кажется более легким. В трансформаторе потребляемая мощность всегда равна выходной мощности.

Расчетные и фактические Обмотки трансформатора

рассчитаны на то, чтобы выдерживать определенное напряжение и ток.

Отсюда и его рейтинг VA.

Трансформатор рассчитан на 1000 ВА, 100 В / 10 В и подключен для понижающего режима. Следовательно:

Номинальное значение Ip = 10 A

Номинальное значение Is = 100 A

Номинальное В P = 100 В

Номинальное В S = 10 В

Это то, на что рассчитан трансформатор — это его максимум.Все, что будет сверх этого, приведет к сгоранию обмоток.

Если мы добавим резисторную нагрузку 5 Ом ко вторичной обмотке, мы сможем вычислить Ip и Is.

Фактическое значение Ip = 0,2 A

Фактическое значение Is = 2 A

Этот трансформатор выдает 20 ВА, а не 1000 ВА.

То же самое и с напряжением.

Если мы подадим 50 В на первичную обмотку, мы получим вторичное напряжение 5 В.

Помните, что номинальные значения — это максимальных значений, которые могут видеть обмотки.Нам даны VA и V, и мы используем эти значения для определения максимального тока.

Пока эти значения не превышаются, мы можем использовать трансформатор для наших целей.

Атрибуции

Видео «Как использовать коэффициент трансформации для расчета напряжения» от The Electric Academy находится под лицензией Creative Commons Attribution License.

Как рассчитать ток обмотки трансформатора с использованием видео о соотношении витков от The Electric Academy, находится под лицензией Creative Commons Attribution License.

Трансформатор напряжения

или теория потенциального трансформатора

Определение потенциального трансформатора

Потенциальный трансформатор или Трансформатор напряжения используется в системе электроснабжения для понижения напряжения системы до безопасного значения, которое может подаваться на измерители и реле с низкими номиналами. Имеющиеся в продаже реле и счетчики, используемые для защиты и измерения, рассчитаны на низкое напряжение. Это простейшая форма определения трансформатора напряжения .

Теория трансформатора напряжения или потенциального трансформатора

Теория трансформатора напряжения Теория трансформатора напряжения или похожа на теорию понижающего трансформатора общего назначения. Первичная обмотка этого трансформатора соединена между фазой и землей. Так же, как трансформатор, используемый для понижающей цели, трансформатор напряжения, то есть PT, имеет обмотку с меньшими витками на вторичной обмотке.

Системное напряжение прикладывается к клеммам первичной обмотки этого трансформатора, а затем пропорциональное вторичное напряжение появляется на вторичных клеммах ПТ.

Напряжение вторичной обмотки трансформатора тока обычно составляет 110 В. В идеальном трансформаторе напряжения или трансформаторе напряжения , когда номинальная нагрузка подключается ко вторичной обмотке; отношение первичного и вторичного напряжений трансформатора равно отношению витков, и, кроме того, напряжения на двух клеммах точно по фазе противоположны друг другу. Но в реальном трансформаторе должна быть ошибка в соотношении напряжений, а также в фазовом угле между первичным и вторичным напряжениями.
Ошибки в трансформаторе напряжения или трансформаторе напряжения можно лучше всего объяснить с помощью векторной диаграммы, и это основная часть теории трансформатора потенциала .

Ошибка в PT, трансформаторе напряжения, VT или трансформаторе напряжения


I с — Вторичный ток.
E s — Вторичная наведенная ЭДС.
В с — Напряжение вторичной обмотки.
R с — Сопротивление вторичной обмотки.

X с — Реактивное сопротивление вторичной обмотки.
I p — Первичный ток.
E p — Первичная наведенная ЭДС.
В p — Первичное напряжение на клеммах.
R p — Сопротивление первичной обмотки.
X p — Реактивное сопротивление первичной обмотки.
K T — Коэффициент трансформации = число витков первичной обмотки / число витков вторичной обмотки.
I 0 — Ток возбуждения.
I м — Намагничивающая составляющая I 0 .
I w — Компонент потерь в сердечнике I 0 .
Φ м — Основной поток.
β — Погрешность фазового угла.

Как и в случае трансформатора тока и силового трансформатора другого назначения, полный первичный ток I p представляет собой векторную сумму тока возбуждения и тока, равного реверсированию вторичного тока, умноженному на отношение 1 / K T .

Если V p — это системное напряжение, приложенное к первичной обмотке трансформатора тока, тогда на картинке появятся падения напряжения из-за сопротивления и реактивного сопротивления первичной обмотки из-за первичного тока I p .После вычитания этого падения напряжения из V p , на первичных клеммах появится E p . Это E p равно первичной наведенной ЭДС. Эта первичная ЭДС преобразуется во вторичную обмотку за счет взаимной индукции и трансформируется ЭДС s . Опять же, этот E s будет отброшен сопротивлением и реактивным сопротивлением вторичной обмотки, и результирующий эффект фактически появится на клеммах нагрузки и обозначен как V s .
Итак, если напряжение системы составляет V p , в идеале V p / K T должно быть вторичным напряжением PT, но на самом деле; Фактическое вторичное напряжение ПТ составляет В с .

Ошибка напряжения или ошибка соотношения в трансформаторе напряжения (PT) или трансформаторе напряжения (VT)

Разница между идеальным значением V p / K T и фактическим значением V s — ошибка напряжения или ошибка соотношения в трансформаторе напряжения это может быть выражено как

Погрешность фазы или погрешность фазового угла в трансформаторе напряжения или напряжения

Угол ‘β’ между первичным системным напряжением V p и обращенными векторами вторичного напряжения K T .V с — фазовая ошибка.

Причина ошибки в трансформаторе потенциала

Напряжение, приложенное к первичной обмотке трансформатора напряжения, сначала падает из-за внутреннего импеданса первичной обмотки. Затем он появляется поперек первичной обмотки и затем трансформируется пропорционально соотношению его витков во вторичную обмотку. Это преобразованное напряжение на вторичной обмотке снова упадет из-за внутреннего импеданса вторичной обмотки, прежде чем появится на клеммах нагрузки.Это причина ошибок в трансформаторе потенциала .

Основы регулирования напряжения трансформатора

Многие люди ошибочно принимают это за то, что трансформатор с регулировкой 10% будет поддерживать выходное напряжение на уровне в пределах 10% от номинального. Это просто не так. Давайте разберемся, что такое регулирование напряжения трансформатора и чем оно вам полезно.

В любом понижающем трансформаторе вторичный ток вызывает падение напряжения на резистивных и реактивных компонентах вторичной стороны трансформатора.С другой стороны, первичный ток вызывает падение напряжения на резистивных и реактивных компонентах первичной стороны трансформатора. Отсюда легко увидеть, что первичное напряжение будет меньше напряжения питания, а вторичное (выходное) будет меньше любого из них.

Предположим, к трансформатору не подключена нагрузка. В этом случае вторичный ток не протекает. При отсутствии тока у вас нет падения напряжения на резистивных и реактивных компонентах вторичной обмотки трансформатора.Но происходит другое. Без вторичного тока первичный ток падает до тока холостого хода, который почти равен нулю. Это означает, что падение напряжения на резистивных и реактивных компонентах первичной обмотки трансформатора становится очень небольшим. Каков чистый эффект? В случае отсутствия нагрузки напряжение на первичной обмотке почти равно напряжению питания, а вторичное напряжение почти равно напряжению питания, умноженному на отношение первичной обмотки к вторичной обмотке.

Можно предположить, что выходное напряжение трансформатора самое высокое без нагрузки.Тогда имеет смысл, что (в условиях нагрузки) резистивные и реактивные компоненты трансформатора вызывают падение выходного напряжения ниже уровня холостого хода. Это логическое предположение, но не обязательно. В зависимости от коэффициента мощности нагрузки выходное напряжение полной нагрузки может фактически превышать напряжение холостого хода.

Регулировка напряжения трансформатора — это процентное изменение выходного напряжения от холостого хода до полной нагрузки. А поскольку коэффициент мощности является определяющим фактором вторичного напряжения, коэффициент мощности влияет на регулирование напряжения.Это означает, что регулировка напряжения трансформатора является динамической величиной, зависящей от нагрузки. Цифры, которые вы видите на паспортной табличке, являются фиксированными; количество первичных обмоток не изменится; количество вторичных обмоток не изменится и т. д. Но регулирование напряжения будет изменяться в зависимости от коэффициента мощности.

В идеале выходное напряжение трансформатора не должно изменяться с холостого хода на полное. В таком случае мы говорим, что регулировка напряжения составляет 0%. Чтобы получить максимальную производительность от вашего трансформатора, вам необходимо минимально возможное регулирование напряжения.Вы должны рассчитать регулировку напряжения и сохранить результат в качестве эталонного теста для поиска и устранения неисправностей и профилактического обслуживания. Предположим, процентное изменение слишком велико. Что вы делаете? Теперь вы знаете, что вам нужно посмотреть на коррекцию коэффициента мощности для нагрузок на этом трансформаторе. В этом случае может оказаться очень полезным измеритель коэффициента мощности.

Основы магнитных трансформаторов напряжения среднего / высокого напряжения

Магнитные трансформаторы напряжения

Магнитные трансформаторы напряжения используются для подачи вторичного сигнала, который пропорционален фактическому преобладающему первичному значению .Эти сигналы используются для питания измерительных приборов, счетчиков, реле и других подобных устройств.

Принцип работы и подключения магнитных трансформаторов напряжения (фото предоставлено ABB)

Основные измеренные значения — это системные токи и напряжения. Имеющийся вторичный сигнал должен соответствовать следующим критериям:

  1. Стандартизированное номинальное значение
  2. Минимальное соотношение и погрешности фазового сдвига
  3. Способность обеспечивать питание, необходимое для вторичных устройств защиты и измерения
  4. Необходимый уровень изоляции от первичных цепей
  5. Прогнозируемая производительность при нормальных условиях первичной системы и особенно при аномальных условиях.

На первичную обмотку в каждый момент времени влияет фактическое сетевое напряжение.Это значение первичного напряжения затем преобразуется во вторичное значение напряжения на основе номинального коэффициента преобразования напряжения трансформатора напряжения.

Чаще всего трансформатор напряжения подключается между каждой фазой и землей отдельно (однополюсный) , таким образом, измеренное значение является значением напряжения между фазой и землей.

В некоторых приложениях также используется соединение между фазами (двухполюсное). Третий вариант представляет собой трехфазный блок, в котором трехфазные блоки находятся в одном физическом корпусе, а фазы соединены звездой относительно земли.

Как и в трансформаторах тока, несколько отдельных вторичных жил используются для измерения и защиты . Также можно использовать одну жилу как для измерения, так и для защиты.

Рисунок 1 — Изображение однополюсного (слева) трансформатора напряжения с двумя вторичными сердечниками и двухполюсного (справа) с одним вторичным сердечником

В отличие от трансформаторов тока, трансформаторы напряжения обычно обслуживают одно фиксированное преобразование передаточное число, и специальные конструкции с двойным передаточным числом могут использоваться в зависимости от индивидуальных потребностей применения.

Номинальные уровни вторичного переменного напряжения обычно составляют , 100 В или 110 В , хотя существуют и другие уровни, в основном в странах, находящихся под влиянием стандарта ANSI.

Самый распространенный тип трансформатора напряжения на стороне распределения — это набор из трех однополюсных трансформаторов с двумя отдельными сердечниками, а именно, соединенный звездой один для целей измерения и один соединенный треугольником для измерения остаточного напряжения.

Рисунок 2 — Комплект из трех однополюсных ТН с двумя вторичными сердечниками

Вторичные цепи трансформатора напряжения должны быть защищены предохранителями или автоматическими выключателями.Эти защитные устройства следует устанавливать как можно ближе к трансформаторам напряжения.

Если есть нагрузочный резистор, подключенный к сердечнику с разомкнутым треугольником трансформатора напряжения для гашения колебаний, вызванных явлением феррорезонанса, резистор должен быть подключен к стороне трансформатора напряжения устройства защиты вторичной цепи.

Явление феррорезонанса составляет из-за резонансного контура, образованного однополюсной индуктивностью ТН относительно земли и емкостью незаземленной системы относительно земли .Этот резонансный контур может вызывать колебания, приводящие к нагреву и, в конечном итоге, к повреждению трансформаторов напряжения. Чтобы гасить эти колебания, резистор нагрузки подключается к обмотке с разомкнутым треугольником.

Эти проблемы чаще всего возникают в незаземленных системах с подключенным фидером минимальной длины.

Однополюсный магнитный трансформатор напряжения 66 кВ с масляной изоляцией для наружного применения, однополюсный магнитный VT
Рисунок 3 — Однополюсный магнитный трансформатор напряжения на 66 кВ с масляной изоляцией

Где:

  1. Первичный зажим
  2. Смотровое стекло уровня масла
  3. Масло
  4. Кварцевое наполнение
  5. Изолятор
  6. Подъемная проушина
  7. Вторичная клеммная коробка
  8. Нейтраль и клемма
  9. Система расширения
  10. Бумажная изоляция
  11. Бак
  12. Первичная обмотка Заземление

Эпоксидная смола для помещений 12 кВ однополюсный магнитный трансформатор напряжения в корпусе VT
Рис. корпус
  • Вторичные выходы
  • Опорная плита
  • Крышка вторичного т. rminals, используемые для уплотнения выхода
  • Паспортная табличка
  • В идеальном трансформаторе напряжения соотношение между первичным и вторичным напряжением всегда равно отношению между витками первичной и вторичной обмоток.

    Рисунок 5 — Принципиальное представление магнитного трансформатора напряжения

    Поведение трансформаторов напряжения и соответствие основным электрическим законам может быть продемонстрировано с использованием эквивалентной схемы , показанной ниже.

    Рисунок 6 — Эквивалентная схема магнитного трансформатора напряжения

    Из приведенной выше эквивалентной схемы видно, что с неидеальным трансформатором всегда есть некоторые ошибки, включенные в измерения. Эти ошибки в основном вызваны током возбуждения (I o ) и током нагрузки (I 2 ) , что вносит как погрешности соотношения, так и угловые погрешности между пониженным первичным напряжением и фактическим вторичным напряжением.

    Подробные данные ядра описывают производительность ядра по отношению к предполагаемому приложению. Эти данные могут быть выражены в соответствии с рекомендациями одного из нескольких международных стандартов, таких как IEC, British Standards или IEEE. Следующее основано на стандартах IEC.

    Подход к проблеме рассматривается на примере. Здесь предполагается, что для измерения энергии и защиты от перенапряжения нулевой последовательности используется трехфазный комплект однополюсного трансформатора напряжения с указанными ниже табличками с данными.


    Пример считывания данных трансформатора напряжения

    Давайте взглянем на этот пример VT:

    • 6600: √3 / 100: √3 / 100: 3V
    • a — n 30VA cl .0,5
    • da — dn 100VA класс 6P 50Hz 400VA
    • 7.2 / 20 / 60kV
    • 1.9xUn 8h

    6600: √3 / 100: √3 / 100: 3V

    Эти значения определяют номинальное соотношение напряжений. Трансформатор напряжения — однополюсный, предназначен для измерения напряжения фаза-земля.Номинальное первичное напряжение составляет 6600: √3V , а номинальное вторичное напряжение составляет 100: √3V и 100: 3V .

    Первая вторичная жила предназначена для соединения звездой, выдающего сигнал напряжения фаза-земля на 100: √3V (приблизительно 57,7V) базы . Вторая вторичная жила предназначена для измерения остаточного напряжения с использованием разомкнутого треугольника на базе 100: 3 В (приблизительно 33,3 В) базы .

    При полном (нулевое сопротивление замыкания) замыкании на землю в незаземленных системах измеренное значение при подключении разомкнутого треугольника будет примерно 100 В .


    a — n 30VA cl.0.5

    Маркировка a — n 30VA cl.0.5 представляет собой подробные данные для первой вторичной жилы, предназначенной для измерения . Номинальная вторичная нагрузка составляет 30 ВА, а класс точности — 0,5.

    Обозначения «a» и «n» относятся к маркировке вторичных клемм на клеммной коробке вторичной обмотки трансформатора напряжения. Чтобы соответствовать заявленному классу точности, трансформатор напряжения должен соответствовать определенным требованиям в отношении ошибок напряжения и смещения фаз, как показано ниже.

    Эти пределы применяются к вторичной нагрузке в пределах 25–100% от номинальной нагрузки.

    Рисунок 7 — Требования к измерениям трансформатора напряжения для классов 0,5 и 0,2 в соответствии со стандартами IEC. Графические линии показывают поведение трансформатора, использованного в приведенном выше примере.

    da — dn 100VA cl.6P

    Маркировка da — dn 100VA cl.6P представляет собой подробные данные для второго вторичного сердечника, предназначенного для защиты. Номинальная вторичная нагрузка составляет 100 ВА, а класс точности — 6P.

    Обозначения «da» и «dn» относятся к маркировке клемм вторичной обмотки на распределительной коробке вторичной обмотки трансформатора напряжения. Чтобы соответствовать заявленному классу точности, трансформатор напряжения должен соответствовать определенным требованиям в отношении ошибок напряжения и смещения фаз, как показано ниже.

    Эти пределы применяются к вторичным нагрузкам в пределах 25–100% от номинальной нагрузки. Если вторичная обмотка защиты, соединенная открытым треугольником, используется только для феррорезонансного демпфирующего резистора , она не должна соответствовать требованиям к точности.

    Требования к точности классов защиты трансформаторов напряжения

    Класс защиты Погрешность напряжения ±% Сдвиг фаз ± мин.
    3P 3,0 120
    6P 6,0 240

    50 Гц 400 ВА

    Номинальная частота трансформаторов напряжения составляет (50 Гц). Заявленная термоограничивающая мощность — 400 ВА. Это значение полной мощности при номинальном вторичном напряжении, которое может быть снято с вторичной обмотки в условиях номинального первичного напряжения, без превышения предела повышения температуры (классы, указанные в стандарте).

    В этом состоянии пределы погрешности могут быть превышены. Если трансформатор напряжения имеет более одной вторичной обмотки, это значение должно быть указано отдельно, как дополнение к конкретным данным вторичного сердечника.


    7.2/20/60 кВ

    7,2 кВ — это максимальное напряжение для оборудования (среднеквадратичное значение). 20 кВ — номинальное выдерживаемое напряжение промышленной частоты (действующее значение испытания). 60 кВ — номинальное выдерживаемое напряжение грозового импульса (пиковое испытательное значение).


    1,9xUn 8h

    Коэффициент номинального напряжения (1,9) является кратным номинальному первичному напряжению для определения максимального напряжения, при котором трансформатор должен соответствовать соответствующим тепловым требованиям и заявленным требованиям к точности для указанного ( 8 ч) расчетное время .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *