Самодельный трансформатор на 12 вольт: Самодельный трансформатор на 12 вольт

Содержание

Самодельный трансформатор на 12 вольт

Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

  • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками.

Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

Компоновка прибора

Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.

Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.

Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

Блок питания со стабилизатором на микросхеме

На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.

Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

Блок питания повышенной мощности

Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

Изготовить самодельный трансформатор – это стоящее дело, чтобы не тратить деньги на покупку трансформаторов.

Подбор материалов

Провод возьмем российский, у него прочнее изоляция. От старых катушек провод используется, если нет повреждения изоляции. Для изоляции подойдет бумага, пленка ФУМ. Для изоляции между обмотками лучше использовать лаковую ткань, несколько слоев изоляции. Для поверхностной наружной изоляции подходит кабельная бумага, лаковая ткань. А также можно мотать трансформатор, применяя изоленту ПВХ.

Пропитка нужна для повышения времени работы, но, она повышает паразитную емкость катушки. Для этой цели применяют лак. Для простого трансформатора можно использовать масляный лак. Покрывается каждый слой. Сразу все слои пропитать невозможно. Лак не должен быстро засохнуть до окончания намотки.

Каркас делают из стеклотекстолита или ему подобного материала.

Расчеты параметров самодельного трансформатора

На простом трансформаторе первичная обмотка имеет 440 витков для 220 вольт. Получается на каждые два витка по 1 вольту. Формула для подсчета витков по напряжению:

N = 40-60 / S, где S – площадь сечения сердечника в см 2 .

Константа 40-60 зависит от качества металла сердечника.

Сделаем расчет для установки обмоток на магнитопровод. В нашем случае у трансформатора окно 53 мм по высоте и 19 мм по ширине. Каркас будет текстолитовый. Две щеки внизу и вверху 53 – 1,5 х 2 = 50 мм, каркас 19 – 1,5 = 17,5 мм, окно размером 50 х 17,5 мм.

Рассчитываем необходимый диаметр проводов. Мощность сердечника трансформатора своими руками по габаритам 170 ватт. На обмотке сети ток 170 / 220 = 0,78 ампера. Плотность тока 2 ампера на мм 2 , стандартный диаметр провода по таблице 0,72 мм. Заводская обмотка из провода 0,5, завод сэкономил на этом.

  • Обмотка простого трансформатора высокого напряжения 2,18 х 450 = 981 виток.
  • Низковольтная для накала 2,18 х 5 = 11 витков.
  • Низкого напряжения накальная 2,18 х 6,3 = 14 витков.

Количество витков первичной обмотки:

берем провод 0,35 мм, 50 / 0,39 х 0,9 = 115 витков на один слой. Количество слоев 981 / 115 = 8,5. Из середины слоя не рекомендуется делать вывод для обеспечения надежности.

Рассчитаем высоту каркаса с обмотками. Первичная из восьми слоев с проводом 0,74 мм, изоляцией 0,1 мм: 8 х (0,74 + 0,1) = 6,7 мм. Высоковольтную обмотку лучше экранировать от других обмоток для предотвращения помех высоких частот. Для того, чтобы мотать трансформатор, делаем обмотку экрана из одного слоя провода 0,28 мм с изоляцией из двух слоев с каждой стороны: 0,1 х 2 + 0,28 = 0,1 х 2 = 0,32 мм.

Первичная обмотка будет занимать места: 0,1 х 2 + 6,7 + 0,32 = 7,22 мм.

Повышающая обмотка из 17 слоев, толщина 0,39, изоляция 0,1 мм: 17 х (0,39 + 0,1) = 6,8 мм. Поверх обмотки делаем слои изоляции 0,1 мм.

Получается: 6,8 + 2 х 0,1 = 7 мм. Высота обмоток вместе: 7,22 + 7 = 14,22 мм. 3 мм осталось для накальных обмоток.

Можно сделать расчет внутренних сопротивлений обмоток. Для этого рассчитывается длина витка, берется длина провода в обмотке, определяется сопротивление, зная удельное сопротивление по таблице для меди.

При расчете сопротивления секции первичной обмотки получается разница около 6-ти Ом. Такое сопротивление даст падение напряжения 0,84 вольта при токе номинала 140 миллиампер. Чтобы компенсировать это падение напряжения, добавим два витка. Теперь во время нагрузки секции равны по напряжению.

Изготовление каркаса катушки трансформатора своими руками

Важны углы на деталях, и точность в размерах, что повлияет на сборку простого трансформатора.

На щечках отводим места для крепления выводных контактов обмоток, сверлим отверстия по расчетам. Когда каркас собран, то теперь скругляем острые грани, к которым будет прикасаться провод обмотки. Используем для этой цели надфиль. Провода не должны резко перегибаться, так как эмаль изоляции потрескается. Теперь проверим, вставляется ли в окно каркаса пластина. Она не должна болтаться, или туго входить. Каркас ставим на специальный станок или готовимся мотать трансформатор вручную. Толстые провода всегда мотаются руками.

Намотка трансформатора своими руками

Укладываем изоляцию первого слоя. Вставляем конец провода в отверстие выводной клеммы. Начинаем мотать провод, не забывая о его натяжении. Проверить можно так: намотанная катушка не будет проминаться от пальца. Провод растягивать нельзя, так как нарушится изоляция. Готовую катушку рекомендуется пропитать парафином, чтобы не испортить провод. Если обмотка гудит во время работы трансформатора, то изоляция провода стирается, провод изгибается и разрушается. По этой причине натяжение провода во время намотки имеет большое значение.

Витки во время намотки придвигаем друг к другу, уплотняем. Первый слой самый важный.

На слое не нужно оставлять пустое место. Наибольшее напряжение на последних витках составляет для первичной 60 + 60 / 2, 18 + 55 В. Изоляция из лака выдержит напряжение, если провод будет проваливаться в пустоту слоя, то может нарушиться изоляция. Пропитываем первый слой, затем второй и так далее. К изоляции между обмотками необходимо отнестись добросовестно. Она должна выдерживать до 1000 вольт. Вверху на изоляции рекомендуется подписать количество витков и размер провода, это пригодится при ремонте.

Слои самодельного трансформатора должны иметь правильную форму. По мере намотки катушка будет изгибаться у краев. Для этого слои нужно равнять во время намотки, не повредив изоляцию.

Вынужденные стыки провода лучше на ребре каркаса за сердечником. Соединять провод скруткой с пайкой, внакладку с пайкой. Длина контакта при соединении делается более 12 диаметров провода. Стык нужно изолировать бумагой или лаковой тканью. Пайка должна быть без острых углов.

Выводные концы обмоток делаются по-разному. Главное, чтобы была надежность и качество.

Окончание изготовления трансформатора своими руками

Припаиваем выводные концы обмоток, изолируем поверхность простого трансформатора, подписываем на нем данные характеристики и производим сборку сердечника. После этого надо проверить этот простой трансформатор своими руками.

Замеряем ток самодельного трансформатора вхолостую, он должен быть минимальным. Смотрим на нагрев. Если греется сердечник, то неправильно подобрано железо. Если нагрелись обмотки, значит, есть короткое замыкание. Если нормально, то замыкаем ненадолго вторичную обмотку, треска и сильного гудения не должно быть.

Пример как сделать самодельный трансформатор

Перейдем к изготовлению самого трансформатора. По готовому сердечнику рассчитаем мощность трансформатора, витки и провод, намотаем первичную и вторичную обмотки, соберем трансформатор полностью.

Чтобы мотать трансформатор напряжением 220 на 12 вольт нам необходимо подобрать магнитный сердечник. Подбираем магнитный сердечник Ш-образный, и каркас от старого трансформатора. Чтобы определить мощность, выдаваемую простым трансформатором, необходимо произвести предварительный расчет.

Расчет трансформатора

Рассчитываем диаметр провода первичной обмотки. Мощность трансформатора Р1 = 108 Вт:

где: I1 – ток в первичной обмотке;

тогда ток в первичной обмотке:

Возьмем I1 = 0,5 ампера.

Из таблицы диаметр провода в зависимости от тока выбираем допустимый ток 0,56 А, диаметр 0,6 мм.

Самодельный трансформатор своими руками можно намотать без станка. На это уйдет два-три часа, не больше. Приготовим полоски бумаги для прокладки ее между слоями провода. Полоску вырезаем шириной равной расстоянию между щечками катушки трансформатора плюс еще пару миллиметров, чтобы бумага легла плотно, по краям витки не залезали друг на друга.

Длину полоски делаем с запасом два сантиметра для склеивания. По краям полоску слегка надрезаем ножницами, чтобы при изгибе бумага не рвалась.

Затем приклеиваем полоску бумаги на каркас, плотно пригладив ее.

Намотка первичной обмотки

Теперь берем провод от старой катушки, у которой провод с хорошей не потрескавшейся изоляцией. Конец провода вставляем в гибкую трубочку изоляции от старого использованного провода соответствующего подходящего диаметра. Просовываем конец обмотки в отверстие каркаса катушки (они уже имеются в старом каркасе).

Катушка мотается плотно, виток к витку. Намотав 3-4 витка, нужно прижать витки, друг к другу, чтобы намотка витков была плотной. Чтобы мотать трансформатор после намотки первого слоя, необходимо посчитать количество витков в ряду. У нас получилось 73 витка. Делаем прокладку полоской бумаги. Наматываем второй слой. Во время намотки нужно все время держать провод в натянутом состоянии, чтобы намотка получалась плотной. После второго слоя также делаем прокладку из бумаги. Если не хватает длины провода, то соединяем с ним другой провод путем спайки. Лудим лакированный провод, нагрев конец паяльником на таблетке аспирина. При этом лак хорошо снимается.

Когда намотка первичной обмотки закончена, то конец провода изолируем в трубочку и выводим наружу катушки. Между первичной и вторичной обмотками делаем обмоточную изоляцию. Можно мотать трансформатор дальше.

Вторичная обмотка

Рассчитаем диаметр провода вторичной обмотки самодельного трансформатора. Мощность вторичной обмотки примем:

Допустимый ток во вторичной обмотке будет равен:

Из таблицы диаметр в зависимости от тока: диаметр для тока 5,55 А – ближайшее значение в таблице 6,28 ампера. Для такого тока необходим диаметр провода 2 мм.

Берем провод, который мы получили при сматывании старого трансформатора. Наматываем провод вторичной обмотки по такому же принципу, как и первичную обмотку. Провод вторичной обмотки намного жестче, поэтому, чтобы он ровно ложился при намотке, периодически его необходимо осаживать ударами молотка через деревянный брусок, чтобы не повредить изоляцию. У нас получилось 3 слоя вторичной обмотки. Получился готовый намотанный каркас простого трансформатора.

Сборка трансформатора своими руками

Для ускорения сборки берем по две Ш-образные пластины. Вставляем их внутрь каркаса поочередно с двух сторон по две штуки.

Перекрывающие пластины пока не ставим. Они будут установлены позже. Если вставлять все пластины сразу всем пакетом, то между пластинами появляются зазоры и индуктивность всего сердечника падает. После сборки Ш-образных пластин самодельного трансформатора вставляем перекрывающие пластины, также по две штуки.

После сборки сердечника аккуратно обстукиваем его плоскости молотком для выравнивания пластин. При помощи стоек и шпилек будем стягивать сердечник. По правилам на шпильки надеваются бумажные гильзы для снижения потерь в сердечнике.

Концы обмоток зачищаем и лудим. Затем припаиваем к выводным планкам, которые можно прикрепить к каркасу трансформатора. Получился готовый трансформатор своими руками.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Автомобильный инвертор напряжения порой бывает невероятно полезен, но большинство изделий в магазинах либо грешат качеством, либо по мощности не устраивают, а стоят при этом недёшево. Но ведь схема инвертора состоит из простейших деталей, потому мы предлагаем инструкцию по сборке преобразователя напряжения своими руками.

Корпус для инвертора

Первое, что нужно учесть — потери преобразования электричества, выделяющиеся в виде тепла на ключах схемы. В среднем эта величина составляет 2–5% от номинальной мощности устройства, но показатель этот имеет свойство расти из-за неправильного подбора или старения комплектующих.

Отвод тепла от полупроводниковых элементов имеет ключевое значение: транзисторы очень чувствительны к перегреву и выражается это в быстрой деградации последних и, вероятно, их полному отказу. По этой причине основанием для корпуса должен служить теплоотвод — алюминиевый радиатор.

Из радиаторных профилей хорошо подойдёт обычная «расчёска» шириной 80–120 мм и длиной около 300–400 мм. к плоской части профиля винтами крепятся экраны полевых транзисторов — металлические пятачки на их задней поверхности. Но и с этим не всё просто: электрического контакта между экранами всех транзисторов схемы быть не должно, поэтому радиатор и крепления изолируются слюдяными плёнками и картонными шайбами, при этом по обе стороны диэлектрической прокладки металлсодержащей пастой наносится термоинтерфейс .

Определяем нагрузку и закупаем компоненты

Крайне важно понимать, почему инвертор — это не просто трансформатор напряжения, а также почему существует столь разнообразный перечень подобных устройств. Прежде всего помните, что подключив трансформатор к источнику постоянного тока, вы ничего не получите на выходе: ток в АКБ не меняет полярности, соответственно, явление электромагнитной индукции в трансформаторе отсутствует как таковое.

Первая часть схемы инвертора — входной мультивибратор, имитирующий колебания сети для совершения трансформации. Собирается он обычно на двух биполярных транзисторах, способных раскачать силовые ключи (например, IRFZ44, IRF1010NPBF или мощнее — IRF1404ZPBF), для которых важнейший параметр — предельно допустимый ток. Он может достигать нескольких сотен ампер, но в целом вам достаточно умножить значение тока на вольтаж аккумуляторной батареи, чтобы получить ориентировочное количество ватт выходной мощности без учёта потерь.

Простой преобразователь на основе мультивибратора и силовых полевых ключей IRFZ44

Частота работы мультивибратора непостоянна, рассчитывать и стабилизировать её — пустая трата времени. Вместо этого ток на выходе трансформатора снова превращается в постоянный с помощью диодного моста. Такой инвертор может быть пригоден для питания чисто активных нагрузок — ламп накаливания или электрических нагревателей, печек.

На основе полученной базы можно собирать и другие схемы, отличающиеся частотой и чистотой выходного сигнала. Подбор компонентов для высоковольтной части схемы сделать проще: токи здесь не такие высокие, в ряде случаев сборку выходного мультивибратора и фильтра можно заменить парой микросхем с соответствующей обвязкой. Конденсаторы для нагрузочной сети следует использовать электролитические, а для цепей с низким уровнем сигнала — слюдяные.

Вариант преобразователя с генератором частоты на микросхемах К561ТМ2 в первичном контуре

Стоит также заметить, что для увеличения итоговой мощности вовсе не обязательно закупать более мощные и стойкие к нагреву компоненты первичного мультивибратора. Задачу можно решить увеличением числа преобразовательных контуров, включенных параллельно, но для каждого из них потребуется собственный трансформатор.

Вариант с пареллельным подключением контуров

Борьба за синусоиду — разбираем типовые схемы

Инверторы напряжения сегодня используются повсеместно как автолюбителями, желающими пользоваться бытовой техникой вдалеке от дома, так и обитателями автономных жилищ, питающихся солнечной энергией. И в целом можно сказать, что от сложности устройства преобразователя напрямую зависит ширина спектра токоприёмников, которые можно к нему подключить.

К сожалению, чистый «синус» присутствует только в магистральной электросети, добиться преобразования постоянного тока в него очень и очень сложно. Но в большинстве случаев этого и не требуется. Чтобы подключать электрические двигатели (от дрели до кофемолки), достаточно пульсирующего тока с частотой от 50 до 100 герц без сглаживания.

ЭСЛ, светодиодные лампы и всевозможные генераторы тока (блоки питания, зарядные устройства)более критичны к выбору частоты, поскольку именно на 50 Гц основана схема их работы. В таких случаях следует включать во вторичный вибратор микросхемы, зовущиеся генератором импульсов. Они могут коммутировать небольшую нагрузку непосредственно, либо исполнять роль «дирижёра» для серии силовых ключей выходной цепи инвертора.

Но даже такой хитрый план не сработает, если вы планируете использовать инвертор для стабильного питания сетей с массой разнородных потребителей, включая асинхронные электрические машины. Здесь чистый «синус» очень важен и реализовать такое под силу лишь преобразователям частоты с цифровым управлением сигналом.

Трансформатор: подберём или сами

Для сборки инвертора нам не хватает всего одного элемента схемы, выполняющего трансформацию низкого напряжения в высокое. Вы можете использовать трансформаторы из блоков питания персональных компьютеров и старых ИБП, их обмотки как раз рассчитаны на трансформацию 12/24–250 В и обратно, остаётся лишь правильно определить выводы.

И всё же лучше намотать трансформатор своими руками, благо что ферритовые кольца дают возможность сделать это самому и с любыми параметрами. Феррит обладает отличной электромагнитной проводимостью, а значит, потери при трансформации будут минимальными даже если провод намотан вручную и не плотно. К тому же вы легко рассчитаете необходимое количество витков и толщину провода по имеющимся в сети калькуляторам.

Перед намоткой кольцо сердечника нужно подготовить — снять надфилем острые кромки и плотно обмотать изолятором — стеклотканью, пропитанной эпоксидным клеем. Далее следует намотка первичной обмотки из толстого медного провода расчётного сечения. После набора нужного количества витков их необходимо равномерно распределить по поверхности кольца с равным интервалом. Выводы обмотки соединяются согласно схеме и изолируются термоусадкой.

Первичная обмотка покрывается двумя слоями лавсановой изоленты, затем наматывается высоковольтная вторичная обмотка и ещё один слой изоляции. Важный момент — мотать «вторичку» нужно в обратном направлении, иначе трансформатор работать не будет. В завершение к одному из отводов нужно припаять в разрыв полупроводниковый термопредохранитель, ток и температура срабатывания которого определяются параметрами провода вторичной обмотки (корпус предохранителя нужно плотно примотать к трансформатору). Сверху трансформатор обматывается двумя слоями виниловой изоляции без клейкой основы, конец закрепляется стяжкой или цианакрилатным клеем.

Монтаж радиоэлементов

Осталось собрать устройство. Поскольку компонентов в схеме не так много, можно размещать их не на печатной плате, а навесным монтажом с креплением к радиатору, то есть к корпусу устройства. К штыревым ножкам подпаиваемся моножильным медным проводом достаточно большого сечения, затем место соединения укрепляется 5–7 витками тонкой трансформаторной проволоки и небольшим количеством припоя ПОС-61. После остывания соединения оно изолируется тонкой термоусадочной трубкой.

Схемы высокой мощности и со сложным вторичным контуром могут потребовать изготовления печатной платы, на краю которой в ряд размещены транзисторы для свободного крепления к теплоотводу. Для изготовления печатки пригоден стеклотекстолит с толщиной фольги не менее 50 мкм, если же покрытие более тонкое — усиливайте цепи низкого напряжения перемычками из медного провода.

Изготовить печатную плату в домашних условиях сегодня просто — программа Sprint-Layout позволяет рисовать обтравочные трафареты для схем любой сложности, в том числе и для двухсторонних плат. Полученное изображение распечатывается лазерным принтером на качественной фотобумаге. Затем трафарет прикладывается к очищенной и обезжиренной меди, проглаживается утюгом, бумага размывается водой. Технология получила название «лазерно-утюжной» (ЛУТ) и описана в сети достаточно подробно.

Вытравливать остатки меди можно хлорным железом, электролитом или даже поваренной солью, способов предостаточно. После вытравливания припекшийся тонер нужно смыть, просверлить монтажные отверстия сверлом в 1 мм и пройтись по всем дорожкам паяльником (под флюсом), чтобы залудить медь контактных площадок и улучшить проводимость каналов.

трансформатор +своими руками | Электрознайка. Домашний Электромастер.


   В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т. д. Эти помещения имеют повышенную степень опасности поражения электичческим током.
В этих  случаях  следует пользоваться электрооборудованием рассчитанным на пониженное напряжение питания, не более 42 вольт.

    Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.
    Рассчитаем и изготовим однофазный  силовой трансформатор 220/36 вольт, с выходным напряжением 36 вольт с питанием от электрической сети переменного тока напряжением 220 вольт.

    Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с  цоколем под обыкновенный электропатрон продаются в магазинах электротоваров.
Если вы найдете лампочку на другую мощнось, например на 40 ватт, нет ничего страшного —  подойдет и она. Просто трансформатор будет выполнен с запасом по мощности.
 

Сделаем упрощенный расчет трансформатора 220/36 вольт.

   Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт 

Где:
Р_2 – мощность на выходе трансформатора, нами задана 60 ватт;

U_2 — напряжение на выходе трансформатора, нами задано 36 вольт;

I_2 — ток во вторичной цепи, в нагрузке.

КПД  трансформатора  мощностью до 100 ватт обычно равно не более  η = 0,8.
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором  от сети с учетом потерь:

Р_1 = Р_2 /  η  = 60 / 0,8 = 75 ватт.

   Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе. Поэтому от значения   Р_1,   мощности потребляемой от сети 220 вольт,  зависит площадь поперечного сечения магнитопровода S.

   Магнитопровод – это сердечник  Ш – образной или  О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода. 

   Площадь поперечного сечения  магнитопровода рассчитывается по формуле:

 S = 1,2 · √P_1.  

  Где:
S — площадь в квадратных сантиметрах,

P_1 — мощность первичной сети в ваттах.

 S = 1,2 · √75 = 1,2 · 8,66 = 10,4  см².

По значению   S определяется число витков w на один вольт по формуле:

w = 50/S   

 В нашем случае площадь сечения сердечника равна  S = 10,4 см.кв.

 w = 50/10,4 = 4,8  витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4. 8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 =  172.8 витков,

округляем до 173 витка.

   В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

 Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера.

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

   Диаметры проводов первичной и вторичной  обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока,  для медного провода, принимается 2 А/мм² . 

   При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле:  d = 0,8√I .

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм.     Возьмем 0,5 мм.

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм.      Возьмем 1,1 мм.

   ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

    Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².    

где: d — диаметр провода.

   Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм. 

Площадь поперечного сечения провода диаметром 1,1 мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97  мм².  

Округлим до 1,0 мм².

   Из таблицы выбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

   Например, это два провода диаметром по   0,8 мм. и площадью по 0,5 мм². 

Или два провода:
 - первый диаметром 1,0 мм. и площадью сечения 0,79 мм²,
— второй диаметром 0,5 мм. и площадью сечения 0,196 мм².
что в сумме дает: 0,79 + 0,196 = 0,986 мм².

   Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

    Получается как бы один провод с суммарным поперечным сечением двух проводов.

 Смотрите статьи:
— «Как намотать трансформатор на Ш-образном сердечнике».
— «Как изготовить каркас для Ш — образного сердечника».

Выпрямитель 12в своими руками - Морской флот

Всем радиолюбителям привет, в этой статье хочу представить вам блок питания с регулировкой напряжения от 0 до 12 вольт. На нем очень легко выставить нужное напряжение, даже в милливольтах. Схема не содержит никаких покупных деталей – всё это можно вытащить из старой техники, как импортной, так и советской.


Принципиальная схема БП (уменьшенная)

Корпус изготовлен из дерева, в середине прикручен трансформатор на 12 вольт, конденсатор на 1000 мкФ х 25 вольт и плата, которая регулирует напряжение.

Конденсатор С2 нужно брать с большой емкостью, например чтобы подключать к блоку питания усилитель и чтобы напряжение не проваливалось на низких частотах.

Транзистор VT2 лучше установить на небольшой радиатор. Потому что при длительной работе он может нагреться и сгореть, у меня уже 2 штуки сгорело, пока не поставил приличный по размерам радиатор.

Резистор R1 можно ставить постоянный он большой роли не играет. Сверху на корпусе есть переменный резистор, которым регулируется напряжение, и красный светодиод, который показывает есть ли напряжение на выходе БП.

На выходе устройства, чтобы постоянно не прикручивать проводки к чему-нибудь, я припаял крокодильчики – с ними очень удобно. Схема не требует никаких настроек и работает надёжно и стабильно, ее действительно может сделать любой радиолюбитель. Спасибо за внимание, всем удачи! Автор: Игорь.

Обсудить статью САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА 12В

Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока. Это связано с тем, что для работы большинства приборов используется постоянный ток.

Как работает диодный мост

Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.

Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические конденсаторы с большой емкостью.

Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.

Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.

Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.

Применение диодных мостов

В любых приборах и электронике, для питания которых используется переменный электрический ток, присутствует схема диодного моста на 12 вольт. Ее используют не только в трансформаторных, но и в импульсных выпрямителях. Наиболее характерным импульсным блоком является блок питания компьютера.

Кроме того диодные мосты применяются в люминесцентных компактных лампах или в энергосберегающих лампах. Они дают очень хороший эффект при использовании их в пускорегулирующих электронных аппаратах. Широко применяются и во всех моделях современных сварочных аппаратов.

Как сделать диодный мост

Тема: как можно спаять источник питания на 12 вольт своими руками (схема).

Если вам нужен источник постоянного питания с напряжением 12 вольт, а его нет под рукой, то его можно и купить. Если брать дешёвый блок питания, то его качество будет оставлять желать лучшего. Обычно такие недорогие БП хороши только с виду. Когда их открываешь, то оказывается, что его характеристики (указанные на корпусе) по току завышены. В реальности он не способен обеспечить в полной мере ту мощность, что заявлена производителем (как правило). Можно купить и более дорогостоящий блок питания на 12 вольт, но собрать своими руками по частям выйдет гораздо дешевле, а по качеству ничуть не хуже.

Итак, как сделать хороший и простой блок питания на 12 вольт своими руками, что для этого нам понадобится? Нужен понижающий силовой трансформатор, выпрямительный диодный мост и фильтрующий конденсатор электролит. Трансформатор будет понижать сетевое напряжение (220 В) до нужного, а именно до 10 вольт. Почему до 10, а не 12. Потому, что есть такой эффект — переменное напряжение после диодного моста (имеющего конденсатор достаточной емкости) станет процентов примерно на 18 больше, чем без конденсатора. Это стоит учитывать при сборке любого блока питания.

Трансформатор нужен той мощности, которая вам нужна. То есть, изначально вы должны знать, какой именно максимальный ток должен выдавать данный блок питания. Зная ток и выходное напряжение можно найти электрическую мощность. Нужно просто ток (к примеру 3 ампера) перемножить на напряжение выхода (в нашем случае это 12 вольт). Стоит ещё добавить небольшой запас по мощности процентов 25. В итоге получим, что нужен трансформатор мощностью около 50 Вт.

С размерами (мощностью) трансформатора определились. Исходя из этого вторичная обмотка транса должна иметь нужное сечение, чтобы обеспечить нужную силу тока. Для 3 ампер (максимальное значение) на выходе нашего самодельного блока питания сечение вторичной обмотки трансформатора должно быть около 1,3 мм. Если на магнитопроводе достаточно места, то можно намотать провод большего диаметра (это только увеличит максимальную силу тока источника питания).

Итак, наш трансформатор на выходе вторичной обмотки будет выдавать переменное напряжение величиной 10 вольт. Это напряжение имеет форму синусоиды, которая меняет свои полюса с частотой 50 герц. Нам же нужен постоянный ток, который не имел этого периодического изменения полюсов. Для этого используется выпрямительный диодный мост. Его задача сводится к тому, что он все полупериоды делает однополюсными, хотя и скачкообразными (плавно возрастающими и убывающими). Диодный мост можно купить готовым, хотя его можно спаять и самому из 4х одинаковых диодов, которые должны быть также рассчитаны на нужный выходной ток. Для нашего самодельного блока питания с 3 амперами нужно взять диоды, рассчитанные на ток в 6 А (берём с учётом запаса).

Поскольку после диодов напряжение имеет скачкообразный вид, его нужно отфильтровать. Это делается обычным электролитическим конденсатором, соответствующей емкости. Значит достаем еще и конденсатор, рассчитанный на напряжение 25 вольт, с емкостью 2200 мкф (чем больше, тем лучше фильтрация, но при этом и размеры конденсатора будут увеличиваться). Вот и всё, теперь эти элементы нужно просто спаять между собой (трансформатор, выпрямительный диодный мост и конденсатор электролит).

Самодельный преобразователь напряжения для автомобиля 12

Привет.

Здесь представлен вариант сборки преобразователя для автомобильного аккумулятора, чтобы было можно подключить сетевые устройства на 220 Вольт. Для этого будет нужен трансформатор от ненужного неисправного источника бесперебойного питания компа и корпус от БП ATX.

Данный преобразователь относительно невысокой мощности, но он выдаёт напряжение с частотой примерно 50 Гц, которая близка по форме к синусоидальной, это даёт возможность подсоединять к нему бытовые устройства с трансформаторами на входе, а не только резистивную нагрузку (то есть лампы, паяльники, кипятильники). Плюсы этого преобразователя — это небольшие размеры тепло отводного радиатора для ключевых транзисторов и применение уже готового сетевого силового трансформатора. Эта схема выполнена из генератора противофазных импульсов на основе микросхемы D1, и пары МДП — транзисторов VT1 и VТ2, которые работают в двухтактном выходном каскаде, и выходного трансформатора, он служит для того, чтобы получать высокое напряжение. На компонентах D1.1 — D1.3 изготовлен мультивибратор, он вырабатывает симметричные прямоугольные импульсы с частотой примерно 50 Гц. Частота импульсов зависит от характеристик цепи С1 — R2.

Чтобы получить хорошую форму импульсов, перед подачей на затворы полевых транзисторов они идут на буферные каскады, которые выполнены на компонентах D1.4 и D1.6. Компонент D1.6 создаёт дополнительную инвертацию импульсов, которые поступают на VТ1, для получения импульсов, противофазных тем импульсам, которые идут на VТ2. Мощные стабилитроны VD1 и VD2 уменьшают выбросы самоиндукции на стоках транзисторов на допустимом для них уровне. Цепочка С5 — R5 избавляет от высокочастотных помех. В стоковых цепях транзисторов VТ1 и VТ2 подключены обмотки трансформатора Т1. Это обыкновенный низкочастотный силовой трансформатор с одной первичкой на 220 Вольт (обмотка 3) и вторичкой на 18 Вольт с отводом от середины (то есть получается две вторички по 9 Вольт, включенных последовательно). Тут данный трансформатор подключен наоборот, на его низковольтные  вторички подаётся напряжение от генератора, а сетевая первичка служит вторичной повышающей. Выходная мощность нагрузки соответствует мощности трансформатора. В этом случае применяется трансформатор 60 Ватт. Если учитывать потери, максимальная мощность нагрузки принята 50 Ватт. Трансформатор является стандартным, на Ш — образном железном сердечнике из пермалоевых пластин.

Микросхема D1 (74НС04) получает питание от напряжения 5 Вольт от стабилизатора А1. Светодиод НL1 служит в качестве индикатора включения преобразователя. S1 — выключатель питания. Дроссель L1 используется, чтобы подавлять помехи от преобразователя, которые попадают в электросеть авто. Источник питания выполнен в корпусе из металла. Габариты корпуса обычно определяют размерами применяемого трансформатора и конденсаторов С2, СЗ. Дроссель L1 намотан на ферритовом кольце с внешним диаметром примерно 30 мм. В качестве намоточного провода служит монтажный провод с сечением 0.6 мм. Намотка сделана равномерно виток к витку и так до заполнения в один целый слой. Часть элементов была смонтирована в корпусе объемным способом. Элементы генератора и транзисторы вместе с радиатором выполнены на печатной плате из стеклотекстолита с односторонней разводкой печатных дорожек.

Плата расположена в корпусе рядом с трансформатором и была закреплена при помощи винтов и стоек, через отверстия, которые были просверлены в уголках платы. Соединять с источником питания надо при помощи монтажного провода сечением не меньше 1.5 мм2. Провод минуса нужно паять непосредственно к фольге печатной платы рядом с полевыми транзисторами. Положительный провод от конденсатора СЗ сначала идёт на отвод низковольтной обмотки трансформатора. Данный провод короткой длины. К стабилизатору А1 от СЗ идёт отдельный более тонкий провод.

Полевые транзисторы IRF530 имеют довольно низкое сопротивление открытых каналов. Несмотря на довольно высокий импульсный ток, который протекает через них, тепловая мощность, рассеиваемая транзисторами очень мала (поскольку очень малое падение напряжение на открытых каналах). По этой причине, чтобы отводить тепло от транзисторов хватит простого пластинчатого радиатора с размерами 40 x 35 мм. Радиатор является общим, то есть для обоих транзисторов, но ставить нужно через прокладки. Если мощность нагрузки до 50 Ватт, то транзисторы вообще холодные, поэтому присутствие радиатора надо воспринимать скорее как страховку от возможности перегрева транзисторов в каких-то возможных экстремальных условиях. Когда будете выбирать трансформатор лучше остановитесь на таком, низковольтная обмотка его сделана для работы в двухполярном источнике питания. Если взять трансформатор с двойной низковольтной обмоткой возможности нет, то можете использовать трансформатор с одной обмоткой на 17 — 20 Вольт переменного напряжения. Потом разберите его и аккуратно смотайте низковольтную обмотку, считая при этом витки. Затем обмотку верните на место, но при намотке сделайте отвод от середины. Если элементы исправны и монтаж выполнен правильно, то дополнительное налаживание практически ненужно. Если нужно можете наиболее точно установить частоту выходного переменного тока с помощью подбора сопротивления R2. Поскольку трансформатор здесь мощнее, примерно 300 Ватт, то были применены иные транзисторы — IRF540N, они в 3 раза мощнее чем те, которые указаны в схеме. Теперь приступаем к установке всей этой конструкции в корпус от комповского БП.

Делайте разметки для трансформатора и платы, сверлите отверстия и приступайте к закреплению всего в нём. Закрепите трансформатор винтами.

Затем установите плату с элементами, а после уже вентилятор.

Затем сделайте и подключите низковольтную часть этого преобразователя. Поставьте лицевую панель и подключите высоковольтный блок.

Вот что вышло:

Работают от него любые лампы, а так же зарядные устройства для мобильного. Ещё была подключена для эксперимента электродрель мощностью 500 Ватт. Не сразу конечно, но раскрутилась, правда тестировалась аккумулятором 12 Вольт 1,3 Ампер. В целом работа устройства хорошая, схема показала свою работоспособность и простоту настройки.

Самодельный микро инвертор 12-220 вольт

Этот самодельный миниатюрный инвертор 12-220 вольт, который легко спрятать в патроне лампочки, использовался автором (Ака Касьян) для розыгрыша, в котором демонстрировался “генератор свободной электроэнергии”.

Для начала само видео с фокусом.

Далее видео с объяснением фокуса и показан микроинвертор 12-220 вольт.

Использовалась сетевая лампочка на 40 ватт.

Эта лампочка на самом деле не простая, удалось в маленькое пространство запихнуть самый настоящий повышающий инвертор напряжения 12-220 вольт, способный питать эту лампочку в полный накал.

Видно 2 полевых транзистора. Это достаточно мощные 20-амперные полевые транзисторы, снятые от инвертора. Конденсатор с первичной обмоткой силового трансформатора образуют колебательный контур. На плюсе питания дроссель, намотанный на колечки от энергосберегающей лампочки.  Также видны два базовых ограничительных резистора на 240 ом и два ультрабыстрых диода.

Дроссель один 7 витков сдвоенным проводом 0,8 миллиметров на колечке от эконом лампы. Сердечник от китайского электронного трансформатора 80 ватт, первичная обмотка 2 по 6 витков, провод четырехжильный по 0,8, вторичная обмотка 0,3 миллиметра 130-150 витков.

Схема и сборка преобразователя 12 на 220 вольт.

Рассмотрим схему инвертора постоянного тока 12 вольт в 220 переменного тока, которая была названа Энигма. Видим на дисплее три разные схемы. То есть это основные узлы которые имелись в конструкции.  Первая в нижней части, – это аккумулятор, то есть то, что имелось в зарядном устройстве. Это две последовательно соединенные литий-ионные аккумуляторы и линейный стабилизатор типа 7805, который был нужен для зарядки мобильного телефона. Он был установлен на небольшой теплоотвод. Плюсовой и минусовой отводы от аккумулятора напрямую шли к вилке. Выход со стабилизатора шел к разъему USB. При подключении в удлинитель был постоянный ток 12 вольт от аккумулятора.

Сверху с левой части имеется схема, которая была встроена в ЛДС. Это простой двухтактный повышающий преобразователь напряжения, собранный на основе простого мультивибратора. Транзисторы irf 630.

От плюса последовательно был соединен также 2 ваттный резистор на 10 ом, чтобы транзисторы чрезмерно не нагревались.

Два затворных, ограничительных резистора на R1, R2 на 1 кОм. Высоковольтный трансформатор трансформатор от подсветки ЖК мониторов. На выходе у них образуется напряжение около 3 киловольт. При прямой подаче на ЛДС, то есть в колбу, лампа засвечивается. Можно полностью засветить с помощью этой небольшой схемы.

Третья схема – это то, что находилось в цоколе лампы накаливания. Имеется вход питания – плюс. Плюс идет к средней точке трансформатора. Минус, земля общая идет к транзисторам. Плюс через небольшую индуктивность L1 подается на среднюю точку трансформатора. Он рассчитан для двухтактного инвертора.

Инвертор построен по принципу резонансного преобразователя. В силовую цепь параллельно подключен конденсатор на 1 микрофарад. Желательно использовать пленочные полипропиленовые конденсаторы на 160, 250, либо 400 вольт. Конденсатор и первичная обмотка трансформатора образуют колебательный контур.

Транзисторы применены типа 20n60, очень советуется использовать высоковольтные транзисторы с напряжением выше 100 Вольт. Ток чем выше, тем лучше. Это полевой n-канальные транзисторы.

Масса общая, то есть идет к транзисторам. Дальше два диода d1 и d2 Ultra Fast, например UF 4001 с током 1 ампер с обратным напряжением в 1 киловольт. Точно также 2 затворных резистора R3, R4 номиналом 1 килоом. Мощность всех указанных резисторов 0,25 ватт. Желательно взять их поменьше.

Трансформатор намотан на колечко от монитора. Первичная обмотка состоит из двух по семь. Вторичная обмотка 140-150 витков. Диаметр провода первичной обмотки 0,5 миллиметра параллельно в 5 жил. Вторичная обмотка была намотана одиночным проводом диаметром 0,3 миллиметра.

Готовый инвертор в наладке не нуждается. Трансформатор может быть намотан на другом сердечнике. Можно рассчитать трансформатор. Можно использовать также броневые чашки и др.

Несмотря на простоту схемы, мощность может доходить до 500 Ватт с соответствующим трансформатором, конденсатором и транзистором в цепи. В конце ролика фотоархив с демонстрацией сборки схемы данного инвертора.

Тут о инверторе на киловатт.

БЛОК ПИТАНИЯ НА 12 ВОЛЬТ 1 АМПЕР

   Итак, потребовался мне блок питания на 12 в. К сожалению не нашёл подходящего по размерам, поэтому решил купить пластиковый корпус – для этого взял установочную коробку для автоматов. Она отлично подходит по размерам да и стоит копейки. Смотрится неплохо.

   Трансформатор взял от видеомагнитофона, так как он мне больше всего подходил, дает на вторичке как раз необходимых 14.5 Вольт 1.5 Ампера, а вторую обмотку на 9 вольт просто не использовал.

   Закрепил в корпусе будущего блока питания сетевой тумблер, для того, чтобы вилку каждый раз не дергать из розетки, а можно было с выключателя отключать и включать. Для индикации используем светодиод, подключенный к выходу выпрямителя через резистор в 3 кОм.

   Трансформатор установил на рейку, чуть вырезав и приклеив. Далее смотрим принципиальную схему:

   В качестве выпрямителя использовал диодный мостик КЦ405 - он как раз он рассчитан на 100 вольт и ток до одного ампера. Саму микросхему-стабилизатор можно выбрать по таблице.

   Радиатор от компьютерного БП использовал - он алюминиевый и отверстия есть, к нему прикручиваем диодный мостик на термопасте. И микросхему стабилизатор КРЕН8Б. Она дает на выходе нужные 12 вольт и максимальный (до встроенной защиты) ток до 1.5 ампера. Ее крепим также на радиатор через термопасту.

   Теплоотвод крепится полоской через болтики к свободному ушку трансформатора питания.

   В качестве фильтра, после диодного моста, я использовал конденсатор на 3300 мкф 25 вольт - всё от того-же видеомагнитофона. Испытания показали, что уровень пульсаций на выходе очень незначительный, идеально подходит для питания даже чувствительной к наводкам радиоэлектроники.

   Если вы планируете использовать блок питания под предельной нагрузкой длительное время, да и еще когда жарко на улице, то желательно для охлаждения элементов установить маленький вентилятор, который применяется в компьютерной технике. В общем собираем этот проверенный блок и радуемся результату! С Вами был тов. Vanesex.

   Форум по блокам питания

схема, принцип работы, переделка и устройство

На чтение 5 мин Просмотров 384 Опубликовано Обновлено

Электронный трансформатор (ЭТ) появился на отечественном рынке сравнительно недавно, но уже успел завоевать популярность у любителей и профессионалов. На страничках Интернета публикуется большое количество материалов по электронным преобразователям, представленным самодельными источниками и зарядными устройствами различного типа. В них подробно описывается принцип их работы и порядок подключения к сети. По своему составу эти приборы относятся к типовым сетевым модулям, в качестве основного узла в которых используется именно ЭТ. Благодаря своей простоте и универсальности эти изделия стоят не дороже китайского блока питания (БП). Подобно ему при зарядке они работают от промышленной сети 220 Вольт.

Устройство и принцип действия ЭТ

Электронный трансформатор

Конструктивно этот элемент схемы содержит в своем составе следующие узлы:

  • мультивибратор – задающий генератор импульсов на мощных транзисторах;
  • мост, собранный на высоковольтных катушках индуктивности;
  • малогабаритный трансформатор напряжения 220 12.

Функцию генератора в схеме электронного трансформатора выполняет либо диодный тиристор, либо транзисторы, включенные по схеме коммутаторов мощных импульсов (их еще называют ключевыми). При работе этого электронного узла частота генерации задается с помощью переменного резистора и накопительной емкости (ее допускается регулировать в диапазоне от 30 до 35 кГц). Катушки индуктивности включены по частично мостовой схеме и намотаны на небольшом по размеру кольцевом сердечнике.

В этом модуле предусмотрена петля обратной связи, позволяющая повысить стабильность работы задающего генератора.

В составе схемы применены высоковольтные биполярные транзисторы (обычно – типа  MGE 13001-13009). Конкретная марка выбирается в зависимости от мощности электронного трансформатора, основное назначение которого – понижать уровень выходного сигнала до заданной величины в 12 (24) Вольта. Его основное достоинство – небольшие габариты и малый вес, что позволяет снизить соответствующие параметры всего устройства.

Принцип работы трансформатора состоит в формировании генератором импульсного напряжения нужной амплитуды, которое после преобразования в трансформаторе снижается до требуемого уровня. Для нормальной работы галогенных ламп мощных токовых импульсов амплитудой 12 или 24 Вольта бывает вполне достаточно.

Блок питания на основе электронного трансформатора

Принципиальная схема электронного блока питания

При изготовлении полноценного блока питания на основе электронного трансформатора постоянного тока на 12 Вольт к его схеме добавляется выпрямительный мост с элементами фильтрации. Этот узел состоит из 4-х вентильных диодов средней мощности с обратным напряжением до 1 кВ и током порядка 1 Ампер. После них полученное в результате выпрямления постоянное напряжение сглаживается (фильтруется) электролитическим конденсатором и мощным индуктивным дросселем.

Благодаря этому узлу удается управлять зарядной цепочкой из переменного резистора и конденсатора, входящих в электронный трансформатор.

Достоинством блока питания, собранного по рассмотренной схеме является простота и безотказность. Основой недостаток – сложность получения на выходе импульсного тока достаточно большой амплитуды. Схема подходит только для маломощных галогенных ламп, устанавливаемых в небольших светильниках типа «ночник».

Достоинства электронных преобразователей

К числу основных достоинств устройств, построенных на основе ЭТ, относят следующие особенности работы схемы:

  • выходной трансформатор блока питания не запустится без подсоединения к нему нагрузки – перейдет в активный режим, если только к нему подключен светильник с лампочкой;
  • помимо щадящего режима работы элементов электронной схемы это свойство ЭТ позволяет экономить на расходуемой электроэнергии;
  • в изделии легко реализуется система защиты от опасных перегрузок и коротких замыканий.

В качестве образца, используемого для самодельного изготовления блока питания на таком трансформаторе, нередко берутся более сложные полумостовые схемы. Обычно они построены на базе драйверов типа IR2153 или подобных ему электронных компонентов. В качестве дополнительной опции в них предусмотрен индикаторный светодиод, сигнализирующий о наличии высокочастотных колебаний.

Некоторые из достоинств электронных преобразователей относятся специалистами к недостаткам, мешающим самостоятельной переделке их в простейшие блоки питания.

Недостатки предлагаемых рынком моделей ЭТ

В дешевых моделях отсутствует специальная защита от перегруза

Несмотря на экономичную и хорошо отработанную схему блоки питания на ЭТ имеют целый ряд недостатков, к которым принято относить:

  • отсутствие в простейших китайских моделях специальной защиты от перегруза;
  • вызванная этим необходимость обязательной доработки схемы;
  • во многих рыночных образцах отсутствует входное фильтрующее устройство, что вынуждает добавлять в нее сглаживающий электролитический конденсатор (он ставится после «мощного» дросселя).

К перечисленным недостаткам обычно относят «жесткий» режим работы высоковольтных транзисторов, включенных по ключевой схеме.

При случайном замыкании по выходу (КЗ) эти элементы просто «сгорают», что приводит к необходимости срочного обновления всего электронного модуля. Нередко при этом выходит из строя и выпрямитель на полупроводниковых диодах, также нуждающийся в замене.

Заниматься ремонтом ЭТ нецелесообразно, поскольку стоит он практически копейки. Гораздо проще и дешевле приобрести новый модуль и переделать его под свои нужды.

Мощность электронных трансформаторов

Под показателем мощности ЭТ понимается величина тока в нагрузке, умноженная на напряжение питания галогенной лампочки. На отечественном рынке встречаются различные образцы трансформаторных изделий с заявленными показателями от 25-ти и до нескольких сотен Ватт. Наиболее широко представлены модели, рассчитанные на выходную мощность порядка 50-80 Ватт. К таким преобразователям допускается подключать две или даже три 20-ти ватные лампы. Как правило, все они рассчитаны на выходное напряжение 12 Вольт.

Рассмотренные блоки питания используются только по своему прямому назначению – для питания галогенных источников света. Применять их для светодиодных ламп, например, запрещено прикладываемой к изделию инструкцией.

Как построить самодельный трансформатор 24 В переменного тока в постоянный ток 20 А со старыми деталями

Прежде чем мы обсудим блок трансформатора 24 В переменного тока в постоянный ток 20 А и детали его проводки, нам будет важно знать несколько вещи относительно предмета.

Во-первых, здесь слово «трансформатор» относится к «преобразованию», а не к обычному понижающему трансформатору (хотя он нам также понадобится здесь) и, во-вторых, к номинальному току 20 ампер, как указано в заголовке или любом Рейтинг в этом отношении может быть совершенно неуместным просто потому, что номинальный ток будет зависеть от мощности подключенной нагрузки и должен быть выбран соответствующим образом.

Например, предположим, что вам нужна бутылка с водой и рядом есть два пруда с водой, один немного больше, а другой относительно меньше, поэтому вас не будет беспокоить, куда вы окунули бутылку, поскольку оба источника смогут с комфортом снабдит вас бутылкой воды.

Аналогия в точности сопоставима с токами в электрических системах. Если мы предположим, что максимальный ток, требуемый подключенной нагрузкой, будет намного больше 10 А, тогда, вероятно, нам потребуется вход 20 А, чтобы быть в большей безопасности, однако, если потребность ниже 5 А, то вышеуказанный выбор будет полная трата денег и места, поскольку избыточная мощность практически никогда не вступит в игру.

Еще один важный фактор, о котором следует помнить при номинальном токе, заключается в том, что вы никогда не сможете подключить нагрузку, которая может потреблять ток, близкий к номинальному входному значению, потому что, поскольку сопутствующее напряжение прямо пропорционально силе тока, оно снизится почти до ноль в приведенном выше случае, превращая все в КРАСНЫЙ цвет. Эмпирическое правило - поддерживать максимальное потребление тока ниже 50% от номинального значения для безопасной работы.

Давайте вернемся к предложенной конструкции и посмотрим, как мы можем построить трансформатор 24 В переменного тока в 20 А постоянного тока в следующем разделе.

Трансформаторы и преобразователи

Для создания преобразователя переменного тока в постоянный на 24 В вам потребуются следующие основные электронные компоненты, и сборка должна быть завершена в течение нескольких минут:

Понижающий трансформатор

с номинальным током, как описано в предыдущий раздел, имеющий вторичную обмотку 0-24 В и входную первичную обмотку в зависимости от спецификаций страны.

Четыре диода с номиналами снова в зависимости от нагрузки (мы обсудим это в следующем содержании),

A Конденсатор фильтра, значение которого (мкФ) может не быть критическим, 1000 мкФ вполне достаточно, однако напряжение критично , которое всегда должно быть вдвое больше входного напряжения питания, поэтому вы можете выбрать его как 50,

А красный светодиод и резистор ограничения тока (4. 7K, 1/4 Вт),

Подходящий шкаф для размещения вышеуказанных компонентов, закрепленных внутри корпуса.

Подсказки по конструкции

Подключение вышеуказанных устройств очень простое и может быть выполнено с помощью следующих шагов:

Первый шаг включает сборку четырех диодов в качестве мостового выпрямителя. Это можно сделать, соединив их, как показано на схеме, над частью общей печатной платы или просто скрутив выводы вместе, соблюдая полярность. Более графическое представление дано ЗДЕСЬ.

Тип выбора диода будет зависеть от нагрузки, если она ниже 0,5 А, вы можете выбрать диоды 1N4007, при токе выше 2 А хватит 1N5408, а при потреблении, превышающем этот уровень, потребуется выбрать диоды непосредственно в соответствии с потребляемым током. .

Затем приобретенный конденсатор можно подключить к мосту в соответствии со схемой, опять же, необходимо обратить внимание на полярность - противоположное соединение может привести к сильному взрыву или повреждению конденсатора.

Дополнительный блок светодиодного / резисторного индикатора также может быть припаян поперек конденсатора.

После завершения вышеуказанных сборок осталось только подключить его к вторичным выходным проводам трансформатора.

Наконец, первичная обмотка трансформатора должна быть подключена к сетевому шнуру, чтобы ее можно было подключить для требуемого преобразования.

После подключения светодиод должен немедленно загореться, и на конденсаторе станет доступным требуемый выход 24 В постоянного тока, который можно использовать для требуемых приложений.

Советы по применению

Одним из применений схемы, приведенной выше, было бы ее использование для замены дорогостоящего трансформатора 24 В переменного тока на 20 А постоянного тока или, точнее, преобразователя мощности для таких приложений, как двигатели активации для выдвижных навесов. Трансформатор также можно использовать дома, в офисе, в кемпинге, а также во время прогулок и пикников. В помещении устройство может быть просто запитано от сетевой розетки с розеткой переменного тока 110 В, которая подключается к первичной обмотке трансформатора, как описано выше, а полученный выход постоянного тока 24 В может использоваться в соответствии с потребностями.

На открытом воздухе эта схема может оказаться очень удобной и может использоваться либо с существующим генератором переменного тока вашего кемпера / прицепа, либо от дизельного генератора. Здесь схема становится более гладкой и легкой, поскольку громоздкий понижающий трансформатор не требуется и может быть полностью исключен.

Вход 24 В переменного тока от генератора переменного тока напрямую подключается к точкам, где ранее была подключена вторичная обмотка понижающего трансформатора, то есть через входы мостового выпрямителя.

Преобразованный выход 24 В постоянного тока от блока может использоваться либо для зарядки инверторной батареи, либо просто с соответствующими приборами, для работы которых требуется входная мощность 24 В.

Самодельные магнитные усилители.

Самодельные магнитные усилители.

Найл Штайнер K7NS.

Октябрь 2009 г.

Магнитный усилитель из обычных 12-вольтных трансформаторов.

Магнитный усилитель - это схема, которая использует изменения насыщения сердечника индуктора для усиления. Небольшое изменение постоянного тока от 9-вольтовой батареи и потенциометра на 1 кОм может вызвать сильное изменение переменного тока через автомобильную фару.


Цель этой статьи - развенчать тайны эзотерического магнитного усилителя и описать, как построить простые самодельные магнитные усилители с использованием обычных 12-вольтных трансформаторов.

Это настоящая сделка; коэффициент усиления трансформатора, компонента, который обычно считается пассивным.В большинстве приложений трансформаторы просто используются для повышения или понижения напряжения переменного тока без фактического усиления. Однако обычный трансформатор в цепи магнитного усилителя может фактически демонстрировать усиление так же, как транзистор или лампа. Магнитный усилитель отличается от транзисторного усилителя только тем, что небольшое количество постоянного тока управляет большим количеством переменного тока на выходе вместо того, чтобы контролировать большое количество постоянного тока на выходе.

Чтобы оценить величину усиления в моих схемах магнитного усилителя, я сравнил изменение входной мощности с изменением выходной мощности, рассеиваемой выходной нагрузкой.Другими словами, я умножил изменение выходного напряжения на нагрузке на изменение тока через нагрузку. Затем я разделил это на изменение входного напряжения, умноженное на изменение входного тока.

Допустим, вы хотите включить автоматический налобный фонарь на 12 В переменного тока и сделать схему диммера, в которой используется потенциометр нормального размера на 1 кОм. Горшок просто сгорел бы, если бы он был включен последовательно с автоматической фарой, поэтому необходима какая-то схема с усилением, чтобы получить адекватный контроль от 1К-банка.

Для подобного проекта обычно приходит на ум использование симисторов или силовых транзисторов, но менее известный магнитный усилитель может выполнять ту же работу без использования каких-либо симисторов, транзисторов или ламп.

В Интернете есть несколько хороших статей о теории магнитных усилителей. Двумя из лучших являются: «Книга трансформаторов» Ли Рубена и «Магнитные усилители» от Мали. Их можно найти в гугле. Однако в большинстве этих статей магнитные усилители описываются с теоретической точки зрения. Они могут легко привести к мысли, что для создания магнитного усилителя потребуются специальные сердечники и трансформаторы.Ничто не может быть дальше от истины.

В результате моих собственных экспериментов я обнаружил, что обычные повседневные трансформаторы, включая трансформаторы накаливания 12 В, продаваемые Radio Shack, впечатляюще хорошо работают для создания магнитных усилителей. Использование трехканальных и других специальных сердечников трансформатора для магнитных усилителей также описано в статьях о магнитных усилителях, но я только что экспериментировал со стандартными трансформаторами из-за их легкой доступности. Я также получаю огромное удовлетворение от того, что экзотические процессы работают просто за счет использования общедоступных материалов.

Для начала я хотел бы сначала показать простой эксперимент, демонстрирующий, как насыщение магнитного сердечника может снизить индуктивность и позволить большему количеству переменного тока проходить через лампу.


Лампа светится ярче, когда магниты находятся рядом с трансформатором. Магнитное поле насыщает сердечник, понижая индуктивное сопротивление последовательно с лампой.

Кроме того, короткое замыкание неиспользуемой обмотки приведет к тому, что лампа загорится до полной яркости. Из-за этого мы пока не можем использовать эту схему в качестве магнитного усилителя.Объяснение последует в ближайшее время.


Вместо использования магнитов, постоянное напряжение, приложенное к другой обмотке, также может вызвать насыщение сердечника. Это основа схемы магнитного усилителя.

Чтобы понять, как магнитный усилитель может усиливать, представьте себе трансформатор накаливания 12 В с первичной обмоткой 120 В и вторичной обмоткой 12 В. Вторичная обмотка на 12 В соединена последовательно с 12 В переменного тока и лампой. Первичная обмотка имеет примерно в десять раз больше витков, чем вторичная.Пропуская небольшой управляющий ток постоянного тока через первичную обмотку 120 В, возможно усиление, поскольку этот небольшой ток может генерировать достаточное количество ампер-витков для насыщения сердечника. Это снижает индуктивное сопротивление вторичной обмотки 12 В, позволяя большему количеству переменного тока проходить через лампу, делая ее ярче. Небольшое изменение постоянного тока, подаваемого на первичную обмотку 120 В, может вызвать гораздо большее изменение переменного тока, протекающего через вторичную обмотку 12 В. Об этом можно сказать и по-другому. Небольшое изменение мощности, рассеиваемой на первичной обмотке 120 В, может вызвать гораздо большее изменение мощности, рассеиваемой на нагрузке, подключенной к вторичной обмотке 12 В.

Однако эта конфигурация схемы создает некоторые проблемы, которые необходимо решить. При использовании одного трансформатора через обмотку управления 120 В. через действие трансформатора будет появляться переменный ток высокого напряжения. Это высокое напряжение может сжечь потенциометр или что-то еще, подключенное к этой обмотке на 120 В. Мы не хотим, чтобы этот высоковольтный переменный ток выходил из входа магнитного усилителя.

Существует также проблема, что лампа будет гореть на полную мощность, если просто закоротить управляющую обмотку 120 В.Если к усилителю не подключен входной сигнал, не должно иметь значения, разомкнут ли вход или закорочен.

Решением этого является использование двух трансформаторов. Выходной переменный ток может проходить через обмотки 12 В обоих трансформаторов последовательно или параллельно. Входные обмотки на 120 В могут быть соединены последовательно, так что напряжения переменного тока, индуцированные в них из-за действия трансформатора, не совпадают по фазе и нейтрализуются. Это позволяет подавать небольшие управляющие напряжения постоянного тока на две обмотки 120 В без взаимодействия с высоким напряжением переменного тока. Поскольку каждый сердечник трансформатора может насыщаться независимо от другого, управляющие обмотки постоянного тока имеют эффект полного насыщения сердечника, даже если они подключены в противофазе.

Когда две входные управляющие обмотки синхронизированы правильно, легко определить, закоротив вход. Если фаза неправильная, лампа загорится на полную мощность. Если фаза правильная, состояние лампы практически не изменится.

В схеме магнитного усилителя этого типа лампа обычно тусклая или выключена при подаче нулевого управляющего напряжения.При подаче на вход управляющего напряжения постоянного тока положительной или отрицательной полярности лампа становится ярче.


Магнитный усилитель с последовательно включенными катушками реактивного сопротивления.

Магнитный усилитель с параллельными катушками реактивного сопротивления.

Круг с символом синусоиды в центре - источник питания переменного тока. В случае описанных здесь схем это обычно трансформатор 12 В, питаемый от розетки 120 В 60 Гц.


Управление лампой на 120 В с помощью выходного повышающего трансформатора.

Магнитные усилители, по-видимому, лучше всего подходят для управления нагрузками с низким сопротивлением на выходе. Автомобильная фара на 12 В - типичный пример. Подключив повышающий трансформатор к выходу одного из моих 12-вольтных трансформаторных магнитных усилителей, я смог управлять лампой на 120 В и 60 Вт.


Добавление пары диодов приводит к невероятному увеличению усиления.

Я был впечатлен наблюдением типичного прироста мощности от 15 до 25 при использовании схемы с двумя трансформаторами, но после добавления пары кремниевых выпрямительных диодов в схему, как показано выше, я начал наблюдать удивительный прирост мощности, намного превышающий 1000 !! Диодные схемы, которые я сделал, не выделяют столько энергии в моих экспериментальных условиях, но относительная величина изменения входного управляющего тока, необходимая для управления выходом, составляет очень небольшую часть того, что требуется, когда в цепи нет диодов.

Почему это так? Диоды заставляют пульсирующий постоянный ток течь через катушки. Этот пульсирующий постоянный ток имеет тенденцию смещать катушки в сторону насыщения, как если бы он был подан на вход. Легко понять, почему такая схема называется магнитным усилителем с самосмещением. Этот эффект смещения также проявляется в виде положительной обратной связи. Положительная обратная связь в усилителях любого типа обычно приводит к увеличению усиления. При более положительной обратной связи усилитель может стать нестабильным или работать как бистабильный триггер.Мне также удалось создать несколько бистабильных цепей на магнитных усилителях. В статьях о магнитных усилителях

также объясняется, что использование диодов предотвращает насыщение сердечника как в отрицательном, так и в положительном направлении. Это повышает эффективность за счет устранения потерь на гистерезис.

В схеме магнитного усилителя этого типа лампа обычно загорается до некоторой степени при подаче нулевого управляющего напряжения. Управляющее напряжение постоянного тока, приложенное к входу с одной полярностью, приведет к тому, что лампа станет ярче, а управляющее напряжение постоянного тока, приложенное с противоположной полярностью, приведет к потускнению лампы.

В некоторых статьях о магнитных усилителях говорится о том, что схема должна иметь диоды, чтобы называться магнитным усилителем, и что схема без диодов называется насыщающимся реактором. Схема без диодов может иметь коэффициент усиления всего 15, но он все равно впечатляет и, безусловно, может усиливаться. Почему должна иметь значение, имеет ли схема усиление 15 или 1500, чтобы ее можно было назвать усилителем?


Более высокий коэффициент усиления также достигается при использовании самодельных выпрямителей из буры.

Мне было любопытно посмотреть, можно ли использовать самодельные выпрямители из буры (в двух банках) вместо современных кремниевых выпрямителей для увеличения коэффициента усиления схемы усилителя. Ответ: действительно, могут.

Два кремниевых диода на переднем плане не подключены.

Эти выпрямители из буры грубоваты по сравнению с современными кремниевыми диодами, но я все же смог наблюдать удивительный прирост мощности около 450 при использовании их в цепи магнитного усилителя.


А теперь очевидный вопрос. Ответ на первый вопрос, который может задать любой, кто читает это: ОООХХХХ ГГЕЕЕСССС !!! Аудио магнитные усилители могут быть построены в домашних условиях с использованием обычных тороидальных трансформаторов и высокочастотного источника переменного тока. Я сделал магнитный усилитель звука с заметным усилением, используя пару тороидальных катушек из коробки с излишками запчастей.

Самодельный магнитный усилитель звука.


Домашняя страница Sparkbangbuzz.

Как спроектировать инвертор от 12 В до 120 В переменного тока - Efxkits.us

Инвертор от 12 В до 120 В переменного тока

Домашний инвертор - это электрическое устройство, используемое для подачи питания на электроприборы в случае сбоя питания. Название «инвертор» подразумевает, что сначала переменный ток преобразуется в постоянный для зарядки аккумулятора, а затем он преобразует постоянный ток в переменный для питания электрических устройств. На рынке доступны различные типы инверторов. Самый эффективный инвертор - это чистая синусоида, которая вырабатывает переменный ток в форме волны, аналогичный бытовому источнику питания. Как правило, недорогие типы инверторов включают в себя, в основном, прямоугольную и квазисинусоидальную волну. Но он менее эффективен, чем инвертор синусоидальной волны, потому что некоторые электрические машины не будут работать должным образом в этих инверторах.Сейчас инверторы, работающие на солнечной энергии, очень известны своей способностью экономить энергию, но их стоимость будет очень высокой, так как для этого потребуется очень большая солнечная панель.

Что такое инвертор от 12 В постоянного тока до 120 В переменного тока?

Инвертор - это электрический прибор, преобразующий постоянный ток в переменный. Инвертор в основном используется в аварийных ситуациях, когда требуется резервное питание, например, дома, в офисе и т. Д. А также он используется в нескольких системах самолета для изменения части мощности постоянного тока самолета на переменный ток.Электропитание переменного тока в основном используется для электроприборов, таких как фонари, радио, радары, моторы и другие приборы.

Основными элементами инвертора в основном являются генератор, трансформатор и зарядное устройство. Давайте разберемся с принципом действия этих элементов.

Инвертор для дома

Генератор: Генератор изменяет входной постоянный ток от батареи на прямоугольную волну или колебательный ток, который подается на вспомогательную обмотку трансформатора.

Трансформатор: Приложенное напряжение повышается в соответствии с соотношением обмоток трансформатора и переменного тока, намного превышающего ток i / p источника постоянного тока, который становится доступным на основной обмотке или o / p инвертора.

Зарядное устройство: Когда батарея разряжается до значительного уровня во время резервного питания, сегмент зарядного устройства используется для зарядки батареи после восстановления сети переменного тока.

Схема инвертора от 12 В до 120 В переменного тока

Инвертор от 12 В постоянного тока до 120 В переменного тока используется для включения телевизора или стереосистемы во время кемпинга или дороги.Этот инвертор использует постоянный ток 12 вольт и шагает до 120 вольт переменного тока. В основном мощность зависит от транзисторов и трансформатора, используемых для Q1, Q2 и T1. Инвертор можно собрать для питания от 1 до 1000 Вт.

Необходимые компоненты включают следующие

  • C1- 2,68 мкФ, Танталовый конденсатор C2-25V
  • R1-10 Ом, R2- Резистор 5 Вт
  • R3-180 Ом, R4- Резистор 1 Вт
  • D1- HEP, D2-154 Кремниевый диод
  • Q1 и Q2-2N3055 NPN транзистор
  • Т1- 1,24 В
  • MISC-1 Провод, футляр, приемный

Схема инвертора от 12 В до 120 В переменного тока

В следующей схеме T1 и транзисторы Q1 и Q2 определяют, сколько мощности может обеспечить инвертор.С двумя транзисторами 2N3055 и T1 = 15 А инвертор может обеспечить около 300 Вт. Для большей мощности вместо Q1, Q2 и T1 можно заменить огромные трансформаторы и мощные транзисторы. Простой и недорогой способ получить огромный T1 - это перевернуть старый микроволновый трансформатор. Эти старые микроволновые трансформаторы заряжаются около 1 киловатта и идеально подходят.

Сходи в мастерскую по ремонту телевизоров и копайся в мусорном контейнере, пока не найдешь самую большую микроволновку, какую только можешь достать. Снимите трансформатор с большей микроволновой печи и с большего трансформатора, чтобы не прикасаться к огромному конденсатору напряжения, который все еще может быть заряжен.Теперь отсоедините предыдущую вторичную обмотку на 2000 В, стараясь не сломать первичную обмотку. Оставляем основной, теперь скручиваем 12 витков проволоки, наматываем петлю и перекручиваем еще 12 витков. Размер провода будет зависеть от силы тока в сети трансформатора.

Для этого отлично подходит магнитный провод с эмалевым покрытием. Теперь защитите обмотки лентой. Имейте в виду, что для Q1 и Q2 следует использовать транзисторы с большим током. Каждый транзистор может обрабатывать только 15 ампер каждый. Учтите, что при работе с высоким напряжением токовая цепь показывает огромные количества тока.Не позволяйте вашей батарее разрядиться. Поскольку эта цепь генерирует 120 В переменного тока, вы должны иметь предохранитель.

Вы должны использовать титановые конденсаторы как для C1, так и для C2. Нормальный электролитик загорится и лопнет. Если вы хотите построить 220/240 В переменного тока вместо 120 В переменного тока, вам потребуется трансформатор с первичной обмоткой 220/240 вместо указанного здесь блока 120 В. Остальная часть схемы продолжается так же. Но для выработки 240 В требуется в два раза больше тока при 12 В, чем для 120 В.

Это все о принципиальной схеме инвертора 12 В постоянного тока в 120 В переменного тока. Из вышеприведенного проекта, наконец, мы можем сделать вывод, что эту схему можно использовать для преобразования 12 В постоянного тока в 120 В переменного тока, который используется в домах.Этот проект может выдерживать мощность 300 Вт, которая подходит для радиоприемников, телевизоров и светильников. Кроме того, любые вопросы относительно этой статьи или реализации солнечного инвертора, пожалуйста, дайте свои ценные предложения, комментируя в разделе комментариев ниже. Вот вам вопрос, какова функция инвертора?

Фото:

Просмотры сообщений: 6,448

Modular Synth - двойной источник питания 12 В

Самое первое, что нужно решить при создании синтезатора, сделанного своими руками, - это как все это будет получать питание? Традиционно синтезаторам требуются как положительные, так и отрицательные напряжения, что делает создание подходящего источника питания несколько сложнее, чем может показаться на первый взгляд.По соглашению, звуковые сигналы, генерируемые генератором, должны иметь амплитуду около 10 В с центром на земле (-5 В в самой низкой точке, + 5 В в самой высокой). Следовательно, блок питания должен обеспечивать напряжение выше ± 5 В. Наиболее распространенные напряжения питания составляют ± 9 В (для систем с батарейным питанием), ± 12 В (для модулей Eurorack) и ± 15 В. В этом руководстве я расскажу о трех наиболее распространенных схемах, используемых для питания модульных синтезаторов.

Примечание: Некоторые схемы, описанные в этом посте, используют сетевое питание и могут быть опасны при неправильной конструкции.Поскольку все остальные схемы синтезатора зависят от стабильного источника питания, ошибка в источнике питания может вызвать множество проблем для любых подключенных модулей. Если у вас нет опыта или оборудования для создания собственного блока питания с нуля, я бы посоветовал вам вместо этого приобрести предварительно собранный блок или комплект печатной платы!

Изображение, показывающее мой двойной блок питания DIY, используемый для питания базового модуля генератора.

1. Серия Метод батареи

Один из самых простых способов создать двойной источник питания - использовать два набора батарей.Батареи соединены последовательно, так что положительный полюс одной батареи присоединяется к отрицательной клемме второй батареи. Когда это среднее соединение используется в качестве заземления для схемы, вы сможете получать положительное и отрицательное напряжение от батарей, как показано на схеме ниже. Для небольших и портативных синтезаторов это часто делается с использованием двух батарей 9 В, как я продемонстрировал на макете на изображении ниже. Поскольку напряжение на обеих батареях будет падать по мере разряда питания, нам также необходимо включить регуляторы напряжения, которые обеспечат стабильное напряжение на синтезаторе.На изображении ниже вы можете видеть, что батареи, которые я использую, почти разряжены, так как напряжение, измеренное моим мультиметром, составляет всего -7,11 В.

Этот метод работает только в том случае, если один или оба источника напряжения считаются «плавающими». Это означает, что источник питания не подключен к какому-либо абсолютному опорному напряжению, например к заземлению. Все батареи являются плавающими источниками питания, но часто не используются проводные источники питания. Например, если отрицательная клемма обоих источников напряжения подключена к земле, то соединение положительной и отрицательной клемм обоих источников вместе просто вызовет короткое замыкание; я бы посоветовал вам избегать этого!

  • Преимущества:
    • Очень легко внедрять и устранять неполадки.
    • Относительно портативный.
    • Напряжение может быть увеличено путем последовательного добавления дополнительных батарей.
    • Срок службы батареи и максимальный выходной ток можно увеличить, добавив несколько батарей параллельно.
  • Недостатки:
    • Аккумуляторы постоянно нужно менять!
    • Напряжение батарей будет падать по мере их разрядки (как показано на изображении), поэтому по-прежнему потребуется дополнительная микросхема регулятора мощности.

2.Двойное выпрямление переменного тока в постоянный

Электроэнергия, подаваемая в розетку, меняется с положительного на отрицательное напряжение много раз в секунду (230 В 50 Гц в Европе, 120 В 60 Гц в США). Что мы хотим сделать, так это снизить это напряжение до более низкого и более управляемого напряжения, взяв положительную половину сигнала переменного тока для обеспечения положительного выхода, а отрицательную половину - для отрицательного выхода. Этот процесс требует следующих шагов:

  • Понизьте высокое напряжение, подаваемое от сети, до более низкого напряжения с помощью трансформатора.
  • Преобразуйте сигнал переменного тока в положительный и отрицательный сигнал с помощью диодов.
  • Сгладьте напряжение с помощью конденсаторов.
  • Сгенерируйте стабильное выходное напряжение с помощью регуляторов мощности.

а. Схема однополупериодного выпрямителя

Это конструкция блока питания, которую я использовал в своем синтезаторе, и, вероятно, это наиболее распространенная конструкция, используемая сборщиками синтезаторов своими руками. Эта конструкция часто предпочтительнее, чем двухполупериодный выпрямитель , так как вы можете использовать имеющийся в продаже трансформатор с розеткой, чтобы преобразовать сетевую мощность до 12 В переменного тока, которая используется источником питания.Это означает, что ваша схема не контактирует напрямую с сетью питания, что делает работу с ней немного безопаснее (но вам все равно нужно быть осторожным!).

Важно: Вам необходимо убедиться, что в розетке трансформатора вы используете выходы 12В переменного тока , а не 12В постоянного тока. Штепсельные вилки 12 В постоянного тока встречаются гораздо чаще, поэтому может потребоваться некоторое время, чтобы найти правильный тип штепсельной вилки 12 В переменного тока. Также убедитесь, что вилка, которую вы получаете, рассчитана на ток не менее 1000 мА или выше, а номинальное входное напряжение сети соответствует стране, в которой вы находитесь.

Пример схемы однополупериодного выпрямителя показан на Схема 2 ниже. Схема принимает сигнал 12 В переменного тока от сетевой розетки и преобразует его в стабильный положительный и отрицательный выход 12 В. Я видел много вариантов этой схемы, в которых использовались конденсаторы различной емкости.

Схема 2: Схема однополупериодного выпрямления
Как это работает?
  1. Схема принимает сигнал переменного тока 12 В от трансформатора сетевой розетки.12 В переменного тока относится к среднеквадратичному значению сигнала. Этот сигнал имеет пиковое напряжение ± 17 В, как показано на диаграмме формы сигнала ниже.
  2. Диод D1 пропускает только положительную половину сигнала переменного тока, а D2 пропускает отрицательное напряжение. Этот процесс известен как полуволновое выпрямление или полумостовое выпрямление , поскольку только половина формы волны переменного тока используется для питания каждого из выходов напряжения. В результате каждый выход теоретически может выводить только половину мощности (и, следовательно, тока), обеспечиваемой трансформатором с настенной розеткой.Пиковое напряжение выпрямленных сигналов составляет - 16,3 В, поскольку диоды вносят в схему падение 0,7 В.
  3. Конденсаторы сглаживают форму волны, обеспечивая подачу более непрерывного напряжения на регуляторы напряжения. Обоснование выбора этого конкретного значения емкости обсуждается в следующем разделе.
  4. Стабилизаторы напряжения LM7812 и LM7912 обеспечивают стабильное выходное напряжение источника питания +12 В и -12 В соответственно.Если вместо этого вы хотите получить выходы +15 В и -15 В, вы можете использовать вилку питания переменного тока 15 В и заменить их регуляторами LM7815 и LM7915. Если вы собираете свою собственную схему, следите за тем, чтобы контакты входа, выхода и заземления находились в разном порядке на регуляторах положительного и отрицательного напряжения.
  5. Конденсаторы C3 и C4 в основном включены для улучшения переходной характеристики источника питания; конденсатор может обеспечивать кратковременные всплески высокого тока при резких изменениях нагрузки, прилагаемой к источнику питания.Согласно паспорту стабилизатора отрицательного напряжения LM7912, для стабильности конденсатор C4 должен быть не менее 1 мкФ (при использовании танталового конденсатора) или 10 мкФ (при использовании электролитического конденсатора). Было выбрано более высокое значение 100 мкФ, чтобы обеспечить дополнительный коэффициент безопасности по сравнению с этим минимальным значением.
  6. Два светодиода указывают на наличие питания на выходах. Некоторые регуляторы отрицательной мощности также требуют, чтобы на выходе была приложена минимальная нагрузка перед запуском, поэтому светодиоды помогают обеспечить эту нагрузку.
  7. Согласно паспорту LM7912, диод D4 требуется, когда на входе используются большие конденсаторы, такие как C10 . Диод предотвращает кратковременные входные короткие замыкания, которые могут возникнуть при включении или выключении цепи. LM7812 не обязательно в этом нуждается, но я поставил D6 на всякий случай.
  8. В листе данных для LM7812 и LM7912 указано, что D5 и D3 должны присутствовать, чтобы предотвратить проблемы с фиксацией .Эти компоненты действуют как ограничивающие диоды, помогая защитить регуляторы от обратной полярности на выходах. Если один регулятор запускается раньше другого, такие устройства, как операционные усилители (операционные усилители), могут заблокироваться и вызвать короткое замыкание между обеими шинами питания. Это может помешать запуску второго регулятора. Диоды (предпочтительно Шоттки) не позволяют положительному выходу опускаться ниже -0,3 В, а отрицательному выходу - выше 0,3 В, позволяя обоим регуляторам запускаться и отключаться от фиксации.
Схема, показывающая основные этапы процесса полуволнового выпрямления
Как выбрать номинал конденсатора?

Почему на входе каждой шины питания (C1 и C7, C2 и C10) два конденсатора? Как были выбраны номиналы этих конденсаторов? Я просмотрел несколько схем однополупериодных выпрямителей, и, похоже, есть много различий в том, какое значение емкости должно быть.

Обычно есть один небольшой неэлектролитический конденсатор рядом со входом каждого регулятора мощности, который помогает стабилизировать, фильтровать и сглаживать вход (C1 и C2).Обычно это от 100 нФ до 1 мкФ. Маленькие конденсаторы (керамические, полиэфирные, танталовые и т. Д.) Лучше, чем большие электролитические пленочные конденсаторы, отфильтровывают высокочастотный шум из сигнала.

Затем имеется батарея больших электролитических конденсаторов, подключенных параллельно (C7 и C10; при необходимости можно подключить больше конденсаторов), гарантируя, что существует относительно постоянный резервуар мощности, даже когда входной сигнал переменного тока находится в противоположной половине волна и никакой новой энергии не подается.Эти конденсаторы хорошо удаляют низкочастотный шум и стабилизируют колебания постоянного напряжения. Общая емкость этого резервуара зависит от ожидаемой нагрузки на источник питания. Вот как рассчитать, какая емкость вам может понадобиться:

Согласно техническому описанию, стабилизаторам 12 В требуется минимальное входное напряжение 14,5 В для обеспечения стабильного выхода 12 В. Поскольку 16,3 В - это максимальное напряжение, обеспечиваемое нашим трансформатором и схемой выпрямления, при полной нагрузке мы стремимся к среднему входному напряжению постоянного тока (V DC ) 15.4 В и максимальная пульсация напряжения (p % ) 5,8%.

 В_ {DC} = \ frac {16,3 + 14,5} {2} = 15,4 В 
 \ rho _ \% = \ frac {15.4-14.5} {15.4} \ times100 = 5.8 \% 

Далее нам нужно рассчитать эффективное сопротивление нагрузки. Поскольку регулятор может выдавать максимальный ток (I DC ) около 1 А, это означает, что эквивалентное сопротивление нагрузки (R L ) составляет 15,4 Ом. Мощность, рассеиваемая (P D ) через регулятор (в виде тепла), составляет 3,4 Вт.Регулятор сам по себе может рассеивать только ~ 1 Вт, поэтому нам обязательно нужно прикрепить к нему радиатор, чтобы отвести лишнее тепло.

 R_L = \ frac {V_ {DC}} {I_ {DC}} = \ frac {15.4} {1} = 15.4 \ Omega 
 P_D = (V_ {DC} -V_O) (I_ {DC}) \ newline = (15.4-12) (1) = 3.4 Вт 

Затем мы можем вычислить минимальное значение емкости (C s ), которое может обеспечить желаемую пульсацию напряжения. Формула, которую я использую, предполагает, что разряд конденсатора приблизительно линейный, а частота переменного тока составляет 50 Гц. Значение оказывается около 11000 мкФ! Теоретически нам потребуется соединить 3 больших конденсатора емкостью 4700 мкФ вместе параллельно, чтобы стабилизатор мощности мог достичь максимального выходного тока 1 А. При наличии только одного конденсатора емкостью 4700 мкФ максимальный выходной ток, вероятно, составляет около 0,4 А на шину.

 C_s = \ frac {1} {\ rho _ \% R_L} = \ frac {1} {5,8 \ times 15.4} = 0,011F 
 \ text {If} \ quad C_s = 0.0047F \ quad \ text {then:} 
 R_L = \ frac {1} {5,8 \ times 0,0047} = 36,7 \ Omega 
 I_ {DC} = \ frac {15.4} {36,7} = 0,42A 

Итак, чтобы подвести итог… если мы хотим получить полный выходной ток 1А от нашего источника питания, суммарное значение емкости на входе регулятора должно быть не менее 11000 мкФ.

Полумостовой выпрямитель: дополнительная информация
Тестирование полумостового выпрямителя на макетной плате.

г. Схема двухполупериодного выпрямителя

В схеме полного мостового или двухполупериодного выпрямления для питания обоих выходов используются как положительная, так и отрицательная части переменного сигнала.Это означает, что схема теоретически может управлять вдвое большей нагрузкой по сравнению с полумостовым выпрямителем. Как видно на схеме 3 , большая часть схемы идентична полумостовому выпрямителю. Единственное отличие состоит в том, что были добавлены два дополнительных выпрямительных диода и использован трансформатор с тремя выходами (называемый «трансформатор с центральным отводом»). Центральный выход трансформатора используется в качестве опорного заземления, в то время как два других соединения выдают идентичный сигнал 12 В переменного тока, но сдвинут по фазе на 180 °.Это означает, что когда один из выходов находится в положительной части переменного сигнала, другой - в отрицательной, и наоборот.

Этот тип схемы часто используется в профессиональном оборудовании, но не так часто используется разработчиками синтезаторов. Трансформаторы с центральным отводом недоступны в виде готовых розеток, поэтому вам придется подключать свои собственные. Поскольку один конец трансформатора подключен к электросети, построение этой схемы сопряжено с немного большим риском и может быть предпринято только в том случае, если у вас есть подходящее оборудование и вы знаете, что делаете! При покупке трансформатора убедитесь, что номинальное входное напряжение сети соответствует стране, в которой вы находитесь.

Схема 3: Двухполупериодная схема выпрямления
Как это работает?
  1. Трансформатор принимает переменный сигнал сети и снижает напряжение, выдавая два сигнала переменного тока 12 В, которые сдвинуты по фазе на 180 °.
  2. Четыре диода используются для разделения положительной и отрицательной частей переменного сигнала, направляя положительную половину на регулятор + 12В, а отрицательную - на регулятор -12В. Поскольку оба сигнала переменного тока не совпадают по фазе, это приводит к непрерывной подаче питания для обеих полярностей.
  3. Остальная часть схемы идентична «полумостовому выпрямителю», поэтому вы можете обратиться к моему описанию выше, чтобы увидеть, как он работает и что делает каждый компонент.
Схема, показывающая основные этапы процесса двухполупериодного выпрямления
Полномостовой выпрямитель: дополнительная информация

3. Подающий насос с преобразованием постоянного тока в постоянный

Также можно получить двойной источник питания 12 В только от одной вилки питания +12 В постоянного тока. Это полезно, поскольку вилки питания постоянного тока гораздо более распространены, и поэтому их дешевле покупать.Также проще найти штекеры 12 В постоянного тока с высоким номинальным током, позволяющим запитать больше модулей синтезатора от одного источника. Блоки питания такого типа часто используются в портативных модульных синтезаторах и небольших модулях питания, совместимых с Eurorack. Поскольку трансформатор и схема выпрямления (большие конденсаторы) содержатся во внешнем штекере, занимаемая площадь электроники, используемой в этой конструкции, может быть намного меньше, чем в схемах двойного выпрямления переменного и постоянного тока .

а. Как это работает?

В своей наиболее простой форме инвертирующий зарядный насос использует «плавающий» конденсатор для переноса заряда со стороны +12 В на сторону -12 В. Конденсатор заряжается от входа +12 В, обеспечиваемого сетевой розеткой. После заполнения конденсатор отключается от входа +12 В, а положительный вывод подключается к земле. Поскольку заряд (и, следовательно, падение напряжения) на конденсаторе остается прежним, это означает, что отрицательный вывод конденсатора теперь находится под напряжением -12 В.Затем конденсатор начинает разряжаться, и он используется для питания отрицательной шины. В нашем источнике питания этот процесс зарядки и разрядки повторяется много раз в секунду. Схема 4 показывает эквивалентную схему, демонстрирующую, как работает эта система. В реальной схеме переключение конденсатора выполняется с помощью микросхемы IC.

Схема 4: GIF, показывающий, как работает подкачка заряда; схема на основе учебника Maxim Integrated.
  1. Первоначально переключатели S1 и S3 замкнуты, а переключатели S2 и S4 разомкнуты.Конденсатор C1 подключен к Vin и к земле , в результате чего заряд в конденсаторе увеличивается.
  2. После определенного интервала переключатели S1 и S3 снова открываются, а S2 и S4 закрываются. Верхняя ветвь конденсатора теперь подключена к земле вместо Vin . Поскольку заряд конденсатора не изменился, падение напряжения на конденсаторе остается прежним.В результате на нижнем плече конденсатора присутствует напряжение -Vin .
  3. Этот механизм переключения непрерывно повторяется, заряжая конденсатор C1 положительным входным напряжением и снова разряжая его на инвертированном выходе. Конденсатор, по сути, перекачивает заряд с положительного входа на инвертированный выход.
  4. Конденсатор C2 действует как буфер / накопитель мощности, сглаживая напряжение на выходе и обеспечивая непрерывное питание на инвертированном выходе.

г. Реализация на практике

Схема 5: LTspice Тестовая схема для инвертирующего зарядового насоса с использованием LTC1144 IC

В примере схемы, показанной на Схема 5 , мы используем микросхему LTC1144 производства Analog Devices для переключения для инвертирования. зарядный насос. Конденсатор C6 используется для инвертирования заряда, в то время как C5 действует как резервуар, так что отрицательный выход имеет более стабильный выход.Графики показывают, как цепь реагирует при запуске. Ток через конденсатор C6 меняется с положительного на отрицательный через равные промежутки времени, когда он заряжается от положительного источника питания и разряжается на отрицательный выход. Напряжение отрицательного выхода быстро уменьшается по мере того, как резервуарный конденсатор C5 заряжается, со временем выравниваясь до -12 В.

В микросхеме LTC1144 частоту сигнала переключения можно увеличить или уменьшить, изменив значение конденсатора, подключенного к входному выводу OSC.Зарядные насосы могут работать в широком диапазоне частот переключения, обычно от 1 кГц до 200 кГц.

Примечание. У меня не было возможности опробовать эту схему на практике, поэтому значения конденсаторов в Схема 5 , вероятно, придется изменить, чтобы сделать ее пригодной для использования в качестве источника питания синтезатора. Моделирование схем было выполнено в бесплатной программе LTspice, разработанной Analog Devices.

Нагнетательные насосы: дополнительная информация

Если у вас есть вопросы или предложения, не стесняйтесь оставлять комментарии ниже!

Сборка повышающего трансформатора

| Telecaster Guitar Forum

Я завершил сборку переключающего понижающего трансформатора.Выключатель на розетке включает и выключает розетку. Миниатюрный переключатель SPDT ON / ON выбирает снижение напряжения на -5,5% или -11%, чтобы снизить напряжение вашего усилителя до винтажного уровня.

Держатель предохранителя является стандартным Fender и содержит предохранитель 125 В на 4 А. Трансформатор представляет собой ламповый трансформатор накаливания Hammond 166N6, 6,3 В, 4 А (12 долларов на сайте Mouser.com).

Синий ящик представляет собой трехсекционный пластиковый электрический переключатель (4 доллара от Lowes). Выключатель / розетка - это Cooper Wiring Devices TR274W (9 долларов от Lowes) со встроенным индикатором питания, выключателем и розеткой.Если вы используете этот переключатель, будьте уверены и следуйте правильным инструкциям. Они находятся в правом нижнем углу первой страницы и озаглавлены «Однополюсный переключатель и заземляющая розетка» и используют конфигурацию №3. Удалите отрывной язычок. Розетка управляется переключателем. Подключите перемычку, как показано. Контрольная лампа горит, когда переключатель включен. «Вы должны провести перемычку от черного винта со стороны гнезда к латунному винту. Другой черный винт - горячий, серебряный винт - нейтральный, зеленый - заземленный.

Я не используйте полоску с бирками, так как коробка была пластиковой и не нуждалась в заземлении.Я проложил заземляющий и нейтральный провода прямо от шнура питания к выходной розетке. Горячий провод шнура питания подключается непосредственно к предохранителю.

На трансформаторе один черный и один зеленый провод должны быть подключены к Hot от предохранителя. Если вы выберете диагональные провода (задний правый и передний левый), вы получите понижающее напряжение. Если вы используете черный и зеленый с одного конца трансформатора, вы получите повышающий трансформатор. Если в конечном итоге вы получите более высокое напряжение, чем стена, просто поменяйте местами два зеленых провода (или поменяйте местами два черных провода), и вы получите выходное напряжение ниже, чем на стене.

При напряжении на стене 121,25 мой B + был 430. С понижающим трансформатором в низком положении мой B + был уменьшен до 414 В, что фактически снизило 3,7% (выходное гнездо было на 116,9 В). В нижнем положении мой B + был 399 для снижения на 7% (розетка на 112,9 В)

Я переключил переключатель между двумя напряжениями при включенном усилителе без каких-либо проблем или хлопков.

Создайте простой блок питания постоянного тока

В мире существуют более эффективные и сложные блоки питания.Есть более простые способы получить простой источник питания, подобный этому (например, повторно использовать бородавку). Но если вы сделаете такой источник питания хотя бы раз в жизни, вы будете гораздо лучше понимать, как переменный ток становится регулируемой мощностью постоянного тока. Будет много других подобных блоков питания, но этот будет вашим.

Блок питания, как мы его здесь будем называть, преобразует переменный ток из розетки на стене в постоянный. Есть несколько способов сделать это.Мы рассмотрим один из самых простых, но и наиболее наглядных примеров.

Электроэнергия проходит через несколько ступеней в источнике питания с регулятором напряжения, подобном этому или обычному настенному бородавку. Способы его изменения на каждом этапе объяснены ниже. В следующий раз, когда вы воспользуетесь бородавкой для питания одного из своих проектов, вы поймете, что происходит внутри.

Теория:

Вход переменного тока

Напряжение переменного тока, идущего от стены, изменяется от минимального до максимального с частотой 60 Гц (в США и других странах с частотой 60 Гц).Это то, что питает все приборы переменного тока в вашем доме и магазине, и это похоже на график ниже. После трансформатора график аналогичен, за исключением того, что синусоида имеет меньшую амплитуду.

Простой график, показывающий мощность переменного тока. Vin Marshall
Ректификация

Первая ступень этого блока питания - выпрямитель. Выпрямитель представляет собой систему диодов, которая позволяет току течь только в одном направлении. Представьте себе односторонний обратный клапан для воды. Из-за расположения диодов в двухполупериодном выпрямителе, используемом в этой конструкции, положительная часть сигнала переменного тока проходит беспрепятственно, а отрицательная часть сигнала переменного тока фактически инвертируется и добавляется обратно в выходной сигнал выпрямителя.Теперь наш сигнал выглядит так:

График мощности переменного тока после отключения выпрямителя. Vin Marshall
Сглаживание

Теперь у нас есть по крайней мере стабильно положительные уровни напряжения, но они все еще опускаются до нуля 120 раз в секунду. Большой конденсатор, который можно представить себе как батарею, работающую на очень короткие периоды времени, устанавливается поперек цепи, чтобы выровнять эти быстрые колебания мощности. Конденсатор заряжается при высоком напряжении и разряжается при низком напряжении.С помощью конденсатора кривая напряжения выглядит так:

График мощности переменного тока при сглаживании конденсатором. Вин Маршалл
Постановление

На этом этапе мы используем интегральную схему (ИС), чтобы последовательно регулировать напряжение до желаемого уровня. При выборе размеров компонентов для всех предыдущих этапов важно управлять этой ИС с уровнем напряжения, значительно превышающим регулируемое напряжение, чтобы оставшиеся провалы 120 раз в секунду не опускались ниже требуемого минимального входного значения.Однако вы не хотите использовать слишком высокое напряжение, так как эта избыточная мощность будет рассеиваться в виде тепла. Кривая напряжения в этой точке (в идеале) представляет собой сигнал постоянного тока при желаемом напряжении; горизонтальная линия.

На этом графике мощности постоянного тока нет провалов. Vin Marshall

Что вам понадобится

Для создания этого конкретного блока питания вам потребуется следующее:

  • Шнур питания. Где-то должен быть один…
  • Тумблер SPST 120 В
  • Монтаж на панели неоновая лампа 120 В
  • 3 клеммы
  • Трансформатор с входным напряжением 120 В и выходным напряжением около 24 В, чтобы Vin для регулятора 7812 оставался выше минимум.Я использовал Radio Shack p / n 273-1512.
  • Двухполупериодный мостовой выпрямитель
  • 6800 мкФ Конденсатор
  • 2x 100 нФ (точное значение не имеет значения) конденсаторы
  • 2x 1 мкФ (точное значение не имеет значения) конденсаторы
  • 7805 Регулятор напряжения 5 В
  • 7812 Регулятор напряжения 12 В

Инструкции

Конструкция блока питания довольно проста. Я построил этот блок питания много лет назад и использовал двухточечную проводку на монтажной плате.Есть много более чистых способов его создания, чем этот, и я рекомендую вам воспользоваться одним из них. Однако это прекрасно работает. При создании этого блока питания было бы разумно прикрепить какой-либо радиатор к регуляторам напряжения 78xx. Эта конструкция может быть легко модифицирована для обеспечения регулируемого выходного напряжения с помощью регулятора напряжения LM317 вместо или в дополнение к указанным регуляторам напряжения. Заземлив центральный отвод вторичной обмотки трансформатора (при условии, что у вас есть трансформатор с центральным отводом), взяв положительный и отрицательный выводы от мостового выпрямителя и используя регуляторы отрицательного напряжения серий LM79xx и / или LM337, ваш источник питания может обеспечить регулируемые отрицательные напряжения.

Полная схема блока питания. Vin Marshall

Готовый продукт выглядит так:

Внутри блока питания. Vin Marshall

Simple 1A, 12V SMPS | Полная принципиальная схема с пояснением

Большинству энтузиастов электроники требуются источники питания постоянного тока для работы различных устройств и аксессуаров. Самым популярным и распространенным источником питания является источник постоянного тока 12 В, который можно легко получить из бытового источника переменного тока с преобразованием, выпрямлением, фильтрацией и стабилизацией.Эти источники питания имеют громоздкий трансформатор, покрытый сталью или слоем железа, который обеспечивает защитный барьер для выхода низкого напряжения от входа переменного тока и снижает входное напряжение с обычно 230 В переменного тока до гораздо более низкого напряжения. Затем низковольтный переменный ток на выходе трансформатора выпрямляется двумя или четырьмя диодами и сглаживается в низковольтный постоянный ток большими электролитическими конденсаторами. Представленный здесь SMPS на 1 А, 12 В может помочь.

Рис. 1: Авторский прототип 12V SMPS

Импульсный источник питания (SMPS) предлагает те же конечные результаты при более низкой стоимости и более высокой эффективности.Для данной выходной мощности ИИП легче и меньше. Это связано с тем, что при увеличении частоты срабатывания можно обойтись меньшим поперечным сечением сердечника. Кроме того, трансформатор с железным сердечником работает только примерно до 10 кГц, а если нам нужно что-то в диапазоне 50-100 кГц, нам понадобится ферритовый сердечник.

Схема и рабочая

На рис. 2 показана схема простого ИИП на 1 А, 12 В. Схема построена на маломощном автономном коммутаторе TNY266 (IC1), фототранзисторном оптроне EL817 (IC2), обратном трансформаторе (X1) и некоторых других легко доступных компонентах.

Автономный коммутатор с низким энергопотреблением (TNY266). SMPS здесь был разработан с использованием микросхемы TNY266, которую ласково называют «555» SMPS. Это устройство имеет полевой МОП-транзистор мощностью 700 В, генератор, высоковольтный импульсный источник тока, схему ограничения тока и теплового отключения, встроенную в монолитное устройство. Пусковая и рабочая мощность поступает непосредственно от напряжения на стоке (вывод 5), что устраняет необходимость в обмотке смещения и связанных с ней схемах. Кроме того, устройство включает в себя автоматический перезапуск, определение пониженного напряжения в линии и дрожание частоты.

Напряжение пробоя сток-исток полевого МОП-транзистора TNY266 имеет важное значение. В период «выключения» полевой МОП-транзистор видит выпрямленное напряжение примерно 317 В постоянного тока. Кроме того, он видит отраженное напряжение вторичной обмотки, которое составляет около 130 В переменного тока. Он также сталкивается с вызывным напряжением от индуктивности рассеяния и емкостью сток-исток полевого МОП-транзистора. Следовательно, ожидается, что полевой МОП-транзистор с напряжением постоянного тока 650 В будет поддерживать необходимый запас безопасной эксплуатации. К счастью, в TNY266 включен полевой МОП-транзистор с такими свойствами.

Вход 230 В переменного тока подключен к CON1, который выпрямляется диодом D1. Неоновая лампа (NL1) светится при наличии входного питания. Резистор R1 ограничивает ток через лампу. Выпрямленный выход поступает на первый вывод (A) катушки L1, а второй вывод (B) подключается к стоку встроенного полевого МОП-транзистора в IC1. Диоды D2 и D3, по сути, являются демпферами и используются для защиты полевого МОП-транзистора от превышения 600 В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *