Расчет тока трансформатора: Калькулятор расчёта трансформатора питания онлайн / Калькулятор / Элек.ру

Содержание

Силовые трансформаторы, простой расчет — Радиомастер инфо

В статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.

 

 

  1. Перед тем, как использовать силовой трансформатор необходимо определиться с его мощностью.

Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.

Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.

Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и  токоограничивающем резисторе, примем его около 5 В.

Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.

К.п.д. силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.

В нашем случае принимаем к.п.д. равным 0,8.

При мощности вторичной обмотки 120 Вт, с учетом к.п.д. мощность первичной обмотки равна:

120 Вт : 0,8 = 150 Вт.

  1. По этой мощности определяем площадь поперечного сечения сердечника, на котором будут расположены обмотки.

S (см2) = (1,0 ÷1,2) √Р

Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.

Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см2.

  1. Теперь нужно определить дополнительную величину – количество витков на вольт. Обозначим ее N.

N = (50 ÷70)/S (см2)

Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:

N = 60/13,5 = 4,44

Округлим это значение до 4,5 витка на вольт.

Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.

Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.

  1. Осталось определить диаметр провода обмоток.

Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.

Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).

I1 = 150 Вт / 220 В = 0,7 А

Диаметр провода определяем по формуле:

D(мм) = (0,7÷0,8)√I(А)

Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.

Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.

Диаметр провода первичной обмотки:

D1 = 0,75 √0,7 = 0,63 мм

Диаметр провода вторичной обмотки:

D2 = 0,75 √6 = 1,84 мм

Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.

Вот и весь расчет.

Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к.п.д. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.

Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.

Материал статьи продублирован на видео:

Выбор трансформаторов тока

Измерительные трансформаторы тока 6-10 кВ используются в реклоузерах (ПСС), пунктах коммерческого учета (ПКУ), камерах КСО - везде, где требуется учет электроэнергии или контроль тока для защиты линии от перегрузки.

Одним из основных параметров трансформатора тока (ТТ) является коэффициент трансформации, который чаще всего имеет обозначение 10/5, 30/5, 150/5 или аналогичное. Попробуем разобраться, что это означает, и как правильно выбрать коэффициент трансформации трансформатора тока.

Важно! Трансформатор тока по природе является повышающим, поэтому его вторичная обмотка должна быть всегда замкнута накоротко через амперметр или просто перемычкой. Иначе он сгорит или ударит кого-нибудь током.

Зачем нужны трансформаторы тока

Электрики, знакомые с электрооборудованием ~220 В могут заметить, что квартирные счетчики электроэнергии подключаются непосредственно к линии без использования трансформаторов тока. Однако уже в трехфазных сетях трансформаторное подключение встречается чаще, чем прямое включение. В цепях же ПКУ и распределительных устройств 6-10 кВ все измерительные устройства подключаются через трансформаторы тока.

Трансформатор тока предназначен для уменьшения величины измеряемого тока и приведения его к стандартному диапазону. Как правило, ток преобразуется к стандартному значенияю 5 А (реже - 1 А или 10 А).

Еще одним назначением трансформаторов тока является создание гальванической развязки между измеряемой и измерительной цепями.

Как выбрать трансформатор тока

Максимальный рабочий ток первичной обмотки трансформатора определяется мощностью силового трансформатора на понижающей подстанции.

Например, если мощность подстанции 250 кВА, то при номинальном напряжении линии 10 кВ ток не будет превышать 15 А. Значит коэффициент трансформации трансформаторов тока должен быть не менее 3 или, как это часто обозначают, 15/5. Использование трансформаторов тока меньшего номинала может привести к тому, что ток во вторичной обмотке будет значительно превышать заданное значение 5 А, что может привести к существенному снижению точности измерений или даже выходу из строй счетчика электроэнергии.

Таким образом, минимальное значение коэффициента трансформации ТТ ограничивается номинальным током линии.

А существуют ли ограничения на коэффициент трансформации с другой стороны? Можно ли использовать, например, вместо трансформаторов 15/5 трансформаторы 100/5? Да, такие ограничения существуют.

Если использовать трансформаторы тока с непропорционально большим номиналом, то результатом будет слишком малый ток во вторичной обмотке трансформатора, который счетчик электроэнергии не сможет измерять с необходимой точностью.

Чтобы не производить каждый раз громоздкие математические вычисления, был выработан ряд правил по выбору коэффициента трансформации ТТ. Эти правила зафиксированы в настольной книге каждого энергетика - в "Правилах устройсва электроустановок" (ПУЭ).

Правила устройства электроустановок допускают использование трансформаторов тока с коэффициентом трансформации выше номинального. Однако такие трансформаторы ПУЭ называют "трансформаторами с завышенным коэффициентом трансформации" и ограничивают их использование следующим образом.

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Поскольку упомянутое в ПУЭ понятие минимальной рабочей нагрузки является не очень понятным, то используют и другое правило:

Завышенным по коэффициенту трансформации нужно считается трансформатор тока, у которого при 25% расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке менее 10% номинального тока счетчика.

Таким образом, максимально возможное значение коэффициента трансформации применяемых трансформаторов тока ограничивается чувствительностью счетчиков электроэнергии.

Расчет минимального и максимального значения коэффициента трансформации

Для расчета номинала трансфоррматора тока необходимо знать диапазон рабочих токов в первичной обмотке трансформатора.

Минимальный коэффициент трансформации ТТ рассчитывается, исходя измаксимального рабочего тока в линии. Максимальный рабочий ток можно вычислить, исходя из общей мощности потребителей электроэнергии, находящихся в одной сети. Но производить эти вычисления нет необходимости, так как все расчеты уже были проделаны ранее при проектировании трансформаторной подстанции. Как правило, номинал силового трансформатора выбран таким, чтобы регулярная нагрузка не превышала номинальную мощность трансформатора, а кратковременная пиковая нагрузка превышала мощность трансформатора не более, чем на 40%.

Нужно различать полную мощность (измеряется в кВА) и полезную мощность (измеряется в кВт). Полная мощность связана с полезной через коэффициент мощности, характеризующий реактивные потери в сети. Больше информации по теме можно получить на другой странице нашего сайта.

Поделив потребляемую мощность на номинальное напряжение сети и уменьшив полученное значение на корень из 3, получим максимальный рабочий ток. Отношение максимального рабочего тока к номинальному току счетчика электроэнергии и даст искомый минимальный коэффициент трансформации.

Например, для подстанции мощностью 250 кВА при номинальном напряжении сети 10 кВ максимальный рабочий ток составит около 15 А. Поскольку кратковременный максимальный рабочий ток может достигать 20 А, то минимальный номинал трансформатора тока лучше взять с небольшим запасом - 20/5.

Максимальный коэффициент трансфортмации ТТ определим, умножив минимальный коэффициент трансформации на отношение уровеня рабочего тока (в процентах от максимального) к уровеню тока во вторичной обмотке трансформатора (также в процентах от максимального).

Например, минимальный коэффициент трансформации - 15/5, расчетный уровень рабочего тока - 25% от максимального, ток во вторичной обмотке трансформатора - 10% от номинального тока счетчика. Тогда искомый минимальный номинал ТТ - 15/5 * 25/10, то есть 7,5 или в традиционной записи 37,5/5. Но, поскольку ТТ с таким номиналом не выпускаются, то нужно взять ближайшее значение - 30/5.

Требования, предъявляемые нормативными документами к выбору коэффициента трансформации измерительных трансформаторов тока, оставляют очень мало места для маневра, позволяя выбрать трансформатор только из двух-трех близких номналов

Расчет однофазного понижающего трансформатора - Расчёты - Справочник


Расчет однофазного понижающего трансформатора
(С броневым сердечником)
 Дано:
U1=220B;
U2=36B;
U2=12B;
I2=1A;
I2=5A.

Найти:
a, b, h - размеры сердечника;
d1, d2, d2, w1, w2, w2 - диаметры и число витков обмоток.
Решение:
1. Определим мощность вторичных обмоток трансформатора:

                                                   

2. Определим мощность первичной обмотки трансформатора:
                                                      где
     η - КПД трансформатора. КПД берем из таблицы (в конце статьи). Так как S2 у нас близка к 100 ВА, принимаем η=0,81. Получим:

                                                         
3. Определим поперечное сечение сердечника трансформатора:

                                                    
    Коэффициент k зависит от условия охлаждения трансформатора. k=6÷8 для воздуха.      Принимаем k=8.
                                                          
    Определим размеры сердечника трансформатора. Сечение сердечника может быть выражено через его размеры: d1=ab,

    где а - ширина,
          b - толщина.
    Соотношение размеров сердечника может находиться в пределах
                                                          
     Принимаем
                                                             
     Определим фактическое значение сердечника трансформатора.
      b=1,2a. Отсюда   
                                                   Qc=ab=1,2a²

                                                         
    Принимаем фактическое значение аф=30мм;

                                                  b=1,2a=1,2·26,9=32,28 мм
    Принимаем bф=30 мм.

4. Определяем фактическое значение сечения сердечника трансформатора:

                                                  
    Определим высоту прямоугольного стержня:

                                                    Нс=(2,5÷3,5)·аф

    Принимаем коэффициент 3,5.

                                                     Нс=3,5·30=105 мм.

                                                    
где m - коэффициент, учитывающий наивыгоднейшие размеры окна сердечника.
     m=2,5÷3.
    Принимаем m=3
                                                    
5. Определим ток в первичной обмотке.

                                                   
6. Определим сечение проводов первичной и вторичной обмоток трансформатора.

                                                   где

    δ - допустимая плотность тока, А/мм².
    Берем из таблицы δ (100 ВА)=2,5 А/мм².

                                              
                                              
                                             
    По сечению выбираем по таблице 1 (в разделе "Таблицы") диаметр провода ПЭВ-1 с изоляцией или перейти по ссылке.
    d1 и=0,575 мм; d2’и=0,755 мм; d2”и=1,67 мм.

7. Определим число витков первичной и вторичных обмоток.
                                       

где Вс - магнитная индукция в сердечнике, Тл. Находим по таблице:
    Вс (100 ВА) =1,35 Тл.
                                    

   Принимаем w1 за целое число: w1=816.

                                     .

                                    

8. Определим число витков вторичных обмоток с учетом компенсации потерь напряжения в проводах.
    Необходимо увеличить число витков вторичных обмоток на 5÷10%.
    Увеличим на 5%.

                                   

                                   

    Принимаем w’=140 и w"=47

9. Определяем площадь окна сердечника.

                                   Qo=Hc·C=105·35=3675 мм²

    Определяем коэффициент заполнения окна сердечника обмотками.

                                 
    Он должен быть в пределах   k=0,2÷0,4

                               что удовлетворяет условию. Значит расчет проведен верно.

Ответ: а=30см;b=30см; h=110cм;
d1 и=0,575 мм; d2’и=0,755 мм; d2”и=1,67 мм; w1=816; w2’=140; w2"=47.
 

Таблица для расчета однофазных трансформаторов с броневыми сердечниками.

 
Р, ВА Вс, Тл

КПД

тр-ра

Δ,
А/мм²
10 1,1 0,82 4,8
20 1,25 0,85 3,9
40 1,35 0,87 3,2
70 1,4 0,89 2,8
100 1,35 0,91 2,5
200 1,25 0,93 2,0
400 1,15 0,95 1,6
700 1,1 0,96 1,2
1000 1,05 0,96 1,2
более 1000 0,8-1,05 0,96-0,98 1,2

1. Методика расчёта трансформатора малой мощности (тмм). Общие требования к трансформаторам

ФГОУ СПО «Уральский радиотехнический колледж им. А.С.Попова»

Практическая работа по дисциплине:

«Электропитание средств ВТ»

«Расчет ТММ»

Специальность 230106 «Техническое обслуживание средств вычислительной техники и компьютерных сетей»

Работу выполнил:

студент группы Кс-318

Шаяхметов Р.Р

Работу проверил:

преподаватель

Лебедкин Р.Н.

2011г.

Содержание

1. Общие требования к трансформаторам………………………………………….

  1. Особенности расчёта трансформатора малой мощности.

  2. Основные расчётные условия силового однофазного трансформатора.

2. Расчёт основных электрических и конструктивных параметров работы

однофазного силового трансформатора.

  1. Краткие теоретические сведения, поясняющие конструкцию и принцип действия однофазного силового трансформатора малой мощности.

  2. Определение мощности вторичной (вторичных) обмоток трансформатора.

Полезная (отдаваемая) мощность трансформатора.

  1. Выбор конструкции магнитопровода,

  2. Выбор марки стали для магнитопровода,

  3. Определение магнитной индукции.

  4. Определение ориентировочной плотности тока в обмотках трансформатора

  5. Определение коэффициента заполнения окна магнитопровода и заполнение

сечения магнитопровода сталью.

  1. Величина произведения сечения стали магнитопровода на площадь его окна.

  2. Определение типоразмеров магнитопровода трансформатора.

3. Определение основных потерь в магнитопроводе трансформатора.

  1. Величина полных потерь в стали магнитопровода.

  2. Определение величины активной составляющей. 3.2.1 Ток первичной обмотки трансформатора.

  3. Величина полной намагничивающей мощности.

  4. Определение величины реактивной составляющей тока холостого хода.

  5. Величина тока холостого хода.

4. Расчёт рабочих обмоток трансформатора.

  1. Определение величины падения напряжения в первичной обмотке и во вторичных обмотках трансформатора.

  1. Определение числа рабочих витков обмоток трансформатора.

4.2.1 Определение величины ЕДС, создаваемой магнитным полем в обмотках трансформатора.

  1. Определение диаметра провода.

  2. Определение площади поперечного сечения провода обмотки трансформатора,

  3. Выбор провода обмоток трансформатора.

  4. Определение величины испытательного напряжения.

5. Изоляционные расстояния в однофазном трансформаторе,

  1. Изоляционное расстояние от крайнего витка обмотки до сердечника.

  2. Изоляционное расстояние между обмоткой и сердечником,

  3. Междуслоевая изоляция.

  4. Междуобмоточная изоляция.

5.5 Наружная изоляция.

6. Осевые размеры обмоток трансформатора.

6.1 Определение допустимой осевой длины каждой обмотки трансформатора.

  1. Определение коэффициента укладки в осевом направлении.

  2. Определение числа витков в слое и числа слоев в каждой обмотке.

  3. Радиальные размеры обмоток трансформатора.

  4. Определение полного радиального размера катушки (катушек)

трансформатора.

6.6 Определение зазора.

7. Определение электрических потерь в трансформаторе.

  1. Определение средней длины витка каждой обмотки.

  2. Определение массы меди каждой обмотки трансформатора.

  3. Потери в каждой обмотке трансформатора.

  4. КПД трансформатора.

8. Заключение…………………………………………………

Библиографический список.

Приложение 1

Задание на расчёт

В результате проделанной работы:

  • Сделать выводы о проделанной работе;

  • Рассчитать и объяснить все параметры по плану;

  • Сделать сборочный чертеж трансформатора.

Вариант

U1,B

U2,B

U3,B

I2

I3

fc, Гц

Токр. ср,0С

22

210

32

45

0,25

0,85

400

50

Исходные данные

U1-напряжение первичной обмотки трансформатора/ [В];

U2, U3 - напряжение вторичных обмоток трансформатора/ [В];

I2, I3,—ток вторичных обмоток трансформатора/ [А];

fc —частота питающей сети/ [Гц].

Характер требований, предъявляемых к трансформаторам малой мощности и средней мощности, в значительной мере зависит от назначения аппаратуры, для которой проектируется данный трансформатор. Требования к наименьшей массе и наименьшему объёму являются первостепенными для переносной аппаратуры. На массу, объём и стоимость трансформаторов малой и средней мощности, влияют следующие факторы:

  1. Выбор магнитных материалов, обладающих большой магнитной индукцией насыщения, при минимальных удельных потерях.

  2. Повышение допустимой температуры перегрева магнитопровода до такой величины, при которой ещё обеспечивается достаточно надёжная работа.

  3. Выбор наиболее эффективной конфигурации сердечников (стержневой, броневой, кольцевой).

  4. Описание оптимального соотношения между основными линейными размерами сердечника выбранной конфигурации.

5. Рациональный электрический расчёт, при котором обеспечивается выполнение электрических, конструктивных, экономических и специальных требований.

1.2 Особенности расчёта трансформатора малой мощности

В результате расчёта должны быть определены: геометрические размеры сердечника, данные обмоток (число витков, марки и диаметры проводов), а также электрические и эксплуатационные параметры трансформатора. Важнейшим из этих параметров являются КПД трансформатора, ток холостого хода, падение напряжения и превышение температуры обмоток над температурой окружающей среды. Расчёт трансформаторов по указанным выше исходным данным представляет собой математически неопределённую задачу, допускающую большое количество различных решений. Последнее объясняется тем, что число параметров трансформатора, подлежащих определению, больше числа уравнений, связывающих указанные параметры с исходными величинами. В связи с этим в процессе расчёта трансформатора, приходится предварительно задаваться рядом значений электрических, электромагнитных и конструктивных величин, основываясь при этом главным образом на экспериментальных данных, полученных в результате испытания ряда трансформаторов, подобных рассчитываемому. Вопросы расчёта трансформаторов средней и большой мощности в настоящее время разработаны достаточно полно, и им посвящено большое количество специальной литературы. Однако методы расчёта мощных трансформаторов не всегда оказываются приемлемыми для расчёта силовых трансформаторов малой мощности. Причины этого заключаются в специфических особенностях проектирования и применения трансформаторов малой мощности. Действительно, одной из основных задач расчёта трансформаторов средней и большой мощности является выбор конфигурации магнитопровода. При расчёте же трансформаторов малой мощности используются нормализованные магнитопроводы заданной конфигурации.

Трансформаторы большой и средней мощности обычно работают параллельно. Поэтому исходной величиной для их расчёта является напряжение короткого замыкания, величина которого определяет распределение нагрузок между параллельно работающими трансформаторами. Трансформаторы малой мощности обычно используются для питания индивидуальных нагрузок, и поэтому получение определённой, заранее заданной величины напряжения короткого замыкания для них не является обязательным. Величина тока холостого хода влияет на коэффициент мощности трансформатора и потребление им реактивной мощности из сети переменного тока. Во избежание излишней загрузки электрических сетей реактивной мощностью величина тока холостого хода для мощных трансформаторов обычно не превышает нескольких процентов. Для трансформаторов малой мощности, применяемых большей частью в переносной радиоаппаратуре, решающее значение имеет получение минимально возможной массы и объёма трансформатора. Как уже отмечалось выше, при этом значительно возрастает ток холостого хода, достигая (при частоте сети 50 Гц) величины 30-50; с получающимся при этом увеличением реактивной мощности приходится мириться, хотя суммарная мощность, потребляемая всей массой маломощных трансформаторов в масштабах страны, достаточно велика.

Трансформаторы большой и средней мощности в подавляющем большинстве случаев выполняются с масляным охлаждением, в то время как трансформаторы малой мощности имеют, как правило, лишь воздушное охлаждение. Поэтому электрические и электромагнитные нагрузки, допускаемые в трансформаторах малой мощности значительно меньше, чем в трансформаторах большой и средней мощности. Некоторые параметры трансформаторов малой мощности количественно отличаются от параметров мощных трансформаторов. Так, например, относительная величина активного падения напряжения в обмотках трансформаторов значительно больше, а относительная величина реактивного падения напряжения - значительно меньше, чем в трансформаторах большой и средней мощности.

Следует также отметить, что трансформаторы большой и средней мощности работают лишь при частоте питающей сети, равной 50 Гц, в то время как; трансформаторы малой мощности часто проектируются для работы при более высоких частотах (400,800,1000 Гц и более). Перечисленные выше особенности трансформаторов малой мощности потребовали разработки для них специальных методов расчёта. Основной задачей при расчёте трансформаторов малой мощности является уменьшение их габаритных размеров и массы.

Одним из методов решения этой задачи является увеличение электромагнитных и электрических нагрузок - магнитной индукции в сердечнике и плотности тока в обмотках. Однако с увеличением магнитной индукции увеличиваются потери в сердечнике, а с увеличением плотности тока растут потери в обмотках.

Вызванное увеличением потерь возрастание температуры сердечника и обмоток допустимо лишь до некоторого предела, определяемое теплостойкостью и сроком службы материалов, применяемых для изоляции обмоточных проводов и всей обмотки в целом.

Поэтому предельно допустимой температуре нагрева трансформатора соответствуют вполне определённые значения магнитной индукции и плотности тока, которые не остаются одинаковыми для трансформаторов различной мощности. Известно, что с уменьшением геометрических размеров трансформатора поверхность охлаждения уменьшается медленнее, чем его объём и пропорциональное объёму количество выделяемого в нём тепла. Поэтому для сохранения температуры обмотки неизменной при уменьшении мощности трансформатора увеличивают расчётные значения магнитной индукции и плотности тока. Однако это увеличение возможно лишь до вполне определённых значений. Как известно, при увеличении индукции возрастает значение тока холостого тока, а в случае увеличения плотности тока - падение напряжения в обмотках. С уменьшением мощности трансформатора относительное значение тока холостого хода возрастает, так как длина пути магнитного потока в сердечнике уменьшается в меньшей степени, чем мощность трансформатора; относительное значение падения напряжения увеличивается как вследствие средней длины витка обмотки с уменьшением мощности трансформатора, так и из-за увеличения плотности тока в обмотках.

Увеличение тока холостого хода и падения напряжения ограничивается допустимой величиной реактивной мощности, потребляемой трансформатором из сети, и допустимыми изменениями напряжения на зажимах вторичной обмотки трансформатора при изменении тока нагрузки.

Особенности работы трансформатора малой мощности

В результате расчёта должны быть определены геометрические размеры сердечника, данные обмоток (число витков, марки и диаметры проводов), а также электрические и эксплуатационные параметры трансформатора. Важнейшим из этих параметров является КПД трансформатора, ток холостого хода, падение напряжения и превышение температуры обмоток над температурой окружающей среды. Трансформаторы малой мощности обычно используют для питания индивидуальных нагрузок, и поэтому получение определённой, заранее заданной величины напряжения короткого замыкания для них не является обязательным.

Как рассчитать трансформатор? (Расчёт и перемотка трансформатора #3) |


Серия видеороликов состоит из следующих частей:
0. Как спаять обмоточный провод в трансформаторе.
1. Проверка трансформатора. (Расчёт и перемотка трансформатора #1)
2. Как разобрать трансформатор? (Расчёт и перемотка трансформатора #2)
3. Как рассчитать трансформатор? (Расчёт и перемотка трансформатора #3)
4-1. Как намотать трансформатор? Первичная обмотка (Расчёт и перемотка трансформатора #4.1)
4-2. Как намотать трансформатор? Вторичная обмотка 12В, 0,5А. (Расчёт и перемотка трансформатора #4.2)
4-3. Как намотать трансформатор? Вторичная обмотка 75В, 12А. (Расчёт и перемотка трансформатора #4.3)
5. Сборка перемотанного трансформатора. (Расчёт и перемотка трансформатора #5)
6. Проверка перемотанного трансформатора. (Расчёт и перемотка трансформатора #6)

Продолжаем работу над нашим трансформатором. Напомню, что мы его разобрали и теперь нужно рассчитать кол-во витков необходимое для намотки.
Мне нужно намотать трансформатор со следующими обмотками и параметрами:

Нужна первичная обмотка на 220В, две вторичные по 12В, способные отдать в нагрузку 0,5А, и одна вторичная обмотка намотанная шиной, и содержащая большое кол-во отводов. На её расчёте я останавливаться не буду, чтобы не тратить ваше время, так как всё делается аналогично обмотке 12В, которые я и рассчитаю.
Напряжение не обмотке зависит от кол-ва витков, а сила тока зависит от диаметра/сечения провода.
Начнём разбираться с первичной обмоткой.
Для начала разберёмся с кол-вом витков. Если с нуля мотать трансформатор, то первым делом необходимо рассчитать такой параметр как кол-во витков необходимых для одного вольта. Этот параметр зависит от характеристик сердечника таких как сечение и магнитная индукция, и от частоты питающей сети, которая в наших сетях составляет 50 Гц. Эти расчёты по железу сейчас нет смысла делать, так как их уже сделали при изготовлении данного трансформатора. Ими и воспользуемся. В первой части, мы при проверке трансформатора подавали на 110В обмотку номинальные 110В, и при этом на обмотке 24В, мы получили напряжение 24.8. Разматывая обмотку для 24В, я посчитал витки, и у меня их получилось 18. Этих данных достаточно для определения кол-ва витков на вольт. Получается что 18 витков выдают 24.8В, следовательно для одного вольта необходимо 18/24.8=0.73 витка. Зная это значение, я могу определить число витков в любой обмотке.
Например, можно узнать число витков в первичной обмотке рассчитанной на 380В. При измерениях я получил на ней напряжение 377В, следовательно, она содержит 377*0,73=275.21, округляем до большего и получаем 276 витков.
Для напряжения 220В первичная обмотка должна содержать 220*0.73=160, 6 округляем до большего и получаем 161 виток.
Таким же образом рассчитываем кол-во витков для вторичной обмотки. Мне нужно 12В, это составляет 12*0,73=8.76 округляем и получаем 9 витков. С витками разобрались, но следует сказать, что это очень упрощенный расчёт. На выходе мы получим напряжение которое может примерно на 5% отличаться от расчётного. Я часто пользуюсь этим методом, и результаты меня всегда устраивали.
Подобной техникой можно пользоваться, если например, на имеющийся трансформатор с неизвестными параметрами нужно намотать дополнительную обмотку. Для этого временно наматываем несколько десятков витков любого изолированного провода, можно даже в ПВХ изоляции. Подаём на первичную обмотку номинальное напряжение. Измеряем выходное напряжение на только что намотанной временной обмотке. Затем рассчитываем кол-во витков на 1 вольт для данного трансформатора и пересчитываем сколько нужно витков для вашей обмотки. Сматываем временную обмотку и мотаем свою на необходимое напряжение.

С витками мы разобрались, теперь необходимо определиться с диаметром провода, он в свою очередь зависит от силы тока, которую должна обеспечить обмотка. Для примера возьмём нашу вторичную обмотку на 12В которая должна обеспечить пол ампера. Для данных расчётов необходимо понимать такую величину, которая называется плотность тока. Это величина, показывающая какой ток течёт через каждый квадратный миллиметр сечения провода.
При прокладке проводки медным проводом, допускается использовать в расчётах плотность тока от 6 до 10А на мм квадратный. Если использовать алюминиевый провод, то плотность тока для него меньше уже от 4 до 6 А на мм квадратный. Это связанно с тем, что алюминий хуже проводит ток, то есть имеет большее удельное сопротивление и при протекании тока 10 А на каждый миллиметр квадратный, провод будет выделять больше тепловой энергии чем успеет рассеять, при этом он будет нагреваться.
Если для медной проводки которая хорошо охлаждается можно использовать плотность тока до 10А на мм квадратный, то при расчётах трансформаторов данное значение недопустимо, так как обмотки находятся внутри катушки, и очень плохо отводят от себя тепло, особенно обмотки в середине катушки. В разных справочниках рекомендации по выбору плотности тока для обмоток трансформаторов разнятся. Для мощности 1 кВт рекомендуется использовать плотность тока для медного провода от 1.5 до 2.5-3 А на мм квадратный. Чем большую плотность тока принимаем в расчёт, тем меньше потребуется меди, но сильнее будет греться трансформатор, и следовательно уменьшится его КПД. Маленькая плотность тока потребует использовать толстые провода, и можно столкнуться с тем, что обмотка не влезает в предназначенное для неё окно, но трансформатор будет холодным. К примеру, при использовании трансформатора в вентилируемом корпусе, можно взять большую плотность тока, а при применении трансформатора в глухом корпусе который будет эксплуатироваться под прямыми солнечными лучами, и следовательно сильно греться, плотность нужно брать меньшую.
Мой трансформатор будет эксплуатироваться в ангельских условиях, он будет работать в корпусе с принудительной вентиляцией. С трансформатора необходимо кратковременно получать мощность 800-900Вт, в остальное время он будет эксплуатироваться при мощности не более 500-600Вт. Поэтому можно смело брать плотность тока 2.5А на миллиметр квадратный.
Получается что для тока 0.5А протекающем по обмотке, необходимо сечение провода 0.5/2.5=0.2мм квадратных.
Сечение это не диаметр, не путайте. Сечение можно найти по формуле S=PiR2. Отсюда можно найти радиус провода, который равен R=sqrt(S/Pi). Радиус получается 0.25. Так как диаметр это два радиуса, то получается что нужно использовать провод диаметр которого по меди больше или равно 0.5 мм.

Подобным образом рассчитываем диаметры проводов всех остальных обмоток.
Трансформаторы ОСМ предназначены для работы на производстве, и рассчитаны для обеспечения номинальной мощности продолжительное время. Они изготовлены с очень большим запасом. Поэтому, скорее всего диаметр провода первичной обмотки заложен с запасом. Давайте посчитаем, какую плотность тока взяли при расчёте этого трансформатора.
Так как первичная обмотка рассчитана на 380В а мощность трансформатора 1000Вт, то ток который течёт в обмотке при максимальной мощности равен 1000/380=2.63A. Теперь посчитаем сечение провода. Для этого измерим микрометром диаметр провода. Он получился 1.47мм. Это провод вместе с лаковой изоляцией. Изоляция в проводах такого диаметра составляет около 0.07мм. Получается, что медь имеет диаметр 1. 4мм. Сечение получается 1.54 мм квадратных. У нас получилось что по 1.54 квадратных миллиметров течёт ток 2.63А, следовательно плотность тока получается 1.70А на мм квадратный, как видите до приятых для нашего расчёта 2.5А на мм очень далеко.
Я планирую оставить этот провод в качестве своей первичной обмотки. Давайте посчитаем какую мощность мы сможем получить на данном проводе при напряжении 220В и принятой нами плотности тока 2.5А на мм квадратный. Сечение провода у нас получалось 1.54 мм, следовательно при плотности тока 2.5 мм мы получим ток 1.54*2.5А на мм2 = 3.85А. При номинальном напряжении 220В, максимальная мощность получается 3.85*220=847Вт, Это мощность, которую можно получить при плотности тока 2.5 А на мм2в проводе который уже есть в первичной обмотке этого трансформатора. Мощности 840 Вт достаточно для моей задачи. Даже если предположить что по каким-то причинам потребляемая от трансформатора мощность станет 1000Вт, то в данном случае плотность тока будет составлять 1000/220=4.54А, при сечении провода 1.54 плотность тока получается 2.95А, что не выходит за максимально рекомендованные 3А/мм2, следовательно трансформатор будет работать долго и счастливо.
Сейчас в первичной обмотке 276 витков и она рассчитана на 380В,но для номинального напряжения 220В, как мы рассчитали ранее первичная обмотка должна содержать 161 виток, следовательно нам нужно смотать 276-161=115 витков.
Смотку лишних витков и намотку вторичной обмотки я покажу в следующем ролике. А пока можно перепроверить расчёты, иначе если вы ошиблись, вам придётся всё смотать, и намотать заново. Так что лучше потратьте сейчас несколько минут для проверки, чем в случае ошибки потратить несколько часов всё переделывая…

Рубрики: Перемотка рабочего трансформатора, Радиолюбительская технология | Тэги: Как рассчитать трансформатор?, Радиолюбительская технология, Трансформатор, Устройства своими руками | Ссылка

Расчет токов КЗ (Страница 1) — Учимся делать расчёты — Советы бывалого релейщика

retriever пишет:

1. потому что мега это 1000 000,  а кило это 1000. делим миллион на тысячу получаем что? тысячу.
2. смотрите от чего запитана пс.  если это понижающий трансформатор,  то считаете его сопротивление,  это сопротивление системы.  если это кабель от другой пс,  ищете питающую гпп на схеме,  берете сопротивление тамошнего трансформатора и прибавляете к нему сопротивление кабеля.  по-моему,  активную составляющую сопротивления кабеля лучше учесть,  она большая

Спасибо!
Но я всё равно недопонимаю.
Вот приложен мой расчет, подскажите где я ошибаюсь. Вроде все по "книге" делаю

Добавлено: 2018-09-28 12:25:57

Добавлено: 2018-09-28 12:27:01

Доброго времени суток!
Все таки нашел я часть книг которые искал, а начал изучать. По стечению обстоятельств я единственный "релейщик" в этой конторе. Начальство дало задание, мол строится новая ГПЭС, ты ее будешь обслуживать, тебе и уставки считать! Честно признаюсь что кроме как в техникуме нигде токи коротких замыканий мне считать не приходилось, за исключением нескольких попыток которые на этом форуме были изложены (но так ничего и не вышло).
Посмотрел я на однолинейную схему и решил начать расчеты с самой просто ячейки (на мой взгляд), это ячейка питающая ТСН. На вскидку прикинул набор необходимых защит (отсечка, мтз, перезагрузка, землянка) решил, что сделал верный выбор.
Открыл книжку М.А. Шабад "Защита трансформаторов 10 кВ", и начал погружаться в мир "высоких материй". Ладно отойдем от лирики, и начну излагать суть моих расчетов (забегая вперед скажу что проблема возникла уже на второй формуле).
Из книги М.А. Шабад "Защита трансформаторов 10 кВ"
"Вычисление тока трехфазного КЗ по значению напряжения КЗ трансформатора. Наиболее просто максимально значение тока (в амперах) трехфазного КЗ за трансформатором вычисляется по значению напряжения КЗ трансформатора:
I(3)к=100*Iном. тр/Uк+р;
где Uк - напряжение кз из паспорта в %;
Iном.тр - ном. 2/100*1000=0.00238
I(3)=Uср/(1,73*Zтр)=6300/(1,73*0,00238)=1536585 А
По идеи  расчеты I(3)= 1536585 А и I(3)к=1529,17А должны быть равны, но сами видите!
Дальше идет расчет КЗ в минимальном режиме, но это уже совсем другая история...

Прошу помочь мне разобраться во всем этом! Я понимаю конечно, что писать мол "читай учебник" проще всего, но думаю все здесь присутствующие (ну или большинство) перенимали опыт у своих наставников и коллег, но вот так сложилось, что мне не у кого принимать опыт, а сухой текст из "учебника" не всегда легко воспринимается.
В общем не судите строго, я просто хочу научится!

Post's attachments

IMG_20180401_093818.jpg 3.11 Мб, 3 скачиваний с 2018-04-01 

You don't have the permssions to download the attachments of this post.

не судите строго), я только учусь!

Калькулятор первичного и вторичного тока трансформатора

и кВА согласно I

Калькулятор тока трансформатора:

Просто введите количество фаз, мощность трансформатора в ВА / кВА / МВА, напряжение первичной обмотки или первичный ток, затем нажмите кнопку расчета, чтобы получить вторичный и первичный ток.
Также вы можете найти тип трансформатора: понижающий или понижающий.

Кнопка сброса используется для сброса значения по умолчанию 20 кВА. Вы можете изменить значение по умолчанию на текущее, которое нужно рассчитать.

Результаты

Первичный ток полной нагрузки:

Вторичный ток полной нагрузки:

Передаточное число:

Тип трансформатора: однофазный повышающий трансформатор

Трансформатор - это статическое устройство, которое помогает преобразовывать энергию без изменения ее характера и частоты. Он работает по принципу фарадеевской электромагнитной индукции. Ток протекает через первичную обмотку, а вторичная обмотка сокращает поток, создаваемый первичной обмоткой, поэтому во вторичной обмотке будет индуцироваться ЭДС.

Допустим,

I (первичный) = первичный ток в амперах

I (вторичный) = вторичный ток в амперах

В (первичный) = первичное напряжение в вольтах

В (вторичный) = вторичное напряжение в вольтах

Расчет тока трансформатора:

Коэффициент трансформации трансформатора,

В (первичный) * I (первичный) = В (вторичный) * I (вторичный)

Первичное напряжение равно произведению вторичного напряжения и первичного тока, разделенных на вторичный ток.

В (первичный) = В (вторичный) * I (первичный) / I (вторичный)

Вторичное напряжение равно произведению первичного напряжения и первичного тока, разделенных на вторичный ток.

В (вторичный) = В (первичный) * I (первичный) / I (вторичный)

Первичный ток равен произведению вторичного напряжения и вторичного тока, разделенных на первичный ток.

I (первичный) = V (вторичный) * I (вторичный) / V (первичный)

Вторичный ток равен произведению первичного напряжения и первичного тока, разделенных на вторичное напряжение.

I (вторичный) = V (первичный) * I (первичный) / V (вторичный)

Трансформатор кВА к токовым расчетам:

кВА = В (первичный) * I (первичный)

Отсюда

I (первичный) = кВА / В (первичный)

Следовательно, первичный ток трансформатора равен кВА, деленному на первичное напряжение трансформатора

Расчеты трансформатора

и NEC

Трансформатор передает электрическую энергию (мощность) от одной системы к другой посредством индукции без физического соединения между двумя системами (кроме заземляющих и соединительных). Таким образом, Национальный электротехнический кодекс (NEC) называет трансформаторы «отдельно производными системами».

Большинство трансформаторов повышают или понижают напряжение, но изолирующие трансформаторы этого не делают; они просто развязывают первичную обмотку от вторичной обмотки.

Некоторые основы

Обмотка трансформатора, подключенная к источнику напряжения, является «первичной». Обмотка трансформатора, подключенная к нагрузке, является «вторичной».

Напряжение, которое может быть индуцировано во вторичной обмотке из-за первичного магнитного поля, является функцией количества витков (витков) вторичного проводника, перерезанных первичным электромагнитным полем.Напряжение на первичной стороне - это «напряжение первичной линии», а напряжение на вторичной стороне - «напряжение вторичной линии».

Трансформаторы указаны в киловольт-амперах (кВА), где 1кВА = 1000 вольт-ампер (ВА).

Треугольник и звезда

Трансформаторы, соединенные треугольником, имеют три обмотки, соединенные встык. Линейные проводники подключаются к каждой точке, где встречаются две обмотки. Эта система называется «Дельта», потому что в развернутом виде она выглядит как треугольник (греческий символ «Дельта» для буквы D).Для трансформатора треугольник / треугольник как первичная, так и вторичная обмотки соединены треугольником ( Рис. 1 ).

Рис. 1. Трансформаторы, соединенные треугольником, имеют три обмотки, соединенные встык друг с другом.

При работе с дельта-трансформаторами не забывайте о «высокой ветви» (см. Врезку ниже).

Трансформаторы, соединенные звездой, имеют по одному выводу от каждой из трех обмоток, соединенных с общей точкой. Другие выводы каждой обмотки подключаются к линейным проводам.Вторичная обмотка со звездообразной конфигурацией часто представлена ​​Y-образным расположением обмоток ( Рис. 2 )

Рис. 2. Трансформаторы, соединенные звездой, имеют по одному выводу от каждой из трех обмоток, соединенных с общей точкой.
Сетевые токи

Вы можете рассчитать линейный ток трансформатора, используя соответствующую формулу для однофазных или трехфазных систем:

Однофазный: I = VA ÷ E

Трехфазный : I = VA ÷ (E × 1.732)

Защита от перегрузки по току

Для защиты обмоток трансформатора от перегрузки по току используйте проценты, указанные в Таблице 450.3 (B) и соответствующие примечания.

Раздел 450.3 (B) касается защиты обмоток трансформатора, а не проводов, питающих трансформатор или выходящих из него.

Для токов 9А и более, гл. 450.3 (B), применяется примечание 1. Если 125% первичного тока не соответствует стандартному предохранителю или нерегулируемому автоматическому выключателю, вы можете использовать устройство защиты от перегрузки по току (OCPD) следующего более высокого номинала, как указано в гл. 240,6 (А).

Первичная максимальная токовая защита, пример менее 9A

Вопрос: Каков максимальный номинальный диапазон OCPD первичной обмотки для однофазного трансформатора 240 В с постоянной нагрузкой 2 кВА?

Первичный ток = (Номинальная мощность трансформатора) ÷ (Первичное напряжение)

Первичный ток = 2,000 ВА ÷ 240 В

Первичный ток = 8.33A

Первичная защита = (Первичный ток) × (Таблица 450.3 (B) Процент)

Первичная защита = 8,33A × 167%

Первичная защита = 13,92A

Первичная максимальная токовая защита более 9A Пример

Вопрос : Каков максимальный номинал первичной OCPD для непрерывно нагруженного трехфазного трансформатора 480 В на 45 кВА ( Рис. 3 )?

Рис. 3. Вот как рассчитать номинал OCPD для трансформатора, когда первичный ток меньше 9А.

Первичный ток = Номинальная мощность трансформатора, ВА ÷ (Первичное напряжение × 1,732)

Первичный ток = 45000ВА ÷ (480 В × 1,732)

Первичный ток = 54A

Первичная защита = (Первичный ток) × (Таблица 450.3 (B ) Процент)

Первичная защита = 54A × 125%

Первичная защита = 68A

Таким образом, в этой ситуации используйте OCPD на 70A. [Разд. 240,6 (A) и таблица 450.3 (B), примечание 1]

Размер первичного проводника

Размер первичных проводов должен составлять не менее 125% от продолжительных нагрузок плюс 100% от непостоянных нагрузок, в зависимости от номинальной температуры клемм. силы тока, как указано в Таблице 310.15 (B) (16), перед любой регулировкой допустимой нагрузки [разд. 210.19 (А) (1)].

Защитите проводники от перегрузки по току в соответствии с их допустимой токовой нагрузкой после регулировки допустимой нагрузки, как указано в гл. 310,15 [240,4]. Вы можете использовать следующий более высокий стандартный рейтинг OCPD (выше допустимой токовой нагрузки защищаемых проводников), если рейтинг OCPD не превышает 800A [сек. 240,4 (В)].

Пример сечения первичного проводника

Вопрос: Первичный провод какого размера можно использовать для непрерывно нагруженного трехфазного трансформатора 480 В мощностью 45 кВА, если номинал первичного OCPD составляет 70 А?

Шаг 1 : Выберите размер первичного проводника на 125% номинального тока первичной обмотки.

I = 45000 ВА ÷ (480 В × 1,732) = 54 А

54 А × 1,25 = 68 А

Провод 4 AWG рассчитан на 70 А при 60 ° C [Сек. 110.14 (C) (1) (a) (1) и Таблица 310.15 (B) (16)].

Шаг 2 : Убедитесь, что проводники защищены в соответствии с их силой тока [разд. 240,4].

Провод 4 AWG с номиналом 70 А при 60 ° C может быть защищен первичным OCPD на 70 А.

Размер вторичного проводника

Допустимая нагрузка вторичного проводника должна, по крайней мере, равняться номинальному значению устройства, питаемого вторичными проводниками или OCPD на окончании вторичных проводов [разд.240.21 (C) (2)]. Предположим, что вторичные проводники будут постоянно нести полную мощность трансформатора.

Шаг 1 : Определите номинал устройства, питаемого вторичными проводниками, при 125% вторичного номинала [разд. 215.2 (А) (1) (а)].

Шаг 2 : Подберите размеры вторичных проводов таким образом, чтобы их допустимая нагрузка была не менее номинальной, обеспечиваемой вторичными проводниками [разд. 240,21 (С)].

Пример расчета размеров вторичного проводника Вопрос: Вторичный провод какого размера можно использовать для непрерывно нагруженного трехфазного трансформатора 480–120 / 208 В мощностью 45 кВА?

Шаг 1 : Определите номинальный вторичный ток.

Вторичный ток = ВА трансформатора ÷ (Вторичное напряжение × 1,732)

I = 45000ВА ÷ (208В × 1,732)

I = 125A

Шаг 2 : Выберите размер вторичного OCPD для непрерывной нагрузки (125% от вторичный номинальный ток) [разд. 215,3].

125A × 1,25 = 156A

Таким образом, в этой ситуации используйте OCPD на 175A [разд. 240,6 (А)].

Шаг 3 : Подберите размер вторичного проводника так, чтобы он имел допустимую нагрузку не менее 175A вторичного OCPD (этап 2) [разд.240.21 (C) (2)].

Используйте 2/0 AWG номиналом 175 А при 75 ° C [разд. 110.14 (C) (1) (b) и Таблица 310.15 (B) (16)]

Заземление и соединение

Перемычка для подключения системы, размер в сек. 250.102 (C) в зависимости от площади вторичных проводников [разд. 250.30 (A) (1) и п. 250.28 (D) (1)], должен быть установлен в том же месте, где провод заземляющего электрода заканчивается к нейтральной точке трансформатора [разд. 250.102 (C)].

Провод заземляющего электрода должен соединять нейтральную точку отдельно выделенной системы с заземляющим электродом типа, указанного в гл.250,30 (А) (4). Подбирайте провод заземляющего электрода по размеру сек. 250.66, исходя из площади незаземленного вторичного проводника [разд. 250.30 (А) (5)].

Как избежать ошибок

Ошибка расчета может иметь трагические результаты. Так как же снизить вероятность ошибки в расчетах трансформатора?

Математика не представляет особой сложности, но если вы выберете неправильную формулу, ваши результаты будут неверными, даже если ваша математика верна. Эти четыре простых шага помогут выбрать правильную формулу для конкретного приложения:

1. Еще раз проверьте номинал VA.

2. Определите первичное и вторичное напряжения, однофазное или трехфазное.

3. Еще раз проверьте характеристики нагрузки и расчеты.

4. Убедитесь, что вы использовали правильные формулы. Вот совет, который поможет вам сделать это без остекления глаз: используйте неправильные формулы. Например, вы работаете в однофазной системе. Посмотрите на формулу трехфазного. Это то, что вы использовали? Если нет - отлично. Перейдите к следующему пункту и выполните аналогичный процесс.

Эти материалы предоставлены нам компанией Mike Holt Enterprises в Лисбурге, штат Флорида. Чтобы просмотреть учебные материалы по Кодексу, предлагаемые этой компанией, посетите сайт www.mikeholt.com/code.


Формула трансформатора

Трансформатор - это электрическое устройство, которое позволяет увеличивать или уменьшать напряжение в электрической цепи переменного тока, сохраняя мощность. Мощность, которая поступает в оборудование, в случае идеального трансформатора равна мощности, получаемой на выходе.Реальные машины имеют небольшой процент потерь. Это устройство, которое преобразует переменную электрическую энергию определенного уровня напряжения в переменную энергию другого уровня напряжения на основе явления электромагнитной индукции. Он состоит из двух катушек из проводящего материала, намотанных на замкнутое ядро ​​из ферромагнитного материала, но электрически изолированных друг от друга. Единственная связь между катушками - это общий магнитный поток, установленный в сердечнике. Катушки называются первичными и вторичными в соответствии с входом или выходом рассматриваемой системы соответственно.

Значение мощности для электрической цепи - это значение напряжения, равное значению силы тока. Как и в случае с трансформатором, значение мощности первичной обмотки такое же, как и мощность вторичной обмотки:

входное напряжение первичной катушки * входной ток первичной катушки = выходное напряжение вторичной катушки * выходной ток вторичной катушки.

Уравнение записано

Мы также можем рассчитать выходное напряжение трансформатора, если мы знаем входное напряжение и количество витков (катушек) на первичной и вторичной катушках, используя приведенное ниже уравнение;

входное напряжение на первичной катушке / выходное напряжение на вторичной катушке = количество витков провода на первичной катушке / количество витков провода на вторичной катушке

Уравнение записано

имеем:

В p = входное напряжение на первичной обмотке.

В с = входное напряжение на вторичной катушке.

I p = входной ток первичной обмотки.

I с = входной ток вторичной обмотки.

n p = количество витков провода на первичной обмотке.

n с = количество витков провода на катушке вторичной обмотки.

Trasnformer Вопросы:

1) У нас есть трансформатор с током в первичной катушке 10 А и входным напряжением в первичной катушке 120 В, если напряжение на выходе вторичной катушки 50 В, рассчитайте ток на выходе вторичная обмотка.

Ответ: Поскольку мы хотим определить выходной ток во вторичной катушке, мы используем первое уравнение

, →,

= 2,4 * 10 А = 24 А.

I с = 24 А.

2) Имеем трансформатор с выходным током на вторичной катушке 30 А и входным током на первичной катушке 2000 витков 6 А, определяем количество витков на вторичной катушке.

Ответ: Мы будем использовать два уравнения: первое уравнение для определения выходного напряжения на вторичной катушке и второе уравнение для определения количества витков на вторичной катушке.

, →,

, →,

Замещающий,

n с = 400

Расчет тока короткого замыкания любого трансформатора всего за 3 шага

Рассчитайте ток короткого замыкания любого трансформатора всего за 3 шага https://www.theelectricalguy.in/wp-content/uploads/2020/05/rt-circuit-current-of-any-transformer-in-just-3-steps-theelectricalguy-YABHOrP8mr0-1024x576.jpg 1024 576 Гаурав Дж. Гаурав Дж. https: // безопасный.gravatar.com/avatar/87a2d2e0182faacb2e003da0504ad293?s=96&d=mm&r=g

В этом руководстве я объясню три простых шага для расчета тока короткого замыкания любого трансформатора. Это также поможет вам определить номинал автоматического выключателя. Итак, начнем !

Шаг 1

Получите следующую информацию
  • Номинальная мощность трансформатора кВА / МВА (для понимания предположим, что это 100 кВА)
  • Вторичное напряжение (при условии 440 вольт)
  • % Импеданс (Вы получите его из паспортной таблички трансформатора, для нашего примера предположим, что 5% )

Шаг 2

Расчет тока полной нагрузки

Для трехфазного трансформатора используйте следующую формулу

Для однофазного трансформатора используйте следующую формулу

Рассчитаем ток полной нагрузки в нашем примере.

Шаг 3

Рассчитать ток короткого замыкания

Теперь рассчитаем фактический ток короткого замыкания по следующей формуле.

Итак, это наш ток короткого замыкания. Это поможет вам определиться с номиналом автоматического выключателя. В этом случае вам понадобится выключатель с отключающей способностью по току короткого замыкания более 2624,1 А или 2,6 кА.

Вы также можете рассчитать первичный ток любого трансформатора всего за 2 шага, чтобы узнать больше, нажмите здесь.

Расчет тока короткого замыкания - журнал IAEI

Время считывания: 11 минут

Один из самых фундаментальных расчетов системы распределения электроэнергии - это вычисление доступного тока короткого замыкания. В выпуске журнала IAEI за сентябрь - октябрь 2012 г. была статья под названием «Основы, максимальный ток повреждения», в которой говорилось на эту тему, но не рассматривались математические выкладки. С тех пор я получил много просьб заняться математикой. Я надеюсь, что эта статья удовлетворит любопытные умы подробностями о вычислении доступного тока короткого замыкания и предоставит некоторые уравнения для изучения студентом.

Доступный ток короткого замыкания

Максимальный доступный ток короткого замыкания является важным параметром для каждой системы распределения электроэнергии, поскольку он предоставляет точку данных, необходимую для подтверждения того, что оборудование используется в пределах своих номинальных характеристик, и что система работает в соответствии с ожиданиями. Имеющийся ток короткого замыкания также используется во многих других приложениях.

Национальный электротехнический кодекс требует эту точку данных для соблюдения таких разделов, как 110.9, рейтинг прерывания; 110.10. Полное сопротивление цепи, номинальные значения тока короткого замыкания и другие характеристики; и 110.24 Доступный ток повреждения. Независимо от того, являетесь ли вы дизайнером, установщиком или инспектором, в какой-то момент вашей карьеры вы столкнетесь с необходимостью расчета доступного тока повреждения. Понимание математики, лежащей в основе этого, и того, как используются расчетные токи короткого замыкания, может только расширить знания и понимание. Это также может помочь нам понять, что эти расчеты должен производить квалифицированный специалист.Итак, ради понимания, я предлагаю эту статью, чтобы вы встали на путь.

Основы расчета тока короткого замыкания

Все, что вам нужно знать о вычислении токов короткого замыкания, вы изучили в схемах 101, тригонометрии и базовых математических курсах. На рисунке 1 показана простая однолинейная схема, которая вполне может быть вашим основным служебным входом для коммерческой или промышленной установки.

Рисунок 1. Однолинейная схема

Рисунок 2 - это базовая принципиальная схема того, что представлено на рисунке 1, и которая будет использоваться для расчета доступного тока короткого замыкания в любой точке приведенной выше простой однолинейной схемы.Инженеры назовут то, что вы видите на Рисунке 2, диаграммой импеданса, поскольку она в основном преобразует каждый компонент на Рисунке 1 выше в значения импеданса. Для тех из вас, кто разбирается в цепях 101, то, что вы видите ниже, когда все импедансы сложены вместе, представляет собой «эквивалент Теванина», который включает в себя импеданс и источник напряжения. Эта базовая схема будет использоваться в этой статье.

Рис. 2. Диаграмма импеданса (схема)

Для расчетов и упрощения нашей работы с этим документом необходимо сделать допущения.

Предположения для трансформатора, который будет использоваться как часть примера для этой статьи, будут включать следующие. Эта информация должна быть доступна при чтении паспортной таблички трансформатора.

Трансформатор кВА 1500
Первичное напряжение 4160 В
Вторичное напряжение 480 В
% Полное сопротивление 5,75%

Предполагается для тока короткого замыкания, доступного для электросети. Для этого упражнения будет использовано 50 000 ампер.Перед проведением исследования с коммунальным предприятием связываются для получения этой информации. Они могут обеспечить доступный ток короткого замыкания одним из нескольких различных способов. Самыми простыми и, вероятно, наиболее заметными данными от электросети будут доступный ток короткого замыкания в кА. Некоторые утилиты могут вместо этого предоставлять данные в виде MVA короткого замыкания. В этой статье будут представлены уравнения для обеих форм ввода, но с учетом доступного тока короткого замыкания 50 кА.

Что касается импеданса проводника, следующие расчеты будут игнорировать сопротивление проводника и использовать только реактивное сопротивление.Это сделает две вещи для этой статьи. Во-первых, это приведет к более высокому току повреждения, чем можно было бы рассчитать, если бы мы приняли во внимание как сопротивление, так и реактивное сопротивление. Во-вторых, это упростит математику. В последнем разделе этой статьи будут представлены результаты анализа, включающие сопротивление и реактивное сопротивление проводников и электросети. Используемые методы отражают методы, используемые в таких программах, как SKM Systems Analysis A-Fault.

Эта статья также не предполагает участия двигателя.Максимальный доступный ток короткого замыкания должен включать все составляющие короткого замыкания. Мы не включаем этот вклад в эти усилия для простоты.

Основные расчеты трансформатора

Самым первым шагом этого процесса является расчет ампер полной нагрузки (FLA) для трансформатора. Еще один базовый расчет, который электротехнику придется выполнять в какой-то момент своей карьеры, и который некоторые выполняют много раз в день. Уравнения для расчета FLA приведены ниже:

FLA вторичный = кВА
(√3) × (кВсек)
FLA Вторичный = 1500
[(√3) × (0.480)] = 1804 А

Этот трансформатор на 1500 кВА имеет FLA вторичной обмотки 1804 ампер. Этот параметр необходим для выбора вторичных проводов для этого трансформатора. Основываясь на этом FLA и использовании таблицы 310.15 (B) (16) из NEC 2014, проводники, используемые на вторичной обмотке трансформатора, будут иметь количество проводников 5-500 MCM на фазу.

Расчет тока короткого замыкания на вторичной обмотке главного трансформатора

Есть два подхода к вычислению доступного тока короткого замыкания на вторичной обмотке трансформатора.Мы можем рассчитать максимальное количество, которое трансформатор пропустит, как если бы объект выработки электроэнергии был подключен непосредственно к линейной стороне трансформатора, или мы можем рассчитать доступный ток повреждения с учетом предоставленного доступного тока повреждения от электросети. Первый подход, который приводит к максимальной величине тока повреждения, который пропускает трансформатор, называется расчетом «бесконечной шины». Схема, показанная на рисунке 2, может быть перерисована, чтобы включить нулевой импеданс для электросети, что снизит общий импеданс цепи и, таким образом, увеличит значение расчетного тока короткого замыкания.На рис. 3 будет показан максимально допустимый ток короткого замыкания, который может подавать трансформатор.

Рисунок 3. Эквивалентная схема бесконечной шины

На рис. 3 показано только полное сопротивление трансформатора. Уравнение для расчета максимального доступного тока короткого замыкания, который может обеспечить трансформатор, выглядит следующим образом:

Isc = (трансформатор кВА) × 100
(√3) × (вторичный кВ) × (трансформатор% Z)

Используя информацию, указанную выше для примера трансформатора 1500 кВА для этого примера, максимальный доступный ток повреждения, который пропускает этот конкретный трансформатор, составляет 31 378 ампер и рассчитывается следующим образом:

Isc = 1500 × 100
(√3) × (0.480) × (5,75) = 31 378 ампер

Это говорит нам о том, что вторичная обмотка трансформатора не может видеть больше тока повреждения, чем мы рассчитали. На стороне электросети НЕТ изменений, которые могут повлиять на этот доступный ток короткого замыкания до точки, где он будет превышать 31 378 ампер. Единственный способ получить более 31 378 ампер, если мы изменим трансформатор, и новый трансформатор, который предположительно будет таким же по всем другим характеристикам, будет иметь другой% импеданса.На рисунке 4 представлена ​​таблица, которая включает результаты изменения импеданса исследуемого трансформатора +/- 20% с шагом 5% по сравнению со значением импеданса 5,75%, используемым в этом примере. Это показывает, как изменение импеданса трансформатора повлияет на максимально допустимый ток короткого замыкания, который он может пропустить.

Как показано на рисунке 4, смена трансформатора и изменение его импеданса может существенно повлиять на систему. Если бы я рискнул предположить, я бы сказал, что в большинстве случаев коммунальное предприятие, меняющее служебный трансформатор, будет признано предприятием.Задача состоит в том, чтобы владелец объекта или постоянные сотрудники понимали, как это изменение может повлиять на их систему распределения электроэнергии. При внесении изменений следует обновить метки, подобные тем, которые включены в раздел 110.24 NEC .

Рис. 4. Влияние изменения импеданса (+ / - 20%) трансформатора на 1500 кВА

В этом расчете не учитывается полное сопротивление источника электросети и не учитываются проводники на стороне нагрузки. Давайте теперь исследуем влияние добавления в сеть доступного тока короткого замыкания.

Расчет тока короткого замыкания с учетом тока повреждения сети

Как и в большинстве ситуаций, мы используем консервативные ярлыки, консервативные в отношении безопасности, до тех пор, пока не возникнут ситуации, требующие углубления в детали. Вышеупомянутый ярлык для расчета тока повреждения является консервативным, поскольку он НЕ учитывает доступный ток повреждения сети, дающий максимальное значение. При рассмотрении прерывания и других аналогичных номиналов устройства и оборудование, которые могут выдерживать это консервативное значение тока короткого замыкания, не нуждаются в дополнительных исследованиях.Когда новое или существующее оборудование не может справиться с этим консервативно высоким доступным током короткого замыкания, может быть проведен дальнейший подробный анализ или оборудование может быть заменено или рассчитано соответствующим образом. Далее будет рассмотрен вопрос о добавлении полезности при наличии доступного тока повреждения. Конкретно 50 кА можно получить от электросети. Это продемонстрирует, что таким образом можно уменьшить рассчитанные 31 378 ампер.

Ниже приведены два уравнения, которые относятся к наличию кА и наличию MVA короткого замыкания.В этом примере мы будем использовать приведенное ниже уравнение, в котором предполагается, что электросеть предоставила вам доступный ток короткого замыкания в кА.

Принципиальная схема теперь выглядит так, как показано на рисунке 5.

Рис. 5. Принципиальная электрическая схема, которая включает импеданс трансформатора и сетевого источника.

Первым необходимым шагом является преобразование предоставленной электросетью имеющейся информации о токе повреждения (50 кА) в полное сопротивление источника.
Если кА предоставляется от электросети:

% Z утилита = кВА Трансформатор × 100
(Isc электросети) × (√3) × (кВ первичная)

При коротком замыкании MVA предоставляется коммунальным предприятием:

% Z утилита = Трансформатор кВА
Короткое замыкание, кВА инженерных сетей

Для данного доступного тока короткого замыкания электросети 50 кА% Z электросети рассчитывается следующим образом:

% Z утилита = 1500 × 100
(50 000) × (√3) × (4.160) = 0,420

На рисунке 6 показаны значения импеданса источника электросети для различных токов короткого замыкания, доступных для этого конкретного примера. Как отмечалось выше, трансформатор, кВА и первичное напряжение будут играть ключевую роль в этих значениях.

Рисунок 6. Значения импеданса сетевого источника для различных уровней доступного тока короткого замыкания в электросети

Уравнение для расчета доступного тока короткого замыкания на вторичной обмотке трансформатора, которое включает импеданс электросети, выглядит следующим образом:

Isc = (трансформатор, кВА) × 100)
(√3) × (Вторичный кВ) × [(% Zтрансформатор) + (% Z полезность)]

После вставки всех известных переменных новый доступный ток повреждения рассчитывается следующим образом:

Isc = 1500 × 100
(√3) × (0.480) × [(5,75) + (0,4164)] = 29 259 А

Если мы сравним расчет бесконечной шины и тот, который включал импеданс источника электросети (доступный ток короткого замыкания 50 000 ампер), мы увидим, что доступный ток короткого замыкания упал с 31 378 ампер до 29 259 ампер, что на 6,8% меньше. в доступном токе короткого замыкания (2119 ампер).

Влияние изменяющегося тока короткого замыкания, доступного в электросети, показано на рисунке 7. В этой таблице показано, как изменяется расчетный доступный ток короткого замыкания при изменении значений тока повреждения источника электросети.Доступный ток короткого замыкания 50 кА используется в качестве значения, с которым сравниваются изменения. Интересно видеть, что увеличение доступного тока короткого замыкания от электросети, если исходная точка составляет 50 кА, не имеет такого большого влияния, как можно было бы подумать. Например, удвоение доступного тока повреждения в электросети с 50 кА до 100 кА увеличивает доступный ток повреждения вторичной обмотки трансформатора только на 3%, или на 1022 ампер. Для большинства устройств защиты от сверхтоков это изменение не должно быть значительным.Я слышал, что некоторые говорят, что мы не должны маркировать оборудование входа для обслуживания, потому что коммунальное предприятие может вносить изменения в коммутацию на стороне линии, что повлияет на номер на этикетке. Рисунок 7 - хороший пример, который показывает, что даже если бесконечная шина не использовалась, изменения на стороне электросети не имеют такого значительного влияния на ток короткого замыкания, как можно было бы подумать.

Рис. 7. Влияние различных токов короткого замыкания, доступных в электросети, на систему распределения электроэнергии

Чтобы напомнить, где мы находимся в этом обсуждении, доступные токи замыкания такие же, как на рисунке 7a.

Следующее, что мы должны рассмотреть, - это провод на вторичной обмотке трансформатора. Это еще больше снизит доступный ток короткого замыкания.

Расчет - после длины проводника

Проводники могут оказывать значительное влияние на доступный ток короткого замыкания. Давайте продолжим анализ этого примера трансформатора 1500 кВА, добавив параллельные проводники 500MCM на стороне нагрузки.

Эквивалентная схема уже представлена ​​как часть рисунка 1.Теперь давайте рассмотрим влияние длины проводника на доступный ток короткого замыкания. Нам понадобится следующее уравнение:

Данные, необходимые для этого примера, взяты из Национального электрического кодекса . Из Таблицы 9 NEC 2014 для проводника 500 MCM в стальном трубопроводе, Xl (реактивное сопротивление) определено как 0,048 Ом / 1000 футов. В этом примере, как указывалось ранее, мы используем только значение реактивного сопротивления, которое приведет к немного более высоким значениям тока короткого замыкания и сделает математику для этой публикации более приемлемой.Для трансформатора мощностью 1500 кВА с током полной нагрузки 1804 нам потребуется 5-500 мкс проводов, включенных параллельно на каждую фазу. Расчет производится следующим образом:


уравнение для расчета доступного тока короткого замыкания выглядит следующим образом:

Подставив все известные переменные, мы рассчитали ISC следующим образом:

Тот же расчет, предполагающий бесконечную шину без полного сопротивления сети, выглядит следующим образом:

Подводя итог еще раз,

Как можно увидеть здесь, включение дополнительных деталей снижает доступный ток короткого замыкания.В этом случае ток короткого замыкания был снижен с 31 378 ампер до 26 566 ампер, примерно на 15,3%.

Рисунок 8. Сводка расчетов и сравнение с другими инструментами для расчета доступного тока короткого замыкания.

Окончательная калибровка

Итак, мы прошли через расчет доступного тока короткого замыкания для служебного входного оборудования. Мы показали, как короткие пути приводят к консервативным доступным токам короткого замыкания, которые в целях оценки отключающих характеристик и / или оценок SCCR обеспечивают коэффициент безопасности для конструкции.Мы также показали, как можно снизить доступные токи короткого замыкания с помощью более подробного анализа, но это требует больше усилий и опыта. Давайте посмотрим на приведенный выше пример и рассмотрим другие инструменты, которые могут быть доступны.

В нашем распоряжении есть различные инструменты, когда мы рассматриваем возможность расчета доступного тока короткого замыкания. Некоторые из них довольно дороги и требуют использования обученных специалистов. К ним относятся такие программные приложения, как инструменты системного анализа SKM. Эти приложения действительно являются достаточно подробными и предоставляют очень подробные отчеты.Существуют также бесплатные инструменты, такие как калькулятор короткого замыкания Eaton Bussmann FC2. Рисунок 8 суммирует то, что мы сделали выше, И дает сравнение с SKM и приложением Bussmann FC2. Калькулятор Bussmann FC2 является бесплатным и доступен в Интернете или для любого IPHONE или ANDROID через App Store любого продукта. Посетите www.cooperbussmann.com/fc2 для получения дополнительной информации. Вы заметите, что результат программного обеспечения SKM использует как реальную, так и реактивную составляющие проводника. Значения импеданса были взяты прямо из Таблицы 9 в NEC 2014 для медных проводников в стальном трубопроводе.

Опять же, ни один из примеров, показанных выше и включенных в эту статью, не учитывает вклад двигателя. Это было упражнение, призванное дать некоторую основу для обсуждения токов короткого замыкания, и поэтому простота была нашим другом. Вклад двигателя может быть очень важным для этих расчетов. С точки зрения математики и / или системной схемы, когда вы включаете вклад двигателя, импеданс параллелен импедансу сетевого источника, импедансу трансформатора и импедансу проводника.Это снижает общий импеданс в цепи, показанной на рисунке 2, и, следовательно, увеличивает расчетный ток короткого замыкания. Сброс остается на усмотрение учащегося. (Я всегда хотел это сказать.)

Заключительное слово

Доступный ток короткого замыкания - очень важный параметр, который следует учитывать при проектировании, установке и проверке. На рынке доступны инструменты, которые помогают рассчитать доступный ток короткого замыкания. Используйте эти ресурсы, чтобы соответствовать требованиям NEC и приложениям.

Как всегда, поставьте безопасность на первое место в списке и убедитесь, что вы и окружающие доживете до следующего дня.

Расчет мощности трансформатора с использованием только тока и сопротивления

Предполагая, что ток намагничивания на первичной стороне пренебрежимо мал, сначала определите:

P p : Питание первичной стороны, подаваемое на трансформатор.
В p : Напряжение на первичной стороне.
I p : Ток на первичной стороне.
P s : Питание вторичной стороны, приложенное к трансформатору.2) * R для вторичной обмотки скажет ли это эффективную рассеиваемую мощность?

Да. \ $ P_s = V_s I_s \ $ верно.

, если я разделю вторичную мощность на первичную и умножу на 100%, скажет ли это эффективность трансформатора?

Совершенно верно. Это определение эффективности трансформатора.

$$ \ text {Эффективность} \ overset {\ треугольник} {=} \ dfrac {P_s} {P_p} $$

индуктивный импеданс позволяет энергии возвращаться к источнику

Следует учитывать, что трансформаторы работают иначе, чем индукторы.Идеалистический трансформатор с очень высоким индуктивным сопротивлением первичной обмотки вообще не ведет себя как индуктивный. Потому что трансформатор спроектирован таким образом, что индуктор первичной стороны отводит только небольшое количество тока от источника питания с номинальной частотой, когда вторичная сторона разомкнута.

Проектирование повышающего и понижающего трансформаторов

с расчетом

(Последнее обновление: 19 августа 2020 г.)

Повышающий и понижающий трансформатор, Обзор:

Проектирование повышающих и понижающих трансформаторов с расчетом - Повышающие и понижающие трансформаторы можно найти повсюду во всем мире.Даже если вы откроете зарядное устройство для сотового телефона, вы найдете небольшой понижающий трансформатор, который преобразует 110/220 В переменного тока примерно в 5 вольт. Вы можете легко найти понижающие трансформаторы в радиоприемниках, телевизорах, видеомагнитофонах, проигрывателях компакт-дисков, бритвах, антенных приемниках, зарядных устройствах для ноутбуков, принтерах, стабилизаторах и т. Д.

Из-за сильного отключения нагрузки в таких странах, как Пакистан и Индия, кто-то может легко найти инверторы. Эти инверторы имеют повышающий и понижающий трансформаторы, как вы можете видеть на рисунке ниже.

Когда нет электричества, с помощью повышающего трансформатора повышается напряжение аккумулятора на 12 В. В то время как этот небольшой понижающий трансформатор используется для питания электроники. Размер повышающего и понижающего трансформатора зависит от нагрузки. Поскольку повышающие и понижающие трансформаторы являются одними из наиболее часто используемых электронных устройств, поэтому я решил написать подробную статью о повышающих и понижающих трансформаторах и поделиться с вами некоторыми базовыми знаниями о том, как эти трансформаторы могут быть разработан.В этой статье основное внимание уделяется проектированию и расчету повышающих и понижающих трансформаторов. Если вы хотите узнать больше о силовых трансформаторах, подумайте о прочтении моей статьи о СИЛОВОМ ТРАНСФОРМАТОРЕ и его типах с объяснением принципа работы.

Без промедления, приступим !!!

Повышающий трансформатор:

In Step up Число витков первичной обмотки трансформатора меньше, чем витков вторичной обмотки, он преобразует низкое первичное напряжение в высокое вторичное напряжение i.е. он увеличивает входное напряжение.

Пример повышающего трансформатора

Например, рассмотрим трансформатор, в котором количество витков в первичной обмотке 250 и во вторичной обмотке равно 1000. Если переменное напряжение на первичной обмотке трансформатора составляет 110 В, то напряжение на вторичной обмотке трансформатора может рассчитывается по следующему уравнению.

V p / V s = N p / N s

N P (первичные витки) = 250

N S (вторичные витки) = 1000

В P (первичное напряжение) = 110 В

В S (вторичное напряжение) =?

Используя приведенное выше уравнение:

V p / V s = N p / N s

Переставляя уравнение, получаем:

Из приведенного выше примера видно, что входное напряжение увеличивается с 110 В до 440 В

Преимущества повышающих трансформаторов

Преимущества повышающих трансформаторов:

  1. Трансмиссия

Повышающие трансформаторы повышают напряжение для передачи электроэнергии на большие расстояния.Электричество проходит тысячи километров, прежде чем достигнет наших домов. Таким образом, происходит потеря мощности в линиях, поэтому для этой цели напряжение повышается, чтобы напряжение легко передавалось без каких-либо потерь.

  1. Нет времени начала

Пуск повышающего трансформатора без задержек.

  1. Безостановочная работа

Повышающий трансформатор работает в системе распределения электроэнергии без перебоев, работает постоянно.

Понижающий трансформатор:

В понижающем трансформаторе количество витков первичной обмотки больше, чем витков вторичной обмотки, он преобразует уровень напряжения с более высокого уровня на более низкий уровень. Понижающие трансформаторы используются в распределительных сетях, они понижают высокое сетевое напряжение и низкое напряжение, которое можно использовать для бытовой техники.

Количество витков первичной и вторичной обмоток определяет, насколько нужно уменьшить напряжение.

Если указанное соотношение витков составляет 2: 1, что означает, что количество витков первичной обмотки в два раза больше, чем у вторичной обмотки, то выходное напряжение будет вдвое меньше входного напряжения, а ток удвоится.

Общая мощность трансформатора останется прежней, только уровень напряжения будет уменьшен. Он не производит напряжения, а снижает уровень напряжения за счет увеличения тока. Например, если коэффициент трансформации трансформатора составляет 1: 2, он будет вдвое снизить выходное напряжение за счет удвоения тока.

Мощность первичной обмотки = Мощность вторичной обмотки

V P x I P = V S x I S

V p / V s = I s / I p

Пример понижающего трансформатора

Например, рассмотрим трансформатор, у которого количество витков в первичной обмотке 2500, а во вторичной - 1500.Если переменное напряжение на первичной обмотке трансформатора составляет 220 В, то напряжение на вторичной обмотке трансформатора можно рассчитать с помощью следующего уравнения.

V p / V s = N p / N s

N P (первичные витки) = 2500

N S (вторичные витки) = 1500

В P (Первичное напряжение) = 220 В

В S (вторичное напряжение) =?

Используя приведенное выше уравнение:

V p / V s = N p / N s

Переставляя уравнение, получаем:

Из приведенного выше примера видно, что входное напряжение понижается с 220 В до 132 В

Понижающий трансформатор использует:

  • Все трансформаторы, которые мы видим возле наших домов, улиц, деревень или городов, являются понижающими трансформаторами.Они понижают напряжение с 11кВ до 220В, чтобы развести его в наши дома.
  • В адаптерах
  • до широкого применения импульсных источников питания используется понижающий трансформатор.

Термины, относящиеся к конструкции трансформатора:

Плотность потока:

Плотность магнитного потока определяется как магнитный поток, проходящий через определенную область, перпендикулярную полю. B также известен как индукция магнитного поля

Плотность тока:

Определяется как величина электрического тока (расход заряда в амперах), протекающего через единицу площади поперечного сечения.Плотность тока - это векторная величина, потому что она задается величиной и направлением. Обозначается буквой J. Измеряется в амперах / м 2.

Математическая форма:

Плотность тока (Дж) = Ток (I) / Площадь (A)

Например,

Если по проводнику с заданной площадью 10 м проходит ток 60 ампер 2 , какова плотность тока?

Ответ:

Ток, I = 60 ампер, площадь A = 10 м 2 .

Дж = I / A

Дж = 60/10

Дж = 6 Ампер / м 2

Конструирование трансформатора:

Для проектирования трансформатора необходимы следующие расчеты:
  • Площадь поперечного сечения (железо)
  • Количество витков первичной обмотки
  • Количество вторичных витков
  • Диаметр первичного проводника
  • Диаметр вторичного проводника

Допущения

При проектировании трансформатора примем следующие значения:

КПД 80%

Плотность потока = 1.2 Вт / м2

Плотность тока = 2,5 Вт / м2

Плотность напряжения = 0,5%

Коэффициент стека = 0,9

Конструкция / расчет понижающего трансформатора с 220В на 110:

Рейтинг

110 ВА 220/110 В

Номинальное вторичное напряжение = 110 ВА

Напряжение вторичной обмотки = 110 В

Ток вторичной обмотки = номинальное напряжение / вторичное напряжение

Ток вторичной обмотки = 110 ВА / 110 В

= 1А

Плотность тока = Ток (I) / Площадь

Площадь вторичного проводника = ток (I) / плотность тока (j)

= 1/2.2 = (4 × A) / π
Извлечение квадратного корня с обеих сторон
d = √ ((4 × A) / π)

Подставляя значения, получаем
d = √ ((4 × 0,4) / π)

d = 0,71 мм
Из этого значения мы выберем стандартный калибр провода
Теперь мы рассчитаем напряжение первичной обмотки
Первичная обмотка (ВА) = (Вторичная (ВА)) / КПД
Первичная (ВА) = 110 ВА / 0,8
Первичная ( ВА) = 137,5 ВА
Возьмем примерно 140 ВА
Чистая площадь поперечного сечения = √ (Первичная (ВА))

Чистая площадь поперечного сечения = √137.2 = (4 × A) / π
Извлечение квадратного корня с обеих сторон
d = √ ((4 × A) / π)

Подставляя значения, получаем
d = √ ((4 × 0,26) / π)

d = 0,56 мм

Количество витков первичной обмотки:

Мы будем использовать формулу ЭДС на оборот
ЭДС на оборот = 4,44 × N × B_max × f × A
N = (ЭДС на оборот) / (4,44 × B_max × f × A)
N = 220 / (4,44 × 1,2 × 50 × 13,33)
N = 620 оборотов

Количество витков вторичной обмотки:

Мы будем использовать формулу ЭДС на оборот
ЭДС на оборот = 4,44 × N × B_max × f × A
N = (ЭДС на оборот) / (4.44 × B_max × f × A)
N = 110 / (4,44 × 1,2 × 50 × 13,33)
N = 310 витков
Из-за напряжения регулирования напряжения его вторичная сторона может колебаться, увеличиваясь и уменьшаясь, поэтому мы также будем колебать витки, поэтому мы будем использовать значение плотности напряжения, равное 0,5.
Фактическое количество оборотов = 5/100 × 310 = 15,5 = 16
Общее количество оборотов на вторичной обмотке = 310 + 16 = 326 оборотов

Конструкция / расчет понижающего трансформатора с 220 В на 12 В:

Допущения
При проектировании трансформатора мы примем следующие значения:
КПД 80%
Плотность магнитного потока = B_m = от 1 до 1.2 = (4 × A) / π
Извлечение квадратного корня с обеих сторон
d = √ ((4 × A) / π)

Подставляя значения, получаем
d = √ ((4 × 2) / π)

d = 1,596 мм

Из приведенной выше таблицы мы выберем SWG провода, так как диаметр равен 1,596 мм, для которого SWG равен 16.
Первичный (ВА) = (Вторичный (ВА)) / КПД
Первичный (ВА) = 880 / 0,9
Первичный (ВА) ) = 977,7 ВА
Первичный ток = (Первичный (ВА)) / (Первичный ток)
Первичный ток = 978/12
Первичный ток = 81,5 А
Площадь проводника = (Ток (I)) / (Плотность тока (Дж) )
Площадь проводника = 81.8 / (4,44 × 6500 × 50)
N = 6,93
Мы возьмем число оборотов на вольт, приблизительно равное N = 7
Общая расчетная площадь обмотки = 11 квадратных дюймов
CA = (WA (площадь намотки)) / (FG (окно площадь))
CA = 11 / (3 × 1)
CA = 3,7 квадратных дюйма
Stack = (Площадь поперечного сечения сердцевины (CA)) / (E (ширина сердцевины фаски Limb) × Sf)
Sf = коэффициент укладки
Стопка = (3,7) / (2 × 0,9)
Стопка = 2 дюйма
Размер бобины = 2 дюйма × 2 дюйма сердечника 7
Оборотов на вольт = 7 / (3,7) = 1,89 TPV
Количество витков первичной обмотки = витков на вольт × volt
Количество витков первичной обмотки = 1.89 × 12 = 23 витка
Количество витков первичной обмотки = 1,89 × 220 × 1,03 = 429 витков
Где 1,03 - напряжение падения мощности

Примеры, относящиеся к трансформатору:

Пример 1:

Трансформатор имеет 40 обмоток в первичной обмотке и 30 - во вторичной обмотке. Если первичное напряжение 220 В, найдите вторичное напряжение.

Ответ:
Используя следующее уравнение, мы рассчитаем вторичное напряжение:
N_1 / N_2 = V_1 / V_2 = I_2 / I_1

N_1 / N_2 = V_1 / V_2
V_2 = N_1 / N_2 × V1
V_2 = 40/30 × 220
V_2 = 293.2
ЭДС, индуцированная на первичной стороне
V_p = 4,44 × Φ_max × f × N_1
Φ_max = BA
Φ_max = 1,1 × 0,05
Φ_max = 0,055wb
N_1 = V_p / (4,44 × Φ_max × f)
(N_1 = 2300 / 4,44 × 0,055 × 50)
N_1 = 188,37
Таким образом, количество витков на первичной стороне составляет 188 витков
N_2 = V_p / (4,44 × Φ_max × f)
N_2 = 230 / (4,44 × 0,055 × 50)
N_2 = 18,83
Таким образом, количество витков первичной обмотки составляет 19 витков

Пример 3:

Однофазный трансформатор имеет 4000 первичных и 1000 вторичных витков.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *