Для чего нужен трансформатор напряжения: Измерительный трансформатор тока. Что это и зачем он нужен?

Содержание

Измерительный трансформатор тока. Что это и зачем он нужен?

Введение

Одновременно с входом в нашу жизнь электричества остро встали некоторые вопросы, тесно связанные с его эксплуатацией. Одним из них стал вопрос организации токовой защиты цепи. Появилась необходимость в разделении силовых цепей и цепей защиты, а также в создании и организации сложных защит, которые невозможно собрать,  используя аппараты только в силовых цепях.

Дело в том, что защита электропроводки в обычных квартирах сводится к применению автоматических выключателей или предохранителей, а защита от поражения электрическим током — к применению УЗО или АВДТ. Вышеперечисленные аппараты встраиваются непосредственно в защищаемую цепь и, как правило, не имеют дистанционных органов управления.

В сетях с более высокими мощностями и токами, где уже требуется релейная защита, работающая по определенным алгоритмам, (например, АПВ — автоматическое повторное включение) требуется организовать питание целого ряда устройств и реле цепей защиты.

Для этого применяется трансформатор тока — электротехническое устройство, предназначенное для уменьшения первичного тока (тока измеряемой рабочей цепи) до значений, наиболее удобных для измерительных приборов и реле, находящихся во вторничной цепи. К нему подключаются следующие устройства: амперметры, преобразователи тока, обмотки токовых реле, счетчиков, ваттметров и другие.

Технические характеристики и режим работы

Основным параметром трансформатора тока является его коэффициент трансформации, то есть кратность первичного тока ко вторичному. Ряд первичных токов включает следующие значения: 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000 (А).

С целью унификации и стандартизации всего выпускаемого измерительного и защитного оборудования существует стандартная величина вторичного тока — это 5 А. Соответственно, коэффициент трансформации определяется так: Kт= 400/5= 80.

Трансформатор тока работает в режиме близкому к короткому замыканию, т.к. сумма сопротивлений последовательно подключенных приборов защиты не превышает несколько десятых долей Ом. 

Не менее важной задачей, которую как раз и решает трансформатор тока (ТТ) является отделение вторичных цепей измерения и защиты от силовых цепей высокого напряжения и, следовательно, обеспечение безопасности работы с устройствами измерения и защиты.

Применение

Кроме основных задач, оп

Все о трансформаторах - принцип работы, характеристики, свойство и применение

Рубрика: Статьи про радиодетали Опубликовано 20.04.2020   ·   Комментарии: 0   ·   На чтение: 14 мин   ·   Просмотры:

Post Views: 403

Трансформатор преобразует напряжение с помощью взаимоиндукции. И по сути эта делать простая, но очень эффективная. Это происходит благодаря переменному магнитному полю, которая связывает несколько катушек друг с другом. Трансформатор преобразует только переменные и импульсные токи.

Как работает трансформатор

Трансформатор работает за счет взаимоиндукции. Для начала разберем, что такое индукция.

Что такое индукция

Если по проводу пустить электрический ток, то возникнет магнитное поле.

Магнитное поле — неотъемлемая часть электрического. И в магнитном поле сохраняется энергия электрического. Способность материала создавать магнитное поле называется индуктивностью.

Чем больше материал может создать магнитное поле, тем выше его индуктивность.

Магнитное поле можно увеличить, если сделать катушку.


Достаточно взять проволоку, намотать ее на каркас. И магнитные поля витков будут складываться.

Это и есть катушка индуктивности.

Провод в катушке индуктивности должен быть изолирован. Потому, что если хотя бы один виток будет в коротком замыкании с другим, то магнитное поле будет неравномерным. Будет межвитковое замыкание, из-за которого магнитное поле потеряет свою равномерность.

Если мы подаем на катушку постоянный ток, то и магнитное поле будет постоянным. Оно не будет меняться. А что если отключить катушку от источника? Тогда наступит явление самоиндукции. Так как ток уменьшается, то магнитное поле больше нечем поддерживать. И вся так энергия, которая была в магнитном поле, переходит в электрическую.

Изменение магнитного поля создает электрическое поле.

Увеличение индуктивности сердечником

А как увеличить индуктивность? Только с помощью количества витков и диаметром провода? На индуктивность еще влияет окружающая среда. Воздух — не самый лучший материал для накопления или передачи магнитного поля. У него низкая магнитная проницаемость. Тем более, при изменении плотности и температуры воздуха, это значение меняется. Поэтому, для увеличения индуктивности используют ферромагнетики. К ним относят железо, никель, кобальт и др.

Если сделать сердечник в центре катушки из таких материалов, то можно многократно повысить индуктивность катушки.

Из ферромагнетиков делают сердечники (магнитопроводы). В основном используют электротехническую сталь, которую специально делают для этих целей.


Кстати, теперь намного проще регулировать индуктивность с сердечником. Достаточно плавно передвигать сердечник внутри катушки, и индуктивность будет плавно меняться. Это удобнее, чем двигать витки друг от друга.

Взаимоиндукция и принцип передачи тока

Раз можно накопить энергию в катушке за счет магнитного поля, то можно передать эту энергию в другую катушку.

Допустим, есть две одинаковые катушки индуктивности. Одна подключена к питанию, другая нет.

При подключении питания, у первой катушки возникнет магнитное поле. И если приблизить вторую катушку к первой, у второй катушки индуцируется ЭДС за счет магнитного поля первой.

Но ЭДС второй катушки будет не долгим явлением. Если на первую катушку подается постоянное напряжение, то и магнитное поле будет постоянным.

А электрический ток возникает только при переменном магнитное поле. Поэтому, ток во второй катушке сразу исчезнет, как только стабилизируется магнитное поле.

Если поменяем полярность на первой катушке, то и изменится ее магнитное поле. А это значит, что оно будет изменяться и во второй катушке. Это снова индуцирует ток во второй катушке, но не надолго.


Чтобы непрерывно можно было передать ток от первой катушки ко второй, нужен переменный источник тока. Переменный ток создает переменное магнитное поле. А переменное магнитное поле проницая проводник создает в нем переменный наведенный ток.

И поэтому, если на первую катушку будет подано переменное напряжение, то возникнет и переменное магнитное поле. Это магнитное поле индуцирует во второй катушке электромагнитное поле, и ток будет во второй катушке.

Такое явление называют взаимоиндукцией. Когда за счет индуктивности ток из одной части цепи можно передать в другую используя электромагнитное поле.

Многие путают электромагнитную индукцию и взаимоиндукцию. Но это разные явления, хоть и принцип действия во многом схож.

Кроме переменного тока можно использовать и импульсный ток, в котором плюс и минус не меняются местами. Главное выполнять правило — ток должен менять свое значение. И тогда будет переменное магнитное поле.

Кстати, когда работают блоки питания и светильники, издаваемый гул от них — это звук от катушек или их сердечников. Это из-за индукции. Магнитное поле из-за разного направления в катушках частично сдвигает витки и сердечники, отсюда и появляется тот самый звон. Это касается и электродвигателей. Поэтому такие детали заливают смолой или компаундом, чтобы уменьшить издаваемый звук.

Устройство трансформатора

А если катушки будут разными? Тогда можно преобразовать напряжение из одной величины в другую. Так и работает трансформатор. Трансформатор преобразует напряжение с первичной обмотки в напряжение другой величины на вторичной обмотке.

Трансформатор работает только с переменным, импульсным или любым другим током, у которого изменяется значение со временем.

Трансформатор преобразует ток и напряжение, но он не позволяет увеличить мощность. Даже наоборот, из-за нагрева он немного забирает мощность. И не смотря на это, его КПД может доходить вплоть до 99%.

Классический трансформатор

Разберем устройство классического трансформатора.

Основная его функция — это снижение или повышение напряжения для блока питания. Работает за счет сетевого напряжения и низкой частоты (от 50 Гц). Частота переменного тока важна для расчетов.

Классический трансформатор состоит из первичной и вторичной обмотки, а также сердечника (магнитопровода).


На первичную обмотку подается то напряжение, которое нужно преобразовать. А со вторичной обмотки снимают то напряжение, которое получилось за счет взаимоиндукции. Сердечник увеличивает магнитный поток.

Как же происходит преобразование? Все просто. Можно рассчитать индуктивность первичной и вторичной обмотки. Если нужно низкое напряжение, то вторичная обмотка имеет меньше витков, чем первичная. Раз первичная работает за счет сетевого напряжения, то и рассчитывается на 220 В с небольшим запасом из-за колебаний сети.

Напряжение на вторичной обмотке сдвинуто по фазе относительно первичной. Это связано с явлением взаимоиндукции. На графике показана примерная разница по синусоид

Трансформаторы тока и напряжения

Перед тем, как рассказать об измерительных трансформаторах – немного теории. Трансформатор – элемент электрической цепи, преобразующий величину переменного напряжения. Трансформаторы могут быть:

  • понижающими, выдающие на выходе меньшее напряжение, чем на входе;
  • повышающими, выполняющие противоположное преобразование;
  • разделительные, не изменяющие величину напряжения, применяющиеся для гальванической развязки между участками электрической сети.

Повышающие и понижающие трансформаторы обратимы: если подать номинальное выходное напряжение трансформатора на его вторичную обмотку, на первичной мы получим номинальное входное напряжение.

С токами в обмотках происходит обратная картина. Первичная обмотка рассчитывается на ток, соответствующий номинальной мощности трансформатора. Под мощность выбирается и сечение магнитопровода, и диаметр обмоточного провода первичной обмотки.

Ток вторичной обмотки понижающего трансформатора может быть больше тока в первичной во столько раз, во сколько меньше ее напряжение. Это отношение называется коэффициентом трансформации. Поэтому сечение обмоточного провода вторичной обмотки у понижающего трансформатора больше. У понижающего – все наоборот. У разделительного – все одинаково.

Зачем нужны измерительные трансформаторы напряжения

В электроустановках до 1000 В измерение напряжения производят, подключая вольтметры непосредственно к шинам или другим контролируемым участкам сети. Но в сетях 6 кВ и выше это невозможно, потому что:

  • при измерении высокого напряжения требуется
    понизить его величину
    до размера, воспринимаемого рамкой стрелочного прибора или электронным преобразователем цифрового. Резистивные делители не выполнят задачу с требуемой точностью, а применение понижающего трансформатора сделает прибор громоздким;
  • изоляция проводников для подключения прибора должна выдерживать номинальное напряжение электроустановки. Кроме того, должны соблюдаться междуфазные расстояния, требуемые ПУЭ. Выполнить это невозможно.
Трансформатор напряжения НОЛ

Поэтому для измерений величину напряжения понижают, и для этого нужен трансформатор напряжения

Трансформаторы напряжения и их конструкция

На какое бы напряжение не была рассчитана первичная обмотка трансформатора напряжения, напряжение на вторичной его обмотке стандартно – 100 В. Это сделано для унификации: счетчику электроэнергии без разницы, в какой электроустановке работать – 6 кВ, 10 кВ или более. Если он предназначен для эксплуатации с трансформаторами напряжения, в его технических характеристиках в графе «номинальное напряжение» указано: «3х100 В». Цифра «3» означает, что для измерений к нему подключаются три фазы.

Конструктивно трансформаторы напряжения выполняются:

  • элемент преобразования одной фазы напряжения в своем корпусе, при трехфазном напряжении устанавливаются три таких трансформатора;
  • один корпус содержит трансформатор для преобразования всех трех фаз.
Трехфазный трансформатор напряжения НАМИ

Первичные обмотки трехфазных трансформаторов соединяются в звезду.

Вторичных обмоток у трансформаторов напряжения несколько:

  • обмотка для приборов учета, имеющая класс точности 0,5s;
  • обмотка для измерительных приборов – класс точности 0,5;
  • обмотка для устройств релейной защиты – класс 10Р;
  • обмотка для разомкнутого треугольника – класс 10Р.

Класс точности имеет значение при учете и измерениях. Но есть еще один нюанс: измерительная обмотка трансформатора работает в заявленном классе точности, если не превышена допустимая нагрузка на нее. Поэтому, вместе с классом, на бирке трансформатора указывается допустимая мощность, превышать которую нельзя.

Трансформатор напряжения НОМ-10

Еще один фактор, изменяющий класс точности – сопротивление соединительных проводников. Если прибор учета или амперметр находится вдали от трансформатора напряжения и подключен контрольным кабелем с жилами недостаточного сечения, то значение напряжения на нем будет меньше, чем на трансформаторе.

Выводы вторичной обмотки трансформатора напряжения, используемого для коммерческого учета, закрывают крышкой и пломбируют.

Первичные обмотки трансформаторов напряжения защищают предохранителями. Для защиты вторичных обмоток раньше тоже применяли предохранители, но теперь их заменили автоматические выключатели.

Три однофазных трансформатора ЗНОЛ, собранные вместе

А теперь – вспомним теорию в начале статьи. Основная опасность при работе на трансформаторах напряжения состоит в явлении обратной трансформации. Если по каким-то причинам на вторичную обмотку попадет напряжение 100 В, то первичная окажется под номинальным напряжением электроустановки. Работающие в ячейке люди окажутся под напряжением. Поэтому при выводе в ремонт трансформатора напряжения принимают меры. Исключающие обратную трансформацию.

Зачем нужны трансформаторы тока

Одна из причин, из-за которых в электроустановках выше 1000 В устанавливают трансформаторы тока – та же, что и для трансформаторов напряжения. Невозможно обеспечить изоляцию цепей для подключения приборов.

Но есть дополнительные факторы, вынуждающие использовать их и в электроустановках выше 1000 В:

  • максимальный ток, на который рассчитаны электросчетчики прямого включения – 100 А. Токи выше 100 А требуется понизить.
  • включение амперметров последовательно с нагрузкой снижает надежность электроснабжения;
  • вольтметр подключается к шинам через предохранители или автоматический выключатель, выводы амперметра защитить невозможно. Ток короткого замыкания в амперметре равен току КЗ на шинах. Ошибки в эксплуатации приводят к тяжелым последствиям, а неисправности прибора выводят его из строя навсегда. Поэтому и требуется выполнить гальваническую развязку амперметра с сетью.
  • Заменить амперметр прямого подключения можно, только отключив нагрузку.

Принцип действия и конструкция трансформаторов тока

Трансформатор тока тоже имеет первичную и вторичную обмотку. Но особенность его в том, что первичная обмотка имеет один или несколько витков, а в большинстве изделий представляет собой шину, проходящую через корпус трансформатора. Вариант – трансформаторы, не имеющие собственной первичной обмотки. Они надеваются на шину с измеряемым током или через них пропускается провод, жила кабеля.

Варианты конструктивного исполнения трансформаторов тока до 1000 В

Вторичная обмотка у трансформатора тока на напряжение до 1000 В одна, но у высоковольтных их – минимум две, но бывает и больше. Работает он аналогично повышающему трансформатору, поэтому – все, что сказано в начале статьи о соотношении токов в них для него справедливо.

Номинальный ток вторичной обмотки трансформатора тока всегда равен 5 А, на какой бы ток не была рассчитана первичная. Классы точности обмоток для подключения аппаратуры различаются так же, как и у трансформаторов напряжения.

Но вот подключить к трансформатору тока, используемому для учета электроэнергии, ничего больше не получится. По правилам, кроме счетчика, там не должно быть ничего. И если для аппаратов выше 1000 В это требование легко выполнить (один трансформатор имеет несколько обмоток), то для электроустановок до 1000 В при необходимости устанавливают по два трансформатора на одну фазу: один – для учета, другой – для всего остального (амперметры, ваттметры, устройства защиты, компенсация реактивной мощности). Выводы вторичной обмотки для коммерческого учета у всех трансформаторов закрываются крышкой и пломбируются.

Установка трансформаторов тока в ячейке выше 1000 В

Трансформатор тока должен работать в замкнутой на нагрузку или накоротко вторичной обмоткой. Иначе на ней наводится ЭДС далеко не безопасной величины как для людей, так и для электрооборудования. При обрыве во вторичных цепях можно получить смертельный удар током, даже проведя рукой рядом с клеммами амперметра или счетчика. А электронные схемы на входе приборов выйдут из строя под действием высокого напряжения.

Поэтому для замены амперметров и электросчетчиков в токовых цепях устанавливают специальные клеммы, на которых перед демонтажем прибора обмотку трансформатора закорачивают. Для приборов учета рядом устанавливают клеммы для отключения цепей напряжения. Это функции совмещены в специальном устройстве, называющимся «колодка клеммная измерительная». Для коммерческих цепей учета эти коробки пломбируются, для чего винт, крепящий ее крышку, имеет прорезь в головке (как у винтов крепления крышки корпуса электросчетчика).

Видео про трансформаторы тока

Почему нельзя размыкать вторичную обмотку трансформатора тока и зачем ее обязательно заземлять? Попутно вы узнаете о технических характеристиках и конструкции трансформаторов тока, особенностях их применения.

Оцените качество статьи:

Измерительные трансформаторы напряжения. Устройство и работа

Измерительные трансформаторы напряжения предназначены для возможности измерения высокого напряжения электроустановок переменного тока путем снижения этого напряжения для подачи на защитные реле, приборы измерения и системы автоматики.

При отсутствии измерительных трансформаторов понадобилось бы применять приборы и реле с большими габаритными размерами, так как необходима надежная изоляция от высокого напряжения, которая увеличивает размеры устройств. Изготовить такое оборудование практически невозможно, так как напряжения линий могут достигать величины 110 киловольт.

Измерительные трансформаторы для замера напряжения дают возможность применять стандартные обычные приборы для измерений электрических параметров, при этом увеличивая их диапазон измерения. Защитные реле, подключаемые через эти трансформаторы, могут применяться обычного исполнения.

Гальваническая развязка, которую обеспечивают трансформаторы путем отделения измерительной цепи от высокого напряжения, позволяет создать необходимый уровень безопасности обслуживающего персонала.

Такие трансформаторы нашли свою популярность в устройствах высокого напряжения. От их качественного функционирования зависит степень точности учета расхода электрической энергии и электрических измерений, а также автоматических аварийных систем и защитных реле.

Устройство и работа

Измерительные трансформаторы устроены аналогично понижающим силовым трансформаторам, и состоят из металлического сердечника, выполненного из электротехнической листовой стали, первичной и вторичной обмоток. Трансформаторы могут оснащаться несколькими вторичными обмотками, в зависимости от конструкции и предъявляемых требований к трансформатору.

К первичной обмотке подключается высокое напряжение, а с вторичной обмотки снимается напряжение измерительными устройствами. Коэффициент трансформации такого устройства равен отношению первичного высокого напряжения к номинальному значению вторичного напряжения.

Если бы трансформатор функционировал абсолютно без потерь и с абсолютной точностью, то оба напряжения на обеих обмотках совпадали бы по фазе, и коэффициент трансформации был бы равен единице. Однако на практике коэффициент трансформации всегда меньше единицы, так как всегда имеются некоторые потери энергии при работе трансформатора.

Погрешность измерительного трансформатора зависит от:
  • Величины вторичной нагрузки.
  • Магнитной проницаемости сердечника.
  • Устройства магнитопровода.

Существуют методы снижения погрешности по напряжению путем снижения числа витков первичной обмотки, добавления различных компенсирующих обмоток.

Число витков первичной обмотки намного больше, чем вторичной. Измеряемое напряжение подается на первичную обмотку, к вторичной обмотке подключают различные измерительные приборы: вольтметры, ваттметры, фазометры и т.д.

Трансформаторы напряжения эксплуатируются в режимах, подобных холостому ходу. Это объясняется тем, что подключенный к вторичной обмотке прибор, например, вольтметр, обладает большим сопротивлением, и ток, протекающий по этой обмотке, очень незначителен.

Особенности подключения

Трансформаторы могут устанавливаться как на шинах подстанции, так и на каждом отдельном объекте. Перед электрическим монтажом необходимо осмотреть трансформатор на предмет необходимого уровня масла для масляных моделей, исправности армированных швов, целостности изоляции.

При проведении монтажа обе обмотки трансформатора должны быть завернуты в изоляцию, так как случайное касание выводов вторичной обмотки с проводами, находящимися под напряжением, может привести к возникновению на первичной обмотке опасного для жизни напряжения.

Для безопасности вторичную обмотку перед подключением заземляют. Это предотвращает возможность попадания высокого напряжения в цепи низкого напряжения при возможном пробивании изоляции.

Необходимо учитывать, что если к вторичной цепи подключить слишком много измерительных и других приборов, то величина тока вторичной цепи значительно увеличится, так же как и погрешность измерения. Вследствие этого необходимо следить, чтобы общая мощность присоединенных приборов не превзошла наибольший допустимый предел мощности, определенный инструкцией или паспортом трансформатора.

При превышении общей мощности допустимой величины целесообразно подключить дополнительный трансформатор, и переключить на него несколько приборов от первого трансформатора.

Трансформаторы должны иметь защиту от короткого замыкания, в противном случае при коротком замыкании обмотки перегреются, и изоляция будет повреждена. Для этого в цепях всех незаземленных проводников подключают электрические автоматы, а также рубильники (для образования видимого разрыва цепи при ее отключении). Первичную обмотку трансформатора чаще всего защищают путем установки предохранителей.

Разновидности

Измерительные трансформаторы классифицируются по нескольким признакам и параметрам. Рассмотрим основные из таких признаков и параметров.

По числу фаз:
  • Однофазные.
  • Трехфазные.
По количеству обмоток:
  • Трехобмоточные.
  • Двухобмоточные.
По методу охлаждения:
  • С воздушным охлаждением (сухие).
  • С масляным охлаждением.
По месту монтажа:
  • Внутренние (для монтажа внутри помещений).
  • Внешние (для установки снаружи помещений).
  • Для распределительных устройств.
По классам точности: 0,2; 0,5; 1; 3.
Измерительные трансформаторы с несколькими обмотками

К таким трансформаторам есть возможность подключения сигнализирующих устройств, которые подают сигнал о замыкании цепи с изолированной нейтралью, а также защитных устройств, защищающих от замыканий в цепи с заземленной нейтралью.

На рисунке «а» изображена схема с 2-мя вторичными обмотками. На рисунке «б» показана схема 3-х трехфазных трансформаторов. В них первичные и основные вторичные обмотки соединены по схеме звезды, а нейтральный проводник соединен с землей. На приборы измерения могут подключаться три фазы и ноль от основных вторичных обмоток. Вспомогательные вторичные обмотки соединены «треугольником». От этих обмоток поступает сумма напряжений фаз на дополнительные устройства: сигнальные, защитные и другие.

Основные схемы подключения

Наиболее простая схема с применением однофазного трансформатора изображена на рисунке 4 «а». Она используется в панелях запуска электродвигателей, на пунктах переключения напряжением до 10 киловольт, для подключения реле напряжения и вольтметра.

Схема по рисунку 4 «б» используется для неразветвленных цепей в электроустановках от 0,4 до 10 киловольт. Это дает возможность установить заземление вторичных цепей возле трансформаторов.

Во вторичной цепи, изображенной на рисунке 4 «в», подключен двухполюсный автомат вместо предохранителей. При срабатывании автомата его контакт замкнет сигнальную цепь «обрыв цепи». Вторичные обмотки заземлены в фазе В на щите. Рубильником можно выключить вторичную цепь, и обеспечить при этом видимый разрыв. Такая схема используется в электроустановках от 6 до 35 киловольт при разветвленных вторичных цепях.

На рисунке 4 «г» измерительные трансформаторы подключены схемой «треугольник-звезда». Это позволяет создать вторичное напряжение, необходимое для приборов автоматической регулировки возбуждения компенсаторов. Для надежности функционирования этих приборов предохранители во вторичных цепях не подключают.

Похожие темы:

Трансформатор напряжения - это... Что такое Трансформатор напряжения?


Трансформатор напряжения
        измерительный Трансформатор электрический, предназначенный для преобразования высокого напряжения в низкое в цепях измерения и контроля. Применение Т. н. позволяет изолировать цепи вольтметров, частотометров, электрических счётчиков, устройств автоматического управления и контроля и т.д. от цепи высокого напряжения и создаёт возможность стандартизации номинального напряжения контрольно-измерительной аппаратуры (чаще всего его принимают равным 100 в). Т. н. подразделяются на трансформаторы переменного напряжения (обычно их называют просто Т. н.) и трансформаторы постоянного напряжения.          Первичная обмотка (ПО) трансформатора переменного напряжения (см. рис. 1, а, б) состоит из большого числа (w1) витков и подключается к цепи с измеряемым (контролируемым) напряжением U1 параллельно. К зажимам вторичной обмотки (ВО) с числом витков w2 (w2 1) подсоединяют измерительные приборы (или контрольные устройства). Так как внутреннее сопротивление последних относительно велико, Т. н. работает в условиях, близких к режиму холостого хода, что позволяет (пренебрегая потерями напряжения в обмотках) считать U1 и U2 приблизительно равными соответствующим эдс и пропорциональными w1 и w2, то есть U1w2U2w1. Зная отношение (Трансформации коэффициент), можно по результатам измерения низкого напряжения в ВО определять высокое первичное напряжение. Приближённый характер соотношения между U1 и U2 обусловливает наличие погрешности по напряжению и угловой погрешности найденной величины U1. В компенсированных Т. н. производится компенсация этих погрешностей. Т. н. устанавливают главным образом в распределительных устройствах (См. Распределительное устройство) высокого напряжения. Их выпускают в однофазном и трёхфазном исполнении. Большинство Т. н. на напряжения свыше 6 кв — маслонаполненные. Т. н. на напряжения свыше 100 кв делают, как правило, каскадными. Лабораторные Т. н. — обычно многопредельные.

         Лит.: Вавин В. Н., Трансформаторы напряжения и их вторичные цепи, Л., 1967; Электрические измерения, под ред. Е. Г. Шрамкова, М., 1972.

         Г. М. Вотчицев.

        

        Измерительный трансформатор напряжения. Схема включения.

        

        Рис. 1б. Измерительный трансформатор напряжения. Трансформатор напряжения на 400 кв.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Трансформатор СВЧ
  • Трансформатор с регулированием под нагрузкой

Трансформатор напряжения - это... Что такое Трансформатор напряжения?

Антирезонансный трансформатор напряжения

Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение - преобразование и гальваническая развязка высокого напряжения в низкое в измерительных цепях. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.

Виды трансформаторов напряжения

  • Заземляемый трансформатор напряжения — однофазный трансформатор напряжения, один конец первичной обмотки которого должен быть наглухо заземлён, или трёхфазный трансформатор напряжения, нейтраль первичной обмотки которого должна быть наглухо заземлена.
  • Незаземляемый трансформатор напряжения — трансформатор напряжения, у которого все части первичной обмотки, включая зажимы, изолированы от земли до уровня, соответствующего классу напряжения.
  • Каскадный трансформатор напряжения — трансформатор напряжения, первичная обмотка которого разделена на несколько последовательно соединённых секций, передача мощности от которых к вторичным обмоткам осуществляется при помощи связующих и выравнивающих обмоток.
  • Ёмкостный трансформатор напряжения — трансформатор напряжения, содержащий ёмкостный делитель.
  • Двухобмоточный трансформатор — трансформатор напряжения, имеющий одну вторичную обмотку напряжения.
  • Трёхобмоточный трансформатор напряжения — трансформатор напряжения, имеющий две вторичные обмотки: основную и дополнительную.

Нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений. Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25 % номинального напряжения при питании от трансформаторов напряжения класса точности 0,5 и не более 0,5 % при питании от трансформаторов напряжения класса точности 1,0. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков. Потери напряжения от трансформаторов напряжения до счетчиков технического учета должны составлять не более 1,5 % номинального напряжения.

Источники

  • ГОСТ 18685-73 Трансформаторы тока и напряжения. Термины и определения

Simple English Wikipedia, бесплатная энциклопедия

Подключение высоковольтного кабеля

Напряжение заставляет электрические заряды двигаться. Это «толчок», который заставляет заряды двигаться в проводе или другом электрическом проводнике. Это можно рассматривать как силу, толкающую заряды, но это не сила. Напряжение может вызвать перемещение зарядов, а поскольку движущиеся заряды представляют собой ток, напряжение может вызывать ток.

Разница электрических потенциалов - это научный термин, который обычно называют напряжением.Неформально, разность напряжений или электрических потенциалов иногда называют «разностью потенциалов». В некоторых случаях напряжение также называют электродвижущей силой (ЭДС).

Напряжение - это разность электрических потенциалов, разность электрических потенциалов между двумя точками. Единицей измерения разности электрических потенциалов или напряжения является вольт. Вольт назван в память об Алессандро Вольта. Один вольт равен одному джоулю на кулон. Символ единицы вольт пишется с заглавной буквы V, как в (9V).Согласно правилам Международной системы единиц, символ единицы с названием, производным от имени собственного лица, пишется в верхнем регистре.

Обратите внимание, что вольт и напряжение - это две разные вещи. Вольт - это единица измерения, с помощью которой мы что-то измеряем. И электрический потенциал, и напряжение - это то, что мы измеряем, и вольт является единицей измерения для обоих. Обозначение единицы вольт пишется с помощью V (9 вольт или 9 В). Когда в формуле используется напряжение, ее можно набрать курсивом, например.g., V = 9V {\ displaystyle V = 9 \, {\ text {V}}} или написано курсивом. Если есть только однобуквенный символ, можно использовать строчную букву v, например, напряжение = ток × сопротивление {\ displaystyle {\ text {Voltage}} = {\ text {current}} \ times {\ text { сопротивление}}} или v = ir {\ displaystyle {\ text {v}} = {\ text {ir}}}. Инженеры-электрики используют символ e {\ displaystyle e} для обозначения напряжения, например, e = ir {\ displaystyle e = ir}, чтобы четко различать напряжение и вольт.

Технически, напряжение - это разность электрических потенциалов между двумя точками и всегда измеряется между двумя точками.например между положительным и отрицательным полюсами батареи, между проводом и землей, или между проводом или точкой цепи и точкой в ​​другой части цепи. В повседневном использовании бытовой электросети в США напряжение чаще всего составляет 120 В. Это напряжение измеряется от электрического провода до земли.

Обратите внимание, что для передачи мощности (энергии) должны присутствовать и напряжение , и ток . Например, на проводе может быть высокое напряжение, но, если он не подключен, ничего не произойдет.Птицы могут приземлиться на высоковольтные линии, такие как 12 кВ и 16 кВ, и не погибнуть, потому что через птицу не течет ток.

Существует два типа напряжения: постоянное и переменное. Напряжение постоянного тока (напряжение постоянного тока) всегда имеет одинаковую полярность (положительную или отрицательную), например, в батарее. Напряжение переменного тока (напряжение переменного тока) изменяется между положительным и отрицательным. Например, напряжение в сетевой розетке меняет полярность 60 раз в секунду (в Америке) или 50 раз в секунду (в Великобритании и Европе).Постоянный ток обычно используется для электроники, а переменный - для двигателей.

Напряжение - это изменение электрического потенциала между двумя точками.
или изменение электрической потенциальной энергии на кулон между двумя точками.

В = Δ (EPE / q) = (EPE / q) 2- (EPE / q) 1 {\ displaystyle V = \ Delta (EPE / q) = (EPE / q) _ {2} - (EPE / q) _ {1}}

Где В = напряжение, EPE = электрическая потенциальная энергия, q = заряд, ∆ = разница в.

Напряжение всегда измеряется между двумя точками, и одну из них часто называют «землей» или точкой нулевого напряжения (0 В).В большинстве электрических установок переменного тока есть соединение с землей. Соединение с реальной землей осуществляется через водопроводную трубу, заземляющий стержень, закопанный или вбитый в землю, или удобный металлический провод (не газовая труба), закопанный под землей. Это соединение выполняется в точке входа электрической системы в здание, на каждом полюсе, где есть трансформатор на улице (часто на электрическом столбе), и в других местах в системе. Вся планета Земля используется как точка отсчета для измерения напряжения.В здании это заземление подводится к каждому электрическому устройству по двум проводам. Один из них - это «заземляющий провод» (зеленый или неизолированный провод), который используется в качестве защитного заземления для подключения металлических частей оборудования к земле. Другой используется как один из электрических проводников в цепях системы и называется «нейтральным проводником». Этот провод, имеющий потенциал земли, замыкает все цепи, проводя ток от любого электрического оборудования обратно к точке входа системы в здания, а затем к трансформатору, обычно на улице.Во многих местах за пределами зданий отпадает необходимость в проводе для замыкания цепей и передачи тока от зданий к генераторам. Обратный путь, по которому проходит весь ток, - это сама земля.
В цепях постоянного тока отрицательный конец генератора или батареи часто называют «землей» или точкой нулевого напряжения (0 В), даже если соединение с землей может быть, а может и не быть. На одной печатной плате (PCB) может быть несколько заземлений, например, с чувствительными аналоговыми цепями, эта часть схемы может использовать «аналоговое заземление», а цифровая часть - «цифровое заземление».
В электрическом оборудовании точкой 0 В может быть металлическое шасси, называемое заземлением шасси, или соединение с фактическим заземлением, называемое заземлением, каждое из которых имеет свой собственный символ, используемый в электрических схемах (схемах).

Некоторые из инструментов для измерения напряжения - вольтметр и осциллограф.

Вольтметр измеряет напряжение между двумя точками и может быть установлен в режим постоянного или переменного тока. Вольтметр может измерять, например, напряжение постоянного тока батареи (обычно 1.5 В или 9 В), или напряжение переменного тока от сетевой розетки на стене (обычно 120 В).

Для более сложных сигналов можно использовать осциллограф для измерения постоянного и / или переменного напряжения, например, для измерения напряжения на динамике.

Напряжение или разность потенциалов от точки a до точки b - это количество энергии в джоулях (в результате действия электрического поля), необходимое для перемещения 1 кулон положительного заряда из точки a в точку b. Отрицательное напряжение между точками a и b - это напряжение, при котором 1 кулон энергии требуется для перемещения отрицательного заряда из точки a в b.Если вокруг заряженного объекта существует однородное электрическое поле, отрицательно заряженные объекты будут притягиваться к более высоким напряжениям, а положительно заряженные объекты - к более низким напряжениям. Разность потенциалов / напряжение между двумя точками не зависит от пути, пройденного от точки a до b. Таким образом, напряжение от a до b + напряжение от b до c всегда будет равно напряжению от a до c.

Последние вопросы и ответы о трансформаторах

Что такое трансформатор и как он работает?

Трансформатор - это статическое электрическое оборудование, предназначенное для преобразования переменного тока из одного напряжения в другое.Он может быть разработан для «повышения» или «понижения» напряжения и работает по принципу магнитной индукции.

Трансформатор не имеет движущихся частей и представляет собой полностью статичное твердотельное устройство, обеспечивающее при нормальных условиях долгую и безотказную жизнь. В простейшей форме он состоит из двух или более катушек изолированного провода, намотанного на многослойный стальной сердечник. Когда напряжение подается на одну катушку, называемую первичной, оно намагничивает железный сердечник.

Затем в другой катушке, называемой вторичной или выходной катушкой, индуцируется напряжение.Изменение уровня напряжения (или отношения разности потенциалов) между первичной и вторичной обмотками зависит от соотношения витков двух катушек.

Почему гудят трансформаторы?

Шум трансформатора возникает из-за явления, при котором кусок магнитной листовой стали расширяется при намагничивании. Когда намагниченность снимается, она возвращается в исходное состояние. Это явление с научной точки зрения называется магнитострикцией. Трансформатор магнитно возбуждается переменным током и напряжением, так что он удлиняется и сжимается дважды в течение полного цикла намагничивания.

Намагниченность любой точки на листе варьируется, поэтому растяжение и сжатие неоднородны. Сердечник трансформатора изготовлен из множества листов специальной стали, чтобы уменьшить потери и смягчить возникающий тепловой эффект. Расширения и сжатия происходят беспорядочно по всему листу, и каждый лист неустойчиво ведет себя по отношению к своему соседу, поэтому вы можете видеть, что это за движущаяся, извивающаяся конструкция в возбужденном состоянии.

Эти удлинители имеют крошечные размеры и поэтому обычно не видны невооруженным глазом.Однако их достаточно, чтобы вызвать вибрацию и, как следствие, шум. Подача напряжения на трансформатор создает магнитный поток или магнитные силовые линии в сердечнике. Степень магнитного потока определяет величину магнитострикции и, следовательно, уровень шума.

Снижение уровня магнитного потока помогает уменьшить шум? Напряжения трансформатора устанавливаются системными требованиями. Отношение этих напряжений к количеству витков в обмотке определяет величину намагничивания. Это соотношение напряжения к числу витков определяется в основном из соображений экономической надежности.

Следовательно, величина магнитного потока при нормальном напряжении фиксирована. Это также фиксирует уровень шума и вибрации. Кроме того, увеличение (или уменьшение) намагниченности не влияет эквивалентным образом на магнитострикцию. С технической точки зрения связь не является линейной.

Для чего нужны краны?

Ответвители предусмотрены на некоторых трансформаторах на обмотке высокого напряжения для корректировки условий низкого или высокого напряжения и по-прежнему обеспечивают полное номинальное напряжение на клеммах вторичной обмотки.Ответвители обычно устанавливаются на 1,25%, 2,5% выше и ниже номинального первичного напряжения.

В чем разница между трансформаторами «изолирующий», «изолирующий» и «экранированный»?

Изолирующие и разделительные трансформаторы идентичны. Эти термины используются для описания разделения первичной и вторичной обмоток. Экранированный трансформатор включает металлический экран между первичной и вторичной обмотками для ослабления (уменьшения) переходных шумов.

Могут ли трансформаторы работать при напряжении, отличном от номинального?

В некоторых случаях трансформаторы могут работать при напряжениях ниже номинального напряжения, указанного на паспортной табличке.Ни в коем случае трансформатор не должен эксплуатироваться с превышением номинальных значений, указанных на паспортной табличке, если не предусмотрено устройство РПН. При работе ниже номинального напряжения соответственно снижается мощность в кВА.

Могут ли трансформаторы 60 Гц работать при 50 Гц?

Трансформаторы мощностью 1 кВА и выше, рассчитанные на частоту 60 Гц, не должны использоваться в сети 50 Гц из-за более высоких потерь и, как следствие, повышения температуры. Однако любой трансформатор на 50 Гц будет работать в режиме 60 Гц.

Можно ли использовать трансформаторы параллельно?

Однофазные трансформаторы могут использоваться параллельно только в том случае, если их напряжения равны.Если используются неравные напряжения, в замкнутой сети между двумя трансформаторами существует циркулирующий ток, который вызывает чрезмерный нагрев и сокращает срок службы трансформатора. Кроме того, значения импеданса каждого трансформатора должны отличаться друг от друга в пределах 7,5%.

Зачем мне больший выключатель при реверсе

Обычно выходная обмотка наматывается первой и поэтому находится ближе всего к сердечнику. При использовании в качестве обмотки возбуждения получается более высокий пусковой ток.

В большинстве случаев пусковой ток в 10–12 раз превышает ток полной нагрузки в течение 1/10 секунды. При обратном питании трансформатора пусковой ток может быть в 16 раз больше. В этом случае необходимо использовать выключатель большего размера с более высоким рейтингом AIC, чтобы трансформатор оставался в рабочем состоянии.

Отводы работают одинаково при обратном питании трансформатора?

Ответвители обычно находятся в первичной обмотке для регулировки входящего напряжения. Если трансформатор имеет обратное питание, отводы находятся на выходной стороне и могут использоваться для регулировки выходного напряжения.

Почему я могу получить неправильное выходное напряжение при установке повышающего трансформатора?

Клеммы трансформатора имеют маркировку в соответствии с подключениями высокого и низкого напряжения. Клемма H обозначает соединение с высоким напряжением, а клемма X обозначает соединение с более низким напряжением. Распространенное заблуждение состоит в том, что клеммы H являются первичными, а выводы X - вторичными.

Это верно для понижающих трансформаторов, но в повышающем трансформаторе соединения должны быть поменяны местами.Первичная обмотка низкого напряжения подключается к клеммам X, а вторичная обмотка высокого напряжения подключается к клеммам H.

Могут ли трансформаторы вырабатывать трехфазное питание от однофазного источника?

№. Для преобразования однофазной мощности в трехфазную требуются преобразователи фазы или устройства для сдвига фазы, такие как реакторы и конденсаторы.

Что такое регулирование в трансформаторе?

Регулирование напряжения в трансформаторах - это разница между напряжением полной нагрузки и напряжением холостого хода.Обычно это выражается в процентах.

Что такое повышение температуры в трансформаторе?

Повышение температуры трансформатора - это средняя температура обмоток, масла и изоляции, превышающая существующую температуру окружающей среды.

Что такое класс изоляции?

Класс изоляции был оригинальным методом, использовавшимся для различения изоляционных материалов, работающих при различных температурах.

Буквы использовались для разных обозначений.Буквенные классификации были заменены температурой системы изоляции в градусах Цельсия.

Температура системы - это максимальная температура в самой горячей точке обмотки.

Одна система изоляции лучше другой?

Не обязательно. Это зависит от области применения и получаемой рентабельности. Системы изоляции более высокого температурного класса стоят дороже, а более крупные трансформаторы дороже в строительстве.

Следовательно, более дорогие изоляционные системы с большей вероятностью будут обнаружены в более крупных агрегатах кВА.

Связаны ли повышение температуры с фактической температурой поверхности?

Нет. Это можно сравнить с обычной лампочкой. Температура нити лампочки может превышать 2000 градусов, но температура поверхности лампы достаточно низка, чтобы ее можно было прикоснуться голыми руками.

Что подразумевается под импедансом в трансформаторах?

Импеданс - это токоограничивающая характеристика трансформатора, выражаемая в процентах.

Каков КПД трансформатора?

КПД трансформатора определяется как отношение полезной выходной мощности к входной, причем эти два значения измеряются в одном устройстве.Его единица измерения - ватты (Вт) или кВт. Обозначается он.

Почему важен импеданс?

Он используется для определения отключающей способности распределительного устройства, используемого для защиты первичной обмотки трансформатора.

Какие типы трансформаторов в зависимости от их использования?

На основании их использования

  • Силовой трансформатор: Используется в сети передачи, высокий рейтинг
  • Распределительный трансформатор: Используется в распределительных сетях, сравнительно более низкий номинал, чем у силовых трансформаторов.

Какие потери в трансформаторе?

В любой электрической машине «потери» можно определить как разницу между входной и выходной мощностью. Электрический трансформатор - это статическое устройство, поэтому в нем отсутствуют механические потери (например, потери от ветра или трения). Трансформатор состоит только из электрических потерь (потерь в стали и в меди). Потери трансформатора аналогичны потерям в машине постоянного тока, за исключением того, что трансформаторы не имеют механических потерь.

Потери в трансформаторе объясняются ниже:

(I) Потери в сердечнике или железе

Потери на вихревые токи и гистерезисные потери зависят от магнитных свойств материала, из которого изготовлен сердечник. Следовательно, эти потери также известны как потери в сердечнике или потери в стали . Гистерезис потерь в трансформаторе:

Потери на гистерезис возникают из-за перемагничивания сердечника трансформатора. Эти потери зависят от объема и качества чугуна, частоты перемагничивания и величины магнитной индукции.Его можно получить по формуле Штейнмеца:

Вт ч = ηB макс 1,6 фВ (Вт)
где η = постоянная гистерезиса Штейнмеца
В = объем сердечника в м 3

Потери на вихревые токи в трансформаторе:

В трансформаторе переменный ток подается на первичную обмотку, которая создает переменный намагничивающий поток. Когда этот поток соединяется со вторичной обмоткой, он создает в ней наведенную ЭДС. Но некоторая часть этого потока также связана с другими проводящими частями, такими как стальной сердечник, железный корпус или трансформатор, что приведет к наведенной ЭДС в этих частях, вызывая в них небольшой циркулирующий ток.Этот ток называется вихревым током. Из-за этих вихревых токов некоторая энергия будет рассеиваться в виде тепла.

(Ii) Потери меди в трансформаторе

Потери в меди обусловлены омическим сопротивлением обмоток трансформатора. Потери в меди для первичной обмотки I 1 2 R 1 , а для вторичной обмотки I 2 2 R 2 . Где I 1 и I 2 - ток в первичной и вторичной обмотке соответственно, R 1 и R 2 - сопротивления первичной и вторичной обмоток соответственно.Понятно, что потери в Cu пропорциональны квадрату тока, а ток зависит от нагрузки. Следовательно, потери в меди в трансформаторе зависят от нагрузки.

Есть ли у вас трансформаторы заземления «Зигзаг»?

Да. Эта система может использоваться либо для заземления, либо для развития четвертого провода из трехфазного трехпроводного провода. (нейтральный)

Что такое BIL и как он применяется к трансформаторам?

BIL - это аббревиатура от Basic Impulse Level.Импульсные испытания - это диэлектрические испытания, которые заключаются в приложении высокочастотного напряжения фронта крутой волны между обмотками, а также между обмотками и землей. BIL трансформатора - это метод выражения скачка напряжения, который трансформатор выдержит без пробоя.

Что такое возбуждающий ток?

Ток возбуждения - это ток или амперы, необходимые для возбуждения. Возбуждающий ток в большинстве осветительных и силовых трансформаторов варьируется от примерно 10% для небольших типоразмеров около 1 кВА и менее до примерно 2% для больших типоразмеров 750 кВА.

Определение трансформатора

Это статическое устройство для преобразования электрической энергии из одной цепи переменного тока в другую без изменения частоты. Он изменяет напряжение с высокого на низкий и с низкого на высокое с соответствующим увеличением или уменьшением тока. Если напряжение увеличивается, говорят, что оно повышается. Если оно уменьшено, то оно называется пониженным.

Принцип действия электрического трансформатора

Когда одна катушка, такая как первичная, подключена к источнику переменного тока, течет ток и в сердечнике создается переменный магнитный поток.Большая часть этого потока связана с вторичной обмоткой второй катушки. Закон электромагнитной индукции. Если цепь замкнута, ток будет течь. Вторичное напряжение зависит от отношения витков вторичной обмотки к числу витков первичной обмотки.

Испытания трансформатора

На трансформаторе выполняются два испытания: испытание на обрыв цепи и испытание на короткое замыкание. Эти испытания выполняются для определения параметра или констант трансформатора, эффективности и регулирования.

1.Тест на разрыв цепи

Это также называется тестом без нагрузки. Он определяет потери в стали и ток холостого хода. Одна обмотка трансформатора, обычно сторона низкого напряжения, подключена к его обычному источнику питания с помощью амперметра для измерения напряжения, приложенного к обмотке, и ваттметра для измерения, измеренного трансформатором без нагрузки. обмотка высокого напряжения остается открытой. В этих условиях в сердечнике образуется нормальный магнитный поток, следовательно, возникают нормальные потери в стали. Потребляемый ток будет ваттметром и укажет на потери в стали.

2. Тест на короткое замыкание

Этот тест используется для определения потерь в меди при полной нагрузке, а также эквивалентных сопротивлений и реактивных сопротивлений, относящихся к стороне измерения. В этом испытании обмотки высокого напряжения уменьшенное значение напряжения увеличивается до тех пор, пока в этой обмотке не будет течь полный ток нагрузки. Приложенное напряжение составляет небольшую часть нормального рабочего напряжения, создаваемый взаимный поток очень мал, и поэтому потерями в сердечнике при этом напряжении можно пренебречь.Ваттметр во время этого теста показывает общие потери в меди.

Что такое распределительный трансформатор?

Трансформатор мощностью до 200 кВА, используемый для понижения напряжения распределения до стандартного рабочего напряжения, известен как распределительные трансформаторы. Они работают все 24 часа в сутки, независимо от того, несут они груз или нет. Энергия теряется в потерях в железе в течение дня, в то время как потери в меди учитывают потери энергии при нагрузке трансформатора.Следовательно, потери в стали распределительного трансформатора должны быть небольшими по сравнению с потерями в меди при полной нагрузке, другими словами, они должны быть спроектированы так, чтобы иметь максимальный КПД при нагрузке, намного меньшей, чем полная, примерно на 50 процентов. Благодаря низким потерям в стали, распределительный трансформатор имеет хороший КПД в течение всего дня. Эти трансформаторы обладают хорошей стабилизацией напряжения.

Что такое силовой трансформатор?

Что такое трансформатор


Что такое трансформатор

Трансформатор означает, что электрическая энергия от двух или более катушек и электрическая индуктивность одной цепи передаются в другую цепь через передачи.Это означает, что ток в цепи (первичной) создает магнитный Ykmydan вокруг первой катушки, магнитное поле, в свою очередь, создает напряжение во вторичной цепи, добавляя вторую цепь. Это напряжение может привести к вторичному току. VS - это напряжение на катушке, индуцированное напряжение во вторичной первичной обмотке. VP имеет отношение друг к другу, которое в идеале составляет отношение вторичной катушки к катушке Avlyhast:



Таким образом, назначив настройку обмоток трансформатора, можно изменить предусмотренную вторичную обмотку трансформатора напряжения.Одно из ключевых применений трансформаторов - это уменьшение потока в линиях электропередачи. Использование трансформаторов в начале линий, что все электрические проводники имеют определенное электрическое сопротивление, и это сопротивление может вызвать потерю энергии при передаче электрической энергии. Потери в проводнике напрямую связаны с квадратом тока, проходящего через проводник, и, таким образом, снижение потерь может быть значительно уменьшено. Стандартная затраченная сумма. Таким образом, без использования трансформаторов можно использовать только удаленные источники энергии.Трансформаторы являются одним из электрооборудования Prbazdhtryn, так что в некоторых больших трансформаторах возвращается 99,75 процентов ежегодно. Трансформаторы используются сегодня в различных размерах и мощностях от трансформатора в миниатюре микрофона до гигантского мультигигабитного трансформатора вольт-ампер. Все эти трансформаторы работают по одному принципу, но различаются по конструкции и конструкции.


Типы трансформаторов

Строители и стандарты в разных странах по разделению трансформаторов, и они предоставили определения для классификации.Некоторые трансформаторы в разных случаях и операции, известные как: понижающие трансформаторы, трансмиссии, автотрансформаторы или дополнительные трансформаторы и группа трансформаторов тока и напряжения, кроме трансформаторов измерительных приборов, силовых трансформаторов и так называемых трансформаторов, с другой стороны, содержат очень большие трансформаторы. для преобразования выходного напряжения генератора в напряжение и линии электропередачи. Между этими двумя типоразмерами (средними) распределительные трансформаторы или устройства для передачи электроэнергии и трансформаторы преобразуются в стандартные напряжения.Транс часто являются ядерными или париетальными. Ядерный тип в каждой половине обмоток катушки низкого напряжения и половине обмоток, каждая с ядерным плечом. Тип кожуха, катушки намотаны на сердечник из магнитного металла и половина цепи с одной стороны, а другая половина сердечника закрыта. В большинстве случаев используется тип кожуха для низкого напряжения и выходного напряжения, а также выходной большой и малый ядерный тип (трехфазный или однофазный). Силовые трансформаторы и распределительные трансформаторные подстанции, такие как главные трансформаторы и автотрансформаторы, силовые трансформаторы. обычно трехфазный, но иногда может быть высоким из-за размера и веса мощности и транспортных проблем трех транс-One Fazastfadh.Промышленные трансформаторы, такие как трансформаторы и трансформаторы, установка сварочных трансформаторов. Трансформаторы для тяговых и абсорбционных систем, используемых в электрических железных дорогах и поездах. Трансформаторы для тестирования, измерения, защиты и других электрических приложений. При усилении трансформатора нового типа Bvstrfvrmr запустила систему питающих рельсов. Этот тип масла не используется в трансформаторах, и была использована простая система изоляции. Используйте Bvstrfvrmr экономично и с меньшим вредом для окружающей среды.Технология, используемая в Bvstrfvrmr, как Powerformer и Dryformer (сухие трансформаторы), основана на использовании кабелей. Трансформатор состоит из высоковольтного кабеля в виде катушки, намотанной на железный сердечник. Bvstrfvrmr масла не используется. Потребность в постоянном контроле масла (температура масла, измерение и анализ газа и масла) отпала, а затраты на техническое обслуживание снизились. Потому что весь трансформатор, трансформаторный тип имеет высокий коэффициент безопасности. Bvstrfvrmr за счет использования стандартных крепежных элементов, уверенность в том, что сильноточные повышающие преобразователи установлены на расстоянии 5 км друг от друга, на железных дорогах и на фидерах.Этот тип трансформатора может быть установлен как на Меркурии, так и на земле. Бустеры Fvrmr могут использоваться во многих странах для различных источников питания. В ряду таких трансформаторов для электроснабжения железнодорожного транспорта стран Северной Европы производится.


Трансформатор тока

Трансформаторы тока для измерения тока, протекающего через первичную обмотку и индуктивность вторичной обмотки.Ayntransfvrmrha для защиты и измерений в начале, а также на входе Входной трансформатор Per Tvanrah и вторичные входы и выходы силового трансформатора, а также посты и другие ключевые точки, которые необходимо контролировать, протекают в этой точке, чтобы обрабатывать эти точки. специальный трансформатор как для Jdagry, так и для зданий, и как увидеть мощность и точность (микрометр), установленные и используемые. Трансформаторы тока из первичной и вторичной обмоток выяснились, что собственно поток первичного столба и после прохождения процесса и, соответственно, небольшой (около нескольких ампер) создается во вторичной.Вторичные трансформаторы с меньшим от первоначального размера настолько высоки, что все свойства первичной обмотки к низковольтному столбу электросети и реле связаны. Вторичные обмотки трансформаторов имеют период раньше, чем это часто бывает, когда нужно сделать несколько витков слитков или слитков. Дело в том, что по существу размер количества намоток, который должен был быть запрошен, закончился. Во вторичном проводе вокруг жилы проволока эмаль. Защитные сердечники делаются независимо от поправки на расстояние, но мера сердечника для достижения требуемой точности сверх и устранена NB Временная поправка во вторичной обмотке, другой момент заключается в том, что конструкция Brynh (поперечное сечение) Также должна быть полезна обмотка трансформаторов в нормальных условиях и в чрезвычайных ситуациях, таких как ток или любые ошибки, которые могут показаться способными измерять поток проб.Одним из наиболее важных факторов при создании трансформатора тока является высокая разница напряжения между первичной и вторичной обмотками, потому что первичное напряжение поста напряжения, хотя вторичное напряжение очень низкое из-за необходимости иметь достаточную изоляцию между первичной и вторичной обмотками. Трансформаторы тока, которые используются на подстанциях высокого напряжения, с бумажными и маслоотделителями (ат) соответственно.



Трансформатор напряжения

Или так называемое напряжение (VT) PT трансформатора высокого напряжения первичной и вторичной обмоток обязательно с низким напряжением.Номинальная мощность трансформатора очень мала, и единственная цель - предоставить пример напряжения энергосистемы для устройств измерения и управления. Такие как трансформаторы напряжения для выборки напряжения используются, должны быть очень точные искажения напряжения Tamvjb не верно. Трансформаторы напряжения изготавливаются с различной степенью точности, и в этом классе следует отметить точность, требуемую при измерении при покупке. В отличие от напряжения на выходе трансформатора, трансформатор тока не должен иметь короткого замыкания.



Трансформатор емкостного напряжения (CVT)

или емкостный трансформатор напряжения (CVT) - это трансформатор напряжения для преобразования системы передачи энергии высокого напряжения для измерения количества и удобства использования для систем защиты и управления подаваемого напряжения.Тепловые потенциалы (Пити) с двумя ранними первичными и вторичными обмотками подключаются напрямую к высоковольтным источникам напряжения, используются уровни напряжения 132 кВ, а в Сывыыхах используются более высокие напряжения. Емкость конденсаторного трансформатора напряжения используется в качестве делителя напряжения и делителя напряжения, подключенного между фазой и землей электросети. Сувытый конденсатор связи также играет роль несущей линии электропередачи Frkansbalay и передает сигналы на пару линий передачи.


Трансформатор тока

| Электротехнические примечания и статьи

Принцип действия ТТ

  • Трансформатор тока определяется как «измерительный трансформатор, в котором вторичный ток по существу пропорционален первичному току (при нормальных условиях работы) и отличается по фазе от него на угол, который приблизительно равен нулю для соответствующего направления соединения.”
  • Трансформаторы тока обычно бывают «измерительными» или «защитными».

Некоторые определения , используемые для CT :

1) Номинальный первичный ток:

  • Значение первичного тока, которое указано в обозначении трансформатора и на котором основаны рабочие характеристики трансформатора тока.

2) Номинальный вторичный ток:

  • Значение вторичного тока, которое указывается в обозначении трансформатора и на котором основаны рабочие характеристики трансформатора тока.
  • Типичные значения вторичного тока - 1 A или 5 A. В случае дифференциальной защиты трансформатора также указываются вторичные токи 1 / корень 3 A и 5 / основной 3 A.

3) Номинальная нагрузка:

  • Полная мощность вторичной цепи в вольт-амперах, выраженная при номинальном вторичном токе и конкретном коэффициенте мощности (0,8 для почти всех стандартов)

4) Номинальная мощность:

  • Значение полной мощности (в вольт-амперах при определенной мощности (коэффициенте), которую трансформатор тока предназначен для подачи во вторичную цепь при номинальном вторичном токе и с подключенной к ней номинальной нагрузкой.

5) Класс точности:

  • В случае измерения ТТ класс точности обычно составляет 0,2, 0,5, 1 или 3.
  • Это означает, что ошибки должны находиться в пределах, установленных стандартами для этого конкретного класса точности.
  • Измерительный трансформатор тока должен иметь точность от 5% до 120% номинального первичного тока, при 25% и 100% номинальной нагрузки при указанном коэффициенте мощности.
  • В случае защитных ТТ, ТТ должны пропускать как ошибку отношения, так и фазу с указанным классом точности, обычно 5P или 10P , а также общую ошибку с коэффициентом предела точности ТТ.

6) Ошибка соотношения тока:

  • Ошибка трансформатора вносит свой вклад в измерение тока и возникает из-за того, что фактический коэффициент трансформации не равен номинальному коэффициенту трансформации. Текущая ошибка, выраженная в процентах, определяется по формуле:
  • Погрешность тока в% = (Ka (Is-Ip)) x 100 / Ip
  • Где Ka = номинальный коэффициент трансформации, Ip = фактический первичный ток, Is = фактический вторичный ток, когда Ip течет в условиях измерения

7) Фактор предела точности:

  • Значение первичного тока, до которого ТТ соответствует требованиям по суммарной погрешности.Обычно это 5, 10 или 15 , что означает, что суммарная погрешность ТТ должна находиться в указанных пределах при 5, 10 или 15-кратном превышении номинального первичного тока.

8) Кратковременный рейтинг:

  • Значение первичного тока (в кА), которое ТТ должен выдерживать как термически, так и динамически без повреждения обмоток при коротком замыкании вторичной цепи. Указанное время обычно составляет 1 или 3 секунды.

9) Фактор безопасности прибора (фактор безопасности):

  • Обычно принимает значение меньше 5 или меньше 10, хотя оно может быть намного выше, если отношение очень низкое. Если коэффициент надежности ТТ равен 5, это означает, что суммарная погрешность измерительного ТТ при 5-кратном номинальном первичном токе равна или превышает 10%. Это означает, что сильные токи в первичной обмотке не передаются во вторичную цепь и, следовательно, приборы защищены.В случае трансформаторов тока с двойным передаточным числом, FS применяется только для самого низкого передаточного числа.

10) Класс PS X CT:

  • В балансных системах защиты требуется ТТ с высокой степенью подобия по своим характеристикам. Этим требованиям соответствуют ТТ класса PS (X). Их характеристики определяются с точки зрения напряжения точки перегиба (KPV), тока намагничивания (Imag) при напряжении точки перегиба или 1/2 или 1/4 напряжения точки перегиба, а также скорректированного сопротивления вторичной обмотки ТТ. до 75 ° C.Точность определяется отношением поворота.

11) Напряжение в точке перегиба:

  • Точка на кривой намагничивания, где увеличение плотности магнитного потока (напряжения) на 10% вызывает увеличение силы (тока) намагничивания на 50%.
  • «Напряжение в точке колена» (Vkp) определяется как вторичное напряжение, при котором увеличение на 10% приводит к увеличению тока намагничивания на 50%. Это вторичное напряжение, выше которого трансформатор тока близок к магнитному насыщению.

12) КТ баланса керна (CBCT):

  • CBCT, также известный как CT нулевой последовательности, используется для защиты от утечки на землю и замыкания на землю. Концепция аналогична RVT. В КЛКТ трехжильный кабель или три одиночных жилы трехфазной системы проходят через внутренний диаметр трансформатора тока. Когда система исправна, ток не течет во вторичной обмотке CBCT. При замыкании на землю остаточный ток (ток нулевой последовательности фаз) системы протекает через вторичную обмотку CBCT, и это приводит в действие реле.Для проектирования CBCT необходимо указать внутренний диаметр CT, тип реле, настройку реле и первичный рабочий ток.

13) Смещение фаз:

  • Разность фаз между векторами первичного и вторичного тока, направление векторов выбрано так, чтобы угол был равен нулю для идеального трансформатора. Сдвиг фазы считается положительным, когда вектор вторичного тока опережает вектор первичного тока.Обычно выражается в минутах

14) Максимальное напряжение системы:

  • Наивысшее среднеквадратичное значение линейного напряжения, которое может поддерживаться при нормальных рабочих условиях в любое время и в любой точке системы. Это исключает временные колебания напряжения из-за неисправности и внезапного отключения больших нагрузок.

15) Номинальный уровень изоляции:

  • Комбинация значений напряжения (частота сети и импульс молнии или, где применимо, импульс молнии и коммутации), которая характеризует изоляцию трансформатора с точки зрения ее способности выдерживать диэлектрические напряжения.Для трансформатора низкого напряжения прикладывается испытательное напряжение 4 кВ промышленной частоты в течение 1 минуты.

16) Номинальный кратковременный тепловой ток (Ith):

  • Действующее значение первичного тока, которое трансформатор тока выдержит в течение номинального времени при коротком замыкании вторичной обмотки без вредного воздействия.

17) Номинальный динамический ток (Idyn):

  • Пиковое значение первичного тока, которое трансформатор тока может выдержать без электрического или механического повреждения результирующими электромагнитными силами, при этом вторичная обмотка закорочена.

18) Номинальный длительный тепловой ток (Un)

  • Значение тока, которому можно разрешить непрерывное протекание в первичной обмотке, при этом вторичные обмотки подключены к номинальной нагрузке без повышения температуры, превышающего указанные значения.

19) Фактор безопасности прибора (ISF или Fs):

  • Отношение номинального первичного тока прибора к номинальному первичному току.Время, в течение которого первичный ток должен быть выше номинального значения, чтобы суммарная погрешность измерительного трансформатора тока была равна или больше 10%, вторичная нагрузка была равна номинальной нагрузке. Чем ниже это число, тем сильнее защищен подключенный прибор.

20) Чувствительность

  • Чувствительность определяется как наименьшее значение первичного тока короткого замыкания в пределах защищенной зоны, которое приведет к срабатыванию реле.Чтобы обеспечить быструю работу при повреждении в зоне, трансформатор тока должен иметь «напряжение в точке перегиба», как минимум, в два раза превышающее уставку напряжения реле.

21) Регулировка коэффициента трансформации трансформатора тока на месте:

  • Коэффициент трансформации трансформаторов тока можно регулировать на месте в соответствии с требованиями приложения. Пас

больше вторичных витков или больше первичных витков через окно увеличит или уменьшит коэффициент витков.

Фактическое число оборотов = (Нормы на паспортной табличке - добавлены вторичные обороты) / Первичные обороты.

Типы трансформаторов тока (ТТ)

Согласно конструкции CT:

1) Тип стержня:

  • Доступны типы стержней с более высоким уровнем изоляции и обычно крепятся болтами к текущему устройству ухода.

  • Трансформаторы тока стержневого типа изолированы для рабочего напряжения системы.
  • ТТ с шиной работают по тому же принципу, что и оконные ТТ, но имеют постоянную шину, установленную в качестве первичного проводника

2) ТНТ:

  • Емкость: Предназначены для измерения токов от 1 до 100 ампер.
  • наиболее распространенным является трансформатор тока с обмоткой. Обмотка обеспечивает отличные характеристики в широком рабочем диапазоне. Обычно намотанный тип изолирован только на 600 вольт.

  • Поскольку ток нагрузки проходит через первичные обмотки ТТ, для нагрузки и вторичных проводов предусмотрены винтовые клеммы.Трансформаторы первичной обмотки раны доступны в соотношении от 2,5: 5 до 100: 5.
  • ТТ
  • с обмоткой имеют первичную и вторичную обмотку, как обычный трансформатор. Эти трансформаторы тока встречаются редко и обычно используются при очень низких коэффициентах передачи и токах, как правило, во вторичных цепях трансформаторов тока для компенсации малых токов, согласования различных коэффициентов передачи трансформаторов тока в суммирующих приложениях или для изоляции различных цепей трансформатора тока. ТТ с обмоткой имеют очень высокую нагрузку, и при использовании ТТ с обмоткой следует уделять особое внимание нагрузке на ТТ источника.

3) Окно:

  • Оконные трансформаторы тока являются наиболее распространенными. Они построены без первичной обмотки и устанавливаются вокруг первичного проводника. Электрическое поле, создаваемое током, протекающим через проводник, взаимодействует с сердечником трансформатора тока, чтобы преобразовать ток в соответствующий вторичный выход. Оконные трансформаторы тока могут иметь конструкцию со сплошным или разъемным сердечником. При установке трансформаторов тока со сплошным окном необходимо отключить первичный провод. Однако трансформаторы тока с разъемным сердечником можно установить вокруг первичного проводника без отсоединения первичного проводника

  • ТТ с кольцевым сердечником:
  • Емкость: Имеется для измерения токов от 50 до 5000 ампер

  • Размер: с окнами (размер проема силовых проводов) диаметром от 1 ″ до 8 ″.
  • ТТ с разделенным сердечником:
  • Емкость: Имеется для измерения токов от 100 до 5000 ампер.
  • Размер: с окнами разных размеров от 1 ″ на 2 ″ до 13 ″ на 30 ″.
  • ТТ
  • с разъемным сердечником имеют один конец съемного, так что провод нагрузки или сборную шину не нужно отсоединять для установки ТТ.

4) Втулка

  • ТТ проходного изолятора - это оконный трансформатор тока, специально сконструированный для установки вокруг проходного изолятора.Обычно к ним нет доступа, а их паспортные таблички находятся на шкафах управления трансформатором или выключателем.
  • Тип проходного изолятора обычно используется вокруг проходного изолятора в автоматических выключателях и трансформаторах и может не иметь жесткого защитного внешнего покрытия.
  • Трансформаторы тока
  • типа «пончик» обычно изолированы на 600 вольт. Для обеспечения точности провод должен располагаться в центре отверстия трансформатора тока.

Согласно заявке CT:

1) Измерительный трансформатор тока:

  • Основные требования к измерительному ТТ заключаются в том, что для первичных токов до 120% или 125% от номинального тока его вторичный ток пропорционален его первичному току с точностью, определенной его «Классом» и, в случае более точных типов не превышается указанный максимальный сдвиг фазового угла.
  • Желательной характеристикой измерительного ТТ является то, что он должен «насыщать» , когда первичный ток превышает процент номинального тока, установленного как верхний предел, к которому применяются положения о точности. Это означает, что на этих более высоких уровнях первичного тока вторичный ток менее чем пропорционален. Эффектом этого является уменьшение степени, в которой любое измерительное устройство, подключенное к вторичной обмотке ТТ, подвергается перегрузке по току.
  • С другой стороны, для ТТ защитного типа требуется обратное, основная цель которого - обеспечить вторичный ток, пропорциональный первичному току, когда он в несколько или много раз превышает номинальный первичный ток.Мера этой характеристики известна как «предельный коэффициент точности» (A.L.F.).
  • Тип защиты CT с A.L.F. 10 будет производить пропорциональный ток во вторичной обмотке (с учетом допустимой погрешности по току) с первичными токами, максимально в 10 раз превышающими номинальный ток.
  • При использовании ТТ следует помнить, что если есть два или более устройств, которые должны работать от вторичной обмотки, они должны быть подключены последовательно через обмотку.Это в точности противоположно методу, используемому для подключения двух или более нагрузок, которые должны питаться от трансформатора напряжения или мощности, когда устройства включаются параллельно через вторичную обмотку.
  • Для ТТ увеличение нагрузки приведет к увеличению вторичного выходного напряжения ТТ. Это происходит автоматически и необходимо для поддержания тока на правильном уровне. И наоборот, снижение нагрузки приведет к снижению вторичного выходного напряжения ТТ.
  • Это повышение выходного вторичного напряжения с увеличением нагрузки означает, что теоретически при бесконечной нагрузке, как в случае с разомкнутой цепью вторичной нагрузки, на клеммах вторичной обмотки появляется бесконечно высокое напряжение.По практическим причинам это напряжение не является бесконечно высоким, но может быть достаточно высоким, чтобы вызвать пробой изоляции между первичной и вторичной обмотками или между одной или обеими обмотками и сердечником. По этой причине нельзя позволять первичному току течь без нагрузки или с нагрузкой с высоким сопротивлением, подключенной ко вторичной обмотке.
  • При рассмотрении применения ТТ следует помнить, что общая нагрузка, налагаемая на вторичную обмотку, является не только суммой нагрузки (ей) отдельного устройства (ей), подключенного к обмотке, но и что она также включает нагрузку налагается соединительным кабелем и сопротивлением соединений.
  • Если, например, сопротивление соединительного кабеля и соединений составляет 0,1 Ом, а вторичный номинал ТТ составляет 5 А, нагрузка кабеля и соединений (RI2) составляет 0,1 x 5 x 5 = 2,5 ВА. Это должно быть добавлено к нагрузке на подключенное устройство (а) при определении того, имеет ли ТТ достаточно большую нагрузочную способность для питания требуемых устройств, а также нагрузку, создаваемую соединениями.
  • Если нагрузка, налагаемая на вторичную обмотку ТТ подключенным устройством (устройствами) и соединениями, превышает номинальную нагрузку ТТ, ТТ может частично или полностью перейти в насыщение и, следовательно, не иметь вторичный ток, адекватно линейный с первичным током.
  • Нагрузка, создаваемая данным сопротивлением в омах [например, сопротивлением соединительного кабеля], пропорциональна квадрату номинального вторичного тока. Следовательно, при использовании длинных кабелей между ТТ и подключенным устройством (ами), использование вторичного ТТ на 1 А и устройства на 1 А вместо 5 А приведет к 25-кратному сокращению нагрузки на соединительные кабели и соединения. . Все номинальные нагрузки и расчеты приведены для номинального вторичного тока.
  • В связи с вышеизложенным, когда требуется относительно длинный [более нескольких метров] кабельный участок для подключения ТТ к его нагрузке [например, удаленному амперметру], необходимо произвести расчет для определения нагрузки кабеля.Это пропорционально сопротивлению «туда и обратно», то есть удвоенному сопротивлению длины используемого сдвоенного кабеля. Таблицы кабелей содержат информацию о значениях сопротивления проводов различных размеров при 20 ° C на единицу длины.

2) Защитный CT:

  • Рассчитанное сопротивление затем умножается на квадрат номинального тока вторичной обмотки ТТ [25 для 5A, 1 для 1A]. Если нагрузка ВА, рассчитанная этим методом и добавленная к номинальной нагрузке (-ям) устройства (-ов), приводимых в действие ТТ, превышает номинальную нагрузку ТТ, размер кабеля необходимо увеличить [для уменьшения сопротивления и, следовательно, нагрузка] или ТТ с более высокой номинальной нагрузкой ВА, либо следует использовать более низкий номинальный вторичный ток ТТ [с соответствующим изменением номинального тока приводимых устройств]

Номенклатура СТ:

  1. Соотношение: Коэффициент входного / выходного тока
  2. Нагрузка (ВА): Общая нагрузка, включая пилотные провода.(2,5, 5, 10, 15 и 30 ВА.)
  3. Класс: Точность, необходимая для работы (измерение: 0,2, 0,5, 1 или 3, защита: 5, 10, 15, 20, 30) .
  4. Фактор предела точности:
  5. Размеры: максимальные и минимальные пределы
  6. Номенклатура ТТ: коэффициент, нагрузка ВА, класс точности, предельный коэффициент точности.
  7. Пример: 1600/5, 15 ВА 5P10 (Передаточное отношение: 1600/5, нагрузка: 15 ВА, класс точности: 5P, ALF: 10)
  8. Согласно IEEE Metering CT: 0.Измерительный ТТ с номиналом 3B0.1 имеет точность 0,3%, если подключенная вторичная нагрузка не превышает 0,1 Ом.
  9. Согласно IEEE Relaying (Protection) CT: 2.5C100 Relay CT имеет точность в пределах 2,5%, если вторичная нагрузка меньше 1,0 Ом (100 В / 100A).

1) Коэффициент тока ТТ:

  • Первичный и вторичный токи выражаются в виде отношения, например 100/5. Для трансформатора тока с соотношением 100/5 ток 100 А в первичной обмотке приведет к току 5 А во вторичной обмотке при условии, что ко вторичной обмотке подключена правильная номинальная нагрузка.Точно так же для меньших первичных токов вторичные токи пропорционально ниже.
  • Следует отметить, что ТТ 100/5 не будет выполнять функцию ТТ 20/1 или 10 / 0,5, поскольку это отношение выражает номинальный ток ТТ, а не просто отношение первичного тока к вторичному.
  • Номинальный вторичный ток обычно составляет 5 А или 1 А, хотя более низкие токи, такие как 0,5 А, не редкость. Он протекает в номинальной вторичной нагрузке, обычно называемой нагрузкой, когда номинальный первичный ток течет в первичной обмотке.
  • Увеличение или уменьшение числа оборотов ТТ:
  • Увеличение числа витков: Увеличение числа витков первичной обмотки может только уменьшить передаточное число витков. Трансформатор тока с передаточным числом от 50 до 5 может быть изменен на коэффициент от 25 до 5, если дважды пропустить первичную обмотку через окно.
  • Коэффициент увеличения или уменьшения оборотов:
  • Передаточное число витков можно увеличить или уменьшить, намотав провод от вторичной обмотки через окно трансформатора тока.
  • Увеличивая передаточное отношение вторичного провода, существенно увеличивается число витков вторичного провода. Трансформатор тока 50: 5 будет иметь соотношение 55: 5 при добавлении одного вторичного витка.
  • При уменьшении коэффициента передачи вторичного провода количество витков вторичной обмотки существенно уменьшается. Трансформатор тока 50: 5 будет иметь соотношение 45: 5 при добавлении одного вторичного витка.
  • Уменьшение передаточного числа с первичной обмоткой, точность и номинальная нагрузка VA такие же, как в исходной конфигурации.
  • Увеличение передаточного отношения вторичной обмотки улучшит точность и номинальную нагрузку.
  • Уменьшение передаточного числа с вторичной обмоткой ухудшит точность и номинальную нагрузку.
  • При использовании вторичной обмотки трансформатора тока для изменения отношения витков вступает в действие правило правой руки магнитных полей. Обмотка белого провода или провода X1 со стороны h2 трансформатора через окно на сторону h3 уменьшит передаточное отношение.Намотка этого провода со стороны h3 на сторону h2 увеличит передаточное отношение.
  • Использование черного провода или провода X2 в качестве метода настройки приведет к обратному результату, чем провод X1 (белый). Заворачивание от стороны h2 к стороне h3 увеличит отношение витков, а наложение от стороны h3 к стороне h2 уменьшит отношение витков.

2) Нагрузка CT:

  • Общие номинальные нагрузки ТТ: 2,5, 5, 10, 15 и 30 ВА.
  • Внешняя нагрузка, приложенная к вторичной обмотке трансформатора тока, называется «нагрузкой».
  • Нагрузка ТТ - это максимальная нагрузка (в ВА), которая может быть приложена к вторичной обмотке ТТ.
  • Бремя можно выразить двумя способами.
  • Нагрузка может быть выражена как полное сопротивление цепи в омах или полное вольт-амперное напряжение (ВА) и коэффициент мощности при заданном значении тока или напряжения и частоты.
  • Ранее практиковалось выражать нагрузку в вольт-амперах (ВА) и коэффициенте мощности, вольт-амперах, которые потреблялись бы в нагрузочном импедансе при номинальном вторичном токе (другими словами, номинальном вторичном токе квадрат, умноженный на импеданс нагрузки).Таким образом, нагрузка с импедансом 0,5 Ом может быть выражена также как «12,5 ВА при 5 амперах», если мы примем обычный номинал вторичной обмотки 5 ампер. Терминология VA больше не является стандартной, но требует уточнения, поскольку ее можно найти в литературе и в старых данных.

Нагрузка для измерения ТТ:

  • Общая нагрузка на измерительный трансформатор тока = Сумма нагрузки на счетчики в ВА (амперметр, ваттметр, преобразователь и т. Д.), Подключенных последовательно к вторичной цепи трансформатора тока + нагрузка на соединительный кабель вторичной цепи в ВА.
  • Нагрузка кабеля = I 2 x R x2 L, где I = вторичный ток ТТ, R = сопротивление кабеля на длину, 2L - это расстояние длины L кабеля от ТТ до измерительных цепей. Если используется провод подходящего размера и короткая длина, нагрузкой на кабель можно пренебречь.
  • Нагрузка вторичной цепи ТТ не должна превышать номинальную мощность ТТ ВА. Если нагрузка меньше нагрузки ТТ, все счетчики, подключенные к измерительному ТТ, должны обеспечивать правильные показания.
  • В случае измерительного трансформатора тока нагрузка зависит от подключенных счетчиков и количества счетчиков на вторичной обмотке i.е. Необходимо учитывать количество амперметров, счетчиков киловатт-часов, квар-счетчиков, счетчиков киловатт-часов, преобразователей, а также нагрузку на соединительный кабель (I 2 x R x2 L) для измерения.
  • Примечание Измерители нагрузки можно найти в каталоге производителя.
  • Выбранная нагрузка ТТ должна быть больше расчетной

Бремя защиты ТТ:

  • В случае ТТ защиты нагрузка рассчитывается таким же образом, как и выше, за исключением того, что нагрузка на отдельные реле защиты должна учитываться вместо счетчиков.Нагрузка на соединительный кабель рассчитывается так же, как и при измерении CT
  • .
  • Общая нагрузка защиты CT = нагрузка соединительного кабеля в ВА + сумма нагрузки защитных реле в ВА.
  • Все производители могут поставить нагрузку на свои отдельные устройства. Хотя в наши дни индукционные дисковые устройства защиты от сверхтоков используются не очень часто, они всегда требовали минимальной настройки отвода. Чтобы определить импеданс используемой фактической настройки отвода, сначала возведите в квадрат отношение минимального деления к фактической используемой настройке отвода, а затем умножьте это значение на минимальное полное сопротивление.
  • Предположим, что импеданс 1,47 + 5,34 Дж на отводе 1 А. Чтобы применить реле к отводу 4А, инженер умножит импеданс на отводе 1А на (1/4) 2. Импеданс на отводе 4А будет 0,0919 + 0,3338j или 0,3462 Z при коэффициенте мощности 96,4.
  • Полное сопротивление нагрузки ТТ уменьшается по мере увеличения вторичного тока, из-за насыщения в магнитных цепях реле и других устройств. Следовательно, данная нагрузка может применяться только для определенного значения вторичного тока.Старая терминология вольт-ампер при 5 амперах наиболее сбивает с толку в этом отношении, поскольку это не обязательно фактические вольт-амперы при текущих 5 амперах, а то, что вольт-амперы будут при 5 амперах
  • Если бы не было насыщения. В публикациях производителя приведены данные импеданса для нескольких значений сверхтока для некоторых реле, для которых такие данные иногда требуются. В противном случае данные предоставляются только для одного значения вторичного тока ТТ.
  • Если в публикации четко не указано, для какого значения тока применяется бремя, следует запросить эту информацию.Не имея таких данных о насыщении, можно легко получить их тестированием. При высоком насыщении импеданс приближается к сопротивлению постоянному току. Пренебрежение снижением импеданса с насыщением создает впечатление, что ТТ будет иметь большую неточность, чем на самом деле. Конечно, если можно допустить такую ​​явно большую неточность, дальнейшие уточнения в расчетах не нужны. Однако в некоторых приложениях пренебрежение эффектом насыщения дает излишне оптимистичные результаты; следовательно, лучше всегда учитывать этот эффект.
  • Обычно достаточно точно сложить последовательные импедансы нагрузки арифметически. Результаты будут немного пессимистичными, что указывает на погрешность, немного превышающую фактическую погрешность коэффициента КТ. Но если конкретное приложение настолько пограничное, что необходимо векторное сложение импедансов для доказательства пригодности трансформаторов тока, такого применения следует избегать.
  • Если полное сопротивление при срабатывании обмотки реле максимального тока с ответвлениями известно для данного отвода, его можно оценить для тока срабатывания для любого другого ответвления.Реактивное сопротивление катушки с ответвлениями изменяется пропорционально квадрату витков катушки, а сопротивление изменяется примерно пропорционально количеству витков. При срабатывании датчика насыщение незначительное, а сопротивление мало по сравнению с реактивным сопротивлением. Следовательно, обычно достаточно точно предположить, что полное сопротивление изменяется пропорционально квадрату витков. Число витков катушки обратно пропорционально току срабатывания, и, следовательно, импеданс изменяется обратно пропорционально квадрату тока срабатывания.
  • Независимо от того, подключен ли ТТ звездой или треугольником, нагрузочные сопротивления всегда соединяются звездой. В ТТ, соединенном звездой, нейтрали ТТ и нагрузок соединяются вместе, либо напрямую, либо через катушку реле, за исключением случаев, когда используется так называемый шунт тока нулевой последовательности.
  • Редко бывает правильным просто сложить импедансы последовательных нагрузок, чтобы получить общую сумму, когда два или более ТТ соединены таким образом, что их токи могут складываться или вычитаться в некоторой общей части вторичной цепи.Вместо этого необходимо рассчитать сумму падений и повышений напряжения во внешней цепи от одной вторичной клеммы ТТ до другой для предполагаемых значений вторичных токов, протекающих в различных ветвях внешней цепи. Эффективное полное сопротивление нагрузки ТТ для каждой комбинации предполагаемых токов представляет собой расчетное напряжение на клеммах ТТ, деленное на предполагаемый вторичный ток ТТ. Этот эффективный импеданс является тем, который следует использовать, и он может быть больше или меньше, чем фактический импеданс, который применялся бы, если бы никакие другие трансформаторы тока не подавали ток в цепь.
  • Если первичная обмотка вспомогательного ТТ должна быть подключена к вторичной обмотке ТТ, точность которого исследуется, необходимо знать полное сопротивление вспомогательного ТТ, если смотреть со стороны его первичной обмотки с короткозамкнутой вторичной обмоткой. К этому значению импеданса необходимо добавить импеданс нагрузки вспомогательного ТТ, если смотреть с первичной стороны вспомогательного ТТ; Чтобы получить это полное сопротивление, умножьте фактическое сопротивление нагрузки на квадрат отношения первичного и вторичного витков вспомогательного трансформатора тока.Становится очевидным, что вспомогательный трансформатор тока, который увеличивает величину тока от первичной до вторичной, может привести к очень высоким импедансам нагрузки, если смотреть со стороны первичной обмотки.
  • Нагрузка зависит от длины пилотного кабеля
  • Для ТТ измерительного класса нагрузка выражается в омах. Для трансформаторов тока класса защиты нагрузка выражается в вольт-амперах (ВА).
VA Приложения
1-2 ВА Амперметр подвижный
1 К 2.5VA Амперметр выпрямителя с подвижной катушкой
2,5 до 5 ВА Электродинамический прибор
3 до 5 ВА Амперметр максимального потребления
1 до 2,5 ВА Регистрирующий амперметр или преобразователь
  • Нагрузка (ВА) медных проводов между прибором и трансформатором тока для вторичной обмотки 1A и 5A
Поперечное сечение (мм2)

Вторичная нагрузка ТТ, 1 А, ВА (двухпроводной)

Расстояние

10 метров 20 метров 40 метров 60 метров 80 метров 100 метров

1.0

0,35

0,71

1,43

2,14

2,85

3,57

1,5

0,23

0,46

0,92

1,39

1,85

2,31

2.5

0,14

0,29

0,57

0,86

1,14

1,43

4,0

0,09

0,18

0,36

0,54

0,71

0,89

6.0

0,06

0,12

0,24

0,36

0,48

0,6

Поперечное сечение (мм2)

Вторичная нагрузка ТТ 5 А, ВА (двухпроводной)

Расстояние

1 метр 2 метра 4 метра 6 метров 8 метров 10 метров

1.5

0,58

1,15

2,31

3,46

4,62

5,77

2,5

0,36

0,71

1,43

2,14

2,86

3,57

4.0

0,22

0,45

0,89

1,34

1,79

2,24

6.0

0,15

0,30

0.60

0,89

1,19

1,49

10.0

0,09

0,18

0,36

0,54

0,71

0,89

Расчет нагрузки CT:

  • Фактическая нагрузка формируется сопротивлением управляющих проводов и реле защиты. Сопротивление проводника (с постоянной площадью поперечного сечения) можно рассчитать по формуле:
  • R = ƿxL / A
  • , где ƿ = удельное сопротивление материала проводника (обычно при + 20 ° C), L = длина проводника, A = площадь поперечного сечения
  • Если удельное сопротивление указано в мкОм, длина - в метрах, а площадь - в мм2, уравнение 1 даст сопротивление непосредственно в омах.
  • Удельное сопротивление: медь 0,0178 мкОм при 20 ° C и 0,0216 мкОм при 75 ° C

Нагрузка ТТ для 4- или 6-проводного подключения:

  • Если используется 6-проводное соединение, общая длина провода, естественно, будет в два раза больше расстояния между ТТ и реле. Однако во многих случаях используется общий обратный провод, как показано на рисунке, тогда вместо умножения расстояния на два обычно используется коэффициент 1,2.Это правило применяется только к трехфазному подключению. Коэффициент 1,2 учитывает ситуацию, когда до 20% длины электрического проводника, включая оконечные сопротивления, использует 6-проводное соединение и не менее 80% 4-проводное соединение.

  • Пример: расстояние между ТТ и реле составляет 5 метров, общая длина составляет 2 x 5 м = 10 метров для 6-проводного подключения, но только 1,2 x 5 м = 6,0 метра при использовании 4-проводного подключения.

Нагрузка реле:

  • Пример: Расстояние между трансформаторами тока и реле защиты составляет 15 метров, используются медные проводники 4 мм2 при 4-проводном подключении.Нагрузка на релейный вход менее 20 мОм (входы 5 А). Рассчитайте фактическую нагрузку ТТ при 75 ° C, входное сопротивление меньше 0,020 Ом для входа 5 А (т. Е. Нагрузка меньше 0,5 ВА) и меньше 0,100 Ом для входа 1 А (т. Е. Меньше 0,1 ВА) :
  • Решение :
  • ƿ = 0,0216 мкОм (75 ° C) для медного проводника.
  • R = ƿxL / A, R = 0,0216 мкОм x (1,2 x 15 м) / 4 мм2 = 0,097 Ом
  • Нагрузка CT = 0.097 Ом + 0,020 Ом = 0,117 Ом.
  • Использование трансформаторов тока с нагрузкой выше, чем требуется, является ненаучным, поскольку приводит к неточным показаниям (счетчик) или неточному определению неисправности / условий сообщения.
  • По сути, такое высокое значение проектной нагрузки расширяет характеристики насыщения сердечника ТТ, что приводит к вероятному повреждению измерителя, подключенного через него, в условиях перегрузки. например Когда мы ожидаем, что коэффициент безопасности (ISF) будет равен 5, вторичный ток должен быть ограничен менее чем в 5 раз в случае, если первичный ток превышает его номинальное значение более чем в 5 раз.
  • В таком состоянии перегрузки желательно, чтобы сердечник ТТ перешел в насыщение, ограничивая вторичный ток, чтобы счетчик не повредился. Однако, когда мы просим более высокую ВА, сердечник не переходит в насыщение из-за меньшей нагрузки (ISF намного выше желаемого), что может повредить измеритель.
  • Чтобы понять влияние на аспект точности, давайте возьмем пример ТТ с указанной нагрузкой 15 ВА, а фактическая нагрузка составляет 2,5 ВА: 15 ВА ТТ с менее чем 5 ISF будет иметь напряжение насыщения 15 В (15/5 × 5), а фактическая нагрузка - 2.5 ВА, необходимое напряжение насыщения должно составлять (2,5 / 5 x 5) 2,5 В против 15 В, в результате ISF = 30 против требуемого 5
  • Пример: Decide Достаточно ли 5A, 20VA CT для следующей цепи

  • Общая нагрузка на приборы = 2 + 2 + 3 + 2 + 4 = 13 В A.
  • Общее сопротивление нагрузки пилота = 2 x 0,1 = 0,2 Ом.
  • При вторичном токе 5 А падение напряжения на выводах составляет 5 x 0,2 = 1 В.
  • Нагрузка на оба провода = 5 А x 1 В = 5 В А.
  • Общая нагрузка на ТТ = 13 + 5 = 18 В A.
  • Поскольку трансформатор тока рассчитан на 20 В A, он имеет достаточный запас.

3) Класс точности ТТ:

  • Точность трансформатора тока определяется его сертифицированным классом точности, который указан на паспортной табличке. Например, класс точности ТТ 0,3 означает, что ТТ сертифицирован производителем на точность в пределах 0,3% от значения номинального коэффициента для первичного тока 100% от номинального коэффициента.
  • CT с номинальным коэффициентом 200/5 с классом точности 0,3 будет работать в пределах 0,45% от значения номинального коэффициента при первичном токе 100 ампер. Чтобы быть более точным, для первичного тока 100A сертифицировано производить вторичный ток от 2,489 до 2,511 ампер.
  • Точность указана в процентах от диапазона и дана для максимальной нагрузки, выраженной в ВА. Общая нагрузка включает входное сопротивление счетчика и сопротивление контура провода и соединения между трансформатором тока и счетчиком.
  • Пример: нагрузка = 2,0 ВА. Максимальное падение напряжения = 2,0 ВА / 5 А = 0,400 Вольт.
  • Максимальное сопротивление = Напряжение / Ток = 04,00 В / 5 А = 0,080 Ом.
  • Если входное сопротивление измерителя составляет 0,010 Ом, то допускается 0,070 Ом для сопротивления контура провода и соединений между трансформатором тока и измерителем. Необходимо учитывать длину и калибр провода, чтобы избежать превышения максимальной нагрузки.
  • Если сопротивление в контуре 5 А вызывает превышение нагрузки, ток упадет.Это приведет к низкому показанию счетчика при более высоких уровнях тока.
  • Как и во всех трансформаторах, ошибки возникают из-за того, что часть первичного входного тока используется для намагничивания сердечника и не передается на вторичную обмотку. Пропорция первичного тока, используемая для этой цели, определяет величину ошибки.
  • Суть хорошей конструкции измерительных трансформаторов тока состоит в том, чтобы гарантировать, что ток намагничивания будет достаточно низким, чтобы гарантировать, что погрешность, указанная для класса точности, не будет превышена.
  • Это достигается выбором подходящих материалов сердечника и соответствующей площади поперечного сечения сердечника. Часто при измерении токов от 50 А и выше удобно и технически целесообразно, чтобы первичная обмотка трансформатора тока имела только один виток.
  • В этих наиболее распространенных случаях ТТ поставляется только с вторичной обмоткой, первичная обмотка - это кабель или шина главного проводника, который проходит через апертуру ТТ в случае кольцевых ТТ (то есть с одним первичным витком) Следует отметить, что чем ниже номинальный первичный ток, тем труднее (и тем дороже) достичь заданной точности.
  • Принимая во внимание сердечник определенных фиксированных размеров и магнитные материалы со вторичной обмоткой, скажем, на 200 витков (соотношение тока 200/1, соотношение витков 1/200) и скажем, что для намагничивания сердечника требуется 2 ампера первичного тока 200 А, ошибка составляет поэтому только 1% примерно. Однако, учитывая трансформатор тока 50/1 с 50 витками вторичной обмотки на одном сердечнике, для намагничивания сердечника по-прежнему требуется 2 ампера. Тогда погрешность составляет примерно 4%. Для получения точности 1% кольцевого трансформатора тока 50/1 требуется сердечник гораздо большего размера и / или дорогой материал сердечника
  • Класс точности измерения CT:

Класс измерения CT

Класс Приложения
0.1 к 0,2 Прецизионные измерения
0,5 Высококачественные счетчики киловатт-часов для коммерческих счетчиков киловатт-часов
3 Общие промышленные измерения
3 ИЛИ 5 Примерные размеры

Защитная система CT вторичный ВА Класс
На каждый ток для фазы и замыкания на землю 1A 2.5 10П20 или 5П20
5A 7,5 10П20 или 5П20
Неограниченное замыкание на землю 1A 2,5 10П20 или 5П20
5A 7,5 10П20 или 5П20
Чувствительное замыкание на землю 1A или 5A Класс PX использует формулу производителя реле
Дистанционная защита 1A или 5A Класс PX использует формулу производителя реле
Дифференциальная защита 1A или 5A Класс PX использует формулу производителя реле
Дифференциальный импеданс с высоким сопротивлением 1A или 5A Класс PX использует формулу производителя реле
Защита высокоскоростного питателя 1A или 5A Класс PX использует формулу производителя реле
Защита двигателя 1A или 5A 5 5П10
  • Класс точности буквы CT:
Точность ТТ

Класс измерения CT

Класс точности Приложения

В

Назначение измерения

Класс защиты CT

С

CT имеет низкий поток утечки.

т

CT может иметь значительный поток утечки.

H

применима во всем диапазоне вторичных токов от 5 до 20 номинальных значений ТТ. (Обычно трансформаторы тока с намоткой.)

л

Точность ТТ применяется при максимальной номинальной вторичной нагрузке только при 20 номинальных значениях. Точность коэффициента может быть в четыре раза больше указанного значения, в зависимости от подключенной нагрузки и тока повреждения.(Обычно оконные, шинные или стержневые трансформаторы тока.)
  • Класс точности защиты CT:
Класс Приложения
10P5 Реле максимального тока и катушки отключения: 2,5 ВА
10P10 Термореле с обратным временем: 7,5 ВА
10P10 Реле низкого потребления: 2,5 ВА
10P10 / 5 Обратный определенный мин.реле времени (IDMT) сверхтока
10P10 IDMT Реле замыкания на землю с приблизительной временной шкалой: 15 ВА
5P10 IDMT Реле защиты от замыканий на землю со стабильностью фазных замыканий или точной временной шкалой: 15 ВА
  • Класс точности: Точность измерения согласно IEEE C37.20.2b-1994

Коэффициент B0.1 B0.2 B0.5 B0.9 B1.8 Точность реле
50: 5 1,2 2,4 C или T10
75: 5 1,2 2,4 C или T10
100: 5 1.2 2,4 C или T10
150: 5 0,6 1,2 2,4 C или T20
200: 5 0,6 1,2 2,4 C или T20
300: 5 0,6 1,2 2,4 2,4 C или T20
400: 5 0.3 0,6 1,2 1,2 2,4 C или T50
600: 5 0,3 0,3 0,3 1,2 2,4 C или T50
800: 5 0,3 0,3 0,3 0,3 1,2 C или T50
1200: 5 0,3 0,3 0,3 0,3 0.3 C100
1500: 5 0,3 0,3 0,3 0,3 0,3 C100
2000: 5 0,3 0,3 0,3 0,3 0,3 C100
3000: 5 0,3 0,3 0,3 0,3 0,3 C100
4000: 5 0.3 0,3 0,3 0,3 0,3 C100

Важное значение для точности и угла сдвига фаз

  • Текущая ошибка - это ошибка, которая возникает, когда текущее значение фактического коэффициента трансформации не равно номинальному коэффициенту трансформации.
  • Погрешность тока (%) = {(Kn x Is - Ip) x 100} / Ip
  • Kn = номинальный коэффициент трансформации, Ip = фактический первичный ток, Is = фактический вторичный ток
  • Пример: для трансформатора тока 5ВА класса 1 2000 / 5A
  • Kn = 2000/5 = 400 витков, Ip = 2000A, Is = 4.9А
  • Текущая ошибка = ((400 x 4,9 - 2000) x100) / 2000 = -2%
  • Для трансформатора тока с классом защиты класс точности определяется наивысшей допустимой процентной суммарной погрешностью при предельном первичном токе предела точности, предписанном для данного класса точности.
  • Класс точности включает: 5P, 10P

По фазовому углу

  • Погрешность фазы - это разность фаз между векторами первичного и вторичного тока, направление векторов должно быть нулевым для идеального трансформатора.
  • У вас будет положительный сдвиг фаз, когда вектор вторичного тока опережает вектор первичного тока.
  • Единица шкалы, выраженная в минутах / центах радиан.
  • Круговая мера = (единица измерения в радианах) - это отношение расстояния, измеренного по дуге, к радиусу.
  • Угловая мера = (единица измерения в градусах) получается делением угла в центре окружности на равные 360 градусов, известные как «градусы».
  • Пределы погрешности тока и сдвига фаз для измерительного трансформатора тока (классы 0.1 к 1)

Точность

Класс

+/- Ошибка процентного соотношения тока (коэффициента) при% номинального тока

+/- Смещение фаз при% номинальном токе

Минуты

радиан сенти

5

20

100

120

5

20

100

120

5

20

100

120

0.1

0,4

0,2

0,1

0,1

15

8

5

5

0,45

0,24

0,15

0,15

0,2

0,75

0.35

0,2

0,2

30

15

10

10

0,9

0,45

0,3

0,3

0,5

1,5

0,75

0,5

0.5

90

45

30

30

2,7

1,35

0,9

0,9

1,0

3

1,5

1

1

180

90

60

60

5.4

2,7

1,8

1,8

  • пределы погрешности тока и сдвига фаз для измерительного трансформатора тока Для специального применения

Точность

Класс

+/- Ошибка процентного соотношения тока (коэффициента) при% номинального тока

+/- Смещение фаз при% номинальном токе

Минут

радиан сенти

1

5

20

100

120

1

5

20

100

120

1

5

20

100

120

0.2S

0,75

0,35

0,2

0,2

0,2

30

15

10

10

10

0,9

0,4

0,3

0,3

0.3

0,5S

1,50

0,75

0,5

0,5

0,5

90

45

30

30

30

2,7

1,3

0,9

0.9

0,9

  • Пределы погрешности измерения тока трансформаторов тока (классы 3 и 5)

Класс точности

+/- Ошибка процентного соотношения тока (коэффициента) при% номинального тока

50

120

3

3

3

5

5

5

Трансформатор тока класса X:

  • Трансформатор тока класса X используется в сочетании с реле дифференциальной защиты по циркуляционному току с высоким сопротивлением, например, реле ограничения замыкания на землю.Как показано в IEC60044-1, необходим трансформатор тока класса X.
  • Ниже показан метод определения размера трансформатора тока класса X.
  • Шаг 1: расчет напряжения в точке перегиба ВКП
  • Vkp = {2 x Ift (Rct + Rw)} / k
  • Vkp = требуемое напряжение точки перегиба ТТ, Ift = макс. Ток трансформатора из-за неисправности в амперах
  • Rct = сопротивление вторичной обмотки ТТ в Ом, Rw = сопротивление контура управляющего провода между ТТ и
  • K = коэффициент трансформации трансформатора тока
  • Шаг 2: расчет неисправности трансформатора Ift
  • Ift = (кВА x 1000) / (1.732 x V x импеданс)
  • KVA = мощность трансформатора в кВА, V = вторичное напряжение трансформатора, Impedance = полное сопротивление трансформатора
  • Шаг 3: Как получить Rct
  • Для измерения времени производства ТТ
  • Это сопротивление контрольного провода, используемого для подключения ТТ 5-го класса X в нейтрали трансформатора к реле
  • В распределительном щите НН. Пожалуйста, получите эти данные у подрядчика или консультанта по электрике.Мы предлагаем таблицу, которая будет служить общим руководством по сопротивлению кабеля.
  • Мощность трансформатора: 2500 кВА
    Импеданс трансформатора: 6%
    Система напряжения: 22 кВ / 415 В, 3 фазы, 4 провода
    Коэффициент трансформации тока: 4000 / 5A
    Тип трансформатора тока: Класс X PR10
    Трансформатор тока Vkp: 185 В
    Трансформатор тока Rct: 1,02½ (измерено)
    Сопротивление контрольного провода Rw: 25 метров при использовании кабеля с квадратным сечением 6,0 мм
    = 2 x 25 x 0,0032 = 0,16½
    Ift = (кВА x 1000) / (1.732 x V x импеданс) = (2500 x 1000) / (1,732 x 415 x 0,06) = 57 968 ​​(скажем, 58 000 A)
    Vkp = {2 x Ift (Rct + Rw)} / k = {2 x 58000 (1.02+ 0,16)} / 800 = 171,1½.

4) Коэффициент предела точности:

  • Коэффициенты предела стандартной точности: 5, 10, 15, 20 и 30.
  • Точность ТТ - еще один параметр, который также указывается для класса ТТ. Например, если класс измерения ТТ составляет 0,5M (или 0,5B10), точность для ТТ составляет 99,5%, а максимально допустимая погрешность ТТ составляет всего 0.5%.
  • Коэффициент предела точности определяется как кратное номинальному первичному току, до которого трансформатор будет соответствовать требованиям «Composite Error». Composite Error - это отклонение от идеального CT (как в Current Error), но учитывает гармоники во вторичном токе, вызванные нелинейными магнитными условиями в течение цикла при более высоких плотностях потока.
  • Таким образом, электрические требования к трансформатору тока защиты можно определить как:
  • Выбор класса точности и предельного коэффициента.
  • Защитные трансформаторы тока
  • класса 5P и 10P обычно используются для защиты от сверхтоков и неограниченной защиты от утечки на землю. За исключением простых реле отключения, защитное устройство обычно имеет преднамеренную временную задержку, тем самым гарантируя, что серьезное воздействие переходных процессов пройдет до того, как реле будет вызвано в работу. Защита Трансформаторы тока, используемые для таких приложений, обычно работают в установившемся режиме. Показаны три примера такой защиты.В некоторых системах может быть достаточно просто обнаружить неисправность и изолировать эту цепь. Однако в более разборчивых схемах необходимо гарантировать, что при замыкании между фазами не срабатывает реле замыкания на землю.
  • Расчет предельного коэффициента точности
  • Fa = Fn X ((Sin + Sn) / (Sin + Sa))
  • Fn = предельный коэффициент номинальной точности, Sin = внутренняя нагрузка вторичной обмотки ТТ
  • Sn = номинальная нагрузка ТТ (в ВА), Sa = фактическая нагрузка ТТ (в ВА)
  • Пример: Внутреннее сопротивление вторичной обмотки трансформатора тока (5P20) равно 0.07 Ом, вторичная нагрузка (включая провода и реле) составляет 0,117 Ом, а ТТ рассчитан на 300/5, 5P20, 10 ВА. Рассчитайте фактический предельный коэффициент точности.
  • Fn = 20 (данные ТТ 5P20), Sin = (5A) 2 × 0,07 Ом = 1,75 ВА, Sn = 10 ВА (по данным ТТ),
  • Sa = (5A) 2 × 0,117 Ом = 2,925 ВА
  • Фактор предела точности ALF (Fa) = 20 X ((1,75 + 10) / (1,75 + 2,925)) = 50,3

Выбор ТТ:

1) В помещении или на улице:

  • Определите, где необходимо использовать ТТ.Внутренние трансформаторы обычно дешевле, чем наружные трансформаторы. Очевидно, что если трансформатор тока будет заключен в наружный кожух, его не нужно рассчитывать на использование вне помещений. Это распространенная дорогостоящая ошибка при выборе трансформаторов тока.

2) Что нам понадобится:

  • Первое, что нам нужно знать, какая степень точности требуется. Например, если вы просто хотите узнать, перегружен ли двигатель или нет, вам, скорее всего, подойдет панельный измеритель с точностью от 2 до 3%.В этом случае трансформатор тока должен иметь точность от 0,6 до 1,2%. С другой стороны, если мы собираемся управлять прибором распределительного типа с точностью до 1%, нам понадобится трансформатор тока с точностью от 0,3 до 0,6. Мы должны помнить, что рейтинги точности основаны на номинальном протекающем первичном токе и в соответствии со стандартами ANSI могут быть удвоены (0,3 становится 0,6%), когда протекает 10% первичного тока. Как упоминалось ранее, номинальная точность соответствует заявленной нагрузке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *