Зарядка для аккумулятора автомобиля схема своими руками: Зарядное устройство для автомобильного аккумулятора своими руками: схемы и сборка

Содержание

Зарядное устройство-автомат для автомобильного АКБ

Продолжая тему о зарядных устройствах (ЗУ) для автомобильных аккумуляторов, хочу предложить для повторения очень простую и надёжную схему полностью автоматического ЗУ.

Схема является параметрическим стабилизатором на 14,2 В, а регулирующим элементом в ней служит мощный mosfet-транзистор IRFZ48.

Всё что нужно для изготовления данного ЗУ – наличие сетевого трансформатора габаритной мощностью не менее 150 Вт, вторичная обмотка которого может обеспечить напряжение 17-20 В при токе нагрузки 10 А. Но его необходимо доработать – намотать дополнительную слаботочную обмотку. Для этого делают десять витков любого провода поверх остальных обмоток для вычисления количества витков на вольт.

И исходя из расчётов наматывают дополнительную обмотку для получения на ней напряжения 5-7 В при токе нагрузки 50-100 мА. Ток небольшой, поэтому намоточный провод может быть малого диаметра.

Эта обмотка необходима для развязки питания цепи затвора регулирующего транзистора в схеме ЗУ. Итак, в итоге трансформатор должен содержать следующие обмотки: I – сетевая, II – 17-20 В (10 А), III – 5-7 В (50-100 мА).

Чтобы получить на выходе 14,2 В, на затвор VT1 нужно подать порядка 18 В т.к. отсечка у данного типа транзисторов составляет около 4 В. Для этого в схеме используется регулируемый источник опорного напряжения VD4, который и питается от дополнительной обмотки трансформатора T1 через резистор R1. Стабилитрон VD3 служит для температурной компенсации от внешней температуры.

Введите электронную почту и получайте письма с новыми поделками.

При подключении к ЗУ сильно разряженной АКБ (U меньше 11 В), транзистор VT1 полностью отопрётся т.к. разность между напряжением на затворе и истоке достаточно велика. Ток заряда будет ограничен лишь сопротивлениями параллельно соединённых резисторов R2-R5 (сопротивлением канала транзистора можно пренебречь).

По мере зарядки АКБ и росте напряжения на её клеммах вплоть до напряжения стабилизации 14,2 В, ток зарядки будет плавно уменьшаться, пока не прекратится совсем. В таком состоянии ЗУ можно оставить на долгое время, аккумулятор не перезарядится, т.к. транзистор перейдёт в полностью закрытое состояние из-за отсутствия необходимой разницы напряжений затвор — исток.

Лампа накаливания HL1 служит для сигнализации о подключенной заряжаемой АКБ, а также является нагрузкой, для более точного установления выходного напряжения.

Конструкция, детали, наладка

Печатная плата односторонняя. На ней размещены все детали схемы кроме трансформатора Т1, амперметра РА1 и индикаторной лампы HL1. При монтаже деталей силовые дорожки платы необходимо залудить толстым слоем припоя, т.к. через них, особенно на начальном этапе зарядки, протекают значительные токи.

Транзистор VT1 IRFZ48 можно заменить на IRFZ46. Он должен быть закреплён на теплоотводе с полезной площадью 100-150 см2. Диодный мост – любой в корпусе KBPC-W, рассчитанный на ток не менее 15 А. Регулируемый стабилитрон VD4 TL431 заменим на отечественный КР142ЕН19А. Резисторы R2-R5 – проволочные, 5-ти ваттные стандартного ряда на 4,7 Ом, например SQP-5.

Процесс зарядки и её окончание контролируют по амперметру РА1. Это может быть стрелочный или цифровой прибор. В качестве него удобно использовать дешёвые китайские индикаторы тока с Али.

Вся наладка схемы заключается в установке порогового напряжения на выходе подстроечным резистором R8. Это напряжение должно соответствовать напряжению полностью заряженной АКБ, при котором ток через неё полностью прекратится. Типовое значение – 14,2 В, но оно может и отличатся от указанного, в зависимости от типа АКБ и его состояния. Так что к этому параметру надо отнестись со всей внимательностью, чтобы избежать перезаряда или же наоборот оставить АКБ не дозаряженной.

Скачать печатную плату.

75 фото как сделать зарядку в домашних условиях

Проблемы с аккумуляторами – явление частое. Нормальное устройство стоит дорого, а дешевые зарядки только портят технику. Многие уже научились делать зарядные устройства для мобильных аккумуляторов своими руками и избавили себя от мук выбора этих девайсов сомнительного качества.

Содержимое обзора:

Зачем нужен аккумулятор?

Универсальная батарея пригодится в поездках. Не нужно будет возить с собой все зарядные устройства. Можно сделать аккумулятор, который по габаритам и удобству в использовании будет соответствовать всем запросам.

Также можно самостоятельно сделать автоматическое зарядное устройство аккумулятора, которое пригодится в зимнее время года. Даже если гараж или стоянка отапливаются, аккумулятор все равно испытывает недостаток тепла. Поэтому он быстро разражается.

Можно в перерывах пополнять резерв его работы при помощи самодельной зарядки, и тогда можно будет смело ехать на дальние расстояния даже при самых суровых погодных условиях.

 


Зарядное устройство для АА аккумуляторов

Сегодня многие устройства работают на батарейках. Основной минус – сложно отследить, как скоро закончится заряд. И если в самый неподходящий момент батарейки сели, а идти в магазин за новыми времени нет, можно воспользоваться самодельным аккумулятором.

Чтобы сделать зарядное аккумуляторов АА своими руками, понадобится:

  • флюс;
  • припой;
  • паяльник;
  • пинцет;
  • тестер;
  • отвертки.

Тестер нужен для проверки работоспособности радиодеталей для сравнения со стандартными показателями.

Также понадобится батарейный отсек и корпус. Отсек берем от любой детской игрушки (например, от «Тетриса», который был очень популярен в 90-ые годы). Также подойдет любой футляр из пластмассы.

Дальше процесс выглядит так:

  • Отсек для батарей крепим к корпусу шурупами. За основу можно взять плату игровой приставки. Выпиливаем все по этому образцу и оставляем гнездо питания.
  • Соединяем паяльником детали, ориентируясь на схему. Не забывайте учитывать полярность: плюс припаивается к плюсу.
  • Для шнура можно использовать кабель от компьютерной мышки с USB-входом.
  • Проверяем напряжение от шнура. На тестере отобразится показатель в 5В.
  • Устанавливаем зарядный ток. Тестер подключаем так, чтобы минус соединялся с аккумулятором, а плюс – с диодом.
  • Режим тока ставим на 200 мА и включаем в сеть. Светодиод загорелся – значит, вы все сделали верно.
  • Теперь нужно установить показатель тока зарядки, изменяя сопротивление. Точно так же делаем второй аккумулятор типа АА.

Из чего сделать зарядное устройство для автомобиля

Такие специфические варианты, как аккумуляторы из активированного угля или поваренной соли рассматривать не стоит, если вы дорожите машиной. Есть более безопасный и простой вариант, который с. Успехом воплотит в жизнь любой водитель.


Сегодня для производства аккумуляторов используют литий-полимерные и литий-ионные батареи. Они тоже работают на основе химической реакции, но без использования электролита. Это позволяет говорить об их безопасности, потому что в процессе работы таких зарядок не возникнет химическая реакция.

К тому же, литиевые батареи стоят недорого, работают стабильно и подходят для изготовления зарядных устройств для любой цели. Они широко используются при производстве фонариков, телефонов и электроники.

Сколько батарей взять?

Чтобы сделать простое зарядное устройство для автомобильного аккумулятора, нужно рассчитать, сколько литиевых батарей нужно взять.

У одного бочонка напряжение 3,7 Вольт и вес примерно 100 граммов. Емкость отличается и может варьироваться в пределах 1,505 А・ч. Для автомобиля маловато, но можно просто взять больше аккумуляторов, чтобы соблюсти все показатели мощности.

Для машины нужно импульсное зарядное устройство из трех аккумуляторов. В сумме должно получиться напряжение 11-12 Вольт. Но обращать внимание лучше на показатели емкости. У автомобильных аккумуляторов она составляет примерно 60 А・ч.

Три аккумулятора дают 5 А・ч. Значит, нужное напряжение и силу тока можно получить, используя 38-40 таких батарей. Их вполне хватит для зарядки аккумулятора автомобиля.


Стоит ли делать такое зарядное устройство?

У данного решения есть свои плюсы:

  • небольшой вес;
  • простота изготовления;
  • низкая себестоимость;
  • компактность.

Но из минусов стоит выделить проблемы при зарядке от генератора и сложности в эксплуатации при низких температурах. Также зарядное устройство обладает низкой надежностью и может не сработать в самый ответственный момент. Однако использовать его в качестве резервной зарядки — неплохой вариант.

Теперь вы знаете, зачем нужно было учить физику в школе. Каждый человек может попробовать сделать зарядное устройство для литиевых аккумуляторов своими руками. Это не только экономия денег, но и новые знания!

Фото зарядного для аккумулятора своими руками


Также рекомендуем просмотреть:

Как сделать самому зарядное устройство для автомобильного аккумулятора


Как сделать зарядное устройство для аккумулятора

Автомобильную бортовую сеть до тех пор, пока силовая установка не запустится питает аккумуляторная батарея. Но сама она электрическую энергию не вырабатывает. Аккумулятор просто является вместилищем электроэнергии, которая храниться в нем и при надобности отдается потребителям. После израсходованная энергия восстанавливается за счет работы генератора, который ее вырабатывает.

Но даже постоянная подзарядка АКБ от генератора не способна полностью восстанавливать израсходованную энергию. Для этого периодически нужна зарядка от внешнего источника, а не генератора.

Конструкция и принцип работы зарядного устройства

Чтобы произвести зарядку аккумулятора используются зарядные устройства. Данные приборы работают от сети 220 В. На самом деле зарядное устройства является обычным преобразователем электрической энергии.

Он берет переменный ток сети 220 В, понижает его и преобразовывает в постоянный ток напряжением до 14 В, то есть до напряжения, которое выдает сам АКБ.

Сейчас производится большое количество всевозможных зарядных устройств – от примитивных и простейших до приборов с большим количеством всевозможных дополнительных функций.

Продаются и зарядные устройства, которые помимо возможной подзарядки АКБ, установленной на авто, могут еще и произвести запуск силовой установки. Такие устройства называются зарядно-пусковыми.

Есть и автономные зарядно-пусковые приборы, которые могут подзарядить АКБ или запустить мотор без подключения самого устройства к сети 220 В. Внутри же такого прибора помимо оборудования, преобразующего электрическую энергию, имеется еще и обычный аккумулятор, что и делает такой прибор автономным, хотя батарее прибора тоже после каждой отдачи электроэнергии требуется зарядка.

Видео: Как сделать простейшее зарядное устройство

Что касается обычных зарядных устройств, то простейшее из них состоит всего из нескольких элементов. Основным элементом у такого устройства является понижающий трансформатор. В нем производится понижение напряжение с 220 В до 13,8 В, которые являются самыми оптимальными для зарядки АКБ. Однако трансформатор только понижает напряжение, а вот преобразование его с переменного тока на постоянный выполняется другим элементом устройства – диодным мостом, который производит выпрямление тока и разделение его на положительный и отрицательный полюса.

За диодным мостом обычно в схему включен амперметр, который показывает силу тока. В простейшем устройстве используется стрелочный амперметр. В более дорогих прибор

Самодельное автоматическое зарядное устройство для автомобильного аккумулятора из принтера!


Сегодня у нас весьма полезная самоделка для автолюбителей, особенно в зимнюю пору! На этот раз мы расскажем как сделать своими руками из старого принтера самодельное зарядное устройство!
Если у Вас есть старый принтер не спешите его выбрасывать, в нем есть блок питания из которого можно сделать простенькое автоматическое зарядное устройство для автомобильного аккумулятора с функцией регулировки напряжения и тока заряда. В свое время я делал самодельные снпч к принтерам Canon запас прочности которых был больше чем у принтерных печатающих головок. В связи с этим у меня дома скопилось пара-тройка принтеров с абсолютно рабочими блоками питания, вполне пригодными для создания маломощных автоматических зарядных устройств для автомобильных аккумуляторов.

По сути, это маломощный лабораторный блок питания с нижним пределом 4 Вольта и верхним пределом напряжения 14.5 Вольт имеющий селектор ограничения тока на 500мА и 800мА. Задумка была сделать устройство которое позволит в гараже зарядить практически любой аккумулятор начиная от Li-on Li-po аккумуляторов мобильных телефонов, заканчивая АКБ для скутеров, мотоциклов и автомобильных аккумуляторов.

Принципиальная схема самодельного автоматического зарядного устройства

Схема автоматического зарядного устройства простая и не содержит дорогостоящих или дефицитных компонентов, собрать ее своими руками сможет каждый начинающий радиолюбитель.

В основе схемы лежит 2 стабилизатора:

  1. Стабилизатор тока на микросхеме LM317
  2.  Регулируемый стабилизатор напряжения выполненный на микросхеме (регулируемом стабилитроне) TL431

Так же в устройстве задействован еще одна микросхема стабилизатор Lm7812 от нее питается 12 Вольтовой кулер (который и был изначально в этом корпусе).

Собрано зарядное устройство в корпусе компьютерного ATX блока питания, все содержимое блока, кроме кулера, удалено. Микросхемы стабилизаторы Lm317 и Lm 7812 установлены каждая на свой радиатор , которые прикручены к пластиковому корпусу (ВНИМАНИЕ на общий радиатор их ставить нельзя !).

 

Схема собрана навесным монтажом на микросхемах стабилизаторов. Резисторы R2 и R3  мощностью 2-5 Ватт в керамических корпусах отвечают за ограничение тока заряда. Они устанавливаются так, что бы через них проходил воздушный поток создаваемый кулером. Их значение рассчитывается по формуле R=1.25(V) /I(A)    можете рассчитать необходимый Вам максимальный ток заряда. Раз пошла речь о рассчетах напомню, что у нас есть онлайн калькулятор для расчета резистора для подключения  светодиодов. Если Вам необходимо плавно регулировать ток заряда, можно установить мощный реостат с дополнительным ограничивающим резистором (что бы не превысить максимально допустимый ток для Lm317 )
В моем случае был блок питания на 24 Вольта с максимальным током нагрузки 1Ампер. Необходимо из этого 1Ампера зарезервировать 0.1 Ампера на запитку кулера (на наклейке указан ток потребления) + я оставил 10% на запас прочности, соответственно под основное назначение- на зарядный ток остается 0.8 Ампера.

Понятно, что током в 800 мА быстро автомобильный Акб не зарядишь. За сутки аккумулятору можно сообщить 24ч*0.8А=19.2 Ампер часа, что составляет 30-45% от емкости аккумулятора легкового автомобиля (как правило 45-65 Ач).
Если у Вас будет «донор» блок питания с током 1.5 Ампера Вы за сутки сможете сообщить 30 Ампер часов, чего возможно хватит с головой для бывшего не один год в употреблении аккумулятора.

Но, с другой стороны, заряд малым током более полезен для Акб «лучше усваивается», достаточно выкрутить пробки из акб (если он обслуживаемый), подключить зарядное устройство к акб и все! Можно заниматься своими делами и не переживать, что аккумулятор перезарядится, максимальное напряжение на батарее не превысит 14.5 Вольт, а малый ток заряда не допустит чрезмерный перегрев и выкипание электролита. В связи с тем, что можно не контролировать процесс окончания заряда, думаю данную самоделку можно смело назвать автоматическим зарядным устройством для автомобильных акб, хотя никакой «следящей автоматики» в схеме нет.
Для удобства, зарядное устройство можно снабдить Вольт метром который даст возможность наглядно контролировать процесс заряда аккумулятора. Например таким за пару у.е.

Зарядное устройство необходимо обязательно снабдить защитой от «переполюсовки». Роль такой защиты выполняют два диода с допустимым током  5 Ампер подключенные на выходя зарядного устройства в сочетании с предохранителем на 2 Ампера (при монтаже будьте внимательны и соблюдайте полярность подключения диодов!!!).   При неправильном подключении зарядного к АКБ, ток акб пойдет в зарядное через предохранитель и «упрется» в диод, когда значение тока достигнет 2 Ампера предохранитель спасет мир!  Также не забудьте снабдить устройство предохранителями по цепи 220 Вольт (в моем случае по цепи 220 Вольт предохранитель уже имеется внутри блока питания).

К автомобильному аккумулятору зарядное подключаемся при помощи специальных зажимов «крокодилов», при покупке их в интернете обращайте внимание на физический размер указанный в характеристиках, так как можно легко купить крокодилы для «лабораторного блока питания» которые будут всем хороши, но не смогут налезть на плюсовую клемму акб, а надежный контакт, как Вы сами понимаете вещь обязательная в таких вопросах. Для удобства на проводах и корпусе есть несколько капроновых стяжек-липучек с помощью которых можно аккуратно и компактно сматывать провода.

Надеюсь эта идея утилизации принтера кому-нибудь пригодится. Если Вы делали самодельные автоматические зарядные устройства для автомобильных аккумуляторов, (или не автоматические) пожалуйста поделитесь с читателями нашего сайта,- пришлите нам на почту фото, схему и небольшое описание Вашего устройства. Если есть вопросы по схеме и принципу работы, задавайте в комментариях,- отвечу.

Смотрите так же:

Живу в Мире самоделок, размещаю статьи которые присылают читатели. Иногда пишу на темы: полезные самоделки для дома и самоделки для радиолюбителей.

Зарядное устройство для аккумулятора 12 в своими руками

Разряд аккумулятора — проблема, которая хорошо знакома любому автомобилисту. Особенно неприятно, когда чрезвычайное происшествие случается далеко от цивилизации, где нет автомагазинов, АЗС и/или СТО. Чтобы снова не попасть впросак, не бояться внезапной «усталости» АКБ, рано или поздно каждый приходит к идее сделать зарядное устройство для аккумулятора 12 в своими руками. Это логичное решение, так как покупные модели обойдутся в круглую сумму, а самодельное ЗУ, собранное из недорогих комплектующих, сулит приличную экономию. Другой плюс — простота устройства, обещающая результат независимо от степени квалификации «труженика». Сама работа отнимет всего несколько часов.

Почему оно необходимо?

Перед тем как собирать зарядное устройство для аккумулятора 12 в своими руками, будущему автору не мешает познакомиться с ним и его предназначением — восстановлением разряженных АКБ. ЗУ — источник постоянного тока, чье напряжение составляет 12-16 В.

Причина его необходимости — неспособность зарядить аккумуляторную батарею до предела от электрогенератора автомобиля: максимально допустимого значения для бортсети (14,1 В) недостаточно. Требуется немного большее напряжение — 14,4-14,5 В.

Хронический недостаточный заряд приводит к уменьшению ресурса аккумулятора. Другой плюс автономного зарядного устройства — эффективная борьба с сульфатацией пластин, так как крупные кристаллы сульфата свинца — одни из главных виновников деградации АКБ.

Близкое знакомство с ЗУ

«Пионерами» были зарядки, имевшие в составе два главных блока, — выпрямитель и трансформатор. Конструкцию отличают впечатляющие габариты и такой же вес, однако дешевизна, простота изделий — причина их популярности у автовладельцев даже сейчас. В роли выпрямителя в таком зарядном устройстве выступает полупроводниковый диод, адекватная замена ему — диодный мост.

Существенная разница между ними одна: во втором варианте меньше потребление мощности. Другие различия касаются расходов, которых потребует реализация моста, и большей сложности работы. Помимо выпрямителя, трансформатора компонентами зарядника являются амперметр (по желанию) и выключатель. Прибор, измеряющий силу тока, подключают, используя зажимы-крокодилы.

Есть и другой вариант, который можно соорудить самостоятельно, — импульсный, он обеспечивает надежную защиту от «скачек» напряжения, КЗ, переполюсовки АКБ. Вес и габариты таких устройств значительно меньше, чем у традиционных. «Виной» тому инверторный блок, он же — причина больших затрат на производство, так как стоимость импульсного прибора возрастает почти вдвое.

Самодельные устройства

Прежде чем приступать к «свершениям», готовят все, что необходимо для производства зарядного устройства. Все зависит от того, какие расходники есть в наличии, для каких именно целей предназначается ЗУ.

Элементарно: лампочка и диод

Это экспресс-вариант, подходящий способ, если требуется быстро завести не роскошь, а средство, реанимировав севший аккумулятор автомобиля, находящегося на вынужденном «причале» у дома. В этом случае источником переменного тока будет розетка, а в простую схему зарядного устройства входит:

  1. Обыкновенная лампа накаливания. От ее мощности зависит скорость зарядки аккумулятора, поэтому оптимальное значение — 100-150 Вт. Позволяется минимум (60 Вт), но максимум (200 Вт) станет причиной перегоревшего электронного элемента.
  2. Полупроводниковый диод, преобразующий напряжение из переменного в постоянное. Здесь тоже необходима достаточная мощность, иначе элемент попросту не выдержит нагрузки. Возможные «поставщики» диода — старые приемники, блоки питания и магазины.
  3. Провода и зажимы-крокодилы, с помощью которых устройство подключается к АКБ.
  4. Штекер для розетки.

При сборке мини-зарядника важно соблюдать правило: диод располагают таким образом, чтобы катод был направлен в сторону плюса батареи. Все контакты изолируют. Во избежание КЗ в цепь включают автомат (10 А). Если для устройства выбрана лампочка мощностью в 100 Вт, то величина тока, поступающего на АКБ, будет равняться 0,17 А. Для получения 2 А необходимо заряжать устройство в течение 10 часов.

Такой способ позволит вернуть к жизни внезапно севший аккумулятор, например, на даче. Для полноценной зарядки этот вариант не подходит. Главное требование можно сформулировать одной, но емкой, фразой — руки прочь от всех частей схемы работающей конструкции!

Лампа и адаптер ноутбука

Еще один простейший способ быстрой реанимации безжизненного аккумулятора. Устройство для питания этой техники оснащено преобразователем, выпрямителем, элементами сглаживания и стабилизации выходного напряжения. Для получения желаемого необходим ненужный (или используемый) зарядник от любого ноутбука (19 В, примерно 5 А), автомобильная лампочка (12 Вт), провода и «земноводные» зажимы. В роли ограничителя тока можно использовать не лампу, а резистор. Поступают так:

  1. Берут 2 медных провода, концы их зачищают, присоединяют к контактам штекера.
  2. «Минусовой» выход аккумулятора соединяют с проводом наружного контакта адаптера.
  3. Проводник от внутреннего контакта маленького устройства подключают к «плюсу» большого ЗУ.
  4. В разрыв провода-плюса устанавливают лампочку.
  5. Включают адаптационную конструкцию в сеть.

Полностью разряженное устройство восстановить не получится, однако для подзарядки севшего аккумулятора понадобится всего несколько часов.

В обоих описанных случаях рекомендуют «устраивать слежку» за процессом, по крайней мере, первые полчаса. Если обнаружится перегрев, зарядку отключают без промедления.

Просто: трансформатор и мост

Такую зарядку уже можно назвать полноценной, но для ее сборки придется озаботиться поисками трансформатора, который найти бывает крайне трудно. В этом случае источником деталей может стать старый телевизор. Марка подходящего трансформатора — ТС-180-2. Он имеет 2 вторичные обмотки с напряжением 6,4 В, силой тока — 4,7 А. Такая же двойная в этом трансформаторе первичная обмотка.

Для диодного моста требуется 4 элемента Д242, альтернативы — Д243, 245, 246. Для отвода от них тепла — такое же количество радиаторов, их площадь должна быть не менее 25 мм2. Понадобится пара предохранителей (0,5 и 10 А). В качестве проводников используют материал любого сечения, однако есть исключение: значение-минимум для входного кабеля составляет 2,5 мм2. В роли основы зарядного устройства выступает стеклотекстолитовая пластина.

Сборка ЗУ происходит по такому сценарию:

  1. Сначала по стандартной схеме собирают диодный мост. Места выводов опускают вниз, каждый элемент будет располагаться на «своем» радиаторе.
  2. Начинают трансформаторные работы. Для получения нужной разности потенциалов вторичные обмотки «соединяют воедино»: выход первой с входом второй (9, 9’), используют клеммник, еще лучше — пайку.
  3. Берут два отрезка медного провода с сечением 2,5 мм2 припаивают к выводам 10, 10’.
  4. Переходят к первичной обмотке: соединяют 1 и 1’, провода штекера припаивают к 2, 2’.
  5. Соединяют трансформатор с диодным мостом: к нему припаивают провода 10, 10 ’.
  6. Теперь к мосту фиксируют проводники, идущие к аккумулятору.

Устанавливают предохранители. Тот, что рассчитан на 10 А, крепят к плюсу моста, второй (0,5 А) устанавливают на трансформаторном выводе 2. На этом работы завершаются, следует тестирование зарядного устройства с помощью амперметра, а также вольтметра. Если сила тока не такая, как ожидалась, а несколько превосходит необходимую величину, то для «удаления» излишков в цепь рекомендуют устанавливать лампу мощностью 20-60 Вт (12 В).

Конструкцию крепят на стеклотекстолитовую пластину, обязательно отмечают «плюсовой» и «минусовой» провода. В противном случае переплюсовка станет причиной выхода устройства, собранного тяжким трудом, из строя. Основу помещают в корпус, изготовленный, например, из цинковой жести. В нем некоторые делают дополнительное отверстие, предназначенное для вентилятора.

Если «поставщик» микроволновка

Это другой способ получить вожделенную вещь — зарядное устройство для аккумулятора 12 в своими руками. Популярная микроволновая печь, имеющаяся почти в каждом доме, (как сломанная, так и пока работающая) часто становится жертвой домашних мастеров, самый привлекательный элемент для них — трансформатор. Автолюбители не исключение. Однако прибор, «украденный» у этого СВЧ агрегата, требует модификации, так как его приходится трансформировать из повышающего в понижающее устройство.

В этом случае в ход идет даже нерабочий трансформатор — тот, у которого сгорела вторичная обмотка, совершенно ненужная для сборки зарядного устройства. Переделка заключается в удалении вторички и замены ее новой. Ее роль исполняет провод с изоляцией, минимальное сечение его — 2 мм2, но большее значение предпочтительнее.

Для определения необходимого количества витков нужно готовиться к экспериментам, так как эту цифру некоторые мастера предпочитают находить опытным путем. Например, намотав определенное число витков на сердечник, к концам провода присоединяют вольтметр. Включив трансформатор в сеть, замеряют показания. Так действуют, пока необходимый показатель не будет достигнут.

Другой путь — простой расчет. Если показания прибора выдали, что при 10 витках напряжение на выходе равняется 2 В, то 12 В обеспечат 60 витков. Каждые 5 витков — плюс один вольт, поэтому желаемый результат достигается просто.

«Расправившись» с намоткой, остальные действия совершают аналогично предыдущему способу: собирают диодный мост, пайкой соединяют все детали, затем проверяют эффективность свежеизготовленного автомобильного зарядника. Неожиданных подводных камней при сборке простого устройства можно не опасаться, если работа совершается качественно.

Зарядное устройство для аккумулятора 12 в своими руками — тема, которая достаточно обширна, поэтому вариантов обеспечить бесперебойную работу батареи придумано много. С одним из потенциальных «рецептов» можно познакомиться воочию, если посмотреть этот видеоролик:

СХЕМЫ и ИНСТРУКЦИИ по сборке простой электроники своими руками

Автоматическое зарядное устройство для автомобильного аккумулятора состоит из источника электропитания и схем защиты. Собрать его самостоятельно можно, владея навыками электромонтажных работ. При сборке используют как сложные электросхемы, так и конструируют более простые варианты устройства.

Содержание

Открытьполное содержание

[ Скрыть]

Требования к самодельным зарядным устройствам

Чтобы зарядка автоматически могла восстановить АКБ автомобиля, к ней предъявляются жесткие требования:

  1. Любое простое современное ЗУ должно быть автономным. Благодаря этому за работой оборудования не придется следить, в частности, если оно функционирует ночью. Устройство будет самостоятельно контролировать рабочие параметры напряжения и тока заряда. Этот режим называется автоматом.
  2. Зарядное оборудование должно самостоятельно обеспечивать стабильный уровень напряжения 14,4 вольта. Этот параметр необходим для восстановления любых батарей, работающих в 12-вольтной сети.
  3. Зарядное оборудование должно обеспечить необратимое выключение батареи от прибора при двух условиях. В частности если ток заряда или напряжение увеличится более, чем на 15,6 вольт. Оборудование должно иметь функцию самоблокировки. Пользователю, чтобы сбросить рабочие параметры, придется отключить и активировать прибор.
  4. Оборудование обязательно должно быть защищено от переплюсовки, иначе АКБ может выйти из строя. Если потребитель спутает полярность и неверно подключит минусовой и плюсовой контакт, произойдет замыкание. Важно, чтобы зарядное оборудование обеспечивало защиту. Схема дополняется предохранительным устройством.
  5. Для подключения ЗУ к аккумуляторной батарее потребуется два провода, каждый из которых должно иметь сечение 1 мм2. На один конец каждого проводника требуется установить зажим типа крокодил. С другой стороны устанавливаются разрезные наконечники. Положительный контакт должен быть выполнен в красной оболочке, а отрицательный — в синей. Для бытовой сети используется универсальный кабель, оснащенный вилкой.

Если аппарат полностью сделать своими руками, несоблюдение требований навредит не только зарядному прибору, но и аккумулятору.

Владимир Кальченко подробно рассказал о переделке ЗУ и об использовании подходящих для этой цели проводов.

Конструкция автоматического зарядного устройства

Простейший образец зарядного приспособления конструктивно включает в себя главную деталь — понижающее трансформаторное устройство. В этом элементе производится снижение параметра напряжения с 220 до 13,8 вольт, которое требуется для восстановления заряда аккумулятора. Но трансформаторное устройство может снижать только эту величину. А преобразование переменного тока на постоянный осуществляется специальным элементом — диодным мостом.

Каждое зарядное устройство должно быть оборудовано диодным мостом, поскольку эта деталь выпрямляет значение тока и позволяет разделить его на плюсовой и минусовой полюса.

В любой схеме за этой деталью обычно устанавливается амперметр. Компонент предназначен для демонстрации силы тока.

Простейшие конструкции зарядных приборов оборудуются стрелочными датчиками. В более усовершенствованных и дорогих версиях используются цифровые амперметры, а кроме них электроника может дополняться и вольтметрами.

Некоторые модели приборов позволяют потребителю изменять уровень напряжения. То есть появляется возможность заряда не только 12-вольтных аккумуляторов, но и батарей, рассчитанных на работу в 6- и 24-вольтных сетях.

От диодного моста отходят провода с положительным и отрицательным клеммным зажимом. С их помощью выполняется подключение оборудования к батарее. Вся конструкция заключается в пластиковый либо металлический корпус, от которого отходит кабель с вилкой для подключения к электросети. Также из устройства выводятся два провода с минусовым и плюсовым клеммным зажимом. Для обеспечения более безопасной работы зарядного оборудования схема дополняется плавким предохранительным устройством.

Пользователь Артем Квантов наглядно разобрал фирменный прибор для подзарядки и рассказал о его конструктивных особенностях.

Схемы автоматических зарядных устройств

При наличии навыка работы с электрооборудованием можно произвести сборку прибора самостоятельно.

Простые схемы

Такие варианты приборов делятся на:

  • устройства с одним диодным элементом;
  • оборудование с диодным мостом;
  • прибора, оснащенные сглаживающими конденсаторами.
Схема с одним диодом

Здесь есть два варианта:

  1. Можно собрать схему с трансформаторным устройством и установить диодный элемент после него. На выходе зарядного оборудования ток будет пульсирующим. Его биения будут серьезными, поскольку фактически срезывается одна полуволна.
  2. Можно собрать схему, используя блок питания от ноутбука. При его используется мощный выпрямительный диодный элемент с обратным напряжением больше 1000 вольт. Его ток должен составить не менее 3 ампер. Внешний вывод штекера питания будет отрицательным, а внутренний — положительным. Такую схему обязательно надо дополнить ограничительным сопротивлением, в качестве которого допускается применение лампочки для освещения салона.

Допускается применение более мощного осветительного устройства от указателя поворота, габаритных огней либо стоповых сигналов. При использовании блока питания от ноутбука, это может привести к его перегрузке. Если используется диод, то в качестве ограничителя надо установить лампу накаливания на 220 вольт и 100 ватт.

При применении диодного элемента выполняется сборка простой схемы:

  1. Сначала идет клемма от бытовой розетки на 220 вольт.
  2. Затем — отрицательный контакт диодного элемента.
  3. Следующим будет положительный вывод диода.
  4. Затем подключается ограничительная нагрузка — источник освещения.
  5. Следующим будет отрицательный контакт аккумулятора.
  6. Затем положительный вывод батареи.
  7. И вторая клемма для подключения к 220-вольтной сети.

При применении источника освещения на 100 ватт параметр тока заряда будет примерно 0,5 ампер. Так за одну ночь устройство сможет отдать аккумуляторной батарее 5 А/ч. Этого хватит, чтобы покрутить стартерный механизм транспортного средства.

Чтобы увеличить показатель, можно соединить параллельно три источника освещения по 100 ватт, за ночь это позволит восполнить половину емкости батареи. Некоторые пользователи вместо ламп используют электроплиты, но этого делать нельзя, поскольку из строя выйдет не только диодный элемент, но и аккумулятор.

Простейшая схема с одним диодом
Электросхема подключения АКБ к сети
Схема с диодным мостом

Этот компонент предназначен для «заворачивания» отрицательной волны наверх. Сам ток будет также пульсирующим, но его биения значительно меньше. Данный вариант схемы используется чаще остальных, но не является самым эффективным.

Диодный мост можно сделать самому, используя выпрямляющие элемент, или приобрести готовую деталь.

Электросхема ЗУ с диодным мостом

Схема со сглаживающим конденсатором

Эта деталь должна быть рассчитана на 4000-5000 мкФ и 25 вольт. На выходе полученной электросхемы образуется постоянный ток. Устройство обязательно дополняется предохранительными элементами на 1 ампер, а также измерительным оборудованием. Эти детали позволяют контролировать процесс восстановления аккумулятора. Можно их не использовать, но тогда периодически потребуется подключать мультиметр.

Если производить мониторинг напряжения удобно (путем подключения клемм к щупам), то с током будет сложнее. В данном режиме функционирования измерительное устройство придется подключать в разрыв электроцепи. Пользователю понадобится каждый раз отключать питание от сети, ставить тестер в режим замера тока. Затем активировать питание и разбирать электроцепь. Поэтому рекомендуется добавить в схему как минимум один амперметр на 10 ампер.

Основной минус простых электросхем заключается в отсутствии возможности регулировки параметров заряда.

При подборе элементной базы следует выбирать рабочие параметры так, чтобы на выходе величина силы тока составила 10% от общей емкости АКБ. Возможно незначительное снижение этой величины.

Если полученный параметр тока будет больше, чем требуется, схему можно дополнитель резисторным элементом. Он устанавливается на положительном выходе диодного моста, непосредственно перед амперметром. Уровень сопротивления подбирается в соответствии с использующимся мостом с учетом показателя тока, а мощность резистора должна быть более высокой.

Электросхема со сглаживающим конденсаторным устройством

Схема с возможностью ручной регулировки тока заряда для 12 В

Чтобы обеспечить возможность изменения параметра тока, необходимо поменять сопротивление. Простой способ решить эту проблему — поставить переменный подстроечный резистор. Но этот метод нельзя назвать самым надежным. Чтобы обеспечить более высокую надежность, требуется реализовать ручную регулировку с двумя транзисторными элементами и подстроечным резистором.

С помощью переменного резисторного компонента будет меняться ток зарядки. Эта деталь устанавливается после составного транзистора VT1-VT2. Поэтому ток через данный элемент будет проходить невысокий. Соответственно, небольшой будет и мощность, она составит около 0,5-1 Вт. Рабочий номинал зависит от использующихся транзисторных элементов и выбирается опытным путем, детали рассчитаны на 1-4,7 кОм.

В схеме используется трансформаторное устройство на 250-500 Вт, а также вторичная обмотка на 15-17 вольт. Сборка диодного моста осуществляется на деталях, рабочий ток которых составляет от 5 ампер и больше. Транзисторные элементы подбираются из двух вариантов. Это могут быть германиевые детали П13-П17 либо кремниевые устройства КТ814 и КТ816. Чтобы обеспечить качественный отвод тепла, схема должна быть размещена на радиаторном устройстве (не меньше 300 см3) либо стальной пластине.

На выходе оборудования устанавливается предохранительное устройство ПР2, рассчитанное на 5 ампер, а на входе — ПР1 на 1 А. Схема оснащается сигнальными световыми индикаторами. Один из них используется для определения напряжения в сети 220 вольт, второй — для тока заряда. Допускается использование любых источников освещения, рассчитанных на 24 вольта, в том числе диодов.

Электросхема для зарядного прибора с функцией ручной регулировки

Схема защиты от переплюсовки

Есть два варианта реализации такого ЗУ:

  • с использованием реле Р3;
  • путем сборки ЗУ с интегральной защитой, но не только от переплюсовки, но и от перенапряжения и перезаряда.
С реле Р3

Данный вариант схемы может применяться с любым зарядным оборудованием, как тиристорным, так и транзисторным. Ее необходимо включить в разрыв кабелей, посредством которых производится подключение батареи к ЗУ.

Схема защиты оборудования от переплюсовки на реле Р3

Если аккумуляторная батарея подключена к сети некорректно, диодный элемент VD13 не будет пропускать ток. Реле электросхемы обесточено, а его контакты разомкнуты. Соответственно, ток не сможет поступать на клеммы батареи. Если подключение выполнено правильно, то реле активируется и его контактные элементы замыкаются, поэтому АКБ заряжается.

С интегрированной защитой от переплюсовки, перезаряда и перенапряжения

Данный вариант электросхемы можно встроить в уже использующийся самодельный источник питания. В ней применяется медленный отклик аккумулятора на скачок напряжения, а также гистерезис реле. Напряжение с током отпускания будет в 304 раза меньше данного параметра при срабатывании.

Применяется реле переменного тока на напряжение активации 24 вольта, а ток величиной 6 ампер идет через контакты. При активации зарядного прибора включается реле, происходит замыкание контактных элементов и начинается зарядка.

Параметр напряжения на выходе трансформаторного устройства снижается ниже 24 вольт, но на выходе зарядного прибора будет 14,4 В. Реле должно удерживать это значение, но при появлении экстратока первичная величина напряжения еще больше просядет. Это приведет к отключению реле и разрыву электроцепи заряда.

Использование диодов Шоттки в этом случае нецелесообразно, поскольку данный тип схемы будет иметь серьезные недостатки:

  1. Отсутствует защита от скачка напряжения по контакту от переплюсовки, если аккумулятор полностью разряжен.
  2. Нет самоблокировки оборудования. В результате воздействия экстратока реле будет отключаться, пока не выйдут из строя контактные элементы.
  3. Нечеткое срабатывание оборудования.

Из-за этого добавить в данную схему устройство для регулировки тока срабатывания не имеет смысла. Реле и трансформаторное устройство точно подбираются друг к другу, чтобы повторяемость элементов была близка к нулю. Ток заряда проходит через замкнутые контакты реле К1, в результате чего снижается вероятность их выхода из строя из-за обгорания.

Обмотка К1 должна подключаться по логической электросхеме:

  • к модулю защиты от экстратока, это VD1, VT1 и R1;
  • к устройству защиты от перенапряжения, это элементы VD2, VT2, R2-R4;
  • а также к электроцепи самоблокировки К1.2 и VD3.

Схема с интегрированной защитой от переплюсовки, перезаряда и перенапряжения

Основной минус состоит в необходимости налаживания схемы с применением балластной нагрузки, а также мультиметра:

  1. Производится выпаивание элементов К1, VD2 и VD3. Либо при сборке их можно не запаивать.
  2. Выполняется активация мультиметра, который надо заранее настроить на замер напряжения в 20 вольт. Его надо подключить вместо обмотки К1.
  3. Аккумулятор пока не подключается, вместо него устанавливается резисторное устройство. Оно должно обладать сопротивлением в 2,4 Ома для тока заряда 6 А или 1,6 Ом для 9 ампер. Для 12 А резистор должен быть рассчитан на 1,2 Ом и не меньше, чем на 25 Вт. Резисторный элемент можно накрутить из аналогичной проволоки, которая использовалась для R1.
  4. На вход от зарядного оборудования подается напряжение 15,6 вольт.
  5. Должна сработать токовая защита. Мультиметр покажет напряжение, поскольку элемент сопротивления R1 выбран с небольшим избытком.
  6. Производится уменьшение параметра напряжения, пока тестер не покажет 0. Значение выходного напряжения надо записать.
  7. Затем производится выпайка детали VT1, а VD2 и К1 устанавливаются на место. R3 необходимо поставить в крайнее нижнее положение в соответствии с электросхемой.
  8. Величина напряжения зарядного оборудования увеличивается, пока на нагрузке не будет 15,6 вольт.
  9. Элемент R3 плавно вращается, пока не сработает К1.
  10. Выполняется снижение напряжения зарядного прибора до значения, которое было записано ранее.
  11. Обратно устанавливаются и припаиваются элементы VT1 и VD3. После этого электросхему можно проверять на работоспособность.
  12. Через амперметр выполняется подключение рабочего, но севшего или недозаряженного аккумулятора. К батарее надо подсоединить тестер, который заранее настроен на измерение напряжения.
  13. Пробный заряд необходимо провести с непрерывным контролем. В момент, когда тестер покажет 14,4 вольта на аккумуляторе, необходимо засечь ток содержания. Этот параметр должен быть в норме или близким к нижнему пределу.
  14. Если величина тока содержания высокая, то напряжение зарядного прибора следует снизить.

Схема автоматического отключения при полной зарядке аккумулятора

Автоматика должна представлять собой электросхему, оснащенную системой питания операционного усилительного устройства и опорного напряжения. Для этого используется плата стабилизатора DA1 класса 142ЕН8Г для 9 вольт. Данную схему необходимо предназначать, чтобы уровень выходного напряжения при измерении температуры платы на 10 градусов практически не менялся. Изменение составит не больше, чем сотые доли вольта.

В соответствии с описанием схемы, система автоматической деактивации при увеличении напряжения на 15,6 вольт делается на половине платы А1.1. Четвертый ее вывод соединяется с делителем напряжения R7 и R8, с которого подается опорная величина, составляющая 4,5В. Рабочим параметром резисторного устройства задается порог активации зарядного приспособления 12,54 В. В результате использования диодного элемента VD7 и детали R9 можно обеспечить нужный гистерезис между величиной напряжения активации и отключения заряда батареи.

Электросхема ЗУ с автоматической деактивацией при заряженной батарее

Описание действия схемы такой:

  1. Когда происходит подключение батареи, уровень напряжения на клеммах которого меньше 16,5 вольт, на втором выводе схема А1.1 устанавливается параметр. Данное значение достаточно, чтобы транзисторный элемент VT1 открылся.
  2. Происходит открытие этой детали.
  3. Активируется реле Р1. В результате к сети через блок конденсаторных механизмов посредством контактных элементов подключается первичная обмотка трансформаторного устройства.
  4. Начинается процесс восполнения заряда АКБ.
  5. Когда уровень напряжения увеличится до 16,5 вольт, это значение на выходе А1.1 снизится. Уменьшение происходит до величины, которой недостаточно для поддержания транзисторного устройства VT1 в открытом состоянии.
  6. Происходит отключение реле и контактные элементы К1.1 подключать трансформаторный узел через конденсаторное устройство С4. При нем величина тока заряда будет 0,5 А. В этом состоянии схема оборудования будет работать, пока величина напряжения на батарее не снизится до 12,54 вольт.
  7. После того, как это произойдет, выполняется активация реле. Продолжается зарядка АКБ заданным пользователем током. В данной схеме реализована возможность отключения системы автоматической регулировки. Для этого используется переключательное устройство S2.

Данный порядок работы автоматического зарядного устройства для автомобильного аккумулятора позволяет предотвратить его разряд. Пользователь может оставить включенным оборудование хоть на неделю, это не навредит батарее. Если в бытовой сети пропадет напряжение, при его появлении ЗУ продолжит заряжать аккумулятор.

Если говорить о принципе действия схемы, собранной на второй половине платы А1.2, то он идентичен. Но уровень полной деактивации зарядного оборудования от сети питания составит 19 вольт. Если величина напряжения меньше, на восьмом выход платы А1.2 оно будет достаточным, чтобы удержать транзисторное устройство VT2 в открытом положении. При нем ток будет подаваться на реле Р2. Но если величина напряжения составит более 19 вольт, то транзисторное устройство закроется и контактные элементы К2.1 разомкнутся.

Необходимые материалы и инструменты

Описание деталей и элементов, которые потребуются для сборки:

  1. Силовой трансформаторное устройство Т1 класса ТН61-220. Его вторичные обмотки должны быть подключены последовательно. Можно использовать любой трансформатор, мощность которого не больше 150 ватт, поскольку ток заряда обычно составляет не более 6А. Вторичная обмотка устройства при воздействии электротока до 8 ампер должна обеспечить напряжение в диапазоне 18-20 вольт. При отсутствии готового трансформатора допускается применение деталей аналогичной мощности, но потребуется перемотать вторичную обмотку.
  2. Конденсаторные элементы С4-С9 должны соответствовать классу МГБЧ и иметь напряжение не ниже 350 вольт. Допускается применение устройств любого типа. Главное, чтобы они предназначались для функционирования в цепях переменного тока.
  3. Диодные элементы VD2-VD5 можно использовать любые, но они должны быть рассчитаны на ток 10 ампер.
  4. Детали VD7 и VD11 — кремневые импульсные.
  5. Диодные элементы VD6, VD8, VD10, VD5, VD12, VD13 должны выдерживать ток величиной 1 ампер.
  6. Светодиодный элемент VD1 — любой.
  7. В качестве детали VD9 допускается использование устройства класса КИПД29. Основная особенность данного источника освещения заключается в возможности изменения цвета, если меняется полярность соединения. Для переключения лампочки применяются контактные элементы К1.2 реле Р1. Если на аккумулятор идет зарядка основным током, светодиод горит желтым, а если включается режим подзарядки, то зеленым. Допускается применение двух одноцветных устройств, но их надо правильно подключить.
  8. Операционный усилитель КР1005УД1. Можно взять устройство из старого видеоплейера. Основная особенность заключается в том, что этой детали не требуется два полярных питания, она сможет работать при напряжении 5-12 вольт. Можно использовать любые аналогичные запчасти. Но из-за разной нумерации выводов надо будет изменить рисунок печатной схемы.
  9. Реле Р1 и Р2 должны быть рассчитаны на напряжения 9-12 вольт. А их контакты — на работу с током величиной 1 ампер. Если устройства оснащаются несколькими контактными группами, их рекомендуется запаять параллельным образом.
  10. Реле Р3 — на 9-12 вольт, но величина тока коммутации будет 10 ампер.
  11. Переключательное устройство S1, должно быть предназначено для работы с напряжением 250 вольт. Важно, чтобы в этом элементе было достаточно коммутирующих контактных компонентов. Если шаг регулировки в 1 ампер неважен, то можно поставить несколько переключателей и выставить ток заряда 5-8 А.
  12. Выключатель S2, предназначен для деактивации системы контроля уровня заряда.
  13. Также потребуется электромагнитная головка для измерителя тока и напряжения. Допускается применение любого типа устройств, главное, чтобы ток полного отклонения составит 100 мкА. Если будет замеряться не напряжение, а только ток, то в схему можно установить готовый амперметр. Он должен быть рассчитан на работу с максимальным постоянным током 10 ампер.

Пользователь Артем Квантов в теории рассказал о схеме зарядного оборудования, а также о подготовке материалов и деталей для ее сборки.

Порядок подключения аккумулятора к зарядным устройствам

Инструкция по включению ЗУ состоит из нескольких этапов:

  1. Очистка поверхности аккумулятора.
  2. Удаление пробок для заливки жидкости и контроль уровня электролита в банках.
  3. Выставление значения тока на зарядном оборудовании.
  4. Подключение клемм к аккумулятору с соблюдением полярности.

Очистка поверхности

Руководство по выполнению задачи:

  1. В автомобиле отключается зажигание.
  2. Открывается капот машины. Используя гаечные ключи соответствующего размера, от клемм аккумуляторной батареи надо отключить зажимы. Для этого гайки выкручивать не нужно, их можно ослабить.
  3. Выполняется демонтаж фиксирующей пластины, которая крепит батарею. Для этого может потребоваться ключ-головка либо звездочка.
  4. АКБ демонтируется.
  5. Производится очистка его корпуса чистой ветошью. Впоследствии будут откручиваться крышки банок для залива электролита, поэтому нельзя допустить попадания грузи внутрь.
  6. Выполняется визуальная диагностика целостности корпуса батареи. При наличии трещин, через которые вытекает электролит, заряжать АКБ нецелесообразно.

Пользователь Аккумуляторщик рассказал о выполнении очистки и промывки корпуса аккумуляторной батареи перед ее обслуживанием.

Удаление пробок заливки кислоты

Если аккумуляторная батарея обслуживаемая, в ней надо открутить крышки на пробках. Они могут быть скрыты под специальной защитной пластиной, ее нужно демонтировать. Для выкручивания пробок можно использовать отвертку или любую металлическую пластину соответствующего размера. После демонтажа надо оценить уровень электролита, жидкость должна полностью покрывать все банки внутри конструкции. Если ее недостаточно, то требуется долить дистиллированной воды.

Установка величины тока заряда на зарядном устройстве

Выставляется параметр тока для подзарядки АКБ. Если эта величина будет больше номинальной в 2-3 раза, то процедура заряда произойдет в быстрее. Но этот метод приведет к снижению ресурса эксплуатации батареи. Поэтому выставлять такой ток можно, если аккумулятор надо подзарядить быстро.

Рекомендуется выставить значение, соответствующее 50-60% от номинального. Это увеличит время подзарядки устройства, но данный вариант более щадящий для аккумулятора.

Подключение аккумулятора с соблюдением полярности

Процедура выполняется так:

  1. К клеммам АКБ подключаются зажимы от ЗУ. Сначала выполняется соединение положительного контакта, это красный провод.
  2. Отрицательный кабель можно не подключать, если АКБ остался в автомобиле и не демонтировался. Подсоединение данного контакта возможно к кузову транспортного средства либо к блоку цилиндров.
  3. Вилка от зарядного оборудования вставляется в розетку. Аккумулятор начинает заряжаться. Время заряда зависит от степени разряда устройства и его состояния. При выполнении задачи не рекомендуется использование удлинителей. Такой провод обязательно должен иметь заземление. Его величина будет достаточной, чтобы выдержать нагрузку силы тока.

Канал «VseInstrumenti» рассказал об особенностях подключения АКБ к зарядному прибору и соблюдении полярности при выполнении этой задачи.

Как определить степень разрядки аккумулятора

Для выполнения задачи потребуется мультиметр:

  1. Производится замер величины напряжения на автомобиле с отключенным двигателем. Электросеть транспортного средства в таком режиме будет потреблять часть энергии. Значение напряжения при замере должно соответствовать 12,5-13 вольтам. Выводы тестера подключаются с соблюдением полярности к контактам АКБ.
  2. Производится запуск силового агрегата, все электрооборудование должно быть выключено. Процедура измерения повторяется. Рабочая величина должна составить в диапазоне 13,5-14 вольт. Если полученное значение больше или меньше, это говорит о разряде аккумулятора и функционировании генераторного устройства не в штатном режиме. Увеличение данного параметра при низкой отрицательной температуре воздуха не может сообщить о разряде аккумулятора. Возможно, сначала полученный показатель будет больше, но если со временем он придет в норму, это говорит о работоспособности.
  3. Выполняется включение основных потребителей энергии — отопителя, магнитолы, оптики, системы обогрева заднего стекла. В таком режиме уровень напряжения составит в диапазоне от 12,8 до 13 вольт.

Величину разряда можно определить в соответствии с данными, приведенными в таблице.

Уровень заряженности АКБЗначение плотности рабочей жидкости, г/см3Параметр напряжения разомкнутой цепи для 12-вольтной батареиЗначение НРЦ для 1 банки аккумулятора
100%1,28больше 12,7больше 2,117
80%21,24512,52,083
60%1,2112,32,05
40%1,17512,12,017
20%1,1411,91,983
0%1,111,71,95

Как рассчитать примерное время зарядки аккумулятора

Для определения приблизительного времени подзарядки потребителю необходимо знать разницу между максимальным значением заряда (12,8 В) и вольтажом в данный момент. Эта величина умножается на 10, в итоге получается время заряда в часах. Если уровень напряжения перед выполнением подзарядки составляет 11,9 вольт, то 12,8-11,9=0,8. Умножив это значение на 10 можно определить, что время подзарядки составит примерно 8 часов. Но это при условии, что будет осуществляться подача тока в размере 10% от емкости аккумулятора.

 Загрузка ...

Видео «Руководство по перебелке ИБП в ЗУ»

Пользователь Артем Квантов подробно рассказал, как полностью переделать источник бесперебойного питания в зарядное оборудование для аккумулятора машины.

Цепи зарядного устройства свинцово-кислотных аккумуляторов

Цепи зарядных устройств для свинцово-кислотных аккумуляторов, описанные в этой статье, можно использовать для зарядки всех типов свинцово-кислотных аккумуляторов с заданной скоростью.

В этой статье рассказывается о нескольких схемах зарядного устройства для свинцово-кислотных аккумуляторов с автоматической перезарядкой и отключением при малой разрядке. Все эти конструкции тщательно протестированы и могут использоваться для зарядки всех автомобильных аккумуляторов и аккумуляторов SMF емкостью до 100 Ач и даже 500 Ач.

Введение

Свинцово-кислотные батареи обычно используются в тяжелых условиях, требующих много сотен ампер.Для зарядки этих аккумуляторов нам особенно нужны зарядные устройства, рассчитанные на длительную зарядку при высоком токе. Зарядное устройство для свинцово-кислотных аккумуляторов специально разработано для зарядки аккумуляторов большой мощности с помощью специализированных цепей управления.

5 полезных и высокомощных схем зарядного устройства для свинцово-кислотных аккумуляторов, представленных ниже, могут использоваться для зарядки больших сильноточных свинцово-кислотных аккумуляторов емкостью от 100 до 500 Ач, конструкция полностью автоматическая и переключает питание на аккумулятор, а также как только аккумулятор полностью зарядится.


ОБНОВЛЕНИЕ: вы также можете создать эти простые схемы зарядного устройства для 12 В 7 Ач аккумуляторной батареи s , проверьте их.


Что означает Ач

Единица Ач или Ампер-час в любой батарее означает идеальную скорость , при которой батарея будет полностью разряжена или полностью заряжена в течение 1 часа. Например, если аккумулятор на 100 Ач заряжался при токе 100 ампер, для полной зарядки аккумулятора потребуется 1 час.Точно так же, если бы аккумулятор был разряжен при токе 100 ампер, время поддержки продлилось бы не более часа.

Но подождите, никогда не пробуйте этот , так как зарядка / разрядка на полной мощности может иметь катастрофические последствия для вашей свинцово-кислотной батареи.

Единица измерения Ач используется только для того, чтобы предоставить нам эталонное значение, которое можно использовать для определения приблизительного времени заряда / разряда аккумулятора при установленной скорости тока.

Например, когда рассмотренный выше аккумулятор заряжается на 10 ампер, используя значение Ач, мы можем найти время полной зарядки по следующей формуле:

Поскольку скорость зарядки обратно пропорциональна времени, мы имеем:

Время = Значение Ач / Скорость зарядки

T = 100/10

где 100 - уровень заряда батареи в Ач, 10 - ток зарядки, T - время при скорости 10 А

T = 10 часов.

Формула предполагает, что в идеале для оптимальной зарядки аккумулятора при токе 10 ампер потребуется около 10 часов, но для реальной батареи это может быть около 14 часов на зарядку и 7 часов на разряд. Потому что в реальном мире даже новый аккумулятор не будет работать в идеальных условиях, и с возрастом ситуация может ухудшиться.

Важные параметры, на которые следует обратить внимание

Свинцово-кислотные батареи дороги, и вам нужно убедиться, что они прослужат как можно дольше.Поэтому, пожалуйста, не используйте дешевые и непроверенные зарядные устройства, которые могут показаться простыми, но могут медленно повредить вашу батарею.

Большой вопрос в том, необходим ли идеальный способ зарядки аккумулятора? Простой ответ - НЕТ. Потому что, когда мы применяем идеальный метод зарядки, описанный на сайтах «Википедии» или «Университета батарей», мы стараемся заряжать аккумулятор до максимально возможной емкости. Например, при идеальном уровне 14,4 В ваша батарея может быть полностью заряжена, но делать это обычными методами может быть рискованно.

Чтобы достичь этого без риска, вам, возможно, придется использовать усовершенствованную схему ступенчатого зарядного устройства, которую может быть сложно построить и может потребоваться слишком много вычислений.

Если вы хотите избежать этого, вы все равно можете зарядить аккумулятор оптимальным образом (@ около 65%), убедившись, что аккумулятор отключен на немного более низком уровне. Это позволит батарее всегда находиться в менее напряженном состоянии. То же самое касается уровня и скорости разряда.

Как правило, он должен иметь следующие параметры для безопасной зарядки, не требующей специальных ступенчатых зарядных устройств:

  • Фиксированный ток или постоянный ток (1/10 номинала батареи в Ач)
  • Фиксированное напряжение или постоянное напряжение (на 17% выше, чем Напряжение, указанное на батарее)
  • Защита от перезарядки (отключение, когда батарея заряжается до указанного выше уровня)
  • Подзарядка (необязательно, совсем не обязательно)

Если в вашей системе нет этих минимальных параметров, тогда это может постепенно ухудшить производительность и повредить аккумулятор, резко сократив время автономной работы.

  1. Например, если ваша батарея рассчитана на 12 В, 100 Ач, то фиксированное входное напряжение должно быть на 17% выше, чем напечатанное значение, что равно примерно 14,1 В (не 14,40 В, если вы не используете ступенчатое зарядное устройство) .
  2. Ток (в амперах) в идеале должен составлять 1/10 от уровня в ампер-часах, указанного на батарее, так что в нашем случае это может быть 10 ампер. Чуть более высокий вход усилителя может быть нормальным, поскольку наш полный уровень заряда уже ниже.
  3. Автоматическое отключение зарядки рекомендуется на вышеуказанном 14.1 В, но это не обязательно, так как уровень полного заряда у нас уже немного ниже.
  4. Плавающий заряд - это процесс снижения тока до незначительных пределов после того, как аккумулятор полностью зарядился. Это предотвращает саморазряд батареи и постоянно поддерживает ее на полном уровне до тех пор, пока пользователь не извлечет ее для использования. Совершенно необязательно . Это может быть необходимо только в том случае, если вы не используете аккумулятор в течение длительного времени. В таких случаях также лучше вынимать аккумулятор из зарядного устройства и периодически подзаряжать его каждые 7 дней.

Самый простой способ получить фиксированное напряжение и ток - использовать микросхемы стабилизаторов напряжения, как мы узнаем ниже.

Еще один простой способ - использовать в качестве источника входного сигнала готовый 12-вольтный импульсный блок питания на 10 ампер с регулируемой предустановкой. SMPS будет иметь небольшую предустановку в углу, которую можно настроить на 14,0 В.

Помните, что вам нужно будет держать аккумулятор подключенным не менее 10–14 часов или пока напряжение на клеммах аккумулятора не достигнет 14,2 В. Хотя это уровень может выглядеть немного заниженным, чем стандартный 14.Полный уровень 4 В гарантирует, что ваша батарея никогда не перезарядится и гарантирует длительный срок службы батареи.

Все подробности представлены в этой инфографике ниже:

Однако, если вы любитель электроники и заинтересованы в создании полноценной схемы со всеми идеальными опциями, в этом случае вы можете выбрать следующие комплексные схемы.

[Новое обновление] Автоматическое отключение батареи, зависящее от тока

Обычно во всех обычных схемах зарядного устройства используется автоматическое отключение при обнаружении напряжения или зависимое от напряжения.

Тем не менее, функция определения тока может также использоваться для инициирования автоматического отключения, когда батарея достигает оптимального уровня полной зарядки. Полная принципиальная схема для автоматического отключения по току показана ниже:

ПОЖАЛУЙСТА, ПОДКЛЮЧИТЕ РЕЗИСТОР 1K ПОСЛЕ ПРАВОЙ СТОРОНЫ 1N4148 ДИОД

Принцип работы

Резистор 0,1 Ом действует как датчик тока, создавая эквивалентную разность потенциалов через себя. Сопротивление резистора должно быть таким, чтобы минимальное отклонение потенциала на нем было не менее 0.На 3 В выше, чем падение диода на выводе 3 ИС, пока аккумулятор не достигнет желаемого уровня полного заряда. По достижении полного заряда этот потенциал должен упасть ниже уровня падения диода.

Первоначально, когда батарея заряжается, потребляемый ток развивает отрицательную разность потенциалов, скажем, -1 В на входных выводах ИС. Это означает, что напряжение на контакте 2 теперь становится ниже напряжения на контакте 3 как минимум на 0,3 В. Благодаря этому на выводе 6 микросхемы появляется высокий уровень, позволяющий полевому МОП-транзистору проводить и соединять батарею с источником питания.

Когда батарея заряжается до оптимального уровня, напряжение на резисторе измерения тока падает до достаточно низкого уровня, в результате чего разность потенциалов на резисторе становится почти нулевой.

Когда это происходит, потенциал контакта 2 повышается выше, чем потенциал контакта 3, вызывая низкий уровень на контакте 6 ИС и отключая полевой МОП-транзистор. Таким образом, аккумулятор отключается от источника питания, что приводит к прекращению процесса зарядки. Диод, подключенный к контактам 3 и 6, блокирует или фиксирует цепь в этом положении до тех пор, пока питание не будет отключено и снова не включено для нового цикла.

Вышеуказанная схема зарядки, зависящая от тока, также может быть выражена следующим образом:

При включении питания конденсатор емкостью 1 мкФ заземляет инвертирующий вывод операционного усилителя, вызывая кратковременный высокий уровень на выходе операционного усилителя, который включает МОП-транзистор. Это начальное действие подключает батарею к источнику питания через полевой МОП-транзистор и измерительный резистор RS. Ток от батареи вызывает соответствующий потенциал для развития через RS, который поднимает нон-invering вход ОУ над входом опорного инвертирующий (3V).

Теперь выход операционного усилителя фиксируется и заряжает батарею, пока она не будет почти полностью заряжена. Такое положение уменьшает ток через RS таким образом, что потенциал на него падает ниже 3 ссылки V и ОУ выход включается низким уровень, выключая MOSFET и процесс зарядки для аккумулятора.

1) Использование одиночного операционного усилителя

Глядя на первую сильноточную схему для зарядки больших батарей, мы можем понять идею схемы с помощью следующих простых моментов:

В показанной конфигурации есть три основных этапа, а именно: питание каскад питания, состоящий из трансформатора и мостовой выпрямительной сети.

Конденсатор фильтра после мостовой схемы был проигнорирован для простоты, однако для лучшего вывода постоянного тока на батарею можно добавить конденсатор 1000 мкФ / 25 В между положительным и отрицательным полюсом моста.

Выходной сигнал источника питания подается непосредственно на аккумулятор, который необходимо зарядить.

Следующий каскад состоит из компаратора напряжения IC на операционном усилителе 741, который сконфигурирован так, чтобы измерять напряжение батареи во время ее зарядки и переключать свой выход на вывод № 6 с соответствующим ответом.

Контакт № 3 ИС подключен к батарее или положительному полюсу питания схемы через предустановку 10K.

Предварительная установка настроена таким образом, что ИС меняет свой выходной сигнал на выводе №6, когда батарея полностью заряжается, и достигает примерно 14 вольт, что является напряжением трансформатора при нормальных условиях.

Контакт # 2 IC зажимают с фиксированной ссылкой через делитель напряжения сети, состоящей из 10K резистор и стабилитрон 6 вольт.

Выходной сигнал ИС подается на каскад драйвера реле, где транзистор BC557 образует основной управляющий компонент.

Первоначально питание схемы инициируется нажатием переключателя «пуск». При этом выключатель обходит контакты реле и мгновенно запитывает цепь.

ИС определяет напряжение батареи, и, поскольку на этом этапе оно будет низким, на выходе ИС появится низкий логический уровень на выходе.

Включает транзистор и реле, реле мгновенно фиксирует питание через соответствующие контакты, так что теперь, даже если «пусковой» переключатель отпущен, цепь остается включенной и начинает заряжать подключенную батарею.

Теперь, когда заряд батареи достигает примерно 14 вольт, микросхема определяет это и мгновенно переводит свой выходной сигнал на высокий логический уровень.

Транзистор BC557 реагирует на этот высокий импульс и выключает реле, которое, в свою очередь, переключает питание на схему, размыкая защелку.

Цепь полностью отключается до тех пор, пока кнопка пуска не будет нажата еще раз и подключенный аккумулятор не будет иметь заряд ниже установленной отметки 14 вольт.

Как настроить.

Это очень просто.

Не подключайте аккумулятор к цепи.

Включите питание, нажав кнопку пуска и удерживая ее нажатой вручную, одновременно отрегулируйте предустановку так, чтобы реле просто срабатывало или выключалось при заданном номинальном напряжении трансформатора, которое должно быть около 14 вольт.

Настройка завершена, теперь подключите полуразряженную батарею к указанным точкам в цепи и нажмите кнопку «пуск».

Из-за разряженной батареи напряжение в цепи упадет ниже 14 вольт, и цепь мгновенно защелкнется, инициируя процедуру, как описано в предыдущем разделе.

Принципиальная схема предлагаемого зарядного устройства с высокой емкостью тока приведена ниже.

ПРИМЕЧАНИЕ. Не используйте фильтрующий конденсатор поперек моста. Вместо этого оставьте конденсатор 1000 мкФ / 25 В подключенным прямо к катушке реле. Если не снять конденсатор фильтра, реле может перейти в колебательный режим при отсутствии батареи.

2) Зарядное устройство 12 В, 24 В / 20 А с использованием двух операционных усилителей:

Второй альтернативный способ зарядки свинцово-кислотных аккумуляторов с высоким током можно увидеть на следующей диаграмме с использованием пары операционных усилителей:

Работу схемы можно понять по следующим пунктам:

Когда схема запитана без подключенной батареи, схема не реагирует на ситуацию, так как начальное положение реле замыкает цепь, отключая цепь от зарядки. поставка.

Теперь предположим, что разряженная батарея подключена к точкам батареи. Предположим, что напряжение батареи находится на некотором промежуточном уровне, который может находиться между полным и низким уровнем заряда.

Схема получает питание от этого промежуточного напряжения батареи. Согласно настройке предустановки вывода 6, этот вывод обнаруживает низкий потенциал, чем опорный уровень вывода 5. что заставляет его выходной контакт 7 перейти в высокий уровень. Это, в свою очередь, вызывает активацию реле и подключение источника заряда к цепи и батарее через замыкающие контакты.

Как только это произойдет, уровень заряда также упадет до уровня заряда аккумулятора, и два напряжения сойдутся на уровне напряжения аккумулятора. Теперь аккумулятор начинает заряжаться, и напряжение на его клеммах начинает медленно увеличиваться.

Когда аккумулятор достигает полного уровня заряда, контакт 6 верхнего операционного усилителя становится высоким, чем его контакт 5, в результате чего его выходной контакт 7 становится низким, и это выключает реле, и зарядка прекращается.

Тут происходит еще кое-что. Вывод 5 подключен к отрицательному потенциалу на выводе 7 через диод 10k / 1N4148, что еще больше снижает потенциал вывода 5 по сравнению с выводом 6.Это называется гистерезисом, который гарантирует, что даже если батарея сейчас опустится до некоторого более низкого уровня, который не приведет к возврату операционного усилителя в режим зарядки, вместо этого уровень заряда батареи теперь должен значительно снизиться, пока не будет активирован нижний операционный усилитель.

Теперь предположим, что уровень заряда батареи продолжает падать из-за некоторой подключенной нагрузки, и ее потенциальный уровень достигает минимального уровня разряда. Это обнаруживается контактом 2 нижнего операционного усилителя, потенциал которого теперь ниже его контакта 3, что побуждает его выходной контакт 1 становиться высоким и активировать транзистор BC547.

BC547 полностью заземляет контакт 6 верхнего операционного усилителя. Это приводит к срыву гистерезисной защелки из-за падения потенциала контакта 6 ниже контакта 5.

Это мгновенно приводит к тому, что выходной контакт 7 становится высоким и активирует реле, которое снова инициирует зарядку аккумулятора, и цикл повторяет процедуру пока аккумулятор остается подключенным к зарядному устройству.

LM358 Распиновка


Чтобы узнать больше об автоматических зарядных устройствах, вы можете прочитать эту статью о схемах автоматического зарядного устройства операционных усилителей .


Видеоклип:

Настройку вышеуказанной схемы можно визуализировать в следующем видео, которое показывает отклики цепи на верхний и нижний пороги напряжения, как фиксируется соответствующими предустановками операционные усилители

3) Использование IC 7815

В третьем объяснении схемы ниже подробно описывается, как аккумулятор может эффективно заряжаться без использования какой-либо микросхемы или реле, а просто с помощью BJT, давайте изучим процедуры:

Идея была предложена автор: Mr.Раджа Гилсе.

Зарядка аккумулятора с помощью регулятора напряжения IC

У меня 2N6292. Мой друг посоветовал мне сделать простой сильноточный источник постоянного тока с фиксированным напряжением для зарядки аккумулятора SMF. Он привел прилагаемую приблизительную схему. Я ничего не знаю об этом транзисторе. Это так ? Мой вход - трансформатор 18 вольт 5 ампер. Он сказал мне добавить конденсатор 2200 мкФ 50 В после выпрямления. Это работает? Если да, нужен ли радиатор для транзистора и / или IC 7815? Он останавливается автоматически, когда батарея достигает 14.5 вольт?
Или требуются другие изменения? Пожалуйста, посоветуйте мне, сэр

Зарядка с конфигурацией эмиттерного повторителя

Да, он будет работать и перестанет заряжать аккумулятор, когда на клеммах аккумулятора будет достигнуто около 14 В.

Однако я не уверен насчет номинала базового резистора 1 Ом ... его необходимо правильно рассчитать.

И транзистор, и ИС могут быть установлены на общем радиаторе с использованием набора слюдяных сепараторов. Это позволит использовать функцию тепловой защиты ИС и защитить оба устройства от перегрева.

Принципиальная схема

Описание схемы

Показанная схема зарядного устройства сильноточной батареи представляет собой интеллектуальный способ зарядки батареи, а также обеспечивает автоматическое отключение, когда батарея достигает полного уровня заряда.

Схема представляет собой простой каскад на транзисторах с общим коллектором, использующий показанное силовое устройство 2N6292.

Конфигурация также называется эмиттерным повторителем, и, как следует из названия, эмиттер следует за базовым напряжением и позволяет транзистору проводить только до тех пор, пока потенциал эмиттера равен 0.На 7 В ниже приложенного базового потенциала.

В показанной схеме зарядного устройства сильноточной батареи с использованием регулятора напряжения на базу транзистора подается стабилизированное напряжение 15 В от IC 7815, что обеспечивает разность потенциалов около 15 - 0,7 = 14,3 В на эмиттере / земле. транзистора.

Диод не требуется и должен быть удален из базы транзистора, чтобы предотвратить ненужное падение дополнительных 0,7 В.

Указанное выше напряжение также становится зарядным напряжением для подключенной батареи на этих клеммах.

Пока батарея заряжается и напряжение на ее клеммах остается ниже отметки 14,3 В, напряжение базы транзистора продолжает проводить и подавать на батарею необходимое напряжение зарядки.

Однако, как только батарея начинает достигать полного заряда выше 14,3 В, база блокируется из-за падения 0,7 В на эмиттере, которое заставляет транзистор перестать проводить, и напряжение зарядки отключается от батареи на время. как только уровень заряда батареи начинает опускаться ниже 14.Отметка 3 В, транзистор снова включается ... цикл повторяется, обеспечивая безопасную зарядку подключенного аккумулятора.

Базовый резистор = Hfe x внутреннее сопротивление батареи

Вот более подходящая конструкция, которая поможет достичь оптимальной зарядки с использованием IC 7815 IC

Как видите, здесь в режиме эмиттерного повторителя используется 2N6284. Это связано с тем, что 2N6284 - это транзистор Дарлингтона с высоким коэффициентом усиления, который обеспечивает оптимальную зарядку батареи при предполагаемой скорости 10 А.

Это можно еще больше упростить, используя один 2N6284 и потенциометр, как показано ниже:

Убедитесь, что вы отрегулировали потенциометр так, чтобы получить точное значение 14,2 В на эмиттере батареи.

Все устройства должны устанавливаться на больших радиаторах.

4) Схема зарядного устройства для свинцово-кислотных аккумуляторов 12 В 100 Ач

Предлагаемая схема зарядного устройства для аккумуляторов 12 В 100 Ач была разработана одним из преданных членов этого блога г-ном Ранджаном, давайте узнаем больше о схеме работы зарядного устройства и о том, как его также можно использовать в качестве схемы постоянного зарядного устройства.

Схема схемы

Я, Ранджан из Джамшедпура, Джаркханд. Недавно во время поиска в Google я узнал о вашем блоге и стал постоянным читателем вашего блога. Я многому научился из твоего блога. Для личного пользования хочу сделать зарядное устройство.

У меня трубчатый аккумулятор на 80 Ач и трансформатор на 10 ампер, 9–0–9 вольт. Таким образом, я могу получить 10 ампер 18-0 вольт, если я использую два 9-вольтовых вывода трансформатора (трансформатор на самом деле получается из старого ИБП 800 ВА).

Я построил принципиальную схему на основе вашего блога. Пожалуйста, взгляните на это и предложите мне. Обратите внимание, что ,.

1) Я живу в очень сельской местности, поэтому есть огромные колебания мощности, они варьируются от 50 В до 250 В. Также обратите внимание, что я буду потреблять очень меньшее количество тока от батареи (обычно использую светодиодные лампы при отключении электроэнергии), примерно 15-20 Вт.

2) Трансформатор на 10 ампер, я думаю, безопасно заряжает трубчатую батарею 80 Ач

3) Все диоды, используемые для схемы, представляют собой диоды 6A4.

4) Два 78h22a используются как параллельные для получения 5 + 5 = 10 ампер на выходе. Хотя я думаю, что Батарея не должна разряжать полные 10 ампер. поскольку он будет находиться в заряженном состоянии при повседневном использовании, внутреннее сопротивление аккумулятора будет высоким и потреблять меньший ток.

5) Переключатель S1 используется с расчетом на то, что при нормальной зарядке он будет оставаться в выключенном состоянии. и после полной зарядки аккумулятора он переключился во включенное состояние для поддержания непрерывного заряда с более низким напряжением.СЕЙЧАС вопрос в том, безопасно ли держать аккумулятор под напряжением долгое время без присмотра.

Пожалуйста, ответьте мне своими ценными предложениями.

Принципиальная схема зарядного устройства 100 Ач, разработанная г-ном Ранджаном

Решение запроса цепи

Уважаемый Ранджан,

Для меня ваша сильноточная схема зарядного устройства VRLA с использованием IC 78h22A выглядит идеально и должна работать, как ожидалось . Тем не менее, для гарантированного подтверждения рекомендуется проверить напряжение и ток практически перед подключением к батарее.

Да, показанный переключатель можно использовать в режиме непрерывного заряда, и в этом режиме аккумулятор может оставаться постоянно подключенным без присмотра, однако это следует делать только после того, как аккумулятор будет полностью заряжен примерно до 14,3 В.

Обратите внимание, что четыре последовательных диода, подключенные к клеммам GND микросхем, могут быть диодами 1N4007, в то время как остальные диоды должны быть рассчитаны на более 10 ампер, это можно реализовать, подключив два диода 6A4 параллельно в каждом из показанных положений. .

Кроме того, настоятельно рекомендуется размещать обе ИС над одним большим общим радиатором для лучшего и равномерного распределения и рассеивания тепла.

Осторожно : Показанная схема не включает цепь отключения полного заряда, поэтому максимальное напряжение зарядки предпочтительно должно быть ограничено в пределах от 13,8 до 14 В. Это гарантирует, что батарея никогда не сможет достичь предельного порога полной зарядки, и, таким образом, останется в безопасности от условий перезарядки.

Однако это также будет означать, что свинцово-кислотная батарея сможет достичь уровня заряда только около 75%, тем не менее, поддержание недостаточно заряженной батареи обеспечит более длительный срок службы батареи и позволит больше циклов зарядки / разрядки.

Использование 2N3055 для зарядки аккумулятора 100 Ач

Следующая схема представляет простой и безопасный альтернативный способ зарядки аккумулятора 100 Ач с использованием транзистора 2N3055. Он также имеет устройство постоянного тока, поэтому батарею можно заряжать правильным количеством тока.

Будучи эмиттерным повторителем, при полном уровне заряда 2N3055 будет почти выключен, чтобы аккумулятор никогда не перезарядился.

Предел тока можно рассчитать по следующей формуле:

R (x) = 0.7/10 = 0,07 Ом

Мощность будет = 10 Вт

Как просто добавить плавающий заряд

Помните, что на других сайтах могут быть представлены излишне сложные объяснения относительно плавающего заряда, что усложняет понимание концепции.

Плавающий заряд - это просто небольшой регулируемый уровень тока, который предотвращает саморазряд аккумулятора.

Теперь вы можете спросить, что такое саморазряд аккумулятора.

Это снижение уровня заряда аккумулятора при отключении тока зарядки.Вы можете предотвратить это, добавив резистор высокого номинала, такой как 1 кОм 1 ватт, на вход ИСТОЧНИК 15 В и положительный полюс батареи. Это не позволит батарее саморазрядиться и будет поддерживать уровень 14 В, пока батарея подключена к источнику питания.

5) Схема зарядного устройства свинцово-кислотных аккумуляторов IC 555

Пятая концепция ниже объясняет простую, универсальную схему автоматического зарядного устройства. Схема позволит вам заряжать все типы свинцово-кислотных аккумуляторов от 1 Ач до 1000 Ач.

Использование IC 555 в качестве контроллера IC

IC 555 настолько универсален, что может считаться однокристальным решением для любых схемных приложений. Несомненно, он также использовался здесь для еще одного полезного приложения.

Одна микросхема IC 555, несколько пассивных компонентов - это все, что нужно для создания этой выдающейся полностью автоматической схемы зарядного устройства.

Предлагаемая конструкция автоматически распознает подключенную батарею и поддерживает ее в актуальном состоянии.

Батарея, которую необходимо заряжать, может быть постоянно подключена к цепи, схема будет постоянно контролировать уровень заряда, если уровень заряда превышает верхний порог, цепь отключит напряжение зарядки к нему, и в если заряд упадет ниже установленного нижнего порога, схема подключится и начнет процесс зарядки.

Как это работает

Схему можно понять по следующим пунктам:

Здесь IC 555 настроен как компаратор для сравнения условий низкого и высокого напряжения батареи на контакте №2 и контакте №6 соответственно.

Согласно устройству внутренней схемы, микросхема 555 установит высокий уровень на своем выходном контакте №3, когда потенциал на контакте №2 опустится ниже 1/3 напряжения питания.

Вышеупомянутое положение сохраняется, даже если напряжение на выводе №2 имеет тенденцию немного повышаться.Это происходит из-за внутреннего установленного уровня гистерезиса IC.

Однако, если напряжение продолжает повышаться, контакт № 6 получает контроль над ситуацией и в тот момент, когда он обнаруживает разность потенциалов выше 2/3 напряжения питания, он мгновенно меняет выходной сигнал с высокого на низкий на контакте № 3.

В предлагаемой схеме это просто означает, что предустановки R2 и R5 должны быть установлены таким образом, чтобы реле просто отключалось, когда напряжение батареи опускается на 20% ниже указанного значения, и активируется, когда напряжение аккумулятора достигает 20% выше указанного значения. .

Нет ничего проще этого.

Блок питания представляет собой обычный мост / конденсаторную сеть.

Номинал диода будет зависеть от величины тока зарядки аккумулятора. Как показывает практика, номинальный ток диода должен быть вдвое больше, чем скорость зарядки аккумулятора, в то время как скорость зарядки аккумулятора должна составлять 1/10 от номинала аккумулятора в ампер-часах.

Это означает, что TR1 должен составлять примерно 1/10 от номинала подключенной батареи Ач.

Номинал контактов реле следует также выбирать в соответствии с номинальным током TR1.

Как установить порог отключения батареи

Первоначально держите питание цепи выключенным.

Подключите регулируемый источник питания к точкам батареи в цепи.

Подайте напряжение, которое может быть точно равным желаемому пороговому уровню низкого напряжения батареи, затем отрегулируйте R2 так, чтобы реле просто деактивировалось.

Затем медленно увеличивайте напряжение до желаемого более высокого порогового значения напряжения батареи, отрегулируйте R5 так, чтобы реле просто снова включилось.

На этом настройка схемы завершена.

Удалите внешний переменный источник, замените его любой батареей, которую необходимо зарядить, подключите вход TR1 к сети и включите.

Остальное будет автоматически обработано, то есть теперь аккумулятор начнет заряжаться и отключится, когда он полностью заряжен, а также автоматически подключится к источнику питания, если его напряжение упадет ниже установленного нижнего порога напряжения.

Распиновка IC 555

Распиновка IC 7805

Как настроить схему.

Установка пороговых значений напряжения для вышеуказанной схемы может быть выполнена, как описано ниже:

Первоначально оставьте секцию источника питания трансформатора на правой стороне схемы полностью отключенной от схемы.

Подключите внешний источник переменного напряжения к клеммам (+) / (-) батареи.

Отрегулируйте напряжение до 11,4 В и отрегулируйте предустановку на контакте № 2 так, чтобы реле просто сработало.

Вышеуказанная процедура устанавливает нижний порог срабатывания батареи.Заклейте заготовку небольшим количеством клея.

Теперь увеличьте напряжение примерно до 14,4 В и отрегулируйте предустановку на контакте № 6, чтобы просто отключить реле из его предыдущего состояния.

Устанавливает верхний порог отключения цепи.

Зарядное устройство готово.

Теперь вы можете снять регулируемый блок питания с аккумуляторных батарей и использовать зарядное устройство, как описано в статье выше.

Выполняйте описанные выше процедуры с большим терпением и обдумыванием

Отзыв одного из преданных читателей этого блога:

untung suharto 1 января 2017 г., 7:46 утра

Привет, вы ошиблись предустановленные R2 и R5, они должны быть не 10k, а 100k, я только что сделал один, и он был успешным, спасибо.

Согласно приведенному выше предложению, предыдущая диаграмма может быть изменена, как показано ниже:

Завершение

В приведенной выше статье мы узнали 5 отличных методов, которые можно применить для изготовления зарядных устройств свинцово-кислотных аккумуляторов , прямо с 7 Ач до 100 Ач или даже с 200 Ач до 500 Ач, просто обновив соответствующие устройства или реле.

Если у вас есть конкретные вопросы относительно этой концепции, не стесняйтесь задавать их через поле для комментариев ниже.

Ссылки:

Зарядка свинцово-кислотных аккумуляторов

Принципы работы свинцово-кислотных аккумуляторов

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Как сделать зарядное устройство (видео-руководство)

Как сделать зарядное устройство (12 В)

Как сделать зарядное устройство ? В этом руководстве мы имеем в виду зарядное устройство на 12 В, 45 Ач.Если вы не можете позволить себе аккумулятор или хотите, чтобы его установка у себя дома была более интересной или экономичной в долгосрочной перспективе, это руководство научит вас, как это сделать.

  • Вы не можете продолжить, не выяснив, какой тип батареи вы хотите, особенно максимальное напряжение зарядки, совместимое с ней.
  • Стандарт - это свинцово-кислотный аккумулятор, выдерживающий напряжение 14,4 В. То, что вы собираетесь сделать, во многом будет напоминать печатную коробку. Это означает, что компоненты…
  • Купите качественный мостовой выпрямитель.25 А (ампер) будет идеально. Если вам кажется, что он недостаточно мал, то мостовой выпрямитель может быть немного больше для автомобильного аккумулятора.
  • На следующем шаге вам необходимо остановиться и узнать ток заряда, необходимый для вашей батареи. С автомобильным аккумулятором на 45 Ач (ампер-часов) одна десятая от этой емкости поможет вам определить, сколько ампер вам нужно для зарядки аккумулятора в течение определенного периода времени. Обычно используется следующее уравнение: 45 AH = 4,5 A x 10 H [A: амперы; H: часы].
  • Изложенное выше является общим правилом, а не фактом, которому должен следовать каждый автомобильный аккумулятор своими руками. Время зарядки может варьироваться в зависимости от силы тока, которую, как вы знаете, может выдержать ваша батарея. Это означает, что значения уравнения, которые помогут вам определить ток заряда для указанной батареи, также изменятся.
  • Самым большим источником тепла в вашей батарее будет трансформатор. Склонен ли тот, который вы используете, к перегреву? Галогенная лампа-трансформатор - хороший вариант. Обычно он может выдерживать напряжение около 12 В при выходной мощности 60 Вт.По-прежнему будет жарко, и это трудно изменить.
  • Внимание! При перегреве трансформатора его внутренний предохранитель перегорает и аккумулятор становится инертным. На установку нового трансформатора потребуется время. Обычно этот компонент должен быть горячим, но не слишком горячим.
  • Компьютерный вентилятор можно закрепить во время сборки для охлаждения. Вам нужно будет сделать отдельный блок питания для вентилятора. В небольшом деревянном ящике можно разместить источник питания, обеспечивающий работу вентилятора. Эта коробка может вписаться в общий ансамбль.Хорошему охлаждающему вентилятору для эффективной работы требуется 300 мА (миллиампер).
  • Следующим в списке компонентом является связка кремниевых диодов. После того, как вы исправите их, как требуется, помните, что выходное напряжение должно совпадать с этими силовыми диодами. Классические или стандартные схемы этих сборок можно найти в Интернете.
  • Диоды играют решающую роль в снижении напряжения трансформатора и предотвращении его перегрева. Когда вы видите подходящие диаграммы для формирования вашей диодной цепи, обязательно используйте как минимум два диода в области мостового выпрямителя.
  • Все это поможет вам получить необходимую выходную мощность для исправного 12-вольтового автомобильного аккумулятора.
  • Для расчетов предположим, что у вас есть переменный ток 12,5 вольт, ваше постоянное напряжение будет в 1,4 раза выше этого значения; в данном случае 17,5 В [AC x 1,4 = DC]. Это происходит на конденсаторе мостового выпрямителя.
  • Выходное напряжение должно быть управляемым и не выходить за установленные пределы. Это означает поддержание конденсаторной цепи достаточного размера. Все это связано с зарядом, хранящимся внутри конденсатора.
  • Чем выше номинал электролитического конденсатора, тем больше выходная мощность. Слишком много, и это может испортить вашу батарею, которая составляет всего 12 вольт.
  • Наконец, у нас есть первичный и вторичный предохранители.

Заключение

Собрав их все вместе, вы получаете исправный автомобильный аккумулятор. Убедитесь, что вентилятор находится на той стороне ансамбля, куда воздух может легко входить. Трансформатор находится в дюйме или около того позади, где воздух может его охладить. Все остальные компоненты идут туда, где это необходимо.Воздух должен уйти после прохождения через установку, иначе он будет накапливать и накапливать тепло.

Создайте эпическую станцию ​​для зарядки аккумуляторов своими руками для вашего устройства

Зарядка аккумуляторов - повседневная часть жизни фотографа 21 века. Хотя ранее мы рассказывали, как предотвратить возгорание батареи , эта небольшая замечательная штука может сделать прямо противоположное.(Ладно, не совсем…)

Команда видеопроизводства Vimeo составила отличный учебник о том, как они построили самую грандиозную станцию ​​для зарядки аккумуляторов в новейшей истории.

Начиная с чистого листа ДВП, они изобретательно встроили зарядные устройства для каждого из своих гаджетов. Поскольку они уже владели соответствующими электроинструментами, их общая стоимость составила 113 долларов… что в моей книге кажется очень высоким.

Их материалы

  • ДВП - 10
  • $
  • Разветвители питания - 68 $
  • Короткие винты - $ 4
  • Застежки-молнии - 9
  • долларов США
  • липучка - $ 12
  • Крюк для хранения - $ 5
  • Наждачная бумага - 3
  • $
  • Рулетка - 2
  • $

ИТОГО: 113 $

Как сделать дешевле

Это больше похоже на сценарий de по сравнению со сценарием до .Другими словами, я не могу сказать, что это надежный подход для всех читателей, но для меня он сработает.

Каждый год мы идем «нырять в мусорное ведро» в близлежащем Бакнеллском университете, пока студенты собираются на лето. Нет, на самом деле мы не копаемся в мусорных баках, но бордюры за пределами жилых домов за пределами кампуса наводнены отбросами студентов. Многое из этого - законная чушь, часто это сломанные останки недавних вечеринок. Но в школе, где только обучение обходится в 50 000 долларов в год, и мы встречали учеников, которые получали пособия от родителей в размере 60 000 долларов НА СЕМЕСТР , есть много хороших вещей, от которых отказываются в спешке на вечеринку. где-нибудь еще.

В настоящее время в моем офисе я насчитываю два предмета мебели, три лампы, микрофонную стойку, два многоярусных ящика для хранения вещей, большую пробковую доску и два коврика, которые были получены этим методом. Семьдесят пять процентов нашей кухни состоит из посуды, стаканов, посуды и кухонных принадлежностей, взятых бесплатно. Мы также закупили бытовую технику, коврики, лампы в каждой комнате дома, часы, радиоприемники, стулья, мебель, произведения искусства, домашний декор, предметы первой необходимости, дизайнерскую одежду (часто постиранную, аккуратно сложенную в пакеты и брошенную на бордюр). , беспроводные маршрутизаторы, сотовые телефоны, бесчисленное множество канцелярских товаров и многое другое.По сути, наш дом - это эклектичный шведский стол из бесплатных вещей ... и это только сбор хороших, неразбитых драгоценных камней и упущение других после того, как товарищи-дайверы схватили еще лучшие находки.

Но, я отвлекся ... Один предмет, который я часто встречаю, - это удлинители. У меня их много, и я припрятал их по дому. Эти 68 долларов в списке Vimeo?… Уменьшились до 0 долларов.

Стоимость их ДВП? ... также снижена до нуля за счет фанеры, взятой из наших «мусорных баков».

Тем не менее, не все, что у меня есть, пропитано кислотой, как голодная крыса.Нам нравится посещать местные аукционы и распродажи недвижимости. Как-то вечером моя жена пришла домой с тайником ручных пил, который она купила на аукционе за 1 доллар… за все (с ломом, брошенным бесплатно). Нужны электроинструменты? Я купил лобзик (как показано в их руководстве) и дрель по 50 долларов за штуку на другом аукционе.

Итак, используя их стоимость для всего остального, я уменьшил бы эту сборку примерно до $ 37 , включая электроинструменты .

Мораль истории

Каждый день мы видим всевозможные идеи и вдохновение для самостоятельной работы, но тем, у кого ограниченный бюджет, может быть немного разочаровывающе думать о возможных затратах.Тем не менее, проявив немного находчивости и изобретательности, вы сможете свести к минимуму свой бюджет на самоделку.

И, пока вы занимаетесь этим, ознакомьтесь с моим постом, в котором я подробно рассказываю о создании коммерческого имиджа с мусорным баком и дешевым оборудованием Walmart.

[через ISO 1200]

Зарядка вашего электромобиля | EnergySage

Обновлено 21.11.2019

Электромобиль (EV) - неотъемлемая часть владения электромобилем.У полностью электрических автомобилей нет бензобака - вместо того, чтобы заправлять машину галлонами бензина, вы просто подключаете машину к зарядной станции, чтобы заправиться. Средний водитель электромобиля делает 80 процентов зарядки своего автомобиля дома. Вот ваше руководство по типу зарядных станций для электромобилей и по тому, сколько вы можете рассчитывать заплатить, чтобы зарядить свой электромобиль.

Типы станций зарядки электромобилей

Зарядка электромобиля - это простой процесс: вы просто подключаете автомобиль к зарядному устройству, подключенному к электросети.Однако не все зарядные станции для электромобилей (также известные как оборудование для электроснабжения электромобилей или EVSE) созданы равными. Некоторые из них можно установить, просто подключив к стандартной розетке, в то время как другие требуют индивидуальной установки. Время, необходимое для зарядки автомобиля, также зависит от используемого зарядного устройства.

Зарядные устройства

EV обычно относятся к одной из трех основных категорий: зарядные станции уровня 1, зарядные станции уровня 2 и устройства быстрой зарядки постоянного тока (также называемые зарядными станциями уровня 3).

Зарядные станции для электромобилей 1-го уровня

Зарядные устройства

уровня 1 используют вилку переменного тока 120 В и могут быть подключены к стандартной розетке. В отличие от других зарядных устройств, зарядные устройства Уровня 1 не требуют установки какого-либо дополнительного оборудования. Эти зарядные устройства обычно обеспечивают диапазон от двух до пяти миль в час зарядки и чаще всего используются дома.

Зарядные устройства

уровня 1 являются наименее дорогим вариантом EVSE, но они также требуют больше всего времени для зарядки аккумулятора вашего автомобиля. Домовладельцы обычно используют эти типы зарядных устройств для зарядки своих автомобилей на ночь.

Производители зарядных устройств для электромобилей уровня 1 включают AeroVironment, Duosida, Leviton и Orion.

Зарядные станции для электромобилей 2-го уровня

Зарядные устройства

Level 2 используются как для бытовых, так и для коммерческих зарядных станций. В них используется вилка на 240 В (для жилых помещений) или 208 В (для коммерческих) и, в отличие от зарядных устройств уровня 1, их нельзя подключить к стандартной розетке. Вместо этого их обычно устанавливает профессиональный электрик. Они также могут быть установлены как часть системы солнечных батарей.

Зарядные устройства для электромобилей

Level 2 обеспечивают запас хода от 10 до 60 миль в час. Они могут полностью зарядить аккумулятор электромобиля всего за два часа, что делает их идеальным вариантом как для домовладельцев, которым нужна быстрая зарядка, так и для предприятий, которые хотят предложить своим клиентам зарядные станции.

Многие производители электромобилей, например Nissan, имеют собственные зарядные устройства уровня 2. Другие производители EVSE уровня 2 включают ClipperCreek, Chargepoint, JuiceBox и Siemens.

Зарядные устройства постоянного тока (также известные как зарядные станции уровня 3 или CHAdeMO EV)

Устройства быстрой зарядки постоянного тока

, также известные как зарядные станции уровня 3 или CHAdeMO, могут обеспечить дальность действия вашего электромобиля от 60 до 100 миль всего за 20 минут зарядки. Однако обычно они используются только в коммерческих и промышленных приложениях - для их установки и обслуживания требуется узкоспециализированное мощное оборудование.

Не все электромобили можно заряжать с помощью зарядных устройств постоянного тока.Большинство подключаемых к сети гибридных электромобилей не имеют такой возможности зарядки, а некоторые полностью электрические автомобили нельзя заряжать с помощью устройства быстрой зарядки постоянного тока. Mitsubishi «i» и Nissan Leaf - два примера электромобилей, поддерживающих функцию быстрой зарядки постоянного тока.

А как насчет нагнетателей Tesla?

Один из главных аргументов в пользу электромобилей Tesla - это наличие «нагнетателей», разбросанных по США. Эти сверхбыстрые зарядные станции могут заряжать аккумулятор Tesla примерно за 30 минут и установлены по всей континентальной Европе.S. Однако Tesla Supercharger разработаны исключительно для автомобилей Tesla, а это означает, что если у вас есть электромобиль другого производителя, ваш автомобиль несовместим со станциями Supercharger. Владельцы Tesla получают 400 кВтч бесплатных кредитов Supercharger каждый год, чего достаточно, чтобы проехать около 1000 миль.

FAQ: Нужна ли моему электромобилю специальная зарядная станция?

Не обязательно. Есть три типа зарядных станций для электромобилей, и самые простые подключаются к стандартной розетке.Однако, если вы хотите быстрее зарядить свой автомобиль, вы также можете попросить электрика установить зарядную станцию ​​у вас дома.

Подробнее

Зарядка электромобиля: Nissan Leaf, Tesla Model S и X и Chevy Bolt

Не все аккумуляторы для электромобилей одинаковы. Тип приобретаемого вами электромобиля влияет на то, сколько времени и сколько это будет стоить, чтобы зарядить аккумулятор вашего автомобиля.

Зарядка Nissan Leaf

Nissan Leaf - электромобиль, предназначенный для более коротких поездок, а это означает, что у него относительно небольшой запас хода (и соответствующая батарея меньшего размера).Зарядка Leaf на станции быстрой зарядки постоянного тока может занять всего 30 минут, а время зарядки домашних зарядных станций уровня 2 составляет от 4 до 8 часов. Стоимость «заправки» аккумулятора Nissan Leaf колеблется от чуть более 3 долларов США (в штате Вашингтон) до почти 10 долларов США (на Гавайях).

Узнайте больше в нашем руководстве по зарядке Nissan Leaf.

Зарядка Chevy Bolt

Chevrolet Bolt - первый широко доступный электромобиль, который может проехать более 200 миль без подзарядки.Зарядка Bolt на станции быстрой зарядки постоянного тока занимает около часа 20 минут, а время зарядки домашних зарядных станций уровня 2 составляет около 9 с половиной часов. Стоимость «заправки» батареи Bolt варьируется от чуть более 6 долларов США (в штате Вашингтон) до примерно 20 долларов США (на Гавайях).

Узнайте больше в нашем руководстве по зарядке Chevrolet Bolt.

Зарядка Tesla EV

электромобилей Tesla, включая Model S и Model X, - это автомобили класса люкс, предназначенные для путешествий на большие расстояния.Если у вас есть Tesla Supercharger, зарядка вашего автомобиля может занять час или меньше; в домашних условиях зарядка составляет от 6 до 10 часов при полной зарядке. Стоимость «заправки» батареи Tesla колеблется от чуть менее 7 долларов США (в штате Вашингтон) до почти 22 долларов США (на Гавайях).

Узнайте больше в нашем руководстве по зарядке электромобилей Tesla.

Зарядная станция

EV - Зарядная станция для электромобилей Последняя цена, производителей и поставщиков

Популярные товары по теме зарядные станции для электромобилей

Зарядная станция Ev

1 рупий.32 Лаха

Inzeal Energy Private Limited Зарядная станция для электромобилей CCS II Chademo 50 кВт, DC 001 (15 кВт), Bharat AC-001 (10 кВт)

рупий 25 лакх

Технологии автоматизации видения 32A Type2 Мужской пистолет, 7 контактов

9 500

рупий DST Electronics Зарядное устройство для электромобилей Delta DC Wall Set

рупий 2.50 лакх

Vraj Machinetools Private Limited Bharat EV DC001 (15 кВт)

рупий 2,50 лакх

Firstcall Automation Pvt. ООО Зарядная станция для электромобилей - ChargeGrid POLO PLUS (22 кВт)

74 500 рупий

Variate Consultants Private Limited Зарядное устройство DC Wallbox

6 рупий.86 лакх

Tvesas Electric Solutions Private Limited Зарядная станция EO Genius EV

рупий 1.06 лакх

HMV Products Global Зарядная станция для электромобилей

рупий 2 лакха

Сах Империя Зарядка электромобиля

рупий 1 лак

Eledea Зарядное устройство для электромобилей

рупий 12.60 лакх

DIY схемы подключения солнечных батарей для кемперов, фургонов и жилых автофургонов - EXPLORIST.life

Это сообщение в блоге представляет собой указатель ВСЕХ схем подключения солнечных батарей для кемперов, фургонов и жилых автофургонов, которые вы можете найти здесь, на EXPLORIST.life. Ниже есть несколько вариантов на выбор. Существуют системы разных размеров, и этот список постоянно меняется и расширяется в соответствии с вашими потребностями. На всех диаграммах ниже представлены:

  • Хранение банка литиевых батарей
  • Возможность питания устройств от берегового источника питания
  • Возможность зарядки аккумуляторного блока с помощью берегового питания
  • Возможность зарядки аккумулятора через солнечные панели
  • Возможность зарядки аккумуляторного блока через генератор переменного тока автомобиля
  • Возможность работы с приборами 12 В и 120 В.
  • Приложения для кемперов DIY, OEM-домов на 30 А и OEM на 50 А

Как лучше всего использовать эту страницу - (Видео)

Это видео покажет вам, как лучше всего использовать эту страницу.Хотя эта страница является лишь указателем всех электрических схем, всегда полезно иметь некоторую ориентацию страницы, поскольку вы ищете правильную схему для своих нужд:

Эта схема и список запчастей идеально подходят для наземных электрических установок в автофургонах, школьных классах или транспортных средствах для экспедиции. Эта система наиболее подходит для систем, в которых не установлена ​​уже существующая домашняя электрическая система.

Особенности данной схемы:

  • Инверторное зарядное устройство 3000 Вт
  • Емкость аккумулятора 400+ ампер-часов
  • Мощность солнечной батареи 400–1200 Вт
  • Зарядка от генератора
  • Береговая зарядка / сквозная передача
Продолжить чтение

Эта схема и список запчастей идеально подходят для наземных электрических установок в автофургонах, школьных классах или транспортных средствах для экспедиции.Эта система наиболее подходит для систем, в которых не установлена ​​уже существующая домашняя электрическая система.

Особенности данной схемы:

  • Инверторное зарядное устройство 2000 Вт
  • Емкость аккумулятора 200+ ампер-часов
  • Мощность солнечной батареи 200–700 Вт
  • Зарядка от генератора
  • Береговая зарядка / сквозная передача
Продолжить чтение

Эта схема и список деталей идеально подходят для переоборудования солнечной батареи и модернизированного инвертора в заводской дом на колесах OEM с береговым питанием 30 А.Эта система наиболее подходит для систем, в которых не установлена ​​уже существующая домашняя электрическая система.

Особенности данной схемы:

  • Инверторное зарядное устройство 3000 Вт
  • Емкость аккумулятора 400+ ампер-часов
  • Мощность солнечной батареи 400–1200 Вт (опция)
  • Зарядка от генератора (опция)
  • Береговая зарядка / сквозная передача
Продолжить чтение

Эта схема и список деталей идеально подходят для переоборудования солнечной батареи и модернизированного инвертора в заводской дом на колесах OEM с береговым питанием 50A.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *