Трехфазный инвертор своими руками: Самодельный частотник. Разрабатываем преобразователь вместе

Содержание

Частотный преобразователь: полный обзор функций частотника

Преобразователем частоты именуют статическую преобразовательную конструкцию, используемую с целью регуляции скорости вращения асинхронного электрического двигателя. Устройства данного типа, работающие на переменном токе, гораздо проще сконструированы, и их легче эксплуатировать в сравнении с двигателями, использующими постоянный ток. Это способствует популяризации асинхронного электродвигателя.

Преобразователь частоты обеспечивает плавность пуска и остановки электрического двигателя. Наиболее уместно его использование для крупного электродвигателя с большой мощностью.

Кроме частотного преобразователя для регуляции вращательной скорости могут применяться: механические вариаторы, гидравлические муфты и т. д. Однако, такие компоненты имеют ряд недостатков:

  • Низкий уровень качества;
  • Сложная конструкция;
  • Высокая себестоимость;
  • Узкий диапазон вариантов рабочей частоты.

Частотный преобразователь для электродвигателя, регулирующий уровень напряжения питающего тока и его частоту, по данным пунктам явно отличается в лучшую сторону. Как результат, КПД преобразования стремится к ста процентам при достаточно низкой угрозе поломок.

Классификация преобразователей частоты

Согласно типу питающего напряжения необходимого для работы частотного преобразователя, существуют устройства следующих групп:

  • Однофазные;
  • Трёхфазные;
  • Высоковольтные.

Преобразователь может быть подключён к электродвигателям следующих типов:

  • Однофазным, имеющим расщеплённые полюса, и однофазным конденсаторным;
  • Трёхфазным, асинхронного типа, работающим с использованием переменного тока.
  • Оснащённых постоянными магнитами.

Существует несколько сфер использования частотного преобразователя:

  • Общепромышленная;
  • Векторное преобразование частоты;
  • Механизмы с насосно-вентиляторным типом нагрузки;
  • Преобразователи частоты в кранах и иных подъёмных механизмах;

Также существуют взрывозащищённые преобразователи, ориентированные на тяжёлые условия эксплуатации, и децентрализованные модели, которые устанавливаются прямо на базе асинхронного электродвигателя.

Особенности устройства преобразователя частоты

Типичная схема, свойственная частотному преобразователю, основана на построении двойного преобразования. Это означает, что устройство состоит из:

  1. Звена постоянного тока, также сформированного из неуправляемого выпрямителя и фильтра;
  2. Силового импульсного инвентора;
  3. Системы управления.

Первый компонент отвечает за преобразование переменного сетевого напряжения в постоянное. После неуправляемого выпрямителя движения тока происходит через транзисторные ключи, обеспечивающие подключение обмотки асинхронного двигателя к положительным и отрицательным выводам звена постоянного тока. Эти транзисторы вместе называются силовым импульсным инвентором. Трёхфазный инвентор, состоящий из шести, осуществляет преобразование выпрямленного напряжения соответственно в трёхфазное переменное значение необходимой частоты и амплитуды, передаваемое на обмотку статора электрического двигателя.

Для компоновки импульсного инвентора предпочтительно использование IGBT-транзисторов (биполярные, имеют затвор), поскольку они являются обладателями достаточно высокой частоты переключения. Это позволяет формировать на выходе синусоидальный сигнал с минимальными искажениями.

Принципы функционирования частотного преобразователя

Регуляция пускового тока может осуществляться вручную, но это увеличивает затраты электропотребления и снижает срок эксплуатации асинхронного двигателя. Обычно без преобразователя напряжения показания до семи раз превышают значение номинала. Определённо, это не самые лучшие условия для эксплуатации.

Принцип работы преобразователей частоты связан со спецификой действия асинхронного электродвигателя. У двигателя подобного вида наблюдается зависимость между вращательной частотой магнитного поля и частотой напряжения питающего тока. В данном моменте и заключается смысл методики частотного управления. Изменяемая преобразователем входная частота напряжения отвечает за регуляцию частоты вращения. Таким образом, диапазон значений выходного напряжения весьма широк.

По принципу работы силового элемента частотные преобразователи можно отнести к следующим категориям:

  • Конструкции, имеющие выраженный промежуточный неуправляемый выпрямитель.
  • Конструкции, имеющие непосредственную связь (без промежуточного звена).

Частотники второго типа появились гораздо раньше, в них силовой компонент представлен управляемым выпрямителем, сконструированным из тиристоров. Формирование выходного сигнала происходит при поочерёдном отпирании тиристоров управляющим узлом. На сегодняшний день такие приборы потеряли свою актуальность.

Что касается частотного преобразователя первого типа, то он примечателен тем, что его можно запитать через внешнее звено постоянного тока. Сам частотник при этом защищается предохранителем быстрого действия. Однако, это делает нежелательным применение контакторов, поскольку данная разновидность коммутации провоцирует возникновение повышенного зарядного тока и выгорание предохранителей.

Работа частотного преобразователя связана с принципом двойного преобразования напряжения:

  1. Регуляция сетевого напряжения через выпрямление и фильтрование (для этого используются конденсаторные системы).
  2. Задействуется электронное управление, устанавливающее заблаговременно выбранную частоту тока.
  3. Происходит образование прямоугольных импульсов, корректируемых при помощи обмотки статора. В результате они преобразуются в синусоиду.

Содержание двух принципов управления преобразователем частоты

Существует диада основных принципов регуляции частотных преобразователей:

  • Принцип скалярного управления.

Преобразователи частоты управляемые по данному принципу имеют низкую себестоимость. Часто применяются в приводах устройств, где степень частоты вращения может регулироваться в соотношении 1:40. Это позволяет адекватно управлять работой насосов, компрессоров, вентиляторов. К тому скалярный метод позволяет осуществлять регуляцию работы сразу нескольких электродвигателей.

  • Векторный принцип.

Имеют максимальное совпадение характеристик асинхронных электроприводов с параметрами приводов ПТ. Этому способствует разделение регуляционных каналов, связанных с потокосцеплением и вращательной скоростью асинхронного двигателя. Частотники, работающие в рамках данной системы управления, более дорогие по цене и применяются в устройствах требующих высокоточного регулирования скорости: станках, лифтах, кранах.

Как и где следует применять частотный преобразователь

Частотный преобразователь позволяет регулировать скорость действия следующих механизмов:

  • Насосов, перекачивающих горячую или холодную воду по системе водоснабжения и обогрева;
  • Вспомогательных агрегатов котельных, тепловых электростанций, ТЭЦ и т.д.;
  • Дробилках, мельницах, мешалках;
  • Песковых и пульповых насосов, используемых на обогатительных фабриках;
  • Лифтовых установок;
  • Разнотипных центрифуг;
  • Производственных линий, создающих ленточные материалы;
  • Кранового и эскалаторного оборудования;
  • Устройств, обеспечивающих силовые манипуляции;
  • Приводов на буровых станках, специализированных приборов и так далее.

Наиболее очевидна польза частотных преобразователей с точки зрения экономии:

  • Оптимальный уровень КПД позволяет вдвое экономить электроэнергию.
  • Количество и качество конечного продукта в производственной значительно возрастает.
  • Комплектующие механизма меньше изнашиваются;
  • Общая длительность эксплуатации оборудования также возрастает.

Как итог, частотный преобразователь отвечает за эффективность и продуктивность функционирования механизмов.

Тонкости выбора частотного преобразователя

Основным значимым параметром, при выборе той или иной модели преобразователя частоты, на сегодняшний день является именно его стоимость. Это обусловлено тем, что только для дорогого устройства характерна максимальная функциональность. Но это не отменяет наличие специфических требований в зависимости от того, для механизма какой категории подбирается преобразователь, поэтому необходимо учитывать:

  • Разновидность и данные по мощности асинхронного электродвигателя, к которому подключается частотник;
  • Насколько точно и в каком диапазоне можно регулировать скорость;
  • Насколько точно осуществляется поддержание момента и скорости вращения на валу электрического двигателя;
  • Соответствие конструкции (формы, размера, пульта управления и так далее) индивидуальным требованиям.

Обязательно также обратить внимание на значение мощности асинхронного электрического двигателя, с которым будет взаимодействовать преобразователь частоты. Если один из параметров (например: величина пускового момента, затрачиваемое на разгон или торможение время) должен соответствовать каким-то особым требованиям, то нужно выбрать устройство более высокого класса, чем потенциально подходящее.

Самостоятельная сборка преобразователя

Чтобы механизм адекватно функционировал, сеть должна обладать весьма широкой вариацией значений напряжения. Это снижает риск поломки устройства при резких скачках.

Частота должна соответствовать производственным запросам. Нижний предел этого параметра позволяет ориентироваться в спектре возможностей регулирования скорости привода. В случае, если требуется расширить частотный диапазон относительно уже имеющегося, то необходимо подобрать модель частотного преобразователя, принцип работы которой относится к векторному типу.

Однако, стандартный рабочий диапазон составляет 10-60 Герц и лишь иногда доходит до 100 Герц.

Далее следует обратить внимание на входы и выходы управления. Процесс применения устройств с достаточно большим количеством разъёмов гораздо более удобен. Но и стоимость от этого возрастает, кроме того, затрудняется настройка. Подобные приборы могут быть оснащены дискретными, цифровыми или аналоговыми разъёмами.

Использование дискретного разъёма позволяет вводить управляющие команды и выводить информацию о течении процесса. Цифровой разъём обеспечивает введение сигналов, подаваемых цифровыми датчиками. Аналоговый разъём предназначен для введения сигнала обеспечивающего обратную связь.

Также следует проверять соответствие характеристик шины управления и возможностей преобразователя. В первую очередь это можно понять по соответствию числа разъёмов. По возможности их должно быть даже больше, чем требуется, чтобы имелся простор для модернизирования.

Если говорить о перегрузочных способностях, то следует предпочесть модели, которые имеют уровень мощности на 15% превышающий данные по мощности у двигателя.

В любом случае всегда нужно как следует изучать прилагающуюся к частотнику документацию. Там можно найти все требуемые сведения о параметрах и характеристиках.

Схема сборки

Следующая последовательность подойдёт для проводки, функционирующей с уровнем напряжения в 220 вольт и на одной фазе. Схема рассчитана на двигатель уровнем мощности не более 1 кВт.

В первую очередь осуществляется соединение обмоток двигателя по принципу «треугольник».

В качестве фундамента преобразователя используется пара плат. Одна из них необходима для блока питания и драйвера. Также туда будут относиться транзисторы и силовые клеммы. Другую плату применяют, чтобы закрепить микроконтроллер и индикатор. Между собой платы контактируют посредством гибкого шлейфа.

Для моделирования импульсного блока питания понадобится стандартная схема, которую можно обнаружить в сети.

Для контроля работы двигателя и напряжения не нужно влиять на ток извне. Тем не менее вполне уместно ввести в устройство линейную развязку с микросхемой.

На общем радиаторе устройства фиксируются транзисторы и диодный мост.

Обязательно потребуются оптроны ОС2-4, которые используются для дублирования кнопок управления. А с помощью ОС-1 выполняются пользовательские функции.

Однофазный преобразователь частоты не нуждается в трансформаторе. В качестве альтернативы  воспользоваться токовым шунтом, который при необходимости дополняется при помощи усилителя DA-1.

При мощности до 400 ватт схема для стабильной работы двигателя не требует установки термодатчика. Уровень сетевого напряжения вполне можно контролировать усилителем DA-1-2.

Для управляющих кнопок необходима защита в виде пластиковых толкателей. Сам процесс управления построен на опторазвязке.

При применении проводов чрезмерной длины, используются помехоподавляющие кольца.

Методика подключения преобразователя частоты к двигателю

Подключение преобразователя возможно только при соблюдении рекомендованной изготовителем комплектации устройства:

  • Сечения определённых типов;
  • Провода определённых типов;
  • Дополнительное оборудование.

К дополнительному оборудованию можно отнести:

  • Реактор ПТ;
  • Тормозной блок;
  • Фильтр (входной/выходной).

Не рекомендовано занижение номинала автоматического выключателя. Даже минимальное несоответствие может привести к хаотичному размыканию цепи, что зачастую сводит ситуацию к тому, что звено постоянного тока выходит из строя, и схема оказывается нарушена. Следует обращать внимание на то, чтобы наконечники проводов были хорошо обжаты.

Зачастую при самостоятельной установке входная и выходная клеммы оказываются перепутаны (хотя общепонятную маркировку преобразователя вполне можно увидеть). Поэтому нужно знать, схема формируется таким образом, что клеммы L1, L2, L3 используются для соединения с питающей сетью, а U, V, W — предназначаются для электродвигателя. Если не соблюсти этого правила, скорее всего придётся всё ремонтировать.

Ввод в эксплуатацию преобразователя частоты Danfoss VLT Micro Drive FC 51


Watch this video on YouTube

Также, поломка гарантирована, если на входы управляющего элемента осуществляется подача напряжения на 220 и 380 вольт.

Уход за преобразователем

Чтобы продлить срок службы ПЧ следует осуществлять за ним соответствующий уход:

  • Отслеживать оседание пыли на внутренних элементах и производить своевременную чистку устройства при помощи компрессора.
  • Удостоверяться в работоспособности узлов, которые используются механизме, и производить их замену, если возникает такая необходимость.
  • Соблюдать адекватную рабочую температуру (не более +40°С) механизма и уровень напряжения на управляющей шине.
  • Регулярно (не реже одного раза за 3 года) обновлять слой термопасты на силовых компонентах устройства.
  • По возможности соблюдать умеренный уровень влажности.

Частотный преобразователь: полный обзор функций частотника

Преобразователем частоты именуют статическую преобразовательную конструкцию, используемую с целью регуляции скорости вращения асинхронного электрического двигателя. Устройства данного типа, работающие на переменном токе, гораздо проще сконструированы, и их легче эксплуатировать в сравнении с двигателями, использующими постоянный ток. Это способствует популяризации асинхронного электродвигателя.

Преобразователь частоты обеспечивает плавность пуска и остановки электрического двигателя. Наиболее уместно его использование для крупного электродвигателя с большой мощностью.

Кроме частотного преобразователя для регуляции вращательной скорости могут применяться: механические вариаторы, гидравлические муфты и т. д. Однако, такие компоненты имеют ряд недостатков:

  • Низкий уровень качества;
  • Сложная конструкция;
  • Высокая себестоимость;
  • Узкий диапазон вариантов рабочей частоты.

Частотный преобразователь для электродвигателя, регулирующий уровень напряжения питающего тока и его частоту, по данным пунктам явно отличается в лучшую сторону. Как результат, КПД преобразования стремится к ста процентам при достаточно низкой угрозе поломок.

Классификация преобразователей частоты

Согласно типу питающего напряжения необходимого для работы частотного преобразователя, существуют устройства следующих групп:

  • Однофазные;
  • Трёхфазные;
  • Высоковольтные.

Преобразователь может быть подключён к электродвигателям следующих типов:

  • Однофазным, имеющим расщеплённые полюса, и однофазным конденсаторным;
  • Трёхфазным, асинхронного типа, работающим с использованием переменного тока.
  • Оснащённых постоянными магнитами.

Существует несколько сфер использования частотного преобразователя:

  • Общепромышленная;
  • Векторное преобразование частоты;
  • Механизмы с насосно-вентиляторным типом нагрузки;
  • Преобразователи частоты в кранах и иных подъёмных механизмах;

Также существуют взрывозащищённые преобразователи, ориентированные на тяжёлые условия эксплуатации, и децентрализованные модели, которые устанавливаются прямо на базе асинхронного электродвигателя.

Особенности устройства преобразователя частоты

Типичная схема, свойственная частотному преобразователю, основана на построении двойного преобразования. Это означает, что устройство состоит из:

  1. Звена постоянного тока, также сформированного из неуправляемого выпрямителя и фильтра;
  2. Силового импульсного инвентора;
  3. Системы управления.

Первый компонент отвечает за преобразование переменного сетевого напряжения в постоянное. После неуправляемого выпрямителя движения тока происходит через транзисторные ключи, обеспечивающие подключение обмотки асинхронного двигателя к положительным и отрицательным выводам звена постоянного тока. Эти транзисторы вместе называются силовым импульсным инвентором. Трёхфазный инвентор, состоящий из шести, осуществляет преобразование выпрямленного напряжения соответственно в трёхфазное переменное значение необходимой частоты и амплитуды, передаваемое на обмотку статора электрического двигателя.

Для компоновки импульсного инвентора предпочтительно использование IGBT-транзисторов (биполярные, имеют затвор), поскольку они являются обладателями достаточно высокой частоты переключения. Это позволяет формировать на выходе синусоидальный сигнал с минимальными искажениями.

Принципы функционирования частотного преобразователя

Регуляция пускового тока может осуществляться вручную, но это увеличивает затраты электропотребления и снижает срок эксплуатации асинхронного двигателя. Обычно без преобразователя напряжения показания до семи раз превышают значение номинала. Определённо, это не самые лучшие условия для эксплуатации.

Принцип работы преобразователей частоты связан со спецификой действия асинхронного электродвигателя. У двигателя подобного вида наблюдается зависимость между вращательной частотой магнитного поля и частотой напряжения питающего тока. В данном моменте и заключается смысл методики частотного управления. Изменяемая преобразователем входная частота напряжения отвечает за регуляцию частоты вращения. Таким образом, диапазон значений выходного напряжения весьма широк.

По принципу работы силового элемента частотные преобразователи можно отнести к следующим категориям:

  • Конструкции, имеющие выраженный промежуточный неуправляемый выпрямитель.
  • Конструкции, имеющие непосредственную связь (без промежуточного звена).

Частотники второго типа появились гораздо раньше, в них силовой компонент представлен управляемым выпрямителем, сконструированным из тиристоров. Формирование выходного сигнала происходит при поочерёдном отпирании тиристоров управляющим узлом. На сегодняшний день такие приборы потеряли свою актуальность.

Что касается частотного преобразователя первого типа, то он примечателен тем, что его можно запитать через внешнее звено постоянного тока. Сам частотник при этом защищается предохранителем быстрого действия. Однако, это делает нежелательным применение контакторов, поскольку данная разновидность коммутации провоцирует возникновение повышенного зарядного тока и выгорание предохранителей.

Работа частотного преобразователя связана с принципом двойного преобразования напряжения:

  1. Регуляция сетевого напряжения через выпрямление и фильтрование (для этого используются конденсаторные системы).
  2. Задействуется электронное управление, устанавливающее заблаговременно выбранную частоту тока.
  3. Происходит образование прямоугольных импульсов, корректируемых при помощи обмотки статора. В результате они преобразуются в синусоиду.

Содержание двух принципов управления преобразователем частоты

Существует диада основных принципов регуляции частотных преобразователей:

  • Принцип скалярного управления.

Преобразователи частоты управляемые по данному принципу имеют низкую себестоимость. Часто применяются в приводах устройств, где степень частоты вращения может регулироваться в соотношении 1:40. Это позволяет адекватно управлять работой насосов, компрессоров, вентиляторов. К тому скалярный метод позволяет осуществлять регуляцию работы сразу нескольких электродвигателей.

  • Векторный принцип.

Имеют максимальное совпадение характеристик асинхронных электроприводов с параметрами приводов ПТ. Этому способствует разделение регуляционных каналов, связанных с потокосцеплением и вращательной скоростью асинхронного двигателя. Частотники, работающие в рамках данной системы управления, более дорогие по цене и применяются в устройствах требующих высокоточного регулирования скорости: станках, лифтах, кранах.

Как и где следует применять частотный преобразователь

Частотный преобразователь позволяет регулировать скорость действия следующих механизмов:

  • Насосов, перекачивающих горячую или холодную воду по системе водоснабжения и обогрева;
  • Вспомогательных агрегатов котельных, тепловых электростанций, ТЭЦ и т.д.;
  • Дробилках, мельницах, мешалках;
  • Песковых и пульповых насосов, используемых на обогатительных фабриках;
  • Лифтовых установок;
  • Разнотипных центрифуг;
  • Производственных линий, создающих ленточные материалы;
  • Кранового и эскалаторного оборудования;
  • Устройств, обеспечивающих силовые манипуляции;
  • Приводов на буровых станках, специализированных приборов и так далее.

Наиболее очевидна польза частотных преобразователей с точки зрения экономии:

  • Оптимальный уровень КПД позволяет вдвое экономить электроэнергию.
  • Количество и качество конечного продукта в производственной значительно возрастает.
  • Комплектующие механизма меньше изнашиваются;
  • Общая длительность эксплуатации оборудования также возрастает.

Как итог, частотный преобразователь отвечает за эффективность и продуктивность функционирования механизмов.

Тонкости выбора частотного преобразователя

Основным значимым параметром, при выборе той или иной модели преобразователя частоты, на сегодняшний день является именно его стоимость. Это обусловлено тем, что только для дорогого устройства характерна максимальная функциональность. Но это не отменяет наличие специфических требований в зависимости от того, для механизма какой категории подбирается преобразователь, поэтому необходимо учитывать:

  • Разновидность и данные по мощности асинхронного электродвигателя, к которому подключается частотник;
  • Насколько точно и в каком диапазоне можно регулировать скорость;
  • Насколько точно осуществляется поддержание момента и скорости вращения на валу электрического двигателя;
  • Соответствие конструкции (формы, размера, пульта управления и так далее) индивидуальным требованиям.

Обязательно также обратить внимание на значение мощности асинхронного электрического двигателя, с которым будет взаимодействовать преобразователь частоты. Если один из параметров (например: величина пускового момента, затрачиваемое на разгон или торможение время) должен соответствовать каким-то особым требованиям, то нужно выбрать устройство более высокого класса, чем потенциально подходящее.

Самостоятельная сборка преобразователя

Чтобы механизм адекватно функционировал, сеть должна обладать весьма широкой вариацией значений напряжения. Это снижает риск поломки устройства при резких скачках.

Частота должна соответствовать производственным запросам. Нижний предел этого параметра позволяет ориентироваться в спектре возможностей регулирования скорости привода. В случае, если требуется расширить частотный диапазон относительно уже имеющегося, то необходимо подобрать модель частотного преобразователя, принцип работы которой относится к векторному типу.

Однако, стандартный рабочий диапазон составляет 10-60 Герц и лишь иногда доходит до 100 Герц.

Далее следует обратить внимание на входы и выходы управления. Процесс применения устройств с достаточно большим количеством разъёмов гораздо более удобен. Но и стоимость от этого возрастает, кроме того, затрудняется настройка. Подобные приборы могут быть оснащены дискретными, цифровыми или аналоговыми разъёмами.

Использование дискретного разъёма позволяет вводить управляющие команды и выводить информацию о течении процесса. Цифровой разъём обеспечивает введение сигналов, подаваемых цифровыми датчиками. Аналоговый разъём предназначен для введения сигнала обеспечивающего обратную связь.

Также следует проверять соответствие характеристик шины управления и возможностей преобразователя. В первую очередь это можно понять по соответствию числа разъёмов. По возможности их должно быть даже больше, чем требуется, чтобы имелся простор для модернизирования.

Если говорить о перегрузочных способностях, то следует предпочесть модели, которые имеют уровень мощности на 15% превышающий данные по мощности у двигателя.

В любом случае всегда нужно как следует изучать прилагающуюся к частотнику документацию. Там можно найти все требуемые сведения о параметрах и характеристиках.

Схема сборки

Следующая последовательность подойдёт для проводки, функционирующей с уровнем напряжения в 220 вольт и на одной фазе. Схема рассчитана на двигатель уровнем мощности не более 1 кВт.

В первую очередь осуществляется соединение обмоток двигателя по принципу «треугольник».

В качестве фундамента преобразователя используется пара плат. Одна из них необходима для блока питания и драйвера. Также туда будут относиться транзисторы и силовые клеммы. Другую плату применяют, чтобы закрепить микроконтроллер и индикатор. Между собой платы контактируют посредством гибкого шлейфа.

Для моделирования импульсного блока питания понадобится стандартная схема, которую можно обнаружить в сети.

Для контроля работы двигателя и напряжения не нужно влиять на ток извне. Тем не менее вполне уместно ввести в устройство линейную развязку с микросхемой.

На общем радиаторе устройства фиксируются транзисторы и диодный мост.

Обязательно потребуются оптроны ОС2-4, которые используются для дублирования кнопок управления. А с помощью ОС-1 выполняются пользовательские функции.

Однофазный преобразователь частоты не нуждается в трансформаторе. В качестве альтернативы  воспользоваться токовым шунтом, который при необходимости дополняется при помощи усилителя DA-1.

При мощности до 400 ватт схема для стабильной работы двигателя не требует установки термодатчика. Уровень сетевого напряжения вполне можно контролировать усилителем DA-1-2.

Для управляющих кнопок необходима защита в виде пластиковых толкателей. Сам процесс управления построен на опторазвязке.

При применении проводов чрезмерной длины, используются помехоподавляющие кольца.

Методика подключения преобразователя частоты к двигателю

Подключение преобразователя возможно только при соблюдении рекомендованной изготовителем комплектации устройства:

  • Сечения определённых типов;
  • Провода определённых типов;
  • Дополнительное оборудование.

К дополнительному оборудованию можно отнести:

  • Реактор ПТ;
  • Тормозной блок;
  • Фильтр (входной/выходной).

Не рекомендовано занижение номинала автоматического выключателя. Даже минимальное несоответствие может привести к хаотичному размыканию цепи, что зачастую сводит ситуацию к тому, что звено постоянного тока выходит из строя, и схема оказывается нарушена. Следует обращать внимание на то, чтобы наконечники проводов были хорошо обжаты.

Зачастую при самостоятельной установке входная и выходная клеммы оказываются перепутаны (хотя общепонятную маркировку преобразователя вполне можно увидеть). Поэтому нужно знать, схема формируется таким образом, что клеммы L1, L2, L3 используются для соединения с питающей сетью, а U, V, W — предназначаются для электродвигателя. Если не соблюсти этого правила, скорее всего придётся всё ремонтировать.

Ввод в эксплуатацию преобразователя частоты Danfoss VLT Micro Drive FC 51


Watch this video on YouTube

Также, поломка гарантирована, если на входы управляющего элемента осуществляется подача напряжения на 220 и 380 вольт.

Уход за преобразователем

Чтобы продлить срок службы ПЧ следует осуществлять за ним соответствующий уход:

  • Отслеживать оседание пыли на внутренних элементах и производить своевременную чистку устройства при помощи компрессора.
  • Удостоверяться в работоспособности узлов, которые используются механизме, и производить их замену, если возникает такая необходимость.
  • Соблюдать адекватную рабочую температуру (не более +40°С) механизма и уровень напряжения на управляющей шине.
  • Регулярно (не реже одного раза за 3 года) обновлять слой термопасты на силовых компонентах устройства.
  • По возможности соблюдать умеренный уровень влажности.

Частотный преобразователь: полный обзор функций частотника

Преобразователем частоты именуют статическую преобразовательную конструкцию, используемую с целью регуляции скорости вращения асинхронного электрического двигателя. Устройства данного типа, работающие на переменном токе, гораздо проще сконструированы, и их легче эксплуатировать в сравнении с двигателями, использующими постоянный ток. Это способствует популяризации асинхронного электродвигателя.

Преобразователь частоты обеспечивает плавность пуска и остановки электрического двигателя. Наиболее уместно его использование для крупного электродвигателя с большой мощностью.

Кроме частотного преобразователя для регуляции вращательной скорости могут применяться: механические вариаторы, гидравлические муфты и т. д. Однако, такие компоненты имеют ряд недостатков:

  • Низкий уровень качества;
  • Сложная конструкция;
  • Высокая себестоимость;
  • Узкий диапазон вариантов рабочей частоты.

Частотный преобразователь для электродвигателя, регулирующий уровень напряжения питающего тока и его частоту, по данным пунктам явно отличается в лучшую сторону. Как результат, КПД преобразования стремится к ста процентам при достаточно низкой угрозе поломок.

Классификация преобразователей частоты

Согласно типу питающего напряжения необходимого для работы частотного преобразователя, существуют устройства следующих групп:

  • Однофазные;
  • Трёхфазные;
  • Высоковольтные.

Преобразователь может быть подключён к электродвигателям следующих типов:

  • Однофазным, имеющим расщеплённые полюса, и однофазным конденсаторным;
  • Трёхфазным, асинхронного типа, работающим с использованием переменного тока.
  • Оснащённых постоянными магнитами.

Существует несколько сфер использования частотного преобразователя:

  • Общепромышленная;
  • Векторное преобразование частоты;
  • Механизмы с насосно-вентиляторным типом нагрузки;
  • Преобразователи частоты в кранах и иных подъёмных механизмах;

Также существуют взрывозащищённые преобразователи, ориентированные на тяжёлые условия эксплуатации, и децентрализованные модели, которые устанавливаются прямо на базе асинхронного электродвигателя.

Особенности устройства преобразователя частоты

Типичная схема, свойственная частотному преобразователю, основана на построении двойного преобразования. Это означает, что устройство состоит из:

  1. Звена постоянного тока, также сформированного из неуправляемого выпрямителя и фильтра;
  2. Силового импульсного инвентора;
  3. Системы управления.

Первый компонент отвечает за преобразование переменного сетевого напряжения в постоянное. После неуправляемого выпрямителя движения тока происходит через транзисторные ключи, обеспечивающие подключение обмотки асинхронного двигателя к положительным и отрицательным выводам звена постоянного тока. Эти транзисторы вместе называются силовым импульсным инвентором. Трёхфазный инвентор, состоящий из шести, осуществляет преобразование выпрямленного напряжения соответственно в трёхфазное переменное значение необходимой частоты и амплитуды, передаваемое на обмотку статора электрического двигателя.

Для компоновки импульсного инвентора предпочтительно использование IGBT-транзисторов (биполярные, имеют затвор), поскольку они являются обладателями достаточно высокой частоты переключения. Это позволяет формировать на выходе синусоидальный сигнал с минимальными искажениями.

Принципы функционирования частотного преобразователя

Регуляция пускового тока может осуществляться вручную, но это увеличивает затраты электропотребления и снижает срок эксплуатации асинхронного двигателя. Обычно без преобразователя напряжения показания до семи раз превышают значение номинала. Определённо, это не самые лучшие условия для эксплуатации.

Принцип работы преобразователей частоты связан со спецификой действия асинхронного электродвигателя. У двигателя подобного вида наблюдается зависимость между вращательной частотой магнитного поля и частотой напряжения питающего тока. В данном моменте и заключается смысл методики частотного управления. Изменяемая преобразователем входная частота напряжения отвечает за регуляцию частоты вращения. Таким образом, диапазон значений выходного напряжения весьма широк.

По принципу работы силового элемента частотные преобразователи можно отнести к следующим категориям:

  • Конструкции, имеющие выраженный промежуточный неуправляемый выпрямитель.
  • Конструкции, имеющие непосредственную связь (без промежуточного звена).

Частотники второго типа появились гораздо раньше, в них силовой компонент представлен управляемым выпрямителем, сконструированным из тиристоров. Формирование выходного сигнала происходит при поочерёдном отпирании тиристоров управляющим узлом. На сегодняшний день такие приборы потеряли свою актуальность.

Что касается частотного преобразователя первого типа, то он примечателен тем, что его можно запитать через внешнее звено постоянного тока. Сам частотник при этом защищается предохранителем быстрого действия. Однако, это делает нежелательным применение контакторов, поскольку данная разновидность коммутации провоцирует возникновение повышенного зарядного тока и выгорание предохранителей.

Работа частотного преобразователя связана с принципом двойного преобразования напряжения:

  1. Регуляция сетевого напряжения через выпрямление и фильтрование (для этого используются конденсаторные системы).
  2. Задействуется электронное управление, устанавливающее заблаговременно выбранную частоту тока.
  3. Происходит образование прямоугольных импульсов, корректируемых при помощи обмотки статора. В результате они преобразуются в синусоиду.

Содержание двух принципов управления преобразователем частоты

Существует диада основных принципов регуляции частотных преобразователей:

  • Принцип скалярного управления.

Преобразователи частоты управляемые по данному принципу имеют низкую себестоимость. Часто применяются в приводах устройств, где степень частоты вращения может регулироваться в соотношении 1:40. Это позволяет адекватно управлять работой насосов, компрессоров, вентиляторов. К тому скалярный метод позволяет осуществлять регуляцию работы сразу нескольких электродвигателей.

  • Векторный принцип.

Имеют максимальное совпадение характеристик асинхронных электроприводов с параметрами приводов ПТ. Этому способствует разделение регуляционных каналов, связанных с потокосцеплением и вращательной скоростью асинхронного двигателя. Частотники, работающие в рамках данной системы управления, более дорогие по цене и применяются в устройствах требующих высокоточного регулирования скорости: станках, лифтах, кранах.

Как и где следует применять частотный преобразователь

Частотный преобразователь позволяет регулировать скорость действия следующих механизмов:

  • Насосов, перекачивающих горячую или холодную воду по системе водоснабжения и обогрева;
  • Вспомогательных агрегатов котельных, тепловых электростанций, ТЭЦ и т.д.;
  • Дробилках, мельницах, мешалках;
  • Песковых и пульповых насосов, используемых на обогатительных фабриках;
  • Лифтовых установок;
  • Разнотипных центрифуг;
  • Производственных линий, создающих ленточные материалы;
  • Кранового и эскалаторного оборудования;
  • Устройств, обеспечивающих силовые манипуляции;
  • Приводов на буровых станках, специализированных приборов и так далее.

Наиболее очевидна польза частотных преобразователей с точки зрения экономии:

  • Оптимальный уровень КПД позволяет вдвое экономить электроэнергию.
  • Количество и качество конечного продукта в производственной значительно возрастает.
  • Комплектующие механизма меньше изнашиваются;
  • Общая длительность эксплуатации оборудования также возрастает.

Как итог, частотный преобразователь отвечает за эффективность и продуктивность функционирования механизмов.

Тонкости выбора частотного преобразователя

Основным значимым параметром, при выборе той или иной модели преобразователя частоты, на сегодняшний день является именно его стоимость. Это обусловлено тем, что только для дорогого устройства характерна максимальная функциональность. Но это не отменяет наличие специфических требований в зависимости от того, для механизма какой категории подбирается преобразователь, поэтому необходимо учитывать:

  • Разновидность и данные по мощности асинхронного электродвигателя, к которому подключается частотник;
  • Насколько точно и в каком диапазоне можно регулировать скорость;
  • Насколько точно осуществляется поддержание момента и скорости вращения на валу электрического двигателя;
  • Соответствие конструкции (формы, размера, пульта управления и так далее) индивидуальным требованиям.

Обязательно также обратить внимание на значение мощности асинхронного электрического двигателя, с которым будет взаимодействовать преобразователь частоты. Если один из параметров (например: величина пускового момента, затрачиваемое на разгон или торможение время) должен соответствовать каким-то особым требованиям, то нужно выбрать устройство более высокого класса, чем потенциально подходящее.

Самостоятельная сборка преобразователя

Чтобы механизм адекватно функционировал, сеть должна обладать весьма широкой вариацией значений напряжения. Это снижает риск поломки устройства при резких скачках.

Частота должна соответствовать производственным запросам. Нижний предел этого параметра позволяет ориентироваться в спектре возможностей регулирования скорости привода. В случае, если требуется расширить частотный диапазон относительно уже имеющегося, то необходимо подобрать модель частотного преобразователя, принцип работы которой относится к векторному типу.

Однако, стандартный рабочий диапазон составляет 10-60 Герц и лишь иногда доходит до 100 Герц.

Далее следует обратить внимание на входы и выходы управления. Процесс применения устройств с достаточно большим количеством разъёмов гораздо более удобен. Но и стоимость от этого возрастает, кроме того, затрудняется настройка. Подобные приборы могут быть оснащены дискретными, цифровыми или аналоговыми разъёмами.

Использование дискретного разъёма позволяет вводить управляющие команды и выводить информацию о течении процесса. Цифровой разъём обеспечивает введение сигналов, подаваемых цифровыми датчиками. Аналоговый разъём предназначен для введения сигнала обеспечивающего обратную связь.

Также следует проверять соответствие характеристик шины управления и возможностей преобразователя. В первую очередь это можно понять по соответствию числа разъёмов. По возможности их должно быть даже больше, чем требуется, чтобы имелся простор для модернизирования.

Если говорить о перегрузочных способностях, то следует предпочесть модели, которые имеют уровень мощности на 15% превышающий данные по мощности у двигателя.

В любом случае всегда нужно как следует изучать прилагающуюся к частотнику документацию. Там можно найти все требуемые сведения о параметрах и характеристиках.

Схема сборки

Следующая последовательность подойдёт для проводки, функционирующей с уровнем напряжения в 220 вольт и на одной фазе. Схема рассчитана на двигатель уровнем мощности не более 1 кВт.

В первую очередь осуществляется соединение обмоток двигателя по принципу «треугольник».

В качестве фундамента преобразователя используется пара плат. Одна из них необходима для блока питания и драйвера. Также туда будут относиться транзисторы и силовые клеммы. Другую плату применяют, чтобы закрепить микроконтроллер и индикатор. Между собой платы контактируют посредством гибкого шлейфа.

Для моделирования импульсного блока питания понадобится стандартная схема, которую можно обнаружить в сети.

Для контроля работы двигателя и напряжения не нужно влиять на ток извне. Тем не менее вполне уместно ввести в устройство линейную развязку с микросхемой.

На общем радиаторе устройства фиксируются транзисторы и диодный мост.

Обязательно потребуются оптроны ОС2-4, которые используются для дублирования кнопок управления. А с помощью ОС-1 выполняются пользовательские функции.

Однофазный преобразователь частоты не нуждается в трансформаторе. В качестве альтернативы  воспользоваться токовым шунтом, который при необходимости дополняется при помощи усилителя DA-1.

При мощности до 400 ватт схема для стабильной работы двигателя не требует установки термодатчика. Уровень сетевого напряжения вполне можно контролировать усилителем DA-1-2.

Для управляющих кнопок необходима защита в виде пластиковых толкателей. Сам процесс управления построен на опторазвязке.

При применении проводов чрезмерной длины, используются помехоподавляющие кольца.

Методика подключения преобразователя частоты к двигателю

Подключение преобразователя возможно только при соблюдении рекомендованной изготовителем комплектации устройства:

  • Сечения определённых типов;
  • Провода определённых типов;
  • Дополнительное оборудование.

К дополнительному оборудованию можно отнести:

  • Реактор ПТ;
  • Тормозной блок;
  • Фильтр (входной/выходной).

Не рекомендовано занижение номинала автоматического выключателя. Даже минимальное несоответствие может привести к хаотичному размыканию цепи, что зачастую сводит ситуацию к тому, что звено постоянного тока выходит из строя, и схема оказывается нарушена. Следует обращать внимание на то, чтобы наконечники проводов были хорошо обжаты.

Зачастую при самостоятельной установке входная и выходная клеммы оказываются перепутаны (хотя общепонятную маркировку преобразователя вполне можно увидеть). Поэтому нужно знать, схема формируется таким образом, что клеммы L1, L2, L3 используются для соединения с питающей сетью, а U, V, W — предназначаются для электродвигателя. Если не соблюсти этого правила, скорее всего придётся всё ремонтировать.

Ввод в эксплуатацию преобразователя частоты Danfoss VLT Micro Drive FC 51


Watch this video on YouTube

Также, поломка гарантирована, если на входы управляющего элемента осуществляется подача напряжения на 220 и 380 вольт.

Уход за преобразователем

Чтобы продлить срок службы ПЧ следует осуществлять за ним соответствующий уход:

  • Отслеживать оседание пыли на внутренних элементах и производить своевременную чистку устройства при помощи компрессора.
  • Удостоверяться в работоспособности узлов, которые используются механизме, и производить их замену, если возникает такая необходимость.
  • Соблюдать адекватную рабочую температуру (не более +40°С) механизма и уровень напряжения на управляющей шине.
  • Регулярно (не реже одного раза за 3 года) обновлять слой термопасты на силовых компонентах устройства.
  • По возможности соблюдать умеренный уровень влажности.

Частотный преобразователь своими руками - RadioRadar

Частотный преобразователь применяется для того, чтобы из одной фазы получить три. Трехфазное питание используется, в основном, в промышленности. Однако и в бытовых ситуациях потребуется управление, например, трехфазным асинхронным двигателем. На этот случай вполне можно обойтись самостоятельным изготовлением частотника, что позволит использовать устройство с минимальными потерями мощности.

Существует много схем, которые дают возможность запустить трехфазный двигатель. Но, часть из них не предусматривает плавного включения или выключения, или же создают дополнительные неудобства, которые не дадут использовать двигатель полноценно. Исходя из этого, и были изобретены частотные преобразователи. Они позволяют полностью контролировать работу двигателя, при экономичном расходе электроэнергии и безопасности эксплуатации.

Рис. 1. Схема запуска трехфазного двигателя

Составляющие частотного преобразователя

Для наглядности, схему можно разбить на три составляющих или три взаимосвязанных блока:

1. Выпрямитель.

2. Фильтр, предназначение которого есть сглаживание напряжения на выходе.

3. Инвертор, который собственно и отвечает за производство необходимой частоты.

Его использование дает значительное уменьшение пускового тока, при включении оборудования, что существенно продлевает эксплуатационный срок двигателя и устройства, где данный двигатель используется. Естественно, что избавившись таким образом от высоких показаний пускового тока, удается и сэкономить электроэнергию, которая уходила ранее при запуске оборудования. А это особенно актуально в условиях, где предусмотрены частые запуски и остановки устройств.

Рис. 2. Составляющие частотного преобразователя

 

Современные покупные инверторы широко используются в таких сферах, как производство, водоснабжение, энергетика, сельское и городское хозяйства, в электронике, и в автоматических линиях и комплексах.

Стоимость фирменного частотного преобразователя слишком высока, для того, чтобы изучить его процессы работы или использовать в быту или домашней мастерской. Поэтому часто используются в таких ситуациях самодельные частотники.

 

Сборка устройства

Стоит обратить внимание на то, что в домашних условиях крайне не рекомендуется использование двигателей, рассчитанных на мощность большую, чем 1 кВт. Таковы особенности домашней сети. 

Имея необходимый двигатель, потребуется для начала соединить его обмотки между собой способом "треугольник".

Рис. 3. Трёхфазный двигатель

 

Рис. 4. Соединение треугольник

 

Рис. 5. Соединение треугольник

 

 

Схема самого частотного преобразователя.

Рис. 6. Схема частотного преобразователя

 

Питание осуществляется от блока питания 27 Вольт постоянного напряжения. Это может быть, как регулируемый БП, так и сделанный собственноручно, рассчитанный на данное напряжение. Схема подключения двигателя;

Рис. 7. Схема подключения двигателя

 

Схема простая и проверенная и не содержит компонентов, которые сложно будет купить. Но, к сожалению, не лишена недостатков и годится для применения лишь в быту.
Более сложная в сборке схема, но и более результативная представлена ниже.

Рис. 8. Схема подключения двигателя

 

На данный момент это самая обсуждаемая схема частотного преобразователя, который можно сделать собственноручно. Прошивки микроконтроллера изобилуют на тематических форумах. Потребуется не только умение грамотно паять, но и прошивать микроконтроллеры.

Печатная плата.

Рис. 9. Печатная плата

 

Потребуется надежный источник питания на 24 Вольта. Предлагается его также изготовить собственноручно по схеме.
 

Рис. 10. Схема источника питания

 

Естественно, что устройство можно приобрести и готовым. Они бывают фирменными или сделанными народными мастерами, которые обладают положительными рекомендациями.

Автор: RadioRadar

частотный преобразователь своими руками, как сделать

Сегодня асинхронные двигатели являются основными тяговыми приводами для станков, конвейеров, и прочих промышленных агрегатов.

Для того чтобы моторы могли нормально функционировать, им нужен частотный преобразователь. Он позволяет оптимизировать работу агрегата и продлить срок его службы. Покупать устройство необязательно — частотник для трехфазного электродвигателя можно сделать своими руками.

Назначение частотного преобразователя

Асинхронный электродвигатель может работать и без частотника, но в этом случае у него будет постоянная скорость без возможности регулировки. К тому же отсутствие частотного преобразователя приведет к возрастанию пускового тока в 5−7 раз от номинального, что вызовет увеличение ударных нагрузок, повысит потери электроэнергии и приведет к существенному сокращению срока службы агрегата.

Для нивелирования всех вышеперечисленных негативных факторов были изобретены преобразователи частоты для асинхронных двигателей трехфазного и однофазного тока.

Частотник дает возможность в широких пределах регулировать скорость электродвигателя, обеспечивает плавный пуск, позволяет регулировать как скорость запуска, так и скорость торможения, подключать трехфазный мотор к однофазной сети и многое другое. Все эти функции зависят от микроконтроллера, на котором он построен, и могут отличаться у разных моделей.

Принцип работы устройства

Переменный ток поступает из сети на диодный мост, где он выпрямляется и попадает на батарею сглаживающих конденсаторов, где окончательно превращается в постоянный ток, который поступает на стоки мощных IGBT транзисторов, управляемых главным контроллером. Истоки транзисторов, в свою очередь, подключены к двигателю.

Вот упрощенная схема преобразователя частоты для трехфазного асинхронного двигателя.

Теперь рассмотрим, что происходит с транзисторами и как они работают.

Полевой транзистор (он же ключ, мосфет и пр.) — это электронный выключатель, принцип его действия основан на возникновении проводимости между двумя выводами (сток и исток) мосфета, при появлении на управляющем выводе (затворе) напряжения, превышающего напряжение стока.

В отличие от обычных реле, ключи работают на очень высоких частотах (от нескольких герц до сотен килогерц) так что заменить их на реле не получится.

С помощью этих быстродействующих переключателей микроконтроллер получает возможность управления силовыми цепями.

К контроллеру, кроме мосфетов, также подключены датчики тока, органы управления частотником, и другая периферия.

При работе частотного преобразователя микроконтроллер измеряет потребляемую мощность и, в соответствии с установленными на панели управления параметрами, изменяет длительность и частоту периодов, когда транзистор открыт (включен) или закрыт (выключен), тем самым изменяя или поддерживая скорость вращения электродвигателя.

Самостоятельное изготовление прибора

Несмотря на множество агрегатов заводского производства, люди делают преобразователи частоты самостоятельно, благо на сегодняшний день все его компоненты можно купить в любом радиомагазине или заказать из Китая. Такой частотник обойдется вам значительно дешевле покупного, к тому же вы не будете сомневаться в качестве его сборки и надежности.

Делаем трехфазный преобразователь

Собирать наш преобразователь будем на мосфетах G4PH50UD, которыми будет управлять контроллер PIC16F628A посредством оптодрайверов HCPL3120.

Собранный частотник при подключении в однофазную сеть 220 В будет иметь на выходе три полноценные фазы 220 В, со сдвигом 120°, и мощность 3 КВт.

Схема частотника выглядит так:

Так как частотный преобразователь состоит из частей, работающих как на высоком (силовая часть), так и на низком (управление) напряжении, то логично будет разбить его на три платы (основная плата, плата управления, и низковольтный блок питания для неё) для исключения возможности пробоя между дорожками с высоким и низким напряжением и выхода устройства из строя.

Вот так выглядит разводка платы управления:

Для питания платы управления можно использовать любой блок питания на 24 В, с пульсациями не более 1 В в размахе, с задержкой прекращения подачи питания на 2−3 секунды с момента исчезновения питающего напряжения 220 В.

Блок питания можно собрать и самим по этой схеме:

Обратите внимание, что номиналы и названия всех радиокомпонентов на схемах уже подписаны, так что собрать по ним работающее устройство может даже начинающий радиолюбитель.

Перед тем как приступить к сборке преобразователя, убедитесь:

  1. В наличии у вас всех необходимых компонентов;
  2. В правильности разводки платы;
  3. В наличии всех нужных отверстий для установки радиодеталей на плате;
  4. В том, что не забыли залить в микроконтроллер прошивку из этого архива:

Если вы все сделали правильно и ничего не забыли, можете приступать к сборке.

После сборки у вас получится что-то похожее:

Теперь вам осталось проверить устройство: для этого подключаем двигатель к частотнику и подаем на него напряжение. После того как загорится светодиод, сигнализирующий о готовности, нажмите на кнопку «Пуск». Двигатель должен начать медленно вращаться. При удержании кнопки двигатель начинает разгоняться, при отпускании — поддерживает обороты на том уровне, до которого успел разогнаться. При нажатии кнопки «Сброс» двигатель останавливается с выбегом. Кнопка «Реверс» задействуется только при остановленном двигателе.

Если проверка прошла успешно, то можете начинать изготавливать корпус и собирать в нем частотник. Не забудьте сделать в корпусе отверстия для притока холодного и оттока горячего воздуха от радиатора IGBT транзисторов.

Частотник для однофазного двигателя

Преобразователь частоты для однофазного двигателя отличается от трехфазного тем, что имеет на выходе две фазы (ошибки тут нет, двигатель однофазный, при подключении без частотника рабочая обмотка подключается в сеть напрямую, а пусковая — через конденсатор; но при использовании частотника пусковая обмотка подключается через вторую фазу) и одну нейтраль — в отличие от трех фаз у последнего, так что сделать частотник для однофазного электродвигателя, используя в качестве основы схему от трехфазного, не получится, поэтому придется начинать все сначала.

В качестве мозга этого преобразователя мы будем использовать МК ATmega328 с загрузчиком ардуины. В принципе, это и есть Arduino, только без своей обвязки. Так что, если у вас в закромах завалялась ардуинка с таким микроконтроллером, можете смело выпаивать его и использовать для дела, предварительно залив на него скетч (прошивку) из этого архива:

К атмеге будет подключен драйвер IR2132, а уже к нему — мосфеты IRG4BC30, к которым мы подключим двигатель мощностью до 1 КВт включительно.

Схема частотного преобразователя для однофазного двигателя:

Также для питания ардуины (5в) и для питания силового реле (12в), нам понадобятся 2 стабилизатора. Вот их схемы:

Стабилизатор на 12 вольт.

Стабилизатор на 5 вольт.

Внимание! Эта схема не из простых. Возможно, придется настраивать и отлаживать прошивку для достижения полной работоспособности устройства, но это несложно, и мануалов по программированию Arduino в интернете — великое множество. К тому же сам скетч содержит довольно подробные комментарии к каждому действию. Но если для вас это слишком сложно, то вы можете попробовать найти такой частотник в магазине. Пусть они и не так распространены, как частотники для трехфазных двигателей, но купить их можно, пусть и не в каждом магазине.

Еще обратите внимание на то, что включать схему без балласта нельзя — сгорят выходные ключи. Балласт нужно подключать через диод, обращенный анодом к силовому фильтрующему конденсатору. Если подключите балласт без диода — опять выйдут из строя ключи.

Если вас все устраивает, можете приступать к изготовлению платы, а затем — к сборке всей схемы. Перед сборкой убедитесь в правильности разводки платы и отсутствии дефектов в ней, а также — в наличии у вас всех указанных на схеме радиодеталей. Также не забудьте установить IGBT-транзисторы на массивный радиатор и изолировать их от него путем использования термопрокладок и изолирующих шайб.

После сборки частотника можете приступать к его проверке. В идеале у вас должен получиться такой функционал: кнопка «S1» — пуск, каждое последующее нажатие добавляет определенное (изменяется путем редактирования скетча) количество оборотов; «S2» — то же самое, что и «S1», только заставляет двигатель вращаться в противоположном направлении; кнопка «S3» — стоп, при её нажатии двигатель останавливается с выбегом.

Обратите внимание, что реверс осуществляется через полную остановку двигателя, при попытке сменить направление вращения на работающем двигателе произойдет его мгновенная остановка, а силовые ключи сгорят от перегрузки. Если вам не жаль денег, которые придется потратить на замену мосфетов, то можете использовать эту особенность в качестве аварийного тормоза.

Возможные проблемы при проверке

Если при проверке частотника схема не заработала или заработала неправильно, значит, вы где-то допустили ошибку. Отключите частотник от сети и проверьте правильность установки компонентов, их исправность и отсутствие разрывов/замыканий дорожек там, где их быть не должно. После обнаружения неисправности устраните её и проверьте преобразователь снова. Если с этим все в порядке, приступайте к отладке прошивки.

Простой преобразователь частоты для асинхронного электродвигателя.

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Простой преобразователь частоты для асинхронного электродвигателя.

Итак коль уж асинхронный двигатель так распространён и трехфазная система напряжения созданная М. О. Доливо-Добровольским так удобна.  А  современная элементная база так хороша. То сделать преобразователь частоты –это лишь вопрос личного желания и некоторых финансовых возможностей.  Возможно кто  то скажет « Ну, зачем мне инвертор , я поставлю фазосдвигающий  конденсатор и все решено» . Но при этом обороты не покрутишь и в мощности потеряешь и потом это не интересно.

Возьмём за основу – в быту есть однофазная  сеть 220в, народный размер двигателя до 1 кВт.  Значить соединяем обмотки двигателя треугольником.  Дальше –проще, понадобится драйвер трехфазного моста IR2135(IR2133) выбираем  такой потому, что он применяется в промышленной технике имеет вывод  SD и удобное расположение выводов. Подойдёт и IR2132 , но у неё dead time больше и выхода SD нет. В качестве генератора PWM выберем микроконтроллер AT90SPWM3B  - доступен, всем понятен, имеет массу возможностей и недорого стоит, есть  простой программатор   -https://real.kiev.ua/avreal/. Силовые транзисторы  6 штук IRG4BC30W выберем с некоторым запасом по току  - пусковые токи АД могут превышать номинальные в 5-6 раз. И пока  не ставим "тормозной"  ключ и резистор, будем тормозить и намагничивать перед пуском  ротор постоянным током, но об этом позже .... Весь процесс работы отображается на 2-х строчном ЖКИ индикаторе.  Для управления достаточно 6 кнопок (частота +, частота -, пуск, стоп, реверс, меню).
Получилась вот такая схема.

Я вовсе не претендую  на законченность конструкции и предлагаю  брать данную конструкцию за некую основу для энтузиастов домашнего  электропривода.  Приведённые здесь платы были сделаны под имеющиеся в моём распоряжении детали.

Конструктивно инвертор выполнен на двух платах – силовая часть ( блок питания , драйвер и транзисторы моста , силовые клеммы) и цифровая часть (микроконтроллер + индикатор ). Электрически платы соединены гибким шлейфом. Такая конструкция выбрана для  перехода в будущем  на контроллер TMS320 или STM32 или STM8.
Блок питания собран по классической схеме и в комментариях не нуждается. Микросхема  IL300 линейная опто развязка  для управления током 4-20Ма. Оптроны ОС2-4 просто дублируют  кнопки «старт, стоп, реверс» для гальванически развязанного управления. Выход оптрона  ОС-1 «функция пользователя» (сигнализация и пр.)
Силовые транзисторы и диодный мост закреплены на общий радиатор. Шунт  4 витка манганинового провода диаметром 0.5мм  на оправке 3 мм.
Сразу замечу некоторые узлы и элементы вовсе не обязательны.  Для того что бы просто крутить двигатель ,  не нужно внешнее управление током 4-20 Ма. Нет необходимости в трансформаторе тока, для оценочного измерения подойдёт и токовый шунт. Не нужна внешняя сигнализация.  При мощности  двигателя 400 Вт и площади радиатора 100см2  нет нужды в термодатчике.

ВАЖНО! – имеющиеся на плате  кнопки управления изолированы от сети питания только пластмассовыми толкателями. Для безопасного управления необходимо использовать опторазвязку.

Возможные изменения в схеме в зависимости от микропрограммы.
Усилитель DA-1 можно подключать к трансформатору тока или к шунту. Усилитель DA-1-2 может быть использован для измерения напряжения сети или для измерения сопротивления терморезистора если не используется термодатчик  PD-1.
В случае длинных соединительных  проводов необходимо на каждый провод хотя бы надеть помехоподавляющие кольцо.  Имеют место помехи. Так например –пока я этого не сделал у меня «мышь» зависала.
Так же считаю важным отметить проверку надёжности изоляции АД –т.к. при коммутации силовых транзисторов выбросы напряжение на обмотках могут достигать значений 1,3 Uпит.

Общий вид.

Немного про управление.

Начитавшись  книжек с длинными  формулами в основном описывающих как делать синусоиду при помощи PWM. И как стабилизировать скорость вращения вала двигателя посредством таходатчика и ПИД регулятора. Я пришёл к выводу –АД имеет достаточно  жёсткую характеристику во всём диапазоне допустимых нагрузок на валу.
Поэтому для личных нужд вполне подойдет  управление описанное законом Костенко М.П. или как его ещё называют  скаляроное.  Достаточное для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40.  Т.е. грубо говоря мы в самом простом случае делаем обычную 3-х фазную розетку с переменной частотой и напряжением меняющимися в прямой зависимости.  С небольшими «но» на начальных участках характеристики необходимо выполнять IR компенсацию т.е. на малых частотах нужно фиксированное напряжение . Втрое «но» в питающие двигатель напряжение замешать 3 гармонику.  Всё остальное сделают за нас физические принципы  АД.  Более подробно про это можно прочесть в документе AVR494.PDF
Основываясь на моих личных наблюдениях и скромном опыте именно эти   методы без особых изысков чаще всего применяются в приводах мощностью до 15 кВт.
Далее не буду углубляться в теорию и  описание мат моделей АД. Это и без меня достаточно хорошо изложили профессора ещё в 60-х.
 
Но ни  в коем случае не стоит недооценивать сложности управления АД. Все мои упрощения  оправданны только некоммерческим применением инвертора.

Плата силовых элементов.

В программе V-1.0 для AT90SPWM3B  реализовано
1-  Частотное  управление  АД .Форма напряжения синусоида с 3 гармоникой.
2-  Частота  задания 5 Гц -50 Гц с шагом  1 Гц. Частота ШИМ  4 кГц.
3-  Фиксированное время разгона –торможения
4-  Реверс (только через кнопку СТОП)
5-  Разгон до заданной частоты с шагом 1 Гц
6 – Индикация показаний канала АЦП 6 (разрядность 8 бит.,  оконный фильтр апертура 4 бита)
       я использую этот канал для замера тока  шунта.
7 – Индикация режима работы START,STOP,RUN,RAMP, и Частота в Гц.
8-  Обработка сигнала авария от мс IR2135

Торможение двигателя принудительное – без выбега. При этом нужно помнить – если на валу будет висеть огромный вентилятор или маховик  то напряжение на звене постоянного тока может достичь опасных значений. Но я думаю вертолёты с приводом от АД строить никто не будет

Функции микропрограммы в будущих версиях    

1 -намагничивание ротора перед пуском
2- торможение постоянным током
3 –прямой реверс
4 – частота задания 1 -400  Гц.
5 – ограничение, контроль  тока двигателя.
6 -  переключаемые зависимости U/F
7 – контроль звена постоянного тока.
8 – некоторые макросы управления –это вообще в далёких планах.

Испытания.
Данная конструкции была проверена с двигателем 0.18кВт  и  0.4 кВт  и  0.8 кВт. Все двигатели остались довольны.
Только при малых оборотах и долговременной работе необходимо принудительное охлаждение АД.


 Строка для программатора
av_28r4.exe -aft2232 -az  +90pwm3b -e -w -v -fckdiv=1,psc2rb=0,psc1rb=0,psc0rb=0,pscrv=0,bodlevel=5 -c01.hex

Небольшое "вечернее" видео испытаний

Файлы:
плата микроконтроллера -layout5.0
силовой модуль -layout5.0
Программа для МК
Схема
схема S_plan7 -архив rar

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Частотный преобразователь

27.05.2019

Частотный преобразователь напряжения — это электрический прибор, служащий для преобразования напряжения и частоты переменного тока в напряжение с заданной амплитудой и частотой. Он также способен преобразовывать постоянное напряжение в переменное с заданными характеристиками.

Частотные преобразователь Toshiba

Для чего нужен частотный преобразователь?

Этот вопрос задают множество людей, которым впервые понадобилось подключить трехфазный двигатель насоса или вентилятора. Конечно, любой электродвигатель можно напрямую подключить к сети переменного тока через соответствующую защитную аппаратуру (моторный автоматический выключатель или контактор с тепловым реле).

Насос водяной Канальный вентилятор

Рассмотрим процессы, происходящие в электродвигателе в момент прямого пуска с помощью автоматического выключателя или кнопки включения контактора на примере обычного трехфазного асинхронного двигателя.

На статорные обмотки электродвигателя подается переменное напряжение, которое генерирует соответствующее электромагнитное поле этих обмоток. Это поле, направленное в сторону ротора, в свою очередь заставляет генерироваться электрический ток в короткозамкнутых витках ротора. Затем ток в обмотках ротора генерирует ответное магнитное поле, которое и приводит к движению ротора относительно статора. Все эти процессы, возникающие в момент пуска, называются процессом намагничивания статора и ротора.

Асинхронный электрический двигатель

Трехфазный электродвигатель сам по себе не нужен: на его валу обязательно присутствует нагрузка (самая простая — в виде лопастей вентилятора). В ситуации с нагруженным конвейером всё сложнее.  Тем не менее, у этой нагрузки есть момент инерции – момент, который необходимо преодолеть двигателю для запуска вращения вала. Таким образом, все эти электромагнитные и механические силы в момент пуска напрямую соотносятся с обычным пусковым током двигателя. Как несложно догадаться, этот ток будет в несколько раз (2-7) больше номинального тока двигателя, который получится в установившемся режиме работы.


Скорость вращения электродвигателя или число оборотов в минуту

Скорость вращения вала как асинхронных, так и синхронных электродвигателей определяется частотой вращения магнитного поля статора. Магнитное поле вращается соответственно подаваемому на обмотки статора переменному току по трем фазам. Именно это «вращение» электрического тока в статоре приводит к вращающемуся магнитному полю и определяется по формуле:

n = (60 • f / p) • (1 — s)

где n – номинальное число оборотов вала асинхронного электродвигателя, p – число пар полюсов (см. на паспортной табличке), s – скольжение (разность скоростей поля ротора и поля статора), f – частота переменного тока (например, 50 Гц). Число пар полюсов статора зависит от конструкции катушек статора. Скольжение зависит от нагрузки на валу электродвигателя. Таким образом, подключив электродвигатель к сети переменного тока, мы получим вращение с постоянной скоростью.

Зачем нужно регулировать скорость и как это делается?

Заданное в паспортной табличке число оборотов двигателя на 1 минуту не всегда устраивает потребителя. Иногда скорость механизма хочется уменьшить, а давление в трубе наоборот поднять. Возникает потребность в изменении частоты вращения вала электродвигателя. Как видно из формулы выше, наиболее простой способ изменения частоты вращения вала электродвигателя –изменить частоту переменного тока f.

Шильдик электродвигателя EQPIII Toshiba

Принцип работы частотного преобразователя

Вот тут и приходит на помощь частотный преобразователь, иначе говоря ЧРП (частотно-регулируемый привод). Он, как говорилось в самом начале, позволяет задавать на своем выходе заданные в настройках амплитуду напряжения и частоту переменного тока.

Частота вы выходе может регулироваться в диапазоне 0.01 — 590 Гц если брать инверторы серии AS3 Toshiba. Для серии S15 Toshiba диапазон регулирования находится в пределах 0.01 — 500 Гц. Для серии nC3E Toshiba диапазон регулирования находится в пределах 0.01 — 400 Гц. Это объясняется функциональным назначением разных серий ПЧ.

Напряжение на выходе может изменяться в диапазоне от 0 В до напряжения питания ПЧ, т.е. текущего напряжения на входе частотного преобразователя. Это свойство можно использовать для получения нужного выходного напряжения и частоты, что ценно, например, для испытания стендового оборудования. Правда для этого придется использовать специальный выходной синусный фильтр, чтобы получить чистые синусоидальное напряжение и ток.

С частотой все понятно, но зачем нужно изменять напряжение?

Дело в том, что для поддержания определенного магнитного поля в обмотках статора требуется изменять не только частоту, но и напряжение. Получается, что частота должна соответствовать определенному напряжению. Этот называется законом скалярного управления U/f (V/f), где U или V — напряжение.

Также существует закон векторного регулирования. Векторное регулирование используется для оборудования, где требуется поддерживать необходимый крутящий момент на валу при низких скоростях электродвигателя, высокое быстродействие и точность регулирования частоты вращения. Векторное управление представляет собой математический аппарат в «мозге» частотного преобразователя, который позволяет точно определять угол поворота ротора по токам фаз двигателя.

Использование частотника позволяет убрать большой пусковой ток, достигая таким образом значительного экономического эффекта при частых пусках и остановках электродвигателя.

Схема частотного преобразователя

Ниже представлена типовая схема частотного преобразователя. Входное сетевое трехфазное или однофазное напряжение подается через опциональный входной фильтр на клеммы диодного моста. Неуправляемый диодный (или управляемый тиристорный) мост преобразует переменное напряжение сети в постоянное пульсирующее напряжение. Для фильтрации пульсаций служит звено постоянного тока из одного или нескольких конденсаторов C.

Схема преобразователя частоты

Напряжение в звене постоянного тока после выпрямления трехфазного напряжения будет равно согласно формуле: 380*1,35 = 513 В.

Дроссель DCL в звене постоянного тока позволяет дополнительно сгладить пульсации напряжения после диодного моста и выполняет функции снижения гармоник выпрямителя, инжектируемых в питающую сеть.

Транзисторы T1-T6 инвертора с помощью специального алгоритма системы управления генерируют на клеммы электродвигателя 3 пакета импульсов, разнесенных по трем фазам на 120 градусов во времени. Ни рисунке ниже показана только одна фаза: пачка выходных импульсов широтно-импульсной модуляции (ШИМ), проходя через обмотку электродвигателя, сгладится до формы, напоминающей синусоиду. Частота импульсов ШИМ (опорная частота) в промышленных преобразователях обычно составляет 3-4 кГц, но для ПЧ малой мощности может доходить до 16 кГц. Чем выше частоты ШИМ, тем будет меньше гармонических искажений «синусоиды» на выходе инвертора. Но при этом возрастают тепловые потери на силовых транзисторах, что уменьшает КПД. В ПЧ Toshiba величину частоты можно изменять, регулируя таким образом тепловые потери.

ШИМ инвертора

Выходное напряжение частотного преобразователя будет всегда ниже входного сетевого напряжения. Это связано с потерями в силовом модуле и алгоритме получения ШИМ импульсов.

Между частотным преобразователем и электродвигателем можно установить дополнительный фильтр, позволяющий значительно улучшить форму выходного напряжения после частотника. Это необходимо для того, чтобы импульсы ШИМ не разрушали изоляцию обмоток двигателя и не вызывали перенапряжения на конце длинного кабеля. Подробнее о выходных фильтрах.

Тормозной прерыватель (Brake Chopper)

На схеме частотного преобразователя можно заметить еще один транзисторный ключ T7. Его назначение — сброс энергии звена постоянного тока при значительном превышении напряжения на конденсаторах. Перенапряжение возникает в том случае, когда частота вращения вала электродвигателя превышает частоту тока на клеммах электродвигателя (например, при торможении). Это часто встречается на кранах или крупных вентиляторах, когда невозможно быстро затормозить вращение.

При наступления события превышения напряжения DC, этот транзисторный ключ T7 замыкается, передавая энергию звена постоянного тока на тормозной резистор. Конечно, резистор при этом может очень сильно нагреться и даже разрушится, но при этом не пострадает наиболее дорогое оборудование — частотный преобразователь.

Тормозной резистор является опциональным оборудованием и подключается к специальным клеммам преобразователя частоты.

КПД частотного преобразователя

Такие важные параметры как КПД частотника и производительность воздушного потока для его охлаждения можно посмотреть в соответствующем столбце следующей таблицы на примере серии VF-AS3 TOSHIBA.

Питающая сеть Допустимая мощность двигателя (kW) Типоразмер частотника Размер корпуса КПД Мощность тепловыделения на радиаторе охлаждения (Вт) *1 Мощность тепловыделения передней части инвертора (Вт) *1 Требуемое значение потока воздушного охлаждения (м³/мин) Площадь стенок закрытой стальной оболочки без вентиляции (м²)
3-фазы 380/480 В 0.75 VFAS3-4004PC A1 0,89 56 26 0.32 1.13
1.5 VFAS3-4007PC A1 0,93 79 28 0.45 1.58
2.2 VFAS3-4015PC A1 0,94 100 30 0.57 2.00
4.0 VFAS3-4022PC A1 0,96 140 33 0.79 2.80
5.5 VFAS3-4037PC A1 0,96 192 37 1.09 3.83
7.5 VFAS3-4055PC A2 0,96 233 45 1.32 4.66
11 VFAS3-4075PC A2 0,97 323 53 1.84 6.47
15 VFAS3-4110PC A3 0,97 455 62 2.58 9.10
18.5 VFAS3-4150PC A3 0,97 557 70 3.16 11.14
22 VFAS3-4185PC A3 0,97 603 71 3.42 12.06
30 VFAS3-4220PC A4 0,97 770 94 4.37 15.40
37 VFAS3-4300PC A4 0,97 939 107 5.33 18.78
45 VFAS3-4370PC A4 0,97 1101 123 6.25 22.02
55 VFAS3-4450PC A5 0,98 1094 132 6.21 21.88
75 VFAS3-4550PC A5 0,98 1589 175 9.02 31.78
90 VFAS3-4750PC A5 0,98 1827 199 10.37 36.54
110 VFAS3-4900PC A6 0,97 2920 309 16.58 58.40
132 VFAS3-4110KPC A6 0,97 3457 358 19.62 69.13
160 VFAS3-4132KPC A6 0,97 4013 405 22.78 80.26
220 VFAS3-4160KPC A7 0,97 5404 452 30.68 108.08
250 VFAS3-4220KPC A8 0,97 6279 606 35.64 125.58
280 VFAS3-4250KPC A8 0,97 6743 769 38.28 134.86
315 VFAS3-4280KPC A8 0,97 7749 769 43.99 154.98

*1) В таблице приведены данные для нормального (не тяжелого) режима работы преобразователя частоты.


Области применения и экономический эффект использования частотных преобразователей

Сферы применения преобразователей частоты

  • Краны и грузоподъемные машины
    Крановые двигатели работают в старт-стопном режиме и переменной нагрузке. Применение частотных преобразователей позволяет убрать рывки и раскачивание груза при пусках и стопах. Также обеспечивается остановка крана точно в требуемом месте. При этом снижается нагрев электродвигателей и максимальный пусковой момент.
  • Привод нагнетательных вентиляторов в котельных и дымососах
    Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный КПД котельных агрегатов.
  • Транспортеры, прокатные станы, конвейеры, лифты
    Частотник позволяет регулировать скорость перемещения транспортного оборудования без рывков и ударов. Это увеличивает срок службы механических узлов и позволяет экономить электроэнергию на старт-стопных режимах по сравнению с прямым пуском.
  • Насосные агрегаты и вентиляторы
    Благодаря встроенным ПИД-регуляторам, частотники позволяют обойтись без задвижек и вентилей, регулирующих давление и расход. Также значительно увеличивается общий КПД линии водо- или воздухоподачи.
  • Перемоточные и намоточные станки
    Современные частотные приводы Toshiba содержат 2 встроенных ПИД-регулятора: контроля скорости намотки и контроля позиции в регуляторе натяжения. Таким образом можно обойтись без использования внешнего контроллера для управления скоростью и натяжением перемоточного станка.
  • Электродвигатели станков с ЧПУ и поворотных механизмов
    Использование частотника вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. Встроенное в серию AS3 Toshiba управление несколькими режимами точного позиционирования может быть использовано для построения системы управления без использования контроллера. Таким образом, ПЧ широко используются для станков с ЧПУ и высокоточного промышленного оборудования.
  • Испытательные стенды
    В связи с тем, что ПЧ способен регулировать частоту и напряжение на своем выходе, то это можно использоваться для питания разного рода стендовой аппаратуры. Правда, для этого придется после ПЧ установить синусный фильтр для получения синусоидального выходного напряжения. Это позволит подавать на испытуемое оборудование широкий диапазон частот и напряжений.

Преимущества частотных преобразователей
  • Экономия электроэнергии
    Использование ПЧ позволяет уменьшить пусковые токи и оптимизировать потребляемую мощность благодаря встроенным алгоритмам управления.
  • Увеличение срока службы электрического оборудования и механизмов
    Плавный пуск и регулировка скорости вращения момента на валу позволяют увеличить межсервисный интервал механизма и увеличить срок эксплуатации электродвигателей.
    Появляется возможность отказаться от редукторов, дросселирующих задвижек для регулирования потока, электромагнитных тормозов и прочей регулирующей аппаратуры, снижающей надежность и увеличивающей энергопотребление оборудования.
  • Отсутствие необходимости проводить техническое обслуживание
    Частотники не нуждающихся в регулярной чистке и смазке, как например, задвижки и редукторы.
  • Возможность удаленного управления и контроля параметров частотного преобразователя и подключенных к нему датчиков
    В частотниках Toshiba реализована возможность подключения удаленных устройств телеметрии и телемеханики. Это позволяет ПЧ встраиваться в системы автоматизации.
  • Широкий диапазон мощностей и типов двигателей
    Линейка ПЧ может применяться для двигателей мощностью от 100 Вт и до нескольких МВт, как на асинхронные, так и на синхронные электродвигатели.
  • Защита электродвигателя от аварий и перегрузок
    Частотные преобразователи содержат в себе защиту от перегрузок, коротких замыканий, обрыва фаз. Функции перезапуска при возобновлении подачи электроэнергии позволяют автоматически запускать двигатель.
  • Множество функциональных настроек приводов Toshiba
    Можно перечислить следующие востребованные функции ПЧ:
    • Автозапуск/перезапуск ПЧ при появлении напряжения питания
    • Возможность включения трехфазного частотника в однофазную сеть питания при определенном конфигурировании параметров
    • Множество тонких настроек для работы с подъемно-транспортным, насосным оборудованием, станками
    • Сохранение истории аварийных отключений
    • Встроенный функционал защиты двигателя от перегрева
    • Возможность работы с множеством протоколов связи
    • ПИД-регуляторы для различных областей применения
    • Работа на множестве предустановленных скоростях
    • Толчковая работа двигателя для сложного старта
    • Автоподхват вращающегося двигателя
    • Линейное, S-образное, 5-точечное задание разгона.
    • Пропуск проблемных частот (для насосного оборудования)
    • Широкий диапазон частот работы 0-400/500 Гц
    • Ручное задание диапазона частот работы электродвигателя
    • Легкий перенос настроек с одного частотника на другой
    • Работа с асинхронными и синхронными электродвигателями
    • Возможность трассировки работы преобразователя частоты для нахождения причины возникновения аварии или предупреждения
    • Траверс-контроль для текстильных машин
    • Защита от повышенного или пониженного момента (тока) двигателя
  • Замена двигателей постоянного тока
    Ранее для регулирования момента и скорости вращения часто использовались двигатели постоянного тока, скорость вращения которых пропорциональна поданному напряжению. Их стоимость существенно дороже асинхронных двигателей и они подключаются с помощью дорогостоящих промышленных выпрямителей. Замена двигателей постоянного тока на асинхронные двигатели с частотным регулированием существенно уменьшает стоимость решения.

Внедрение частотных преобразователей дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и техническое обслуживание электродвигателей и оборудования. Появляется возможность использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до 3-х лет.


Частотные преобразователи Toshiba

Компания СПИК СЗМА как единственный официальный дилер Toshiba в России и СНГ предлагает купить частотные преобразователи серии VF-AS3 для решения задач регулирования скорости электродвигателя. Вы получаете максимально качественную техническую поддержку и гарантию долгой работы преобразователя частоты. 

Высоковольтные преобразователи частоты ВПЧ

Выше рассмотрены низковольтные частотные преобразователи. Но также существует множество вариантов высоковольтных преобразователей частоты. Компания СПИК СЗМА является дистрибьютором ПЧ среднего напряжения TMEIC.

Высоковольтные преобразователи частоты MVe2 Схема драйвера затвора

для трехфазного инвертора: 9 ступеней

В этом разделе будут представлены и проанализированы детали конструкции.

Список компонентов

• Оптопара 4n35

• Драйвер IR2110 IC

• Транзистор 2N3904

• Диод (UF4007)

• Стабилитрон

0003

0003 И

0003 • ATiny85

> Оптопара

Оптопара 4n35 использовалась для оптической изоляции микроконтроллера от остальной схемы.Выбранное сопротивление основывается на формуле:

Сопротивление = LedVoltage / CurrentRating

Сопротивление = 1,35 В / 13,5 мА

Сопротивление = 100 Ом

Выходное сопротивление, действующее как понижающее сопротивление, составляет 10 кОм для правильного развития напряжения на нем.

> IR 2110

Это ИС управления затвором, обычно используемая для управления полевыми МОП-транзисторами. Это ИС драйвера на стороне высокого и низкого напряжения на 500 В с типичным источником 2,5 А и токами стока 2,5 А в ИС с 14 выводами.

> Конденсатор начальной загрузки

Самым важным компонентом ИС драйвера является конденсатор начальной загрузки. Конденсатор начальной загрузки должен обеспечивать этот заряд и сохранять свое полное напряжение, в противном случае будет значительная пульсация напряжения Vbs, которая может упасть ниже блокировки пониженного напряжения Vbsuv и привести к прекращению работы выхода HO. Следовательно, заряд конденсатора Cbs должен быть как минимум вдвое выше вышеуказанного значения. Минимальное значение емкости конденсатора можно рассчитать по приведенному ниже уравнению.

C = 2 [(2Qg + Iqbs / f + Qls + Icbs (утечка) / f) / (Vcc − Vf −Vls − Vmin)]

Где as

Vf = прямое падение напряжения на диоде начальной загрузки

VLS = падение напряжения на полевом транзисторе нижней стороны (или нагрузке для драйвера высокой стороны)

VMin = минимальное напряжение между VB и VS

Qg = заряд затвора полевого транзистора высокой стороны

F = рабочая частота

Icbs (утечка ) = Ток утечки конденсатора начальной загрузки

Qls = заряд сдвига уровня, необходимый за цикл

Мы выбрали значение 47 мкФ.

> Транзистор 2N3904

2N3904 - это обычный NPN-транзистор с биполярным переходом, используемый для универсальных маломощных усилительных или коммутационных приложений. Он может выдерживать ток 200 мА (абсолютный максимум) и частоты до 100 МГц при использовании в качестве усилителя.

> Диод (UF4007)

Полупроводник I-типа с высоким сопротивлением используется для обеспечения значительно более низкой емкости диода (Ct). В результате PIN-диоды действуют как переменный резистор с прямым смещением и ведут себя как конденсатор с обратным смещением.Высокочастотные характеристики (низкая емкость обеспечивает минимальное влияние сигнальных линий) делают их пригодными для использования в качестве элементов переменного резистора в самых разных приложениях, включая аттенюаторы, переключение высокочастотных сигналов (например, мобильные телефоны, требующие антенны) и схемы АРУ.

> Стабилитрон

Стабилитрон - это особый тип диода, который, в отличие от обычного, позволяет току течь не только от анода к катоду, но и в обратном направлении, когда стабилитрон напряжение достигнуто.Используется как регулятор напряжения. Стабилитроны имеют сильно легированный p-n переход. Обычные диоды также будут выходить из строя при обратном напряжении, но напряжение и резкость изгиба не так хорошо определены, как для стабилитрона. Также нормальные диоды не предназначены для работы в области пробоя, но стабилитроны могут надежно работать в этой области.

> Реле

Реле - это переключатели, которые размыкают и замыкают цепи электромеханическим или электронным способом.Реле управляют одной электрической цепью, размыкая и замыкая контакты в другой цепи. Когда контакт реле нормально разомкнут (NO), есть разомкнутый контакт, когда реле не находится под напряжением. Когда контакт реле является нормально замкнутым (NC), это замкнутый контакт, когда реле не находится под напряжением. В любом случае, подача электрического тока на контакты изменит их состояние.

> AND GATE 7408

входы HIGH

> ATiny85

Это маломощный микроконтроллер Microchip на базе 8-битного AVR RISC, сочетающий 8 Кбайт памяти ISP memory, 512 Б EEPROM, 512-байтную SRAM, 6 линий ввода / вывода общего назначения, 32 рабочих регистра общего назначения, один 8-битный таймер / счетчик с режимами сравнения, один 8-битный высокоскоростной таймер / счетчик, USI, внутренние и внешние прерывания, 4-канальный 10-битный аналого-цифровой преобразователь.

Схема трехфазного синусоидального инвертора с использованием Arduino

В этом проекте трехфазный синусоидальный инвертор спроектирован с использованием микроконтроллера Atmega2560. Трехфазный синусоидальный преобразователь используется во многих приложениях. Он используется во многих промышленных и бытовых приложениях. Трехфазный синусоидальный инвертор чаще используется в силовой электронике, где потребляемая мощность превышает 10 кВА. Трехфазный инвертор используется при тестировании трехфазного оборудования.Он также используется для привода трехфазного асинхронного двигателя. Он также применяется в управлении скоростью асинхронного двигателя с помощью микроконтроллера . Я уже публиковал статьи об однофазном синусоидальном инверторе с использованием микроконтроллера PIC16F877A , а также вы можете прочитать мою статью о модифицированном синусоидальном инверторе . Солнечные инверторы также используются в проектах на базе солнечных систем .

Работа трехфазного синусоидального инвертора

Рекомендуется использовать для приложений с высокой мощностью.Его можно спроектировать, подключив к три однофазных полумостовых преобразователя . Все три моста должны работать так, чтобы все они не совпадали по фазе на 120 градусов друг с другом. Трехфазный синусоидальный инвертор разработан с использованием микроконтроллера Arduino. Arduino используется для генерации сигналов SPWM для управления схемами драйвера затвора, как показано на рисунке ниже. Эти SPWM-сигналы сдвинуты по фазе на 120 градусов друг относительно друга. Если вы не знаете, кто генерирует синусоидальный сигнал широтно-импульсной модуляции, я рекомендую вам прочитать мою статью о генерации SPWM с помощью микроконтроллера PIC.Прочитав эту статью, вы получите представление о том, как сгенерировать эти сигналы для драйвера MOSFET, драйверы , которые, в свою очередь, используются для управления MOSFET трехфазного моста H. На рисунке ниже показаны формы сигналов стробирующих сигналов, разнесенных на 120 градусов друг от друга. Чтобы полностью разобраться в работе этого инвертора, рекомендую прочитать любую книгу по силовой электронике.

Компоненты трехфазного синусоидального инвертора

Ниже приведены основные компоненты трехфазного синусоидального инвертора:

  • Arduino Atmega2560 - основные компоненты этого проекта.Это можно сказать сердце этого проекта. Он используется для управления всем сигналом, и он используется для генерации прямоугольной волны 50 Гц и сигнала SPWM, который подается на драйверы MOSFET, которые используются для управления Mosfet. Три контакта 5, 9 и 10 используются для генерации трех прямоугольных сигналов частотой 50 Гц, а контакты с номерами 22, 23 и 24 используются для генерации SPWM. Для генерации этих сигналов используются таймеры. Таблица поиска из 50 значений хранится в памяти Arduino, которая вызывается снова и снова для генерации синусоидального сигнала.
  • Драйвер полевого МОП-транзистора IR2112 : Он используется для управления полевым МОП-транзистором трехфазного Н-моста.Если вы не знаете, как использовать схему драйвера затвора. Я рекомендую вам сначала прочитать об этом, прежде чем переходить к трехфазному синусоидальному инвертору.
  • Фильтр
  • LC: он также является основным компонентом этого проекта. Он используется для устранения высокочастотной составляющей выходного напряжения трехфазного Н-моста. Вы можете найти конденсатор надлежащей стоимости на рынке. Но индуктор нужно спроектировать самостоятельно. Вы можете проверить , как спроектировать индуктор , если вы хотите спроектировать индуктор.
  • Остальные компоненты - это просто резисторы, диоды и конденсаторы, которые легко использовать, если вы знаете, как использовать вышеупомянутые компоненты.

Итак, чтобы разработать трехфазный синусоидальный инвертор, вы должны знать, как использовать вышеупомянутые электронные компоненты . Но самое главное, вы должны иметь представление о том, как написать для него программу с помощью микроконтроллера.

Видео результаты трехфазного синусоидального инвертора

Посмотрите следующее видео, если вы хотите проверить результаты в Proteus. Proteus не будет моделировать эту схему в реальном времени из-за использования высокоиндуктивных и емкостных компонентов.Системе потребуется некоторое время для получения результатов из-за чрезмерной загрузки процессора.

Принципиальная схема трехфазного синусоидального инвертора

Показана принципиальная схема. Это большая принципиальная схема, и ее сложно правильно отобразить на одном изображении, но все же вы можете получить представление об этой принципиальной схеме. Я использовал три однофазных моста для моделирования этой схемы в Proteus, но при реализации в реальном времени мы использовали только один трехфазный H-мост.вы можете использовать одиночный трехфазный мост H при реализации в реальном времени.

Код

для трехфазного инвертора платный. Если вы хотите приобрести код и симуляцию, вы можете купить с этой кнопкой

Как создать вращающийся фазовый преобразователь для преобразования одной фазы в трехфазную

Если вы читаете это, то это, скорее всего, связано с тем, что вы приобрели (или думаете о приобретении) списанное промышленное торговое оборудование, которое питается от трехфазного двигателя, но в вашем магазине есть только однофазное питание.Если вы действительно не понимаете, в чем разница между трехфазным и однофазным, посмотрите здесь. Вы, наверное, слышали, что вы можете каким-то образом подключить трехфазный двигатель к однофазному току, чтобы генерировать трехфазную мощность. Этот возможен, потому что асинхронный двигатель и индукционный генератор - это в основном одно и то же. Двигатель, который вы используете в качестве генератора (вращающийся фазовый преобразователь), называется холостым, и он должен иметь номинальную мощность на 20-30% выше, чем двигатель самого большого оборудования, которое вы будете использовать, и должен быть рассчитан на 220- 240 вольт.

Чтобы сделать простой вращающийся фазовый преобразователь из трехфазного двигателя

  • Подключите однофазное питание 230 В к клеммам (или проводам) питания T1 и T2 двигателя, который вы используете в качестве преобразователя.
  • Получите вращение (например, с веревкой, обернутой вокруг вала двигателя), чтобы запустить его - он не запустится сам по себе.
  • Отключите трехфазное питание от клемм T1, T2 и T3, чтобы запитать трехфазное торговое оборудование.

    Это действительно так просто, если вы понимаете ограничения такого простого устройства.

  • 1) Три ветви питания, которые вы подаете, не сбалансированы из-за их разных источников.
  • 2) Разделение фаз, которое должно составлять 120 градусов между всеми ветвями, также будет неправильным, потому что однофазное линейное напряжение на L1 и L2 разнесено на 180 градусов.
  • 3) Из-за несовершенного характера мощности, подаваемой как на двигатель оборудования, так и на холостой ход, ни один из них не будет работать с полной эффективностью - они будут меньше работать, станут более шумными, производят больше вибрации и тепла, будут потреблять больше энергии и не прослужат так долго, как если бы они были снабжены надлежащим трехфазным питанием.
  • 4) Более сложная электроника (например, станки с ЧПУ) может быть повреждена таким грубым источником питания.
  • 5) Ваш местный инспектор норм может одобрить или не одобрить этот тип устройства.
  • Как бы то ни было, он по-прежнему будет работать, и есть вещи, которые решительный самодельщик (сделай сам) может сделать, чтобы улучшить работу системы, например, использовать рабочие конденсаторы между ножками L1-L3 и L2-L3 для выровнять баланс напряжений. Вы также должны использовать пусковой конденсатор, чтобы вам не приходилось вручную раскручивать холостой ход при запуске.Если вы будете использовать трехфазное питание только изредка и не обеспокоены другими ограничениями этого метода, возможно, это именно то, что вам нужно.

  • Добавьте выключатель пускателя магнитного двигателя - Магнитный выключатель содержит электромагнит, который удерживает выключатель во включенном положении при прохождении тока и намного безопаснее как для оператора, так и для оборудования в случае сбоя питания, потому что после подачи питания восстановлено, оборудование останется выключенным, пока вы не активируете его повторно.Это, очевидно, безопаснее для персонала магазина, но также помогает защитить оборудование и предотвратить возгорание. Правильный пускатель двигателя также защищает вращающийся фазовый преобразователь от перегрузки по току - автоматический выключатель не предназначен для использования в качестве переключателя включения / выключения или для защиты двигателей.
  • Добавьте пусковой конденсатор - Пусковой конденсатор должен быть рассчитан на напряжение не менее 250 В и 50–100 мкФ на номинальную мощность вашего холостого хода. Пусковой конденсатор (ы) находится между соединениями холостого хода T1 и T3.Вы можете подключить пусковой конденсатор через его собственный переключатель мгновенного действия или использовать клеммы мгновенного действия магнитного переключателя, чтобы включить его, или вы можете использовать конфигурацию самозапуска. В любом случае вы хотите, чтобы в цепи был только пусковой конденсатор, пока холостой ход не начнет вращаться. Существуют конфигурации, в которых используется один и тот же конденсатор как пусковой, так и рабочий конденсатор.
  • Добавьте рабочие конденсаторы - Преобразователь фазы будет нормально работать без рабочих конденсаторов, но он в некоторой степени повысит производительность и эффективность.Рабочие конденсаторы должны быть рассчитаны на продолжительную работу при высоком напряжении (330–370 В) и должны быть постоянно подключены между соединениями T1-T3 и T2-T3. Идеального баланса напряжений трудно достичь без какой-либо динамической регулировки, потому что разные состояния нагрузки потребуют разных конфигураций рабочих конденсаторов. Но в большинстве случаев для моторных нагрузок это не имеет особого значения. Как правило, используйте примерно 12-16 мкФ на номинальную мощность холостого хода.
  • Безопасность прежде всего , само собой разумеется, что вы можете быть ранены или убиты высоковольтным электрическим оборудованием, или вы можете сжечь свой магазин или повредить оборудование, которое вы подключаете к зверю, подобному этому.Если в этом руководстве недостаточно информации, чтобы вы могли разобраться в деталях самостоятельно, вам, вероятно, следует пересмотреть этот проект.

    Подсказки

  • Чем выше номинальная мощность вашего холостого двигателя, тем лучше он будет работать, но также система будет потреблять больше тока и, следовательно, будет дороже в эксплуатации.
  • Если в вашем магазине несколько единиц оборудования, которые питаются от трехфазных двигателей, все двигатели, которые работают одновременно, будут действовать как вращающиеся преобразователи фазы и улучшат качество электроэнергии.Просто подключите их все, включая ваш холостой ход, через одну трехфазную вспомогательную панель и запитайте две ноги вспомогательной панели однофазным напряжением 240 - другая ветвь будет получать питание от фазового преобразователя и любых других двигателей, которые у вас работают на холостом ходу. Прервите все (включая холостой ход) с помощью прерывателя нормального размера для отдельных двигателей. Затем, если у вас есть одна часть оборудования, которая потребляет большой ток, вы можете запустить фазовый преобразователь, а затем запустить другой двигатель и дать ему поработать на холостом ходу в дополнение к фазовому преобразователю, в то время как вы используете оборудование с высоким потреблением тока.Излишне говорить, что вам необходимо учитывать все последствия для безопасности одновременного включения нескольких машин.
  • Бесплатной поездки не существует. Вы должны подавать достаточно однофазного тока для питания оборудования, которое вы используете, и для удовлетворения паразитного энергопотребления вращающегося фазового преобразователя (ов). Подбирайте провода и прерыватели соответственно.
  • Если вы собираетесь создать вращающийся фазовый преобразователь, сделайте его из высококачественного двигателя, чтобы он прослужил долго.Если возможно, вам нужен хороший большой двигатель TEFC с высококачественными герметичными подшипниками.
  • Конденсаторы дороги, но вы можете подключить их параллельно, чтобы получить необходимое значение - 3 конденсатора по 20 мФ, подключенные параллельно, эквивалентны одному конденсатору емкостью 60 мФ.
  • Бывшие в употреблении конденсаторы подходят, если они заполнены маслом высокого качества. Дешевые колпачки для электролита со временем выходят из строя, поэтому избегайте использования таких колпачков.
  • Трехфазные двигатели, конденсаторы, корпуса и т. Д. (А также оборудование) часто можно купить у промышленных переработчиков за Крошечную долю от новой цены.

    Статьи по теме

  • В чем разница между трехфазным и однофазным электроснабжением?
  • Как собрать преобразователь фазы
  • Как собрать самозапускающийся преобразователь фазы
  • Еще одна статья о создании самозапускающегося фазового преобразователя - очень четко написана и иллюстрирована.
  • Классическая статья Джима Ханрахана о создании самодельных RPC
  • Электрические схемы стартера двигателя
  • - статья базы знаний старых деревообрабатывающих станков о переключателях стартера двигателя
  • Форум RPC для практических машиностроителей - Множество изображений и пользовательский опыт с домашними фазопреобразователями
  • Схема трехфазного инвертора

    Все мы знаем об инверторе - это устройство, которое преобразует постоянный ток в переменный.Ранее мы узнали о различных типах инверторов и построили однофазный инвертор от 12 до 220 В. Трехфазный инвертор преобразует напряжение постоянного тока в трехфазное питание переменного тока. Здесь, в этом руководстве, мы узнаем о трехфазном инверторе и его рабочем , но, прежде чем идти дальше, давайте посмотрим на формы сигналов напряжения трехфазной линии. В приведенной выше схеме трехфазная линия подключена к резистивной нагрузке, и нагрузка потребляет мощность от линии. Если мы нарисуем формы волны напряжения для каждой фазы, то у нас будет график, как показано на рисунке.На графике мы видим три формы волны напряжения, сдвинутые по фазе на друг другу на 120º .

    В этой статье мы обсудим схему 3-фазного инвертора , которая используется в качестве преобразователя постоянного тока в 3-фазный переменный ток . Помните, что даже в наши дни получение полностью синусоидальной формы волны для различных нагрузок чрезвычайно сложно и непрактично. Итак, здесь мы обсудим работу схемы идеального трехфазного преобразователя , игнорируя все вопросы, связанные с практическим трехфазным инвертором.

    3-фазный инвертор работает

    Теперь давайте посмотрим на схему 3-фазного инвертора и ее идеальную упрощенную форму.

    Ниже представлена ​​принципиальная схема трехфазного инвертора , разработанная с использованием тиристоров и диодов (для защиты от скачков напряжения)

    А ниже представлена ​​принципиальная схема трехфазного инвертора , спроектированная с использованием только переключателей. Как видите, эта установка с шестью механическими переключателями более полезна для понимания работы 3-фазного инвертора , работающего , чем громоздкая тиристорная схема.

    Здесь мы будем размыкать и симметрично замыкать эти шесть переключателей, чтобы получить трехфазное выходное напряжение для резистивной нагрузки. Есть два возможных способа срабатывания переключателей для достижения желаемого результата: один, при котором переключатели проводят на 180 °, и другой, при котором переключатели проводят только на 120 °. Давайте обсудим каждый паттерн ниже:

    A) Трехфазный инвертор - режим проводимости 180 градусов

    Идеальная схема нарисована до того, как ее можно будет разделить на три сегмента, а именно: сегмент один, сегмент два и сегмент три, и мы будем использовать эти обозначения в следующем разделе статьи. Первый сегмент состоит из пары переключателей S1 и S2, второй сегмент состоит из коммутирующей пары S3 и S4, а третий сегмент состоит из коммутирующей пары S5 и S6. В любой момент времени оба переключателя в одном и том же сегменте никогда не должны быть замкнуты, так как это приводит к короткому замыканию батареи, нарушающему всю настройку, поэтому этого сценария следует избегать всегда.

    Теперь давайте начнем последовательность переключения с замыкания переключателя S1 в первом сегменте идеальной схемы и назовем начало 0º.Поскольку выбранное время проведения составляет 180 °, переключатель S1 будет замкнут от 0 ° до 180 °.

    Но после 120º первой фазы вторая фаза также будет иметь положительный цикл, как видно на графике трехфазного напряжения, поэтому переключатель S3 будет замкнут после S1. Эта S3 также будет закрыта еще на 180 °. Таким образом, S3 будет закрыт с 120º до 300º и будет открыт только после 300º.

    Аналогично, третья фаза также имеет положительный цикл после 120º положительного цикла второй фазы, как показано на графике в начале статьи.Таким образом, переключатель S5 будет закрыт после закрытия 120º S3, т.е. 240º. После того, как переключатель замкнут, он будет оставаться в замкнутом состоянии на 180º перед тем, как разомкнуться, при этом S5 будет замкнут от 240º до 60º (второй цикл).

    До сих пор все, что мы делали, это предполагало, что проводимость осуществляется, когда переключатели верхнего уровня замкнуты, но для протекания тока из цепи необходимо завершить. Кроме того, помните, что оба переключателя в одном сегменте никогда не должны быть в замкнутом состоянии одновременно, поэтому, если один переключатель замкнут, другой должен быть разомкнут.

    Для удовлетворения обоих вышеуказанных условий мы закроем S2, S4 и S6 в заранее определенном порядке. Итак, только после открытия S1 нам нужно будет закрыть S2. Точно так же S4 закроется после того, как S3 откроется на 300º, и точно так же S6 закроется после того, как S5 завершит цикл проводимости. Этот цикл переключения между переключателями одного и того же сегмента можно увидеть на рисунке ниже. Здесь S2 следует за S1, S4 следует за S3, а S6 следует за S5.

    Следуя этому симметричному переключению, мы можем достичь желаемого трехфазного напряжения, представленного на графике.Если мы заполним начальную последовательность переключения в приведенной выше таблице, мы получим полную схему переключения для режима проводимости 180º, как показано ниже.

    Из приведенной выше таблицы мы можем понять, что:

    От 0 до 60: S1, S4 и S5 замкнуты, а остальные три переключателя разомкнуты.

    От 60 до 120: S1, S4 и S6 замкнуты, а остальные три переключателя разомкнуты.

    От 120 до 180: S1, S3 и S6 замкнуты, а остальные три переключателя разомкнуты.

    И последовательность переключения идет так. Теперь давайте нарисуем упрощенную схему для каждого шага, чтобы лучше понять параметры тока и напряжения.

    Шаг 1: (для 0-60) S1, S4 и S5 замкнуты, а остальные три переключателя разомкнуты. В таком случае упрощенная схема может быть такой, как показано ниже.

    Итак, от 0 до 60: Vao = Vco = Vs / 3; Vbo = -2Vs / 3

    Используя их, мы можем получить линейные напряжения как:

    Vab = Vao - V bo = Vs
    Vbc = Vbo - Vco = -Vs
    Vca = Vco - Vao = 0 

    Шаг 2: (от 60 до 120) S1, S4 и S6 замкнуты, а остальные три переключателя разомкнуты.В таком случае упрощенная схема может быть такой, как показано ниже.

    Итак, от 60 до 120: Vbo = Vco = -Vs / 3; Vao = 2Vs / 3

    Используя их, мы можем получить линейные напряжения как:

    Vab = Vao - Vbo = Vs
    Vbc = Vbo - Vco = 0
    Vca = Vco - Vao = -Vs 

    Шаг 3: (от 120 до 180) S1, S3 и S6 замкнуты, а остальные три переключателя разомкнуты. В таком случае упрощенную схему можно нарисовать, как показано ниже.

    Итак, от 120 до 180: Vao = Vbo = Vs / 3; Vco = -2Vs / 3

    Используя их, мы можем получить линейные напряжения как:

    Vab = Vao - V bo = 0
    Vbc = Vbo - Vco = Vs
    Vca = Vco - Vao = -Vs 

    Аналогичным образом мы можем получить фазные напряжения и линейные напряжения для следующих шагов в последовательности.И это можно представить в виде рисунка, приведенного ниже:

    A) Трехфазный инвертор - режим проводимости 120 градусов

    Режим 120 ° аналогичен режиму 180 ° во всех аспектах, за исключением того, что время закрытия каждого переключателя уменьшено до 120, которое было 180 ° ранее.

    Как обычно, давайте начнем последовательность переключения, замкнув переключатель S1 в первом сегменте и установив начальный номер на 0º. Поскольку выбранное время проводимости составляет 120º, переключатель S1 откроется через 120º, поэтому S1 был замкнут от 0º до 120º.

    Поскольку полупериод синусоидального сигнала изменяется от 0 до 180º, в течение оставшегося времени S1 будет открыт и представлен серой областью выше.

    Теперь, после 120º первой фазы, вторая фаза также будет иметь положительный цикл, как упоминалось ранее, поэтому переключатель S3 будет замкнут после S1. Эта S3 также будет закрыта еще на 120º. Таким образом, S3 будет закрыт с 120º до 240º.

    Аналогично, третья фаза также имеет положительный цикл после 120º положительного цикла второй фазы, поэтому переключатель S5 будет замкнут после 120º замыкания S3.После того, как переключатель замкнут, он будет оставаться в замкнутом состоянии на 120º перед тем, как разомкнуться, и при этом переключатель S5 будет замкнут от 240º до 360º

    Этот цикл симметричного переключения будет продолжен для достижения желаемого трехфазного напряжения. Если мы заполним начальную и конечную последовательность переключения в приведенной выше таблице, мы получим полную схему переключения для режима проводимости 120º, как показано ниже.

    Из приведенной выше таблицы мы можем понять, что:

    От 0 до 60: S1 и S4 замкнуты, а остальные переключатели разомкнуты.

    От 60 до 120: S1 и S6 замкнуты, а остальные переключатели разомкнуты.

    От 120 до 180: S3 и S6 замкнуты, а остальные переключатели разомкнуты.

    От 180 до 240: S2 и S3 замкнуты, а остальные выключатели разомкнуты

    С 240-300: S2 и S5 замкнуты, а остальные выключатели разомкнуты

    От 300 до 360: S4 и S5 замкнуты, а остальные переключатели разомкнуты

    И эта последовательность шагов продолжается вот так.Теперь давайте нарисуем упрощенную схему для каждого шага, чтобы лучше понять параметры тока и напряжения в цепи трехфазного инвертора.

    Шаг 1: (для 0-60) S1, S4 замкнуты, а остальные четыре переключателя разомкнуты. В таком случае упрощенная схема может быть показана ниже.

    Итак, от 0 до 60: Vao = Vs / 2, Vco = 0; Vbo = -Vs / 2

    Используя их, мы можем получить линейные напряжения как:

    Vab = Vao - V bo = Vs
    Vbc = Vbo - Vco = -Vs / 2
    Vca = Vco - Vao = -Vs / 2 

    Шаг 2: (от 60 до 120) S1 и S6 замкнуты, а остальные переключатели разомкнуты.В таком случае упрощенная схема может быть показана ниже.

    Итак, от 60 до 120: Vbo = 0, Vco = -Vs / 2 и Vao = Vs / 2

    Используя их, мы можем получить линейные напряжения как:

    Vab = Vao - Vbo = Vs / 2
    Vbc = Vbo - Vco = Vs / 2
    Vca = Vco - Vao = -Vs 

    Шаг 3: (от 120 до 180) S3 и S6 замкнуты, а остальные переключатели разомкнуты. В таком случае упрощенная схема может быть показана ниже.

    Итак, от 120 до 180: Vao = 0, Vbo = Vs / 2 и Vco = -Vs / 2

    Используя их, мы можем получить линейные напряжения как:

    Vab = Vao - V bo = -Vs / 2
    Vbc = Vbo - Vco = Vs
    Vca = Vco - Vao = -Vs / 2 

    Аналогичным образом мы можем получить фазные напряжения и линейные напряжения для следующих следующих шагов.А если нарисовать график для всех шагов, то получится что-то вроде того, что показано ниже.

    На графиках выходных сигналов для случаев переключения 180º и 120º можно увидеть, что мы получили переменное трехфазное напряжение на трех выходных клеммах. Хотя форма выходного сигнала не является чистой синусоидой, она действительно напоминала форму волны трехфазного напряжения. Это простая идеальная схема и приблизительная форма волны для понимания работы трехфазного инвертора. На основе этой теории можно разработать рабочую модель, используя тиристоры, схемы переключения, управления и защиты.

    Цепь

    , работа и ее применение

    Инвертор - это силовое электронное устройство, используемое для изменения мощности с одной формы на другую, например постоянного тока в переменный, с необходимой частотой и напряжением o / p. Классификация может быть сделана на основе источника питания, а также соответствующей топологии в силовой цепи. Таким образом, они подразделяются на два типа (инвертор источника напряжения) и CSI (инвертор источника тока). Инвертор типа VSI имеет источник постоянного напряжения с меньшим сопротивлением на входных клеммах инвертора.Инвертор типа CSI имеет источник постоянного тока с высоким сопротивлением. В этой статье обсуждается обзор трехфазного инвертора, такого как схема, работа и его применение.


    Что такое трехфазный инвертор?

    Определение: Мы знаем, что инвертор преобразует постоянный ток в переменный. Мы уже обсуждали разные типы инверторов. Трехфазный инвертор используется для изменения постоянного напряжения на трехфазный переменный ток. Как правило, они используются в приводах большой мощности и частотно-регулируемого привода, таких как передача энергии постоянного тока высокого напряжения.

    Трехфазный инвертор

    В трехфазном инверторе мощность может передаваться по сети с помощью трех разных токов, которые не совпадают по фазе друг с другом, тогда как в однофазном инверторе мощность может передаваться через одну фазу. Например, если у вас в доме трехфазное подключение, то инвертор можно подключить к одной из фаз.


    Принцип работы

    Принцип работы трехфазного инвертора заключается в том, что он включает в себя три однофазных переключателя инвертора, каждый из которых может быть подключен к клемме нагрузки.В базовой системе управления работа трех переключателей может быть синхронизирована, так что один переключатель работает на каждые 60 градусов основной формы сигнала включения / выключения для создания сигнала линейного переключения, включающего шесть шагов. Эта форма волны включает в себя ступень нулевого напряжения среди двух секций, таких как положительная и отрицательная прямоугольная волна. После того, как к этим сигналам будут применены методы ШИМ, основанные на несущей, тогда можно будет взять базовую форму сигнала, так что третья гармоника, включая ее кратные, будет подавлена.

    Однофазный инвертор

    Эти инверторы доступны двух типов, например, полумостового типа и полумостового типа.

    Цепь инвертора полумостового типа в основном используется для преобразования постоянного тока в переменный. Это может быть достигнуто путем размыкания и замыкания переключателей в правильной последовательности. Этот тип инвертора включает четыре разных рабочих состояния, когда эти переключатели работают на замкнутых переключателях.

    Схема инвертора полумостового типа является основным строительным блоком в инверторе полумостового типа.Этот инвертор включает в себя два переключателя, каждый из которых включает конденсаторы с выходным напряжением. Кроме того, эти переключатели дополняют друг друга, потому что если первый переключатель включен, то оставшийся переключатель будет выключен.

    Конструкция / принципиальная схема трехфазного инвертора

    Принципиальная схема трехфазного инвертора показана ниже. Основная функция этого типа инвертора - изменить вход постоянного тока на выход трехфазного переменного тока. Базовый трехфазный инвертор включает 3 однофазных инверторных переключателя, каждый из которых может быть подключен к одной из трех нагрузочных клемм.

    Схема трехфазного инвертора

    Обычно три плеча этого инвертора задерживаются на угол 120 градусов для генерации трехфазного источника переменного тока.
    Переключатели, используемые в инверторе, имеют передаточное число 50%, и переключение может происходить через каждые 60 градусов. Такие переключатели, как S1, S2, S3, S4, S5 и S6, будут дополнять друг друга. В этом случае три однофазных инвертора подключаются к аналогичному источнику постоянного тока. Напряжения на полюсах трехфазного инвертора эквивалентны напряжениям на полюсах однофазного полумостового инвертора.’

    Два типа инверторов, такие как однофазный и трехфазный, включают два режима проводимости, такие как режим проводимости 180 градусов и режим проводимости 120 градусов.

    Режим проводимости 180 °

    В этом режиме проводимости каждое устройство будет находиться в режиме проводимости на 180 °, где они активируются с интервалами 60 °. Выходные клеммы, такие как A, B и C, подключены к соединению нагрузки по схеме звезды или трехфазного треугольника.

    Сбалансированная нагрузка

    Сбалансированная нагрузка для трех фаз поясняется на следующей диаграмме.В диапазоне от 0 до 60 градусов переключатели, такие как S1, S5 и S6, находятся в режиме проводимости. Клеммы нагрузки, такие как A и C, связаны с источником в его положительной точке, тогда как клемма B связана с источником в его отрицательной точке. Кроме того, сопротивление R / 2 доступно между двумя концами нейтрали и положительной клеммы, тогда как сопротивление R доступно между нейтралью и отрицательной клеммой.

    В этом режиме напряжения нагрузки указаны ниже.

    VAN = V / 3,

    VBN = −2V / 3,

    VCN = V / 3

    Ниже приведены линейные напряжения.

    VAB = VAN - VBN = V,

    VBC = VBN - VCN = −V,

    VCA = VCN - VAN = 0

    Режим проводимости 120 °

    В этом типе проводимости , каждое электронное устройство будет в состоянии проводимости на 120 °. Он подходит для соединения треугольником внутри нагрузки, поскольку в результате получается шестиступенчатая форма волны на одной из ее фаз. Таким образом, в любой момент только эти устройства будут проводить каждое устройство, которое будет проводить только на 120 °.

    Подключение клеммы «A» к нагрузке может быть выполнено через положительный конец, тогда как клемма B может быть подключена к отрицательной клемме источника. Клемма «C» на нагрузке будет находиться в проводящем состоянии, это называется плавающим состоянием. Кроме того, фазные напряжения эквивалентны напряжениям нагрузки, указанным ниже.

    Фазные напряжения равны линейным напряжениям, поэтому

    VAB = V

    VBC = −V / 2

    VCA = −V / 2

    Применение трехфазного инвертора

    К типу инвертора относятся следующие.

    • Эти инверторы используются в приводах переменной частоты
    • Используются в приложениях большой мощности, таких как передача энергии постоянного тока высокого напряжения.
    • Трехфазный инвертор прямоугольной формы используется в цепи ИБП и недорогой цепи твердотельного зарядного устройства.

    Таким образом, это все о трехфазном инверторе, принципе работы, конструкции или принципиальной схеме, режимах проводимости и их применениях. Трехфазный инвертор используется для преобразования постоянного тока в переменный ток.Он включает в себя три плеча, которые обычно смещены на угол 120 ° для создания трехфазного источника переменного тока. Переключатели в инверторе имеют передаточное отношение 50%, и переключение происходит после каждого T / 6 времени с интервалом угла 60 °. Вот вам вопрос, какие типы инверторов доступны на рынке?

    Преимущества вращающегося фазового преобразователя по сравнению с трехфазным и трехфазным генератором от электросети

    Действительно, существуют и другие варианты обеспечения трехфазного питания для вашего оборудования.У каждого варианта есть свои плюсы, но все зависит от того, что доступно вам и вашей ситуации. Возможны варианты получения трехфазного питания через вашу сеть, газовый или дизельный генератор или через вращающийся фазовый преобразователь. Здесь мы приводим разбивку затрат, связанных с каждым вариантом, чтобы вы могли принять обоснованное решение о том, какой маршрут лучше всего подходит для вас.

    Трехфазный генератор

    Этот вариант хорош, если на объекте нет электричества. Эти генераторы могут работать на газе или дизельном топливе.Генераторы также доступны как в однофазном, так и в трехфазном исполнении. Доступно много разных размеров в зависимости от конкретных потребностей. Цена также зависит от размера генератора и может сильно варьироваться.

    Для оценки этого варианта мы можем посмотреть на эксплуатационные расходы генератора. При использовании генератора эксплуатационные расходы будут колебаться в зависимости от стоимости масла, как и при вождении наших автомобилей. По этой причине мы оцениваем ваши затраты на создание мощности, отключенной от генератора, в среднем в размере 0,46 доллара США за (кВт-час).Затем, когда это двигатель, который работает для создания мощности, вы должны идти в ногу со стандартным графиком технического обслуживания двигателя. Этот вариант обеспечивает трехфазное питание, но качество питания может варьироваться в зависимости от производителя генератора.

    Трехфазное оборудование

    Обычно это первый вариант, который приходит на ум, когда кто-то думает о трехфазном питании. Трехфазное питание от энергокомпании не всегда доступно во всех областях, и если оно есть, то это может быть запрещено по затратам.В среднем стоимость трехфазного электроснабжения составляет примерно 50 000 долларов за милю плюс затраты на подготовку площадки. Средняя стоимость использования составляет около 0,10 доллара США за (кВт-ч) плюс минимальные требования к использованию и плата за потребление. При трехфазном питании от электросети качество электроэнергии составляет примерно 10% от баланса напряжения на трех ветвях. Если вы выбираете трехфазное энергоснабжение, неплохо было бы провести настоящий анализ затрат, чтобы заранее узнать все ваши затраты, прежде чем вкладывать средства в его внедрение.

    Цифровой поворотный преобразователь фазы

    Цифровой вращающийся фазовый преобразователь - очень экономичный вариант для обеспечения вашего магазина трехфазным питанием. Этот выбор дает вам возможность запускать трехфазное оборудование от однофазного источника питания, будь то энергокомпания, генератор или солнечная энергосистема. Цифровой фазовый преобразователь American Rotary доступен во многих различных размерах. Вы можете адаптировать свои потребности для одновременной работы от одной нагрузки до трехфазного режима работы.Поскольку преобразователь доступен в широком диапазоне размеров, он также очень доступен по сравнению с другими трехфазными вариантами.

    Одна вещь, которую многие люди опасаются при работе со своим оборудованием, - это качество потребляемой энергии. Это может быть верным утверждением в зависимости от используемой вами ротационной системы. Однако это не так с американской системой Rotary. В наших линиях цифровых вращающихся фазовых преобразователей (AD, ADX и AI) мы используем наш запатентованный контроллер MicroSmart. Этот цифровой контроллер контролирует и контролирует ваши напряжения на трех ветвях питания, обеспечивая точный баланс напряжения для вашего оборудования и добавляя дополнительные отказоустойчивые функции к работе фазового преобразователя.Контролируя ваше напряжение каждые 50 миллисекунд и обеспечивая лучший контроль напряжения, это помогает продлить срок службы вашего преобразователя, позволяет значительно увеличить нагрузочную способность (ADX и AI) и более эффективно управлять вашим оборудованием.

    Во всех ротационных фазовых преобразователях American мы используем индукционный генератор специальной конструкции в качестве холостого хода. Он оснащен нашим генератором VIT, который представляет собой настоящий холостой ход с плавным пуском, который использует 1/3 пускового тока сопоставимого трехфазного двигателя. Эта технология также позволяет без каких-либо негативных последствий работать с фазовым преобразователем в режиме 24/7 без нагрузки или без нагрузки.Наши бездельники работают очень плавно, тихо и эффективно.

    И, наконец, эта технология генерирует истинную трехфазную синусоидальную волну, позволяя вам использовать ваше оборудование на полном трехфазном питании от однофазного источника питания. У вас будет баланс напряжения около 5% или больше при измерении от ноги к ноге. Приблизительная стоимость эксплуатации фазового преобразователя составляет 0,12 доллара США за (кВт-час).

    Наличие фазового преобразователя избавляет вас от необходимости беспокоиться о больших расходах на ввод трехфазного электроснабжения, минимальных требований к потребляемой мощности и необходимости беспокоиться о наличии топлива на месте для работы вашего генератора.Чтобы узнать, насколько доступно воплощение вашей американской мечты в реальность, свяжитесь с American Rotary сегодня.

    IRJET - Запрошенная вами страница не была найдена на нашем сайте

    IRJET приглашает статьи из различных инженерных и технологических дисциплин, научных дисциплин для Тома 8, выпуск 6 (июнь-2021)

    Отправить сейчас


    IRJET Vol-8, выпуск 6, Июнь 2021 г. Публикация продолжается ...

    Обзор статей


    Получено IRJET "Импакт-фактор научного журнала: 7.529 »на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 6 ( Июнь-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 6, июнь 2021 Публикация в процессе ...

    Обзор статей


    Получено IRJET "Фактор влияния научного журнала: 7.529 »на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 6 ( Июнь-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 6, июнь 2021 Публикация в процессе ...

    Обзор статей


    Получено IRJET "Фактор влияния научного журнала: 7.529 »на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 6 ( Июнь-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 6, июнь 2021 Публикация в процессе ...

    Обзор статей


    Получено IRJET "Фактор влияния научного журнала: 7.529 »на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 6 ( Июнь-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 6, июнь 2021 Публикация в процессе ...

    Обзор статей


    Получено IRJET "Фактор влияния научного журнала: 7.529 »на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 6 ( Июнь-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 6, июнь 2021 Публикация в процессе ...

    Обзор статей


    Получено IRJET "Фактор влияния научного журнала: 7.529 »на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 6 ( Июнь-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 6, июнь 2021 Публикация в процессе ...

    Обзор статей


    Получено IRJET "Фактор влияния научного журнала: 7.529 »на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации ISO 9001: 2008 для своей системы менеджмента качества.


    IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 6 ( Июнь-2021)

    Отправить сейчас


    IRJET Vol-8 Выпуск 6, июнь 2021 Публикация в процессе ...

    Обзор статей


    Получено IRJET "Фактор влияния научного журнала: 7.529 »на 2020 год.

    Проверить здесь


    IRJET получил сертификат регистрации системы менеджмента качества ISO 9001: 2008.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *