Схема бедини своими руками схема: Схема генератор бедини

Содержание

Схема генератор бедини

Вот, что я Вам скажу. Есть одна замечательная мысль, в справедливости которой я убеждался не раз : «Всё, что мы изобретаем, — уже давно изобрели ДО нас»! Я напридумывал за свою жизнь огромное количество всевозможных «хитрых штучек», но со временем я обязательно раскапывал информацию, из которой следует, что это изобретение уже существует. И не важно, пять лет ему, или пять тысяч.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Сборка мотора Бедини своими руками

Генератор свободной энергии: схемы, инструкции, описание


Дубликаты не найдены. Все комментарии Автора. Схема, которую собрал Sergei — это хорошо известная как по схемотехнике, так и по энергетическому балансу схема однотактного повышающего обратноходового преобразователя. Полагаю, у читателей темы нет возражений насчет того, что схема управления транзистором не привносит никакой дополнительной энергии, а является энергопотребителем. Потому не будет большого «греха», если она будет реализована на любом генераторе импульсов, например, на микросхеме серии К, а не на вентиляторе.

Для того, чтобы проверить — дает или нет рассматриваемая силовая часть схемы прибавку энергии, предлагаю просто посчитать энергетический баланс: сколько активной энергии схема потребила от генератора, и сколько она отдала в нагрузку за определенный интервал времени.

К выводам резисторов припаиваем соединительные провода, и места паек изолируем термо- влагостойким лаком например, кремнийорганическим. Резистор опускаем в банку с одним литром воды, и туда же опускаем термометр.

Второй точно такой же резистор впаиваем вместо заряжаемого аккумулятора и опускаеа его в точно такую же банку с тем же количеством воды той же температуры. Туда же опускаем второй термометр-близнец первого. Включаем схему.

В резисторе выделяется тепло, пропорциональное величине сопротивления резистора, квадрату силы тока через него и времени этой части цикла работы устройства. В следующей части рабочего цикла транзистор закрывается, и энергия, накопленная в индуктивности, создает ток, начинающий протекать по цепи: красный провод, обмотка вентилятора, анод-катод диода 2, нагрузочный резистор, красный проовод.

При этом в нагрузочном резисторе выделится количество тепла также пропорциональное величине сопротивления этого резистора, времени этой части цикла и кавдрату средней за эту часть цикла силы тока через этот нагрузочный резистор. Дальше ясно: если через какоое-то время температура воды в банке с резистором «нагрузки» устройства стала выше, чем в банке с «контрольным» резистором — мы имеем дело со сверхединичным устройством. В данном случае такой способ замера позволяет учесть только полезную энергию, выделившуюся в активной нагрузке, и сравнить её с энергией, выделившейся в точно такой же контрольной нагрузке для получения энергии ПОЛЕЗНОЙ.

Но ведь и цель опыта — достаточно быстрая проверка заявленной «сверхединичности»! Для уменьшения потерь в контрольной нагрузке можно взять контрольный резистор с номиналом, допустим, в 1 Ом. Но при этом после сравнения показаний двух термометров потребуется произвести несложный подсчет количества тепла, выделившегося в контрольной банке и умножить его на 10 ведь резистор -то был с номиналом в 10 раз меньшим!

И уже это откорректированное количество тепла сравнивать с количеством тепла, выделившегося в банке с полезной нагрузкой. Барон мне иногда кажется что вы за мной следите Может это паранойя? А уяснить простой закон сохранения энергии слабо? Вечный двигатель в принципе не возможен. Я нихрена не шарю в физике честно , но убеждён, что из-за таких как Вы — нагруженных знаниями и ограничивающихся их рамками без сарказма , прогресс тормозится.

Благо всегда находятся те, кто кладут на рамки знаний и делают прорывы. Академия наук Франции ещё в семнадцатом веке прекратила принимать заявки на патенты вечных двигателей. Не аргумент. Если кучка бородатых мужиков сказала: «Идите нахрен — этого не может быть», то это не значит, что этого не может быть.

Читайте мои комменты выше. Я выложил копипасту с того же сайта, откуда взята эта статья, там всё хорошо расписано. Вы говорите, «из-за таких, как вы». Не лезьте в те области деятельности, в которых ничего не смыслете. Да я и не лезу Просто у меня есть на этот счёт своё сложившееся мнение и я его высказал — не более того :.

Ну ок, вот Вам «прогресс», только что высосал из пальца гугли — не гугли, наверное не найдёшь. Вот смотрите, дан каппиляр тонкая трубка , поставлена она на тарелку с водой. Очевидно, что вода потечёт вверх таки объяснять не буду почему, так оно и будет. На некоторой высоте мы поставим отодвигающуюся перегородку, которая соединена со стенкой вода поднимается — поднимает перегородку — в стенке образуется дырка , вода начинает капать прямо на водяную мельницу обратно в тарелку.

Всё, провит, халявная энергия! Если ты соберёшь эту схемку я не думаю, что это сложно и у тебя получится вечный двигатель, то я спою что нибудь из Джастина Бибера и выложу это на Пикабу. Типа такой хрени? Аааа А то я испугался, что мою «патентную» идею уже давно придумали и запотентовали хД. Вода вроде не будет подниматся до отверстия повторно — с давлением что-то связано. Нет, не в этом деле.

Скорее всего вода просто не будет выливаться из этого отверстия всё те же каппилярные эффекты. Девятый класс я проболел, а в ом мне по программе физику отменили : В министерстве образования идиоты сидят : Но есть отличный способ её выучить — постим на Пикабу комикс с кучей физических ошибок и ждём умных :.

Вода не перетечет за край. К тому же в закрытом сосуде вода не сможет высоко подняться — плотность воздуха внутри сосуда увеличится, увеличится и его давление на воду.

Про то что не перевалится я уже понял, это как классический пример с вечным двигателем архимеда там где нитка. Опять же каппилярные эффекты, есть предельный радиус капли после которой она начнёт падать, так что массы капли будет достаточно. Испарение легко устраняется высокой влажностью тупо сделаем это всё в коробке, а тарелка с водой будет большой, вода подогретой.

Вода просто не будет вытекать см. С ним общаться , что об стенку горохом. Другого он не знает и знать не хочет. Это же надо признать будет что он во многом ошибался ,а тут гордыня не дает!!! Энтузиазм это хорошо, но закон физики есть закон физики. Прыгай ты с парашюта, строй корабль — он везде действует. Удачи вам! А выразил скепсис только насчет вечного двигателя. Очень печально что у человека с такими способностями нет денег, мнея стыдно за нашу страну.

Похожие посты. Похожие посты не найдены. Возможно, вас заинтересуют другие посты по тегам:.


Генератор свободной энергии Бедини. Правда или вымысел?

Концы этой обмотки выпаиваем из основной платы и и выводим наружу, она будет служить обмоткой съёма. Эта обмотка способна давать до 20 вольт, если двигатель питать от 14 вольт постоянного напряжения. Конечно, это напряжение мало, но суть статьи только демонстрация устройства. Ток в съёмной обмотке зависит от многих факторов — мощность, число оборотов в минуту, толщина провода и т. В данном моторе ток во второй обмотке не более мА.

Сам Бедини рассказывает о своем генераторе в 6 и 7-ой частях сериала напряжение, которое открывает транзистор (зелёным цветом на схеме).

Джон Бедини. Переписка и ответы на вопросы

By Artu-r , August 16, in Идеи и технологии будущего. Мы принимаем формат Sprint-Layout 6! Экспорт в Gerber из Sprint-Layout 6. Конденсаторы Panasonic. Часть 4. Полимеры — номенклатура. Главной конструктивной особенностью таких конденсаторов является полимерный материал, используемый в качестве проводящего слоя. Полимер обеспечивает конденсаторам высокую электрическую проводимость и пониженное эквивалентное сопротивление ESR.

Однополюсный двигатель Бедини, радиантная энергия

Идея получения абсолютно бесплатной неисчерпаемой электрической энергии не нова и муссируется учеными, исследователями, изобретателями и простыми новаторами уже давно. Одной из весьма интересных разработок в этой области можно считать двигатель или генератор Джона Бедини, созданный в году. Генератор свободной энергии Бедини — так его назвал сам создатель, в своей первоначальной интерпретации представляет собой целую энергетическую установку, состоящую из электродвигателя, аккумулятора, генератора и электромеханического переключателя. Принцип работы электрического генератора не особо сложен, тем более что он представляет собой тот же электродвигатель, с одной лишь разницей, что он приводиться в движение при помощи механической, а не электрической силы. И следовательно на выходе мы имеем электрическую, а не механическую энергию.

Местонахождение: Любое. Выбрать несколько.

www.skif.biz

Для умелых рук. Его тип тоже не имеет решающего значения. Более половины из них поддались зарядке и частичному восстановлению емкости. Примерно вот так:. Причем, форма импульсов на заряжаемом аккумуляторе остается такая же, как на приведенном выше рисунке, только частота меньше. Хотя спорить с вами на 10 баксов я не буду… Схему заряд-разряд можно построить на тиристоре или транзисторе.

генератор бедини схема

Switch to English регистрация. Телефон или email. Чужой компьютер. Bedini США. Рассматриваем устройство,принцип работы и способы получения электрической радиантной энергии холодного электричества с помощью электромагнитных устройств Джона Бедини,а также способы получения механической энергии с помощью электромагнитного двигателя с вращающимся ротором на основе двигателя Джона Бедини.

Импульсная технология Джона Бедини,практические схемы. что это что-то среднее между блокинг-генератором и «качером» (слышали про такое).

МОТОР БЕДИНИ

Для начала давайте внимательно, очень внимательно, посмотрим на эту конструкцию. Она представляет собой электромотор, на валу которого установлен самый обычный генератор динамо-машина!!!! В общем, мотора Бедини представлял бы классический вечный двигатель ВД , если бы не было аккумулятора и электронных схем управления.

Катушки попарно Черный-Жёлтый, Красный-Чёрный, я думаю на картинке ясно, какой Чёрный с чем Помогите пожаааааалуйста я не могу уже 3й день сижу понять не могу P. Если крутить переменный резистор, напряжение на куллере не меняется!!! Один из них — Закон сохранения энергии И никому,включая Тесла,Бедини , А,если Вы хотите просто зарядить аккумулятор,для этого есть множество интересных зарядных устройств

Сам Бедини рассказывает о своем генераторе в 6 и 7-ой частях сериала Энергия из вакуума. Энергия в проводнике появляется, когда в проводник поступают высоковольтные импульсы.

Забыли пароль? Забыли логин? Пожалуйста Войти или Регистрация , чтобы присоединиться к беседе. NikAndr пишет: Rakarskiy пишет: В коллекцию схем Бедини. Rakarskiy пишет: Вся проблема в управлении через триггер и один ключ К слову культивируемое заблуждение не без помощи самого Бедини. Оглавление Последнее Поиск Правила.

Отправить комментарий. Генератор Бедини. С самого начала хочется обратить внимание на саму конструкцию, которая является электрическим двигателем, на валу которого расположен стандартный генератор. В чем заключается особенность данной разработки?


Для умелых рук

В общем случае Бедини-устройство не является каким-либо «вечным двигателем». Это просто зарядное устройство для аккумулятора, причем – любого, как по напряжению, так и по емкости. Его тип тоже не имеет решающего значения. Единственное ограничение: аккумулятор, от которого питается устройство и заряжаемый аккумулятор – это обязательно разные батареи.

 

 Удовлетворительные результаты были получены с автомобильными аккумуляторами, батареями от мобильных телефонов и ноутбуков. Все они имели разную емкость и степень износа, — от 50% до полной неработоспособности в классическом режиме. Более половины из них поддались зарядке и частичному восстановлению емкости.

Существует, как минимум, два вида Бедини-устройств.

Первые, получившие большее распространение, ввиду их наглядности  – так называемые «моторы бедини», которые крутятся и заряжают несколько параллельно подключенных аккумуляторов. 
Bторая разновидность, так называемые «устройства Твердого тела».

Вот здесь я привожу классическую схему:

Кто понимает, тот может видеть, что это что-то среднее между блокинг-генератором и «качером» (слышали про такое). Единственное отличие, число витков катушки. В первоисточнике советуют 600-800 витков. Послушаемся доброго совета… Намотаем вот такую штуку:

Катушка мотается на каркасе, склеенном из оргстекла, внутренний диаметр  20 мм, внешний диаметр 80 мм, высота 100 мм. Сердечник из пластин трансформаторной стали (можно взять сварочные электроды или гвозди). Мотаются одновременно 3 обмотки, бифилярным способом, т.е. в 3 провода диаметром 0,65 мм скрученных вместе. Теперь пришло время что-нибудь спаять, я это и сделал…

Переменным резистором устанавливаем минимальный потребляемый ток при максимальной амплитуде. Выставляем около 100 мА — хорошо…

 Вообще, регулировкой резистора R2 можно достичь любого потребляемого тока, от 1-2 мА до тока максимального, который только может обеспечить источник питания. При этом очень дымно сгорает резистор  R1, который обязательно должен быть проволочным, и тихо – транзистор! Кстати господин Бедини советует устанавливать потребляемый ток не менее нескольких ампер или даже нескольких десятков ампер, включая для этого несколько  транзисторов параллельно.

Форма сигнала на выходе, как и ожидалось…

Короткие высоковольтные импульсы и всплески небольшой амплитуды после него (это важно). Такая  форма импульсов характерна для Бедини-устройств собранных по любым схемам – это их определяющая черта!

В простейшем случае, напряжением, снятым с коллектора транзистора, уже можно попробовать что-нибудь зарядить. Примерно вот так:

Однако, таким способом мне удавалось зарядить только маленькие аккумуляторы, от мобилы…Неоновая лампа параллельно цепи коллектор-эмитер транзистора крайне необходима, так как без нагрузки заряжаемой батареи, напряжение может достигать очень высоких значений, а транзистор у нас стоит  низковольтный, из жадности…

Для увеличения мощности нашего устройства необходимо немного усложнить схему. Будем, неспешно, заряжать конденсатор от вторичной обмотки и быстро разряжать на нагрузку (заряжаемый аккумулятор). 

Причем, форма импульсов на заряжаемом аккумуляторе остается такая же, как на приведенном выше рисунке, только частота меньше.
Тут я так же считаю необходимым добавить, что мы все грамотные люди, знаем в лицо Максвелла, Фарадея и многих других уважаемых людей, и кучу различных теорий. А они говорят нам, что аккумулятор заряжается не напряжением, а током! Посмотрите еще раз на хвостик после высоковольтного импульса – думаю это и есть наш зарядный ток. 

Хотя спорить с вами на 10 баксов я не буду…
Схему заряд-разряд можно построить на тиристоре или транзисторе. Обе описаны в первоисточнике у Бедини и я не придумал ничего нового. Просто построил… вот так:

Или вот так:

Обратите внимание на С1. Он без номинала. Подбор этого конденсатора задача очень важная и достаточно сложная. Именно от него зависит зарядный импульс. Тут широкое поле для творчества. Я использовал от 0,01 мкФ до 200 мкФ, на напряжение не меньше 250-300 Вольт. Конденсаторы большей емкости долго заряжаются, малой – малая энергия импульса. У меня лучшие результаты были достигнуты при емкости С1 равной 1,1-2 мкФ. Резистором R6 устанавливаем необходимую паузу между импульсами. Для этого можно также подобрать С3.

 Транзисторы – любые, с параметрами не хуже тех, что указанны на схеме. Оптрон лучше всего именно h21D1. HL1 – любой светодиод. Это индикатор. Питается у меня эта штука от БП компьютера. Транзисторный и тиристорный варианты, в общем, идентичны. Немного будут отличаться, конечно, настраиваемые элементы: R1, С1, R6. Точных алгоритмов настройки нет.

 Ученые не придумали. Другим заняты.

 


Простейший синхронный двигатель Бедини с алиэкспресс. Опыт для детей и тех кто верит в бтг. — Электродвигатели — Каталог статей — Антидзен

Мотор бедини — пример простейшего синхронного двигателя, который давно пытаются сделать «вечным двигателем», сделать так называемый «самозапит». Вокруг этого мотора ходит масса разных небылиц, якобы он способен заряжать АКБ радиантной энергией.. Я не придерживаюсь такой точки зрения, хотя бы потому, что если бы это было возможно сделать, то это сделал бы сам Бедини, а результат его опыта повторили бы многие. Бедини — это коммерческий проект. Они попросту продают свои наборы Бедини из велосипедных колес, магнитов и катушек за 500 долларов. Правда и то, что Бедини не скрывает свою технологию, в интернете много описаний того, как сделать двигатель Джона Бедини своими руками. Лично я решил купить аналогичную модель, нежели тратить неделю времени на его постройку.

Фото1. Мотор Бедини с Алиэкспресс.

Я не хочу пересказывать историю, о том, как некая школьница Шауни Багмен (пытался найти в интернете, ан нет такой), удивила своего школьного учителя физики, продемонстрировав мотор бедини с подключенной АКБ и светодиодом, запитанном от катушки, установленной над двигателем.

Рис1. Схема экперимента Шауни Багмен по съему энергии c мотора бедини.

На мой взгляд, снятие энергии по такой схеме невозможно, т.к. вращающиеся магниты ориентированы только одним полюсом, а для того, чтобы возникала самоиндукция, нужно изменяющееся магнитное поле, т.е. чередование полюсов. Кстати, на игрушке с алиэкспресс магнитные полюса чередуются, но снять таким способом можно 1-2 милливольт, ток не регистрируется обычным цифровым мультиметром.

Фото2. Попытка съема энергии по схеме, аналогичной Шауни Багмен. Результат — несколько милливольт

На мой взгляд, заслуга Бедини состоит в том
, что он придумал простой способ управления переключением магнитных полюсов катушек (коммутатор электро мотора). Он действительно хороший инженер, но сам двигатель примитивен и конечно, ни о какой сверхеденичности речи быть не может. Схема управления мотором состоит всего из нескольких радиодеталей и катушки с первичной и вторичной обмотками, которые в нужный момент создают аналог обычного магнита, который отталкивает магнит ротора (вращающейся части). Видео работающего двигателя.. p.s. Многие почему то сравнивают мотор Бедини и двигатели тесла. Считаю это обычной спекуляцией. Первые моторы Тесла из его патентов 1887 года выглядят намного совершенней (не похожи на колесо от велосипеда а похожи на современный мотор). Так что до Тесла Бедини как до луны пешком.

Зарядное устройство Рона Пью | Лучшие радиолюбительские схемы

Дизайн Джона Бедини был опробован и разработан рядом энтузиастов. Это никоим образом не умаляет того факта, что вся система и концепции исходят от Джона, и я хотел бы выразить свою искреннюю благодарность Джону за его самое щедрое участие в его системах. Также благодарю Рона Пью из Канады, который любезно согласился представить здесь детали одного из своих генераторов Bedini. Позвольте мне еще раз подчеркнуть, что если вы решите создать и использовать одно из этих устройств, вы делаете это на свой страх и риск, и никакая ответственность за ваши действия не будет возложена на Джона Бедини, Рона Пью или кого-либо еще. Позвольте мне еще раз подчеркнуть, что этот документ предоставляется исключительно в информационных целях и не является рекомендацией или стимулом для создания аналогичного устройства.

Устройство Рона намного мощнее, чем обычная система, имеет пятнадцать обмоток и работает наиболее впечатляюще. Вот изображение его, вращающегося на высокой скорости:

Это не игрушка. Он потребляет значительный ток и производит значительную скорость зарядки. Вот как Рон решил построить свое устройство. Ротор изготовлен из алюминиевых дисков, которые должны были быть переданы, но он выбрал бы алюминий для ротора, если бы начинал с нуля, поскольку его опыт показывает, что это очень подходящий материал для ротора. Алюминий обладает сильным демпфирующим действием на магнитные поля. В ротор вставлено шесть магнитов. Они равномерно расположены на 60 градусов друг от друга, северные полюса обращены наружу.

Магниты обычного керамического типа шириной около 22 мм, длиной 47 мм и высотой 10 мм. Рон использует два из них в каждом из своих шести слотов ротора. Он купил несколько запасных, а затем оценил их все в порядке их магнитной силы, которая немного варьируется от магнита к магниту. Рон сделал эту оценку, используя гауссметр. Альтернативным методом было бы использовать скрепку размером около 30 мм и измерить расстояние, на котором один конец зажима только начинает подниматься над столом, когда магнит движется к нему:

Оценив магниты в порядке силы, Рон взял лучшие двенадцать и соединил их, соединив самые слабые и сильные, второй самый слабый и второй самый сильный и так далее. Это дало шесть пар, которые имеют достаточно близко совпадающие магнитные силы. Затем пары магнитов были склеены на месте в роторе с помощью супер клея:

Не желательно углублять магниты, хотя можно размещать удерживающий слой по окружности ротора, поскольку зазор между поверхностями магнита и катушками составляет около четверти дюйма (6 мм) при регулировке для оптимальной производительности. Северные полюса магнитов обращены наружу, как показано на рисунке выше. При желании, крепление магнитов может быть усилено добавлением пустых боковых пластин к ротору, что позволяет осуществлять склеивание магнитов на пяти из шести поверхностей пар магнитов:

На магниты, встроенные во внешний край ротора, воздействуют намотанные «катушки», которые действуют как трансформаторы 1:1, электромагниты и приемные катушки. Есть три из этих «катушек», каждая из которых имеет длину около 3 дюймов и намотана пятью нитками провода № 19 AWG (20 SWG) диаметром 0,91 мм. Формирователи катушек были сделаны из пластиковой трубы с внешним диаметром 22 мм, которую Рон просверлил до внутреннего диаметра 19 мм, что дает толщину стенки 1,5 мм., Концевые детали для формирователей катушек были изготовлены из ПВХ толщиной 3 мм, который был прикреплен к пластиковой трубке с помощью клея ПВХ для сантехников. Обмотка катушки была с пятью проводами, скрученными вокруг друг друга. Это было сделано путем зажима концов пяти проводов вместе на каждом конце, чтобы сформировать один пучок длиной 3657.6 см или 36.576 метров.

Пучок проводов затем растягивали и держали подальше от земли, пропуская его через отверстия в стульях для патио. Сверло с батарейным питанием было прикреплено к одному концу и работало до тех пор, пока провода не были свободно скручены. Это имеет тенденцию скручивать концы проводов вместе в большей степени ближе к концу пучка, чем к середине. Таким образом, процедура была повторена, скручивая другой конец связки. Стоит отметить, что сверло вращается в одном и том же направлении на каждом конце, чтобы все скручивания были в одном и том же направлении. Скрученный пучок проводов собирается на катушке большого диаметра, а затем используется для намотки одной из катушек.

Катушки намотаны с прикрепленными концевыми пластинами и просверлены, готовые к прикручиванию к их основам из ПВХ толщиной 6 мм, которые крепятся болтами к несущей конструкции МДФ 18 мм. Чтобы обмотка оставалась абсолютно ровной, на каждый слой обмотки помещают лист бумаги:

Три многожильные катушки, изготовленные таким образом, были затем прикреплены к основной поверхности устройства. С таким же успехом могло быть шесть катушек. Позиционирование выполнено так, чтобы создать регулируемый зазор около 6 мм между катушками и магнитами ротора, чтобы найти оптимальное положение для магнитного взаимодействия. Магнитные эффекты усиливаются материалом сердечника катушек. Это сделано из длин сварочной проволоки оксиацетилена, которая покрыта медью. Провод обрезается по размеру и покрывается прозрачным шеллаком, чтобы предотвратить потерю энергии из-за вихревых токов, циркулирующих внутри сердечника.

Катушки расположены с равными интервалами вокруг ротора и расположены на расстоянии 120 градусов друг от друга. Концевые части формирователей катушек прикреплены болтами к 6/6-дюймовой базовой плите из ПВХ, имеющей щелевые монтажные отверстия, которые позволяют регулировать магнитный зазор, как показано здесь:

Три катушки имеют в общей сложности пятнадцать одинаковых обмоток. Одна обмотка используется для определения, когда магнит ротора достигает катушек во время его вращения. Это, конечно, произойдет шесть раз за каждый оборот ротора, так как в роторе шесть магнитов. Когда обмотка триггера активируется магнитом, электроника включает все оставшиеся четырнадцать катушек с очень резким импульсом, который имеет очень короткое время нарастания и очень короткое время спада. Резкость и краткость этого импульса является критическим фактором при извлечении избыточной энергии из окружающей среды и будет более подробно объяснено позже. Электронная схема смонтирована на трех алюминиевых радиаторах, каждый размером около 100 мм. К двум из них прикреплены пять NPN-транзисторов BD243C, а к третьему — четыре транзистора BD243C.

Три катушки имеют в общей сложности пятнадцать одинаковых обмоток. Одна обмотка используется для определения, когда магнит ротора достигает катушек во время его вращения. Это, конечно, произойдет шесть раз за каждый оборот ротора, так как в роторе шесть магнитов. Когда обмотка триггера активируется магнитом, электроника включает все оставшиеся четырнадцать катушек с очень резким импульсом, который имеет очень короткое время нарастания и очень короткое время спада. Резкость и краткость этого импульса является критическим фактором при извлечении избыточной энергии из окружающей среды и будет более подробно объяснено позже. Электронная схема смонтирована на трех алюминиевых радиаторах, каждый размером около 100 мм. К двум из них прикреплены пять NPN-транзисторов BD243C, а к третьему — четыре транзистора BD243C.

Металлическая монтажная пластина транзисторов BD243 действует как его радиатор, поэтому все они крепятся болтами к большой алюминиевой пластине. Транзисторы BD243C выглядят так:

Схема, используемая с этим устройством, проста, но поскольку задействовано так много компонентов, диаграмма разбита на части для размещения на странице. Эти диаграммы обычно рисуются с помощью общего зарядного провода, идущего к верхней части заряжаемого аккумулятора. Тем не менее, необходимо понимать, что рисование таким образом только для удобства, и лучшая производительность достигается, если каждая цепь зарядки имеет свой отдельный провод, идущий к зарядной батарее, как показано в разделе 1 здесь:

Схема, используемая с этим устройством, проста, но поскольку задействовано так много компонентов, диаграмма разбита на части для размещения на странице. Эти диаграммы обычно рисуются с помощью общего зарядного провода, идущего к верхней части заряжаемого аккумулятора. Тем не менее, необходимо понимать, что рисование таким образом только для удобства, и лучшая производительность достигается, если каждая цепь зарядки имеет свой отдельный провод, идущий к зарядной батарее, как показано в разделе 1 здесь:

Хотя это выглядит как довольно большая и сложная схема, на самом деле это не так. Вы заметите, что есть четырнадцать одинаковых секций схемы. Каждый из них довольно прост:

Это очень простая транзисторная схема. Когда линия триггера становится положительной (управляемой магнитом, проходящим через катушку), транзистор включается жестко, питая катушку, которая затем эффективно подключается к приводной батарее. Импульс запуска довольно короткий, поэтому транзистор отключается практически сразу. Это точка, в которой операция схемы становится тонкой. Характеристики катушки таковы, что этот резкий импульс питания и внезапное отключение приводят к тому, что напряжение на катушке очень быстро растет, перетягивая напряжение на коллекторе транзистора до нескольких сотен вольт. К счастью, этот эффект — энергия, извлекаемая из окружающей среды, которая совершенно не похожа на обычное электричество, и, к счастью, гораздо меньше повреждает транзистор. Это повышение напряжения эффективно «переворачивает» набор из трех диодов 1N4007, который затем проводит сильную проводимость, подавая эту избыточную свободную энергию в зарядную батарею. Рон использует три диода параллельно, поскольку они имеют лучшую пропускную способность по току и тепловые характеристики, чем один диод. Это обычная практика, и любое количество диодов может быть размещено параллельно, причем иногда используется до десяти.

Единственная другая часть схемы — это секция, которая генерирует триггерный сигнал

Когда магнит проходит через катушку, содержащую обмотку триггера, он создает напряжение в обмотке. Интенсивность триггерного сигнала контролируется путем его пропускания через обычную автомобильную лампу на 6 ватт, 12-вольтной лампочки и последующего ограничения тока путем пропускания его через резистор. Чтобы обеспечить некоторое ручное управление уровнем триггерного сигнала, резистор разделен на постоянный резистор и переменный резистор (который многие любят называть «горшком»). Этот переменный резистор и регулировка зазора между катушками и ротором являются единственными настройками устройства. Лампа имеет более одной функции. Когда настройка правильная, лампочка тускло светится, что является очень полезным показателем работы. Затем схема запуска питает каждое из транзисторных оснований через их резисторы 470 Ом. Лучшее переключение достигается, если вместо переключателя в стиле Бедини используется датчик Холла.

Это начальный участок схемы:

Существуют различные способы построения этой схемы. Рон показывает два разных метода. Первый показан выше и использует паксолиновые полоски (материал печатной платы) над алюминиевым радиатором для монтажа компонентов. Другой метод, который легко увидеть, использует толстые медные провода, удерживаемые подальше от алюминия, чтобы обеспечить чистый и надежный монтаж компонентов, как показано здесь:

Важно понимать, что коллектор транзистора BD243C внутренне соединен с пластиной радиатора, используемой для физического монтажа транзистора. Поскольку в схеме нет коллекторов этих транзисторов, соединенных между собой электрически, их нельзя просто прикрутить к одной пластине радиатора. Приведенное выше изображение может создать неправильное впечатление, так как не ясно показывает, что металлические болты, крепящие транзисторы на месте, не входят непосредственно в алюминиевую пластину, а вместо этого они крепятся в пластмассовые тройники.

Альтернатива, часто используемая создателями мощных электронных схем, состоит в том, чтобы использовать слюдяные шайбы между транзистором и общей пластиной радиатора и использовать пластиковые крепежные болты или металлические болты с пластиковым изолирующим кольцом между креплением и пластиной. Слюда обладает очень полезным свойством очень хорошо проводить тепло, но не проводить электричество. Слюдяные «шайбы», сформированные для транзисторной упаковки, можно приобрести у поставщиков транзисторов. В этом случае кажется очевидным, что рассеяние тепла не является проблемой в этой цепи, что в некотором смысле следует ожидать, так как энергия, получаемая из окружающей среды, часто называется «холодным» электричеством, поскольку она охлаждает компоненты с увеличением тока, так как в отличие от нагрева их, как это делает обычное электричество.

Эта конкретная печатная плата установлена на задней панели устройства:

Хотя принципиальная схема показывает источник питания на 12 вольт, который является очень распространенным напряжением питания, Рон иногда питает свое устройство от блока питания, работающего от сети, который показывает входную мощность довольно тривиальных 43 ватт. Следует отметить, что это устройство работает, потребляя дополнительную энергию из окружающей среды. Это потребление энергии прерывается, если предпринимаются какие-либо попытки включить это питание окружающей среды обратно на себя или приводить устройство в действие непосредственно от другой батареи, заряженной самим устройством. Может быть просто возможно успешно питать устройство от ранее заряженной батареи, если инвертор используется для преобразования мощности в переменный ток, а затем используется понижающий трансформатор и регулируемая схема выпрямления мощности. Поскольку потребляемая мощность очень низкая, работа от сети должна быть легко возможна с батареей и солнечной панелью.

Невозможно управлять нагрузкой от заряженной батареи во время процесса зарядки, поскольку это нарушает поток энергии. Некоторые из этих цепей рекомендуют использовать отдельный заземляющий стержень длиной 4 фута для заземления отрицательной стороны аккумуляторной батареи, но до настоящего времени Рон не экспериментировал с этим.

Обрезая отрезки проволоки для нанесения покрытия и проталкивая в формирователи рулонов, Рон использует зажим, чтобы убедиться, что все длины одинаковы. Это расположение показано здесь:

Расстояние между ножницами и металлическим углом, закрепленным на верстаке, делает каждую отрезанную длину проволоки точно нужного размера, в то время как пластиковый контейнер собирает отрезанные куски, готовые для нанесения покрытия с прозрачным шеллаком или прозрачным полиуретановым лаком, перед использованием в сердечниках катушки.

Опыт особенно важен при работе с устройством такого рода. Переменный резистор 100 Ом должен быть проволочного типа, так как он должен нести значительный ток. Первоначально переменный резистор устанавливается на минимальное значение и мощность. Это заставляет ротор начать двигаться. Когда скорость вращения увеличивается, переменный резистор постепенно увеличивается, и максимальная скорость будет найдена с переменным резистором около середины его диапазона, то есть с сопротивлением около 50 Ом. Увеличение сопротивления приводит к снижению скорости.

Следующий шаг — снова повернуть переменный резистор в его минимальное сопротивление. Это приводит к тому, что ротор покидает свою предыдущую максимальную скорость (около 1700 об / мин) и снова увеличивает скорость. Когда скорость снова начинает расти, переменный резистор снова постепенно поворачивается, увеличивая его сопротивление. Это повышает скорость вращения ротора примерно до 3800 об / мин, когда переменный резистор снова достигает средней точки. Это, вероятно, достаточно быстро для всех практических целей, и на этой скорости даже малейший дисбаланс ротора обнаруживается довольно заметно. Чтобы двигаться быстрее, чем это требует исключительно высокого стандарта точности конструкции. Пожалуйста, помните, что на этой скорости ротора хранится большое количество энергии, что потенциально очень опасно. Если ротор сломается или магнит оторвется от него, эта накопленная энергия произведет очень опасный снаряд. Вот почему целесообразно, хотя и не показано на приведенных выше фотографиях, построить корпус для ротора. Это может быть U-образный канал между катушками. Канал будет затем ловить и сдерживать любые фрагменты, если что-нибудь сломается.

Если бы вы измеряли ток во время этого процесса регулировки, было бы видно, что он уменьшается по мере ускорения ротора. Это выглядит так, как будто эффективность устройства растет. Это может быть так, но это не обязательно хорошая вещь в этом случае, когда цель состоит в том, чтобы произвести зарядку лучистой энергией батареи. Джон Бедини показал, что серьезная зарядка происходит, когда ток устройства составляет от 3 до 5+ ампер при максимальной скорости вращения ротора, а не скупой ток 50 мА, который может быть достигнут, но который не приведет к хорошей зарядке. Мощность можно увеличить, повысив входное напряжение до 24 вольт или даже выше — Джон Бедини работает при 48 вольт, а не 12 вольт

Устройство можно дополнительно настроить, остановив его и отрегулировав зазор между катушками и ротором, а затем повторив процедуру запуска. Оптимальная регулировка — это то место, где конечная скорость ротора самая высокая.

Patrick Kelly
http://www.free-energy-info.com
http://www.free-energy-info.tuks.nl

Автономный генератор — это постоянное электрическое устройство, предназначенное для бесконечной работы и выработки непрерывной электрической мощности, которая обычно больше по величине, чем входная мощность, через которую он работает.


Кто не хотел бы видеть автономный мотор-генератор, работающий дома и обеспечивающий бесперебойную работу необходимой бытовой техники, абсолютно бесплатно. Мы обсудим детали нескольких таких схем в этой статье.

Энтузиаст свободной энергии из Южной Африки, который не хочет раскрывать свое имя, щедро поделился деталями своего твердотельного генератора с автономным питанием для всех заинтересованных исследователей свободной энергии.


Когда система используется с схема инвертора , мощность генератора составляет около 40 Вт.

Система может быть реализована в нескольких различных конфигурациях.


Первая версия, обсуждаемая здесь, способна заряжать три 12 батареи вместе, а также поддерживать генератор для постоянной непрерывной работы (до тех пор, пока, конечно, батареи не потеряют свою силу зарядки / разрядки).

Предлагаемый генератор с автономным питанием предназначен для работы днем ​​и ночью, обеспечивая непрерывную электрическую мощность, как и наши солнечные панели.

Первоначальный блок был построен с использованием 4 катушек в качестве статора и центрального ротора, имеющего 5 магнитов, встроенных по его окружности, как показано ниже:

Показанная красная стрелка говорит нам о регулируемом зазоре между ротором и катушками, который можно изменить, ослабив гайку, а затем переместив узел катушки рядом или от магнитов статора для получения желаемых оптимальных выходов. Зазор может составлять от 1 мм до 10 мм.

Узел ротора и механизм должны быть чрезвычайно точными с точки зрения центровки и легкости вращения, и поэтому должны быть построены с использованием прецизионных станков, таких как токарный станок.

Материал, используемый для этого, может быть прозрачным акрилом, и сборка должна включать 5 наборов из 9 магнитов, закрепленных внутри цилиндрических труб, подобных полостям, как показано на рисунке.

Верхнее отверстие этих 5 цилиндрических барабанов закреплено пластиковыми кольцами, извлеченными из тех же цилиндрических труб, чтобы гарантировать, что магниты остаются плотно зафиксированными в своих соответствующих положениях внутри цилиндрических полостей.

Очень скоро 4 катушки были увеличены до 5, в которых недавно добавленная катушка имела три независимых обмотки. Конструкции будут понятны постепенно, когда мы пройдемся по различным схемам и объясним, как работает генератор. Первую принципиальную схему можно увидеть ниже.

Батарея, обозначенная буквой «А», запитывает цепь. Ротор «C», состоящий из 5 магнитов, перемещается вручную, так что один из магнитов перемещается близко к катушкам.

Набор катушек «B» включает в себя 3 независимых обмотки на одном центральном сердечнике, и магнит, проходящий мимо этих трех катушек, генерирует внутри них крошечный ток.

Ток в катушке номер «1» проходит через резистор «R» в базу транзистора, заставляя его включиться. Энергия, проходящая через катушку транзистора «2», позволяет ей превратиться в магнит, который толкает диск ротора «C» на своем пути, вызывая вращательное движение ротора.

Это вращение одновременно индуцирует ток в обмотке «3», который выпрямляется через синие диоды и передается обратно на зарядку батареи «A», пополняя почти весь ток, потребляемый от этой батареи.

Как только магнит внутри ротора «C» отодвигается от катушек, транзистор отключается, восстанавливая напряжение коллектора за короткое время вблизи линии питания +12 Вольт.

Это истощает катушку «2» по току. Из-за того, как расположены катушки, он увеличивает напряжение коллектора примерно до 200 вольт и выше.

Однако этого не происходит, потому что выход подключен к пяти последовательным батареям, которые падают нарастающее напряжение в соответствии с их общим номиналом.

Батареи имеют последовательное напряжение приблизительно 60 вольт (что объясняет, почему был включен мощный, быстро переключающийся высоковольтный транзистор MJE13009.

По мере того, как напряжение коллектора становится равным напряжению последовательного блока батарей, красный диод начинает включаться, высвобождая накопленное в катушке электричество в блок батарей. Этот импульс тока проходит через все 5 батарей, заряжая каждую из них. Проще говоря, это и есть конструкция генератора с автономным питанием.

В прототипе в качестве нагрузки для длительных, неутомимых испытаний использовался инвертор на 12 В и 150 Вт, освещающий 40-ваттную сетевую лампу:

Продемонстрированная выше простая конструкция была дополнительно улучшена за счет добавления пары дополнительных катушек:

Катушки «B», «D» и «E» активируются одновременно тремя отдельными магнитами. Электроэнергия, генерируемая во всех трех катушках, передается на 4 синих диода для выработки мощности постоянного тока, которая подается для зарядки батареи «A», питающей цепь.

Дополнительный ввод в приводную батарею в результате включения 2 дополнительных приводных катушек в статор позволяет машине работать без сбоев в виде автономной машины, поддерживая напряжение A батареи бесконечно.

Единственная движущаяся часть этой системы — это ротор диаметром 110 мм, представляющий собой акриловый диск толщиной 25 мм, установленный на шарикоподшипниковом механизме, извлеченном из выброшенного жесткого диска компьютера. Настройка выглядит так:

На изображениях диск кажется полым, однако на самом деле это твердый кристально чистый пластик. На диске просверливаются отверстия в пяти одинаково распределенных точках по окружности, то есть с разделением на 72 градуса.

5 основных отверстий, просверленных на диске, предназначены для удерживания магнитов, состоящих из девяти круглых ферритовых магнитов. Каждый из них имеет диаметр 20 мм и высоту 3 мм, образуя стопки магнитов общей высотой 27 мм в длину и диаметром 20 мм. Эти стопки магнитов размещены таким образом, что их северные полюса выступают наружу.

После того, как магниты установлены, ротор помещается в полосу пластиковой трубы, чтобы надежно закрепить магниты на месте, в то время как диск быстро вращается. Пластиковая труба крепится к ротору с помощью пяти крепежных болтов с потайной головкой.

Бобины катушек имеют длину 80 мм и диаметр конца 72 мм. Средний шпиндель каждой катушки изготовлен из пластмассовой трубы длиной 20 мм, имеющей внешний и внутренний диаметр 16 мм. обеспечивая плотность стены 2 мм.

После того, как намотка катушки завершена, этот внутренний диаметр заполняется рядом сварочных стержней со снятым с них сварочным покрытием. Впоследствии их обволакивают полиэфирной смолой, но цельный брусок из мягкого железа также может стать отличной альтернативой:

Три жилы, составляющие катушки «1», «2» и «3», имеют диаметр 0,7 мм и наматываются друг на друга перед намоткой на бобину «B». Этот метод бифилярной намотки создает намного более тяжелый пучок композитных проводов, который может эффективно наматываться на катушку. Показанная выше намоточная машина работает с зажимным патроном, удерживающим сердечник катушки для обеспечения возможности намотки, тем не менее, можно также использовать любой базовый намотчик.

Разработчик выполнил скручивание проволоки, вытягивая 3 жилы проволоки, каждая из которых происходит от независимой катушки с жгутом на 500 грамм.

Три жилы плотно удерживаются на каждом конце, при этом провода прижимаются друг к другу на каждом конце, имея трехметровое расстояние между зажимами. После этого провода фиксируются по центру и 80 витков приписываются миделю. Это позволяет сделать 80 поворотов на каждый из двух 1,5-метровых пролетов, расположенных между зажимами.

Набор скрученной или намотанной проволоки скручивается на временной катушке, чтобы поддерживать ее в чистоте, потому что это скручивание придется повторить еще 46 раз, поскольку все содержимое катушек с проволокой потребуется для этой одной составной катушки:

Следующие 3 метра трех проводов затем зажимаются и 80 витков наматываются в среднее положение, но в этом случае витки размещаются в противоположном направлении. Даже сейчас реализованы точно такие же 80 витков, но если предыдущая обмотка была «по часовой стрелке», то эта обмотка перевернута «против часовой стрелки».

Эта конкретная модификация направления катушки обеспечивает полный диапазон скрученных проводов, в которых направление скручивания становится противоположным через каждые 1,5 метра по всей длине. Так устроена серийно производимая проволока Litz.

Этот специфический красивый комплект скрученных проводов теперь используется для намотки катушек. В одном фланце катушки просверливается отверстие, точно около средней трубки и сердечника, и через него продевается начало проволоки. Затем проволоку с силой изгибают под углом 90 градусов и накладывают на вал катушки, чтобы начать намотку катушки.

Намотка жгута проводов выполняется с большой осторожностью рядом друг с другом по всему валу катушки, и вы увидите 51 градус намотки вокруг каждого слоя, а следующий слой наматывается прямо поверх этого самого первого слоя, возвращаясь снова к началу. Убедитесь, что витки этого второго слоя лежат точно поверх обмотки под ними.

Это может быть несложно, поскольку пакет проводов достаточно толстый, чтобы его можно было легко разместить. Если хотите, вы можете попробовать обернуть один толстый белый лист вокруг первого слоя, чтобы второй слой был отчетливым при его переворачивании. Вам понадобится 18 таких слоев, чтобы закончить катушку, которая в конечном итоге будет весить 1,5 кг, а готовая сборка может выглядеть примерно так, как показано ниже:

Эта готовая катушка на данный момент состоит из 3 независимых катушек, плотно намотанных друг на друга, и эта установка предназначена для создания фантастической магнитной индукции на двух других катушках, когда на одну из катушек подается напряжение питания.

Эта обмотка в настоящее время включает в себя катушки 1,2 и 3 принципиальной схемы. Вам не нужно постоянно беспокоиться о маркировке концов каждой жилы провода, поскольку вы можете легко идентифицировать их с помощью обычного омметра, проверив непрерывность на определенных концах провода.

Катушку 1 можно использовать в качестве запускающей катушки, которая будет включать транзистор в нужные периоды. Катушка 2 может быть катушкой возбуждения, которая возбуждается транзистором, а катушка 3 может быть одной из первых выходных катушек:

Катушки 4 и 5 представляют собой простые пружины, подобные катушкам, которые подключены параллельно катушке возбуждения 2. Они помогают усилить привод и поэтому важны. Катушка 4 имеет сопротивление постоянному току 19 Ом, а сопротивление катушки 5 может составлять около 13 Ом.

Однако в настоящее время продолжаются исследования, чтобы определить наиболее эффективное расположение катушек для этого генератора, и, возможно, дополнительные катушки могут быть идентичны первой катушке, катушка «B» и все три катушки прикреплены таким же образом, а обмотка возбуждения включена. каждая катушка работала через единственный высокопроизводительный и быстро переключающийся транзистор. Настоящая установка выглядит так:

Вы можете игнорировать показанные порталы, так как они были включены только для изучения различных способов активации транзистора.

В настоящее время катушки 6 и 7 (22 Ом каждая) работают как дополнительные выходные катушки, подключенные параллельно выходной катушке 3, каждая из которых состоит из трех жил и имеет сопротивление 4,2 Ом. Они могут быть с воздушным сердечником или с твердым железным сердечником.

При тестировании выяснилось, что вариант с воздушным сердечником работает немного лучше, чем с железным сердечником. Каждая из этих двух катушек состоит из 4000 витков, намотанных на катушки диаметром 22 мм с использованием суперэмалированного медного провода 0,7 мм (AWG # 21 или SWG 22). Все катушки имеют одинаковые характеристики провода.

Используя эту настройку катушки, прототип мог работать без остановок около 21 дня, постоянно сохраняя аккумулятор привода на 12,7 вольт. Через 21 день система была остановлена ​​для внесения некоторых модификаций и снова протестирована с использованием совершенно новой конструкции.

В конструкции, показанной выше, ток, протекающий от аккумуляторной батареи в цепь, на самом деле составляет 70 миллиампер, что при 12,7 В дает входную мощность 0,89 Вт. Выходная мощность составляет примерно 40 Вт, что подтверждает КПД 45.

Это исключая три дополнительных аккумулятора 12 В, которые дополнительно заряжаются одновременно. Результаты действительно оказались чрезвычайно впечатляющими для предложенной схемы.

Метод привода так много раз использовался Джоном Бедини, что создатель решил поэкспериментировать с подходом Джона к оптимизации для достижения максимальной эффективности. Несмотря на это, он обнаружил, что в конечном итоге полупроводник с эффектом Холла, специально правильно выровненный с магнитом, дает наиболее эффективные результаты.

Дальнейшие исследования продолжаются, и на данный момент выходная мощность достигла 60 Вт. Это выглядит действительно потрясающе для такой крошечной системы, особенно когда вы видите, что в ней нет реалистичного ввода. Для этого следующего шага мы уменьшаем батарею до одного. Настройку можно увидеть ниже:

В этой установке на катушку «B» также подаются импульсы транзистора, и теперь выходной сигнал от катушек вокруг ротора направляется на выходной инвертор.

Здесь снимается приводная батарея и заменяется маломощным трансформатором 30 В и диодом. Он, в свою очередь, управляется выходом инвертора. Небольшое вращательное движение ротора вызывает достаточный заряд конденсатора, позволяющий системе запускаться без батареи. Видно, что выходная мощность для этой нынешней установки достигает 60 Вт, что на 50% больше.

Также снимаются 3 батареи на 12 В, и цепь может легко работать, используя всего одну батарею. Непрерывная выходная мощность от одиночной батареи, которая ни в коем случае не требует внешней подзарядки, кажется большим достижением.

Следующее улучшение — это схема, включающая датчик Холла и полевой транзистор. Датчик Холла расположен точно по одной линии с магнитами. Это означает, что датчик размещается между одной из катушек и магнитом ротора. Между датчиком и ротором имеется зазор 1 мм. На следующем изображении показано, как именно это нужно сделать:

Другой вид сверху, когда катушка находится в правильном положении:

Эта схема показала огромные 150 ватт безостановочной выходной мощности с использованием трех 12-вольтных батарей. Первая батарея помогает питать схему, в то время как вторая перезаряжается с помощью трех диодов, подключенных параллельно, чтобы увеличить ток, передаваемый для заряжаемой батареи.

Переключатель DPDT «RL1» меняет местами соединения батареи каждые пару минут с помощью схемы, показанной ниже. Эта операция позволяет обеим батареям все время оставаться полностью заряженными.

Ток зарядки также проходит через второй набор из трех параллельных диодов, заряжающих третью 12-вольтовую батарею. Эта 3-я батарея управляет инвертором, через который работает предполагаемая нагрузка. В качестве тестовой нагрузки для этой установки использовалась лампа мощностью 100 Вт и вентилятор на 50 Вт.

Датчик Холла переключает транзистор NPN, тем не менее, практически любой транзистор с быстрым переключением, например BC109 или 2N2222 BJT, будет работать очень хорошо. Вы поймете, что все катушки в этот момент управляются полевым транзистором IRF840. Реле, используемое для переключения, имеет тип защелки, как показано в этой конструкции:

И он питается от слаботочного таймера IC555N, как показано ниже:

Синие конденсаторы выбираются для переключения конкретного фактического реле, которое используется в цепи. Это позволяет реле включаться и выключаться на короткое время каждые пять минут или около того. Резисторы 18K над конденсаторами расположены так, чтобы разряжать конденсатор в течение пяти минут, когда таймер находится в выключенном состоянии.

Однако, если вы не хотите, чтобы это переключение между батареями, вы можете просто настроить его следующим образом:

В этой конфигурации батарея, питающая инвертор, подключенный к нагрузке, имеет более высокую емкость. Хотя создатель использовал пару аккумуляторов емкостью 7 А · ч, можно использовать любую обычную 12-вольтовую батарею для скутера на 12 А · ч.

В основном одна из катушек используется для подачи тока на выходную батарею и одну оставшуюся катушку, которая может быть частью трехжильной основной катушки. Это принято для подачи напряжения питания непосредственно на аккумуляторную батарею.

Диод 1N5408 рассчитан на 100-вольтную 3-амперную. Диоды без значения могут быть любым диодом, например диодом 1N4148. Концы катушек, присоединенные к полевому транзистору IRF840, физически устанавливаются по окружности ротора.

Всего таких катушек 5. Те, которые имеют серый цвет, показывают, что крайние правые три катушки состоят из отдельных жил основной трехпроводной композитной катушки, уже обработанной в наших более ранних схемах.

Хотя мы видели использование трехжильной витой проволочной катушки для переключения в стиле Бедини, используемой как для возбуждения, так и для вывода, в конечном итоге было сочтено ненужным включать этот тип катушки.

Следовательно, обычная спиральная катушка, изготовленная из 1500 граммов эмалированной медной проволоки диаметром 0,71 мм, оказалась столь же эффективной. Дальнейшие эксперименты и исследования помогли разработать следующую схему, которая работала даже лучше, чем предыдущие версии:

В этой улучшенной конструкции используется 12-вольтное реле без фиксации. Реле рассчитано на потребление около 100 миллиампер при 12 вольт.

Последовательное подключение резистора 75 Ом или 100 Ом последовательно с катушкой реле помогает снизить потребление до 60 мА.

Он расходуется только половину времени во время периодов его работы, потому что он остается нерабочим, пока его контакты находятся в положении N / C. Как и предыдущие версии, эта система тоже работает без каких-либо проблем.

Отзыв от одного из преданных читателей этого блога, г-на Тамала Индики.

Дорогой Свагатам, сэр,

Большое спасибо за ваш ответ, и я благодарен вам за поддержку меня. Когда вы обратились ко мне с этой просьбой, я уже установил еще 4 катушки для моего маленького двигателя Bedini, чтобы сделать его более эффективным. Но я не смог создать схемы Бедини с транзисторами для этих 4 катушек, так как не мог купить оборудование.

Но все же мой мотор Бедини работает с предыдущими 4 катушками, даже если есть небольшое сопротивление ферритовых сердечников недавно подключенных других четырех катушек, поскольку эти катушки ничего не делают, а просто сидят вокруг моего небольшого магнитного ротора. Но мой мотор все еще может заряжать аккумулятор 12 В 7 А, когда я вожу его с батареями 3,7.

По вашей просьбе я приложил к настоящему видео-ролик о моем двигателе Bedini и советую вам посмотреть его до конца, так как в начале вольтметр показывает, что заряд аккумулятора имеет напряжение 13,6 В, а после запуска двигателя оно возрастает до 13,7 В. а через какие-то 3-4 минуты поднимается до 13,8 В.

Я использовал маленькие батарейки 3,7 В для привода своего маленького двигателя Бедини, и это хорошо доказывает эффективность двигателя Бедини. В моем двигателе 1 катушка — это бифилярная катушка, а другие 3 катушки запускаются тем же триггером этой бифилярной катушки, и эти три катушки повышают энергию двигателя, выдавая еще несколько шипов катушки при ускорении ротора магнита. . В этом секрет моего маленького мотора Бедини, поскольку я подключал катушки в параллельном режиме.

Я уверен, что когда я использую другие 4 катушки с цепями Bedini, мой мотор будет работать более эффективно, а магнитный ротор будет вращаться с огромной скоростью.

Я пришлю вам еще один видеоклип, когда закончу создавать схемы Бедини.

С уважением !

Тамал Индика

Результаты практических испытаний

https://youtu.be/k29w4I-MLa8

Предыдущая: P-Channel MOSFET в приложениях H-Bridge Далее: Техническое описание CMOS IC LMC555 — Работает с питанием 1,5 В

Двигатель бедини как собрать — Авто журнал kupim-avto57.ru

Как сделать генератор из двигателя стиральной машины

В домашнем хозяйстве полезно иметь источник питания, который автономно обеспечит работу приборов в случае перебоев с электроэнергией в сети. Генератор из двигателя стиральной машины для зарядки аккумулятора, изготовленный своими руками, решит такую задачу.

Как сделать его из мотора устаревшей стиралки, расскажем пошагово. Заметим сразу: для этого нужны, помимо необходимых материалов и инструментов, технические знания и навыки, терпение и время. Зато экономия средств на покупку промышленного электрогенератора и полученные удобства оправдают затраты сил.

Лит

Лайф

Помогите нам сделать Литлайф лучше

  • «
  • 1
  • 2
  • .
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • .
  • 71
  • 72
  • »
  • Перейти

Еще один из современных проектов – генератор Бедини (John Bedini). Патент США № 6,392,370. Подробности его проектов и новые версии генераторов обсуждаются на сайте http://johnbedini.net

На схеме из патента Бедини, показано, что магниты ротора создают изменения потока магнитной индукции через область генераторных катушек «опосредованно», так как с другой стороны сердечника всегда есть постоянные магниты. На мой взгляд, важны «пропорции», то есть соотношение величины индукции магнита в статоре (слева) и величины изменений магнитной индукции, вносимых магнитами ротора. Магнит ротора увеличивает поток индукции, проходящий через область генераторных катушек, но реакция в виде магнитного поля индуцированного тока, при определенных условиях, уже не влияет на торможение ротора. Видимо, критичным является точка насыщения сердечника.

Схема работы генераторов Бедини включает аккумулятор, подзаряжаемый в процессе вращения ротора с магнитами. В настоящее время, серийно генераторы не производят, но автор продает наборы для самостоятельной сборки демонстрационных устройств.

В 2010 году, на выставке в США, Бедини показал машину с ротором более 4 метров.

Вариант мотора с постоянными магнитами, который представлен публике в виде самовращающегося привода без аккумуляторов, известен как мотор «Бедини – Коле» (Bedini – Cole) или «window motor». Слово «window» означает «окно», соответственно форме рамки провода. На рис. 129 показана схема, а на рис. 1 30 фото такого магнитного мотора. Контактор механический, слева на оси, сделан из полоски фольги, наклеенной на ось, и замыкающей два контакта в нужный момент поворота ротора.

В конструкции, показанной на фото рис. 130, мотор имеет накопитель энергии в виде конденсатора. Батарейки в схеме нет. Согласитесь, что когда такой маленький мотор раскручивается рукой, ускоряется, и затем самостоятельно работает, то это производит большее впечатление, чем другие, даже более мощные, машины с аккумуляторами. Видеозапись работы этого генератора мы разместили на сайте www.faraday.ru

Признаюсь, что несмотря на простоту данной конструкции, получить нужное сочетание напряжения на выходе и затрат на импульс, толкающий магнитный ротор, в своих экспериментах 2010 года, мне не удалось. Увеличив число витков, получаем нужное напряжение на выходе, но при этом не удается создать короткий и сильный импульс, так как обмотка приобретает большую индуктивность. В рамке нужен достаточно толстый провод 0.5–0.8 мм, а для уменьшения потерь надо минимизировать длительность импульса. При этом, ток в импульсе нужен максимальный. С другой стороны, при этом, падает напряжение на выходе. Возможно, нужны более мощные магниты. Конструирование устройств такого типа, хотя и не имеет большого практического смысла, но увлекательно и полезно для популяризации идеи самовращающегося генератора электроэнергии.

Не менее, чем моторы Бедини, известны моторы-генераторы Джозефа Ньюмана, США (Joseph W. Newman), один из его патентов был получен в ЮАР, South African Patent Application # 831,296, в нем достаточно ясно показан принцип генерации энергии, рис. 131.

На первый взгляд, в конструкции Ньюана и Бедини применяется все та же пара: магнит и катушка, а они ничем не отличается от первых «игрушек» Майкла Фарадея. Кстати, он так и сказал на первой демонстрации его электромотора в Королевской Академии Наук Великобритании. В ответ на вопрос: «Какое применение найдет это изобретение?» Майкл Фарадей ответил: «Не уверен, наверное, в каких-либо игрушках». С этих игрушек и началась эпоха электромоторов.

Итак, в чем отличие моторов Ньюмана от других похожих конструкций? Обычно, у Ньюмана на катушке две обмотки: выше и ниже оси вращения. Одна из катушек выполняет роль привода ротора, вторая катушка является генераторной обмоткой. На рис. 132 показан один из вариантов такой конструкции и большой мотор-генератор Ньюмана диаметром более метра, рядом стоит автор.

Ньюман в своих книгах указывает на то, что для успешной работы его мотора необходим особый режим, а катушки мотора и генератора должны содержать много витков. Можно допустить, что причиной эффективной работы такого генератора может быть эффект задержки реакции индуцированного поля на движение ротора, который мы ранее рассматривали (задержка перемагничивания). Без этого нюанса ротор должен тормозиться полем индуцированного тока и высокой эффективности не будет. Результаты Ньюмана достаточно убедительны, например, в 2004 его мотор показал непрерывную работу под нагрузкой, обеспечивая мощность 10 кВт в течении 8 часов.

Другой известный генератор с магнитами, известен как генератор Эклина-Брауна. Джон Эклин (John W. Ecklin) описал свою схему в патенте США № 3,879,622, рис. 133.

В первоначальном варианте, генератор Эклина производит механическую работу при периодическом экранировании силы отталкивания магнитов (движущийся элемент 57 на рис. 133). Известны работы Калинина и Идельбаева, по созданию конструкции автономного источника энергии с постоянными магнитами и движущимся или вращающимся экранирующим «шунтом». В других конструкциях, аналогичный метод применяют для создания электродвижущей силы, получения тока и мощности в полезной нагрузке, рис. 134.

Основная особенность генератора Эклина-Брауна в том, что конструктивно удается уменьшить мощность привода, требуемую для вращения оси. Обычно, привод должен преодолеть точку максимального притяжения магнита и ротора. В генераторе Эклина-Брауна применяются два экранирующих элемента, справа и слева на оси. Они повернуты относительно друг друга на 90 градусов, и когда одна пластина входит в зазор между магнитами, другая пластина выходит из зазора. Это устраняет проблему торможения ротора в точке максимального сближения магнита и пластины.

Развитие этой идеи на новом уровне происходит в работах Даниеля Куалле (Dan Qualle), схема его генератора показана на рис. 135.

В данной схеме, включение электрической нагрузки в цепь генераторной катушки, почти не оказывает влияния на первичный привод, и ток потребления привода не растет.

Из схемы прохождения магнитных потоков, рис. 136, понятна особенность индуцирования тока в генераторных катушках: ротор периодически меняет условия суммирования магнитных полей от магнитов статора, которые расположены навстречу друг другу одинаковыми полюсами. Таким образом, входя в зазор между магнитом и полюсом катушки, ротор не увеличивает поток магнитной индукции в области катушки, и ее магнитное поле индуцированного тока не тормозит ротор. Индукционный эффект организован таким образом, чтобы не мешать созданию изменений поля. Например, «шунт» входит в зазор слева от катушки, в ней увеличивается поток магнитной индукции от правого магнита, и, соответственно, в ответ на это изменение создается индукционный ток. В другой фазе вращения, «шунт» входит в зазор справа от катушки, поле левого магнита проникает в сердечник катушки, она реагирует соответственно.

Вечный двигатель Бедини
СКАЧАТЬ ВИДЕО

В последние годы немалую популярность получил изобретатель Джон Бедини (США), а именно — его изобретения в области получения свободной энергии (свободную энергию называют еще радиантной энергией, отрицательной энергией, энергией из вакуума). Свою деятельность он начал с разработки звуковых усилителей, со временем запустил в продажу свои первые зарядные устройства аккумуляторов по принципу Тесла.

Эти зарядные устройства обладают удивительными свойствами: они увеличивают емкость аккумуляторов в 2,5 раза и восстанавливают до 70% нерабочих аккумуляторов, заряженных традиционным способом. Джон Бедини утверждает, что теперь эти аккумуляторы заряжены радиантной энергией и при последующей зарядке их мощность будет только расти, а внутренние пластины будут очищаться. Нагрев при зарядке отсутствует.

Это смогут сделать многие. Необходим самый минимум радиодеталей:
Кулер
Транзистор
Диоды
Неонка от прерывателя лампы дневного цвета или из электрочайника
Конденсатор и некоторые другие детали

Однополярный двигатель Бедини

Немного теории получение радиантной энергии

Тесла говорил, нет импульсов, нет энергии. Энергия в проводнике появляется, когда в проводник поступают высоковольтные импульсы. Проводник можно представить как катушку. При поступлении импульсов катушка становится электромагнитом. А у магнитов есть нулевая зона — стенка Блóха, через которую идёт захват из окружающей среды радиантной энергии:

Захват радиантной энергии через нулевую зону — стенку Блóха

Однополярный двигатель Бедини

Состоит из колеса на котором размещены магниты северными полюсами наружу и катушек намотанных бифилярно на одном стержне. Проходя мимо катушки магниты наводят в ней напряжение, которое открывает транзистор (зелёным цветом на схеме). От батареи, через другую катушку и открытый транзистор начинает течь ток, появляется магнитное поле вокруг катушки, которое в момент прохождения мнимого южного полюса толкает колесо и так цикл повторяется. Коммутации транзистора вызывают в импульсах высоковольтные импульсы, которые мы захватываем через диодный мост и подаём в заражаемые батареи, которых может быть большое количество.

Усовершенствованный вариант схемы:

Why Did He Collect?

Bern Dibner

As a child, Bern Dibner (1897–1988) emigrated from Ukraine to the U.S., where he became a successful electrical engineer and inventor. Curious about Leonardo da Vinci’s incredible scientific and technological achievements, Dibner delved into the study of the history of science and technology, amassing a library of influential works, which he chronicled in his 1955 book, Heralds of Science.

Bern Dibner

Courtesy of the Dibner family

Encouraged by Silvio Bedini, deputy director of the Museum of History and Technology (now the National Museum of American History), Dibner donated his collection to the Smithsonian in 1976. Smithsonian Libraries continues to add important works and promote scholarship to this day.

How to Move an Obelisk

Bern Dibner loved reading about remarkable feats of engineering. Swiss engineer Domenico Fontana’s book describes the relocation of a 361-ton granite Egyptian obelisk over a distance of nearly two-and-a-half football fields to St. Peter’s Square in the Vatican City. The task required hundreds of men and took almost a year to complete.

Observing the Heavens

Johannes Hevelius made important scientific discoveries from his state-of-the-art observatory in Poland, which included a 140-foot telescope. His wife, Elisabeth—pictured in the book—was one of the first female astronomers. This copy previously belonged to Bern Dibner’s mentor Herbert McLean Evans.

Medieval Medical Manual

Bern Dibner’s collecting went beyond engineering to other fields, including the history of medicine. German physician Joannes de Ketham’s compilation of medieval medical practices includes information on dissection, blood-letting, surgery, and the treatment of diseases, such as the plague.

Everything You Need to Know

Centuries before the first modern encyclopedia, Bartholomaeus Anglicus compiled a compendium of knowledge to educate his students at the University of Paris. De Proprietatibus Rerum (On the Properties of Things) sheds light on how medieval scholars thought about theology, astrology, and the natural sciences.

The Science of Letters

German artist Albrecht Dürer may be best known for his talent as a printmaker, but he was also an accomplished theorist. His influential work on the application of mathematics to the arts includes this study on the geometry of letterforms.

New Experiments

German engineer Otto von Guericke is credited with inventing the vacuum pump, which he used to conduct groundbreaking experiments in physics. This copy of his book Experimenta nova (New experiments) previously belonged to Bern Dibner’s mentor Herbert McLean Evans.

History of Invention

Herbert McLean Evans was a physiologist whose passion for important works in the history of science was an inspiration for Bern Dibner as a collector.

In turn, Dibner served as an inspiration for fellow inventor Bill Lende, whose collection of letters written by influential scientists and inventors now resides in the Smithsonian Libraries’ Dibner Library of the History of Science and Technology.

From Mythology to Medicine

Pediatrician J. Bruce Beckwith collected books on teratology, the study of structural deviations in plants and animals. In 2018, his donation deepened our scholarly resources for the history of medicine, complementing the strengths of Bern Dibner’s collection. Ulisse Aldrovandi’s Monstrorum Historia (History of monsters) features illustrations of mythological creatures and reported genetic anomalies.

Поделки из нерабочих HDD — мини-помпа

Понадобилась мне как-то для будущих самоделок водяная помпа. Да не простая — с ограничениями по габаритам — толщина до 25мм, ширина до 50мм (длина — уже можно варьировать). Из желаемых характеристик — напор 1м и расход 100л/ч. Не найдя в продажах желаемого (в основном — по габаритам), по своей упоротойупорной натуре приступил к реализации своего решения данного вопроса!

Внимание — много фото!

«Мозги» и немного предыстории:

Строго говоря, идея использовать для помп моторчики HDD не нова. C 2009 года ведётся целая ветка на одном известном форуме. Так что изначально был нацелен на изготовление помпы из «ноутбучного» жёсткого диска и поиска подходящего драйвера c интегрированными силовыми ключами и бессенсорным управлением.

Но «из коробки» перенять опыт мне не удалось. Череда тестов с разными драйверами (MTD6501C, DRV11873 и ряда прочих китайских поделок) давали неутешительный итог: более крупные моторы от 3.5 дисков работают идеально. А вот с мелкими моторами в лучшем случае удается запустить единицы, и те работают крайне нестабильно. С таким неутешительным результатом давняя идея была заброшена и находилась на грани забвения.

Но относительно недавно наткнулся на довольно любопытный драйвер от TI — DRV10987. При своих скромных габаритах обладает довольно внушительным потенциалом:

  • Рабочее напряжение от 6v до 28v
  • Интегрированный понижающий преобразователь на 5v (можно запитать МК для управления)
  • Постоянный рабочий ток до 2А (пиковый — 3А)
  • Огромное число программно определяемых параметров (задание значений конфигурационных регистров по шине I2C) для управления работой мотора
  • Автоматический перезапуск мотора после аварийной остановки / сбое (если условия возникновения сбоя прошли)
  • Защита от перегрузки по току
  • Защита от перенапряжения
  • Детектирование остановки/блокировки ротора
  • Отключение при перегреве контроллера

Вооружившись ардуинкой (да простят меня за это ругательное слово местные электронщики) для задания параметров, изготовленной ЛУТом платой под данный драйвер, углубился в опыты по запуску моторчиков. Что же, данный контроллер меня не разочаровал! Несмотря на примененный метод «научного тыка» при подборе параметров, удалось найти подход к любому мотору от HDD!

Помог мне в этом самописный онлайн-конфигуратор настроек. Пользуйтесь на здоровье!)

Затем уже были заказаны в поднебесной более презентабельные платки:

После регистрации (ну вот так требуют) можете бесплатно скачать файлы проекта. Или сразу же заказать платы здесь.

О «пересадке сердца»

Осталось дело за малым — достать из корпуса HDD мотор, который кстати говоря, в 2.5 дисках (и в большинстве 3.5) является его неотъемлемой частью. Вкратце можно процесс описать известной фразой «Пилите, Шура, пилите!«:


Из фанеры изготавливается внешняя направляющая под коронку по металлу с креплением к корпусу диска. Для сохранности шлейф мотора приклеивается к его основанию, чтобы не был срезан коронкой
После высверливания получаем кругляшки с моторчиком. После обработки напильником получаем диаметр основания около 25мм.
Подготовка реципиента к трансплантации:

Мозги и сердце будущей помпы отлично ладят друг с другом и готовы обрести новое место обитания. Так что самое время подумать о корпусе и крыльчатке.

Так как нужно получить при малом рабочем объеме высокое давление, крыльчатку спроектировал с 7 лучами:


Печать на 3D принтере поликарбонатом
3D модель

Поликарбонат — вещь для корпуса отличная. Но печатать целый корпус им дорого. Куски толстых листов очень трудно найти да и фрезеровка не бесплатна (для меня). Зато у рекламщиков за спасибо можно выпросить обрезки от листов толщиной 4мм и 2мм. Так что корпус проектировался для последующего нарезания лазером деталей и их склейкой в единое целое без необходимости фрезеровки. Потребуется разве что высверливание отверстий под фитинги и гайки.


Вид 3D модели
3D модель
Набор деталей для склейки «топа» помпы. В местах сопряжения каналов притока и оттока срезаны грани
Ход операции:

Тут хотелось бы сделать лирическое отступление и напомнить желающим повторить и не только, что дихлорэтан, которым проводилась склейка — содержит мало витаминов и вдыхать нужно больше довольно токсичное и летучее вещество. Работы с ним нужно проводить или на открытом воздухе или в хорошо вентилируемом помещении.


Стек деталей «топа» на сушке после склейки — верх-приток-сепаратор-крыльчатка-ротор. Аналогично склеивается основание для мотора (или изготовить из 6мм куска поликарбоната целиком)
После склейки высверливаются отверстия для фитинга — 8мм латунной трубки по насечкам на детали «сепаратор»
Старый добрый состав БФ-4 как по мне дает надежную склейку латуни и поликарбоната
Тем же клеем приклеивается основание мотора в нижней части помпы. В верхней части рассверливаются (не насквозь!) отверстия под вклейку гаек-заклепок М3. И на фото видна прокладка из тонкого силикона
Тестирование:

Вот и пришла пора проверить в работе самоделку. Для этого был наскоро собран тестовый стенд. Так как Хабр читают дети серьезные разработчики, у которых внешний вид и состав стенда может вызвать приступы паники, ужаса и дезориентации, хотел его спрятать под спойлер… но надеюсь, всё обойдётся, и потом не говорите, что я вас, уважаемые читатели, не предупреждал!


Ардуинка подаёт управляющий сигнал PWM, коэффициент заполнения которого задается вручную переменным резистором, считывает значение конфигурационных регистров, а так же определяет скорость вращения как через внутренние регистры драйвера (RPMrg), так и по сигналу FG (RPMfg). Питание мотора — 12v

Запуск мотора без нагрузки. Регулировка оборотов и замер энергопотребления

Мотор успешно стартует от 6% управляющего PWM сигнала. А в конце видео видно, как на высоких оборотах значения скорости во внутреннем регистре «подвисают» на интервале от 10к до 13к оборотов, хотя через выход FG частота фиксируется без изменений.

С холостым ходом всё понятно — получили 13к оборотов при напряжении 12v и потреблении 0.16A. Но собиралась водяная помпа, а я тут воздух гоняю. Так что следующий этап — сопровождение домочадцев на улицу, дабы не мешались, и оккупация ванной комнаты!


Делать замеры и снимать видео у меня, увы, не получилось. Так что обойдемся фото общего плана. К измерительному оборудованию добавились секундомер и банка на 3л
По итогам замеров получилась вот такая таблица
График расхода

Как итог — данная поделка целиком удовлетворяет моим требованиям. А в случае поломки, благодаря разборной конструкции и наличию в любых ремонтных мастерских / сервисных центрах ящиков с дохлыми 2.5HDD — починить не составит труда. И путь к дальнейшему построению СВО открыт! Так что продолжение следует!

голоса

Рейтинг статьи

Однополюсный двигатель Бедини. Радиантная энергия

Автор OneScheme.ru На чтение 14 мин Просмотров 27 Опубликовано

Что обозначает этот знак с буквой R в круге, трудно догадаться – это хитрый рекламный ход, или реальное предприятие по производству необычных товаров под маркой «Бедини». Попробуем разобраться, что это, кем, для кого и для чего придумано?

Один из посетителей моего сайта «взахлёб» пытался мне доказать, что у него работают «асинхроники» — асинхронные двигатели специальной конструкции. Кроме слюны, в его арсенале других аргументов не было. Именно он дал мне ссылки на материалы, которые я, изучив, комментирую в этой статье.


По версии некоторых людей, нас окружает огромное количество «свободной энергии», которая находится не в традиционных природных источниках энергии, а в окружающем пространстве – так называемом «эфире». Этих последователей идеи Николы Тесла трудно назвать научными деятелями потому, что никакого научного, или практического чётко выраженного доказательства этой идеи до настоящего времени нет. Тесла и не догадывался, что его «полёт мыслей» так просто, без доказательной базы изложат современники. Он предполагал, а они решили по своему.

Классическая физика описывает энергию в пространстве в виде напряжённости магнитного и электрического полей, разницы температур различных физических тел, в виде фотонов излучаемых различными источниками – главным образом Солнцем. Вполне логично, что имеют место и другие формы существования энергии в свободном пространстве. В случае с оригинальным однополюсным двигателем Бедини, энергия присутствует в окружающем воздухе и Бедини научился её извлекать из пространства «загоняя» в аккумуляторную батарею.

По объяснениям автора и его последующих «соавторов», двигатель Бедини, это по своей сути — зарядная станция, которая использует энергию «первичной» аккумуляторной батареи, но самое «чудесное» свойство – двигатель извлекает «свободную энергию» из окружающего пространства и заряжает ей «вторичную» аккумуляторную батарею. Другими словами, энергия первичной аккумуляторной батареи расходуется на работу установки, а вторичная аккумуляторная батарея получает суммарный заряд первичной батареи и энергии окружающего пространства, энергетически превышающий разряд (расход энергии) первичной батареи.

Занимательным фактом являются заявления автора и его последователей, что «Двигатель Бедини» и все его последующие модификации не относятся к категории «вечных двигателей». В тоже время они же заявляют, что КПД двигателя больше 1, а это уже является признаком вечного двигателя. Как тогда относиться к этим заявлениям? С юмором, или сделать вид, что ничего не заметили в глупости этих заявлений?

Рассмотрим работу электрической схемы двигателя Бедини. Простейшая схема представлена на рисунке.

При подаче питания на схему двигателя с первичной АКБ, генерации не происходит, так как ток базы транзистора отсутствует, и транзистор закрыт.

При «запуске» колеса с находящимися на нём магнитами рукой, и прохождении магнитов мимо сердечника соленоида, наводится магнитное поле, вызывающее индукцию в обмотках соленоида. В первичной (базовой) обмотке возникает импульс (скачёк) электрического тока. Этого скачка достаточно для того, чтобы транзистор открылся.

Ток, открывающий транзистор течёт по пути: первичная (базовая) обмотка соленоида – ограничительные резисторы – лампочка – переход Б-Э транзистора – первичная (базовая) обмотка соленоида. Если ток достаточный, то лампочка эффектно вспыхнет. Транзистор открывается и через вторичную (коллекторную) обмотку соленоида начинает бежать ток, по пути: «+» первичной АКБ – вторичная (коллекторная) обмотка соленоида – открытый «переход» К-Э транзистора – «-» первичной АКБ.

Протекающий через вторичную обмотку электрический ток образует в сердечнике магнитное поле, которое противоположно магнитному полю постоянных магнитов, поэтому отталкивает магниты, заставляя колесо вращаться.

Так, как первичная и вторичная обмотки соленоида намотаны в противоположных направлениях, то по мере насыщения сердечника соленоида, в первичной обмотке наводится ЭДС отрицательной полярности – запирающая транзистор. Для исключения выхода транзистора из строя, в базовой цепи стоит диод 1, ограничивающий обратное базовое напряжение на уровне не более 1 вольта.

Когда транзистор запирается, в силу индуктивных свойств соленоида, во вторичной (коллекторной) обмотке, продолжает течь электрический ток, не меняя при этом своего направления. Так, как транзисторный переход К-Э закрыт, то путь прохождения тока изменяется: вторичная (коллекторная) обмотка соленоида – диод 2 – «+» вторичной АКБ – «-» вторичной АКБ – вторичная (коллекторная) обмотка соленоида. Природа этого тока – накопленная энергия аккумуляторной батареи в сердечнике соленоида в промежуток времени, когда транзистор открыт. Он не имеет ничего общего со «свободной энергией». При прохождении в поле сердечника соленоида следующего магнита в результате вращения колеса, процесс повторяется.

На схеме написано, что для максимальной скорости вращения колеса и минимального потребления энергии первичной батареи необходимо подстроить регулируемый резистор на 1 кОм. Радиолюбители! Вы видели эту чушь? В этой схеме резистор не влияет на скорость вращения, а для исключения «лишнего» потребления энергии базовой цепью порядка — единиц-десятков миллиамперов (на другие цепи резистор не влияет) резисторы, отличающиеся номиналами даже в три раза погоды не делают. Ведь транзистор работает в режиме ключа.

Для того чтобы схема работала необходимо иметь значительную индуктивность коллекторной катушки. Необходимо обеспечить достаточное время для накопления энергии от первичной аккумуляторной батареи в катушке индуктивности. Чем больше будет индуктивность, тем медленнее будет вращаться колесо, и тем больше энергии накопится и больше по длительности будет импульс заряда вторичной аккумуляторной батареи.

Непонятно для чего издеваются некоторые «последователи» Бедини над читателями этих статей описывая, что сердечник соленоида необходимо делать из большого количества обыкновенных сварочных электродов. Для увеличения инертных свойств индуктивности и улучшения магнитных свойств, безусловно, в электромагните оптимально использовать обычную мягкую сталь. Но зачем сварочные электроды? Наверное, чтобы поиздеваться над «исследователями», которые в кустарных условиях будут сначала искать необходимые электроды, потом «резать» электроды на равные куски. Случайно это не тактический ход по увеличению продаж сварочных электродов? Тут даже марку указали – «Lincoln R60». А может быть после неудачных экспериментов, когда исследователи начнут жаловаться, что их в очередной раз обманули, им заявят, что они вместо необходимой марки использовали другую марку электродов, чем нарушили технологию. Так что, если у Вас нет электродов Lincoln R60, задумайтесь, а стоит ли пытаться повторять схему Бедини.

Одной из разновидностей выше изображённой схемы является схема Шелдона, которая публикуется в другом «материале» и абсолютно не отличается от первой схемы. В некоторых источниках вообще говорится о том, что схема прекрасно работает, добывая «свободную энергию» без вращающегося колеса с магнитами. Тогда получается, что секрет вечного двигателя скрыт в этой простейшей схеме, а все мировые умы – глупцы. Надо всего лишь 6 радиоэлементов, чтобы закрыть все месторождения углеродного топлива на нашей планете. Почувствуйте значимость этой схемы!

Есть более «сложные» схемы двигателя Бедини. Частным случаем является схема, в которой применяются магнитные датчики Холла. Схема на отечественных деталях изготавливается на Украине, немного усложнена, а толку от этого не прибавилось. Если раньше транзистор открывался от импульса тока поступающего из базовой (первичной) обмотки соленоида, то здесь обмотка исключена, импульс датчика ровный (без отрицательных выбросов). Потому и отсутствует защитный диод в базовой цепи транзистора.

Другие, более сложные схемы представлены ниже. Здесь схема однополюсного двигателя Бедини состоит из двух частей. Первичная часть это всё тот же генератор, выполненный на одном транзисторе, работает по ранее описанному принципу, заставляя колесо вращаться. Вторичная часть – зарядное устройство, которое состоит из генератора на таймере 555 серии, оптопары для гальванической развязки от первичной цепи, выпрямительного моста и коммутирующего ключа на транзисторах. Соленоид «крутит» колесо, а кроме того, используется в качестве трансформатора, для зарядки вторичной аккумуляторной батареи. Длительность и частота импульсов заряда АКБ определяется частотой генератора, выполненного на микросхеме, которые регулируются подстроечным резистором. Все импульсные выбросы энергии во вторичной цепи подавляются сглаживающим конденсатором на выходе диодного моста, поэтому «чудным» свойствам такого двигателя, которые «скрыты» в этих импульсах взяться совершенно неоткуда.

Следующая схема, названная UPDATED ROAMER – «усовершенствованная» отличается от предыдущей тем, что в ней в качестве коммутирующего ключа используются не транзисторы, а тиристор. Причём на рисунке изображён симистор, нужды в котором совершенно нет. Особенность такой схемы состоит в том, что заряд аккумуляторной батареи происходит импульсами, отличающимися по длительности от транзисторной схемы. Тиристор открывается импульсами, поступающими с таймера, а закрывается только после разряда ёмкости, стоящей на выходе выпрямительного моста до напряжения меньшего, чем напряжение вторичных аккумуляторных батарей. Это обусловлено свойствами тиристора – запираться после того, когда протекающий от анода к катоду ток пропадает.

Вот в принципе и всё описание! Откуда «черпается» свободная энергия и посредством какого физического процесса, известно только Бедини, и ещё ряду не совсем научных деятелей.

Гипотезы

 

Гипотеза №1. Энергия черпается из «эфира». Но для того, чтобы её действительно извлекать, осталось выяснить, что такое Эфир и какими физическими свойствами он обладает? Пока никто и никогда этого не смог сделать. Думаю, что Эфир относится к той же категории, что и Филосовский камень – мечта человечества.

Кроме Бедини, есть ещё много авторов идей, заявляющих о том, что они получают «свободную энергию». Я не буду опровергать существование «свободной энергии», но анализу работ этих деятелей необходимо будет посвящать другие статьи и конкретно по каждому автору. Идеи и представления об «эфире» у всех разные.

Гипотеза №2. Магниты, расположенные по окружности колеса «ловят» на своём пути фотоны энергии, у которых скорость больше чем у магнитов и им «по барабану», что магниты вращаются. Но магниты этого не знают, потому у них всё и получается.

Гипотеза №3. Магниты, в процессе вращения заряжаются от магнитного поля Земли, ведь в различных точках пространства магнитное поле различно. Так как они вращаются не только вокруг оси, но ещё при этом за один оборот своими полюсами делают оборот в магнитном поле Земли, то можно предположить, что они производят завихрение магнитного поля, чем производят концентрацию «свободной энергии», «сливая» её на сердечник соленоида.

Гипотеза №4. Магниты, изменяя свою высоту относительно земли, заряжаются от электростатического поля, которое имеет разность потенциалов по высоте, у ионосферы вообще — огромную. Надо полагать, что и диаметр колеса не малый. Только постоянные магниты не обладают свойством заряжаться от электростатического поля.

Гипотеза №5. У многих изобретателей-теоретиков экспериментирующих на катушках индуктивности бытует мнение, что катушка индуктивности способна отдавать энергию в виде импульса тока, намного большую, чем к ней прикладывается от источника энергии до его отключения. При этом, энергия тем больше, чем раньше происходит опережение по фазе «приёмника» энергии. Авторы этой идеи объясняют, что существующими законами и формулами это не объяснить, а практические конструкции доказывают «живучесть» этой гипотезы. Что значит «опережение фазы приёмника» мне не ясно, поэтому спорить о непонятных для меня понятиях я не буду. Будет время, и в этом попробую разобраться.

Вообще, Бедини назвал вид энергии, который он извлекает — «радиантной энергией». По какой причине он дал ей такое название стоит только гадать. Здесь можно высказать предположение, связанное с тем, что магниты располагаются по окружности колеса на одинаковом радиусе. Корень «радиант» ассоциируется со словами круг, вращение. А может быть, в качестве объяснения есть другая причина?


Может ли двигатель Бедини иметь КПД более 1? Электронная схема, по которой он построен, не может наглядно это показать. Почему? Потому, что отсутствует наглядная демонстрация потраченной и полученной энергии.

Элементарной наглядной схемой может быть схема, в которой имеется источник энергии, например аккумуляторная батарея, подключенная через амперметр с «нулем» посередине шкалы (как амперметр на автомобиле). В процессе работы амперметр должен показывать ток заряда, или разряда батареи. Как в автомобиле – при пуске двигателя внутреннего сгорания (или дизельного) происходит разряд аккумуляторной батареи через стартер, а после запуска двигателя происходит обратный заряд батареи от генератора. При этом условием подтверждающим состоятельность теории «свободной энергии», кроме показаний амперметра является отсутствие в схеме ещё каких либо дополнительных известных классических источников энергии.

Чтобы доказать «полезность» двигателя Бедини, представленной автором схемы, необходимо проводить длительный эксперимент. Почему? Потому, что на вращение колеса используется очень мало энергии, а аккумуляторы мощные. Это сопоставимо с самым распространённым китайским будильником «Слава» (Фамилию не знаю), который от одной пальчиковой батарейки на 1,5 вольта может работать несколько месяцев. Вероятно потому, Бедини и «замучил» патентную комиссию, что его двигатель работал «условно — бесконечно».


Для доказательства «приращения» энергии двигателем Бедини, без изменения его схемы необходимо провести эксперимент, состоящий из нескольких этапов:

1. Для начала, берут одинаковые аккумуляторные батареи. Заряжают батареи одинаковым током и одинаковое время.

2. После полного заряда, одну из АКБ разряжают в щадящем режиме – не допуская чрезмерной разрядки. Лучше это делать электролампой накаливания с постоянным контролем напряжения батареи и если АКБ кислотная — периодическим контролем плотности.

3. Замеряют начальные напряжения и плотности аккумуляторных батарей.

4. Устанавливают: в качестве первичного аккумулятора – хорошо заряженную батарею, а в качестве вторичного аккумулятора – разряженную батарею. Включают установку.

5. В ходе работы двигателя, контролируют напряжение разряда первичной АКБ и заряда вторичной АКБ.

6. Если напряжение разряда первичной АКБ достигнет минимального значения – равного напряжению, которое было на разряженной вторичной батарее перед включением двигателя, то двигатель отключают.

Если напряжение и плотность заряда вторичной аккумуляторной батареи достигнет значения равного напряжению и плотности, которые были на первичной заряженной батарее перед включением двигателя, то двигатель также отключают.

7. Аккумуляторы отсоединяют и производят замеры напряжений и плотностей АКБ.

8. Сравнивая начальные и конечные параметры заряда, приходят к выводу насколько соответствуют работы Бедини Вашим ожиданиям.

Думаю, в лучшем случае, когда первичная аккумуляторная батарея разрядится, вторичная так и не достигнет «начального» заряда.

бращаю Ваше внимание, что в процессе работы двигателя, напряжения обеих аккумуляторных батарей следует измерять через интегрирующие LC цепочки, с достаточными значениями индуктивностей и емкостей. Это необходимо для того, чтобы импульсы заряда и разряда не влияли на достоверность измерений.


Есть наиболее простой путь — не возиться с аккумуляторами, а установить один аккумулятор, используя его в качестве первичного и вторичного одновременно. Благо переделывать ничего придуманного Бедини не надо. Для этого необходимо переключить выход установки — вместо четырёх вторичных аккумуляторов, выходные провода завести обратно на первичный аккумулятор. Как это сделать показано на рисунке.

Перед запуском установки необходимо обслужить аккумуляторную батарею. По Вашему желанию можете измерить напряжение и плотность аккумуляторной батареи. Для укорочения длительности эксперимента подключите обыкновенную лампу накаливания на 10-15 ватт как показано на рисунке. Запустите установку. Если двигатель будет работать с горящей лампочкой в течение месяца без остановок, тогда низкий поклон Бедини, сообщите мне об этом. Тогда я буду его ярым поклонником. Мало того, я буду разрабатывать и дорабатывать его схемы, чем улучшу благосостояние человечества.Только главная просьба — пишите только в том случае, если будет реальный результат, подтвержденный реальным экспериментом. «Писцов», у которых работают Генераторы свободной энергии на моей почте хватает, но ни один из них реально действующей конструкции не сделал. Если нет результата, но Вы уверены, что должно работать, прошу Вас лучше не пишите! От Вашей уверенности, придуманные Вами, либо кем ещё конструкции не заработают.

Лично я думаю, что однополюсный механический двигатель Бедини – это действительно обыкновенный электродвигатель специфической конструкции. Собственно как обыкновенный, но специфический двигатель он и получил патент. Если Вы в обычном любом известном двигателе примените «своеобразный» наклон магнитопровода, или используете «уникальные» щётки (например из графитовых стержней от карандашей определённой мягкости, с использованием определённого клея), то этот двигатель Вы можете запатентовать как свою разработку. Но будет ли толк от Вашего двигателя? Не путайте с понятием устройства получающего свободную энергию. А так как двигатель Бедини имеет плохие скоростные и мощностные характеристики, поэтому это — занимательная игрушка, не имеющая никаких перспектив быть чем-то более серьёзным. Считаю, что приращения энергии в результате «перегонки» электричества в магнитное поле и обратно не наблюдается, а заряд аккумуляторных батарей импульсным током можно делать без механической вращающейся громоздкой конструкции.


Bернусь к заявлениям автора и его последователей, что двигатель Бедини и все его последующие модификации не относятся к категории «вечных двигателей». Это утверждение разрушает миф о «радиантной энергии». По моему мнению, генератором свободной энергии установку Бедини провозгласили по невежеству, или специально, а теперь этим пользуются те, кто «раскрутил» эту идею и зарабатывает на этом деньги. Может теперь стало понятно, что за логотип красуется в начале этой статьи?!

К разновидностям двигателя Бедини относится и Генератор ВЕГА (вертикальный электро-генератор памяти Адамса), который втюхивают доверчивым людям. Такое научное название завораживает! Содержимое на поверку оказывается пустышкой!

К сожалению, Интернет в большей своей части используется в коммерческих целях и поэтому в нём много надувательства.

Детали цепи Бедини

« Интересно, как

Как

Добавить комментарий

Ваш адрес email не будет опубликован.