Своими руками схемы на светодиодах: Схемы со светодиодами

Содержание

⚡️Самоделки из светодиодов - магические светодиоды

На чтение 2 мин Опубликовано Обновлено

Со временем дети поймут, что радиотехническое “чудо” имеет строго научное обоснование. Обратимся к схеме на рис. 1.

“Разноцветные” кристаллы двухцветного светодиода LD1, например, красный R и зеленый G, являются нагрузками триггера. Он выполнен на транзисторах Т1 и Т2. Резисторы R2 и R3 являются коллекторными нагрузками транзисторов триггера, а резисторы R4 и R5 – элементы связи транзисторов в триггере.

Управляющим сигналом устройства является изменение сопротивления фоторезистора R6 при его затемнении. Это сопротивление увеличивается. Соответственно, будет отпираться транзистор Т3 током базы через резистор R8 (ограничительный) и подстроечное сопротивление Р1. Через конденсаторы С1 и С2 управляющий сигнал подается одновременно на оба транзистора (Т1 и Т2). При этом происходит изменение их состояний – ранее насыщенный транзистор запирается, а другой, соответственно, отпирается.

Поделки из светодиодов видео

Переключение триггера приводит к изменению цвета свечения светодиодного индикатора LD1. Наиболее привлекательный вид эта электронная игрушка будет иметь, если в качестве LD1 использовать светодиодную матрицу, состоящую из двух разноцветных светодиодов в одном корпусе. Внешне светодиод, вроде, один, а цвет его свечения изменяется!

Импортные транзисторы Т1 …Т3 типа ВС547 с успехом можно заменить на отечественные КТ3102 или КТ315. В том случае, если возникнут проблемы с приобретением светодиодной матрицы с общим катодом составляющих ее светодиодов, можно использовать матрицу с общим анодом светодиодов. При этом необходимо будет лишь изменить полярность подключения источника питания (9 В) и использовать транзисторы противоположного типа проводимости, например, КТ3107 или КТ361.

Напряжение питания на схеме указано, как 9 В. Вероятно, авторы статьи [1] предполагали, что для юных радиолюбителей проще всего использовать гальваническую батарею, например, типа “Крона- ВЦ”. Практически схема должна быть работоспособной и при других напряжениях питания. Возможно, понадобится лишь уточнить номиналы некоторых резисторов.

Тип фоторезистора в [1] не приводился. Можно не только использовать имеющиеся под рукой фоторезисторы, но и применить другие фотоприемники, например, фотодиоды. При этом потребуется подобрать номиналы R8, Р1.

Схемы на светодиодах

Схема со светодиодами встречается в бытовых приборах, элементах интерьера и даже произведениях искусства. При наличии необходимой элементной базы, амперметра и вольтметра, своими руками можно собрать множество таких практичных поделок на основе мультивибратора.

Содержание статьи

Схемы часов на светодиодах

Существует несколько способов реализации часов на светодиодах. Это могут быть уличные или настенные устройства. Сложность лишь в том, что не каждый пользователь сможет без подготовки справиться с программируемыми элементами.

Совет: Вольтметр и амперметр нужно освоить, наловчившись грамотно работать с паяльником. Разобраться в принципе работы микроконтроллера не таки сложно, но для начала лучше выбрать что-то более простое, без включения процессоров и контроллеров, постепенно усложняя поставленную задачу.

Примеры схем для часов:

  1. Уличные часы. Для их реализации потребуется 2 дисплея, один из которых будет на самом корпусе, а второй может быть вынесен, куда потребуется. Кроме временной шкалы, схема часов может быть также рассчитана на обозначение даты и температурных показателей. Сложность заключается не только в программировании схемы, но также в её прошивке, поэтому данный вариант применения светодиода подходит лишь для уверенных в себе радиолюбителей.
  2. Настенные часы. Исходником для светодиодных часов могут послужить обычные аналоговые. Стрелочные часы имеют один существенный недостаток – их показания довольно сложно разглядеть в темноте или с большого расстояния. Взяв на вооружение вольтметр, амперметр и светодиоды, эту ситуацию довольно просто исправить. На циферблате размещается 24 светодиода (по 12 для часов и минут соответственно), а касательные выполняют функции стрелок. Для включения освещения в вечернее время можно поставить таймер.

Схемы со светодиодами для велосипедистов

Светодиоды дают множество возможностей протюннинговать велосипед. Он будет не только интересно смотреться, удивляя каждого встречного необычной подсветкой, но самое главное – езда в темное время суток станет абсолютно безопасной.

Усовершенствовать велосипед с помощью включения в схему светодиода можно несколькими способами:

Установка светодиодов на спицы

Потребуется: сами светодиоды, провода для монтажа, изолента, батарейки или любой другой источник питания, выключатель, паяльник (иногда также вольтметр и амперметр).

  • к выводам светодиодов припаять провода, накрепко изолируемых их лентой;
  • закрепляем диоды на каждой из спиц, используя пластиковые стяжки;
  • производим последовательное подключение светодиодов, закрепляем выключатель;
  • на втулке колеса крепим батарейку.

Монтаж светодиодной ленты на корпус или его элементы

Лента обязательно должна быть водонепроницаемой и по возможности – достаточно гибкой. Довольно дешево приобрести такую «гирлянду» можно найти на многих сайтах, если не хочется составлять собственноручно.

Потребуется: аккумулятор на 12 В, контроллер для светодиодов для включения подсветки любого из 7 цветов или их комбинации, велосумка, около 5 м кабеля, скотч, изолента, вольтметр и амперметр.

  • примерка ленты на месте будущей фиксации;
  • лента нарезается на сегменты требуемой длины, с неё снимается резиновое покрытие;
  • кабель припаивается к контактным дорожкам с последующей изоляцией.

Можно также подобрать подсветку для велосипеда для обозначения сигналов поворотов.

Маячок на базе светодиода

На основе мультивибратора можно собрать простенький маячок на светодиодах, который поможет без труда найти любой предмет в темное время суток. Владельцы домашних животных нередко вешают такие устройства на ошейник питомца, чтобы быть в курсе любых его передвижений.

Типичная схема включения состоит из несимметричного мультивибратора на биполярных транзисторах разной проводимости (стандартное обозначение – VT2 и VT3). Устройство генерирует короткие импульсы с небольшим интервалом (2-3 секунды). Можно переработать схему под 2 или 3 светодиода.

Источником освещения может послужить любой мощный светодиод, а датчиком – фототранзистор.

Идея заключается в том, чтобы в светлое время напряжение на эмиттерном переходе было низким (вольтметр поможет измерить его и отладить), и он запирался, а в темное – транзистор начинает генерировать импульсы, освещая помещение при помощи светодиода.

Какие ещё схемы можно реализовать?

Светодиоды открывают практически бесконечные возможности для реализации разнообразных подсветок. Такие схемы могут использоваться в качестве интерьерных решений (подсветка для аквариума, часов, картины). Ближе к праздникам становятся востребованными схемы с переходами, бегущие огни для украшения дома.

На базе светодиода можно осуществить и более сложные схемы. К их реализации лучше приступать, когда вольтметр и амперметр станут такими же привычными инструментами, как и молоток.

Питание светодиодов от 220В своими руками. Схема и подробное описание

В данной статье приведен еще один пример схемы питание светодиодов от 220В, которую можно собрать самостоятельно.

В отличии от светодиодной лампы на 220В, описанной в предыдущей статье, данный светильник обладает переключателем, позволяющим выбрать один из трех режимов яркости свечения светодиодов. В нижнем положении яркость будет минимальной, поскольку питающий ток через светодиоды составляет всего лишь 2 мА, в среднем положении – 6 мА и в верхнем – максимальная яркость при токе 20мА.

Блок питания 0...30 В / 3A

Набор для сборки регулируемого блока питания...

Описание лампы LED с питанием от 220В

Сопротивление R1 гасит амплитуду выбросов тока возникающих: в момент выбора яркости свечения переключателем SA1, во время включения в сеть 220В и в момент зарядки конденсаторов светильника при питании от 220В. Емкость С4 предназначена для уменьшения пульсаций напряжения после выпрямления переменного напряжения диодным мостом, тем самым снижается риск повреждения LED при питании от 220В.

При сборке лампы необходимо проконтролировать, чтобы напряжение на емкости С4 при применении LED обозначенного типа (504UWC) должно соответствовать примерно 30,7 вольт при выборе яркого режима работы (верхнее положение SA1)

Выпрямительный мост КЦ407А возможно поменять на DB105, DB107, либо можно установить четыре диода серии КД105Г, 1N4004, КД243Ж. Емкости C1,C2,C3 – любые пленочные К78-2, К73-17, К73-24 или схожие зарубежные, имеющие напряжение не ниже 400 В.

Возможно установить и другие светодиоды имеющие белое свечение, например, RL30-WH744D (5 мм, 5000мКд), RL50-WH744D (яркость — 8000мКд), DB10D-439AWD (10 мм, 9000мКд), RL30-WH744D (Змм. 5000мКд), RL80-WH744D (8 мм, 8000мКд). При подборе светодиодов, выбор следует делать в сторону светодиодов большого диаметра.

Перед тем как первый раз включить лампу в сеть 220В, необходимо все тщательно проверить. В особенности правильную полярность подключения группы светодиодов к конденсатору C4.

В силу того, что после выключения питания, конденсатор C4 имеет еще некоторый заряд, то  будет наблюдаться некоторое время слабое свечение светодиодов. Если в цепи светодиодов какой-то из них погас раньше, то его следует поменять на новый, поскольку он, либо был бракованный изначально, либо был перегрет во время пайки.

Внимание! Схема не имеет гальванической развязки с электросетью. Поэтому сборку и настройку лампы необходимо производить при ее отключение от сети.

Автор: А. Бутов,  Ярославская обл.

Цифровой мультиметр AN8009

Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS...

4 схемы индикатора напряжения (фазы) на светодиодах своими руками

В любой технике в качестве отображения режимов работы используют светодиоды. Причины очевидны – низкая стоимость, сверхмалое энергопотребление, высокая надёжность. Поскольку схемы индикаторов очень просты, нет необходимости в покупке фабричных изделий. 

Из обилия схем, для изготовления указателя напряжения на светодиодах своими руками, можно подобрать наиболее оптимальный вариант. Индикатор можно собрать за пару минут из самых распространённых радиоэлементов.

Все подобные схемы по назначению делят на индикаторы напряжения и индикаторы тока.

Работа с сетью 220В

Рассмотрим простейший вариант – проверка фазы.

Эта схема представляет собой световой индикатор тока, которым оснащают некоторые отвёртки. Такое устройство даже не требует внешнего питания, поскольку разность потенциала между фазовым проводом и воздухом или рукой достаточна для свечения диода.

Для отображения сетевого напряжения, например, проверки наличия тока в разъёме розетки, схема ещё проще.

Простейший индикатор тока на светодиодах 220В собирается на ёмкостном сопротивлении для ограничения тока светодиода и диода для защиты от обратной полуволны.

Проверка постоянного напряжения

Нередко возникает необходимость прозвонить низковольтную цепь бытовых приборов, либо проверить целостность соединения, например, провод от наушников.

В качестве ограничителя тока можно использовать маломощную лампу накаливания либо резистор на 50-100 Ом. В зависимости от полярности подключения загорается соответствующий диод. Этот вариант подходит для цепей до 12В. Для более высокого напряжения потребуется увеличить сопротивления ограничивающего резистора.

Индикатор для микросхем (логический пробник)

Если возникает необходимость проверить работоспособность микросхемы, поможет в этом простейший пробник с тремя устойчивыми состояниями. При отсутствии сигнала (обрыв цепи) диоды не горят. При наличии логического ноля на контакте возникает напряжение около 0,5 В, которое открывает транзистор Т1, при логической единице (около 2,4В) открывается транзистор Т2.

Такая селективность достигается, благодаря различным параметрам используемых транзисторов. У КТ315Б напряжение открытия 0,4-0,5В, у КТ203Б – 1В. При необходимости можно заменить транзисторы другими с аналогичными параметрами.

Вариант для автомобиля

Простая схема для индикации напряжения бортовой сети автомобиля и заряда аккумулятора. Стабилитрон ограничивает ток аккумулятора до 5В для питания микросхемой логики.

Переменные резисторы позволяют выставить уровень напряжения для срабатывания светодиодов. Настройку лучше проводить от сетевого стабилизированного источника питания.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Материалы по теме:

Сетевая лампа на светодиодах своими руками

В настоящее время стоимость электроэнергии значительно выросла. Для того чтобы оптимизировать бюджет можно воспользоваться двумя вариантами: увеличить свои месячные доходы или начать экономить. Второй способ займет гораздо меньше времени и усилий. Поэтому в качестве одного из решений проблемы выступает замена обычных лам накаливания на более энергосберегающие. В качестве альтернативы обычно рассматривают ЛДС или LED-светодиоды. Однако последние имеют гораздо больший срок службы и мощность всего 8 Ватт.

Принципиальная схема лампы на светодиодах представлена на следующем рисунке:

Изготовить сетевую лампу на светодиодах своими руками не так сложно, как может показаться с первого взгляда. Для этого придется купить в магазине радиотоваров несколько деталей:

  1. Светодиод мощностью 1 Ватт – 8 шт.;
  2. Радиатор – 1 шт.;
  3. Мост диодный – 1 шт.;
  4. Кусок оргстекла или пластмассы – 1 шт.;
  5. Резистор на 56 Ом – 1 шт.;
  6. Резистор на 100 Ом – 1 шт.;
  7. Резистор на 1,2 кОм – 1 шт.;
  8. Резистор на 3,9 кОм – 1 шт.;
  9. Конденсатор неполярный 680 нФ с напряжением 400 В – 1 шт.;
  10. Конденсатор полярный 2мкФ с напряжением 400 В – 1 шт.;
  11. Транзистор 13001 – 2 шт.

Желательно приобрести готовую диодную сборку. Если такую не удалось найти, что основу для LED-лампы можно спаять самостоятельно. Когда все элементы будущей конструкции есть в наличии, то можно приступать к работе.

На кусочке оргстекла необходимо сделать разметку под светодиоды, она должна совпадать с формой радиатора. После этого в материале высверливают небольшие отверстия.

После этого заготовку нужно зашкурить наждачной бумагой или шлифовальной машинкой. Обрабатываю поверхность детали до тех пор, пока она не станет матовой. Затем на светодиодах выравнивают лапки, концы проводов не должны касаться радиатора.

Далее светодиоды нужно прикрепить к оргстеклу. После установки их спаивают между собой, соблюдая полярность.

Когда все элементы установлены на свои места, то нужно подпаять проводки. Для отвода тепла стоит воспользоваться термопастой. Оптимальным по свойствам является состав КПТ-8, его следует наносить непосредственно на светодиоды.

Затем светодиоды крепят на радиаторе и собирают электронную часть. Специалисты рекомендуют паять все по схеме навесом. В итоге должна получится следующая конструкция:

После этого можно переходить к проверке работоспособности устройства. В равнении с обычной лампой накаливания светодиоды более яркие. Они имеют больший срок эксплуатации и прочность.


 

Как сделать мигающий светодиод или схема простой мигалки своими руками

Схема мигалки на светодиодах работает без настройки и подойдет тем, кто хочет опробовать свои силы в радиоэлектронике. С ее помощью можно изготовить елочную гирлянду, «оживить» глаза игрушки, изготовить реле поворотов для велосипеда или имитировать работу сигнализации на автомобиле. Рассмотрим несколько простых и популярных вариантов схем, доступных для повторения своими руками.

Собираем простую схему мигающего светодиода на одном транзисторе

Самая простая схема мигалки состоит из трех радиоэлементов, а четвертый – светодиод. Хотя в качестве ключевого элемента представлен транзистор, его база не подключена, и полупроводник работает как динистор.

При включении питания конденсатор не заряжен, между эмиттером и коллектором присутствует низкое напряжение, динистор закрыт и не пропускает электрический ток, светодиод не горит. По мере заряда конденсатора напряжение на нем и на динисторе растет. В определенный момент динистор открывается, и конденсатор разряжается через светодиод. Далее цикл повторяется. Частота мерцаний светодиода определяется емкостью конденсатора и сопротивлением резистора.

Всю схему легко разместить в спичечном коробке. Мигающий светодиод и провода питания удобно закрепить горячим клеем.

Если сделать несколько подобных светодиодных мигалок и включить их вместе, получится гирлянда. Так как радиоэлектронные элементы имеют определенный разброс параметров, светодиоды будут мерцать в хаотичном порядке. При этом мигалку можно изготовить в виде единого блока, как на фото.

Светодиодная мигалка с низковольтным питанием

Случается, что в качестве источника питания выступает батарейка с напряжением 1,5 или 3 вольта. Этого напряжения явно недостаточно, чтобы светодиод ярко светился. В электронных схемах питание на него чаще всего подается через транзистор, на котором падает 0,7 В, так что светодиод в таком случае не будет гореть совсем. В этом случае применяется специальная схема, где дополнительное напряжение создает электролитический конденсатор.

В момент включения питания оба транзистора закрыты, и конденсатор С2 заряжается через резисторы R3, R2, напряжение на нем растет. Конденсатор С1 заряжается через резисторы R1, R2, напряжение на нем также растет. В итоге открывается транзистор VT1, который, в свою очередь, открывает транзистор VT2. В результате источник питания и конденсатор С2 включаются последовательно, и на светодиод подается повышенное напряжение питания. По мере разряда конденсатора С2 светодиод гаснет. Далее цикл повторяется.

Популярная схема мультивибратора

Схема мигающего светодиода на симметричном мультивибраторе надежно работает сразу после включения питания. В ней удается легко регулировать периоды свечения и отключения светодиодов. Она хорошо подходит для имитации работы сигнализации автомобиля или в качестве реле поворотов для велосипеда.

В данном случае конденсаторы С1 и С2 последовательно заряжаются через резисторы R2 и R3 соответственно. При достижении определенного напряжения на базе одного из транзисторов он открывается и происходит разряд соответствующего конденсатора. При этом протекает ток через светодиод в коллекторе открытого транзистора. Процесс повторяется.

Частота и длительность мигания светодиода определяется элементами С1, R2 и С2, R3. Сопротивление резисторов можно изменять в пределах (5,1 – 100)кОм, а емкость конденсаторов — в пределах (1 – 100)мкФ. Подбирая названные элементы, можно добиться предпочтительного результата. Сначала устройство собирают на макетной плате, где удобно заменять и подбирать элементы схемы.

Все элементы – практически любого типа. Подойдет светодиод типа АЛ 3075, который очень похож на светодиоды сигнализаций. Различные вариации на базе схемы симметричного мультивибратора позволяют получить необходимый результат в зависимости от конкретных требований к схеме.

Например, светодиод может быть только один. Во втором плече мультивибратора в качестве нагрузки будет достаточно резистора порядка 500 Ом при напряжении питания до 12В.

В данном примере мы заменили транзисторы КТ315 « обратной» проводимости или n-p-n на комплементарные транзисторы КТ361 «прямой» проводимости или p-n-p. При этом понадобилось изменить полярность питания, светодиодов и конденсаторов. Кроме того, в схему добавлен переменный резистор, который позволяет регулировать частоту мигания светодиодов в определенных пределах.

В этом примере исключены нагрузочные резисторы. Они не нужны, так как при питании порядка 2,4 или 3 вольта и падении напряжения на открытом транзисторе 0,7 В светодиоды не будут перегружены.

В каждое плечо мультивибратора можно включить по два светодиода параллельно. При этом они будут загораться в обратном порядке, то есть тогда, когда соответствующие транзисторы будут закрываться. Однако в этом случае парные светодиоды могут светиться с разной яркостью из-за различия параметров.

В этой схеме включено по три светодиода в каждом плече схемы, и через них будет протекать одинаковый ток. Можно включать последовательно и ленту светодиодов, однако при этом придется поднимать напряжение питания схемы. Для простоты можно считать, что на одном из них падает порядка 1,5 В. При этом нужно использовать транзисторы и конденсаторы, рабочее напряжение которых выше напряжения питания схемы.

Включить светодиодную ленту, не повышая напряжение питания, можно с помощью этой схемы. При этом заметно возрастает ток через транзисторы, так что пришлось добавить выходные каскады на транзисторах средней мощности.

Эта схема позволяет реализовать «бегущие огни» довольно простым способом. Элементы R1-R4 и С1-С4 подобраны так, чтобы светодиоды мигали последовательно. Подбирая их, можно менять световые эффекты. Переменные резисторы R6,R7 позволяют регулировать частоту мерцания светодиодов.

Подборка элементов схемы и правила монтажа своими руками

Далеко не всегда есть в наличии детали, указанные на схеме. Их нетрудно заменить. Часто на схемах указаны транзисторы КТ 315Б, которые имеют небольшие размеры. Вместо них подойдут такие же с любой буквой, однако при высоком напряжении питания схемы надо убедиться с помощью справочника, что они выдержат. Практически во всех примерах подойдут почти любые транзисторы малой мощности.

При этом можно использовать элементы другой проводимости, изменив полярность подключения питания, светодиодов и конденсаторов. Конкретно у транзисторов К315 буквенный индекс находится справа, а у КТ361 — посередине корпуса. Резисторы и электролитические конденсаторы подойдут любые малогабаритные.

Если мы говорим об устройстве, имитирующем автосигнализацию, или реле поворотов для велосипеда, то монтаж лучше всего сделать на печатной плате, которую помещают в пластмассовую коробку. Два провода из коробки подводят к мигающему светодиоду, еще один соединяют с корпусом, а четвертый подсоединяют через тумблер к питанию + 12 В. Подключаться необходимо к цепи, которая находится постоянно под напряжением и защищена предохранителем. Монтажные провода должны иметь надежную изоляцию. Их необходимо хорошо закрепить и надежно защитить от возможного перетирания.

 

Подборка простых и эффективных схем.

Мультивибратор. 

Первая схема - простейший мультивибратор. Не смотря не его простоту, область применения его очень широка. Ни одно электронное устройство не обходится без него. 

На первом рисунке изображена его принципиальная схема. 

В качестве нагрузки используются светодиоды. Когда мультивибратор работает - светодиоды переключаются. 

Для сборки потребуется минимум деталей: 

1. Резисторы 500 Ом - 2 штуки 

2. Резисторы 10 кОм - 2 штуки 

3. Конденсатор электролитический 47 мкФ на 16 вольт - 2 штуки 

4. Транзистор КТ972А - 2 штуки 

5. Светодиод - 2 штуки

Транзисторы КТ972А являются составными транзисторами, то есть в их корпусе имеется два транзистора, и он обладает высокой чувствительностью и выдерживает значительный ток без теплоотвода. 

Когда вы приобретёте все детали, вооружайтесь паяльником и принимайтесь за сборку. Для проведения опытов не стоит делать печатную плату, можно собрать всё навесным монтажом. Спаивайте так, как показано на рисунках.

Рисунки специально сделаны в разных ракурсах и можно подробно рассмотреть все детали монтажа. 

А уж как применить собранное устройство, пусть подскажет ваша фантазия! Например, вместо светодиодов можно поставить реле, а этим реле коммутировать более мощную нагрузку. Если изменить номиналы резисторов или конденсаторов – изменится частота переключения. Изменением частоты можно добиться очень интересных эффектов, от писка в динамике, до паузы на много секунд.. 

Фотореле. 

А это схема простого фотореле. Это устройство с успехом можно применить где Вам угодно, для автоматической подсветки лотка DVD, для включения света или для сигнализации от проникновения в тёмный шкаф. Предоставлены два варианта схемы. В одном варианте схема активируется светом, а другом его отсутствием.

Работает это так: когда свет от светодиода попадает на фотодиод, транзистор откроется и начнёт светиться светодиод-2. Подстроечным резистором регулируется чувствительность устройства. В качестве фотодиода можно применить фотодиод от старой шариковой мышки. Светодиод - любой инфракрасный светодиод. Применение инфракрасного фотодиода и светодиода позволит избежать помех от видимого света. В качестве светодиода-2 подойдёт любой светодиод или цепочка из нескольких светодиодов. Можно применить и лампу накаливания. А если вместо светодиода поставить электромагнитное реле, то можно будет управлять мощными лампами накаливания, или какими-то механизмами. 

На рисунках предоставлены обе схемы, цоколёвка(расположение ножек) транзистора и светодиода, а так же монтажная схема.

При отсутствии фотодиода, можно взять старый транзистор МП39 или МП42 и спилить у него корпус напротив коллектора, вот так:

Вместо фотодиода в схему надо будет включить p-n переход транзистора. Какой именно будет работать лучше – Вам предстоит определить экспериментально. 

Усилитель мощности на микросхеме TDA1558Q. 

Этот усилитель имеет выходную мощность 2 Х 22 ватта и достаточно прост для повторения начинающими радиолюбителями. Такая схема пригодится Вам для самодельных колонок, или для самодельного музыкального центра, который можно сделать из старого MP3 плеера. 

Для его сборки понадобится всего пять деталей:

1. Микросхема - TDA1558Q 

2. Конденсатор 0.22 мкФ 

3. Конденсатор 0.33 мкФ – 2 штуки 

4. Электролитический конденсатор 6800 мкФ на 16 вольт 

Микросхема имеет довольно высокую выходную мощность и для её охлаждения понадобится радиатор. Можно применить радиатор от процессора. 

Всю сборку можно произвести навесным монтажом без применения печатной платы. Сначала у микросхемы надо удалить выводы 4, 9 и 15. Они не используются. Отсчёт выводов идёт слева направо, если держать её выводами к себе и маркировкой вверх. Потом аккуратно распрямите выводы. Далее отогните выводы 5, 13 и 14 вверх, все эти выводы подключаются к плюсу питания. Следующим шагом отогните выводы 3, 7 и 11 вниз – это минус питания, или «земля». После этих манипуляций прикрутите микросхему к теплоотводу, используя теплопроводную пасту. На рисунках виден монтаж с разных ракурсов, но я всё же поясню. Выводы 1 и 2 спаиваются вместе – это вход правого канала, к ним надо припаять конденсатор 0.33 мкФ. Точно так же надо поступить с выводами 16 и 17. Общий провод для входа это минус питания или «земля». 

К выводам 5, 13 и 14 припаяйте провод плюса питания. Этот же провод припаивается к плюсу конденсатора 6800 мкФ. Отогнутые вниз выводы 3, 7 и 11 так же спаиваются вместе проводом, и этот провод припаивается к минусу конденсатора 6800 мкФ. Далее от конденсатора провода идут к источнику питания. 

Выводы 6 и 8 – это выход правого канала, 6 вывод припаивается к плюсу динамика, а вывод 8 к минусу. 

Выводы 10 и 12 – это выход левого канала, вывод 10 припаивается к плюсу динамика, а вывод 12 к минусу. 

Конденсатор 0.22 мкФ надо припаять параллельно выводам конденсатора 6800 мкФ. 

Прежде чем подавать питание, внимательно проверьте правильность монтажа. На входе усилителя надо поставить сдвоенный переменный резистор 100 кОМ для регулировки громкости. 

Одиночный светодиод, последовательные светодиоды и параллельные светодиоды

В этом проекте мы построим несколько простых светодиодных схем. В настоящее время люди вкладывают больше средств в светодиоды из-за их энергоэффективности. Домашнее освещение, офисное освещение, автомобильное освещение, уличное освещение и т. Д. - все это реализовано с использованием светодиодов.

Студенты, любители и производители часто работают со светодиодами в различных типах проектов. Некоторые из распространенных светодиодных проектов - это светодиодные ходовые огни, светодиодные лампы, светодиодные лампы Knight Rider и светодиодные мигалки.

Светодиоды являются очень чувствительными компонентами по отношению к напряжению и току, и они должны иметь номинальные значения тока и напряжения. Новички в электронике часто начинают со светодиодов, и первым проектом будет мигание светодиода.

Неправильное напряжение или ток на светодиодах приведет к их перегоранию. Для небольших проектов, таких как мигание светодиода, нам не нужно беспокоиться о горении светодиодов, поскольку мы можем подключить небольшой резистор (например, 330 Ом) последовательно со светодиодом (для питания 5 В).

Но по мере увеличения сложности схемы выбор правильного резистора с правильной мощностью становится важным.Итак, в этом проекте, который больше похож на учебное пособие, мы построим несколько простых светодиодных схем, таких как простая одиночная светодиодная схема, светодиоды, включенные последовательно, светодиоды, включенные параллельно, и светодиоды высокой мощности.

Цепь 1 простых цепей светодиодов (цепь с одним светодиодом)

Первая цепь в простых цепях светодиодов представляет собой цепь с одним светодиодом. Мы попытаемся включить один 5-миллиметровый белый светодиод с помощью источника питания 12 В. Принципиальная схема этой схемы показана ниже.

Необходимые компоненты
  • Источник питания 12 В
  • Белый светодиод, 5 мм
  • 330 Ом Резистор 1/2 Вт
  • Соединительные провода
  • Макетная плата
Принцип работы

На следующем изображении показана установка одного светодиода, подключенного к источник питания 12 В и резистор, ограничивающий ток.Важным компонентом (кроме светодиода, конечно) является резистор. Подключение небольшого светодиода к источнику питания 12 В приведет к сгоранию светодиода, и вы сразу увидите волшебный дым.

Итак, выбор правильного резистора с правильной мощностью очень важен. Сначала рассчитаем сопротивление.

Расчет последовательного резистора

Значение последовательного резистора можно рассчитать по следующей формуле.

R СЕРИЯ = (V S - V LED ) / I LED

Здесь V S - это напряжение источника или питания

V LED - падение напряжения на светодиоде и

I LED - это желаемый ток через светодиод.

В нашей простой светодиодной схеме, состоящей из одного светодиода, мы использовали 5-миллиметровый белый светодиод и источник питания 12 В.

Согласно техническому описанию 5-миллиметрового белого светодиода, прямое напряжение светодиода составляет 3,6 В, а прямой ток светодиода - 30 мА.

Следовательно, V S = 12 В, V LED = 3,6 В и I LED = 30 мА. Подставляя эти значения в приведенное выше уравнение, мы можем вычислить значение последовательного сопротивления как

R SERIES = (12 - 3.6) / 0,03 = 280 Ом. Поскольку резистора 280 Ом не будет, мы будем использовать следующий большой резистор, то есть 330 Ом. Следовательно, R SERIES = 330 Ом.

Теперь, когда мы рассчитали сопротивление последовательного резистора, следующим шагом будет вычисление номинальной мощности этого резистора.

Расчет мощности резистора

Номинальная мощность резистора определяет величину мощности, которую резистор может безопасно рассеивать. Номинальная мощность резистора может быть рассчитана по следующей формуле.

P RES = V RES * I RES

Здесь V RES - это падение напряжения на резисторе, а

I RES - это ток через резистор.

Мы знаем, что напряжение питания составляет 12 В, а падение напряжения на светодиодах составляет 3,6 В. Таким образом, падение напряжения на последовательном резисторе составляет

В RES = 12 - 3,6 = 8,4 В.

Ток через резистор такой же, как ток через светодиод, поскольку они подключены последовательно.Таким образом, ток через последовательный резистор равен

I RES = 30 мА.

Подставляя эти значения в приведенную выше формулу, мы получаем мощность, рассеиваемую резистором.

P RES = 8,4 * 0,03 = 0,252 Вт.

На всякий случай мы всегда должны выбирать следующее возможное значение, поэтому мы выбрали резистор ½ Вт (0,5 Вт).

После того, как выбран правильный резистор, мы можем подключить резистор последовательно и подать питание 12 В на светодиод.

Цепь 2 простых светодиодных цепей (светодиоды последовательно)

Следующая схема в проекте «Простые светодиодные схемы» соединяет светодиоды последовательно. В этой схеме мы последовательно подключим три 5-миллиметровых белых светодиода к одному источнику питания 12 В. На следующем изображении показана принципиальная электрическая схема последовательно подключенных светодиодов.

Принципиальная схема светодиодов серии

Компоненты, необходимые для светодиодов серии
  • Белые светодиоды 5 мм x 3
  • Резистор 47 Ом (1/4 Вт)
  • Блок питания 12 В
  • Соединительные провода
  • Макет
Принцип работы

Поскольку светодиоды подключены последовательно, ток через все они будет одинаковым i.е. 30 мА (для белого светодиода 5 мм). Поскольку три светодиода соединены последовательно, все светодиоды будут иметь падение напряжения 3,6 В, т.е. на каждом светодиоде будет падение напряжения 3,6 В.

В результате падение напряжения на резисторе упадет до 12 - 3 * 3,6 = 1,2 В. Исходя из этого, мы можем рассчитать сопротивление как R = 1,2 / 0,03 = 40 Ом. Итак, нам нужно выбрать резистор 47 Ом (следующий доступный).

Исходя из номинальной мощности резистора, она равна 1,2 * 0,03 = 0,036. Это очень низкая номинальная мощность, и минимально доступная мощность составляет Вт.

После того, как все компоненты выбраны, мы можем соединить их на макетной плате и включить схему, используя источник питания 12 В. Все три последовательных светодиода загорятся с максимальной интенсивностью.

Цепь 3 простых светодиодных цепей (светодиоды в параллели)

Последняя схема в простом учебном пособии по светодиодным цепям - это параллельные светодиоды. В этой схеме мы попытаемся подключить параллельно три 5-миллиметровых белых светодиода и зажечь их от источника питания 12 В. Принципиальная схема для светодиодов при параллельном подключении показана на следующем изображении.

Принципиальная электрическая схема светодиодов, подключенных параллельно

Компоненты, необходимые для светодиодов, подключенных параллельно
  • Источник питания 12 В
  • Белые светодиоды 3 x 5 мм
  • Резистор 100 Ом (1 Вт)
  • Соединительные провода
  • Макетная плата
Принцип of Operation

Для светодиодов, подключенных параллельно, падение напряжения на всех светодиодах будет 3,6 В. Это означает, что падение напряжения на резисторе составляет 8,4 В (12 В - 3,6 В = 8,4 В).

Теперь, поскольку светодиоды подключены параллельно, ток, необходимый для всех светодиодов, в три раза больше индивидуального тока через светодиод (который составляет 30 мА).

Следовательно, общий ток в цепи составляет 3 * 30 мА = 90 мА. Этот ток также будет протекать через резистор. Следовательно, номинал резистора можно рассчитать как R = 8,4 / 0,09 = 93,33 Ом. Ближайшее более высокое значение сопротивления составляет 100 Ом.

Мощность, рассеиваемая резистором, равна 8,4 В * 0,09 А = 0,756 Вт. Поскольку следующая более высокая мощность составляет 1 Вт, мы использовали резистор на 1 Вт.

Подключите три светодиода параллельно, а также последовательно подключите резистор 100 Ом (1 Вт) к источнику питания.При включении питания загорятся все светодиоды.

Дополнительные схемы

Предупреждение: Использование источника питания 230 В переменного тока на макетной плате очень опасно. Будьте предельно осторожны.

  • Еще одна интересная светодиодная схема - это DIY LED Light Bulb . В этом случае мы разработали светодиодную лампочку и использовали ее как обычную лампочку.

Предупреждение: Даже в этом проекте для питания светодиодной лампы используется 230 В переменного тока. Будьте осторожны при обращении с сетевым питанием.

Простые светодиодные схемы | Самодельные проекты схем

В этом посте мы узнаем, как построить несколько интересных схем светодиодов, а также научимся правильно соединять светодиоды в схему.

LED означает светоизлучающий диод, который на самом деле является полупроводниковым диодом, который имеет свойство испускать свет, когда через него проходит ток в правильном направлении или когда светодиод смещен в прямом направлении.

Светодиод имеет две клеммы для подключения к электрической цепи.Поскольку светодиод в основном представляет собой диод, его выводы имеют полярность в виде анода и катода.

Предполагается, что анодный вывод должен быть подключен к положительному источнику питания, а катод - к отрицательному источнику питания.

Как правило, максимальное напряжение, которое может выдерживать светодиод, составляет 3,5 В, однако 3,3 В - это оптимальное значение, которое рекомендуется для большинства стандартных светодиодов.

Светодиодный резистор

Хотя светодиод является диодом, он очень чувствителен к току и не переносит ничего, выходящего за пределы указанного диапазона.

Чтобы гарантировать защиту светодиода от перегрузки по току, рассчитанный резистор обычно добавляется последовательно с одним из выводов светодиода. Этот резистор может быть подключен последовательно либо с катодным выводом, либо с анодным выводом светодиода.

Этот токоограничивающий резистор можно просто рассчитать по следующей формуле:

R = Входное питание - Номинальное напряжение светодиода / максимальный ток светодиода.

Например, допустим, что у светодиода номинальное прямое напряжение 3.3 В и максимальное ограничение по току 20 мА (0,02 А), тогда при условии, что входное напряжение составляет 6 В, значение последовательного ограничивающего резистора можно рассчитать следующим образом:

R = 6 - 3,3 / 0,02 = 135 Ом, ближайшее безопасное доступное значение составляет 150 Ом.

Как подключить светодиод

Подключить светодиод к источнику постоянного тока для получения оптимального освещения очень просто. Простую схему подключения можно увидеть на следующем изображении, которое применимо ко всем светодиодам. Токоограничивающий резистор должен быть рассчитан, как описано в предыдущих параграфах.

Здесь более короткий вывод, который является катодом, идет к отрицательному входу питания, в то время как более длинный вывод, который является анодным выводом светодиода, соединен с положительным входом источника постоянного тока через ограничивающий резистор.

Схемы приложений

Светодиоды - замечательные устройства, поскольку они способны производить мощный световой поток разных цветов, как того требует пользователь для данного приложения.

Светодиоды

можно использовать для создания множества привлекательных декоративных или индикаторных схем для многих полезных целей.

Без лишних слов, давайте взглянем на несколько интересных схем применения светодиодов, представленных в следующих параграфах.

Самый маленький светодиодный мигающий индикатор

Мигающий светодиодный индикатор выглядит очень привлекательно, но дизайн может быть более интересным, если в схеме используется наименьшее количество деталей. Следующая схема показывает, как один светодиод можно настроить с одним транзистором для создания надежного мигающего светодиодного индикатора.

Для получения дополнительной информации об этой схеме вы можете обратиться к этой статье.

Случайный светодиодный мигающий светильник для рождественской елки

Лучшее использование светодиодных устройств - это их способность украсить что угодно по желанию пользователя. Следующая схема показывает, как одну микросхему IC 4060 можно использовать для построения схемы с несколькими светодиодными мигалками, как показано на следующей схеме. Все подключенные светодиодные цепочки будут мигать и мигать с разной случайной частотой в зависимости от настройки потенциометра P1 или значения конденсатора C1. Его используют для украшения елки или для изготовления мерцающего светодиодного ожерелья вокруг идола.

Полное описание конструкции представлено в этой статье.

Светодиодный вращающийся светильник

Если вы хотите создать вращающийся световой эффект полиции или машины скорой помощи без использования вращающегося механизма для лампы, тогда вам может помочь следующая схема.

Светодиод, используемый в этой схеме, представляет собой светодиод мощностью 1 Вт, который будет генерировать медленное чередование яркого свечения и затухания, создавая эффект вращающегося светодиода.

Более подробную информацию о схеме можно найти в этой статье.

Светодиодная подсветка Заводская табличка

На следующем изображении показан пример того, как можно построить привлекательную схему заводской таблички со светодиодной подсветкой, используя всего 4 светодиода, прикрепленных горизонтально к 4 углам заводской таблички, внутри.

Более подробную информацию об этом и полную процедуру сборки можно прочитать в этой статье.

LED Cube Circuit

Для создания светодиодного кубического светильника вам понадобится пластиковый куб, связка светодиодов и каскадная схема задержки. Для каждого светодиода используется двухтранзисторная схема включения задержки, и многие из этих схем задержки включения соединены каскадом друг с другом, в зависимости от количества светодиодов, чтобы сформировать длинную цепочку задержки, закольцованную от конца до конца.При подаче питания светодиоды начинают включаться один за другим, пока не загорятся все светодиоды, установленные на кубе. После того, как все светодиоды загорятся, происходит обратное: светодиоды один за другим гаснут, и цикл повторяется.

Подробную информацию о схеме можно найти в этой статье.

Индикатор уровня воды

Светодиоды также могут использоваться для индикации уровня воды в резервуаре для воды. Для этого нам понадобится горстка светодиодов, какие-то транзисторы и резисторы. Полный дизайн можно увидеть на следующей диаграмме.

Когда вода замыкает контакты (от A до D) между резисторами базы транзистора и положительным источником питания, соответствующие светодиоды загораются последовательно, указывая на повышение уровня воды.

Подробнее об этом можно узнать из этой статьи.

Простая проверка целостности цепи

Всего пара транзисторов вместе со светодиодом - это все, что может потребоваться для создания простой схемы проверки целостности цепи. Эта схема может использоваться для проверки целостности трансформаторов, пучков проводов или любой электрической системы со сложной системой проводки.

В этой конфигурации тестера целостности, когда один конец жгута проводов касается одной рукой, а другой удерживается над положительным источником питания, затем касание конца резистора 1M другим концом провода указывает на целостность жгута проводов.

Подробнее об этом можно узнать из этой статьи.

В приведенной выше статье мы обсудили несколько интересных схем светодиодов, но это может быть только верхушкой айсберга, поскольку существует бесчисленное множество других схем, которые могут быть разработаны с использованием светодиодов для получения захватывающих световых эффектов или для полезных целей индикации.

Если вас интересуют другие схемы светодиодов, вы можете перейти по следующей ссылке:

DIY LED Projects

Light it Up - Maker Camp

Light it Up - Maker Camp

Добро пожаловать в мир освещения своими руками!


Создавайте множество различных бумажных проектов, которые освещаются крутыми и удивительными способами, по мере того, как вы изучаете основы схемотехники, создавая светодиоды, медную ленту и батарейки типа «таблетка». Основываясь на проекте бумажных схем для начинающих, поэкспериментируйте с более продвинутыми методами, такими как создание выключателя своими руками или создание параллельной схемы с несколькими источниками света.Изучите больше идей, материалов и проектов, таких как светящиеся вертушки, светящиеся вертолеты и всплывающие открытки. Развлекайтесь и проявляйте творческий подход, чтобы осветить свой мир, как хотите!

НАЧНИТЕ РАБОТАТЬ С БУМАЖНЫМИ КОНТУРАМИ

Для нашего начального проекта бумажных схем, давайте разработаем светящуюся поздравительную открытку.

ЧТО ВАМ НУЖНО?