Стабилизатор напряжения для дома своими руками схема: Стабилизатор напряжения 220в для дома своими руками схема

Содержание

Стабилизатор напряжения 220в для дома своими руками схема

Бытовые устройства чувствительны к скачкам напряжения, быстрее подлежат износу, и появляются неисправности. В электрической сети напряжение часто изменяется, снижается, либо возрастает. Это взаимосвязано с отдаленностью источника энергии и некачественной линии питания.

Чтобы подключать приборы к устойчивому питанию, в жилых помещениях применяют стабилизаторы напряжения. На его выходе напряжение обладает стабильными свойствами. Стабилизатор можно приобрести в торговой сети, однако такой прибор можно изготовить своими руками.

Имеются допуски на изменение напряжения не более 10% от номинального значения (220 В). Это отклонение должно быть соблюдено как в большую сторону, так и в меньшую. Но идеальной электрической сети не бывает, и величина напряжения в сети часто меняется, усугубляя тем самым работу подключенных к ней устройств.

Электрические приборы отрицательно реагируют на такие капризы сети и могут быстро выйти из строя, потеряв при этом свои заложенные функции. Чтобы избежать таких последствий, люди применяют самодельные приборы под названием стабилизаторы напряжения. Эффективным стабилизатором стал прибор, выполненный на симисторах. Как сделать стабилизатор напряжения своими руками мы и рассмотрим.

Характеристика стабилизатора

Это устройство стабилизации не будет иметь повышенную чувствительность к изменениям напряжения, подающегося по общей линии. Сглаживание напряжения будет производиться в том случае, если на входе напряжение будет находиться в пределах от 130 до 270 вольт.

Включенные в сеть устройства будут питаться напряжением, имеющим величину от 205 до 230 вольт. От такого прибора можно будет питать электрические устройства, суммарная мощность которых до 6 кВт. Стабилизатор будет производить переключение нагрузки потребителя за 10 мс.

Устройство стабилизатора

Схема устройства стабилизации.

Стабилизатор напряжения по указанной схеме имеет в своем составе следующие части:

  1. Питающий блок, в который входят емкости С2, С5, компаратор, трансформатор, теплоэлектрический диод.
  2. Узел, задерживающий подключение нагрузки потребителя, и состоящий из сопротивлений, транзисторов, емкости.
  3. Выпрямительного моста, измеряющего амплитуду напряжения. Выпрямитель состоит из емкости, диода, стабилитрона, нескольких делителей.
  4. Компаратора напряжения. Его составными частями являются сопротивления и компараторы.
  5. Логического контроллера на микросхемах.
  6. Усилителей, на транзисторах VТ4-12, резисторов, ограничивающих ток.
  7. Светодиодов в качестве индикаторов.
  8. Оптитронных ключей. Каждый из ник снабжается симисторами и резисторами, а также оптосимисторами.
  9. Электрического автомата, либо предохранителя.
  10. Автотрансформатора.

Принцип действия

Рассмотрим, как функционирует стабилизатор напряжения, выполненный своими руками.

После подключения питания емкость С1 находится в состоянии разряда, транзистор VТ1 открытый, а VТ2 закрытый. VТ3 транзистор также остается закрытым. Через него поступает ток на все светодиоды и оптитрон на основе симисторов.

Так как этот транзистор пребывает в закрытом состоянии, то светодиоды не горят, а каждый симистор закрыт, нагрузка выключена. В этот момент ток поступает через сопротивление R1 и приходит на С1. Дальше конденсатор начинает заряжаться.

Диапазон выдержки идет три секунды. За этот период производятся все процессы перехода. После их окончания срабатывает триггер Шмитта на основе транзисторов VТ1 и VТ2. После этого открывается 3-й транзистор и подключается нагрузка.

Напряжение, выходящее с 3-й обмотки Т1, выравнивается диодом VD2 и емкостью С2. Далее ток поступает на делитель на сопротивлениях R13-14. Из сопротивления R14, напряжение, величина которого прямо зависит от величины напряжения, включена в каждый неинвертирующий компараторный вход.

Число компараторов становится равным 8. Они все выполнены на микросхемах DА2 и DА3. В то же время на инвертируемый вход компараторов подходит постоянный ток, подающийся с помощью делителей R15-23. Дальше вступает в действие контроллер, осуществляющий прием входного сигнала каждого компаратора.

Стабилизатор напряжения и его особенности

Когда напряжение входа становится меньше 130 вольт, то на выходах компараторов появляется логический уровень малого размера. В этот момент транзистор VТ4 находится в открытом виде, первый светодиод мигает. Эта индикация сообщает о наличии низкого напряжения, что означает невозможность выполнения регулируемым стабилизатором своих функций.

Все симисторы закрытии и нагрузка отключена. Когда напряжение находится в пределах 130-150 вольт, то сигналы 1 и А имеют свойства высокого значения логического уровня. Такой уровень имеет низкое значение. В таком случае транзистор VТ5 открывается, и начинает сигнализировать второй светодиод.

Оптосимистор U1.2 открывается, так же, как и симистор VS2. Через симистор будет протекать нагрузочный ток. Затем нагрузка зайдет в верхний вывод катушки автотрансформатора Т2.

Если напряжение входа 150 – 170 В, то сигналы 2, 1 и В имеют повышенное значение логического уровня. Другие сигналы имеют низкий уровень. При таком напряжении входа транзистор VТ6 открывается, 3-й светодиод включается. В этот момент 2-й симистор открывается и ток поступает на второй вывод катушки Т2, являющийся 2-м сверху.

Собранный самостоятельно стабилизатор напряжения на 220 вольт будет соединять обмотки 2-го трансформатора, если уровень напряжения входа достигнет соответственно: 190, 210, 230, 250 вольт. Чтобы сделать такой стабилизатор, необходима печатная плата 115 х 90 мм, изготовленная из фольгированного стеклотекстолита.

Изображение платы можно отпечатать на принтере. Затем с помощью утюга переносят это изображение на плату.

Изготовление трансформаторов

Изготовить трансформаторы Т1 и Т2 можно самостоятельно. Для Т1, мощность которого 3 кВт, необходимо применить магнитопровод с поперечным сечением 1,87 см2, и 3 провода ПЭВ – 2. 1-й провод диаметром 0,064 мм. Им наматывают первую катушку, с количеством витков 8669. Другие 2 провода применяются для образования остальных обмоток. Провода на них должны быть одного диаметра 0,185 мм, с числом витков 522.

Чтобы не изготавливать самому такие трансформаторы, можно применить готовые варианты ТПК – 2 – 2 х 12 В, соединенные последовательно.

Чтобы изготовить трансформатор Т2 на 6 кВт, применяют магнитопровод тороидальной формы. Обмотку наматывают проводом ПЭВ – 2 с числом витков 455. На трансформаторе необходимо вывести 7 отводов. Первые 3 из них наматываются проводом 3 мм. Остальные 4 отвода наматываются шинами сечением 18 мм

2. С таким сечением провода трансформатор не нагреется.

Отводы выполняют на таких витках: 203, 232, 266, 305, 348 и 398. Витки считают с нижнего отвода. В этом случае электрический ток сети должен поступать по отводу 266 витка.

Детали и материалы

Остальные элементы и детали стабилизатора для самостоятельной сборки приобретаются в торговой сети. Перечислим их перечень:

  1. Симисторы (отптроны) МОС 3041 – 7 шт.
  2. Симисторы ВТА 41 – 800 В – 7 шт.
  3. КР 1158 ЕН 6А (DА1) стабилизатор.
  4. Компаратор LМ 339 N (для DА2 и DА3) – 2 шт.
  5. Диоды DF 005 М (для VD2 и VD1) – 2 шт.
  6. Резисторы проволочные СП 5 или СП 3 (для R13, R14 и R25) – 3 шт.
  7. Резисторы С2 – 23, с допуском 1% — 7 шт.
  8. Резисторы любого номинала с допуском 5% — 30 шт.
  9. Резисторы токоограничивающие – 7 шт, для пропускания ими тока 16 миллиампер (для R 41 – 47) – 7 шт.
  10. Конденсаторы электролитические – 4 шт (для С5 – 1).
  11. Конденсаторы пленочные (С4 – 8).
  12. Выключатель, оснащенный предохранителем.

Оптроны МОС 3041 заменяются на МОС 3061. КР 1158 ЕН 6А стабилизатор можно менять на КП 1158 ЕН 6Б. Компаратор К 1401 СА 1 можно установить в качестве аналога LM 339 N. Вместо диодов можно использовать КЦ 407 А.

Микросхему КР 1158 ЕН 6А надо устанавливать на теплоотвод. Для его изготовления применяют алюминиевую пластинку 15 см2. Также на него необходимо установить симисторы. Для симисторов допускается применять общий теплоотвод. Площадь поверхности должна превышать 1600 см2. Стабилизатор необходимо снабдить микросхемой КР 1554 ЛП 5, выступающей в качестве микроконтроллера. Девять светодиодов располагаются так, что попадают в отверстия на панели прибора спереди.

Если устройство корпуса не дает установить их таким образом, как на схеме, то их размещают на другой стороне, где расположены печатные дорожки. Светодиоды необходимо устанавливать мигающего типа, но можно монтировать и немигающие диоды, при условии, что они будут светиться ярким красным светом. Для таких целей применяют АЛ 307 КМ или L 1543 SRC — Е.

Можно выполнить сборку более простых исполнений приборов, но они будут иметь определенными особенностями.

Достоинства и недостатки, отличия от заводских моделей

Если перечислять достоинства стабилизаторов, изготовленных самостоятельно, то основным достоинством является низкая стоимость. Производители приборов часто завышают цены, а своя сборка в любом случае обойдется меньшей стоимостью.

Другим преимуществом можно определить такой фактор, как возможность простого ремонта своими руками устройства, Ведь кто, если не вы знаете лучше устройство, собранное своими руками.

В случае поломки хозяин прибора сразу найдет неисправный элемент и заменит его на новый. Простая замена деталей создается таким фактором, что все детали приобретались в магазине, поэтому их можно будет легко снова купить в любом магазине.

Недостатком самостоятельно собранного стабилизатора напряжения необходимо выделить его сложную настройку.

Простейший стабилизатор напряжения своими руками

Рассмотрим, каким образом можно изготовить самостоятельно стабилизатор на 220 вольт собственными руками, имея под рукой несколько простых деталей. Если в вашей электрической сети напряжение значительно снижено, то такой прибор подойдет вам как нельзя кстати. Чтобы его изготовить, понадобится готовый трансформатор, и несколько простых деталей. Лучше взять такой пример прибора себе на заметку, так как получается неплохое устройство, обладающее достаточной мощностью, например, для микроволновки.

Для холодильников и различных других бытовых устройств понижение напряжения сети очень вредно, больше чем повышение. Если поднять величину напряжения сети, применяя автотрансформатор, то во время уменьшения напряжения сети на выходе прибора напряжение будет нормальной величины. А если в сети напряжение станет в норме, то на выходе мы получим повышенное значение напряжения. Например, возьмем трансформатор на 24 В. При напряжении на линии 190 В на выходе устройства получится 210 В, при значении сети 220 В на выходе получится 244 В. Это вполне допустимо и нормально для работы бытовых устройств.

Для изготовления нам понадобится основная деталь – это простой трансформатор, но не электронный. Его можно найти готовый, либо изменить данные на уже имеющемся трансформаторе, например, от сломанного телевизора. Трансформатор будем соединять по схеме автотрансформатора. Напряжение на выходе будет получаться примерно на 11% выше напряжения сети.

При этом нужно соблюдать осторожность, так как во время значительного перепада напряжения в сети в большую сторону, на выходе устройства получится напряжение, которое значительно превышает допустимую величину.

Автотрансформатор будет добавлять к напряжению линии сети всего 11%. Это значит, что мощность автотрансформатора берется также на 11% от мощности потребителя. Например, мощность микроволновки равна 700 Вт, значит трансформатор берем 80 Вт. Но лучше брать мощность с запасом.

Регулятор SA1 дает возможность, если нужно, подсоединять нагрузку потребителя без автотрансформатора. Конечно, это не полноценный стабилизатор, но зато для его изготовления не требуется больших вложений и много времени.

Схема мощного стабилизатора напряжения 220в своими руками. Стабилизатор напряжения — как все сделать своими руками. Видео. Преимущества и недостатки перед фабричными

Подборка радиолюбительских схем и конструкций стабилизаторов напряжения собранных своими руками. Часть схем рассматривают стабилизатор без защиты от КЗ в нагрузке, в других заложена возможность плавного регулирования напряжения от 0 до 20 Вольт. Ну а отличительной чертой отдельных схемы является возможность защиты от короткого замыкания в нагрузке.


5 очень простых схем в основном собранных на транзисторах, одна из них, с защитой от КЗ

Очень часто бывает когда для питания вашей новодельной электронной самоделки требуется стабильное напряжение, которое не меняется от нагрузки, например, 5 Вольт или 12 Вольт для питания автомагнитолы. И чтобы сильно не заморачиваться с конструированием самодельного блока питания на транзисторах, используются так называемые микросхемы стабилизаторы напряжения. На выходе такого элемента мы получим напряжение, на которое спроектирован этот прибор

Многие радиолюбители уже неоднократно собирали схемы стабилизаторов напряжения на специализированных микросхемах серий 78хх, 78Мхх, 78Lxx. Например, на микросхеме KIA7805 можно собрать самодельную схему рассчитаную на выходное напряжение +5 В и максимальный ток нагрузки 1 А. Но мало кто знает, что имеются узко специализированный микросхемы серии 78Rxx, которые сочитают в себе стабилизаторы напряжения положительной полярности с малым напряжением насыщения, которое не превышает 0, 5 В при токе нагрузки 1 А. Одну из этих схем мы и рассмотрим более подробно.

Регулируемый трехвыводной стабилизатор положительного напряжения LM317 обеспечивает ток нагрузки 100 мА в диапазоне выходного напряжения от 1.2 до 37 В. Стабилизатор очень удобен в применении и требуют только два внешних резистора для обеспечения выходного напряжения. Кроме того, нестабильность по напряжению и току нагрузки у стабилизатора LM317L имеет лучшие показателями, чем у традиционных стабилизаторов с фиксированным значением выходного напряжения.

Для стабилизации напряжения постоянного тока достаточно большой мощности в числе других применяются компенсационные стабилизаторы непрерывного действия. Принцип действия такого стабилизатора заключается в поддержании выходного напряжения на заданном уровне за счет изменения падения напряжения на регулирующем элементе. При этом величина управляющего сигнала, поступающего на регулирующий элемент, зависит от разницы между заданным и выходным напряжениями стабилизатора.

При стационарной эксплуатации аппаратуры, CD и аудиоплейеров возникают проблемы с БП. Большинство блоков питания, выпускаемых серийно отечественным производителем, (если быть точным) практически все не могут удовлетворить потребителя, так как содержат упрощенные схемы. Если говорить об импортных китайских и им подобных блоках питания, то они, вообще, представляют интересный набор деталей "купи и выброси". Эти и многие другие проблемы заставляют радиолюбителейно изготовлять блоки питания. Но и на этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Данная радиолюбительская разработка представлена как вариант нетрадиционного включения операционного усиителя, ранее опубликованного и вскоре забытого

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша конструкция работает от напряженияпять вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

Стабилизатор напряжения на 220 вольт


В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

Идея

Встретил в интернете рекламу на сайте ООО "Прибор", г. Челябинск:
Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082). В качестве ключей используются мощные быстродействующие реле.
Приведены картинки переключений (слева "Селен", справа - с обычными характеристиками)


Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке "Украина" тоже было безразрывное переключение напряжения – там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением №2356082 я не смог.

Мне удалось найти статью "Типы стабилизаторов напряжения", где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги – контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.


На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

Принципиальная схема



Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10 .
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1 . Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 – усилители для реле.
Реле Р1 и Р2 – основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт, включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный – низкое, зеленый – норма, синий – высокое.

Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676 .
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on , R2off , R1on и R1off .
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

Детали и конструкция

При сборке использован трансформатор ТПП 320-220-50 200 Вт. Обмотки его соединены на 240 Вольт, что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1 , а вспомогательные LIMING JZC - 22F .
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).



Прибор повешен на стене и закрыт кожухом из жести


Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР"а через лампу накаливания мощностью 100 – 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки . Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC - 22F).

Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле – вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

Использованы источники

1. на сайте “Энергосбережение в Украине”
2. Официальный web-сайт предприятия ООО "Прибор", г. Челябинск
3. Даташиты на детали

Файлы

Схема, чертеж печатной платы и программа с прошивкой
▼ 🕗 12/08/12 ⚖️ 211,09 Kb ⇣ 165 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!

Стабилизатор представ­ляет собой сетевой авто­трансформатор, отводы обмотки которого пере­ключаются автоматичес­ки в зависимости от величины напряжения в электросети.

Стабилизатор позво­ляет поддерживать вы­ходное напряжение на уровне 220V при измене­нии входного от 180 до 270 V. Точность стабили­зации 10V.

Принципиальную схему можно разделить на слаботоковую схему (или схему управления) и сильнотоковую (или схе­му автотрансформатора).

Схема управления пока­зана на рисунке 1. Роль измерителя напряжения возложена на поликомпараторную микросхему с линейной индикацией напряжения, — А1 (LM3914).

Сетевое напряжение поступает на первичную обмотку маломощного трансформатора Т1. У этого трансформатора есть две вторичные обмотки, по 12V на каждой, имеющие один общий вывод (или одна обмотка на 24V с отво­дом от середины).

Выпрямитель на диоде VD1 служит для получения питающего напряжения. Напряже­ние с конденсатора С1 поступает на цепь пита­ния микросхемы А1 и светодиодов оптопар Н1.1-Н9.1. А так же, он служит для получения образцовых стабильных напряжений мини­мальной и максимальной отметки шкалы. Для их получения используется параметрический стабилизатор на УЗ и Р1. Предельные значения измерения устанавливаются подстроечными резисторами R2 и R3 (резистором R2 — верхнее значение, резистором RЗ -нижнее).

Измеряемое напряжение берется с другой вторичной обмотки трансформатора Т1. Оно выпрямляется диодом VD2 и поступает на резистор R5. Именно по уровню постоянного напряжения на резисторе R5 производится оценка степени отклонения сетевого напря­жения от номинального значения. В процессе налаживания резистор R5 пред­варительно устанавливают в среднее положе­ние, а резистор RЗ в нижнее по схеме.

Затем, на первичную обмотку Т1 от автотрансфор­матора типа ЛАТР подают повышенное напряжение (около 270V) и резистором R2 выводят шкалу микросхемы на значение, при котором горит светодиод, подключенный к выводу 11 (временно вместо светодиодов оптопар можно подключить обычные свето-диоды). Затем входное переменное напря­жение уменьшают до 190V и резистором RЗ выводят шкалу на значение когда горит свето­диод, подключенный к выводу 18 А1.

Если вышеуказанные настройки сделать не удается, нужно подстроить немного R5 и повторить их снова. Так, путем последова­тельных приближений добиваются результата, когда изменению входного напряжения на 10V соответствует переключение выходов микро­схемы А1.

Всего получается девять пороговых значе­ний, — 270V, 260V, 250V, 240V, 230V, 220V, 210V, 200V, 190V.

Принципиальная схема автотрансформатора показана на рисунке 2. В его основе лежит переделанный трансформатор типа ЛАТР. Корпус трансформатора разбирают и удаляют ползунковый контакт, который служит для переключения отводов. Затем по результатам предварительных изме­рений напряжений от отводов делают выводы (от 180 до 260V с шагом в 10V), которые, в дальнейшем переключают при помощи симисторных ключей VS1-VS9, управляемых системой управления посредством оптопар Н1-Н9. Оптопары подключены так, что при снижении показания микросхемы А1 на одно деление (на 10V) происходит переключение на повышающий (на очередные 10V) отвод автотрансфор­матора. И наоборот, — увеличение пока­заний микросхемы А1 приводит к пере­ключению на понижающий отвод авто­трансформатора. Подбором сопротивления резистора R4 (рис. 1) устанавливают ток через светодиоды оптопар, при котором симис-торные ключи переключаются уверенно. Схема на транзисторах VТ1 и VT2 (рис. 1) служит для задержки включения нагрузки автотрансформатора на время, необходимое на завершение переход­ных процессов в схеме после включе­ния. Эта схема задерживает подключе­ние светодиодов оптопар к питанию.

Вместо микросхемы LM3914 нельзя использовать аналогичные микросхемы LM3915 или LM3916, из-за того, что они работают по логарифмическому закону, а здесь нужен линейный, как у LM3914. Трансформатор Т1 — малогабаритный китайский трансформатор типа TLG, на первичное напряжение 220V и два вто­ричных по 12V (12-0-12V) и ток 300mА. Можно использовать и другой аналогич­ный трансформатор.

Трансформатор Т2 можно сделать из ЛАТРа, как описано выше, или намотать его самостоятельно.

Содержание:

В электрических цепях постоянно возникает необходимость в стабилизации тех или иных параметров. С этой целью применяются специальные схемы управления и слежения за ними. Точность стабилизирующих действий зависит от так называемого эталона, с которым и сравнивается конкретный параметр, например, напряжение. То есть, когда значение параметра будет ниже эталона, схема стабилизатора напряжения включит управление и отдаст команду на его увеличение. В случае необходимости выполняется обратное действие - на уменьшение.

Данный принцип работы лежит в основе автоматического управления всеми известными устройствами и системами. Точно так же действуют и стабилизаторы напряжения, несмотря на разнообразие схем и элементов, используемых для их создания.

Схема стабилизатора напряжения 220в своими руками

При идеальной работе электрических сетей, значение напряжения должно изменяться не более чем на 10% от номинала в сторону увеличения или уменьшения. Однако на практике перепады напряжения достигают гораздо больших значений, что крайне отрицательно сказывается на электрооборудовании, вплоть до его выхода из строя.

Защититься от подобных неприятностей поможет специальное стабилизирующее оборудование. Однако из-за высокой стоимости, его применение в бытовых условиях во многих случаях экономически невыгодно. Наилучшим выходом из положения становится самодельный стабилизатор напряжения 220в, схема которого достаточно простая и недорогая.

За основу можно взять промышленную конструкцию, чтобы выяснить, из каких деталей она состоит. В состав каждого стабилизатора входят трансформатор, резисторы, конденсаторы, соединительные и подключающие кабели. Самым простым считается стабилизатор переменного напряжения, схема которого действует по принципу реостата, повышая или понижая сопротивление в соответствии с силой тока. В современных моделях дополнительно присутствует множество других функций, обеспечивающих защиту бытовой техники от скачков напряжения.

Среди самодельных конструкций наиболее эффективными считаются симисторные устройства, поэтому в качестве примера будет рассматриваться именно эта модель. Выравнивание тока этим прибором будет возможно при входном напряжении в диапазоне 130-270 вольт. Перед началом сборки необходимо приобрести определенный набор элементов и комплектующих. Он состоит из блока питания, выпрямителя, контроллера, компаратора, усилителей, светодиодов, автотрансформатора, узла задержки включения нагрузки, оптронных ключей, выключателя-предохранителя. Основными рабочими инструментами служат пинцет и паяльник.

Для сборки стабилизатора на 220 вольт в первую очередь потребуется печатная плата размером 11,5х9,0 см, которую нужно заранее подготовить. В качестве материала рекомендуется использовать фольгированный стеклотекстолит. Схема размещения деталей распечатывается на принтере и переносится на плату с помощью утюга.

Трансформаторы для схемы можно взять уже готовые или собрать самостоятельно. Готовые трансформаторы должны иметь марку ТПК-2-2 12В и соединяться последовательно между собой. Для создания первого трансформатора своими руками потребуется магнитопровод сечением 1,87 см2 и 3 кабеля ПЭВ-2. Первый кабель применяется в одной обмотке. Его диаметр составит 0,064 мм, а количество витков - 8669. Оставшиеся провода используются в других обмотках. Их диаметр будет уже 0,185 мм, а число витков составит 522.

Второй трансформатор изготавливается на основе тороидального магнитопровода. Его обмотка выполняется из такого же провода, как и в первом случае, но количество витков будет другим и составит 455. Во втором устройстве делаются отводы в количестве семи. Первые три изготавливаются из провода диаметром 3 мм, а остальные из шин, сечением 18 мм2. За счет этого предотвращается нагрев трансформатора во время работы.

Все остальные комплектующие рекомендуется приобретать в готовом виде, в специализированных магазинах. Основой сборки является принципиальная схема стабилизатора напряжения, заводского изготовления. Вначале устанавливается микросхема, выполняющая функцию контроллера для теплоотвода. Для ее изготовления используется алюминиевая пластина площадью свыше 15 см2. На эту же плату производится монтаж симисторов. Теплоотвод, предназначенный для монтажа, должен быть с охлаждающей поверхностью. После этого сюда же устанавливаются светодиоды в соответствии со схемой или со стороны печатных проводников. Собранная таким образом конструкция, не может сравниваться с заводскими моделями ни по надежности, ни по качеству работы. Такие стабилизаторы используются с бытовыми приборами, не требующими точных параметров тока и напряжения.

Схемы стабилизаторов напряжения на транзисторах

Качественные трансформаторы, применяемые в электрической цепи, эффективно справляются даже с большими помехами. Они надежно защищают бытовую технику и оборудование, установленные в доме. Настроенная система фильтрации позволяет бороться с любыми скачками напряжения. За счет контроля над напряжением происходят изменения величины тока. Предельная частота на входе увеличивается, а на выходе - уменьшается. Таким образом, ток в цепи преобразуется в течение двух этапов.

В начале на входе задействуют транзистор с фильтром. Далее происходит включение в работу . Для завершения преобразования тока в схеме применяется усилитель, чаще всего устанавливаемый между резисторами. За счет этого в устройстве поддерживается необходимый уровень температуры.

Схема выпрямления действует следующим образом. Выпрямление переменного напряжения с вторичной обмотки трансформатора происходит с помощью диодного моста (VD1-VD4). Сглаживание напряжения выполняет конденсатор С1, после чего оно попадает в систему компенсационного стабилизатора. Действие резистора R1 задает стабилизирующий ток на стабилитроне VD5. Резистор R2 является нагрузочным. При участии конденсаторов С2 и С3 происходит фильтрация питающего напряжения.

Значение выходного напряжения стабилизатора будет зависеть от элементов VD5 и R1 для выбора которых существует специальная таблица. VT1 устанавливается на радиаторе, у которого площадь охлаждающей поверхности должна быть не менее 50 см2. Отечественный транзистор КТ829А может быть заменен зарубежным аналогом BDX53 от компании Моторола. Остальные элементы имеют маркировку: конденсаторы - К50-35, резисторы - МЛТ-0,5.

Схема линейного стабилизатора напряжения 12в

В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому - КРЕН142.

Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.

Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой. Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло. Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю. В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.

Регулируемый стабилизатор напряжения схема

Нередко возникают ситуации, когда напряжение, выдаваемое стабилизатором, необходимо отрегулировать. На рисунке представлена простая схема регулируемого стабилизатора напряжения и тока, позволяющая не только стабилизировать, но и регулировать напряжение. Ее можно легко собрать даже при наличии лишь первоначальных познаний в электронике. Например, входное напряжение составляет 50В, а на выходе получается любое значение, в пределах 27 вольт.

В качестве основной детали стабилизатора используется полевой транзистор IRLZ24/32/44 и другие аналогичные модели. Данные транзисторы оборудуются тремя выводами - стоком, истоком и затвором. Структура каждого из них состоит из металла-диэлектрика (диоксида кремния) - полупроводника. В корпусе расположена микросхема-стабилизатор TL431, с помощью которой и настраивается выходное электрическое напряжение. Сам транзистор может оставаться на радиаторе и соединяться с платой проводниками.

Данная схема может работать с входным напряжением в диапазоне от 6 до 50В. Выходное напряжение получается в пределах от 3 до 27В и может быть отрегулировано с помощью подстрочного резистора. В зависимости от конструкции радиатора, выходной ток достигает 10А. Емкость сглаживающих конденсаторов С1 и С2 составляет 10-22 мкФ, а С3 - 4,7 мкФ. Схема сможет работать и без них, однако качество стабилизации будет снижено. Электролитические конденсаторы на входе и выходе рассчитываются примерно на 50В. Мощность, рассеиваемая таким стабилизатором, не превышает 50 Вт.

Схема симисторного стабилизатора напряжения 220в

Симисторные стабилизаторы работают по аналогии с релейными устройствами. Существенным отличием является наличие узла, переключающего обмотки трансформатора. Вместо реле используются мощные симисторы, работающие под управлением контроллеров.

Управление обмотками с помощью симисторов - бесконтактное, поэтому при переключениях нет характерных щелчков. Для намотки автотрансформатора используется медный провод. Симисторные стабилизаторы могут работать при пониженном напряжении от 90 вольт и высоком - до 300 вольт. Регулировка напряжения осуществляется с точностью до 2%, отчего лампы совершенно не моргают. Однако во время переключений возникает ЭДС самоиндукции, как и в релейных устройствах.

Симисторные ключи обладают повышенной чувствительностью к перегрузкам, в связи с чем они должны иметь запас по мощности. Данный тип стабилизаторов отличается очень сложным температурным режимом. Поэтому установка симисторов осуществляется на радиаторы с принудительным вентиляторным охлаждением. Точно так же работает схема тиристорного стабилизатора напряжения 220В своими руками.

Существуют устройства с повышенной точностью, работающие по двухступенчатой системе. На первой ступени выполняется грубая регулировка выходного напряжения, а на второй ступени этот процесс осуществляется значительно точнее. Таким образом, управление двумя ступенями выполняется с помощью одного контроллера, что фактически означает наличие двух стабилизаторов в едином корпусе. Обе ступени имеют обмотки, намотанные в общем трансформаторе. При наличии 12 ключей, эти две ступени позволяют регулировать выходное напряжение в 36 уровнях, чем и обеспечивается его высокая точность.

Стабилизатор напряжения с защитой по току схема

Данные устройства обеспечивают питание преимущественно для низковольтных устройств. Такой стабилизатор тока и напряжения схема отличается простотой конструкции, доступной элементной базой, возможностью плавных регулировок не только выходного напряжения, но и тока, при котором срабатывает защита.
Основой схемы является параллельный стабилизатор или регулируемый стабилитрон, а также с высокой мощностью. С помощью так называемого измерительного резистора контролируется ток, потребляемый нагрузкой.

Иногда на выходе стабилизатора возникает короткое замыкание или ток нагрузки превышает установленное значение. В этом случае на резисторе R2 падает напряжение, а транзистор VT2 открывается. Происходит и одновременное открытие транзистора VT3, шунтирующего источник опорного напряжения. В результате, значение выходного напряжения снижается практически до нулевого уровня, и регулирующий транзистор оказывается защищенным от перегрузок по току. Для того чтобы установить точный порог срабатывания токовой защиты, применяется подстроечный резистор R3, включаемый параллельно с резистором R2. Красный цвет светодиода LED1 указывает на срабатывание защиты, а зеленый LED2 - на выходное напряжение.

После правильно выполненной сборки схемы мощных стабилизаторов напряжения сразу же включаются в работу, достаточно всего лишь выставить необходимое значение выходного напряжения. После загрузки устройства реостатом выставляется ток, при котором срабатывает защита. Если защита должна срабатывать при меньшем токе, для этого необходимо увеличить номинал резистора R2. Например, при R2 равном 0,1 Ом, минимальный ток срабатывания защиты будет составлять около 8А. Если же нужно, наоборот, увеличить ток нагрузки, следует параллельно включить два и более транзисторов, в эмиттерах которых имеются выравнивающие резисторы.

Схема релейного стабилизатора напряжения 220

С помощью релейного стабилизатора обеспечивается надежная защита приборов и других электронных устройств, для которых стандартный уровень напряжения составляет 220В. Данный стабилизатор напряжения 220В, схема которого всем известна. Пользуется широкой популярностью, благодаря простоте своей конструкции.

Для того чтобы правильно эксплуатировать это устройство, необходимо изучить его устройство и принцип действия. Каждый релейный стабилизатор состоит из автоматического трансформатора и электронной схемы, управляющей его работой. Кроме того, имеется реле, помещенное в надежный корпус. Данный прибор относится к категории вольтодобавочных, то есть с его помощью лишь добавляется ток в случае низкого напряжения.

Добавление необходимого количества вольт осуществляется путем подключения обмотки трансформатора. Обычно для работы используется 4 обмотки. В случае слишком высокого тока в электрической сети, трансформатор автоматически уменьшает напряжение до нужного значения. Конструкция может быть дополнена и другими элементами, например, дисплеем.

Таким образом, релейный стабилизатор напряжения имеет очень простой принцип работы. Ток измеряется электронной схемой, затем, после получения результатов, он сравнивается с выходным током. Полученная разница в напряжении регулируется самостоятельно путем подбора необходимой обмотки. Далее, подключается реле и напряжение выходит на необходимый уровень.

Стабилизатор напряжения и тока на LM2576

Напряжение домашней электросети часто бывает пониженным, никогда не достигая нормальных 220 В. В такой ситуации и холодильник плохо запускается, и освещение слабое, и вода в электрочайнике долгое время не закипает. Мощность устаревшего стабилизатора напряжения, предназначенного для питания черно-белого (лампового) телевизора, обычно недостаточна для всех других бытовых приборов, да и напряжение в сети зачастую падает ниже допустимого для такого стабилизатора.

Известен простой способ повысить напряжение в сети, используя трансформатор мощностью значительно меньше мощности нагрузки. Первичную обмотку трансформатора включают непосредственно в сеть, а нагрузку соединив последовательно со вторичной (понижающей) обмоткой трансформатора. При соответствующей фазировке напряжение на нагрузке будет равно сумме сетевого и снимаемого с трансформатора.

Схема стабилизатора сетевого напряжения , действующего по этому принципу, изображена на рис. 1. Когда включенный в диагональ диодного моста VD2 полевой транзистор VT2 закрыт, обмотка I (первичная) трансформатора Т1 отключена от сети. Напряжение на нагрузке практически равно сетевому за вычетом небольшого падения напряжения на обмотке II (вторичной) трансформатора Т1. Если же открыть полевой транзистор, цепь питания первичной обмотки трансформатора будет замкнута, а к нагрузке приложена сумма напряжения его вторичной обмотки и сетевого.

Рис. 1 Схема стабилизатора напряжения

Напряжение на нагрузке, пониженное трансформатором Т2 и выпрямленное диодным мостом VD1, поступает на базу транзистора VT1. Движок подстроечного резистора R1 должен быть установлен в положение, при котором транзистор VT1 открыт, a VT2 закрыт, если напряжение на нагрузке больше номинального (220 В). При напряжении меньше номинального транзистор VT1 будет закрыт, a VT2 - открыт. Организованная таким образом отрицательная I обратная связь поддерживает напряжение на нагрузке приблизительно равным номинальному

Выпрямленное мостом VD1 напряжение использовано и для питания коллекторной цепи транзистора VT1 (через интегральный стабилизатор DA1). Цепь C5R6 подавляет нежелательные выбросы напряжения сток-исток транзистора VT2. Конденсатор С1 снижает помехи, проникающие в сеть при работе стабилизатора. Резисторы R3 и R5 подбирают, добиваясь наилучшей и устойчивой стабилизации напряжения. Выключателем SA1 включают и выключают стабилизатор вместе с нагрузкой. Замкнув выключатель SA2, отключают автоматику, поддерживающую напряжение на нагрузке неизменным. Оно в этом случае становится максимально возможным при данном напряжении в сети.

Большинство деталей стабилизатора смонтированы на печатной плате, изображенной на рис. 2. Остальные соединяются с ней в точках А-Г.

Подбирая замену диодному мосту КЦ405А (VD2), следует иметь в виду, что он должен быть рассчитан на напряжение не менее 600 В и ток, равный максимальному току нагрузки, деленному на коэффициент трансформации трансформатора Т1. Требования к мосту VD1 скромнее: напряжение и ток - не менее соответственно 50 В и 50 мА

Рис. 2 Монтаж печатной платы

Транзистор КТ972А можно заменить на КТ815Б , a IRF840 - на IRF740 . Полевой транзистор имеет теплоотвод размерами 50x40 мм.

"Вольтодобавочный" трансформатор Т1 изготовлен из трансформатора СТ-320, применявшегося в блоках питания БП-1 телевизоров УЛПЦТ-59. Трансформатор разбирают, и аккуратно сматывают вторичные обмотки, оставив первичные в сохранности. Новые вторичные обмотки (одинаковые на обеих катушках) наматывают эмалированным медным проводом (ПЭЛ или ПЭВ) в соответствии с данными, приведенными в таблице. Чем сильнее падает напряжение в сети, тем больше потребуется витков и тем меньше допустимая мощность нагрузки.

После перемотки и сборки трансформатора выводы 2 и 2" половин первичной обмотки, находящихся на разных стержнях магнитопровода, соединены перемычкой. Половины вторичной обмотки нужно соединить последовательно таким образом, чтобы их суммарное напряжение было максимальным (при неправильном соединении оно окажется близким к нулю). По максимуму суммарного напряжения вторичной обмотки и сети нужно определить, какой из оставшихся свободными выводов этой обмотки следует соединить с выводом 1 первичной, а какой - с нагрузкой.

Трансформатор Т2 - любой сетевой с напряжением на вторичной обмотке, близким к указанному на схеме при потребляемом от этой обмотки токе 5О...1ООмА.

Таблица 1

Добавочное напряжение, В 70 60 50 40 30 20
Максимальная мощность нагрузки, кВт 1 1.2 1.4 1,8 2,3 3,5
Число витков обмотки II 60+60 54+54 48+48 41+41 32+32 23+23
Диаметр провода, мм 1.5 1,6 1,8 2 2,2 2,8

Включив собранный стабилизатор в сеть, подстроечным резистором R1 установите напряжение на нагрузке равным 220 В. Следует учитывать, что описанное устройство не устраняет колебания сетевого напряжения, если оно превышает 220 В или опускается ниже минимального, принятого при расчете трансформатора.

Стабилизатор, устанавливаемый в сыром помещении, нужно обязательно поместить в заземленный металлический корпус.

Примечание: в тяжелых режимах работы стабилизатора, мощность, рассеиваемая транзистором VT2, бывает весьма увеличенной. Именно она, а не мощность трансформатора, может ограничить допустимую мощность нагрузки. Поэтому следует позаботиться о хорошем теплоотводе транзистора.

Электронный стабилизатор напряжения 220 своими руками. Виды и схемы стабилизаторов напряжения

Исследовав источники и ряд сайтов в Интернете, я упростил стабилизатор переменного напряжения, описанный в статье . Число микросхем удалось сократить до четырёх, число оптосимисторных ключей — до шести. Принцип действия стабилизатора такой же, как у прототипа .

Основные технические характеристики стабилизатора напряжения:

  • Входное напряжение, В …..135…270
  • Выходное напряжение, В. . . .197…242
  • Максимальная мощность нагрузки, кВт ………………5
  • Время переключения или отключения нагрузки,мс …….10

Схема предлагаемого стабилизатора показана на рисунке. Устройство состоит из силового модуля и блока управления. Силовой модуль содержит мощный автотрансформатор Т2 и шесть ключей переменного тока, обведённых на схеме штрихпунктирной линией.

Остальные детали образуют блок управления. Он содержит семь пороговых устройств: I - DA2.1 R5 R11 R17, II -DA2.2 R6 R12 R18, III — DA2.3 R7 R13 R19, IV — DA2.4 R8 R14 R20, V — DA3.1 R9 R15 R21, VI — DA3.2 R10 R16 R22, VII -DA3.3 R23. На одном из выходов дешифратора DD2 присутствует напряжение высокого уровня, которое вызывает включение соответствующего светодиода (одного из HL1 — HL8).

Мощный автотрансформатор Т2 включён иначе, чем в прототипе. Напряжение сети подаётся на один из отводов обмотки или на обмотку целиком через один из симисторов VS1—VS6, а нагрузка подключена к одному и тому же отводу. При таком включении расходуется меньше провода на обмотку автотрансформатора.

Напряжение обмотки II трансформатора Т1 выпрямляют диоды VD1, VD2 и сглаживает конденсатор С1. Выпрямленное напряжение пропорционально входному. Оно используется как для питания блока управления, так и для измерения входного напряжения сети. С этой целью оно подаётся на делитель R1—R3. С движка подстроечного резистора R2 поступает на неинвертирующие входы операционных усилителей DA2.1 —DA2.4, DA3.1—DA3.3. Эти ОУ используются в качестве компараторов напряжения. Резисторы R17—R23 создают гистерезис переключения компараторов.

В таблице ниже показаны пределы изменения выходного напряжения Uвых и логические уровни напряжения на выходах операционных усилителей и входах дешифратора DD2, а также включённые светодиоды в зависимости от входного напряжения Uвх без учёта гистерезиса.

Микросхема DA1 вырабатывает стабильное напряжение 12 В для питания остальных микросхем. Стабилитрон VD3 вырабатывает образцовое напряжение 9 В. Оно подаётся на инвертирующий вход ОУ DA3.3. На инвертирующие входы других ОУ оно поступает через делители на резисторах R5—R16.

При сетевом напряжении ниже 135 В напряжение на движке резистора R2, а значит, и на неинвертирующих входах ОУ меньше, чем на инвертирующих. Поэтому на выходах всех ОУ низкий уровень. На всех выходах микросхемы DD1 также низкий уровень. В этом случае появляется высокий уровень на выходе О (вывод 3) дешифратора DD2. Включён светодиод HL1, показывая слишком низкое напряжение сети. Все оптосимисторы и симисторы закрыты. Напряжение на нагрузку не подаётся.

При напряжении сети от 135 до 155 В напряжение на движке резистора R2 больше, чем на инвертирующем входе DA2.1, поэтому на его выходе высокий уровень. На выходе элемента DD1.1 также высокий уровень. В этом случае появляется высокий уровень на выходе 1 (вывод 14) дешифратора DD2 (см. таблицу). Светодиод HL1 гаснет. Включается светодиод HL2, течёт ток через излучающий диод оптрона U6, вследствие чего оптосимистор этого оптрона открывается. Через открытый симистор VS6 напряжение сети подаётся на нижний по схеме отвод (вывод 6) относительно начала обмотки (вывода 7) автотрансформатора Т2. Напряжение на нагрузке больше напряжения сети на 64…71 В.

При дальнейшем повышении напряжения сети оно будет переключаться на следующий вверх по схеме вывод автотрансформатора Т2. В частности, напряжение сети от 205 до 235 В непосредственно поступает на нагрузку через открытый симистор VS2, а также на выводы 1—7 автотрансформатора Т2.

При напряжении сети от 235 до 270 В на выходах всех ОУ, кроме DA3.3, высокий уровень, ток течёт через светодиод HL7 и излучающий диод U1.2. Напряжение сети через открытый симистор VS1 подключено ко всей обмотке автотрансформатора Т2. Напряжение на нагрузке меньше напряжения сети на 24…28 В.

При напряжении сети более 270 В на выходах всех ОУ высокий уровень, а ток течёт через светодиод HL8, который сигнализирует о чрезмерно высоком напряжении сети. Все оптосимисторы и симисторы закрыты. Напряжение на нагрузку не подаётся.

Маломощный трансформатор Т1 аналогичен применённому в прототипе, за исключением того, что его вторичная обмотка содержит 1400 витков с отводом от середины. Мощный автотрансформатор Т2 — готовый от промышленного стабилизатора VOTO 5000 Вт. Отмотав вторичную обмотку и часть первичной, я сделал новые отводы, считая от начала обмотки (вывода 7): вывод 6 от 215-го витка (150 В), вывод 5 от 236-го витка (165 В), вывод4 от 257-го витка (180 В), вывод 3 от 286-го витка (200 В), вывод 2 от 314-го витка (220 В). Вся обмотка (выводы 1—7) имеет 350 витков (245 В).

Постоянные резисторы — С2-23 и ОМЛТ, подстроечный резистор R2 — С5-2ВБ. Конденсаторы С1 —СЗ— К50-35, К50-20. Диоды (VD1, VD2) можно заменить на — , КД243Б— КД243Ж.

Микросхему можно заменить отечественными аналогами КР1157ЕН12А, КР1157ЕН12Б.

Налаживание выполняют с помощью ЛАТРа. Вначале устанавливают пороги переключения. Для достижения более высокой точности установки резисторы R17—R23, создающие гистерезис, не устанавливают. Мощный автотрансформатор Т2 не подключают. Устройство подключают к сети через ЛАТР. На выходе ЛАТРа устанавливают напряжение 270 В. Перемещают движок подстроечного резистора R2 снизу вверх по схеме до включения светодиода HL8. Далее на выходе ЛАТРа устанавливают напряжение 135 В. Подбирают резистор R5 так, чтобы напряжение на инвертирующем входе (вывод 2) ОУ DA2.1 было равно напряжению на его неинвертирующем входе (вывод 3). Затем последовательно подбирают резисторы R6…R10, устанавливая пороги переключения 155 В, 170 В, 185 В, 205 В, 235 В, сверяя логические уровни с таблицей. После этого устанавливают резисторы R17— R23. В случае необходимости подбирают их сопротивления, устанавливая необходимую ширину петли гистерезиса. Чем больше сопротивление, тем меньше ширина петли. Установив пороги переключения, подключают мощный автотрансформатор Т2, а к нему нагрузку, например, лампу накаливания мощностью 100…200 Вт. Проверяют пороги переключения и измеряют напряжение на нагрузке. После налаживания светодиоды HL2—HL7 можно удалить, заменив их перемычками.

ЛИТЕРАТУРА:

1. Годин А. Стабилизатор переменного напряжения. - Радио, 2005, № 8.
2. Озолин М. Усовершенствованный блок управления стабилизатора переменного напряжения. - Радио, 2006, № 7.


В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

Идея

Встретил в интернете рекламу на сайте ООО "Прибор", г. Челябинск:
Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082). В качестве ключей используются мощные быстродействующие реле.
Приведены картинки переключений (слева "Селен", справа - с обычными характеристиками)


Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке "Украина" тоже было безразрывное переключение напряжения – там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением №2356082 я не смог.

Мне удалось найти статью "Типы стабилизаторов напряжения", где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги – контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.


На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

Принципиальная схема



Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10 .
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1 . Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 – усилители для реле.
Реле Р1 и Р2 – основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт, включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный – низкое, зеленый – норма, синий – высокое.

Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676 .
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on , R2off , R1on и R1off .
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

Детали и конструкция

При сборке использован трансформатор ТПП 320-220-50 200 Вт. Обмотки его соединены на 240 Вольт, что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1 , а вспомогательные LIMING JZC - 22F .
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).



Прибор повешен на стене и закрыт кожухом из жести


Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР"а через лампу накаливания мощностью 100 – 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки . Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC - 22F).

Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле – вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

Использованы источники

1. на сайте “Энергосбережение в Украине”
2. Официальный web-сайт предприятия ООО "Прибор", г. Челябинск
3. Даташиты на детали

Файлы

Схема, чертеж печатной платы и программа с прошивкой
▼ 🕗 12/08/12 ⚖️ 211,09 Kb ⇣ 165 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!

Стабилизатор напряжения для дома | Заметки электрика

Здравствуйте, уважаемые читатели сайта http://zametkielectrika.ru.

Тема сегодняшней статьи относится к таким неотъемлемым в настоящее время устройствам, как стабилизаторы напряжения для дома. Сейчас я Вам поясню почему неотъемлемые. Энергоснабжающая организация не уделяет должного внимания на качество поставляемой электроэнергии потребителям. Причиной этому может являться отсутствие законов и наложение санкций при несоответствующем качестве. К тому же не стоит забывать, что энергоснабжающая организация является монополистом по поставке электрической энергии.

Поставляемая электроэнергия является товаром. И если этот «товар» будет не надлежащего качества, то это может привести к выходу из строя электрооборудования. Поэтому каждый потребитель должен позаботиться о себе сам, применив стабилизаторы напряжения для дома, которые предназначены для поддержания стабильного напряжения питания нагрузок бытового и промышленного назначения.

Что же такое «качество» электрической энергии?

Для этого обратимся к следующим нормативным документам, где регламентируются параметры электрической сети от источника питания до потребителя.

В этих ГОСТах представлена расшифровка параметров и цифровые показатели качества электрической энергии, методы их измерения, причины и вероятности появления того или иного отклонения качества.

Кстати, скачать ПУЭ 7 издание Вы можете с моего сайта.

Теперь давайте рассмотрим основные показатели качества электрической энергии, согласно ГОСТ 13109-97.

Основные показатели электрической энергии

1. Отклонение напряжения

Существуют следующие нормы отклонений:

  • нормально-допустимые (±5%)
  • предельно-допустимые (±10%)

Согласно ГОСТа 21128-83, номинальное действующее напряжение однофазной бытовой сети должно составлять 220 (В). Отсюда следует, что предел напряжений от 209 - 231 (В) является нормально-допустимым отклонением, а предел напряжений от 198 - 242 (В) - предельно-допустимым отклонением.

2. Провал напряжения

Провал напряжения - это падение напряжения ниже, чем 198 (В) длительностью более 30 секунд. Глубина провала напряжения может достигать до 100%.

3. Перенапряжение

Перенапряжение - это превышение амплитудного значения напряжения больше 339 (В).

Напоминаю, что амплитудное значение 310 (В) соответствует действующему значению 220 (В).

Более подробно о причинах возникновения перенапряжений читайте в моей статье: виды перенапряжений и их опасность.

Так что же такое стабилизатор напряжения для дома?

Стабилизатор напряжения - это автоматическое устройство, которое при изменении входного напряжения, на выход выдает стабильное заданное напряжение 220 (В). Схематично можно изобразить так:

Рассмотрим проблемы, которые могут возникнуть с питающим напряжением в своих домах, коттеджах и садах.

Наружная электропроводка для большинства дачных поселков была построена и рассчитана еще в прошлом веке, когда нормы потребления на каждый дом принимались около 2 (кВт). В настоящее время только один электрический чайник потребляет около 1 (кВт), стиральная машинка около 2 (кВт), не говоря уже об электрических плитах, мощность которых достигает 10 (кВт) и больше.

По причине долгого срока эксплуатации состояние питающих линий с каждым годом ухудшается. Обслуживающие электрики приезжают на линию только по аварийным заявкам и вызовам. Периодические проверки и обслуживание линий ведется по минимуму.

От воздействий атмосферных осадков происходит окисление проводов, что уменьшает их сечение, в местах соединений проводов ухудшается электрический контакт, что приводит к дополнительным потерям. Также увеличивается число потребителей на одну и ту же линию. Хотя в последнее время в технических условиях на подключение дома энергоснабжающая организация обязывает установку ограничителей мощности.

Что в итоге мы имеем?

Когда линия не нагружена, то величина питающего напряжения не выходит за рамки норм. Как только нагрузка на линии начинает постепенно расти (люди приходят с работы), питающее напряжение начинает уменьшаться. По личному примеру скажу, что в одной из деревень величина напряжения в вечернее время достигала 150 (В). При таком напряжении холодильники выходят из строя, лампочки светят тускло, электрические печи не греют до номинальной температуры и т.д.

Как выходит из данной ситуации энергоснабжающая организация?

Очень просто.

Они выставляют на питающем трансформаторе с помощью привода ПБВ или РПН изначально повышенный уровень напряжения, чтобы в часы максимальной нагрузки напряжение было в норме, ну или почти в норме. Но ведь изначально выставленный повышенный уровень напряжения на питающем трансформаторе приводит к скорому перегоранию лампочек, а также к выходу из строя бытовой аппаратуры и техники.

Что же получается? Палка о «двух концах»?

Кто в данном тексте увидел свою проблему, то рекомендую Вам позаботиться о себе самостоятельно, вооружившись стабилизатором напряжения для дома. Ниже я познакомлю Вас с типами стабилизаторов.

Типы стабилизаторов напряжения для дома

Рассмотрим классификацию стабилизаторов напряжения для дома.

1. Феррорезонансные или магниторезонансные стабилизаторы напряжения

Это самые «древние» стабилизаторы напряжения для дома, которые применялись для питания первых цветных телевизоров. Помните, такую «коробку»?

Стабилизатор напряжения для дома «Украина-2″ мощностью всего то 315 (Вт).

А это еще один феррорезонансный стабилизатор напряжения.

Принцип их работы основывается на явлении магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей.

У этих стабилизаторов напряжения недостатков пожалуй гораздо больше, чем достоинств. Во-первых, они выпускались небольшой мощности (до 600 Вт). Во-вторых, они очень сильно искажают синусоидальную форму выходного напряжения. В-третьих, они очень сильно гудят, а также у них узкий диапазон стабилизации и они частенько выходят из строя при повышенном напряжении в сети.

2. Дискретные (ступенчатые) стабилизаторы напряжения

Следующий тип стабилизаторов напряжения для дома, который мы рассмотрим, называются дискретными или ступенчатыми.

Принцип их работы основывается на ступенчатой коррекции напряжения, осуществляемой переключением отводов обмотки автотрансформатора с помощью ключей.

Ключи бывают либо релейными, либо полупроводниковыми (симисторы).

Ниже на рисунке приведена упрощенная схема дискретного стабилизатора для дома с прямым включением 5 ключей. Обычно такая схема применяется у самых дешевых моделей. Каждый ключ (реле или симистор) настроен на определенный порог срабатывания по уровню входного напряжения сети. При достижении этого значения ключ замыкает часть обмотки автотрансформатора.

Про достоинства таких типов стабилизаторов напряжения для дома могу сказать то, что они обладают высокой скоростью реакции на изменение входного напряжения, что необходимо для двигательных нагрузок, таких как холодильник, стиральная машина, глубинный насос и др.

Время реакции на изменение входного напряжения зависит от количества обмоток и скорости работы ключей.

Также у них небольшой вес и габариты, отсутствуют движущиеся части, в отличие от электромеханических стабилизаторов, а также широкий диапазон входных напряжений.

Из недостатков можно отметить то, что напряжение на выходе меняется ступенчато и во время процесса регулирования происходит прерывание выходного напряжения.

Сейчас мы рассмотрим электромеханические стабилизаторы напряжения для дома. Их принцип работы основан на регулировании напряжения за счет перемещения щетки по обмотке автотрансформатора.

Непрерывность фазы выходного напряжения обеспечивается конструкцией токосъемника, т.е. щеткой. Ширина щетки приблизительно равна 2,2 диаметра провода обмотки автотрансформатора, чтобы при переходе с одного витка на другой электрический контакт не терялся.

Достоинства электромеханического стабилизатора напряжения:

  • плавное регулирование
  • отсутствие помех при работе
  • отсутствие искаженной формы напряжения
  • отсутствие электронных ключей, коммутирующих рабочий ток
  • высокая точность удержания выходного напряжения - 220 ± 3% (в отличие от дискретных - 220 ± 7%)

Недостатки электромеханического стабилизатора напряжения:

  • необходимо следить за износом щетки
  • искрение во время перемещения щетки по обмотке автотрансформатора
  • во время работы двигателя сервопривода слышно гудение
Выводы

Про необходимость установки стабилизаторов напряжения для дома я Вам пояснил. Далее решать только Вам. С типами стабилизаторов я Вас познакомил. Рекомендую Вам приобретать только дискретные или электромеханические стабилизаторы (сам лично склоняюсь к последним), про феррорезонансный вообще забудьте.

P.S. В следующей статье мы научимся выбирать стабилизатор напряжения по мощности. Покажу Вам пример расчета мощности стабилизатора для своей квартиры. А также поговорим о месте их установки и креплении. Чтобы не пропустить выход новых статей - пройдите процедуру подписки. Форма находится в конце каждой статьи и в правой колонке сайта.

zametkielectrika.ru

стабилизатор напряжения 220в своими руками - Меандр - занимательная электроника

Цифровой вольтметр сетевого напряжения на микроконтроллере ATTINY26, содержит 10-разрядный АЦП, трехразрядный светодиодный индикатор с динамической индикацией, линейный стабилизатор 7805, ну еще несколько токоограничительных резисторов. Конечно, большая часть рассыпухи используется для работы безтрансформаторного БП. Ниже приведена схема вольтметра. Детали: все диоды в схеме использованы типа 1N4007, но подойдут и любые другие с прямым током от 0,5А …

В статье приведено описание устройства, которое позволяет наглядно с помощью двух светодиодных линеек отображать текущее значение напряжения сети ~220 В и тока потребления в контролируемой линии, а также осуществлять звуковую сигнализацию при выходе уровней напряжения и тока за установленные границы. Идея контролировать состояние домашней питающей сети возникает, думаю, у многих, особенно после очередной оплаты за …

R1, R2, R3 - делители напряжения в диапазонах 0-1,2В, 0-12В и 0-120В. Вольтметр индикатор собран на микросхеме LM3914. Ток протекающий через каждый светодиод может достигать 30мА. R4 - регулирует яркость светодиодов. Каждый светодиод имеет шаг 1,2В (в диапазоне 12В). Изменив значения делителей напряжения R1 R2 R3 Вы можете самостоятельно подобрать необходимый Вам диапазон измерения напряжения.

Технические характеристики: Напряжение питания – 10-17 В Шаг индикации напряжения – 0.5 В Диапазон измерения напряжения – 10.5-16 В Количество точек индикации – 12 Максимальный ток потребления – 40 мА Устройство представляет собой универсальный линейный индикатор напряжения на базе КР1003ПП1. Сигнал индицируется шкалой из 12 светодиодов, загорающихся последовательно в зависимости от входного напряжения. При использовании …

meandr.org

Подключение стабилизатора напряжения пошаговая инструкция

В зависимости от того, какой стабилизатор напряжения вы выбрали, стоит рассмотреть несколько вариантов подключения. (Меню кликабельно)

Кроме того, важно определиться с местом расположения стабилизатора

Зачастую бывает так, что в квартире (доме, офисе) есть необходимость подключить только одно-два устройства под стабилизатор, а остальные в таком не нуждаются.

Это случается тогда, когда входящее напряжение в сети незначительно отличается от номинальных 220 вольт и его перепады незначительны (+/- 15 вольт).

В таких случаях, действительно нет необходимости подключать полностью весь дом и достаточно защитить плазменный телевизор, спутниковый тюнер или компьютер.

Для подключения по такой схеме необходимо, тем не менее, позаботиться о том, чтобы высокоточная техника (аудио, видеосистемы, ПК) были дополнительно подключены через сетевой фильтр. Это необходимо для того, чтобы эти источники не давали помехи друг на друга, а также, чтобы отфильтровать скачки напряжения от работы сварки во дворе, например.

Стоит отметить, что в случае подключения газового котла, необходимо также включить в схему ИБП – источник бесперебойного питания, который обеспечит корректную работу оборудования даже при отключении электричества.

Непосредственно к самому выпрямителю можно подключать мощные токоприемники, такие, как насос, холодильник, микроволновая печь, электродуховка, пылесос, пароварка, утюг. Эти потребители не требуют особой точности в стабилизации и мало зависят от перепадов напряжения.

Схема подключения всей квартиры через стабилизатор напряжения

Этот способ подключения стабилизатора напряжения наиболее приемлем для современных квартир и домов.

Выпрямитель в этом случае является самым первым прибором после электросчетчика и обеспечивает стабильным и ровным напряжением все токоприемники квартиры, дачи или дома.

При таком подключении наиболее правильным считается проведение отдельных линий под разные типы электроприборов. Каждая из линий должна оборудоваться своими пакетниками (освещение, насос, телевизор+аудиосистема, компьютер и т.д.)

Но очень редко на этапе строительства учитывается, какие электроустановки будут включаться в ту или иную розетку, поэтому возникают ситуации, когда с помощью удлинителя удобно подключить маломощную, но точную технику (телевизор, спутниковая антенна) в одну розетку с «грубой» (холодильник, стиральная машина, насос, утюг).

При этом «грубая» техника при включении будет создавать помехи, которую стабилизатор, расположенный на входе в дом, отфильтровать не в состоянии. Поэтому старайтесь избегать такого соседства и подключать такие электроприборы как можно дальше друг от друга.

Если же это невозможно, то перед «точной» техникой должен обязательно стоять сетевой фильтр.

Три фазы

Нередко в помещение заходит не одна, а три фазы. В этом случае нужно подключать один трехфазный стабилизатор напряжения или три однофазных.

Первый из них используется только в том случае, если будут применяться электроприборы, рассчитанные на 380 вольт, например мощные электродвигатели, но такие устройства в быту обычно не используются.

Подключение стабилизаторов к трем фазам

Если же в дом поступает три фазы (380 вольт), то лучше использовать схему из трех стабилизаторов, которая обеспечит качественным, ровным 220 В электричеством всю элетрику в доме.

Более того, даже в промышленных масштабах рекомендуется использовать схему из трех однофазных, т.к. в случае выхода из строя или попросту отключения одного из них, в сети остается 220 вольт, что невозможно при использовании трехфазного – тот попросту отключает электричество полностью.

Поэтому, если в сети преобладают потребители по 220 вольт, а не по 380 – следует использовать схему из трех стабилизаторов.

Схема подключения показана на рисунке.

Трехфазный вход имеет четыре провода – один из которых – ноль, является общим для всех трех стабилизаторов в системе, а каждая отдельная фаза пропускается через отдельный выпрямитель.

Перепады напряжения негативно сказываются на любой бытовой технике. Особенно это касается высокоточной электроники, регулирующей работу отопительных приборов.

Для того, чтобы выровнять ток в домашних условиях используют стабилизатор напряжения. В самом простом варианте он работает по принципу реостата, повышая и понижая сопротивление в зависимости от силы тока. Но есть и более современные приборы, которые в полной мере защищают технику от скачков напряжения. О том, как их сделать и поговорим.

Стабилизатор напряжения и принцип его действия

Для более детального понимания работы прибора рассмотрим составляющие электрического тока:

  • сила тока,
  • напряжение,
  • частота.

Сила тока – это количество заряда, который прошел через проводник за определенный промежуток времени. Напряжение, если объяснять очень просто, эквивалентно понятию работы, которое совершает электрическое поле. Частота – это скорость, с которой поток электронов меняет свое направление. Данная величина характерна исключительно для переменного тока, который циркулирует в электросети. Большинство бытовых приборов рассчитано на напряжение в 220 Вольт, при этом сила тока должна быть 5 Ампер, а частота 50 Герц.

В большинстве случаев бытовая техника имеет допустимую вилку по каждому из параметров, но любая защита рассчитана на то, что условия работы приборов длительное время будут неизменными. В нашей же сети колебания тока происходят практически постоянно. Амплитуда составляет до 2 А по силе тока и до 40-50 В, по напряжению. Частота тока, также отлична от 50 Гц и составляет от 40 Гц до 60 Гц.

Данная проблема связана со многими факторами, но главный среди них, — удаленность конечного потребителя от источника электричества. В результате достаточно длительной транспортировки и многократной трансформации, ток теряет стабильность. Данный дефект электросетей присутствует не только у нас, но и в любых других странах, которые пользуются электричеством. Поэтому был придуман специальный прибор, позволяющий стабилизировать выходной ток.

Виды стабилизаторов напряжения

Так как ток – это направленное движение частиц, для его регулировки используются:

  • механический метод,
  • импульсный метод.

Механический основан на законе Ома. Такой стабилизатор называется линейным. Он состоит из двух колен, соединенных между собой реостатом. Напряжение подается на одно колено, проходит по реостату и попадает на второе колено, с которого уже и раздается далее. Преимущества данного метода заключается в том, что он позволяет достаточно точно установить параметры выходного тока. В зависимости от предназначения, линейный стабилизатор модернизируют дополнительными запчастями. Стоит отметить, что прибор эффективно справляется со своей задачей только в том случае, если разница между входным и выходным током невелика. В противном случае стабилизатор будет иметь низкий КПД. Но даже этого достаточно, чтобы защитить бытовую технику и обезопасить себя от короткого замыкания в случае перенагрузки сети.

Импульсный стабилизатор напряжения основан на принципе амплитудной модуляции тока. Схема стабилизатора напряжения устроена таким образом, что в цепи есть выключатель, который автоматически разрывает цепь через равные промежутки времени. Это позволяет подавать ток частями и равномерно накапливать его в конденсаторе. После того, как он зарядится, уже выровненный ток подается на приборы. Недостаток этого метода в том, что он не позволяет задать определенную величину. Тем не менее, достаточно часто встречаются импульсные повышающе-понижающие стабилизаторы, которые оптимально подходят для бытового использования. Они выравнивают ток в пределах чуть ниже или чуть выше нормы. В обоих случаях все параметры тока не выходят за допустимую вилку.

Важно отметить и разделение приборов на:

  • стабилизатор напряжения однофазный,
  • стабилизатор напряжения трехфазный.

После перераспределения в трансформаторе, выходит трехфазная линия, она как правило идет до распределительного щитка на отдельно взятый дом. Далее от щитка в квартиру идут уже стандартные фаза и ноль. Таким образом большинство бытовых приборов рассчитано именно на однофазную сеть. Поэтому в типовых квартирах целесообразно использовать однофазный стабилизатор. К тому же, стоит он в 10 раз дешевле трехфазного, даже если собрать его своими руками.

Стабилизаторы напряжения для дачи могут быть и трехфазными. Особенно актуально это для мощных насосов, культиваторов и тяжелой строительной техники. В таком случае необходимо сделать стабилизатор, рассчитанный на трансформацию тока под конкретный прибор. На практике сделать это достаточно сложно. Поэтому проще взять его в аренду. Использование указанных выше приборов носит временный характер, поэтому смысла тратить время и деньги на трехфазный стабилизатор напряжения нет.

Основные элементы стабилизатора напряжения

Для того, чтобы собрать простой выравниватель тока не понадобится ни особых навыков, ни специфических деталей. Стабилизаторы напряжения для дома состоят из:

  • трансформатора,
  • конденсаторов,
  • резисторов,
  • диодов,
  • провода для соединения микросхемы.

Идеально, если есть старый сварочный аппарат. Переделать его в стабилизатор напряжения очень легко, к том же не понадобится покупать дополнительные запчасти и конструировать корпус для микросхем. Этому вопросу посвящено видео в конце статьи. Но, ненужная сварка – это большая редкость, поэтому рассмотрим процедуру создания стабилизатора напряжения с нуля. Так как импульсный стабилизатор не позволяет провести точную настройку параметров, рассматривать будем линейный стабилизатор напряжения.

Изготовление самодельного стабилизатора напряжения

Его основа – это трансформатор. На практике трансформаторы намного меньше, чем массивные будки для выравнивания высокого напряжения, приходящего с электростанции. Они представляют собой две катушки, образующие индуктивную электромагнитную связь. Проще говоря, ток подается на одну катушку, заряжает ее, затем возникает электромагнитное поле, которое заряжает вторую катушку, с которой ток идет далее. Эта взаимосвязь выражена формулой:

U 2 = N 2 = I 1
U 1 N 1 I 2
  • U 1 – напряжение на первичной обмотке,
  • U 2 – напряжение на вторичной обмотке,
  • N 1 – число витков на первичной обмотке,
  • N 2 – число витков на вторичной обмотке,
  • I 1 – сила тока на первичной обмотке,
  • I 2 – сила тока на вторичной обмотке.

Формула не идеальна, так как позволяет либо понижать напряжение, либо его повышать. В 90% случаев к потребителю доходит ток с низким напряжением. Поэтому имеет смысл сразу же сделать повышающий трансформатор. Индуктивные катушки к нему продаются в магазинах электротехники либо на любом блошином рынке. Важно отметить, что число витков должно быть не менее 2000 тысяч, так как иначе трансформатор будет очень сильно греться и вскоре сгорит. Для того, чтобы выбрать мощность трансформатора, необходимо замерять напряжение в сети. Для расчетов возьмем значение 196 В. Формула приобретает такой вид:

Как видно из формулы, сила напряжения на выходе будет 220х4/196=4,4 А. Большинство электроприборов допускает вилку в 1 А. Поэтому полученная величина достаточна для нормальной работы техники.

Стабилизатор напряжения, энергия в котором увеличивается на заданную величину готов. Но, если в сети произойдет скачек мощности, то формула примет следующие значения:

Это приведет к поломке большинства электроприборов.

Для устранения данного дефекта воспользуемся законом Ома:

  • U– напряжение,
  • I– сила тока,
  • R– сопротивление.

264=4,47хR, R=264/4,47=60. Данная формула говорит о том, что в идеале сопротивление всех элементов в системе будет составлять 60 Ом. Если понизить сопротивление, то напряжение уменьшиться:

220=4,47хR, R=220/4,47=50.

Для изменения сопротивления сети используется прибор, под названием реостат. Естественно, регулировать его вручную достаточно неудобно. Поэтому понадобится микросхема-стабилизатор напряжения, на которой будет отмечен путь следования электрического тока после выхода из трансформатора.

Наиболее простой способ – это вывести ток с трансформатора на конденсатор. Желательно использовать 12-16 конденсаторов одинаковой емкости. Это позволит накопить ток и сделать его более однородным. Далее все конденсаторы подсоединяются к реостату. Сила тока в сети после трансформатора будет в пределах 4,5-5 А, а желаемое напряжение должно составлять 220 В. Следовательно, имеем формулу R=220/4,75=46. При усредненных показателях сопротивление должно составлять 46 Ом.

Для достижения более плавного выравнивания, желательно установить несколько параллельных реостатов. Таким образом соединяясь в один поток после конденсаторов, цепь необходимо распределить на 4,6,8 отдельных веток, подключенных к реостатам. При этом следует использовать формулу R/число реостатов. Если делать цепь из 6 реостатов, то согласно представленным данным, каждый из них должен иметь сопротивление в 8 Ом.

После прохождения реостатов, цепь снова собирается в один поток и выводится на диод. Диод подключается к обычной розетке.

Все указанные манипуляции относятся к проводу на котором находится фаза, ноль просто пропускаем напрямую к розетке.

Указанный с реостатами способ является достаточно архаичным. Намного более эффективно использовать вместо них обычное устройство защитного отключения. Ток от трансформатора подается на УЗО, ноль также подключается к УЗО. Далее от него идет выход напрямую к розетке.

В том случае, если напряжение или сила тока возрастут в следствии скачка напряжения, УЗО разомкнет цепь, и бытовая техника не пострадает. В остальное время трансформатор будет качественно выравнивать ток.

При повышенном напряжении понадобится понижающий трансформатор. Собирается он по аналогии, за тем исключением, что обмотка на второй катушке должна быть сделана из более толстой проволоки, иначе трансформатор сгорит.

Наиболее эффективно собрать оба трансформатора. Тем более, что есть конструкции понижающе-повышающего типа. В первом случае понадобится ручное переключение провода, во втором — процесс поддается автоматизации. Как видно, сделать стабилизатор напряжения не сложно, но работа с электричеством предполагает предельный уровень осторожности.

Советы по работе с самодельным стабилизатором напряжения

Важно : описанная схема идеально подходит для постоянных условий, но в электросети достаточно часто случаются перебои и скачки, как вверх, так и вниз.

Поэтому при сборке стабилизатора напряжения рекомендуем отталкиваться от параметров конкретной техники, т.е.:

  • продумать разводку по квартире,
  • если ремонта не предполагается, установить удлинители под определенные группы электроприборов со схожими параметрами,
  • подключить каждую группу к отдельному стабилизатору.

Любая бытовая техника либо на тыльной стороне, либо в паспорте содержит ведомости о требованиях к электропитанию. Отталкиваясь от конкретных цифр значительно проще создать эффективный стабилизатор, так как нет необходимости подстраиваться под сеть. Еще один полезный гаджет – это электронный вольтметр. Желательно подключить его в схему стабилизатора для визуального контроля за его работой.

Для корпуса подойдет любой материал кроме дерева. Достаточно часто самодельные стабилизаторы помещают в пластиковые контейнеры для еды.

Изготовление самодельных стабилизаторов напряжения – практика довольно частая. Однако по большей части создаются стабилизирующие электронные схемы, рассчитанные на относительно малые выходные напряжения (5-36 вольт) и относительно невысокие мощности. Устройства используются в составе бытовой аппаратуры, не более того.

Мы расскажем, как сделать мощный стабилизатор напряжения своими руками. В предложенной нами статье описан процесс изготовления устройства для работы с напряжением сети 220 вольт. С учетом наших советов вы без проблем самостоятельно справитесь со сборкой.

Стремления обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве. Да и в целом, фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Для бытовых целей чаще всего приобретают , автоматика которого требует подключения к электропитанию, насосного оборудования, сплит систем и подобных потребителей.

Промышленная конструкция стабилизатора сетевого напряжения, которую несложно приобрести на рынке. Ассортимент подобного оборудования огромен, но всегда остаётся возможность сделать собственную конструкцию

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами. Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Примерно так может выглядеть оборудование стабилизации, изготовленное своими руками из доступных и недорогих радиодеталей. Шасси и корпус можно подобрать от старого промышленного оборудования (например, от осциллографа)

Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

  • феррорезонансные;
  • сервоприводные;
  • электронные;
  • инверторные.

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 – феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка – феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.

Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  1. Дроссель 1.
  2. Дроссель 2.
  3. Конденсатор.

Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

Вариант #2 – автотрансформатор или сервопривод

Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.


Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим

Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

Схемы подобного рода выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения. Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

Вариант #3 – электронная схема

Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.


Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки

Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно, лучше . В этом деле без опыта и знаний в сфере электротехники не обойтись.

Под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

Подробные инструкции по сборке

Рассматриваемая под самостоятельное изготовление схема, скорее является гибридным вариантом, так как предполагает использование силового трансформатора совместно с электроникой. Трансформатор в данном случае применяется из числа тех, что устанавливались в телевизорах старых моделей.

Вот такой примерно силовой трансформатор потребуется под изготовление самодельной конструкции стабилизатора. Однако не исключается подбор других вариантов или же намотка своими руками

Правда в ТВ приёмниках, как правило, ставились трансформаторы ТС-180, тогда как для стабилизатора требуется как минимум ТС-320 чтобы обеспечить выходную нагрузку до 2 кВт.

Шаг #1 – изготовление корпуса стабилизатора

Для изготовления корпуса аппарата подойдёт любой подходящий короб на основе изолирующего материала – пластмассы, текстолита и т.п. Главный критерий – достаточность места под размещение силового трансформатора, электронной платы и других компонентов.

Также корпус допустимо изготовить из листового стеклотекстолита, скрепив отдельные листы с помощью уголков или иным способом.

Допустимо подобрать корпус от любой электроники, подходящий под размещение всех рабочих компонентов схемы самодельного стабилизатора. Также корпус можно собрать своими руками, к примеру, из листов стеклотекстолита

Короб стабилизатора необходимо оснастить пазами под установку выключателя, входного и выходного интерфейсов, а также других аксессуаров, предусмотренных схемой в качестве контрольных или коммутационных элементов.

Под изготовленный корпус нужна плита-основание, на которую «ляжет» электронная плата и будет закреплён трансформатор. Плиту можно сделать из алюминия, но следует предусмотреть изоляторы под крепёж электронной платы.

Шаг #2 – изготовление печатной платы

Здесь потребуется изначально спроектировать макет на размещение и связку всех электронных деталей согласно принципиальной схеме, кроме трансформатора. Затем по макету размечают лист фольгированного текстолита и рисуют (отпечатывают) на стороне фольги созданную трассировку.

Изготовить печатную плату стабилизатора вполне доступными способами можно непосредственно в домашних условиях. Для этого нужно приготовить трафарет и набор средств для травления на фольгированном текстолите

Полученный таким способом печатный экземпляр разводки зачищают, облуживают оловом и производят монтаж всех радиодеталей схемы с последующей пайкой. Так выполняется изготовление электронной платы мощного стабилизатора напряжения.

В принципе, можно воспользоваться сторонними услугами по травлению печатных плат. Этот сервис вполне приемлем по цене, а качество изготовления «печатки» существенно выше, чем в домашнем варианте.

Шаг #3 – сборка стабилизатора напряжения

Укомплектованная радиодеталями плата подготавливается для внешней обвязки. В частности, от платы выводятся линии внешней связи (проводники) с другими элементами – трансформатором, выключателем, интерфейсами и т.д.

На опорную плиту корпуса устанавливают трансформатор, соединяют с трансформатором цепи электронной платы, закрепляют плату на изоляторах.

Пример самодельного стабилизатора напряжения релейного типа, изготовленного в домашней обстановке, помещённого в корпус от пришедшего в негодность промышленного измерительного прибора

Останется только подключить к схеме внешние элементы, смонтированные на корпусе, установить ключевой транзистор на радиатор, после чего корпусом закрывают собранную электронную конструкцию. Стабилизатор напряжения готов. Можно приступать к настройке с дальнейшими испытаниями.

Принцип работы и тест самоделки

Регулирующим элементом электронной схемы стабилизации выступает мощный полевой транзистор типа IRF840. Напряжение для обработки (220-250В) проходит первичную обмотку силового трансформатора, выпрямляется диодным мостом VD1 и поступает на сток транзистора IRF840. Исток этого же компонента соединен с минусовым потенциалом диодного моста.


Схема принципиальная стабилизирующего блока высокой мощности (до 2 кВт), на основе которой были собраны и успешно используются несколько аппаратов. Схема показала оптимальный уровень стабилизации при указанной нагрузке, но не выше

Часть схемы, в которую включена одна из двух вторичных обмоток трансформатора, образуется диодным выпрямителем (VD2), потенциометром (R5) и другими элементами электронного регулятора. Этой частью схемы формируется управляющий сигнал, который поступает на затвор полевого транзистора IRF840.

На случай повышения напряжения питающей сети управляющим сигналом понижается напряжение затвора полевого транзистора, что приводит к закрытию ключа. Соответственно, на контактах подключения нагрузки (XT3, XT4) возможное повышение напряжения ограничивается. Обратным вариантом работает схема на случай понижения сетевого напряжения.

Настройка прибора особой сложностью не отличается. Здесь потребуется обычная лампа накаливания (200-250 Вт), которую следует включить на клеммы выхода прибора (X3, X4). Далее вращением потенциометра (R5) напряжение на отмеченных клеммах доводят до уровня 220-225 вольт.

Выключают стабилизатор, отключают лампу накаливания и включают прибор уже с полноценной нагрузкой (не выше 2 кВт).

После 15-20 минут работы вновь отключают аппарат и производят контроль температуры радиатора ключевого транзистора (IRF840). Если нагрев радиатора существенный (более 75º), следует подобрать более мощный теплоотводящий радиатор.

Если процесс изготовления стабилизатора показался вам слишком сложным и нерациональным с практической точки зрения, без особых проблем можно найти и приобрести устройство заводского исполнения. Правила и критерии приведены в рекомендуемой нами статье.

Выводы и полезное видео по теме

В видеоролике ниже рассматривается одна из возможных конструкций стабилизатора домашнего изготовления.

В принципе, можно взять на заметку этот вариант самодельного аппарата стабилизации:

Сборка блока, стабилизирующего сетевое напряжение, своими руками возможна. Это подтверждается многочисленными примерами, когда радиолюбители с небольшим опытом вполне успешно разрабатывают (или применяют существующую), готовят и собирают схему электроники.

Трудностей с приобретением деталей для изготовления стабилизатора-самоделки обычно не отмечается. Расходы на производство невысоки и естественным образом окупаются, когда стабилизатор вводят в эксплуатацию.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, публикуйте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как собрали стабилизатор напряжения собственными руками. Поделитесь полезной информацией, которая может пригодиться посещающим сайт начинающим электротехникам.

Схема импульсного стабилизатора напряжения 220в. Стабилизатор напряжения — как все сделать своими руками. Видео. Что же такое «качество» электрической энергии

Содержание:

В электрических цепях постоянно возникает необходимость в стабилизации тех или иных параметров. С этой целью применяются специальные схемы управления и слежения за ними. Точность стабилизирующих действий зависит от так называемого эталона, с которым и сравнивается конкретный параметр, например, напряжение. То есть, когда значение параметра будет ниже эталона, схема стабилизатора напряжения включит управление и отдаст команду на его увеличение. В случае необходимости выполняется обратное действие - на уменьшение.

Данный принцип работы лежит в основе автоматического управления всеми известными устройствами и системами. Точно так же действуют и стабилизаторы напряжения, несмотря на разнообразие схем и элементов, используемых для их создания.

Схема стабилизатора напряжения 220в своими руками

При идеальной работе электрических сетей, значение напряжения должно изменяться не более чем на 10% от номинала в сторону увеличения или уменьшения. Однако на практике перепады напряжения достигают гораздо больших значений, что крайне отрицательно сказывается на электрооборудовании, вплоть до его выхода из строя.

Защититься от подобных неприятностей поможет специальное стабилизирующее оборудование. Однако из-за высокой стоимости, его применение в бытовых условиях во многих случаях экономически невыгодно. Наилучшим выходом из положения становится самодельный стабилизатор напряжения 220в, схема которого достаточно простая и недорогая.

За основу можно взять промышленную конструкцию, чтобы выяснить, из каких деталей она состоит. В состав каждого стабилизатора входят трансформатор, резисторы, конденсаторы, соединительные и подключающие кабели. Самым простым считается стабилизатор переменного напряжения, схема которого действует по принципу реостата, повышая или понижая сопротивление в соответствии с силой тока. В современных моделях дополнительно присутствует множество других функций, обеспечивающих защиту бытовой техники от скачков напряжения.

Среди самодельных конструкций наиболее эффективными считаются симисторные устройства, поэтому в качестве примера будет рассматриваться именно эта модель. Выравнивание тока этим прибором будет возможно при входном напряжении в диапазоне 130-270 вольт. Перед началом сборки необходимо приобрести определенный набор элементов и комплектующих. Он состоит из блока питания, выпрямителя, контроллера, компаратора, усилителей, светодиодов, автотрансформатора, узла задержки включения нагрузки, оптронных ключей, выключателя-предохранителя. Основными рабочими инструментами служат пинцет и паяльник.

Для сборки стабилизатора на 220 вольт в первую очередь потребуется печатная плата размером 11,5х9,0 см, которую нужно заранее подготовить. В качестве материала рекомендуется использовать фольгированный стеклотекстолит. Схема размещения деталей распечатывается на принтере и переносится на плату с помощью утюга.

Трансформаторы для схемы можно взять уже готовые или собрать самостоятельно. Готовые трансформаторы должны иметь марку ТПК-2-2 12В и соединяться последовательно между собой. Для создания первого трансформатора своими руками потребуется магнитопровод сечением 1,87 см2 и 3 кабеля ПЭВ-2. Первый кабель применяется в одной обмотке. Его диаметр составит 0,064 мм, а количество витков - 8669. Оставшиеся провода используются в других обмотках. Их диаметр будет уже 0,185 мм, а число витков составит 522.

Второй трансформатор изготавливается на основе тороидального магнитопровода. Его обмотка выполняется из такого же провода, как и в первом случае, но количество витков будет другим и составит 455. Во втором устройстве делаются отводы в количестве семи. Первые три изготавливаются из провода диаметром 3 мм, а остальные из шин, сечением 18 мм2. За счет этого предотвращается нагрев трансформатора во время работы.

Все остальные комплектующие рекомендуется приобретать в готовом виде, в специализированных магазинах. Основой сборки является принципиальная схема стабилизатора напряжения, заводского изготовления. Вначале устанавливается микросхема, выполняющая функцию контроллера для теплоотвода. Для ее изготовления используется алюминиевая пластина площадью свыше 15 см2. На эту же плату производится монтаж симисторов. Теплоотвод, предназначенный для монтажа, должен быть с охлаждающей поверхностью. После этого сюда же устанавливаются светодиоды в соответствии со схемой или со стороны печатных проводников. Собранная таким образом конструкция, не может сравниваться с заводскими моделями ни по надежности, ни по качеству работы. Такие стабилизаторы используются с бытовыми приборами, не требующими точных параметров тока и напряжения.

Схемы стабилизаторов напряжения на транзисторах

Качественные трансформаторы, применяемые в электрической цепи, эффективно справляются даже с большими помехами. Они надежно защищают бытовую технику и оборудование, установленные в доме. Настроенная система фильтрации позволяет бороться с любыми скачками напряжения. За счет контроля над напряжением происходят изменения величины тока. Предельная частота на входе увеличивается, а на выходе - уменьшается. Таким образом, ток в цепи преобразуется в течение двух этапов.

В начале на входе задействуют транзистор с фильтром. Далее происходит включение в работу . Для завершения преобразования тока в схеме применяется усилитель, чаще всего устанавливаемый между резисторами. За счет этого в устройстве поддерживается необходимый уровень температуры.

Схема выпрямления действует следующим образом. Выпрямление переменного напряжения с вторичной обмотки трансформатора происходит с помощью диодного моста (VD1-VD4). Сглаживание напряжения выполняет конденсатор С1, после чего оно попадает в систему компенсационного стабилизатора. Действие резистора R1 задает стабилизирующий ток на стабилитроне VD5. Резистор R2 является нагрузочным. При участии конденсаторов С2 и С3 происходит фильтрация питающего напряжения.

Значение выходного напряжения стабилизатора будет зависеть от элементов VD5 и R1 для выбора которых существует специальная таблица. VT1 устанавливается на радиаторе, у которого площадь охлаждающей поверхности должна быть не менее 50 см2. Отечественный транзистор КТ829А может быть заменен зарубежным аналогом BDX53 от компании Моторола. Остальные элементы имеют маркировку: конденсаторы - К50-35, резисторы - МЛТ-0,5.

Схема линейного стабилизатора напряжения 12в

В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому - КРЕН142.

Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.

Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой. Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло. Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю. В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.

Регулируемый стабилизатор напряжения схема

Нередко возникают ситуации, когда напряжение, выдаваемое стабилизатором, необходимо отрегулировать. На рисунке представлена простая схема регулируемого стабилизатора напряжения и тока, позволяющая не только стабилизировать, но и регулировать напряжение. Ее можно легко собрать даже при наличии лишь первоначальных познаний в электронике. Например, входное напряжение составляет 50В, а на выходе получается любое значение, в пределах 27 вольт.

В качестве основной детали стабилизатора используется полевой транзистор IRLZ24/32/44 и другие аналогичные модели. Данные транзисторы оборудуются тремя выводами - стоком, истоком и затвором. Структура каждого из них состоит из металла-диэлектрика (диоксида кремния) - полупроводника. В корпусе расположена микросхема-стабилизатор TL431, с помощью которой и настраивается выходное электрическое напряжение. Сам транзистор может оставаться на радиаторе и соединяться с платой проводниками.

Данная схема может работать с входным напряжением в диапазоне от 6 до 50В. Выходное напряжение получается в пределах от 3 до 27В и может быть отрегулировано с помощью подстрочного резистора. В зависимости от конструкции радиатора, выходной ток достигает 10А. Емкость сглаживающих конденсаторов С1 и С2 составляет 10-22 мкФ, а С3 - 4,7 мкФ. Схема сможет работать и без них, однако качество стабилизации будет снижено. Электролитические конденсаторы на входе и выходе рассчитываются примерно на 50В. Мощность, рассеиваемая таким стабилизатором, не превышает 50 Вт.

Схема симисторного стабилизатора напряжения 220в

Симисторные стабилизаторы работают по аналогии с релейными устройствами. Существенным отличием является наличие узла, переключающего обмотки трансформатора. Вместо реле используются мощные симисторы, работающие под управлением контроллеров.

Управление обмотками с помощью симисторов - бесконтактное, поэтому при переключениях нет характерных щелчков. Для намотки автотрансформатора используется медный провод. Симисторные стабилизаторы могут работать при пониженном напряжении от 90 вольт и высоком - до 300 вольт. Регулировка напряжения осуществляется с точностью до 2%, отчего лампы совершенно не моргают. Однако во время переключений возникает ЭДС самоиндукции, как и в релейных устройствах.

Симисторные ключи обладают повышенной чувствительностью к перегрузкам, в связи с чем они должны иметь запас по мощности. Данный тип стабилизаторов отличается очень сложным температурным режимом. Поэтому установка симисторов осуществляется на радиаторы с принудительным вентиляторным охлаждением. Точно так же работает схема тиристорного стабилизатора напряжения 220В своими руками.

Существуют устройства с повышенной точностью, работающие по двухступенчатой системе. На первой ступени выполняется грубая регулировка выходного напряжения, а на второй ступени этот процесс осуществляется значительно точнее. Таким образом, управление двумя ступенями выполняется с помощью одного контроллера, что фактически означает наличие двух стабилизаторов в едином корпусе. Обе ступени имеют обмотки, намотанные в общем трансформаторе. При наличии 12 ключей, эти две ступени позволяют регулировать выходное напряжение в 36 уровнях, чем и обеспечивается его высокая точность.

Стабилизатор напряжения с защитой по току схема

Данные устройства обеспечивают питание преимущественно для низковольтных устройств. Такой стабилизатор тока и напряжения схема отличается простотой конструкции, доступной элементной базой, возможностью плавных регулировок не только выходного напряжения, но и тока, при котором срабатывает защита.
Основой схемы является параллельный стабилизатор или регулируемый стабилитрон, а также с высокой мощностью. С помощью так называемого измерительного резистора контролируется ток, потребляемый нагрузкой.

Иногда на выходе стабилизатора возникает короткое замыкание или ток нагрузки превышает установленное значение. В этом случае на резисторе R2 падает напряжение, а транзистор VT2 открывается. Происходит и одновременное открытие транзистора VT3, шунтирующего источник опорного напряжения. В результате, значение выходного напряжения снижается практически до нулевого уровня, и регулирующий транзистор оказывается защищенным от перегрузок по току. Для того чтобы установить точный порог срабатывания токовой защиты, применяется подстроечный резистор R3, включаемый параллельно с резистором R2. Красный цвет светодиода LED1 указывает на срабатывание защиты, а зеленый LED2 - на выходное напряжение.

После правильно выполненной сборки схемы мощных стабилизаторов напряжения сразу же включаются в работу, достаточно всего лишь выставить необходимое значение выходного напряжения. После загрузки устройства реостатом выставляется ток, при котором срабатывает защита. Если защита должна срабатывать при меньшем токе, для этого необходимо увеличить номинал резистора R2. Например, при R2 равном 0,1 Ом, минимальный ток срабатывания защиты будет составлять около 8А. Если же нужно, наоборот, увеличить ток нагрузки, следует параллельно включить два и более транзисторов, в эмиттерах которых имеются выравнивающие резисторы.

Схема релейного стабилизатора напряжения 220

С помощью релейного стабилизатора обеспечивается надежная защита приборов и других электронных устройств, для которых стандартный уровень напряжения составляет 220В. Данный стабилизатор напряжения 220В, схема которого всем известна. Пользуется широкой популярностью, благодаря простоте своей конструкции.

Для того чтобы правильно эксплуатировать это устройство, необходимо изучить его устройство и принцип действия. Каждый релейный стабилизатор состоит из автоматического трансформатора и электронной схемы, управляющей его работой. Кроме того, имеется реле, помещенное в надежный корпус. Данный прибор относится к категории вольтодобавочных, то есть с его помощью лишь добавляется ток в случае низкого напряжения.

Добавление необходимого количества вольт осуществляется путем подключения обмотки трансформатора. Обычно для работы используется 4 обмотки. В случае слишком высокого тока в электрической сети, трансформатор автоматически уменьшает напряжение до нужного значения. Конструкция может быть дополнена и другими элементами, например, дисплеем.

Таким образом, релейный стабилизатор напряжения имеет очень простой принцип работы. Ток измеряется электронной схемой, затем, после получения результатов, он сравнивается с выходным током. Полученная разница в напряжении регулируется самостоятельно путем подбора необходимой обмотки. Далее, подключается реле и напряжение выходит на необходимый уровень.

Стабилизатор напряжения и тока на LM2576

Стабилизатор напряжения для дома | Заметки электрика

Здравствуйте, уважаемые читатели сайта http://zametkielectrika.ru.

Тема сегодняшней статьи относится к таким неотъемлемым в настоящее время устройствам, как стабилизаторы напряжения для дома. Сейчас я Вам поясню почему неотъемлемые. Энергоснабжающая организация не уделяет должного внимания на качество поставляемой электроэнергии потребителям. Причиной этому может являться отсутствие законов и наложение санкций при несоответствующем качестве. К тому же не стоит забывать, что энергоснабжающая организация является монополистом по поставке электрической энергии.

Поставляемая электроэнергия является товаром. И если этот «товар» будет не надлежащего качества, то это может привести к выходу из строя электрооборудования. Поэтому каждый потребитель должен позаботиться о себе сам, применив стабилизаторы напряжения для дома, которые предназначены для поддержания стабильного напряжения питания нагрузок бытового и промышленного назначения.

Что же такое «качество» электрической энергии?

Для этого обратимся к следующим нормативным документам, где регламентируются параметры электрической сети от источника питания до потребителя.

В этих ГОСТах представлена расшифровка параметров и цифровые показатели качества электрической энергии, методы их измерения, причины и вероятности появления того или иного отклонения качества.

Кстати, скачать ПУЭ 7 издание Вы можете с моего сайта.

Теперь давайте рассмотрим основные показатели качества электрической энергии, согласно ГОСТ 13109-97.

Основные показатели электрической энергии

1. Отклонение напряжения

Существуют следующие нормы отклонений:

  • нормально-допустимые (±5%)
  • предельно-допустимые (±10%)

Согласно ГОСТа 21128-83, номинальное действующее напряжение однофазной бытовой сети должно составлять 220 (В). Отсюда следует, что предел напряжений от 209 - 231 (В) является нормально-допустимым отклонением, а предел напряжений от 198 - 242 (В) - предельно-допустимым отклонением.

2. Провал напряжения

Провал напряжения - это падение напряжения ниже, чем 198 (В) длительностью более 30 секунд. Глубина провала напряжения может достигать до 100%.

3. Перенапряжение

Перенапряжение - это превышение амплитудного значения напряжения больше 339 (В).

Напоминаю, что амплитудное значение 310 (В) соответствует действующему значению 220 (В).

Более подробно о причинах возникновения перенапряжений читайте в моей статье: виды перенапряжений и их опасность.

Так что же такое стабилизатор напряжения для дома?

Стабилизатор напряжения - это автоматическое устройство, которое при изменении входного напряжения, на выход выдает стабильное заданное напряжение 220 (В). Схематично можно изобразить так:

Рассмотрим проблемы, которые могут возникнуть с питающим напряжением в своих домах, коттеджах и садах.

Наружная электропроводка для большинства дачных поселков была построена и рассчитана еще в прошлом веке, когда нормы потребления на каждый дом принимались около 2 (кВт). В настоящее время только один электрический чайник потребляет около 1 (кВт), стиральная машинка около 2 (кВт), не говоря уже об электрических плитах, мощность которых достигает 10 (кВт) и больше.

По причине долгого срока эксплуатации состояние питающих линий с каждым годом ухудшается. Обслуживающие электрики приезжают на линию только по аварийным заявкам и вызовам. Периодические проверки и обслуживание линий ведется по минимуму.

От воздействий атмосферных осадков происходит окисление проводов, что уменьшает их сечение, в местах соединений проводов ухудшается электрический контакт, что приводит к дополнительным потерям. Также увеличивается число потребителей на одну и ту же линию. Хотя в последнее время в технических условиях на подключение дома энергоснабжающая организация обязывает установку ограничителей мощности.

Что в итоге мы имеем?

Когда линия не нагружена, то величина питающего напряжения не выходит за рамки норм. Как только нагрузка на линии начинает постепенно расти (люди приходят с работы), питающее напряжение начинает уменьшаться. По личному примеру скажу, что в одной из деревень величина напряжения в вечернее время достигала 150 (В). При таком напряжении холодильники выходят из строя, лампочки светят тускло, электрические печи не греют до номинальной температуры и т.д.

Как выходит из данной ситуации энергоснабжающая организация?

Очень просто.

Они выставляют на питающем трансформаторе с помощью привода ПБВ или РПН изначально повышенный уровень напряжения, чтобы в часы максимальной нагрузки напряжение было в норме, ну или почти в норме. Но ведь изначально выставленный повышенный уровень напряжения на питающем трансформаторе приводит к скорому перегоранию лампочек, а также к выходу из строя бытовой аппаратуры и техники.

Что же получается? Палка о «двух концах»?

Кто в данном тексте увидел свою проблему, то рекомендую Вам позаботиться о себе самостоятельно, вооружившись стабилизатором напряжения для дома. Ниже я познакомлю Вас с типами стабилизаторов.

Типы стабилизаторов напряжения для дома

Рассмотрим классификацию стабилизаторов напряжения для дома.

1. Феррорезонансные или магниторезонансные стабилизаторы напряжения

Это самые «древние» стабилизаторы напряжения для дома, которые применялись для питания первых цветных телевизоров. Помните, такую «коробку»?

Стабилизатор напряжения для дома «Украина-2″ мощностью всего то 315 (Вт).

А это еще один феррорезонансный стабилизатор напряжения.

Принцип их работы основывается на явлении магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей.

У этих стабилизаторов напряжения недостатков пожалуй гораздо больше, чем достоинств. Во-первых, они выпускались небольшой мощности (до 600 Вт). Во-вторых, они очень сильно искажают синусоидальную форму выходного напряжения. В-третьих, они очень сильно гудят, а также у них узкий диапазон стабилизации и они частенько выходят из строя при повышенном напряжении в сети.

2. Дискретные (ступенчатые) стабилизаторы напряжения

Следующий тип стабилизаторов напряжения для дома, который мы рассмотрим, называются дискретными или ступенчатыми.

Принцип их работы основывается на ступенчатой коррекции напряжения, осуществляемой переключением отводов обмотки автотрансформатора с помощью ключей.

Ключи бывают либо релейными, либо полупроводниковыми (симисторы).

Ниже на рисунке приведена упрощенная схема дискретного стабилизатора для дома с прямым включением 5 ключей. Обычно такая схема применяется у самых дешевых моделей. Каждый ключ (реле или симистор) настроен на определенный порог срабатывания по уровню входного напряжения сети. При достижении этого значения ключ замыкает часть обмотки автотрансформатора.

Про достоинства таких типов стабилизаторов напряжения для дома могу сказать то, что они обладают высокой скоростью реакции на изменение входного напряжения, что необходимо для двигательных нагрузок, таких как холодильник, стиральная машина, глубинный насос и др.

Время реакции на изменение входного напряжения зависит от количества обмоток и скорости работы ключей.

Также у них небольшой вес и габариты, отсутствуют движущиеся части, в отличие от электромеханических стабилизаторов, а также широкий диапазон входных напряжений.

Из недостатков можно отметить то, что напряжение на выходе меняется ступенчато и во время процесса регулирования происходит прерывание выходного напряжения.

Сейчас мы рассмотрим электромеханические стабилизаторы напряжения для дома. Их принцип работы основан на регулировании напряжения за счет перемещения щетки по обмотке автотрансформатора.

Непрерывность фазы выходного напряжения обеспечивается конструкцией токосъемника, т.е. щеткой. Ширина щетки приблизительно равна 2,2 диаметра провода обмотки автотрансформатора, чтобы при переходе с одного витка на другой электрический контакт не терялся.

Достоинства электромеханического стабилизатора напряжения:

  • плавное регулирование
  • отсутствие помех при работе
  • отсутствие искаженной формы напряжения
  • отсутствие электронных ключей, коммутирующих рабочий ток
  • высокая точность удержания выходного напряжения - 220 ± 3% (в отличие от дискретных - 220 ± 7%)

Недостатки электромеханического стабилизатора напряжения:

  • необходимо следить за износом щетки
  • искрение во время перемещения щетки по обмотке автотрансформатора
  • во время работы двигателя сервопривода слышно гудение
Выводы

Про необходимость установки стабилизаторов напряжения для дома я Вам пояснил. Далее решать только Вам. С типами стабилизаторов я Вас познакомил. Рекомендую Вам приобретать только дискретные или электромеханические стабилизаторы (сам лично склоняюсь к последним), про феррорезонансный вообще забудьте.

P.S. В следующей статье мы научимся выбирать стабилизатор напряжения по мощности. Покажу Вам пример расчета мощности стабилизатора для своей квартиры. А также поговорим о месте их установки и креплении. Чтобы не пропустить выход новых статей - пройдите процедуру подписки. Форма находится в конце каждой статьи и в правой колонке сайта.

zametkielectrika.ru

стабилизатор напряжения 220в своими руками - Меандр - занимательная электроника

Цифровой вольтметр сетевого напряжения на микроконтроллере ATTINY26, содержит 10-разрядный АЦП, трехразрядный светодиодный индикатор с динамической индикацией, линейный стабилизатор 7805, ну еще несколько токоограничительных резисторов. Конечно, большая часть рассыпухи используется для работы безтрансформаторного БП. Ниже приведена схема вольтметра. Детали: все диоды в схеме использованы типа 1N4007, но подойдут и любые другие с прямым током от 0,5А …

В статье приведено описание устройства, которое позволяет наглядно с помощью двух светодиодных линеек отображать текущее значение напряжения сети ~220 В и тока потребления в контролируемой линии, а также осуществлять звуковую сигнализацию при выходе уровней напряжения и тока за установленные границы. Идея контролировать состояние домашней питающей сети возникает, думаю, у многих, особенно после очередной оплаты за …

R1, R2, R3 - делители напряжения в диапазонах 0-1,2В, 0-12В и 0-120В. Вольтметр индикатор собран на микросхеме LM3914. Ток протекающий через каждый светодиод может достигать 30мА. R4 - регулирует яркость светодиодов. Каждый светодиод имеет шаг 1,2В (в диапазоне 12В). Изменив значения делителей напряжения R1 R2 R3 Вы можете самостоятельно подобрать необходимый Вам диапазон измерения напряжения.

Технические характеристики: Напряжение питания – 10-17 В Шаг индикации напряжения – 0.5 В Диапазон измерения напряжения – 10.5-16 В Количество точек индикации – 12 Максимальный ток потребления – 40 мА Устройство представляет собой универсальный линейный индикатор напряжения на базе КР1003ПП1. Сигнал индицируется шкалой из 12 светодиодов, загорающихся последовательно в зависимости от входного напряжения. При использовании …

meandr.org

Подключение стабилизатора напряжения пошаговая инструкция

В зависимости от того, какой стабилизатор напряжения вы выбрали, стоит рассмотреть несколько вариантов подключения. (Меню кликабельно)

Кроме того, важно определиться с местом расположения стабилизатора

Зачастую бывает так, что в квартире (доме, офисе) есть необходимость подключить только одно-два устройства под стабилизатор, а остальные в таком не нуждаются.

Это случается тогда, когда входящее напряжение в сети незначительно отличается от номинальных 220 вольт и его перепады незначительны (+/- 15 вольт).

В таких случаях, действительно нет необходимости подключать полностью весь дом и достаточно защитить плазменный телевизор, спутниковый тюнер или компьютер.

Для подключения по такой схеме необходимо, тем не менее, позаботиться о том, чтобы высокоточная техника (аудио, видеосистемы, ПК) были дополнительно подключены через сетевой фильтр. Это необходимо для того, чтобы эти источники не давали помехи друг на друга, а также, чтобы отфильтровать скачки напряжения от работы сварки во дворе, например.

Стоит отметить, что в случае подключения газового котла, необходимо также включить в схему ИБП – источник бесперебойного питания, который обеспечит корректную работу оборудования даже при отключении электричества.

Непосредственно к самому выпрямителю можно подключать мощные токоприемники, такие, как насос, холодильник, микроволновая печь, электродуховка, пылесос, пароварка, утюг. Эти потребители не требуют особой точности в стабилизации и мало зависят от перепадов напряжения.

Схема подключения всей квартиры через стабилизатор напряжения

Этот способ подключения стабилизатора напряжения наиболее приемлем для современных квартир и домов.

Выпрямитель в этом случае является самым первым прибором после электросчетчика и обеспечивает стабильным и ровным напряжением все токоприемники квартиры, дачи или дома.

При таком подключении наиболее правильным считается проведение отдельных линий под разные типы электроприборов. Каждая из линий должна оборудоваться своими пакетниками (освещение, насос, телевизор+аудиосистема, компьютер и т.д.)

Но очень редко на этапе строительства учитывается, какие электроустановки будут включаться в ту или иную розетку, поэтому возникают ситуации, когда с помощью удлинителя удобно подключить маломощную, но точную технику (телевизор, спутниковая антенна) в одну розетку с «грубой» (холодильник, стиральная машина, насос, утюг).

При этом «грубая» техника при включении будет создавать помехи, которую стабилизатор, расположенный на входе в дом, отфильтровать не в состоянии. Поэтому старайтесь избегать такого соседства и подключать такие электроприборы как можно дальше друг от друга.

Если же это невозможно, то перед «точной» техникой должен обязательно стоять сетевой фильтр.

Три фазы

Нередко в помещение заходит не одна, а три фазы. В этом случае нужно подключать один трехфазный стабилизатор напряжения или три однофазных.

Первый из них используется только в том случае, если будут применяться электроприборы, рассчитанные на 380 вольт, например мощные электродвигатели, но такие устройства в быту обычно не используются.

Подключение стабилизаторов к трем фазам

Если же в дом поступает три фазы (380 вольт), то лучше использовать схему из трех стабилизаторов, которая обеспечит качественным, ровным 220 В электричеством всю элетрику в доме.

Более того, даже в промышленных масштабах рекомендуется использовать схему из трех однофазных, т.к. в случае выхода из строя или попросту отключения одного из них, в сети остается 220 вольт, что невозможно при использовании трехфазного – тот попросту отключает электричество полностью.

Поэтому, если в сети преобладают потребители по 220 вольт, а не по 380 – следует использовать схему из трех стабилизаторов.

Схема подключения показана на рисунке.

Трехфазный вход имеет четыре провода – один из которых – ноль, является общим для всех трех стабилизаторов в системе, а каждая отдельная фаза пропускается через отдельный выпрямитель.

Разработчики электрических и электронных устройств, в процессе их создания, исходят из того, что будущее устройство будет работать в условиях стабильного питающего напряжения. Это необходимо для того, чтобы электрическая схема электронного устройства, во-первых, обеспечивала стабильные выходные параметры в соответствии со своим целевым назначением, а во-вторых, стабильность питающего напряжения защищает устройство от скачков, чреватых слишком большими потребляемыми токами и перегоранием электрических элементов устройства. Для решения задачи обеспечения неизменности питающего напряжения применяют какой-либо вариант стабилизатора напряжения. По характеру потребляемого устройством тока различают стабилизаторы переменного и постоянного напряжения.

Стабилизаторы переменного напряжения

Стабилизаторы переменного напряжения применяют, если отклонения напряжения в электрической сети от номинального значения превышают 10% . Такая норма выбрана исходя из того, что потребители переменного тока при таких отклонениях сохраняют свою работоспособность весь срок эксплуатации. В современной электронной технике, как правило, для решения задачи стабильного электропитания используют импульсный блок питания, при котором стабилизатор переменного напряжения не нужен. А вот в холодильниках, микроволновых печах, кондиционерах, насосах и т.п. требуется внешняя стабилизация питающего переменного напряжении. В таких случаях чаще всего используют стабилизатор одного из трёх типов: электромеханический, главным звеном которого является регулируемый автотрансформатор с управляемым электрическим приводом, релейно- трансформаторный, на базе мощного трансформатора, имеющего несколько отводов в первичной обмотке, и коммутатора из электромагнитных реле, симисторов, тиристоров или мощных ключевых транзисторов, а также чисто электронный. Широко распространенные в прошлом веке феррорезонансные стабилизаторы в настоящее время практически не используются из-за наличия многочисленных недостатков.

Для подключения потребителей к сети переменного тока 50 Гц применяют стабилизатор напряжения на 220 В. Электрическая схема стабилизатора напряжения такого типа изображена на следующем рисунке.

Трансформатор А1 повышает напряжение в сети до уровня, достаточного для стабилизации выходного напряжения при низком входном напряжении. Регулирующий элемент РЭ осуществляет изменение выходного напряжения. На выходе управляющий элемент УЭ измеряет значение напряжения на нагрузке и выдает управляющий сигнал для его корректировки, если это необходимо.

Электромеханические стабилизаторы

В основе такого стабилизатора - использование бытового регулируемого автотрансформатора или лабораторного ЛАТРа. Применение автотрансформатора обеспечивает более высокий КПД установки. Рукоятка регулирования автотрансформатора удаляется, а на корпусе вместо нее соосно устанавливают небольшой двигатель с редуктором, обеспечивающим усилие вращения достаточное для поворота бегунка в автотрансформаторе. Необходимая и достаточная скорость вращения – около 1 оборота за 10 - 20 сек. Этим требованиям удовлетворяет двигатель типа РД-09, который раньше применялся в самопишущих приборах. Управляет двигателем электронная схема. При изменении сетевого напряжения в пределах +- 10 вольт выдаётся команда на двигатель, который поворачивает бегунок до достижения на выходе напряжения 220 В.

Примеры схем электромеханических стабилизаторов приведены ниже:

Электрическая схема стабилизатора напряжения с использованием логических микросхем и релейного управления электроприводом


Электромеханический стабилизатор на основе операционного усилителя.

Достоинством подобных стабилизаторов является простота реализации и высокая точность стабилизации напряжения на выходе. К недостаткам следует отнести невысокую надёжность из - за присутствия механических подвижных элементов, относительно малую допустимую мощность нагрузки (в пределах 250 ... 500 Вт), малую распространенность в наше время автотрансформаторов и необходимых электродвигателей.

Релейно - трансформаторные стабилизаторы

Релейно - трансформаторный стабилизатор является более популярным в силу простоты реализации конструкции, применения распространенных элементов и возможности получения значительной выходной мощности (до нескольких киловатт), значительно превышающей мощность примененного силового трансформатора. На выбор его мощности влияет минимальное напряжение в конкретной сети переменного тока. Если, к примеру, оно не меньше 180 В, то от трансформатора потребуется обеспечение вольтодобавки 40 В, что в 5,5 раз меньше номинального напряжения в сети. Выходная мощность у стабилизатора во столько же раз будет больше, чем мощность силового трансформатора (если не учитывать КПД трансформатора и максимально допустимый ток через коммутирующие элементы). Число ступеней изменения напряжения, как правило, устанавливают в пределах 3 ... 6 ступеней, что в большинстве случаев обеспечивает приемлемую точность стабилизации напряжения на выходе. При вычислении количества витков обмоток в трансформаторе для каждой ступени напряжение в сети принимается равным уровню срабатывания коммутирующего элемента. Как правило, в качестве коммутирующих элементов используют электромагнитные реле - схема выходит достаточно элементарной и не вызывающей затруднений при повторении. Недостатком такого стабилизатора является образование дуги на контактах реле в процессе коммутации, что разрушает контакты реле. В более сложных вариантах схем переключение реле производят в моменты перехода полуволны напряжения через нулевое значение, что предотвращает возникновение искры, правда при условии использования быстродействующих реле или коммутации на спаде предшествующей полуволны. Использование в качестве коммутирующих элементов тиристоров, симисторов или других бесконтактных элементов надёжность схемы резко возрастает, но усложняется из-за необходимости обеспечения гальванической развязки между цепями управляющих электродов и модулем управления. Для этого применяют оптронные элементы или разделительные импульсные трансформаторы. Ниже приведена принципиальная схема релейно - трансформаторного стабилизатора:

Схема цифрового релейно - трансформаторного стабилизатора на электромагнитных реле


Электронные стабилизаторы

Электронные стабилизаторы имеют, как правило, небольшую мощность (до 100 Вт) и необходимую для работы многих электронных устройств высокую стабильность выходного напряжения. Они обычно строятся в виде упрощённого усилителя низкой частоты, имеющего достаточно большой запас изменения уровня питающего напряжения и мощности. На его вход от электронного регулятора напряжения подаётся сигнал синусоидальной формы с частотой 50 Гц от вспомогательного генератора. Можно использовать понижающую обмотку силового трансформатора. Выход усилителя подключен к повышающему до 220 В трансформатору. Схема имеет инерционную отрицательную обратную связь по значению выходного напряжения, что гарантирует стабильность выходного напряжения с неискажённой формой. Для достижения мощности на уровне нескольких сотен ватт используют другие методы. Обычно применяют мощный преобразователь постоянного тока в переменный на основе использования нового вида полупроводников - так называемых IGBT транзисторо.

Эти коммутирующие элементы в ключевом режиме могут пропустить ток в несколько сотен ампер при максимально допустимом напряжении более 1000 В. Для управления такими транзисторами используются специальные виды микроконтроллеров с векторным управлением. На затвор транзистора с частотой в несколько килогерц подают импульсы с переменной шириной, которая меняется по программе, введенной в микроконтроллер. По выходу такой преобразователь нагружен на соответствующий трансформатор. Ток в цепи трансформатора меняется по синусоиде. В то же время напряжение сохраняет форму исходных прямоугольных импульсов с разной шириной. Такая схема используется в мощных источниках гарантированного питания, используемых для бесперебойной работы компьютеров. Электрическая схема стабилизатора напряжения такого типа очень сложна и практически недоступна для самостоятельного воспроизведения.

Упрощенные электронные стабилизаторы напряжения

Такие устройства применяют, когда напряжение бытовой сети (особенно в условиях сельских населенных пунктов) нередко оказывается пониженным, практически никогда не обеспечивая номинальных 220 В.

В такой ситуации и холодильник работает с перебоями и риском выхода из строя, и освещение оказывается тусклым, и вода в электрочайнике долго не может закипеть. Мощности старенького, еще советских времен, стабилизатора напряжения, рассчитанного на питание телевизора, как правило, недостаточна для всех остальных бытовых электропотребителей, да и значение напряжения в сети часто падает ниже уровня, допустимого для подобного стабилизатора.

Существует простой метод для повышения напряжение в сети, путем использования трансформатора мощностью значительно меньшей мощности применяемой нагрузки. Первичная обмотка трансформатора включается непосредственно в сеть, а нагрузка подключается последовательно к вторичной (понижающей) обмотке трансформатора. При правильной фазировке напряжение на нагрузке окажется равным сумме снимаемого с трансформатора и сетевого напряжения.

Электрическая схема стабилизатора напряжения, действующего по этому несложному принципу, приведена рисунке ниже. Когда стоящий в диагонали диодного моста VD2 транзистор VT2 (полевой) закрыт, обмотка I (являющаяся первичной) трансформатора Т1 к сети не подключена. Напряжение на включенной нагрузке почти равно сетевому за минусом небольшого напряжения на обмотке II (вторичная) трансформатора Т1. При открытии полевого транзистора первичная обмотка трансформатора окажется замкнутой, а к нагрузке будет приложена сумма сетевого и напряжения вторичной обмотки.


Схема электронного стабилизатора напряжения

Напряжение с нагрузки, через трансформатор Т2 и диодный мост VD1 подается на транзистор VT1. Регулятор подстроечного потенциометра R1 должен быть выставлен в положение, обеспечивающее открытие транзистора VT1 и закрытие VT2, когда напряжение на нагрузке превышает номинальное (220 В). Если напряжение меньше 220 вольт транзистор VT1 закроется, a VT2 - откроется. Полученная таким способом отрицательная обратная связь сохраняет напряжение на нагрузке примерно равным номинальному значению.

Выпрямленное напряжение с моста VD1 используется и для запитки коллекторной цепи VT1 (через цепь интегрального стабилизатора DA1). Цепочка C5R6 гасит нежелательные скачки напряжения сток-исток на транзисторе VT2. Конденсатор С1 обеспечивает снижение помех, проникающих в сеть в процессе работы стабилизатора. Номиналы резисторов R3 и R5 подбирают, получая наилучшую и устойчивую стабилизацию напряжения. Выключатель SA1 обеспечивает включение и выключение стабилизатора и нагрузки. Замыкание выключателя SA2 отключает автоматику, стабилизирующую напряжение на нагрузке. Оно в таком варианте оказывается максимально возможным при текущем напряжении в сети.

После включения собранного стабилизатора в сеть, подстроечным резистором R1 устанавливают на нагрузке напряжение, равное 220 В. Нужно учесть, что вышеописанный стабилизатор не может устранить изменения сетевого напряжения, превышающие 220 В, или оказавшиеся ниже минимального, использованного при расчете обмоток трансформатора.

Замечание: В некоторых режимах работы стабилизатора мощность, рассеиваемая транзистором VT2, оказывается весьма значительной. Именно она, а не мощность трансформатора, может ограничить допустимую мощность нагрузки. Поэтому следует позаботиться о хорошем отводе тепла от этого транзистора.

Стабилизатор, устанавливаемый в сыром помещении, нужно обязательно поместить в заземленный металлический корпус.

Смотрите также схемы.

Оптимальным способом работы электрических сетей считается изменение функций тока, а также требуемого напряжения на 10% от 220В. Однако так как скачки изменяются достаточно часто, соответственно электрическим устройствам, которые напрямую подсоединены к сети, угрожает поломка.

Чтобы исключить такие неприятности, необходимо установить определённое оборудование. А так как магазинное устройство имеет достаточно высокую стоимость, естественно многие собирают стабилизатор собственноручно.

Оправдано ли подобное решение и что требуется для воплощения его в реальность?

Принцип функционирования стабилизатора

Приняв решение создать самодельный стабилизатор, как на фото, нужно посмотреть во внутреннюю часть корпуса, которая состоит из определённых деталей. Принцип работы обычного прибора основан непосредственно на функционировании реостата, который увеличивает либо уменьшает сопротивление.

Кроме этого, предложенные модели имеют разнообразие функций, а также полностью могут обеспечить защиту технике от нежелательных перепадов скачущего напряжения в сети.

Оборудование классифицируется в зависимости от способов, применяемых для урегулирования тока. Так как величина является направленным продвижением частичек, соответственно влиять на неё можно механическим, либо импульсным методом.

Первый работает по закону Ома. Устройства, функционирование которых основано на нём, носят название линейные. В них включено несколько колен, совмещаемых посредством реостата.

Напряжение, которое подаётся на одну деталь, проходит посредством реостата, оказываясь подобным способом на другую, с которого передаётся потребителю.

Данного вида устройства дают возможность выставлять требуемые параметры тока максимально точно и вполне могут подвергнуться модернизации специальными узлами.

Однако недопустимо применять подобные стабилизаторы в сетях, где между током разница большая, поскольку они не обезопасят в полной мере от КЗ технику при перегрузках.

Варианты импульсные функционируют по методу амплитудной токовой модуляции. В цепи применяется выключатель, который её разрывает через необходимый период времени. Подобный подход даёт возможность накапливать необходимый ток в конденсаторе максимально равномерно, а по окончанию зарядки и затем на устройства.


Начинаем сборку

Так как к самому эффективному относится симисторный прибор, то поговорим, как собственными руками сделать непосредственно подобный стабилизатор.

Важно подчеркнуть, что данного типа модель сможет выравнивать подаваемый ток при таком условии, что напряжение в диапазоне 130-270 В. Потребуются также комплектующие элементы. Из инструментов нужен пинцет, а также паяльник.

Поэтапность изготовления

Согласно подробной инструкции, как смонтировать стабилизатор, прежде всего, следует подготовить требуемого размера плату печатную. Создаётся она из стеклотекстолита специального фольгированного. Микросхема расположения элементов может быть в напечатанном формате, либо перенесённой на плату посредством утюга.

Затем схемой создания простого стабилизатора предусмотрена непосредственно сборка прибора. Для данного элемента понадобится магнитопровод, несколько кабелей. Один провод диаметром в 0,064 мм применяется для изготовления обмотки. Количество требуемых витков достигает 8669.

Остальные два провода используют для создания оставшихся обмоток, характеризующиеся в сравнении с первым вариантом диаметром в 0,185 мм. Число обустраиваемых витков для данных обмоток равно не менее 522.

При необходимости упростить поставленную задачу предпочтительно воспользоваться последовательно соединяющимися трансформаторами марки ТПК-2-2 12В.

При самостоятельном производстве данных деталей по окончанию создания одной из них переходят к производству другой. В этих целях потребуется магнитопровод троидальный. В качестве обмотки подходит тоже ПЭВ-2 с числом витков 455.

К тому же пошаговым собственноручным изготовлением стабилизатора во втором приборе следует произвести 7 отводов. При этом для нескольких трёх применяется провод 3 мм в диаметре, для других используются шины 18 мм2 сечением. Это даст возможность исключить нежелательное нагревание устройства во время рабочего процесса.

Остальные элементы следует покупать в специализированной торговой точке. Как только всё нужное закуплено, следует собрать прибор.

Работы следует начинать с установки необходимой микросхемы, которая выступает в качестве контроллёра на обустраиваемый теплоотвод, производимый из платины. Помимо этого на него устанавливаются симисторы. Затем на плату монтируются светодиоды мигающие.

Если создание приборов симисторного для вас является сложной задачей, то рекомендуется остановиться на линейном варианте, характеризующемся подобными свойствами.

Фото стабилизаторов своими руками

Стабилизатор представ­ляет собой сетевой авто­трансформатор, отводы обмотки которого пере­ключаются автоматичес­ки в зависимости от величины напряжения в электросети.

Стабилизатор позво­ляет поддерживать вы­ходное напряжение на уровне 220V при измене­нии входного от 180 до 270 V. Точность стабили­зации 10V.

Принципиальную схему можно разделить на слаботоковую схему (или схему управления) и сильнотоковую (или схе­му автотрансформатора).

Схема управления пока­зана на рисунке 1. Роль измерителя напряжения возложена на поликомпараторную микросхему с линейной индикацией напряжения, — А1 (LM3914).

Сетевое напряжение поступает на первичную обмотку маломощного трансформатора Т1. У этого трансформатора есть две вторичные обмотки, по 12V на каждой, имеющие один общий вывод (или одна обмотка на 24V с отво­дом от середины).

Выпрямитель на диоде VD1 служит для получения питающего напряжения. Напряже­ние с конденсатора С1 поступает на цепь пита­ния микросхемы А1 и светодиодов оптопар Н1.1-Н9.1. А так же, он служит для получения образцовых стабильных напряжений мини­мальной и максимальной отметки шкалы. Для их получения используется параметрический стабилизатор на УЗ и Р1. Предельные значения измерения устанавливаются подстроечными резисторами R2 и R3 (резистором R2 — верхнее значение, резистором RЗ -нижнее).

Измеряемое напряжение берется с другой вторичной обмотки трансформатора Т1. Оно выпрямляется диодом VD2 и поступает на резистор R5. Именно по уровню постоянного напряжения на резисторе R5 производится оценка степени отклонения сетевого напря­жения от номинального значения. В процессе налаживания резистор R5 пред­варительно устанавливают в среднее положе­ние, а резистор RЗ в нижнее по схеме.

Затем, на первичную обмотку Т1 от автотрансфор­матора типа ЛАТР подают повышенное напряжение (около 270V) и резистором R2 выводят шкалу микросхемы на значение, при котором горит светодиод, подключенный к выводу 11 (временно вместо светодиодов оптопар можно подключить обычные свето-диоды). Затем входное переменное напря­жение уменьшают до 190V и резистором RЗ выводят шкалу на значение когда горит свето­диод, подключенный к выводу 18 А1.

Если вышеуказанные настройки сделать не удается, нужно подстроить немного R5 и повторить их снова. Так, путем последова­тельных приближений добиваются результата, когда изменению входного напряжения на 10V соответствует переключение выходов микро­схемы А1.

Всего получается девять пороговых значе­ний, — 270V, 260V, 250V, 240V, 230V, 220V, 210V, 200V, 190V.

Принципиальная схема автотрансформатора показана на рисунке 2. В его основе лежит переделанный трансформатор типа ЛАТР. Корпус трансформатора разбирают и удаляют ползунковый контакт, который служит для переключения отводов. Затем по результатам предварительных изме­рений напряжений от отводов делают выводы (от 180 до 260V с шагом в 10V), которые, в дальнейшем переключают при помощи симисторных ключей VS1-VS9, управляемых системой управления посредством оптопар Н1-Н9. Оптопары подключены так, что при снижении показания микросхемы А1 на одно деление (на 10V) происходит переключение на повышающий (на очередные 10V) отвод автотрансфор­матора. И наоборот, — увеличение пока­заний микросхемы А1 приводит к пере­ключению на понижающий отвод авто­трансформатора. Подбором сопротивления резистора R4 (рис. 1) устанавливают ток через светодиоды оптопар, при котором симис-торные ключи переключаются уверенно. Схема на транзисторах VТ1 и VT2 (рис. 1) служит для задержки включения нагрузки автотрансформатора на время, необходимое на завершение переход­ных процессов в схеме после включе­ния. Эта схема задерживает подключе­ние светодиодов оптопар к питанию.

Вместо микросхемы LM3914 нельзя использовать аналогичные микросхемы LM3915 или LM3916, из-за того, что они работают по логарифмическому закону, а здесь нужен линейный, как у LM3914. Трансформатор Т1 — малогабаритный китайский трансформатор типа TLG, на первичное напряжение 220V и два вто­ричных по 12V (12-0-12V) и ток 300mА. Можно использовать и другой аналогич­ный трансформатор.

Трансформатор Т2 можно сделать из ЛАТРа, как описано выше, или намотать его самостоятельно.

Симисторы можно использовать другие, — все зависит от мощности нагрузки. Можно даже использовать в качестве элементов коммутации элекромагнитные реле.

Сделав другие настройки резисторами R2, RЗ, R5 (рис. 1) и, соответственно, другие отводы Т2 (рис. 2) можно изме­нить шаг переключения напряжения.

Кривошеим Н. Радиоконструктор. 2006г. №6.

Литература:

  1. Андреев С. Универсальный логичес­кий пробник, ж. Радиоконструктор 09-2005.
  2. Годин А. Стабилизатор переменного напряжения, ж. Радио, №8, 2005

P.S. В нашем «Магазине Мастера» вы можете приобрести готовые модули стабилизаторов, усилителей, индикаторов напряжения и тока, а также различные радиолюбительские наборы для самостоятельной сборки.

Наш ««


П О П У Л Я Р Н О Е:

    Как ограничить ток через нагрузку?

    Часто бывает возникает необходимость ввести в схему ограничение по току. Это один из методов защиты электронной нагрузки. При коротком замыкании в цепи нагрузки схемой защиты по току можно спасти источник питания от повреждения.

    Ранее мы размещали схемы зарядных устройств на

Стабилизатор напряжения 220В для дома: какой выбрать правильно

Автор aquatic На чтение 6 мин. Просмотров 3.6k. Обновлено

Чтобы приобрести без ошибок стабилизатор напряжения 220В для дома, какой выбрать из предложенных на рынке надо выяснить заранее. Личные знания помогут точнее формулировать свои требования, беседовать с продавцом на равных. Пригодится также изучение актуальных предложений рынка в соответствующем сегменте.

Современный стабилизатор

Стабилизатор напряжения 220В для дома: какой выбрать набор оборудования

Современный жилой дом оснащен разнообразной техникой с питанием от электрической сети. Это оборудование будет выполнять свои функции полноценно, если параметры напряжения стабильны. Для решения такой задачи во входной цепи устанавливают специальные устройства. Они автоматически фиксируют выход показателей из нормального диапазона и делают необходимые коррекции самостоятельно.

При изменении входного напряжения на выходе обеспечивается автоматическое подержание нормального уровня

Не сложно описать качественный стабилизатор напряжения 220В для дома, какой выбрать будет решить не сложно с помощью следующих критериев:

  • Хороший аппарат должен работать без лишнего контроля и вмешательства со стороны пользователя.
  • Минимальный шум, или полное его отсутствие упростят выбор места для установки.
  • Выходную мощность выбирают, соответствующую подключенным потребителям.
  • Разумная стоимость – это приятно. Но для полноценного экономического расчета следует учитывать потери электроэнергии в самом устройстве, длительность его срока службы, выполнение обязательного технического обслуживания.

Для чего нужна стабилизация напряжения

Чтобы исключить сомнения в необходимости таких инвестиций надо открыть любой  технический паспорт на бытовую технику. В соответствующей строке указано номинальное напряжение питания с допустимыми отклонениями (например: ±10%). Если напряжение выходит за пределы указанного диапазона, производитель вправе снять свои гарантийные обязательства.

Испорченную по собственной вине микроволновую печь придется ремонтировать за счет владельца

По действующим в настоящее время правилам сложно предъявить претензии, а точнее – получить компенсацию ущерба. Отечественные обслуживающие организации иногда проводят работы вовсе без предварительного предупреждения. Снижение напряжения происходят при подключении большого количества кондиционеров летом. Соответствующие скачки наблюдаются вечером, когда готовят пищу, зимой в процессе эксплуатации мощных нагревательных приборов. Определенное негативное влияние оказывает несовершенство оборудования питающей подстанции, ее недостаточная мощность.

Перечисленные выше факторы убеждают в том, что обычный владелец частного дома исключить их не способен. Но он может установить стабилизатор. Такое решение поможет:

  • сохранить гарантийные обязательства;
  • обеспечить нормальную яркость осветительных приборов;
  • поддерживать полноценную работоспособность насосов и других подключенных к сети устройств.

Достаточная освещенность рабочего места необходима для хорошего зрения

Виды специализированного оборудования

Чтобы приобрести стабилизатор напряжения 220В для домашнего использования, надо выяснить, какой выбрать механизм изменения напряжения. Чаще всего используются следующие схемы:

  • релейная;
  • тиристорная;
  • с электромеханическим приводом (латерная).

Все они подсоединяют разные выходные обмотки трансформатора при изменении напряжения на входе.

Принципиальная схема стабилизатора

С помощью этой схемы можно рассмотреть подробнее принципы действия этого устройства:

  • Если напряжение в норме, то ничего не происходит. Ток поступает через транзитное реле непосредственно на выход. Потери в цепи настолько малы, что ими можно пренебречь.
  • При повышении определенной пороговой величины изменяется разница напряжений на шунте. Плата управления с помощью тиристорного ключа подключает соответствующую обмотку.
  • Напряжение на выходе снижается до нормы. На экране отображаются данные о результатах измерений в двух цепях.
  • Если напряжение на входе изменится в любую сторону, то будут выполняться необходимые коррекции.

Тиристоры работают быстро, но создают искажения. В некоторых ситуациях не исключено существенное изменение форы выходного сигнала. Это способно вызвать сбои в работе потребителей. Также образуются электромагнитные помехи. Следует отметить значительную стоимость качественных тиристоров большой мощности.

Как ни странно, но исключить перечисленные недостатки можно с помощью реле. Они не создают искажения, переключаются с достаточно высокой скоростью. Некоторые современные изделия такого типа работают практически бесшумно без повреждений в течение многих лет при постоянном использовании стабилизатора.

Следующий вариант – перемещение контактора с применением электромеханического привода. Такое инженерное решение позволяет обеспечить плавную регулировку и высокую точность. Однако здесь используют сложные механизмы, которые необходимо периодически обслуживать. Некоторые из них не стабильно работают при снижении температуры воздуха ниже 0°C. Стоит отметить наличие шумов и ограниченную скорость изменения электрических параметров.

Стабилизатор, оснащенный сервоприводом

Феррорезонансные преобразователи создают с применением нескольких индукционных катушек. Они отличатся быстротой реакции, долговечностью. Но следующие отрицательные параметры существенно ограничивают сферу их применения:

  • высокая стоимость;
  • шумность;
  • крупные размеры;
  • существенные искажения формы выходного сигнала;
  • прекращение работоспособности даже при незначительном изменении нагрузки (около 15%).

Именно поэтому чаще применяют три перечисленные выше схемы с учетом необходимой мощности и напряжения в сети (220V, или 380V).

Схема работы феррорезонансного преобразователя

Разные схемы подключения стабилизатора напряжения в частном доме

В коттеджах нередко предпочитают использование трехфазных сетей 380. Как правило, они рассчитаны на большие нагрузки. Некоторые станки, нагреватели рассчитаны именно на такое питание. Но для оснащения дома вполне достаточно приобрести двухфазные стабилизаторы.

По этой схеме можно подключить через них трехфазные потребляющие устройства
Здесь показано, как подсоединяют нагрузку через стабилизатор к сети 220 V

Статья по теме:

Какой выбрать стабилизатор напряжения для дачи. Изучаем наш рейтинг популярных моделей и выбираем лучший для вашего дачного участка. Приятного чтения!

Как самостоятельно сделать регулирующее устройство

Для изготовления повышающего стабилизатора напряжения своими руками 220В можно использовать проверенное фабричное изделие.

Принципиальная схема стабилизатора

Понадобится приобрести комплектующие детали по розничным ценам, создать печатные платы, корпус.

Профессиональные навыки понадобятся для пайки микросхем
Настраивают электронные схемы с помощью осциллографа

Работающую качественную схему стабилизатора напряжения 220В своими руками создать будет дороже, чем приобрести готовое изделие с заводской гарантией.

Стабилизаторы напряжения 220В для дома: цены и технические характеристики

Если решите купить стабилизатор напряжения 220В для дома на 10кВт, то надо понимать, что его возможностей хватит на меньшую суммарную мощность всех потребителей. Дело в том, что при включении индукционных нагрузок она резко возрастает. Для подключения электропривода 0,5 кВт понадобится мощность примерно в 2 раза больше. Итоговый результат рекомендуется увеличить еще на 25-30%, чтобы стабилизатор не работал на предельных нагрузках. Данные по нескольким фабричным моделям техники приведены в таблице.


Компактный стабилизатор
Релейный стабилизатор

Выводы

Какой лучше стабилизатор напряжения, релейный или электромеханический, однозначно сказать нельзя. Чтобы сделать правильный вывод, надо сравнить параметры двух моделей с учетом изложенных выше сведений. Для уменьшения требований можно только часть оборудования подключить через систему стабилизации.

Стабилизатор высокой мощности

Как выбрать стабилизатор напряжения для дома? (видео)

Схема подключения стабилизатора напряжения в частном доме

Многие модели современных бытовых электроприборов чувствительны к перепадам напряжения в сети. Компьютерная техника начинает давать сбой в работе, а, может и вовсе перегореть. Устранить эти проблемы поможет подключение к домашней сети стабилизатора.

Существующие типы стабилизаторов

Решившись в частном доме установить стабилизатор напряжения, человек приходит в магазин и видит на прилавке множество моделей. Чтобы не растеряться с выбором подходящего прибора, надо знать, что все они выполняют одинаковую функцию, но отличаются по принципу работы. Для обеспечения качественной электроэнергией частного дома подойдут два типа стабилизаторов:

  • сервоприводная модель имеет сравнивающую схему, предназначенную для управления маленьким электродвигателем. За счет вращения двигателя, в разном направлении передвигается токосъемный бегунок. В результате на выходе подается стабильное напряжение 220 вольт. Преимуществом такого стабилизатора является плавная регулировка, что обеспечивает выходное напряжение без скачков;
  • релейные модели отличаются устройством и принципом работы. В корпусе стабилизатора установлен трансформатор с выводами. Входящее напряжение умножается на коэффициент и подается каждому выводу. Электронная схема управляет работой релейного блока, который при необходимости переключает выводы трансформатора, за счет чего выход прибора имеет постоянные 220 вольт. Недостаток таких стабилизаторов заключается в образовании малых скачков напряжения во время переключения выходов.

Существует еще третий тип стабилизаторов, подходящих для дома – электронные. Они имеют высокую стоимость, но принцип работы ничем не отличается от релейного типа. Только вместо реле выводы трансформатора переключает электронный ключ, например, на тиристорах.

Ступени стабилизатора

Каждый тип стабилизаторов имеет ступени переключений. От их количества зависит качество подачи напряжения на выходе. Чтобы понять принцип работы ступеней рассмотрим простейший пример. Пока подается нормальное напряжение 220В, прибор пропускает его через электрические схемы без изменений. При падении напряжения до критических параметров, например, 190 вольт, реле или электронный ключ включают первую ступень, и на выход опять подается стабильное напряжение 220В. Дальнейшее падение напряжения заставляет прибор переключаться на следующие ступени, позволяющие получить требуемые 220В. Когда ступени заканчиваются, стабилизатор больше не сможет поднять напряжение.

Чем больше прибор имеет ступеней, тем шире его диапазон регулировки повышенного или пониженного напряжения.

Мощность прибора

Чтобы стабилизатор дома выдержал нагрузку всех электроприборов, обеспечив бесперебойную подачу напряжения, необходимо правильно рассчитать его мощность. Существует масса советов расчета мощности, но мы остановимся на двух простейших:

  1. Подобрать для дома прибор необходимой мощности можно, подсчитав общее потребление всех домашних электроприборов по их паспортным данным. При этом у стабилизатора должен оставаться запас по мощности не менее 30%. Это связано с тем, что при повышении пониженного напряжения выходная мощность уменьшается. Кроме того, прибор надо выбирать, обращая внимание на активную мощность (Вт), а не полную (ВА).

    Таблица средней потребляемой мощности популярных электроприборов

  2. Второй способ расчета делается по параметрам автомата, установленного возле электросчетчика. Но это уместно, если сам автомат был подобран по верным расчетам. Его подбирают для защиты электропроводки от перегрузки. Если он работает, не отключая подачу напряжения, значит, проходящей через него мощности достаточно домашним электроприборам. Остается ее только вычислить. Для этого потребуется напряжение умножить на значение тока. Известно, что напряжение составляет 220 вольт. Второй параметр можно найти на маркировке автомата, например, 16А. Теперь перемножим 16А на 220В и получим результат 3520 Вт. Теперь стало ясно, чтобы в доме бесперебойно подавалось электричество достаточно подключения стабилизатора мощностью 3.5 кВт.

Это, конечно, примитивные расчеты, и когда есть какая-то неуверенность, лучше обратиться к специалисту. В крайнем случае, при желании доводить начатое своими руками дело до конца, необходимо установить прибор с большим запасом мощности.

Установка стабилизатора для сети 220 В

Схема подключения прибора довольно проста, и при соблюдении элементарных правил безопасности такую работу у себя дома можно выполнить своими руками. Прибор лучше установить непосредственно за электросчетчиком. Это даст ему возможность быстро отключать нагрузку при появлении искажений. В зависимости от количества выходов, схема подключения немного различается:

  • Прибор с тремя выходами имеет одну входную нулевую клемму, которая не прерывается и две фазные клеммы – вход и выход. Работа такой модели стабилизатора заключается в прерывании только одной фазы, проходящей через него. Вначале необходимо подключить выходящий от автомата нулевой провод к нулевой шине электрического щитка. Сюда же надо подсоединить проводом нулевой выход прибора. Фазный провод, выходящий от автомата, требуется подключить на входную клемму стабилизатора, а к выходной клемме подсоединить фазный провод, идущий из дома.
  • Когда подключение нагрузки выполняется полностью через стабилизатор, устанавливают прибор с четырьмя выходами, где происходит разрыв нулевого и фазного провода. Вначале нулевой провод от автомата надо подключить на входную нулевую клемму прибора. Затем к выходной нулевой клемме подсоединить нулевой провод электропроводки, выходящей из дома. Аналогичную процедуру требуется выполнить своими руками с фазным проводом.

Закончив работу, обязательно надо проверить правильность и надежность всех соединений, и только тогда выполнить подачу напряжения.

Установка стабилизатора для сети 380 В

Если в доме проходит электрическая сеть 380 вольт, что встречается крайне редко, обезопасить ее можно трехфазным стабилизатором. Хотя из практики видно, что лучше установить три однофазных прибора. По нормам электробезопасности это разрешено. Почти все домашние электроприборы рассчитаны на работу от 220 вольт. Три однофазных прибора справятся с такой задачей и обеспечат эффективную нагрузку. Такой вариант подключения имеет два основных преимущества:

  • три однофазных стабилизатора дешевле обойдется хозяину дома, чем один трехфазный;
  • главное преимущество – это бесперебойная подача электроэнергии. Вышедший из строя трехфазный прибор оставит весь дом без света до его починки или приобретения нового. Если сгорит один из трех однофазных стабилизаторов, домашнее освещение можно перекинуть на другую фазу с работоспособным прибором. Трехфазное напряжение уже не поступит в помещение, но стабильные 220 вольт с одной фазы обеспечат работу бытовых электроприборов.

Схема подключения трех приборов к трехфазной сети идентична подсоединению своими руками стабилизатора в сеть 220 вольт. Подключение каждого выполняется на отдельную фазу. А вот нулевой провод необходимо подключать без разрывов.

Самостоятельное изготовление стабилизатора

Имея опыт работы с паяльником и умение читать электрические схемы, прибор на 220 вольт можно изготовить своими руками. В стабилизаторе регулируется напряжение двумя способами:

  1. Механический способ присущ линейным моделям, имеющим два колена, соединенных реостатом. Поступающий на первое колено ток проходит через реостат и подается второму колену, с которого идет дальнейшая раздача потребителю. Такой способ регулировки эффективен при малой разнице входного и выходного напряжения.
  2. Прибор с импульсной регулировкой имеет выключатель, разрывающий кратковременно электрическую цепь для зарядки конденсатора. Недостаток такого способа заключается в отсутствии возможности выставить конкретное выходное напряжение.

Определившись с подходящей для себя моделью, имеющей один из способов регулировки напряжения, в интернете или технической литературе подыщите подходящую схему и приступайте к работе. Для примера можно посмотреть такой вариант ступенчатого стабилизатора:

Основные правила монтажа

Если было принято решение отказаться от услуг электромонтера и выполнить установку прибора своими руками, необходимо соблюдать ряд важных правил:

  • место установки электроприбора должно иметь хорошую вентиляцию. Во время работы он будет греться, а малое количество воздуха не обеспечит полноценное охлаждение, что повлечет за собой быструю поломку. Лучший вариант расположения – открытая площадка;
  • когда вариант с открытой площадкой отпадает, можно соорудить нишу. При ее изготовлении обязательно надо учесть размеры стабилизатора. Расстояние от всех стенок установленного прибора до стенок ниши должно быть не менее 100 мм;
  • соорудив нишу, обычно стараются ее скрыть от глаз за шторкой, жалюзи или дверкой. Обустройство такой декорации должно быть выполнено из негорючего материала, и они не должны плотно закрывать нишу. К прибору должен поступать прохладный воздух;
  • Применяемые для подключения провода по сечению должны соответствовать общей нагрузке. Если после счетчика отсутствует автомат защиты, обязательно надо установить УЗО. Конструкция имеет свою защиту, но дополнительный автомат не помешает;
  • устанавливая прибор своими руками, надо не забыть обесточить сеть. Подключение производится по схеме, соблюдая очередность соединения всех проводов. По окончании монтажа прибор испытывают на работоспособность, при этом надо убедиться, что у работающего стабилизатора отсутствуют посторонние звуки;
  • существуют модели в виде готовых блоков без контактов на корпусе для подсоединения проводов. Такие приборы обладают малой мощностью и предназначены для защиты отдельно стоящих бытовых электроприборов. Выход стабилизатора имеет разъем как у обычной розетки. К нему и происходит подключение бытового электроприбора;
  • устанавливая своими руками стабилизатор надо знать, что он подключается только после электросчетчика. Установка перед счетчиком вызовет трудности с отключением электроэнергии, а, главное, такой монтаж вызовет претензии со стороны контролеров.

Установив стабилизатор в доме, не стоит забывать о его существовании. Ежегодно надо делать профилактические работы, связанные с осмотром и перетяжкой контактов.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

⚡️Самодельный стабилизатор напряжения 220в | radiochipi.ru

На чтение 3 мин Опубликовано Обновлено

Электронный стабилизатор напряжения — это промежуточное устройство между бытовой электросети и электропотребителем (нагрузкой). Такое устройство предназначено для поддержания напряжения на определенном уровне, а в частности 220В.

Нередко случается в квартирах, а часто в своих домах, напряжения в розетке далеко от идеала 220В, оно или сильно занижено, либо завышено, а порой просто резко скачет. В таких ситуациях включенные бытовые приборы в розетку ведут себя как-то странно, освещение тускло горит, холодильник начинает гудеть, вода в электрочайнике медленно закипает. На помощь нам приходит стабилизатор сетевого напряжения.

[info]Стабилизаторы бывают промышленные и бытовые. Промышленные стабилизаторы напряжения работают от трех фазного напряжения 380В, бытовые от однофазного и делятся на электронные, феррорезонансные, релейные, электромеханические, инверторные.[/info]

Рассмотрим принципиальную схему упрощенного электронного стабилизатора напряжения. В диодном мосту VD2 по диагонали расположен полевой транзистор VT2, когда он закрыт, то первичная обмотка вольтодобавочного трансформатора Т1 отключена от сети. Выходное U на холостом ходу, равно сетевому за исключением, малого падения напряжения на вторичной обмотке трансформатора Т1.

По схеме начало первичной обмотки L1-1 трансформатора Т1 соединен непосредственно к сети 220В. Для того чтобы подключить второй конец первичной обмотки L2-1’ трансформатора Т1 к сети 220В, необходимо открыть полевой транзистор VT2 (IRF840), после чего к нагрузке приложится сумма напряжений на вторичной обмотке L1 1-2, L2 2’-1’ и напряжения сети.

На биполярный транзистор VT1 структуры n-p-n перехода подается напряжение, через нагрузку, трансформатор Т2 и диодный мост VD1. Потенциометром R1 выставляется выходное U=220В порог срабатывания устройства на нагрузке, биполярный транзистор VT1 открывается, при этом транзистор VT2 закрывается. Если напряжение в сети упадет и станет ниже 220В, то закроется транзистор VT1, откроется транзистор VT2.

Диодный мост VD1 КЦ405В выпрямляет переменное U=12В на вторичной обмотке трансформатора Т2, после постоянное напряжение подается на стабилизатор DA1 КР142ЕН8А и запитывает коллекторную цепь транзистора VT1 КТ972А. Конденсатор С5 и резистор R6 соединены параллельно истоку стоку транзистора VT2 и образуют гасящую цепочку от нежелательных скачков напряжения. С1 выполняет роль фильтрующего конденсатора от сетевых помех, тем самым улучшает процесс работы устройства.

Подбирая номиналы сопротивлений резисторов R3, R5 добиваются наилучшей и устойчивой работы стабилизации напряжения. Включение/выключение устройства и нагрузки осуществляется выключателем SA1. В стабилизаторе напряжения предусмотрено отключение стабилизирующего напряжения на нагрузке выключателем SA2. Собранный по схеме стабилизатор включают в сеть 220В и переменным резистором R1 выставляют U=220В на нагрузке.

С каталогом масляных трансформаторов можно ознакомиться по ссылке.

Вольтодобавочный трансформатор Т1 собран на основе готового трансформатора марки СТ-320, ранее использовавшегося в БП-1 блоках питания телевизоров УЛПЦТ-59. Трансформатор необходимо разобрать полностью, снять магнитосердечник, после чего смотать все вторичные обмотки, необходимо оставить только сетевую (первичную обмотку). Заново намотать поровну вторичные обмотки эмалированным медным проводом ПЭВ, ПЭЛ.

Одинаковые две катушки имеют следующие намоточные данные:

Полевой транзистор VT2 необходимо закрепить на радиаторе!

Автоматический стабилизатор переменного напряжения - Поделиться проектом

ВВЕДЕНИЕ С шести лет я подумал, что было бы круто сделать своего собственного веб-кастера. Не зная тогда многого, я подумал, что могу использовать леску с присоской на конце, и это может помочь. 3D-принтеры только становились доступными, а у нас их в то время не было.Итак, идея проекта была отложена. С тех пор мы с папой стали Творцами. Это натолкнуло меня на мысль, что, если бы в «Стихах-пауках» был другой персонаж - скажем, 14 лет, единственный ребенок, выросший со старыми моторами и механическими деталями в подвале и электронными приборами. У него накопилось два 3D-принтера и сварщик. В 9 лет он открыл канал Maker (Raising Awesome). Его отец импульсивно купил швейную машинку в Prime Day, и ТОГДА, в 14 лет, его укусил радиоактивный жук Maker ... ну, паукообразный.Сначала он был Создателем, а затем получил свои паучьи способности. На что был бы похож этот персонаж? Итак, мы придумали перчатку Веблингера и схему Spidey-Sense Visual AI. ДИЗАЙН ПРОЕКТА Вебслингер В перчатке веблингера находится 16-граммовый баллончик с СО2, с помощью которого можно выстрелить в крючок, привязанный к кевлару. Для этого не требуется никакого микроконтроллера, только клапан, который вы найдете для накачивания велосипедных шин. У него будет двигатель в перчатке, чтобы отследить кевлар. Spider-SenseКамера и amp; датчик приближения был вшит в спину рубашки.Raspberry Pi A + служил мозгом для всего костюма, управляя всеми датчиками и камерами внутри костюма. Наряду с этим мы использовали Pi SenseHat со встроенным дисплеем RGB для изменения логотипов, например, при срабатывании «Spidey Sense». За время этого конкурса я смог выиграть последний костюм на Хеллоуин. Вы можете найти модель на нашем сайте GitHub: https://github.com/RaisingAwesome/Spider-man-Into-the-Maker-Verse/tree. /master. Это код для запуска RGB и вибрации: from sense_hat import SenseHat время импорта импорт RPi.GPIO как GPIO # Режим GPIO (ПЛАТА / BCM) GPIO.setmode (GPIO.BCM) # установить контакты GPIO GPIO_ECHO = 9 GPIO_TRIGGER = 10 GPIO_VIBRATE = 11 # установить направление GPIO (IN / OUT) GPIO.setup (GPIO_TRIGGER, GPIO.OUT) GPIO.setup (GPIO_ECHO, GPIO.IN) GPIO.setup (GPIO_VIBRATE, GPIO.OUT) смысл = SenseHat () г = (0, 255, 0) б = (0, 0, 255) у = (255, 255, 0) ш = (255,255,255) г = (204, 0, 0) a1 = [ б, г, б, б, б, б, г, б, б, г, б, б, б, б, г, б, б, б, г, г, г, г, б, б, б, б, б, г, г, б, б, б, г, г, г, г, г, р, г, г, б, б, б, г, г, б, б, б, б, б, г, б, б, г, б, б, б, г, б, б, б, б, г, б ] a2 = [ б, б, г, б, б, г, б, б, б, г, б, б, б, б, г, б, б, б, г, г, г, г, б, б, г, б, б, г, г, б, б, г, б, г, г, г, г, г, г, б, г, б, б, г, г, б, б, г, б, б, г, б, б, г, б, б, б, б, г, б, б, г, б, б ] a3 = [ г, б, б, б, б, б, б, г, б, г, б, б, б, б, г, б, б, б, г, г, г, г, б, б, г, б, б, г, г, б, б, г, б, г, г, г, г, г, г, б, г, б, б, г, г, б, б, г, б, б, г, б, б, г, б, б, б, г, б, б, б, б, г, б ] def animate (): # dist дано в футах.# скорость рассчитывается по линейному уравнению y = mx + b, где b = 0 и m = 0,1 sense.set_pixels (a1) time.sleep (0,05 * расстояние ()) sense.set_pixels (a2) time.sleep (0,05 * расстояние ()) sense.set_pixels (a1) time.sleep (0,05 * расстояние ()) sense.set_pixels (a3) time.sleep (0,05 * расстояние ()) def distance (): # Возвращает расстояние в футах StartTime = time.time () timeout = time.time () timedout = Ложь # установите для Trigger значение HIGH, чтобы подготовить систему GPIO.вывод (GPIO_TRIGGER, True) # установите Триггер через 0,00001 секунды (10 мкс) на НИЗКИЙ, чтобы отправить пинг от датчика time.sleep (0,00010) GPIO.output (GPIO_TRIGGER, ложь) # чтобы не ждать вечно, установим тайм-аут, если что-то пойдет не так. а GPIO.input (GPIO_ECHO) == 0: # если мы не получили ответ, чтобы сообщить нам, что он собирается пинговать, двигайтесь дальше. # датчик должен сработать, сделать свое дело и начать отчитываться через миллисекунды.StartTime = time.time () если (time.time () & gt; тайм-аут + .025): timedout = True перерыв #print ("Истекло время ожидания эхо от низкого до высокого:", время ожидания) timeout = Время начала StopTime = Время начала а GPIO.input (GPIO_ECHO) == 1: # если мы не получим отскока на датчике с верхней границей его диапазона обнаружения, двигайтесь дальше. # Ультразвук движется со скоростью звука, поэтому он должен возвращаться, по крайней мере, # быстро для вещей, находящихся в пределах допустимого диапазона обнаружения.timedout = Ложь StopTime = time.time () если (time.time () & gt; тайм-аут + .025): timedout = True перерыв #print ("Тайм-аут эха от высокого до низкого:", время ожидания) # записываем время, когда оно вернулось к датчику # разница во времени между стартом и прибытием TimeElapsed = StopTime - Время начала # умножаем на звуковую скорость (34300 см / с) # и разделим на 2, потому что он должен пройти через расстояние и обратно # затем преобразовать в футы, разделив все на 30.48 см на фут расстояние = (Истекшее время * 17150) / 30,46 #print ("Расстояние:", расстояние) если (расстояние & lt; .1): расстояние = 5 distance = round (расстояние) если расстояние & lt; 5: вибрировать () обратное расстояние def vibrate (): # если что-то очень близко, вибрируйте spidey-sense #code pending GPIO.output (GPIO_VIBRATE, Истина) time.sleep (.1) GPIO.output (GPIO_VIBRATE, ложь) # Следующая строка позволит этому скрипту работать автономно, или вы можете # импортировать сценарий в другой сценарий, чтобы использовать все его функции.если __name__ == '__main__': пытаться: GPIO.output (GPIO_TRIGGER, ложь) GPIO.output (GPIO_VIBRATE, ложь) время сна (1) в то время как True: анимировать () # Следующая строка - это пример из импортированной библиотеки SenseHat: # sense.show_message («Шон любит Бренду и Коннора !!», text_colour = желтый, back_colour = синий, scroll_speed = .05) # Обработка нажатия CTRL + C для выхода кроме KeyboardInterrupt: print ("\ n \ nВыполнение Spiderbrain остановлено.\ n ") GPIO.cleanup () Визуальный AII Если вы видели Человека-паука: Возвращение домой, вы бы знали о новом ИИ под брендом Старка, Карен, который Питер использует в своей маске, чтобы помочь ему в миссиях. Карен была разработана, чтобы иметь возможность выделять угрозы и предупреждать Питера о его окружении, а также управлять многими функциями его костюма. Хотя создание чат-бота с ИИ, который отвечает голосом и чувством эмоций, может быть не самой простой задачей для этого соревнования, мы все же задумались, чтобы включить способ создания этого искусственного «паучьего чутья».«Мы решили, что сейчас самое подходящее время, чтобы воспользоваться всплеском популярности Microsoft Azure и API машинного зрения, предоставляемого Microsoft. Мы создали решение« видеть в темноте »с помощью Raspberry Pi Model A и камера NoIR: облачный сервис Microsoft Computer Vision может анализировать изображения, снятые камерой Raspberry Pi (также известной как моя камера Pi-der), прикрепленной к ремню. Чтобы активировать это сверхшестое чувство, у меня есть как только акселерометр Sense Hat стабилизируется, снимок будет сделан автоматически.Используя личную точку доступа моего мобильного телефона, API Azure анализирует изображение, а пакет eSpeak Raspberry Pi сообщает мне об этом через наушник. Это позволяет костюму определять, приближается ли за мной машина или злой злодей. Python Visual AI для Microsoft Azure Machine Vision: import os запросы на импорт из Picamera импорт PiCamera время импорта # Если вы используете блокнот Jupyter, раскомментируйте следующую строку. #% matplotlib встроенный import matplotlib.pyplot как plt из PIL импорта изображения из io импорт BytesIO камера = PiCamera () # Добавьте ключ подписки Computer Vision и конечную точку в переменные среды. subscription_key = "ЗДЕСЬ ВАШ КЛЮЧ !!!" endpoint = "https://westcentralus.api.cognitive.microsoft.com/" Analyse_url = конечная точка + "видение / версия 2.0 / анализ" # Установите image_path как локальный путь к изображению, которое вы хотите проанализировать. image_path = "image.jpg" def spidersense (): камера.start_preview () время сна (3) camera.capture ('/ home / spiderman / SpiderBrain / image.jpg') camera.stop_preview () # Считываем изображение в байтовый массив image_data = open (image_path, "rb"). read () headers = {'Ocp-Apim-Subscription-Key': subscription_key, 'Content-Type': 'application / octet-stream'}. params = {'visualFeatures': 'Категории, Описание, Цвет'} ответ = запросы.post ( analysis_url, headers = headers, params = params, data = image_data). отклик.Raise_for_status () # Объект "анализ" содержит различные поля, описывающие изображение. Большинство # соответствующий заголовок для изображения получается из свойства 'description'. анализ = response.json () image_caption = analysis ["описание"] ["captions"] [0] ["текст"]. capitalize () the_statement = "espeak -s165 -p85 -ven + f3 \" Коннор. Я вижу "+ \" "+ image_caption +" \ "--stdout | aplay 2 & gt; / dev / null" os.system (the_statement) #print (image_caption) паучье чувство () СОЗДАЙТЕ ВИДЕО Чтобы увидеть все это вместе, вот наше видео о сборке:

Схема регулятора напряжения

и принципиальные схемы

За прошедшие годы мы опубликовали на этом веб-сайте несколько схем регуляторов напряжения, которые служат многим целям.В этой статье я составляю краткий список лучших схем стабилизатора напряжения, которые будут полезны всем вам. Термин «регулятор напряжения» носит несколько общий характер - это может быть регулятор AC-AC или регулятор DC-DC. В основном то, что он делает, очень просто - он регулирует и поддерживает постоянный желаемый уровень напряжения на выходных клеммах. Итак, давайте начнем копать в нашем большом списке 🙂

Регулятор 6 В с использованием 7806

Это простая в сборке схема с использованием микросхемы IC 7806 (которая представляет собой трехконтактный стабилизатор положительного напряжения).Схема спроектирована таким образом, что напряжение сети 230 вольт понижается до 9 вольт с помощью трансформатора, а затем регулируется до 6 вольт на выходе. Эта ИС является стабильной с внутренним ограничением тока и тепловым отключением. При использовании надлежащего радиатора он может выдавать ток на выходе более 1 А.

Регулируемый импульсный регулятор с использованием LM317

Линейные регуляторы напряжения неэффективны, поскольку они рассеивают много энергии в виде тепла. Чтобы решить такие проблемы с энергоэффективностью, мы можем использовать импульсный стабилизатор, который может сэкономить до 85% мощности по сравнению с линейным регулятором.Здесь у нас есть схема с использованием микросхемы LM317, которая представляет собой импульсный стабилизатор напряжения и может выдавать до 3 ампер тока. Импульсный стабилизатор работает, забирая небольшие биты энергии от источника входного напряжения и затем передавая их на выход с помощью твердотельного переключателя и схемы управления.

Регулятор 9 В с использованием 7809

Итак, вот еще одна простая схема регулятора напряжения, которая использует IC 7809 для регулирования входного напряжения 16 вольт.Сетевое напряжение 230 В понижается с помощью трансформатора, затем преобразуется в 16 В постоянного тока с помощью моста, а затем регулируется с помощью ИС. Как вы знаете, 7809 - это надежная ИС с внутренним ограничением тока, тепловым отключением, безопасной рабочей зоной и т. Д.

Схема регулируемого регулятора напряжения с использованием LM317

Ну, это набор схем регулятора напряжения , использующих LM317 IC - который является регулируемым регулятором напряжения. LM317 - трехконтактный регулируемый стабилизатор от National Semiconductors, входное напряжение которого может составлять до 40 вольт.Выходное напряжение можно регулировать от 1,2 В до 37 В. Теперь эта статья представляет собой сборник из 4 схем, использующих LM317.

1. Обычный стабилизатор положительного напряжения - выходное напряжение можно регулировать, изменяя потенциометр и резистор. Для вычисления V0ut дано уравнение.

2. Схема регулируемого регулятора напряжения - выходное напряжение может выбираться цифровым способом. Эта схема представляет собой не что иное, как простую модификацию схемы обычного регулятора напряжения на LM317.Здесь вместо потенциометра параллельно подключены 4 резистора, которые активируются только соответствующими транзисторами. Таким образом, каждый транзистор действует как логический уровень и включается или выключается. Выбрав транзисторы и включив их, можно отрегулировать уровень выходного напряжения.

3. 5 ампер стабилизатор постоянного тока / постоянного напряжения - Вы поняли это из названия обряда? По сравнению с вышеперечисленными схемами эта немного тяжелая и в ней больше компонентов. Он использует операционный усилитель LM310 вместе с LM317.

4. Схема силового повторителя - запуталась что это? Ни что иное, как повторитель напряжения с высокой токовой нагрузкой.

Регулируемый регулятор напряжения 10 ампер с использованием MSK5012

Это простая в изготовлении схема регулятора напряжения постоянного тока с использованием надежной микросхемы MSK5012. Выходное напряжение можно программировать с помощью двух резисторов R1 и R2. Особенностью этой ИС является низкое падение напряжения из-за использования полевого МОП-транзистора в качестве внутреннего элемента последовательного прохода. MS5012 отличается высокой точностью и подавлением пульсаций.

Регулятор 12 В с использованием 7812

Итак, вот действительно мощный 12-вольтный стабилизатор, использующий IC 7812, который может обеспечивать ток до 15 ампер. Стабилизатор 7812 используется для поддержания выходного напряжения на уровне 12 вольт, а три транзистора TIP 2599 используются для повышения тока. Это дорогостоящая схема из-за используемых компонентов высокой мощности. Так что собирайте, только если он вам нужен.

Регулятор 12 В на стабилитроне

Итак, появился первый стабилизатор напряжения, управляемый стабилитроном.Таким образом, эта схема действительно проста и легко собирается с использованием стабилитрона и последовательного транзистора (2N3055). Он может обеспечивать выходной ток до 3 ампер. Когда вы используете стабилитрон в качестве регулятора напряжения, теоретически вы получите на выходе на 0,7 вольт меньше. В данном случае - 11,3 вольт.

От 2 до 37 вольт Регулируемый регулятор напряжения с использованием LM723

Стабилизатор напряжения на микросхеме LM723 - линейный регулятор производства National Semiconductors. Входное напряжение может быть до 40 вольт, а выходное - от 2 до 37 вольт.Без каких-либо настроек ИС может выдавать ток до 150 мА, а дальнейшее улучшение тока может быть достигнуто путем добавления транзистора с последовательным проходом - в нашем случае MJ3001 транзистор Дарлингтона.

13 вольт 5 ампер Регулируемый регулятор напряжения с использованием LM338

Микросхема

LM338 произведена в компании ST Microelectronics. Микросхема имеет временное ограничение тока, терморегуляцию и доступна в корпусе с 3-выводным транзистором. LM338 имеет диапазон выходного напряжения от 1 до 1.2 В и 30 В, и он может выдавать выходной ток более 5 ампер. R1 и R2 настраиваются для программирования желаемого выходного напряжения.

25 В Регулируемый регулятор с использованием LM117

Хм !! Это самая простая схема регулятора напряжения на нашем сайте! Только что получил IC LM117 и 4 пассивных компонента. Вы можете регулировать выходное напряжение, изменяя потенциометр. LM117 - это надежная ИС, которая может выдавать стабилизированное напряжение в диапазоне от 1,2 до 37 вольт. Этот источник питания может обеспечивать ток до 0 o.5 ампер.

Набор регуляторов переключения

Эта статья предназначена скорее для образовательных целей, чем для ваших практических нужд. Принцип коммутации отличается от линейного регулирования напряжения. Главное преимущество импульсного регулятора - энергоэффективность. Эта статья достаточно хороша, и она познакомит вас с теоретическими аспектами импульсного регулирования, простыми схемами переключения, некоторыми практическими применениями импульсных регуляторов. Ближе к концу вы найдете объяснение линейного регулирования по сравнению с коммутационным регулированием.Я очень рекомендую вам эту статью для повышения ваших знаний.

Регулятор 3 А с использованием LM350

LM350K IC имеет такие функции, как терморегулирование, защита от короткого замыкания и т. Д. Это простая в сборке схема, которая, как было обнаружено, имеет лучшее подавление пульсаций и стабильность по сравнению с элементарным регулятором напряжения, использующим LM350 IC. Выходное напряжение можно регулировать от 1,2 В до 25 вольт, изменяя POT R2. Мы можем получить до 3 ампер тока от этой схемы.

Схема повышающего преобразователя 12 В с использованием LM2698

А вот и первая схема повышающего преобразователя на микросхеме LM2698 (от National Semiconductors). LM2698 - это повышающий преобразователь общего назначения с диапазоном выходных сигналов от 2,2 В до 17 В постоянного тока. В этой конкретной схеме вы можете получить на выходе 12 вольт постоянного тока от 4,5 до 5 вольт постоянного тока в качестве источника входного сигнала.

Схема регулируемого регулятора напряжения с использованием L200

Еще одна простая схема, использующая монолитный интегрированный регулируемый стабилизатор напряжения IC L200.Эта ИС имеет такие функции, как ограничение тока, тепловое отключение, ограничение мощности, защита от перенапряжения на входе и т. Д. Резисторы R1 и R2 должны быть отрегулированы для получения желаемого выходного напряжения. Мы можем получить выходное напряжение от 2,8 до 15 вольт при токе в 1 ампер.

6 Ремонт низковольтной электрооборудования можно сделать самостоятельно

КОНТРОЛЬНЫЙ СПИСОК ДЛЯ УСТРАНЕНИЯ НЕИСПРАВНОСТЕЙ ЭЛЕКТРИЧЕСКИХ ПРОБЛЕМ:

Поиск реального источника электрической неисправности должен быть процессом, который начинается с наиболее очевидного решения и продолжается оттуда.Перед тем, как приступить к любому электрическому ремонту, вы должны изучить некоторые из наиболее очевидных потенциальных проблемных мест.

1. Общее отключение электроэнергии. Найдите время, чтобы проверить освещение и бытовую технику по всему дому.

2. Сработала определенная цепь. Подойдите к блоку предохранителей или выключателя, чтобы убедиться, что проблема не в перегоревшем предохранителе или срабатывании выключателя.

3. Сработал выключатель или розетка. Прежде чем приступить к ремонту светильника или другого прибора, проверьте выключатель, который им управляет, или розетку, в которую он включен (чтобы убедиться, что выключатель этой розетки не сработал).Включите или прикрутите свет, который, как вы знаете, работает, в розетку с переключателем в положении «Вкл.». Не горит? Скорее всего дело в переключателе. Проверьте это прибором для проверки целостности цепи. Для вас это звучит как греческий? Вызов электрика.

4. Шнур. Всегда проверяйте вилки и шнуры - некоторые из самых простых способов исправить.

5. Перегоревшая лампочка. Самые простые решения часто упускаются из виду.

4:99 || БЕЗ РИНГИ-ДИНГИ:

Вы не получаете еду на вынос, потому что не работает дверной звонок.

БЫСТРОЕ ИСПРАВЛЕНИЕ

В большинстве случаев это указывает на неисправную кнопку дверного звонка. Просто открутите кнопку дверного звонка, снимите провода сзади (низкое напряжение, не волнуйтесь) и скрестите их. Если звонок в дверь, это действительно кнопка. Замените его аналогичным блоком из строительного магазина или домашнего центра.

4: 100 || БЕЗОПАСНОЕ КОЛЬЦО:

Постоянно звонящий дверной звонок - это испытание на здравомыслие.

БЫСТРОЕ ИСПРАВЛЕНИЕ

Кнопки дверного звонка (особенно в более дешевых версиях), так как они находят такое широкое применение, с возрастом склонны к короткому замыканию.Эту проблему легко исправить. Отвинтите корпус кнопки, вытащите узел кнопки и осмотрите провода. Вы обнаружите, что в какой-то момент они касаются друг друга. Возможно, вам придется проверить провода, когда они упираются в стену. Найдя короткое замыкание, оберните его изолентой и соберите кнопку.

4: 101 || В ТЕМНОМ:

Настенный или потолочный светильник перестает работать после замены лампы.

БЫСТРОЕ ИСПРАВЛЕНИЕ

Отключите питание настенного выключателя и снимите его. Используя наименьшее значение по шкале Ом мультиметра, прижмите один испытательный провод к каждому из боковых винтов клемм переключателя. Когда переключатель находится в положении «Выкл.», Показаний не должно быть, но в другом положении должен быть полный электрический путь, обозначенный крошечным сопротивлением. Электричество должно течь от счетчика через выключатель и обратно к счетчику. Замените выключатель, если он неисправен. Если все в порядке, используйте плоскогубцы, чтобы слегка загнуть латунный язычок в нижней части патрона лампы.Установите лампочку на место и включите питание цепи.

4: 102 || БЕСПРОВОДНАЯ ШЛИФОВКА:

Ваш аккумуляторный электроинструмент просто не обладает необходимой мощностью.

БЫСТРОЕ ИСПРАВЛЕНИЕ

Вероятно, виноват аккумулятор аккумуляторного инструмента, и вы можете измерить его напряжение с помощью мультиметра. Дайте инструменту поработать до тех пор, пока аккумулятор не разрядится, но полностью не разрядится. Поместите его в зарядное устройство, и когда он будет заряжен, проверьте его с помощью мультиметра, установленного на VDC (напряжение, постоянный ток).Используйте следующую по величине настройку выше напряжения батареи. Прижмите измерительные провода к клеммам батареи (вам не нужно сопоставлять измерительные провода с конкретными клеммами). Низкое напряжение указывает на то, что батарея, вероятно, взорвалась. Отнесите инструмент, аккумулятор и зарядное устройство в сервисный центр.

4: 103 || ПРИВЕТ? ПРИВЕТ ?:

Кажется, ваш новый беспроводной телефон не держит заряд.

БЫСТРОЕ ИСПРАВЛЕНИЕ

Часто это просто случай, когда база или подставка, через которую заряжается телефон, установлены или установлены под странным углом.Очистите контакты подставки с помощью ластика-карандаша, затем проведите мягкой тканью и убедитесь, что трубка сидит так, чтобы загорелся значок «используется» или «заряжается».

4: 104 || ФАЙЛ ДЛЯ РАСШИРЕНИЯ:

Устройство, подключенное к удлинителю, не работает.

БЫСТРОЕ ИСПРАВЛЕНИЕ

Сначала подключите заведомо исправное устройство к розетке и проверьте автоматический выключатель розетки. Предполагая, что розетка в порядке, возьмите то же устройство и подключите его к шнуру.Если устройство не работает, вероятно, поврежден шнур. Для уверенности выполните тест с мультиметром. Установив мультиметр на минимальную шкалу Ом, вставьте один измерительный провод в одно гнездо на шнуре, а другой измерительный провод - напротив соответствующего штыря. Обрыв провода в шнуре даст показание нулевого сопротивления, в то время как электрическая утечка между проводами (которые должны быть изолированы друг от друга) будет отображаться как показание в омах, если вы проведете тест на противоположном контакте.

ПРЕДОТВРАЩЕНИЕ АВАРИЙ:

Правила пользования электроэнергией.

Сделать:

* Проверьте с помощью бесконтактного индуктивного тестера напряжения, чтобы убедиться, что питание действительно отключено - даже если вам кажется, что вы уронили прерыватель или вынули предохранитель.

* Используйте инструменты с резиновыми или пластиковыми захватами.

Нельзя:

* Замените предохранитель на предохранитель с большей силой тока.

* При работе с электрической цепью стойте на влажной поверхности.

* Прикоснитесь к водопроводным трубам при работе с электрической цепью.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Стабилизаторы напряжения для ТВ! Полное руководство - Домашние хитрости DIY

Скачки напряжения - привычная неприятность для жителей больших и малых городов. Они возникают из-за аварий на линии, в непогоду с проливными дождями, грозой и ветром.А главное, такая неприятность всегда бывает неожиданной, поэтому своевременно выключить всю бытовую технику нет возможности.

Более того, каждый такой скачок приближает «смерть» телевизора, компьютера или стиральной машины. Поэтому важно заранее подобрать и установить регулятор напряжения для телевизора. Особенно, если в ближайшие пару лет вы не планируете обновлять технику в доме.

Что такое стабилизаторы напряжения и нужны ли они?

Стабилизаторы напряжения - устройства для поддержания стабильного напряжения в условиях его падения. Задача стабилизатора - увеличивать или уменьшать силу тока питания в оптимальном диапазоне 220 В, 900 10, а также отключать питание, когда уровень силы достигает 160 В или менее или 255 и более Вольт.

Стабилизаторы напряжения

входят в базовую комплектацию любого ноутбука и ПК, но стабилизатор напряжения приобретается отдельно (это касается старых телевизоров). . Поэтому ответ - нет! Никакого стабилизатора напряжения не требуется.Большинству современных телевизоров это не нужно, потому что электроника создана для того, чтобы реагировать и стабилизировать напряжение внутри телевизора.

В зависимости от способа подключения стабилизаторы объединяются в сеть, при этом подключение предусмотрено для каждого отдельного устройства . Или магистральные линии - подключены ко всем электросетям, ведущим к дому или подъезду.

Если в доме большое количество дорогостоящей техники, стоит заранее подумать о отдельном сетевом источнике бесперебойного питания . Устанавливается на кабеле, вводящем в жилище. Таким образом, он защищает все оборудование, а не только телевизор.

Всем ли телевизорам нужна «стабильность»?

Вопрос о приобретении стабилизатора напряжения 220В для телевизора стоит еще со времен больших ламповых моделей. С каждым скачком тока изображение на дисплее ухудшалось, искажалось, и цвет менялся. Часто после грозы телевизор приходилось ремонтировать или возвращать в ремонт.

Современная техника на основе таких матриц, как LED, LCD, плазма, оснащена импульсным блоком питания . Поддерживает падение тока в довольно широком диапазоне: от 170 до 250 В. Как только значения падают или повышаются, телевизор автоматически выключается . Но, если по каким-то причинам этого не произошло, велика вероятность поломки и последующего ремонта телевизора.

Некоторые производители, например Samsung и LG, выпускают отдельное оборудование для своих моделей телевизоров.Такая защита телевизора от скачков напряжения надежна, но стоит в несколько раз дороже аналогов от других компаний.

Получается, что несмотря на встроенную защиту от скачков тока в телевизорах, им нужен отдельный стабилизатор , особенно если в доме очень часто мигает свет и выключается свет.

Если вам точно нужен источник бесперебойного питания

Несмотря на наличие встроенного стабилизатора в ЖК-телевизорах и LED-телевизорах , бывают ситуации, когда обязательно требуется дополнительное оборудование:

  1. Постоянные скачки электричества в доме из-за старой проводки, частных гроз и ветров.
  2. Частный дом, где всегда есть проблемы с интенсивностью электроснабжения.
  3. Рядом часто ведутся ремонтные работы или строительство новых домов - велика вероятность повреждения кабеля во время строительства.

Перед покупкой прибора можно замерить общее напряжение в доме за один-два дня. Для этого нужно приобрести или одолжить у кого-нибудь тестер . И проверяйте показатели каждые 1-2 часа.

Такой анализ поможет понять, нужно ли стационарное или магистральное устройство. Ведь лучше один раз защитить, чем многократно ремонтировать технику в доме.

Важно! Магистральный ИБП монтируется как можно ближе к распределительному щиту. Желательно монтировать сразу после счетчика.

Не путайте выгорание пикселей на матрице и последствия скачков напряжения. Пиксели - это управляющие транзисторы .И они не выходят из строя из-за напряжения. Но полный выход из строя или исчезновение картинки в целом - это уже признак падений напряжения.

Все стабилизаторы для ТВ и другой техники делятся на следующие подвиды:

  • Варианты ступенчатого или релейного исполнения. Принцип их действия основан на переключении обмоток исправного трансформатора. При изменении входного напряжения реле замыкается, что снижает величину синусоидального напряжения в сети.Настройка в таких моделях резкая, сопровождается характерным для звуком , который появляется при замыкании контактов реле. Такие варианты отлично подходят для сетей, где скачки происходят очень часто и с большим диапазоном вольт. Оборудование самое дешевое по стоимости.
  • Электронные источники бесперебойного питания выравнивают напряжение с помощью симисторных или тиристорных переключателей. Оборудование довольно дорогое. Но работает бесшумно и с мгновенной настройкой входных параметров.
  • Электромеханические инструменты или серводвигатель, варианты с сервоприводом. Устанавливаются перемещением угольных контактов по обмотке за счет работы электропривода. Стабилизаторы этого класса имеют среднюю цену. Регулировка индикаторов плавная. Дизайн небольшой по размеру. К недостаткам можно отнести: работает довольно шумно и имеет невысокую скорость реакции.
  • Варианты с феррорезонансом отличаются длительным сроком службы и невысокой ценой. Они точно настраивают входные параметры.Но они обладают внушительными размерами, весом и сильным шумом при работе.
  • Инверторные стабилизаторы преобразуют напряжение двумя способами. На входе превращается в константу, на выходе - в переменную. Работают устройства абсолютно бесшумно. И они надежно защищены от любых внешних помех, скачков напряжения. Но при этом стоимость их самая высокая из всех вариантов.

Все эти стабилизаторы подходят для установки перед телевизором или другим оборудованием.Обладая оптимальными техническими параметрами , они могут поставляться как магистральные линии и защищать всю линию. При этом стоимость последнего намного выше простого стабилизатора для ТВ.

Что такое сетевые фильтры

Современные модели телевизоров оснащены удлинителем - внутренней защитой от скачков напряжения. Но со временем он выходит из строя и требует замены . Поэтому дорогие телевизоры рекомендуется направлять на диагностику хотя бы раз в год, чтобы не было проблем с скачками сети .

К таким стабилизаторам сетевого напряжения для LCD, LED телевизоров относятся:

  • Варисторы - оказывают сопротивление при очень высоком давлении, принимая его на себя. Однако они обычно перегорают. Результат надежная, но разовая защита.
  • LC-фильтры улавливают высокочастотный шум из-за наличия катушек конденсатора и катушек индуктивности. Это многоразовые и предохранители. У них есть маленькая пуговица на корпусе. Когда напряжение превышает норму, нажимается кнопка и открывается мишень.Устройство работает автоматически. Но для начала работы нужно вернуть кнопку в исходное положение.
  • Разрядники молнии. Оборудованы газоразрядными электродами вместе с варистором. Они снимают стресс и быстро устраняют потенциальные различия.

Важно! Абсолютно все сетевые фильтры имеют заземление. Хороший производитель обязательно укажет в инструкции, к какой из линий относится варисторная защита.Если варистор находится только между фазой и землей, потребуется дополнительное заземление. А вот в варианте «фаза-ноль» ничего вспомогательного не требуется.

Устройство защиты от перенапряжения представляет собой сложное устройство, которое включает в себя электронные компоненты для подавления импульсных помех. Они предотвращают короткое замыкание оборудования при скачках напряжения.

Стабилизатор телевизора - это более сложное устройство, которое защищает как от низких, так и от высоких частот, а также от импульсных помех, тогда как сетевые фильтры защищают только от высокопроизводительных .Поэтому ИБП работают намного лучше и дольше.

Какой стабилизатор напряжения выбрать?

Чтобы понять, какой регулятор напряжения выбрать для телевизора, нужно точно знать параметры сети. Разберитесь, насколько сильны и часты отбрасывания сети. Ведь все устройства имеют разную мощность, которая должна сочетаться с параметрами телевизора.

К основным параметрам, которые учитываются при выборе устройства, относятся:

  • ТВ мощность. Его можно найти в техническом описании. И с его помощью выберите индикатор бесперебойного питания.
  • В сельской местности необходима дополнительная защита от коротких замыканий. Высокий риск сильных порывов ветра и грозы.
  • Уровень шума работы. Важно при установке в доме непосредственно рядом с телевизором. Чрезмерный шум может испортить впечатление от просмотра телевизора.
  • Диапазон уровней мощности сети. Если напряжение питания в районе упадет до 90В, то по этому индикатору тоже нужно включить защиту.
  • Размеры устройства также имеют значение. Нет смысла покупать громоздкое устройство, которое будет занимать много свободного места.

Важно! Покупая стабилизатор не только для телевизора, но и для другой бытовой техники, необходимо учитывать общую мощность всех устройств. И подберите на него источник бесперебойного питания.

Когда все параметры просчитаны, можно решить, какого производителя выбрать стабилизатор для ТВ .Отечественные предприниматели предлагают качественную технику по доступной цене. Китайские варианты самые дешевые, но не самые долговечные. Европейские - самые дорогие, но при этом с высоким качеством сборки и защитой от сбоев сети.

Купить источник бесперебойного питания можно у той же фирмы, что и сам телевизор. Но такие модели обычно намного дороже аналогов. Приобретать технику стоит в специализированных магазинах. Заказывать онлайн нужно аккуратно, чтобы не получить «кота в мешке».

Как подключаются источники бесперебойного питания

Стабилизаторы напряжения для ТВ подключаются по общему принципу. Вам не понадобятся дополнительных знаний и навыков для внешних устройств. У большинства моделей есть 5 разъемов: входная фаза, ноль, нулевой заземляющий ноль, фаза, идущая к точке нагрузки.

Подключать устройства можно только при отключенном электричестве в дом . Для продления срока службы ИБП перед счетчиком рекомендуется установить вспомогательное УЗО.В самой электросети предусмотрен контур заземления.

Важно! Нельзя следить за стабилизатором сразу перед прилавком. Оптимальное место для установки - 0,5 метра от телевизора, но не ближе.

Схема подключения простая - стабилизатор вставлен в розетку. И телевизор в гнездо устройства с обозначением «выход». Телевизор можно включить только после подключения всех элементов.

Общие инструкции по выбору стабилизатора

Стабилизатор нужен на все телевизоры типа на тот случай, если в сети бывают частые перепады напряжения, происходят регулярные отключения электроэнергии или в доме старая проводка.

Сам выбор и установка осуществляется по следующей схеме:

  1. Решите, подключать ли к стабилизатору один телевизор или все устройства.
  2. На выбор стоит защита всей сети - поставить транковое устройство или просто телевизор.
  3. Отключение электроэнергии в доме.
  4. Монтаж оборудования.
  5. Включает телевизор.

С выбором подходящей модели помогут сотрудники электромагазинов. Но для этого им нужно сетевых параметров и суммарная мощность устройств, которые будут подключаться к ИБП.

Вы также можете посмотреть, что такое белые пятна по телевизору и что их вызывает.

Последние мысли Стабилизаторы напряжения

предназначены для поддержания стабильного напряжения вашего электрического оборудования, например телевизора. Поэтому, если в вашем районе обрушится сильная гроза или шторм, рекомендуется подключить одно такое устройство к вашему телевизору. В этой статье мы смогли увидеть, как работают стабилизаторы напряжения, каковы их характеристики и как выбрать подходящую модель для своих нужд.Я надеюсь, что теперь эта область стала для вас более понятной и что мы вам помогли.

Как мне защитить свои устройства от сбоев в подаче электроэнергии или перебоев в подаче электроэнергии? - Энергид

В большинстве случаев электрическое оборудование не выдерживает больших колебаний напряжения. В случае отключения электричества или электросети некоторые устройства и приборы выйдут из строя. Вот объяснение:

Надежная сеть

Качество электроэнергии становится все более и более важным, поскольку общество становится все более и более зависимым от электроэнергии .Поэтому вполне естественно, что (бесперебойная) поставка качественной энергии имеет первостепенное значение .
Электросети Бельгии занимают место среди самых надежных в Европе. Обеспечение бесперебойной и непрерывной подачи электроэнергии в ваш дом - задача оператора вашей распределительной системы.

Но качество электроэнергии зависит не только от оператора системы распределения. Производители электроэнергии и взаимодействие с подключенными приборами и устройствами в домах потребителей также играют определенную роль.

Колебания напряжения

Большинство из нас знакомо со странным мерцающим светом в гостиной. Это мерцание является прямым результатом колебаний напряжения в сети.

Как правило, эти колебания не вызывают никаких серьезных неудобств, поскольку оператор вашей распределительной системы применяет специальных и множественных мер безопасности . Например, тяжелые установки не будут подключены к низковольтной сети.

Незапланированные и непреднамеренные перебои в электроснабжении встречаются довольно редко, хотя, к сожалению, полностью исключить их нельзя.Их причин могут различаться :

  • короткие замыкания : например, из-за обрыва кабеля, порванного при земляных работах
  • перегрузка : например, в результате удара молнии
  • скачков напряжения : например, в результате внезапной широкомасштабной установки солнечной панели

Возможное влияние колебаний напряжения на электрические устройства

Ваш дом подключен к низковольтной сети, которая обеспечивает питание напряжением 230 вольт.Чтобы предотвратить повреждение или выход из строя электроприборов в целом, существуют стандарты , которые устанавливают ограничения на максимальное отклонение от этого сетевого напряжения.

В свою очередь, электрические приборы должны быть спроектированы таким образом, чтобы они работали должным образом в этих пределах . Прибор, рассчитанный на работу от 230 В, прослужит максимальный срок службы при этом напряжении.

Если напряжение слишком низкое, , сила тока увеличивается, что может привести к расплавлению компонентов или нарушению работы прибора.Если напряжение слишком высокое, , это приведет к тому, что приборы будут работать «слишком быстро и слишком высоко», что сократит их срок службы. Провода, кабели, шнуры и силовые линии не подвергаются риску.

Напряжение и сила тока - разные вещи!

  • напряжение (выражается в вольт ) требуется для работы вашего устройства или прибора
  • сила тока или сила тока (выраженная в амперах ), зависит от мощности вашего устройства; чем выше потребляемая мощность прибора, тем больше потребляемого тока, но напряжение сети является заданным значением, которое остается неизменным.

Некоторые приборы на более чувствительны к таким колебаниям, чем другие. В основном это относится к приборам, которые содержат (слишком много) катушек ( диммеров, двигатели ) или электроники ( ПК, телевизоры ).

Как предотвратить потенциальный ущерб?

Правильные меры предосторожности помогут минимизировать материальный ущерб и финансовые потери:

1. Приобретайте технику, соответствующую требованиям знаков качества

. Убедитесь, что прибор выдерживает колебания напряжения.Это указано в маркировке CE . При необходимости дважды уточните у поставщика.

Удары молнии часто вызывают скачки очень высокого напряжения. То, что бытовая техника, даже имеющая знак качества, часто не выдерживает .

2. Регулярно проверяйте внутреннюю установку

С вашего счетчика электроэнергии вы отвечаете за бытовую технику в своем доме. Рекомендуется регулярно проверять внутреннюю установку (кабели и линии электропередач от счетчика, включая аварийные выключатели и главный выключатель).

3. Рассмотрите возможность установки сетевого фильтра

В розничной торговле обычно доступны различные продукты, которые действуют как сетевые фильтры и, в ограниченной степени, также обеспечивают защиту от повреждений в результате ударов молнии. Источник бесперебойного питания не только сглаживает скачки напряжения между сетью и вашей установкой, но также будет продолжать подавать напряжение в течение короткого времени после отключения электроэнергии.

Идеальная, хотя дорогостоящая защита для ценного оборудования, такого как серверы и производственное оборудование...

4. У вас есть бизнес? Или вы рискуете в случае длительного простоя оборудования?

В таком случае приобретите аварийную систему питания или резервный генератор.

Стабилизатор 5 вольт для цифровых схем. Регуляторы напряжения

своими руками

Подборка любительских радиосхем и конструкций регуляторов напряжения, собранных своими руками. Некоторые схемы рассматривают стабилизатор без защиты от КЗ в нагрузке; другие рассматривают возможность плавного регулирования напряжения от 0 до 20 вольт.Ну а отличительной особенностью индивидуальных схем является возможность защиты от короткого замыкания в нагрузке.

5 очень простых схем в основном на транзисторах, одна из них с защитой от короткого замыкания

Это часто случается, когда для питания вашего нового самодельного электронного устройства требуется стабильное напряжение, которое не меняется в зависимости от нагрузки, например, 5 или 12 вольт для питания автомобильного радиоприемника. А чтобы сильно не заморачиваться с конструкцией самодельного блока питания на транзисторах используются так называемые стабилизаторы напряжения.На выходе такого элемента мы получаем напряжение, на которое рассчитано это устройство.

Многие радиолюбители неоднократно собирали схемы регуляторов напряжения на специализированных микросхемах серий 78xx, 78Мхх, 78Lxx. Например, на микросхеме KIA7805 можно собрать самодельную схему, рассчитанную на выходное напряжение +5 В и максимальный ток нагрузки 1 А. Но мало кто знает, что существуют узкоспециализированные микросхемы серии 78Rxx, сочетающие в себе стабилизаторы напряжения положительной полярности с низкими. напряжение насыщения, не превышающее 0.5 В при токе нагрузки 1 А. Одну из этих схем мы рассмотрим подробнее.

Трехконтактный стабилизатор положительного напряжения LM317 обеспечивает ток нагрузки 100 мА в диапазоне выходного напряжения от 1,2 до 37 В. Стабилизатор очень прост в использовании и требует всего двух внешних резисторов для обеспечения выходного напряжения. Кроме того, по нестабильности напряжения и тока нагрузки стабилизатор LM317L имеет лучшие характеристики, чем традиционные стабилизаторы с фиксированным значением выходного напряжения.

Для стабилизации напряжения постоянного тока достаточно большой мощности, в том числе используются компенсирующие стабилизаторы постоянного действия. Принцип работы такого стабилизатора заключается в поддержании выходного напряжения на заданном уровне за счет изменения падения напряжения на регулирующем элементе. Величина управляющего сигнала, подаваемого на регулирующий элемент, зависит от разницы между заданным и выходным напряжением стабилизатора.

При стационарной работе оборудования, CD и музыкальных проигрывателей возникают проблемы с БП.Большинство серийно выпускаемых отечественным производителем блоков питания (а точнее) практически все не могут удовлетворить потребителя, так как содержат упрощенные схемы. Если говорить об импортных китайских и аналогичных блоках питания, то в целом они представляют собой интересный набор запчастей «купи и выбрось». Эти и многие другие проблемы заставляют радиолюбителей производить блоки питания. Но даже на этом этапе любители сталкиваются с проблемой выбора: многие дизайны опубликованы, но не все работают.Эта радиолюбительская разработка представлена ​​как вариант нестандартного включения операционного усилителя, ранее опубликованный и вскоре забытый.

Практически все радиолюбители и радиолюбители имеют стабилизированный источник питания. А если ваша конструкция работает от напряжения до пяти вольт, то лучшим вариантом будет трехконтактный интегральный стабилизатор 78L05

.

Стабилизатор напряжения 220 В

Регулятор напряжения на 5 вольт, о котором пойдет речь в этой статье, имеет защиту от коротких замыканий.Он предназначен для питания схем с микроконтроллерами при их разработке. Стабилизатор предназначен для установки на макетную плату без пайки. Стабилизатор малой мощности и максимальный ток нагрузки 0,15 А. Для разработки этой небольшой и простой схемы произвел очередной прогар контроллера во время экспериментов. Эта схема является дополнением к источнику питания лабораторного блока. Схема стабилизатора представлена ​​на рисунке 1.

Основа схемы - незаслуженно забытая и недорогая микросхема K157HP2 , в которой находится стабилизатор напряжения с функцией включения / выключения.Это 14-контактный чип, предназначенный для бытового оборудования для магнитной записи. Итак, схема работает следующим образом. При подаче питания на вывод 10 стабилизатора DA1 через защитный диод VD1 с барьером Шоттки появляется напряжение. Выходное напряжение появится только в том случае, если на вывод 9 DA1 будет подано положительное напряжение не менее двух вольт. В первый момент это коммутационное напряжение формируется цепочкой R1 и конденсатором C2, при этом течет ток его заряда. За это время на выходе стабилизатора появляется напряжение пять вольт, часть которого через резисторную обратную связь R2, также подается на вывод 9 DA1.Это удерживающее напряжение, необходимое для нормальной работы стабилизатора. Для удобства работы с этим устройством в схему введены две кнопки, с помощью которых можно быстро включать и выключать напряжение питания тестируемой схемы. При нажатии кнопки «Стоп» вывод 9 DA1 шунтируется на общий провод - стабилизатор отключается, когда исчезает напряжение размыкания. Когда вы отпустите эту кнопку, стабилизатор останется в замкнутом состоянии, потому что конденсатор С2 уже заряжен и для постоянного тока его сопротивление очень велико.То же самое произойдет при условии, что выход стабилизатора находится в режиме короткого замыкания. Те. напряжение удержания пропадает и стабилизатор выключается. Итак, стабилизатор в выключенном состоянии, для его включения необходимо нажать на кнопку «Пуск». В этом случае выходное напряжение через кнопку и резистор R1 снова поступает на вывод 9 DA1, стабилизатор включается. При нажатии этой кнопки напряжение для поддержания рабочего режима стабилизатора будет подаваться через резистор R2.

На схеме не указаны выходные конденсаторы фильтра. Если входные конденсаторы присутствуют в проверяемой цепи, их не нужно устанавливать, но если их нет, то выход этого стабилизатора необходимо перемыть с помощью керамического конденсатора на 0,1 В и электролитического конденсатора на 10 В. Вывод 8 микросхемы, это выход источника опорного напряжения 1,3 вольта. Конденсатор С3 - фильтрующий, при этом от емкости зависит время работы стабилизатора.Для нашего случая емкости, указанной на схеме, вполне хватит. Резистор R4 используется для регулировки выходного напряжения. В принципе, с таким же успехом можно изменить выходное напряжение с помощью резистора R3. У меня этот стабилизатор собран прямо на макетной плате, но хотелось бы иметь отдельную косынку, вроде той, о которой я писал в статье

.

Хороших новогодних праздников!
Давным-давно, когда мы обсуждали, куда уходят вольты в питании датчиков от ЭБУ, мне предложили сделать стабилизатор на 5в и подключать датчики от него.
Нашел схему стабилизатора, купил комплектующие и спаял. Ранее консультировался с McSystem.

Схема стабилизатора:

Ic1 - стабилизатор 7805 (импортозамещение КРЕН5). Учтем, что 7805 высокофонитный и необходимо делать простейшие фильтры керамических конденсаторов на входе и выходе:
Аналоги: LT1083, LT1084 - более эффективные и точные стабилизаторы. И в идеале - специально для ЭБУ разработан TLE 4267.
LM317 - он красивее и стабильнее и позволяет точно восстанавливать напряжение.
R1 - резистор 10-20 Ом для дополнительной фильтрации.
С1 - полярный электролитический конденсатор емкостью 100 мкФ 16В. Это минимальные параметры конденсатора, можно брать большей емкости, но не более 25В.
C2 - керамический конденсатор емкостью 0,33 мкм. Минимальная емкость такого конденсатора должна составлять 0,22 мкФ.
C3 - керамический конденсатор емкостью 0,1 мкФ.
С4 - полярный электролитический конденсатор емкостью 680 мкФ 6,3В.Емкость можно и взять другую, но не увеличивайте и не понижайте напряжение.
В идеале вместо керамических лучше использовать танталовые конденсаторы, которые лучше повлияют на стабилизацию тока.

Припаивается к плате. У меня остался корпус от реле, из которого я вытащил катушку для экспериментов. Плата сделала так, чтобы могла поместиться в корпус реле.







Реле сгнило себе следующие функции: 85 фут - питание стабилизатора + 12в, 86 фут - вес, 87 фут - выход + 5в .

Тестировал от блоков питания. при + 13,2В дано 4,94В, при + 12В на выходе - 4,94В, при + 11В на выходе - 4,94В.
Осталось поставить стабилизатор в цепь питания датчика, т.е. отрезать провод от ЭБУ и обжать клеммы, чтобы стабилизатор можно было снять или поставить в любой момент.
Все-таки стабилизатор на базе 7805 мне не нравится, поищу LM317 и немного доработаю схему, если будут сильные помехи от 7805.

Эта небольшая статья о трехходовом стабилизаторе. напряжение L7805 . Микросхема изготавливается двух типов: из пластика - ТО-220 и из металла - ТО-3. Три выхода, смотрите слева направо - вход, минус, выход.

Последние две цифры указывают на стабилизированное напряжение. Микросхемы - 7805-5 вольт, соответственно 7806-6в .... 7824 - наверное уже догадываюсь сколько.
Вот схема подключения Стабилизатор который подходит ко всем микросхемам этой серии:

На малогабаритные конденсаторы не смотрим, желательно поставить больше.
Ну это же стабилизатор изнутри:


Бля, да? И все это размещено .... .Чудо техники.

Итак, нас интересуют эти характеристики. Выходное напряжение - выходное напряжение. Входное напряжение - входное напряжение. Ищем наш 7805. Он дает нам выходное напряжение 5 вольт. Изготовители желаемого входного напряжения отметили напряжение 10 вольт. Но бывает, что выходное стабилизированное напряжение иногда либо немного занижено, либо немного завышено.Для электронных безделушек вольт на вольт не прощупываются, а вот для предложной (точной) аппаратуры схемы лучше собирать своими руками. Здесь мы видим, что стабилизатор 7805 может выдать нам одно из напряжений в диапазоне 4,75 - 5,25 Вольт, но должны быть выполнены условия, чтобы выходной ток в нагрузке не превышал одного Ампера. Нестабилизированное постоянное давление может «качаться» в диапазоне от 7,5 до 20 Вольт, при этом всегда выходное напряжение 5 Вольт. Это большой плюс стабилизаторов.
При большой нагрузке, а эта микросхема способна отдать мощность аж 15 Вт, лучше предусмотреть заглушку с радиатором и по возможности или желанию для большего и более быстрого охлаждения прикрутить к нему кулер, как в компьютер.
Вот схема штатного стабилизатора:


Технические характеристики

Корпус ... к-220
Максимальный ток нагрузки, А ... 1,5
Диапазон допустимых входных напряжений, В ... 40
Выходное напряжение, В ... 5
в справку.

Чтобы не перегреть стабилизатор, нужно придерживаться желаемого минимального напряжения на входе микросхемы, то есть если у нас L7805, то на вход пускаем 7-8 вольт, если 12 - 14- 15 вольт.
Это связано с тем, что стабилизатор рассеивает на себе чрезмерную мощность. Как вы помните, формула мощности P = IU, где U - напряжение, а I - сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше потребляемая им мощность. И чрезмерная мощность греется. В результате нагрева такой стабилизатор может перегреться и перейти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается.

RJM Audio - стабилизатор напряжения X-Reg

Малошумящий стабилизатор напряжения с широким диапазоном частот для аудиосхем.


Введение

Потратьте сколько угодно времени на то, чтобы оптимизировать схемы операционных усилителей, чтобы они звучали наилучшим образом, и рано или поздно вы обнаружите, что захотите модернизировать регуляторы напряжения. От серии LM78xx до регулируемого LM317, возможно, до LT1086, а затем и до DIY. Подход «сделай сам» к регуляторам, как это определено схемами Зульцера, Боберли и Юнга, хорошо резюмирован в этом обзоре Tangent. Больше (намного больше) о регуляторах напряжения для аудио на сайте Уолта Юнга здесь.Основное преимущество этих схем по сравнению с типичным интегрированным корпусом, таким как LM7812, заключается в том, что компоненты регулятора разделены и оптимизированы индивидуально. Например, для усилителя ошибки выбирается высокоскоростной операционный усилитель с низким уровнем шума и используется высокопроизводительный фильтрованный источник опорного напряжения. Однако фундаментальная топология практически не изменилась.

X-Reg отличается тем, что с самого начала спроектирован вокруг источника с разделенным напряжением, имеющего как положительную, так и отрицательную шины.Неинвертирующий усилитель ошибки с однополярным питанием, общий почти для всех конструкций регуляторов, заменен инвертирующим каскадом усиления, работающим от раздельных источников питания. Инвертирующая топология означает, что опорное напряжение имеет противоположную полярность выходному напряжению: положительный выход принимает опорное значение, генерируемое отрицательным входным напряжением, и наоборот. Именно от этой перекрестной ссылки, которая образует «X» на дорожке печатной платы, X-reg берет свое имя. Схема имеет смысл только тогда, когда, конечно, необходимы как положительное, так и отрицательное регулируемое напряжение.Он также ограничен относительно низкими выходными напряжениями, на практике примерно до ± 12 В. Он предназначен для использования с низковольтными слаботочными аудиосхемами, такими как полупроводниковые фонокорректоры, предусилители и усилители для наушников.


Как это работает

Суть стандартного последовательного регулятора напряжения показана на следующей схеме. Он включает в себя усилитель, проходной транзистор и пару резисторов, питаемых тремя напряжениями: сильноточное, необработанное входное напряжение, которое будет регулироваться, В ++ , низкое, отфильтрованное напряжение для самой схемы регулятора, V '++ и стабильное опорное напряжение с очень низким уровнем шума, + Vref .(В интегральных регуляторах как сильноточные, так и слаботочные цепи питаются от источника В ++ , и опорный сигнал генерируется внутренне.) Усилитель ошибки реагирует на поддержание выходного напряжения В + , постоянного кратного опорного напряжения. Отрицательный стабилизатор, который обычно требуется в дополнение к положительному стабилизатору для аудиосхем операционного усилителя, имеет ту же базовую топологию, но требует трех дополнительных напряжений питания; V - , V '- , а отрицательная ссылка -Vref .

Конструкция X-Reg возникла из осознания того, что цепи положительного и отрицательного регуляторов выиграют от разделения этих шести напряжений между ними, а не от использования только трех с той же полярностью, что и выход. Положительная сторона регулятора X-Reg использует V ++ , V '++ , V' - и отрицательную ссылку -Vref .

В отрицательной половине X-Reg, который использует V - , V '++ , V' - и + Vref , транзистор прохода NPN заменен его эквивалентом PNP.

Первое, что следует отметить, это то, что операционные усилители работают от раздельных источников питания. Это дает реальную выгоду от отказа от виртуальной земли. Поскольку операционный усилитель теперь может обрабатывать как положительные, так и отрицательные входы и выходы, мы можем дополнительно перенастроить операционный усилитель как инвертирующий каскад и оставить неинвертирующий терминал заземленным. Инвертирующая топология является «родным» состоянием операционного усилителя и предлагает несколько преимуществ, из которых, пожалуй, наиболее важна стабильность.Для инвертирующего каскада требуется опорное напряжение противоположной полярности выходной, это опорное напряжение «позаимствовано» из другой половины схемы.

Это касается нововведений в топологии. Последний элемент X-Reg, требующий объяснения, - это опорное напряжение. Вместо использования стабилитрона или опорного сигнала с шириной запрещенной зоны, которые являются зашумленными по сравнению с пассивными компонентами, используется простой делитель напряжения в сочетании с усиленной фильтрацией. По сути, это большой RC-фильтр, фактически реализованный как многоступенчатая RCRC-сеть, подключенная к V '++ или V' - .Большая часть шума питания ослабляется ниже минимального уровня шума операционного усилителя, но для достижения такого уровня фильтрации опорное напряжение оказывается довольно небольшим, всего несколько сотен милливольт. Следовательно, усиление инвертирующего каскада должно быть установлено достаточно высоким для компенсации, что позволяет естественным образом изменять отклик на частоте около 300 кГц, что делает регулятор относительно стабильным. Дополнительным преимуществом делителя напряжения в качестве эталона является то, что он автоматически запускает регулятор в течение нескольких секунд, устраняя удары при включении и ограничивая броски тока через проходные транзисторы.

Конечно, опорное напряжение не является абсолютным значением, а скорее определяется как часть входного напряжения В '++ или В' - . Если линейное напряжение колеблется во времени, превышающем постоянную времени фильтра - как обычно реализуется, 10 секунд или около того - выходное напряжение будет постепенно пропорционально изменяться. В этом отношении он ведет себя как нерегулируемый источник питания, и поэтому X-Reg точнее назвать стабилизатором напряжения или более гладкой линией, чем регулятор напряжения.Обычно я все еще называю его регулятором, потому что X-Reg заменяет и выполняет функцию регуляторов напряжения, обеспечивая малошумящие шины с низким выходным сопротивлением.


Платы

Схема X-Reg обычно является неотъемлемой частью схемы, которую она питает, и обычно размещается на той же печатной плате. Значения компонентов выбираются в соответствии с конкретным приложением. Первым применением X-Reg стал проект Phonoclone 3, в котором он был хорошо скомбинирован с фонокорректором Phonoclone MC.Если вы заинтересованы, загрузите последнюю версию файлов схемы и макета Phonoclone 3 со страницы продуктов RJM Audio.

Для общего использования ниже представлена ​​автономная схема, которая будет выдавать напряжение около ± 9–12 В от входов ± 18 В постоянного тока. Он предназначен для работы в паре с трансформатором с вторичными обмотками 12 В переменного тока. (Например, источники питания VSPS или Phonoclone.) Выходное напряжение можно установить, изменив значение R2, R2A и / или R3, R3A. Для облегчения выбора резистора предоставляется таблица Excel.Если требуется выходной ток более 150 мА, проходные транзисторы должны иметь теплоотвод.

Оценочная плата является двусторонней и имеет размеры 5x8 см. Для этого требуется двойной операционный усилитель, такой как NE5532. Плату можно использовать для тестирования или модернизировать для модернизации существующего оборудования.

Загрузить схему (BOM)

Значительное внимание было уделено выбору значений емкости, чтобы гарантировать, что секции опорного усилителя и операционного усилителя не добавят пульсации или чрезмерного шума на выходе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *