Как сделать повышающий трансформатор с 12 на 220 своими руками: Как из 12 вольт сделать 220 при помощи преобразователя напряжения

Содержание

Как из 12 вольт сделать 220 при помощи преобразователя напряжения

Понимание, как из 12 вольт сделать 220, позволяет самостоятельно изготовить преобразователь для получения стандартного сетевого напряжения.

Чтобы сделать прибор с качественной синусоидой на выходе, обязательно должны быть учтены все требования электротехники.

В каких случаях необходим преобразователь напряжения?

Преобразователи напряжения — приборы, изменяющие постоянный ток от аккумуляторной батареи в переменные показатели с заданными параметрами, равными 220 В и 50 Гц.

В бытовых условиях это устройство обеспечивает беспроблемное функционирование таких приборов, как газовый котел, холодильник, телевизор и другая сложная электротехника при невозможности использовать централизованную подачу электрической энергии на 220 В.

Особенности влияния параметров на электрические приборы:

  • амплитуда прилагаемого напряжения влияет на частоту оборотов двигателя, а от показателей питающей электросети напрямую зависит скорость валового вращения в двигателе асинхронного типа;
  • бытовые приборы нагревательного типа функционируют при показателях рабочего тока, пропорциональных уровню напряжения, но значительная часть таких изделий не рассчитана на эксплуатацию в нестандартных условиях напряжения;
  • бытовая электротехника часто нуждается в напряжении, отличном от сетевых параметров со строго определенными, стабильными показателями амплитуды, поэтому нормальная работоспособность некоторых приборов возможна только в условиях применения преобразователя напряжения.

Схема повышающего преобразователя напряжения 12-220 В

Особенно часто устройство используется в домовладениях с системой автономного обогрева, где в качестве отопительного прибора устанавливается импортное газовое оборудование с электронным управлением и контролем. Работоспособность таких приборов полностью зависит от наличия бесперебойного напряжения в 220 В и 50 Гц с правильной синусоидой.

Область применения преобразователя напряжения очень широкая, включая походные условия, эксплуатацию яхт и автомобилей, дачные участки без сетевого электроснабжения и так далее.

Электросчетчики бывают разными по количеству фаз, по тарифам и другим параметрам. Какой счетчик электроэнергии лучше поставить в квартире – читайте рекомендации специалистов.

Принцип работы светодиодных ламп и советы по ремонту неисправных лампочек своими руками описаны тут.

С правилами монтажа счетчиков электроэнергии вы можете ознакомиться по ссылке.

Разновидности преобразователей 12 на 220 вольт

Инверторы — устройства, позволяющие преобразовывать постоянные токовые величины, включая 12 В, в переменный ток с изменением уровня напряжения или без. Как правило, такие приборы являются генераторами периодического напряжения, приближенного к форме синусоиды.

Все выпускаемые в настоящее время преобразователи напряжения постоянных токовых величин могут быть представлены:

  • регуляторами напряжения;
  • преобразователями уровня напряжения;
  • линейными стабилизаторами.

Самодельный преобразователь

Чисто теоретически, на выход можно получить любые токовые величины, регулируемые от нулевой отметки до максимальных значений.

Чаще всего в качестве источника постоянного тока на 12 В используется стандартная аккумуляторная батарея. Существующие на сегодняшний день преобразователи отличаются по нескольким параметрам.

В зависимости от вида получаемой синусоиды:

  • Приборы, создаваемые синусоиду нормального или постоянного вида, характеризуются функционированием без отклонений и соблюдением всех эксплуатационных параметров с высоким уровнем точности. Такие устройства используются в подключении любых электроприборов, которые работают в условиях напряжения 220 В.
  • Приборы, создаваемые синусоиду модифицированного вида, характеризуются незначительными отклонениями в величине напряжения. Такие особенности не способны оказывать негативное воздействие на эксплуатационные качества стандартных бытовых устройств. Тем не менее, такое оборудование не применяется для подключения приборов, относящихся к категории сложной измерительной или медицинской техники.

В зависимости от показателей мощности:

  • преобразователи с мощностью до 100 Вт не рассчитаны на слишком высокие нагрузки, поэтому являются оптимальным вариантом для питания зарядного устройства простого бытового прибора;
  • преобразователи с мощностью в пределах от 100 Вт до 1,5 кВт. Такой тип устройств применяется преимущественно для питания простых приборов, подключаемых к бытовой электросети;
  • преобразователи с мощностью выше 1,5 кВт позволяют обеспечивать питанием такие достаточно мощные бытовые приборы, включая микроволновую печь, утюги и объёмные мультиварки.
В зависимости от конструктивных особенностей:
  • устройства компактного типа, отличающиеся неприхотливостью к источнику питания, и функционирующие в условиях напряжения 12-50 В;
  • устройства стационарного типа, обладающие чистым синусом и выдающие низковольтное напряжение 12-36 В;
  • автомобильные устройства переносного типа, характеризующиеся работой в определенных устройствах.

При выборе модели преобразователя показателей напряжения рекомендуется приобретать прибор, имеющий некоторый запас по уровню мощности.

Преобразователи напряжения с 12 на 220 В выдают на выход стандартные показатели, соответствующие основным характеристикам домашней электросети, поэтому являются совместимыми с практически любыми бытовыми приборами.

По форме сигнала выходного напряжения

Электронные устройства в виде преобразователей или инверторов различаются в зависимости от формы сигнала в выходном напряжении:

  • Модифицированный вариант, представленный плавной синусоидой, измененной до трапециевидной, прямоугольной или даже треугольной формы. Такие устройства характеризуются ограниченной областью использования и пригодны для потребителей, представленных осветительными и нагревательными приборами. Чтобы обеспечить функционирование оборудования с индуктивной нагрузкой, инверторная мощность должна иметь значительный запас, что обусловлено высоким пусковым током.
  • Вариант «чистой» синусоиды используются в питании любого вида нагрузки, а также позволяют обеспечить надежное и стабильное функционирование высокочувствительного оборудования. Значительная часть инверторов такого вида имеет зарядное устройство встроенного типа, благодаря чему используется в качестве источника бесперебойного питания.
  • Гибридный вариант подходит для обеспечения схем электрического снабжения, рассчитанных на обслуживание нескольких источников питания. В устройстве есть возможность использовать определенный вид приоритетного источника энергии или использовать сразу несколько вариантов с целью зарядка аккумуляторной батареи.

Преобразователь напряжения 12-220 самодельный

При выборе устройства следует обратить внимание на доступность альтернативных источников энергии, что позволяет быстро окупить приобретенное, достаточно дорогостоящее оборудование.

Приобретаемое устройство должно иметь оптимальные показатели номинальной мощности, защиту от перегревов и замыканий, систему пассивного и активного охлаждения, а также достаточный для функционирования КПД.

Трансформаторные устройства

Преобразователи трансформаторного типа являются устройствами, основанными на двух обмоточных системах. Приборы такого вида характеризуются изменением индуктивной связи при воздействии входного перемещения.

При этом осуществляется подключение одной обмоточной системы к источнику переменного тока с напряжением, а вторая обмотка, в этом случае, используется в качестве выходной.

Автомобильный преобразователь напряжения 12-220 В

Любой трансформатор предназначен для выполнения таких основных функций, как измерение и защита. Особенно востребованы современные трансформаторные устройства преобразующего типа, предназначенные для выполнения схемы удвоения или утроения частоты питающего напряжения.

В производственной области и быту современные приборы, позволяющие обеспечивать контроль входного/выходного тока и трансформировать переменные показатели в постоянные параметры, а также способные распределять напряжение, – являются очень востребованными.

Конструкция обычного повышающего преобразователя напряжения с 12 на 220

Тем не менее, нужно учитывать и некоторые минусы таких проборов. Основные недостатки преобразователей напряжения представлены восприимчивостью многих моделей таких устройств к повышенным показателям влажности, часто весьма внушительными размерами и сравнительно высокой стоимостью, поэтому к выбору инвертора нужно подходить очень внимательно.

Видео на тему

Как сделать простой преобразователь с 12 на 220 из компьютерного БП

Привет всем, в этой статье подробно расскажу, как можно сделать простейшей преобразователь с 12 вольт на 220 вольт с использованием доступных компонентов. Мощные, хорошие схемы, как право сложны даже для профи, а для начинающих вообще не достижимы, поэтому сегодня будет рассмотрен вариант конструкции повышающего преобразователя напряжения, который можно сделать из деталей не рабочего блока питания от компьютера.

Схема выбрана специально самая простая, чтобы повторить её могли все. Наша схема не нуждается в дополнительной настройки, я также решил отказаться от стандартных вариантов на базе шим контроллера, это бы усложняло задачу и сделало бы настройку сложной.

Внимание — схема представлена только для ознакомительных целей, она не имеет стабилизацию, поэтому выходное напряжение будет отклоняться от заявленной 220 вольт. Не имеет также никаких защит, а на выходе постоянный ток, это значит, что таким инвертором нельзя питать двигатели переменного тока и сетевые трансформаторы.

Подключать паяльник, небольшие лампы накаливания, эконом лампы, но опять же использовать такую схему в бытовых целях не совсем хорошая идея.

В качестве донора у нас обычный? нерабочий, компьютерный блок питания, из этого блока нам потребуется: —Силовой, импульсный трансформатор, —Конденсатор, —Дроссель групповой стабилизации и ещё несколько компонентов, о которых будем говорить по ходу дела.Для того, чтобы изъять указанные компоненты нам нужно убрать плату, то есть отделить плату от корпуса, делается это достаточно простым образом, откручиваем винты, перекусываем проводу, которые идут на вентилятор и вытаскиваем плату.

Для того, чтобы отпаять трансформатор я воспользуюсь естественно паяльником и оловоотсосом, нам нужно также отпаять, помимо указанных компонентов, ещё и радиатор на котором стоят основные, силовые транзисторы, плюс изолирующие прокладки и шайбы для них.

Помимо основных запчастей, которые мы изъяли с компьютерного блока питания, нам понадобиться два резистора с мощностью 1-2 ватта, с сопротивлением от 270 до 470 Ом.
Далее нам понадобятся два диода типа UF5408, можно в принципе любой ультро-фаз с током не менее 1 ампера и напряжением 400 вольт и выше.

Два стабилитрона с напряжением стабилизации от 5.1 до 6.8 вольт, желательно на 1 и 2 ватт. Полевые транзисторы N-канальные можно использовать как вариант IRF840, но я бы посоветовал более мощные IRFP460 либо 250 из той же линейки, я же в своём варианте буду использовать на 18 ампер 600 вольт, типа 18N60.

Следующий ингредиент это у нас дроссель, в принципе на дросселе от групповой стабилизации несколько независимых обмоток, их можно в принципе смотать, я откусил, оставив только силовую обмотку. Если же дроссель мотается с нуля, то обмотка состоит из провода 1.2-1.5 мм и содержит от 7 до 15 витков.

Итак трансформатор, у нас есть вторичная, выходная обмотка и первичная, обратите внимание на отдельный отвод (провод) и два правых контакта, возле них мы ставим метку, то есть к этим контактам подключаются силовые выводы с транзисторов, дальше к этим же контактам с трансформатора параллельно подключаем наш конденсатор на 1 мКф.Потом начинается монтаж, собственно устанавливаются транзисторы на теплоотвод, я не буду использовать никакой изоляции, поскольку корпуса транзисторов у меня уже заранее изолированы с завода.

Я решил в принципе не травить, ни каких плат, а просто собрать всё навесным монтажом для максимальной простоты сборки.
Собранная монтажом схема выглядит примерно таким образом, сейчас нам нужно всего лишь подключить к выходной обмотке лампу накаливания небольшой мощности, падать питание, чтобы проверить схему на работоспособность. Теперь нам нужно отпаять два больших электролитических конденсатора с компьютерного БП, они стоят в абсолютно любом блоке питания от компьютера, ёмкость бывает разная, напряжение 200 вольт.

На базе этих конденсаторов и диодов мы создадим симметричный умножитель напряжения или просто удвоитель напряжения, поскольку выходное напряжение со вторичной обмотке трансформатора в районе 100 вольт и его нужно поднять.

Для этого мы использовать будем именно умножитель, который поднимет его в два раза.

Помимо этих конденсаторов нам также понадобиться два диода, в моём варианте UF5408, в принципе можно использовать любые диоды на 400-600, а ещё лучше 1000 вольт с током выше 2-3 ампер.

Небольшая лампа накаливания с мощностью 60 ватт горит полным накалом. Ну вот вроде и всё, на этой ноте наш преобразователь готов к работе )))В заключении хочу сказать, что схема работает в широком диапазоне питающих напряжений, в принципе от 6 вольт начинается работа, простота и доступность основное достоинство схемы, советуется подавать питание через предохранитель на 15-20 ампер.В схеме я также нарисовал резисторы, которые конденсаторы зашунтированы этими резисторами, в своём проекте я их не поставил, но вам обязательно советую это сделать.

Автор; Ака Касьян

Простые повышающие DC/DC преобразователи своими руками, схемы

Устройствами с батарейным питанием сейчас уже никого не удивишь, всевозможных игрушек и гаджетов питающихся от аккумулятора или батарейки найдется с десяток в каждом доме. Между тем, мало кто задумывался над количеством разнообразных преобразователей, которые используются для получения необходимых напряжений или токов от стандартных батарей. Эти самые преобразователи делятся на несколько десятков различных групп, каждая со своими особенностями, однако в данный момент времени мы говорим про понижающие и повышающие преобразователи напряжения, которые чаще всего называются AC/DC и DC/DC преобразователями. В большинстве случаев для построения таких конвертеров используются специализированные микросхемы, позволяющие с минимальным количеством обвязки построить преобразователь определенной топологии, благо микросхем питания на рынке сейчас великое множество.

Рассматривать особенности применения данных микросхем можно бесконечно долго, особенно с учетом целой библиотеки даташитов и аппноутов от производителей, а также бесчисленного числа условно-рекламных обзоров от представителей конкурирующих фирм, каждая из которых старается представить свой продукт наиболее качественным и универсальным. В этот раз мы будем использовать дискретные элементы, на которых соберем несколько простейших повышающих DC/DC преобразователей, служащих для того, чтобы запитать небольшое маломощное устройство, к примеру, светодиод, от 1 батарейки с напряжением 1,5 вольт. Данные преобразователи напряжения можно смело считать проектом выходного дня и рекомендовать для сборки тем, кто делает свои первые шаги в удивительный мир электроники.

Итак, схема первая:


Схема простого DC/DC
преобразователя №1

На данной схеме представлен релаксационный автогенератор, представляющий собой блокинг-генератор со встречным включением обмоток трансформатора. Принцип работы данного преобразователя следующий: при включении , ток протекающий через одну из обмоток трансформатора и эмиттерный переход транзистора – открывает его, в результате чего он открывается и больший ток начинает течь через вторую обмотку трансформатора и открытый транзистор. В результате в обмотке, подключенной к базе транзистора наводится ЭДС, запирающая транзистор и ток через него обрывается. В этот момент энергия, запасенная в магнитном поле трансформатора, в результате явления самоиндукции, высвобождается и через светодиод начинает протекать ток, заставляющий его светиться. Затем процесс повторяется.

Компоненты, из которых можно собрать этот простой повышающий преобразователь напряжения, могут быть совершенно различными. Схема, собранная без ошибок, с огромной долей вероятности будет корректно работать. Мы пробовали использовать даже транзистор МП37Б – преобразователь отлично функционирует! Самым сложным является изготовление трансформатора – его надо намотать сдвоенным проводом на ферритовом колечке, при этом количество витков не играет особой роли и находится в диапазоне от 15 до 30. Меньше – не всегда работает, больше – не имеет смысла. Феррит - любой, брать N87 от Epcos не имеет особого смысла, также как и разыскивать M6000НН отечественного производства. Токи в цепи протекают мизерные, поэтому размер колечка может быть очень небольшим, внешнего диаметра в 10 мм будет более чем достаточно. Резистор сопротивлением около 1 килоома (никакой разницы между резисторами номиналом в 750 Ом и 1,5 КОм обнаружено не было). Транзистор желательно выбрать с минимальным напряжением насыщения, чем оно меньше – тем более разряженную батарейку можно использовать. Экспериментально были проверены: МП 37Б, BC337, 2N3904, MPSh20. Светодиод – любой имеющийся, с оговоркой, что мощный многокристальный будет светиться не в полную силу.

Собранное устройство выглядит следующим образом:

Размер платы 15 х 30 мм, и может быть уменьшен до менее чем 1 квадратного сантиметра при использовании SMD-компонентов и достаточно маленького трансформатора. Без нагрузки данная схема не работает.

Вторая схема - это типовой степ-ап преобразователь, выполненный на двух транзисторах. Плюсом данной схемы является то, что при её изготовлении не надо мотать трансформатор, а достаточно взять готовый дроссель, но она содержит больше деталей, чем предыдущая.


Схема простого DC/DC преобразователя №2

Принцип работы сводится к тому, что ток через дроссель периодически прерывается транзистором VT2, а энергия самоиндукции направляется через диод в конденсатор C1 и отдается в нагрузку. Опять же, схема работоспособна с совершенно различными компонентами и номиналами элементов. Транзистор VT1 может быть BC556 или BC327, а VT2 BC546 или BC337, диод VD1 – любой диод Шоттки, например, 1N5818. Конденсатор C1 – любого типа, емкостью от 1 до 33 мкФ, больше не имеет смысла, тем более, что можно и вовсе обойтись без него. Резисторы – мощностью 0,125 или 0,25 Вт (хотя можно поставить и мощные проволочные, ватт эдак на 10, но это скорее расточительство чем необходимость) следующих номиналов: R1 - 750 Ом, R2 - 220 КОм, R3 – 100 КОм. При этом, все номиналы резисторов могут быть совершенно свободно заменены на имеющие в наличии в пределах 10-15% от указанных, на работоспособности правильно собранной схемы это не сказывается, однако влияет на минимальное напряжение, при котором может работать наш преобразователь.

Самая важная деталь - дроссель L1, его номинал также может отличаться от 100 до 470 мкГн (экспериментально проверены номиналы до 1 мГн – схема работает стабильно ), а ток на который он должен быть рассчитан не превышает 100 мА. Светодиод – любой, опять же с учетом того, что выходная мощность схемы весьма невелика. Правильно собранное устройство сразу же начинает работать и не нуждается в настройке.

Напряжение на выходе можно стабилизировать, установив стабилитрон необходимого номинала параллельно конденсатору C1, однако следует помнить, что при подключении потребителя напряжение может проседать и становиться недостаточным. ВНИМАНИЕ! Без нагрузки данная схема может вырабатывать напряжение в десятки или даже сотни вольт! В случае использования без стабилизируещего элемента на выходе, конденсатор C1 окажется заряжен до максимального напряжения, что в случае последующего подключения нагрузки может привести к её выходу из строя!

Преобразователь также выполнен на плате размером 30 х 15 мм, что позволяет прикрепить его на батарейный отсек типа размера AA. Разводка печатной платы выглядит следующим образом:

Обе простые схемы повышающих преобразователей можно сделать своими руками и с успехом применять в походных условиях, например в фонаре или светильнике для освещения палатки, а также в различных электронных самоделках, для которых критично использование минимального количества элементов питания.

 

Мини преобразователь с 1,5 В до 220 В


Если у вас без дела завалялось сломанное зарядное устройство от сотового телефона, то из него можно сделать одну небольшую, но нужную самоделку. Это простой преобразователь напряжения с постоянного 1,5 Вольта до переменных 220 Вольт. Схема по истине элементарная и содержит всего 3 детали.

Изготовление мини преобразователя напряжения


Разбираем корпус зарядного устройства и вынимаем оттуда плату.

Выпаиваем трансформатор с этой платы.

Схема преобразователя



Как уже говорилось - схема наипростейшая. Прежде чем ее собирать нужно тестером «прозвонить» трансформатор и узнать сопротивление каждой обмотки. Всего их должно быть три. Естественно, сопротивление обмоток вашего трансформатора может немного отличаться - это не страшно. А вот если расхождения кардинальные, то такой экземпляр может не подойти.
Собираем преобразователь по схеме.

В схеме используется транзистор «2SD882», его можно заменить любым низкочастотным «p-n-p» структуры средней мощности. Или на отечественный аналог КТ815, КТ817.
Все собирается навесным монтажем без платы за 5 минут. Припаиваем провода от патрона лампочки и от батарейки.

Устройство работает сразу при включении и в настройке не нуждается. Если генерация не началась при первом включении, поменяйте местами контакты одной из низковольтовых обмоток.
В роли нагрузки использована светодиодная лампа на 220 В и мощностью 3 Вт.

Частота работы преобразователя порядка 25 кГц.
Если запитать схему от 3 Вольт, то яркость лампы увеличится и она точно будет светить на полную мощность.

В роли нагрузки можно подключить другое зарядное устройство и заряжать мобильный телефон от батареек.

Смотрите видео


Повышающий трансформатор – история создания знакового устройства и пошаговая инструкция.

Любая сфера человеческой деятельность связана с определенными устройствами, предметами, символизирующими эту область. Судостроение, мореплавание – развивающиеся паруса, длинные яхты, корабли, морские волны. Авиация – крыло самолета, пропеллер. Автомобильная отрасль осталась бы смутной мечтой, не изобрети когда-то человек колесо. Многие вещи, которые сегодня кажутся нам привычными, естественными, были изобретены в творческих муках, трудах, но стали поворотным моментом развития не только отдельной сферы, но и всего человечества.

Повышающий трансформатор: история создания

Таким символом электротехники является повышающий трансформатор тока. Принцип, ставший основой его работы, был открыт Майклом Фарадеем еще в 1831 году. Открытое им явление электромагнитной индукции оказало несравнимое влияние на весь человеческий быт, способы производства продукции. Но использовано открытие было лишь спустя почти полвека - в 1876 году отечественным изобретателем Яблочковым П. Н., который стал владельцем патента на трансформатор.

Принцип работы и разновидности

Трансформатор – это электрический прибор, который преобразует ток входящей сети в ток с другими показателями напряжения. Работает прибор только с напряжение переменного тока, потому что лишь при изменении электромагнитного поля становится возможным использования эффекта индукции. Его устройство не отличается сложностью: пара обмоток размещается на незамкнутом сердечнике, что позволяет преобразовывать показатели напряжения тока. Передача энергии происходит посредством перевода электрической энергии в магнитное поле, а затем снова в ток с новыми показателями. Чтобы повысить параметры, необходимо иметь такую вторичную обмотку, количество оборотов которой больше чем у первичной. Чтобы понизить – наоборот. Трансформатор повышающий напряжение был первым изобретенным видом этого прибора.

По габаритам современные устройства отличаются как от первого изобретения, так и друг от друга. Сегодня используются повышенные трансформаторы размером менее одного сантиметра у небольших приборов, а также размером с двухэтажный дом для крупных промышленных комплексов. Их производство, продажа, обслуживание являются самостоятельной областью промышленности. Изобретение русского ученого используется электротехническими лабораториями, промышленностью, нефтегазовой отраслью и многими другими. Современные модели повышающих трансформаторов позволяют получать напряжение 220 В, подходящее подавляющему числу бытовых, профессиональных приборов, при минимальном входном питании сети.

Сделать самому или купить повышающий трансформатор?

Решением некоторых задач может стать преобразователь, собранный своими руками. Например, если для гаражных работ нужно подключить оборудование с питанием 220 В, а сеть имеет напряжение лишь 36 В, то собранный самостоятельно повышающий трансформатор позволит решить эту проблему.

Собираем повышающий трансформатор своими руками

  1. Первым делом определяем мощность первичной обмотки будущего преобразователя. Для этого нужно узнать мощность прибора, который мы будем подключать. Обычно эти данные указывают в паспорте устройства. Например, возьмем среднее значение 100 Вт. Следует учитывать, что потребуется некоторый запас, т.к. коэффициент полезного действия будет равен примерно 0,8 -0,9. Нам подойдет мощность 150 Вт.
  2. Нужно подобать магнитопровод. Если не прибегать к услугам специализированных магазинов, то можно взять сердечник по форме буквы «О» из, например, старого телевизора. Но придется рассчитать сечение по формуле: A1= C*C/1,44 , где A1 – мощность будущего преобразователя (Вт), а C – поперечное сечение (кв. см). У нас С должно быть равно 10,2 кв. см.
  3. Определяем число витков на 1 В. Рассчитываем по формуле: K=50/C, у нас это 50/10,2, т.е. 4,9 витков на 1 В. После мы легко рассчитаем количество оборотов первичной и вторичной обмоток. В первом случае умножаем имеющиеся напряжение питания сети на 4,9, получаем 176 витков. Во втором умножаем требуемое напряжение (220 В) на 4,9, получаем 1078.
  4. Следующий шаг – расчет тока каждой обвивки. За исходные показатели берем мощность равную 150 Вт. Тогда для первичной обвивки нужен ток в 4,2 А, вторичной – 0,7 А. Рабочий показатель равен мощности деленной на напряжение.
  5. Для правильной работы устройства важно не только количество оборотов, но и диаметр обмоток. Рассчитываем этот параметр по формуле: рабочий ток обмотки умноженный на коэффициент 0,8. У нас получается 1,64 мм и 0,67 мм для первичной и вторичной обмоток соответственно. Подбираем максимально похожие на наши диаметры из представленных магазином.
  6. Вырезаем два каркаса для магнитопровода. Берем половину первичной обмотки, плотно укладываем на каркасы. После укладки изолируем стеклотканью.
  7. Берем половину вторичной обмотки, также укладываем, изолируем.
  8. Собираем магнитопровод, стягиваем его отдельные части хомутом. Части устройства рекомендуем проклеить специальным клеем с содержанием ферропорошка, тогда оборудование не будет издавать лишних звуков во время эксплуатации. Устройство готово!

Если вы далеки от физики, самодеятельности или не обладаете свободным временем, рекомендуем просто купить готовый трансформатор в нашем интернет-магазине. Также стоит учесть, что промышленные, производственные задачи способен решить лишь прибор, собранный профессионалами. Использование самодельного устройства не всегда безопасно! Будьте осторожны.

КАК СДЕЛАТЬ ИЗ 12 ВОЛЬТ 24

   Недавно мы рассматривали устройство понижающее напряжение с 24 до 12 вольт, а теперь изучим повышающий преобразователь 12-24 В. Этот DC-DC преобразователь собран на основе специализированной микросхемы LM2585 производства Texas Instruments. Схема понадобилась для использования в авто (в частности для зарядки ноутбука на 20 В) и была выбрана за предельную простоту, требующую минимального числа внешних компонентов. Элемент переключения — транзистор, интегрирован внутрь регулятора, и способен выдерживать максимальный ток 3А и 60V напряжения. Частота переключения определяется параметрами внутреннего генератора и зафиксирована на 100 кГц. Дополнительные функции — схема плавного пуска, чтобы устранить скачки тока во время пуска и внутреннее ограничение тока. Поддержание точности выходного напряжения составляет 4% в зависимости от нагрузки.

Схема преобразователя 12-24 В

Плата печатная преобразователя 12-24

Технические характеристики преобразователя

  • Vin 10-15V DC 
  • Vout 24V
  • Iout 1А
  • частота 100 кГц

   Вообще сама микросхема обладает более широким диапазоном напряжений и токов. Входное напряжение 4-40 В, выходное до 60 вольт, а предельный ток 3 ампера. Более подробно изучайте в даташите на LM2585.

   Входные конденсаторе и диоде должны располагаться достаточно близко к регулятору, чтобы свести к минимуму индуктивности. Элементы IC1, L1, D1, C1, C2, C5, C6 — основные части, используемые в преобразователе напряжения. Конденсатор С3 при монтаже должен располагаться как можно ближе к IC1. Конденсаторы выбирайте типа low ESR с низким сопротивлением постоянному току.

   При максимальной выходной мощности, заметна значительная выработка тепла, по этой причине микросхема монтируется непосредственно на общей земле платы.

Графики работы инвертора

   Последний график показывает пульсации выходного напряжения и тока индуктивности. Мы видим, что пульсации выходного напряжения составляет около 0,6 Vpp и пиковый ток 2,4 А. Дроссель в конструкции использован на 5 A постоянного тока, поэтому он может легко выдержать такой ток и без особого нагрева катушки.

Originally posted 2018-11-01 01:59:05. Republished by Blog Post Promoter

Инвертор 12 в 220 своими руками — изготовление и принцип работы

Бывают совершенно различные ситуации, когда хозяину в бытовых условиях необходимо создать новый преобразователь напряжения. Основным назначением данного устройства является обеспечение величины в сетевом напряжении со значением 220 В от исходных значений в 12 Вт. Инвертор 12 в 220 своими руками изготавливается большинством любителей, поскольку хороший качественный преобразователь достаточно дорогой. Перед сборкой устройства следует разобраться с принципом работы его, чтобы иметь представление о механизме его эксплуатации.

В каких сферах применяется инвертор напряжения 12 220 В

При стабильном использовании аккумуляторной батареи происходит постепенное уменьшение уровня ее заряда. Преобразователь стабилизирует напряжение, если отсутствует электричество.

Инвертор 12 220 В, сделанный своими руками, позволит провести усовершенствование инженерных сооружений в любом помещении. Значение мощности устройств, преобразующих ток, выбирают согласно от общих величин эксплуатируемых нагрузок.  Процессы потребления мощности могут быть реактивными и активными. Реактивные нагрузки не полностью потребляют полученный объем энергии, из-за чего значение полной мощности является больше ее активного значения.

Инверторы с чистыми синусоидами применяются при подключении элемента, общая мощность которого составляет 3 кВт. Значительная экономия топлива обеспечивается использованием преобразователей напряжения и мини-электростанциями.

К конструкции инвертора присоединяют такие потребители, как:

  • систему сигнализации;
  • отопительный котел;
  • насосный аппарат;
  • компьютерную систему.

Преимущество использования преобразователей напряжения

Благодаря тому, что инверторы обладают целым рядом положительных характеристик, их очень ценят при использовании для различных видов электротехники. Устройства работают бесшумно, не засоряют окружающую среду всевозможными выхлопами. Стоимость обслуживания подобных приборов является минимальной: выполнять проверку давления в двигателе нет необходимости. У инверторов достаточно незначительный механический износ, что позволяет использовать их различным потребителям. Инверторы 12 220 В работают на повышенных мощностях  КР121 ЕУ, обладают повышенным КПД.

В процессе сборки инверторов с задающими устройствами в качестве мультивибраторов, достоинство преобразователей выражается в том, что прибор обладает доступностью и простотой. Размер изделий компактен, отремонтировать их не составляет сложности, а эксплуатировать можно даже при низкой температуре.

Схема и принцип работы инвертора 12 220

Основная часть радиодеталей, использующих инверторы, используют в работе высокие частоты. Импульсный инвертор в полной мере заменяет классическую схему, в которой применяются трансформаторы. Микросхему К561ТМ2 формируют два D-триггера, у которых присутствует вход R и S. Такая микросхема создается с учетом использования КМОП-технологий, посредством заключения в пластиковый корпус.

Задающие генераторы инверторов монтируются с учетом К561ТМ2, с использованием для функционирования устройства DD1. На делитель частот осуществляется монтирование триггера DD1.2. Усилительные каскады принимают сигнал с микросхем.

Для эксплуатации выполняется подбор транзисторов КТ827. Если они отсутствуют, то подойдет транзистор типа КТ819 ГМ либо полевой полупроводник — IRFZ44.

Генераторы с синусоидой для инвертора 12 220 В работают на высоких частотах. Чтобы образовать контур с размером 50 Гц, используют вторичную обмотку с параллельным подсоединением конденсаторов и нагрузок. Подключая любое устройство, инверторы создают преобразовательное напряжение в 220 В.

Схема обладает одним существенным недостатком — несовершенной формой параметров на выходах.

Говоря о том, как работает инвертор 12 220, стоит указать что микросхему К561ТМ2 дублирует К564ТМ2. Увеличить мощность на преобразователе можно путем подбора более интенсивного транзистора. Важно учитывать то факт, какие конденсаторы устанавливаются на выходах. Они обладают напряжением 250 В.

Преобразователь с новейшими деталями

Самодельный инвертор может работать в стабильном режиме, если на выходах транзистор работает от усиленного источника с основным генератором. Для этого допускается использование элементов серий КТ819ГМ, установленных на габаритных радиаторах.

При создании преобразователей применяется упрощенная схема. По ходу процесса следует позаботиться о приобретении необходимых материалов:

  • микросхемы КР121ЕУ1;
  • транзистороов IRL2505;
  • паяльника;
  • олова.

Микросхемы КР12116У1 обладают примечательным свойством: они содержат пару каналов для регулирования ключа и позволяют достаточно просто сделать несложный преобразователь напряжения. Микросхемы в температурном диапазоне от +25 до +30°С  выдают предельную величину напряжения  в пределах 3 и 9 В.

Частоту задающих генераторов определяют параметром элемента в цепях. Транзистор IRL2505 устанавливается при использовании на выходах. На него должно осуществляться поступление сигнала с должным уровнем, благодаря которому происходит регулировка выходного транзистора.

Сформировавшиеся низкие уровни не позволяют транзистору переходить из закрытых видов в какие-либо другие состояния. В итоге в полной мере происходит исключение возникновения мгновенных поступлений тока при одновременном открытии ключей. Если наблюдается попадание высоких уровней к первому выводу, то это способствует отключению импульсных генераций. Схема определяет присоединение общего провода до вывода 1.

Чтобы выполнить монтаж двухтактных каскадов применяются трансформаторы Т1 и транзисторы, в количестве двух штук: VT1 и VT2. В открытых каналах можно увидеть величину сопротивления от 0,008 Ом. Оно является незначительным, в связи с этим значение мощности транзистора небольшое, даже в том случае если проходит большой ток. Выходные трансформаторы, обладающие мощностью в 100 Вт, позволяют применять ток IRL2505 к 104 А, а импульсные составляют 360 А.

К основным особенностям инверторов можно отнести, возможность использования любого трансформатора, имеющего на выходах две обмотки на 12 В.

Если выходная мощность составляет около 200 Вт, то в таких случаях установку транзистора на радиатор не производят. Важно учитывать, что значение электротока с мощностью 400 Вт достигает около 40 А.

Как устроен инвертор для ламп дневного света

Чтобы изготовить преобразователь, который позволит осветить помещение любых размеров или авто достаточно использовать схему сборки своими руками. Импульсные преобразователи VOLTSL относятся к двухтактным. Они смонтированы на блоках питания TL 494 (КС 1114ЕУ4). Микросхемы управляются силовыми частями блока питания и состоят из:

  • генератора напряжения;
  • источника, стабилизирующего напряжение;
  • двух транзисторов на выходных источниках электротока, емкость которых составляет 0,7 мм и 0,1 В.

Чтобы выполнить монтаж необходимо предусмотреть приобретение выпрямительных диодов и трансформатора от блока питания. Следует разобраться с вопросом о перемотке трансформаторов. Выполняя данную работу самостоятельно следуют рассчитать до 100 кГц. Приобретается каждый резистор, с учетом схемы R1 и R2, создающий проход импульса тока у выхода. Рабочую частоту формируют при создании цепи С1 и R3. Монтируются диоды HR307, если же они отсутствуют, то используют HER304. Достаточно хорошо зарекомендовали себя диоды КД213. Подбор конденсаторов осуществляется имеющих различную емкость. Спаянные микросхемы помещаются в панели. Схемы могут функционировать на протяжении четырех часов — конструкция транзисторов при этом не перегревается, и в настройке они не нуждаются.

Трансформаторы подлежат самостоятельным намоткам. Поэтому необходимо заблаговременно запасаться ферритовыми кольцами, диаметр которых составляет 30 мм.  В основе используется пропорция витков на намотке 1:120, тогда как 1:1 является первичной обмоткой, а 20 составляет 200 витков со вторичным покрытием.

Изначально выполняется намотка вторичной обмотки с применением провода, у которого сечение составляет 0,4 мм. На следующем этапе создается первичное покрытие, которое состоит из 2 половинок по десять витков на каждой из них. Многожильный мягкий провод в диаметре 0,8 мм используется для создания полуобмотки. Чтобы переделать трансформатор допускается использование устройства для 12-вольтовой лампы, , которая подсвечивает потолок. Снимается вторичная обмотка, а полуобмотка создается при наматывании покрытий, когда провод вдвое сложенный. После этого соединяющее место разрезается, а каждый конец проводов спаивается совместно, благодаря чему происходит формирование центра обмотки.

Для бесперебойной работы необходимо использование мощных металлических проводников или полевых транзисторов IRFL44N LRF46N. Для преобразователей устанавливаются диоды HER307 и КД213. В качестве конденсаторов применяются компьютерные блоки питания, с диаметром в 18 мм.

При длительных работах происходит нагрев транзисторов, установка радиаторов не осуществляется. Если предполагается его использование, то фланцы на транзисторном корпусе не стоит заворачивать через резисторы. Следует использовать шайбу и прокладочные изолирующие материалы от блоков питания ПК.

Инверторы надежным образом защищаются от перегрузки, если на выходах выполняется установка предохранителя и диода. Важно, чтобы соблюдение правил техники безопасности четко выполнялось: то есть необходимо избегать высоких напряжений. Заряды в конденсаторах могут храниться на протяжении 24 часов. Разрядку осуществляют при помощи накаливающих ламп на 220 В.

Инвертор своими руками 12 в 220 можно изготовить согласно простой схемы. Такое устройство считается достаточно удобным аппаратом, который позволяет получать напряжение в 220 В. Любые приборы, изготавливаемые в домашних условиях, в некоторых ситуациях абсолютно ничем не уступают заводским изделиям, а в некоторых случаях даже превосходят их.

Видео «Создание преобразователя для ламп дневного света»

Как сделать понижающий трансформатор

Обновлено 15 декабря 2020 г.

Крис Дезил

Трансформаторы - это простые, но чрезвычайно полезные электрические устройства, и они работают из-за явления, известного как электромагнитная индукция. Если вы поместите провод в изменяющееся магнитное поле, поле индуцирует электрический ток в проводе, а там, где есть ток, возникает разность потенциалов или напряжение. Обратное также верно. Изменяющийся ток в проводнике создает магнитное поле. Поскольку ток должен изменяться (в потоке), трансформаторы работают только с электричеством переменного тока, что является преимуществом переменного тока перед мощностью постоянного тока.

Напряжение зависит от того, сколько раз проводник проходит через магнитное поле. Вы можете преобразовать напряжение в одной цепи - первичной цепи - в другое напряжение во вторичной цепи, регулируя количество раз, когда проводники каждой цепи проходят через магнитное поле. Устройство, которое делает это, является трансформатором, а когда оно снижает напряжение во вторичной цепи, это понижающий трансформатор.Это именно то, что делает трансформатор на линии электропередачи за пределами вашего дома. Сделать понижающий трансформатор самому несложно, но он не будет таким большим и мощным, как на линии электропередачи. Однако он будет работать точно так же.

Трансформаторы используют обмотки

В трансформаторе используется один проводник, намотанный несколько раз вокруг центрального сердечника для первичной цепи, и другой проводник, также несколько раз намотанный вокруг того же или другого сердечника для вторичной цепи. Соотношение количества обмоток в этих катушках определяет напряжение во вторичной катушке. Формула трансформатора, которая следует из закона Фарадея, следующая:

\ frac {N_s} {N_p} = \ frac {V_s} {V_p}

, где N s и N p - количество обмоток в вторичная и первичная обмотки соответственно, а V s и V p - напряжения.

В понижающем трансформаторе вторичное напряжение меньше первичного, поэтому количество обмоток вторичной обмотки должно быть меньше числа обмоток первичной обмотки.Если вам известно напряжение в первичной цепи и у вас есть цель для вторичной катушки, вы достигнете своей цели, отрегулировав количество обмоток на обеих катушках.

Создание понижающего трансформатора

Самые эффективные трансформаторы имеют ферромагнитные сердечники, потому что этот материал намагничивается первичной обмоткой и передает энергию вторичной обмотке более эффективно, чем катушки могут делать сами. Самый простой способ получить ферромагнитную катушку - найти большую стальную шайбу в строительном магазине или на ремонтной мастерской.Он должен быть от 2 до 3 дюймов в диаметре.

Для изготовления катушек можно использовать любой токопроводящий провод, но лучше всего подходит магнитный провод 28 калибра, который представляет собой очень тонкий медный провод, покрытый изоляцией. Чтобы создать первичную катушку, плотно оберните провод вокруг шайбы не менее 500 раз, удерживая провода плотно вместе. При необходимости намотайте его слоями. Тщательно подсчитайте количество витков и запишите количество. Когда вы закончите намотку, оставьте два конца свободными для подключения к источнику питания и оберните провода малярной лентой, чтобы они оставались на месте.

Поскольку вы собираете понижающий трансформатор, количество обмоток вторичной обмотки будет меньше. Фактическое число зависит от желаемого напряжения, и вы можете рассчитать его, используя формулу трансформатора. Намотайте вторичную катушку поверх первичной, оставив концы свободными для подключения к счетчику. Оберните катушку малярной лентой, а затем оберните весь трансформатор изолентой, чтобы изолировать его. Трансформатор готов к тестированию.

Пример расчета

Предположим, вы хотите понизить напряжение 120 В в домашней розетке до 12 В.Соотношение напряжений составляет 12/120 = 1/10, поэтому, если первичная обмотка имеет 500 обмоток, вторичная обмотка должна иметь 50.

Обратите внимание, что использование домашнего напряжения в этом расчете является только примером, и ток, проходящий под ним. Большое напряжение приведет к быстрому нагреву проводов, и было бы опасно пытаться снизить его. Этот элементарный трансформатор безопаснее использовать для гораздо меньших входных напряжений от более безопасных источников. Не оставляйте трансформатор подключенным на какое-либо время.

Как сделать повышающий трансформатор

Что такое трансформатор?

Трансформатор - это статическое устройство, которое используется в электрических или электронных схемах для изменения напряжения в источнике переменного тока (AC). Он преобразует электрическую энергию из одной цепи в другую с помощью взаимной индукции между первичной и вторичной обмотками. Обычно частота входного сигнала не изменяется, но напряжение может быть увеличено или уменьшено в зависимости от необходимости.

Типы трансформаторов

Как упоминалось выше, существует два основных типа трансформаторов:

  • Ступенчатый Повышающий трансформатор: Повышающий трансформатор увеличивает выходное напряжение по отношению к входному напряжению.В трансформаторе этого типа количество витков на вторичной обмотке больше, чем количество витков на первичной обмотке.
  • Понижающий трансформатор: Понижающий трансформатор снижает выходное напряжение по отношению к входному напряжению. Этот тип трансформатора противоположен вышеуказанному, количество витков на вторичной обмотке меньше количества витков на первичной обмотке.

Части трансформатора

Прежде чем приступить к созданию повышающего трансформатора, давайте разберемся с основными частями трансформатора:

  • Первичная обмотка - изготовлена ​​из магнитной проволоки
  • Магнитный сердечник - выбирается в зависимости от мощности и частоты входного сигнала
  • Вторичная обмотка - изготовлена ​​из магнитной проволоки

Вещи, необходимые для создания очень простого повышающего трансформатора

Перед началом строительства вам потребуются следующие компоненты:

  • Электроизоляционная лента
  • Медный провод с покрытием (т. е.е. магнитный провод)
  • Материал сердечника (например, стальной болт может использоваться для обозначения сердечника)
  • Резистивный элемент (например, лампочка)
  • Источник питания переменного тока

Создание электрического повышающего трансформатора

Следующие шаги подробно объясняют процесс создания повышающего трансформатора:

  • Используйте большой стальной болт в качестве магнитопровода трансформатора. Сначала проверьте болт на намагничивание, прижав его к кухонному магниту.Если магнит заедает, стальной болт можно использовать в качестве сердечника.

  • Оберните болт изолентой, чтобы изолировать обмотки от «сердечника». Разрежьте медную проволоку с покрытием на два отрезка одинаковой длины и зачистите их с концов. Использование того же провода поможет вам убедиться, что количество обмоток катушки сопоставимо.

  • Оберните два медных провода несколько раз (не менее 12 витков) вокруг концов «сердечника» (стального болта). Эти проволочные катушки будут действовать как первичная и вторичная обмотки трансформатора.Убедитесь, что оголенные концы проводов оставлены свободными. Также сохраняйте зазор между первичной и вторичной обмотками. Закрепите изолентой.

  • Теперь подключите оголенные концы вторичной катушки к контактным выводам резистивного элемента (лампы). Следите за тем, чтобы они не касались друг друга контактами лампы, потому что короткое замыкание не позволит лампочке загореться. При необходимости можно использовать изоляционную ленту, чтобы удерживать провода на месте.

  • Наконец, подключите оголенные концы первичной катушки к источнику переменного тока.Выбор источника питания переменного тока с выключателем питания, регулируемым напряжением и предохранителем на входе поможет обеспечить безопасность и изоляцию от «настенного» питания. Начните с самого низкого уровня мощности переменного тока и постепенно увеличивайте, чтобы увидеть изменение яркости лампы. Лампочка должна загореться при включении питания. Если нет, проверьте соединения и попробуйте еще раз.

  • Если вы почувствуете запах гари, немедленно отключите концы первичной обмотки от источника питания. Однако это маловероятная ситуация, поскольку трансформатор должен обеспечивать сопротивление, достаточное для предотвращения прохождения слишком большого тока.

  • Если вы чувствуете запах гари, проверьте, не вызвана ли причина короткого замыкания контактом между оголенными проводами. Закройте оголенные провода изолентой и попробуйте еще раз.

  • Обратите внимание на то, что яркость лампы будет увеличиваться при увеличении конфигурации. Более того, сердечник трансформатора начнет работать как электромагнит. Это можно проверить, приложив к нему металлические предметы.

Наконечник: Для изготовления для промышленного повышающего трансформатора необходимо, чтобы вторичная обмотка имела больше витков, чем первичная.Более того, если вы хотите, чтобы у трансформатора было вдвое больше напряжения и вдвое меньше тока на вторичной обмотке, вставьте в два раза больше витков во вторичную обмотку.

Сопутствующие товары

После успешного завершения повышающей конфигурации попробуйте изменить соотношение оборотов катушки на обратное. Это позволит вам сравнить работу трансформатора в понижающем и повышающем режимах. Вы также можете протестировать обе конфигурации на разных резисторных нагрузках.

Руководство по покупке лучшего преобразователя напряжения - Bombay Electronics

Страны Северной Америки, части Центральной и Южной Америки, Карибского бассейна и части Тихого океана работают от сети 110 В / 60 Гц, в то время как остальной мир работает от 220 В / 50 Гц. Как правило, 110 В включает диапазон напряжений 100-125 В, а 220 В включает 220-250 В. Многие страны работают как от 110 В, так и от 220 В.

Как упоминалось выше, в разных странах различается не только напряжение, но и частота (количество циклов в секунду).Страны используют 60 Гц (США) или 50 Гц (Великобритания). На большинство электротехнических изделий изменение цикла не влияет, поскольку они внутренне преобразуют переменное напряжение в постоянное, и многие устройства поддерживают оба цикла. Разница в частоте может привести к тому, что моторизованное устройство на 60 Гц будет работать медленнее на частоте 50 Гц. Вам нужно будет дважды проверить частоту аналоговых продуктов, таких как часы, поскольку это может привести к тому, что они будут показывать неправильное время. Другие продукты, такие как кофеварки эспрессо и проигрыватели, могут не работать должным образом с преобразователем напряжения, если они работают только на одной частоте.В случае сомнений проконсультируйтесь с производителем продукта. Кроме того, трансформаторы не рекомендуется использовать с приборами, производящими тепло, такими как нагреватели, пароварки и нагреватели для кофе.

Третье отличие - переходники для вилок. Не во всех странах есть стандартная для США электрическая розетка с плоскими штырями. Фактически, в большинстве стран адаптер для вилки отличается от адаптера для вилки в США. Во многих странах есть несколько типов торговых точек. В этом случае возьмите с собой все типы переходников для вилок для путешествий. Обратитесь к руководству по адаптерам для вилок World, чтобы найти подходящие адаптеры для вилок.

Преобразователи напряжения и трансформаторы не преобразуют циклы. Их можно использовать только для преобразования напряжения. Понижающий преобразователь / трансформатор напряжения преобразует напряжение с 220 В в 110 В, что позволяет вам использовать продукты из США (110 В) за рубежом в странах с напряжением 220 В. С другой стороны, повышающий преобразователь / трансформатор напряжения преобразует напряжение от 110 В до 220 В, что позволяет использовать изделия на 220 В в США (110 В). Большинство трансформаторов напряжения являются как повышающими, так и понижающими, вы можете переключать их на понижающие или повышающие.

Выбор правильного преобразователя или трансформатора

  1. Определите, действительно ли вашему прибору требуется трансформатор / преобразователь для использования за границей. Обратите внимание на номинальное напряжение на вашем приборе, если номинальное напряжение примерно равно 100 ~ 240 В, что означает, что ваш продукт имеет двойное напряжение, в этом случае вы можете использовать свой продукт в 220 В без трансформатора / преобразователя. Большинство зарядных устройств для аккумуляторов ноутбуков и видеокамер имеют двойное напряжение. Однако вам может потребоваться переходник для подключения к розеткам за границей.Теперь, если номинальное напряжение составляет 110 В или 120 В, это означает, что ваш продукт рассчитан только на один вольт, и для использования в странах с напряжением 220 В за рубежом потребуется понижающий преобразователь / трансформатор.
  2. Теперь, когда вы знаете, что вам нужен преобразователь / трансформатор напряжения, вам нужно определить, какой из них или какого типа. Найдите номинальную мощность прибора в ваттах или рассчитайте мощность, умножив напряжение на амперы. Например, 110 В x 1,5 А = 165 Вт. Выберите преобразователь / трансформатор в соответствии с номинальной мощностью вашего устройства.Мы рекомендуем использовать преобразователь / трансформатор, номинальная мощность которого как минимум на 25% выше номинальной мощности вашей продукции. Использование преобразователя / трансформатора на максимальную мощность в конечном итоге приведет к сгоранию преобразователя / трансформатора после длительного использования. Некоторые предметы, например лазерные принтеры и электроинструменты, взрываются при включении. Для таких ситуаций вам необходимо купить трансформатор, который как минимум в два раза превышает номинальные характеристики продукции.
  3. После выбора правильного преобразователя / трансформатора убедитесь, что у вас есть подходящая вилка адаптера на преобразователе / ​​трансформаторе, чтобы подключить его к розетке за границей.Все наши двойные повышающие / понижающие трансформаторы напряжения включают в себя адаптер для вилки для США и адаптер для европейской вилки. Чтобы определить, какой адаптер вам нужен, обратитесь к таблице адаптеров для вилок.
  4. По-прежнему нужна помощь в выборе правильного преобразователя / трансформатора, звоните нам по телефону 847-983-4761.

Преобразователь напряжения и трансформатор напряжения:

Преобразователи напряжения

представляют собой преобразователи меньшего размера, доступные как в повышающем, так и понижающем вариантах. Эти преобразователи могут использоваться для электрических приборов с нагревательными устройствами или двигателями, такими как фен, бигуди, утюги, бритвы, радио, электрические калькуляторы и т. Д... Конвертеры используются на более короткий период времени. Трансформаторы напряжения больше и тяжелее. Они также могут быть Step Up, Step Down или Step Up / Down. Хотя трансформаторы предназначены для более длительного или непрерывного использования, всегда лучше отключать трансформатор, когда он не используется, для увеличения срока службы. Всегда проверяйте мощность ваших приборов перед использованием преобразователя / трансформатора напряжения.

Что такое convertingbox ™?

Litefuze convertingbox ™ - это революционный преобразователь напряжения, разработанный с учетом потребностей потребителей.Он на 50% легче стандартных преобразователей напряжения, оснащен интеллектуальными розетками, автоматическими выключателями и более эффективен. Технология convertinbox позволяет практически устранить шум, вызванный вибрацией внутри преобразователей. Все это подкреплено пожизненной гарантией, предлагаемой LiteFuze. Для получения дополнительной информации посмотрите видео ниже.

Часто задаваемые вопросы
Могу ли я подключить несколько продуктов к одному трансформатору?
Да, вы можете подключить несколько продуктов к трансформатору, используя удлинитель, тогда и только тогда, когда общая номинальная мощность всех продуктов меньше, чем мощность трансформатора.Не подключайте несколько продуктов к небольшому дорожному конвертеру.

В чем разница между переходником вилки и преобразователем / трансформатором напряжения?
Штепсельный адаптер не преобразует напряжение или электричество. Если ваш прибор имеет двойное напряжение, вы можете подключить его к розетке, просто используя подходящий переходник. Преобразователи / трансформаторы преобразуют напряжение. Они позволяют использовать ваши приборы с одним напряжением за рубежом или наоборот.

Могу ли я использовать американское изделие на 220 вольт, например сушильную машину с трансформатором, или подключить трансформатор к американской розетке 220 вольт?
Нет, американское электричество 220 В состоит из 2-х фазных 110 В, а европейское электричество однофазное 220 В.Трансформатор / преобразователи не рассчитаны на 2-х фазный американский 220В.

Что такое регуляторы напряжения?
Регуляторы напряжения также преобразуют напряжение, аналогично преобразователю / трансформатору напряжения, и регулируют напряжение, стабилизируя его. Они полезны в странах, где ток нестабилен. Ссылка на регуляторы напряжения.

Примечание. Используйте преобразователи напряжения и трансформаторы на свой страх и риск и храните их в недоступном для детей месте.

Есть еще вопросы? Нужны дополнительные разъяснения? Или оставьте отзыв.

Руководство по проектированию цепей для преобразователей постоянного / постоянного тока (1/10)

Что такое преобразователь постоянного тока в постоянный?

В этом руководстве содержатся советы по проектированию цепей преобразователей постоянного тока в постоянный. Как спроектировать схемы преобразователя постоянного тока в постоянный, которые удовлетворяют требуемым спецификациям при различных ограничениях, описано с использованием как можно большего количества конкретных примеров.

Свойства цепей преобразователя постоянного / постоянного тока (такие как КПД, пульсации и переходная характеристика нагрузки) могут быть изменены с помощью их внешних частей.Оптимальные внешние части обычно зависят от условий эксплуатации (входных / выходных характеристик). Цепь источника питания часто используется как часть цепей коммерчески доступных продуктов и должна быть спроектирована таким образом, чтобы удовлетворять ограничениям, таким как размер и стоимость, а также требуемым электрическим характеристикам. Обычно стандартные схемы, перечисленные в каталогах, разрабатываются путем выбора таких деталей, которые могут обеспечить приемлемые свойства в стандартных условиях эксплуатации.Эти детали не обязательно оптимальны для индивидуальных условий эксплуатации. Следовательно, при разработке отдельных продуктов стандартные схемы должны быть изменены в соответствии с их индивидуальными техническими требованиями (такими как эффективность, стоимость, монтажное пространство и т. Д.). Разработка схемы, удовлетворяющей требованиям спецификации, обычно требует большого опыта и знаний. В этом руководстве с использованием конкретных данных описано, какие части следует изменить и как их изменить для выполнения требуемых операций без специальных знаний и опыта.Вы сможете быстро и успешно управлять схемами преобразователя, не выполняя сложных расчетов схем. Вы можете проверить свой проект либо путем тщательного расчета позже самостоятельно, либо с помощью персонала, обладающего знаниями и опытом, если вы чувствуете себя неуверенно.

Типы и характеристики преобразователей постоянного тока в постоянный

Преобразователи постоянного тока в постоянный ток

доступны в двух типах схем:

  1. Неизолированные типы:
    • Базовый (одна катушка) тип
    • Емкостная муфта (двухкатушечная) типа ―― SEPIC, Zeta и др.
    • Нагнетательный насос (без переключаемого конденсатора / катушки) тип
  2. Изолированные типы:
    • Типы трансформаторной муфты ward Передний трансформатор типа
    • Типы трансформаторной муфты Обратный трансформатор типа

Характеристики отдельных типов приведены в таблице 1.

Таблица 1. Характеристики цепей преобразователя постоянного тока в постоянный
Тип цепи №деталей
(Монтажная площадка)
Стоимость Выходная мощность Пульсация
Неизолированный Базовый Малый Низкий Высокая Малый
SEPIC, Zeta Средний Средний Средний Средний
Нагнетательный насос Малый Средний Малый Средний
Изолированный Трансформатор передний Большой Высокая Высокая Средний
Обратный трансформатор Средний Средний Средний Высокая

В схеме базового типа работа ограничена либо повышением, либо понижением, чтобы минимизировать количество деталей, а входная и выходная стороны не изолированы.На рисунке 1 показана повышающая схема, а на рисунке 2 - понижающая. Эти схемы обеспечивают такие преимущества, как небольшой размер, низкая стоимость и небольшая пульсация, и спрос на них растет в соответствии с потребностями в уменьшении размеров оборудования.

Рисунок 1: Повышающая схема

Рисунок 2: Понижающая схема

С SEPIC и Zeta конденсатор вставляется между V IN и V OUT повышающей цепи и понижающей схемой основного типа, и добавляется одна катушка.Они могут быть сконфигурированы как повышающие или понижающие преобразователи постоянного / постоянного тока с использованием повышающей ИС контроллера постоянного тока и понижающего контроллера постоянного тока, соответственно. Однако, поскольку некоторые ИС контроллера постоянного / постоянного тока не предполагается использовать с этими типами цепей, убедитесь, что ваши ИС контроллера постоянного / постоянного тока могут использоваться с этими типами цепей. Конденсаторная связь типа с двумя катушками имеет преимущество, позволяющее обеспечить изоляцию между V IN и V OUT . Однако увеличенные катушки и конденсаторы снизят эффективность.В частности, во время понижения эффективность существенно снижается, обычно примерно до 70-80%.

Тип нагнетательного насоса не требует змеевика, что позволяет минимизировать площадь и высоту установки. С другой стороны, этот тип не обеспечивает высокую эффективность для приложений, которым требуется широкий спектр выходных мощностей или больших токов, и ограничивается приложениями для управления белыми светодиодами или для питания ЖК-дисплеев.

Цепь изолированного типа также известна как первичный источник питания (основной источник питания).Этот тип широко используется для преобразователей переменного тока в постоянный, которые генерируют мощность постоянного тока в основном из имеющегося в продаже источника переменного тока (от 100 до 240 В), или для приложений, где требуется изоляция между входной и выходной сторонами для устранения шумов. В этом типе входная и выходная стороны разделены с помощью трансформатора, а повышением, понижением или реверсом можно управлять, изменяя коэффициент трансформации трансформатора и полярность диода. Таким образом, вы можете отключить множество источников питания из одной цепи питания.Если используется обратный трансформатор, схема может состоять из относительно небольшого количества частей и может использоваться в качестве цепи вторичного источника питания (местного источника питания). Однако обратный трансформатор требует наличия пустот, чтобы предотвратить магнитное насыщение сердечника, увеличивая его размеры. Если используется прямой трансформатор, можно легко найти большой источник питания. Эта схема, однако, требует схемы сброса на первичной стороне, чтобы предотвратить намагничивание сердечника, увеличивая количество частей.Кроме того, стороны входа и выхода IC контроллера должны быть заземлены отдельно.

Основные принципы работы преобразователей постоянного тока в постоянный

Принципы работы повышения и понижения в схемах преобразователя постоянного / постоянного тока будут описаны с использованием самого основного типа. Цепи других типов или схемы, использующие катушки, могут рассматриваться как состоящие из комбинации повышающей схемы и понижающей схемы или их прикладных схем.

На рисунках 3 и 4 показаны операции повышающей схемы.На рисунке 3 показан ток при включении полевого транзистора. Пунктирная линия показывает небольшой ток утечки, который снижает эффективность при малой нагрузке. Электрическая энергия накапливается в L, пока полевой транзистор включен. На рисунке 4 показан ток при выключенном полевом транзисторе. Когда полевой транзистор выключен, L пытается сохранить последнее значение тока, а левый край катушки принудительно фиксируется на V IN для подачи питания для увеличения напряжения до V OUT для работы в режиме повышения.Следовательно, если полевой транзистор включен дольше, в L накапливается гораздо больший электрический ток, что позволяет получить большую мощность. Однако, если полевой транзистор включен слишком долго, время подачи питания на выходную сторону становится слишком коротким, и потери в течение этого времени увеличиваются, что снижает эффективность преобразования. Следовательно, значение максимальной нагрузки (отношение времени включения / выключения) обычно определяется таким образом, чтобы поддерживать соответствующее значение.

В повышающем режиме токи, показанные на рисунках 3 и 4, повторяются:

Рисунок 3: Ток при включении полевого транзистора в повышающей цепи

Рисунок 4: Ток при отключении полевого транзистора в повышающей цепи

На рисунках 5 и 6 показаны операции понижающей схемы.На рисунке 5 показан ток при включении полевого транзистора. Пунктирная линия показывает небольшой ток утечки, который ухудшит эффективность в условиях малой нагрузки. Когда полевой транзистор включен, электрическая энергия накапливается в L и подается на выходную сторону. На рисунке 6 показан ток при выключенном полевом транзисторе. Когда полевой транзистор выключен, L пытается сохранить последнее текущее значение и включает SBD. В это время напряжение на левом крае катушки принудительно падает ниже 0 В, уменьшая напряжение на V OUT .Следовательно, если полевой транзистор включен дольше, в L накапливается гораздо больший электрический ток, что позволяет получить большую мощность. С понижающей схемой, когда полевой транзистор включен, питание может подаваться на выходную сторону, и нет необходимости определять максимальную нагрузку. Следовательно, если входное напряжение ниже, чем выходное напряжение, полевой транзистор остается включенным. Однако, поскольку операция повышения отключена, выходное напряжение также снижается до уровня входного напряжения или ниже.

В режиме понижения токи, показанные на рисунках 5 и 6, повторяются:

Рисунок 5: Ток при включении полевого транзистора в понижающей цепи

Рисунок 6: Ток при отключении полевого транзистора в понижающей цепи

4 критических момента при проектировании схем преобразователя постоянного тока в постоянный

Среди технических требований для цепей преобразователя постоянного / постоянного тока критическими считаются следующие:

  1. Стабильная работа (не может быть нарушена из-за сбоя в работе, такого как ненормальное переключение, перегорание или перенапряжение)
  2. Высокая эффективность
  3. Малая пульсация на выходе
  4. Хорошая реакция на переходные процессы при нагрузке

Эти свойства можно до некоторой степени улучшить, изменив ИС преобразователя постоянного тока в постоянный и внешние детали.Вес этих четырех свойств зависит от конкретного приложения. Далее рассмотрим, как выбирать отдельные детали для улучшения этих свойств.

Следующая страница

Выбор частоты коммутации DC / DC преобразователя

Источник питания 5 В постоянного тока

Design (простое пошаговое руководство)

Ищете помощь в разработке источника питания 5 В самостоятельно? Что ж, добро пожаловать. В этом посте мы не просто проектируем блок питания, но и узнаем о расчетных расчетах, которые вы можете сделать самостоятельно.

Схема источника питания - это очень простая схема в обучении электронике. Практически каждый в электронике пытается это сделать. И я не могу сказать вам, насколько весело, когда вы закончите свой первый дизайн блока питания, протестируете его, и он будет работать нормально.

Хорошо!

Блок питания, который мы здесь разработаем, очень простой. Это линейный дизайн, основанный на технологии, он будет проходить вас на каждом этапе проектирования, попытается представить все простым языком, выполнит некоторые математические вычисления i.е. Если в схеме используется конденсатор, вы должны знать, зачем он нужен и как рассчитывается его значение.

Надеюсь, вам понравится этот пост и вы чему-нибудь научитесь. На всякий случай, если вам нравится заниматься электроникой, занимаясь своими руками, то этот набор для самостоятельного изготовления регулируемого блока питания (нажмите здесь) подойдет вам. Развлекайтесь 😀

Конструкция блока питания 5В постоянного тока

Проектирование любой схемы начинается с хорошо составленной общей блок-схемы. Это помогает нам спроектировать отдельные участки схемы, а затем, в конце концов, собрать их вместе, чтобы получить полную схему, готовую к использованию.

Общая блок-схема этого проекта представлена ​​ниже. Все очень просто. Он состоит из следующих четырех основных подблоков.

  • Трансформатор
  • Схема выпрямителя
  • Фильтр
  • Регулятор

Сначала я объясню каждый блок в целом, а затем мы перейдем к проектированию. Думаю, нужно понимать, какой блок что делает в первую очередь.

Итак, давайте попробуем разобраться в каждом разделе по отдельности.

Входной трансформатор

Трансформатор - это устройство, которое может повышать или понижать уровни напряжения в соответствии с законом передачи энергии.

Вопрос в том, зачем нам это нужно в нашей конструкции снабжения?

Что ж, в зависимости от вашей страны, переменный ток, поступающий в ваш дом, имеет уровень напряжения 220/120 В. Нам нужен входной трансформатор, чтобы понизить входящий переменный ток до требуемого нижнего уровня, то есть близкого к 5 В (AC). Этот более низкий уровень в дальнейшем используется другими блоками для получения необходимых 5 В постоянного тока.

Трансформатор - это устройство, которое используется для повышения или понижения уровня переменного напряжения, сохраняя одинаковую входную и выходную мощность.

Будьте осторожны, играя с этим устройством.

Поскольку вы используете сетевое напряжение, которое может быть слишком опасным. Никогда не прикасайтесь к клеммам голыми руками или плохими инструментами. Имейте хороший и достойный бесконтактный тестер напряжения и используйте его, чтобы всегда быть уверенным в том, какая линия находится под напряжением, идущим к трансформатору.

Выпрямительная схема

Если вы думаете, что трансформатор просто снизил напряжение до 5 В постоянного тока. Извините, вы ошибаетесь, как когда-то был я. Пониженное напряжение по-прежнему остается переменным. Чтобы преобразовать его в постоянный ток, нужна хорошая выпрямительная схема.

Схема выпрямителя - это комбинация диодов, расположенных таким образом, чтобы преобразовывать переменное напряжение в постоянное напряжение.

Без выпрямительной схемы невозможно получить необходимое выходное напряжение 5 В постоянного тока.Эта схема поставляется в красивых интегрированных корпусах, или вы также можете сделать ее с использованием четырех диодов. Вы увидите, как мы его проектируем, в следующих разделах.

В основном, существует два типа выпрямительных схем; полуволновой и двухполупериодный. Однако нас интересует полноценный выпрямитель, так как он более энергоэффективен, чем первый.

Фильтр

В практической электронике нет ничего идеального. Схема выпрямителя преобразует входящий переменный ток в постоянный, но, к сожалению, не превращает его в чистый постоянный ток.Выход выпрямителя пульсирует и называется пульсирующим постоянным током. Этот пульсирующий постоянный ток не считается подходящим для питания чувствительных устройств.
Итак, выпрямленный постоянный ток не очень чистый и имеет рябь. Задача фильтра - отфильтровывать эти пульсации и обеспечивать совместимость напряжения для регулирования.

Конденсаторный фильтр используется, когда нам нужно преобразовать пульсирующий постоянный ток в чистый или удалить искажения из сигнала

Практическое правило: напряжение постоянного тока должно иметь пульсации менее 10 процентов, чтобы можно было точно регулировать.

Лучшим фильтром в нашем случае является конденсаторный. Вы, наверное, слышали, конденсатор - это устройство, накапливающее заряд. Но на самом деле его лучше всего использовать как фильтр. Это самый недорогой фильтр для нашей базовой конструкции блока питания 5 В.

Регулятор

Стабилизатор - это линейная интегральная схема, в которой используется стабилизированное постоянное выходное напряжение. Регулировка напряжения очень важна, потому что нам не нужно изменять выходное напряжение при изменении нагрузки.

Всегда требуется выходное напряжение, независимое от нагрузки.ИС регулятора не только делает выходное напряжение независимым от переменных нагрузок, но и от изменений напряжения в сети.

Регулятор - это интегральная схема, используемая для обеспечения постоянного выходного напряжения независимо от изменений входного напряжения.

Надеюсь, вы разработали несколько основных концепций проектирования источников питания. Давайте пойдем дальше с реальной принципиальной схемой для нашей конкретной конструкции блока питания 5 В постоянного тока.

Принципиальная схема источника питания 5В постоянного тока

Ниже представлена ​​принципиальная схема указанного проекта.Вы получаете основной запас; напряжение и частота могут зависеть от вашей страны, предохранителя; для защиты схемы, трансформатора, выпрямителя, конденсаторного фильтра, светодиодного индикатора и регулятора IC.

Блок-схема реализована в программном обеспечении NI Multisim, хорошем программном обеспечении для моделирования для студентов и начинающих электронщиков. Я рекомендую потратить немного времени на то, чтобы поиграть с ним

Теперь перейдем к собственному дизайну.

Пошаговый метод проектирования источника питания постоянного тока 5 В

Вот в чем дело, мы сначала спроектируем каждую секцию, а затем соберем каждую из них, чтобы наш источник питания постоянного тока был готов для наших проектов.

Итак, приступим к делу.

Вы думаете, я бы начал объяснение конструкции с трансформатора, но это не так. Трансформатор выбирается не сразу.

Шаг 1: Выбор регулятора IC

Выбор микросхемы регулятора зависит от вашего выходного напряжения. В нашем случае мы проектируем для выходного напряжения 5В, мы выберем ИС линейного регулятора LM7805.

Следующим шагом в процессе проектирования является определение номинальных значений напряжения, тока и мощности выбранной ИС регулятора.Это делается с помощью таблицы данных регулятора IC.

Ниже приведены номинальные характеристики и схема контактов LM7805 из таблицы данных.

Спецификация 7805 также предписывает использовать конденсатор 0,1 мкФ на выходной стороне, чтобы избежать переходных изменений напряжения из-за изменений нагрузки. И 0,1 мкФ на входе регулятора, чтобы избежать пульсаций, если фильтрация находится далеко от регулятора.

Для дополнительной информации, для вывода положительного напряжения мы используем LM78XX.XX указывает значение выходного напряжения, а 78 указывает положительное выходное напряжение. Для выхода с отрицательным напряжением используйте LM79XX, 79 указывает отрицательное напряжение, а XX указывает значение выхода.

Шаг 2: Выбор трансформатора

Правильный выбор трансформатора означает экономию денег. Мы узнали, что минимальный вход для выбранной нами микросхемы регулятора составляет 7 В (см. Значения в таблице выше). Итак, нам нужен трансформатор для понижения основного переменного тока, по крайней мере, до этого значения.

Но между регулятором и вторичной обмоткой трансформатора тоже есть выпрямитель на диодном мосту.Выпрямитель имеет собственное падение напряжения, то есть 1,4 В. Нам также необходимо компенсировать это значение.

Итак, математически:

Это означает, что мы должны выбрать трансформатор со значением вторичного напряжения, равным 9 В или как минимум на 10% больше, чем 9 В.

Исходя из этого, для конструкции блока питания 5 В постоянного тока мы можем выбрать трансформатор с номинальным током 1 А и вторичным напряжением 9 В. Почему ток 1А? Поскольку IC регулятора имеет номинальный ток 1 А, это означает, что мы не можем пропускать ток, превышающий это значение.Выбор трансформатора с номинальным током выше этого потребует дополнительных денег. И нам это не нужно.

Шаг 3: Выбор диодов для моста

Как вы видите на принципиальной схеме, схема выпрямителя состоит из нескольких диодов. Чтобы сделать выпрямитель, нам нужно подобрать для него подходящие диоды. При выборе диода для мостовой схемы. Имейте в виду выходной ток нагрузки и максимальное пиковое вторичное напряжение трансформатора i-e 9В в нашем случае.

Вместо отдельных диодов вы также можете использовать один отдельный мост, который поставляется в корпусе IC. Но я не хочу, чтобы вы использовали его здесь, просто для изучения и игры с отдельными диодами.

Выбранный диод должен иметь номинальный ток больше, чем ток нагрузки (т.е. в данном случае 500 мА). И пиковое обратное напряжение (PIV) больше пикового вторичного напряжения трансформатора

Мы выбрали диод IN4001, потому что он имеет номинальный ток на 1 А больше, чем мы желаем, и пиковое обратное напряжение 50 В.Пиковое обратное напряжение - это напряжение, которое диод может выдерживать при обратном смещении.

Шаг 4: Выбор сглаживающего конденсатора и расчеты

При выборе подходящего конденсаторного фильтра необходимо помнить о его напряжении, номинальной мощности и емкости. Номинальное напряжение рассчитывается на основе вторичного напряжения трансформатора.

Практическое правило: номинальное напряжение конденсатора должно быть как минимум на 20% больше, чем вторичное напряжение. Итак, если вторичное напряжение составляет 13 В (пиковое значение для 9 В), то номинальное напряжение конденсатора должно быть не менее 50 В.

Во-вторых, нам нужно рассчитать правильное значение емкости. Это зависит от выходного напряжения и выходного тока. Чтобы найти правильное значение емкости, используйте формулу ниже:

Где,

Io = ток нагрузки, т.е. 500 мА в нашей конструкции, Vo = выходное напряжение, т.е. в нашем случае 5 В, f = частота, например, 50 Гц

В нашем случае:

Частота 50 Гц, потому что в нашей стране переменный ток 220 @ 50 Гц.У вас может быть сеть переменного тока 120 В при 60 Гц. Если да, то укажите значения соответственно.

Используя формулу конденсатора, практическое стандартное значение, близкое к этому значению, i-e 3.1847E-4, составляет 470 мкФ.

Другая важная формула приведена ниже. Это также можно использовать для расчета емкости конденсатора.

В данном случае R - это сопротивление нагрузки

. Rf - коэффициент пульсации, который для хорошей конструкции должен быть менее 10%. И на этом мы почти закончили с дизайном блока питания на 5 В.

Шаг 5: Обеспечение безопасности источника питания

Каждая конструкция должна иметь защитные приспособления для защиты от возгорания. Точно так же наш простой источник питания должен иметь один, то есть входной предохранитель. Входной предохранитель защитит наш источник питания в случае перегрузки.

Например, наша желаемая нагрузка может выдержать 500 мА. Если в случае, если наша нагрузка начнет плохо себя вести, есть вероятность заусенцев компонентов. Предохранитель защитит нашу поставку.

Практическое правило для выбора номинала предохранителя: он должен быть как минимум на 20% больше, чем ток нагрузки.

Разработанный нами простой блок питания способен выдавать ток 1 А, что в некоторых случаях может быть использовано. Если вы решили использовать его для таких случаев, то не забудьте прикрепить радиатор к микросхеме регулятора.

Больше удовольствия с электроникой

Электроника - это очень весело. Как только вы окунетесь в мир электроники, у вас всегда есть чем заняться.

Если вам нравится делать электронику своими руками, вам понравился этот пост, вы узнали все концепции дизайна, а теперь хотите создать свой собственный проект источника питания DIY.Вы хотите спаять и поиграть со всеми вышеупомянутыми компонентами, затем проверьте это, комплект источника питания Elenco (Amazon Link), вам будет интересен.

Кроме того, есть забавная книга под названием Make Electronics: Learning through discovery (Amazon link), , которая научит вас многим классным электронным устройствам на практике. Если вы найдете эту книгу интересной, попробуйте, и вы многому научитесь.

Заключение

Для меня, если вы любитель электроники или новичок, изучаете основы электроники, я бы порекомендовал вам разработать собственный лабораторный источник питания.

Он поможет вам изучить электронику, а также даст вам лучший лабораторный источник питания.

Я называю его лучшим, потому что вы сделаете его сами. И я не могу выразить словами, насколько весело играть с электроникой в ​​безопасной среде. Это похоже на обучение на практике

Не указывайте только источник питания 500 мА. Это может быть ваш источник питания 5 В постоянного тока с допустимым током до 500 мА. И это было то, что я знаю, как проектировать источник питания постоянного тока на 5 Вольт.

Надеюсь, это была вам какая-то помощь.

Спасибо и удачной жизни.


Прочие полезные сообщения

Создание генератора с генератором переменного тока для питания вашего дома

При всей неопределенности современного мира многие люди пытаются стать более самодостаточными. Выращивание собственных овощей, выращивание собственных кур для получения яиц или выращивание более крупных животных, таких как мясной и молочный скот, если у них есть место.

Более самодостаточные люди даже шьют себе одежду и / или другие предметы домашнего обихода, в том числе строят свои дома и даже обставляют их мебелью ручной работы.

Многие из этих людей, желающие отключиться от электросети, должны найти способы снабдить свои дома электроэнергией, не полагаясь на энергокомпанию.

Некоторые, например амиши, могут решить не использовать современное удобство электричества и поэтому используют фонари, рабочих лошадей и тому подобное для удовлетворения своих потребностей.

Но нет никаких сомнений в том, что современные приборы и электроинструменты облегчают жизнь, поэтому для многих самодостаточных людей единственный логичный ответ - создать собственное электричество дома.

Это можно сделать двумя способами. Один из способов - купить довольно дорогие солнечные панели, чтобы использовать энергию солнца.

Другой способ - потратить тысячи долларов на генератор, который можно использовать отдельно или вместе с вышеупомянутыми солнечными батареями. Но зачем покупать такой, если можно самому сделать самодельный генератор с генератором?

Начало работы с генератором энергии

Средний американец привык к домашней электросети, которая обеспечивает 110 В переменного тока для работы базовой электроники, такой как свет, телевизор, компьютер или холодильник, и 220 В переменного тока для работы их плиты и сушилки для белья.

Но если вы живете вне сети и делаете это с ограниченным бюджетом, подумайте о том, что вы можете запустить систему освещения дома на цепи 12 В с резервным аккумулятором, просто используя автомобильные генераторы и аккумуляторы (на самом деле морские батареи глубокого цикла работают лучше) с напряжением 12 В. огни.

Это снижает потребность в электроэнергии, и в случае выхода из строя газового генератора или невозможности получить топливо вы все равно можете управлять своим домом от батарей, и, дополнив систему солнечной энергией и ветрогенератором, построенным с автомобильный генератор переменного тока (или аналогичный), вы можете держать батареи заряженными для работы 12-вольтовых ламп и инверторов питания.

Эта 12-вольтовая система по-прежнему может управлять холодильником или плитой, просто используя повышающий трансформатор, широко известный как инвертор мощности, или вы можете использовать 12-вольтовую систему для питания двигателя 12 В для включения полностью независимой генераторной системы с более высоким выходным напряжением, если Вы можете получить это бесплатно, а не тратить несколько сотен долларов на инверторы.

Предположительно, автомобильные генераторы переменного тока можно перенастроить для выработки 110 В.

Еще один метод, который вы можете легко найти в Интернете для генерации 110 В, - это использование двигателя 110 В, такого как двигатель от печи, или даже двигатель сушилки или потолочного вентилятора.

Обычно, если вы вводите электричество в двигатель, оно становится кинетической энергией и вращает двигатель, но если вы обращаете этот процесс вспять и используете внешнюю силу для поворота двигателя, он генерирует электричество, или, по крайней мере, эту историю можно найти в Интернете. .

Я никогда толком не пробовал ни один из этих двух методов, но есть что изучить. Однако я могу сказать со 100% уверенностью, что система генератора 12 В с аккумулятором и инвертором питания может достаточно хорошо работать с домашней электроникой на 110 В.

Я использую преобразователь мощностью 800 Вт для походов и охоты (на фото ниже), но если вы хотите использовать этот метод для непрерывной работы дома, вам понадобится существенный преобразователь в диапазоне 4000-5000 Вт, хотя 1000 Вт будет работать с холодильник, телевизор и несколько ламп, как это видно на этом видео на YouTube.

Другой метод управления домом от самодельной генераторной установки включает в себя набор аккумуляторов, силовой инвертор (-ы) и использование автомобильных генераторов переменного тока в небольшой ветряной мельнице на заднем дворе или другого источника питания, такого как двигатель газонокосилки, для вращения генератора.

Фото: авторский преобразователь 800 Вт для кемпинга / охоты

Здесь можно увидеть пример генератора 12В, построенного с двигателем в стиле газонокосилки.

Эта установка использует ветер или другой источник энергии для поддержания заряда батареи, а батареи питают инвертор (ы), которые, в свою очередь, питают ваше электронное оборудование. Вот пример ветряной мельницы с автомобильным генератором переменного тока.

В некоторых из этих видеороликов люди говорят, что купили новые компоненты, но это лишает их самодостаточности.Использование найденных запчастей или покупка бывшего в употреблении двигателя косилки ближе к дому.

Если у вас под рукой есть быстрый поток, вы даже можете сделать свою собственную миниатюрную гидроэлектростанцию, используя лопаточное колесо и редуктор (подумайте, 15-скоростные велосипедные шестерни и цепной привод) для вращения генератора (ов).

Какой метод вы выберете для достижения этой цели, полностью зависит от вас и, вероятно, лучше всего может быть определен из того, с чем у вас есть под рукой, и сколько вы можете позволить себе потратить на инвертор, если вы решите использовать метод инвертора.

Инвертор придется покупать, если только вы не знаете, как его сделать, как этот парень:

Есть масса видео о том, как это сделать, но я не уверен, что хочу попробовать, я куплю инвертор.

После того, как вы настроили аккумуляторную батарею с выбранной вами системой зарядки генератора, остается лишь подключить силовой инвертор. Вы можете подключить инвертор непосредственно к главному автомату, если хотите (просто убедитесь, что он не находится в какой-либо внешней электросети).

Электропитание для небольшого дома обычно составляет 100 ампер, но для более крупного дома потребуется больше. В более новых домах, построенных в 1970-х годах и позже, будут использоваться блоки выключателей, они выглядят как выключатели.

В служебных панелях старых домов используются предохранители, они похожи на выключатели, но когда предохранитель перегорает, это уже сделано, когда выключатель срабатывает, вы просто переключаете его полностью в выключенное положение, затем снова во включенное состояние, и обслуживание восстанавливается.

В распределительную коробку вашего дома поступает 220 В, затем она делится на две группы по 110 В.Здесь вы видите выключатели, которые вы используете для каждой цепи в доме.

Например, вероятно, есть несколько узких 15-амперных выключателей для домашнего освещения и розеток, а также 20-амперный выключатель для холодильника.

Это однополюсные выключатели, которые используются только для 110 В. Вы также увидите более крупный и широкий двойной прерыватель на 30 или 50 ампер, он предназначен для сушилки (30) и печи (50). Для этих цепей требуется 220 В.

Если вы можете подключить его непосредственно к стороне питания коробки выключателя, поскольку инвертор только 110 В, чтобы получить 220 В, вам нужно будет подключить 110 В от инвертора к ОБЕИМ сторонам коробки выключателя (черные провода на схеме ниже) , блок выключателя соответственно распределяет мощность между цепями, как если бы вы были в электросети.

Фото: схема внутри блока главного выключателя Фото: схема системы с двумя инверторами

На схемах выше показано, как подключить систему, начиная с генератора 12 В, сделанного с автомобильным генератором переменного тока, до аккумуляторной батареи, чтобы поддерживать ее в заряженном состоянии.

Этот аккумуляторный блок, в свою очередь, обеспечивает необходимый вход 12 В для инвертора (ов) 110 В, который затем может быть подключен непосредственно к распределительной коробке дома.

Еще раз убедитесь, что дом НЕ подключен к электросети. Обычно это можно сказать, потому что в доме, куда поступает запас, будет стеклянный шар.

Если глобуса нет, то, вероятно, будет безопасно пойти дальше и подключиться к коробке. Вам нужно будет снять сервисную панель с передней части коробки выключателя, чтобы получить к ней доступ.

Фото: схема системы с двумя инверторами

При использовании одного более крупного инвертора на 110 В (4000-5000 Вт) вам придется разделить положительный (+) на два провода и подключить каждую сторону коробки выключателя, если вы используете два инвертора меньшего размера (2000-3000 ) проложите отрицательный (-) от каждого инвертора к центральной шине (общая шина заземления, вдоль этой шины будет скручен голый медный провод), а затем проведите положительный полюс от каждого инвертора к одной стороне коробки.Это обеспечит электроэнергией весь дом.

Если вы действительно хотите убедиться, что у вас достаточно мощности, два больших инвертора опять же, в зависимости от того, что доступно, это лучший сценарий. Новые батареи глубокого разряда недешевы, но если вы можете себе их позволить, вы добьетесь лучших результатов, как если бы вы использовали два больших инвертора.

Раскрытие информации: в этом посте есть партнерские ссылки, поэтому я могу получить комиссию, если вы совершите покупку по этим ссылкам. См. Мое полное раскрытие для получения дополнительной информации.

Но если у вас ограниченный бюджет, «найденные» автомобильные аккумуляторы и инверторы меньшего размера все равно будут работать, вы просто не сможете использовать плиту или сушилку.

Конфорка меньшего размера, работающая на 110 В, может быть заменена на полноразмерную плиту, если вы не можете или не хотите обеспечивать достаточную мощность для работы цепи 220 В для плиты.

Обзор

Теперь, когда вы полностью запутались, давайте просто сделаем краткий обзор того, как на самом деле сделать генератор.

  1. Найдите необходимые детали. Используя найденные предметы, вы можете снизить стоимость генератора; в конце концов, если вам нужно потратить 400 долларов на его строительство, вы можете просто купить генератор. Для этой сборки вам понадобится:
    • Двигатель газонокосилки
    • Автомобильный генератор
    • Кронштейн генератора (используйте тот, что от автомобиля, на котором был изготовлен генератор)
    • Ремень (ремень генератора от автомобиля-донора)
    • Аккумулятор от автомобиля-донора
    • Болты и гайки разные (гайки и болты с автомобиля-донора тоже можно использовать повторно)
    • Base (это может быть простая доска или тележка, если вы используете двигатель ездовой косилки, вы можете просто прикрутить генератор и инвертор к газонокосилке и получить управляемый мобильный генератор)
    • Шкив двигателя (шкив от машины-донора или ремень можно надеть прямо на вал двигателя, если нужно))
    • Инструменты (ключи, сверла, сверла и др.)) * ПРИМЕЧАНИЕ. Если вам нужен генератор для подачи электричества, вы, очевидно, не сможете использовать дрель. Советую найти ручную дрель старого образца; Блошиные рынки часто являются хорошим источником таких старых инструментов.
  2. Прикрепите двигатель к основанию
  3. Прикрепите кронштейн генератора к основанию (убедитесь, что шкивы правильно выровнены)
  4. Прикрепите генератор к кронштейну, установите ремень и затяните
  5. Присоедините кабели к положительным и отрицательным клеммам на генератор.(можно использовать кабели аккумулятора от автомобиля-донора)
  6. Добавьте аккумулятор в устройство и подсоедините положительный и отрицательный кабели к соответствующим клеммам на аккумуляторе. Это позволит генератору проработать несколько часов без запуска двигателя. Эту батарею также можно использовать для запуска двигателя.
  7. Добавьте инвертор (инверторы) питания 12 В постоянного тока к 110 В переменного тока, подключите провода от батареи и подключите выходные провода питания. Его можно подключить непосредственно к коробке выключателя, как описано в статье, или вы можете просто вставить шнур с розетками, если генератор предназначен для использования переносной .

Последние мысли

Быть самодостаточным становится все более важным в наши дни, и это намного лучше, чем полагаться на кого-то, кто придет и спасет вас. Вспомните времена, когда из-за сильных штормов многие люди оставались без электричества на несколько дней или даже недель.

Несколько лет назад мы пережили сильный ледяной шторм, который отключил электричество у всех жителей сельской местности, где мы жили. Я просто достал свой генератор и подключил холодильник, микроволновую печь, несколько ламп, обогреватель и телевизор.

К моему удивлению, кабель все еще работал! Все, кто проезжал мимо, останавливались и спрашивали о электричестве, и я им отвечал: нет, он еще выключен, у меня есть генератор.

Приведенная здесь информация может быть использована для временных чрезвычайных ситуаций, таких как отключение электроэнергии из-за шторма, для дешевого обустройства охотничьего домика или летнего дома или для подачи электроэнергии в постоянный дом, если вы решите это сделать.

С предметами, которые вы можете раздобыть, или с минимальными начальными вложениями и используя свой мозг, вы можете сделать свой домашний источник энергии для себя.Эта информация предназначена для того, чтобы показать вам, что это можно сделать, проявив немного изобретательности.

Заявление об ограничении ответственности

Предупреждение! Изготовление собственного генератора может быть опасным. Содержание этой статьи предназначено только для информационных целей, и его НЕ следует принимать за совет профессионала.

Ни автор, ни www.SurvivalSullivan.com не несут ответственности за использование рекомендаций, представленных в этой статье. Мы настоятельно рекомендуем вам обратиться за советом к специалисту, если вы собираетесь заняться этим проектом.

Разница между повышающим и понижающим трансформатором

Трансформатор - это статическое устройство, которое передает переменное электричество от цепи к цепи с одинаковой частотой, но уровень напряжения обычно меняется. По экономическим причинам электрическая энергия должна передаваться при высоком напряжении, в то время как с точки зрения безопасности она должна использоваться при низком напряжении. Это повышение напряжения передачи и пониженное напряжение для использования могут быть достигнуты только с помощью повышающего трансформатора и понижающего трансформатора.

Основное различие между повышающим и понижающим трансформаторами состоит в том, что повышающий трансформатор увеличивает выходное напряжение, а понижающий трансформатор снижает выходное напряжение.

Содержание

1. Сравнительная таблица

2. Определение

3. Ключевые отличия

4. Запомните

1. Сравнительная таблица


старший№
Повышающий трансформатор Понижающий трансформатор
1 Выходное напряжение повышающего трансформатора больше, чем напряжение источника. Выходное напряжение понижающего трансформатора меньше напряжения источника.
2 Обмотка НН трансформатора является первичной, а обмотка ВН - вторичной. Обмотка ВН трансформатора является первичной, а обмотка НН - вторичной.
3 Вторичное напряжение повышающего трансформатора более важно, чем его первичное напряжение. Вторичное напряжение понижающего трансформатора меньше его первичного напряжения.
4 Количество витков в первичной обмотке меньше, чем во вторичной обмотке. Количество витков в первичной обмотке больше, чем во вторичной обмотке.
5 Первичный ток трансформатора больше вторичного. Вторичный ток больше, чем первичный.
6 Повышающий трансформатор обычно используется для передачи энергии. Генераторный трансформатор на электростанции является одним из примеров повышающего трансформатора. Понижающий трансформатор используется в распределении энергии. Трансформатор в жилом поселке - один из примеров понижающего трансформатора.

2. Определение

а. Повышающий трансформатор

Повышающий трансформатор - это тип трансформатора с функцией преобразования низкого напряжения (LV) и высокого тока с первичной стороны трансформатора в высокое напряжение (HV) и низкое значение тока на вторичной стороне трансформатора.

г. Понижающий трансформатор

Понижающий трансформатор - это тип трансформатора, который преобразует высокое напряжение (HV) и низкий ток с первичной стороны трансформатора в низкое напряжение (LV) и большие значения тока на вторичной стороне трансформатора.

3. Основное отличие повышающего трансформатора от понижающего трансформатора

- Когда выходное (вторичное) напряжение превышает входное (первичное) напряжение, это называется повышающим трансформатором.Для сравнения: выходное (вторичное) напряжение понижающего трансформатора меньше.

- В повышающем трансформаторе обмотка низкого напряжения является первичной обмоткой, а обмотка высокого напряжения - вторичной обмоткой. Напротив, в понижающем трансформаторе обмотка низкого напряжения является вторичной обмоткой.

- В повышающем трансформаторе ток и магнитное поле меньше развиваются на вторичной обмотке, а на первичной - повышаются. Напротив, в понижающем трансформаторе напряжение на вторичном конце ниже из-за высокого тока и магнитного поля.

* Примечание 1: электрический ток пропорционален магнитному полю.

* Примечание 2: Согласно закону Ома напряжение пропорционально силе тока. Если мы увеличим напряжение больше, чем сила тока также увеличится, но в трансформаторе будет передаваться такое же количество электричества, если мы увеличим напряжение, то ток будет уменьшаться и наоборот. Следовательно, мощность на приемных и передающих клеммах трансформатора остается постоянной.

- В повышающем трансформаторе первичная обмотка состоит из толстого изолированного медного провода, а вторичная - из тонкого изолированного медного провода.Напротив, в понижающем трансформаторе высокий выходной ток приводит к тому, что изолирующая медь толщиной используется для изготовления вторичной обмотки.

* Примечание 3: Толщина проводов зависит от способности электрического тока течь через них.

- Повышающий трансформатор увеличивает напряжение с 220 В до 11 кВ или более, а понижающий трансформатор снижает напряжение с 440–220 В, 220–110 В или 110–24 В, 20 В, 10 В.

4. Запомните

Тот же трансформатор может использоваться как повышающий трансформатор или понижающий трансформатор.Это зависит от того, как он включен в схему. Если входное питание подается на обмотку низкого напряжения, она становится повышающим трансформатором. С другой стороны, если входная мощность подается на обмотку высокого напряжения, трансформатор становится понижающим трансформатором.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *