Из тепла электричество своими руками: Термоэлектрический генератор — конвертируем тепло в электричество термогенератором

Содержание

Термоэлектрический генератор - конвертируем тепло в электричество термогенератором

Согласно мировой статистике, от общего числа выработанной электроэнергии, на ТЭС приходится более 60%. Как известно, для работы тепловых электростанций необходимо органическое топливо, запасы которого не бесконечны. Помимо того, положенный в основу техпроцесс не является экологически чистым. Но низкая стоимость оргтоплива и высокий КПД ТЭС, позволяет получать «дешевое» электричество, что оправдывает применение данной технологии. Выход из сложившейся ситуации – альтернативные источники энергии, к таковым относятся термоэлектрические генераторы (далее ТЭГ), о них и пойдет речь в этой статье.

Обогрев на дровах

Теплогенератор на дровах, своими руками сделанный, обеспечит стабильный обогрев помещений при отсутствии централизованного отопления и наличия достаточного количества древесного топлива. Как бы ни развивались технологии и строительные методы, дровяная печь, камин спасут при перебоях с теплоснабжением.

Для отопления на дровах осуществляется монтаж камина или традиционной печки.

Но такие системы требуют тщательного соблюдения норм безопасности. Важно определиться с местом установки печи – массивные агрегаты не всегда можно разместить в дачных домиках.

Сделать теплогенератор на дровах своими руками – это хорошее решение при необходимости автономного обогрева комнат. Иногда это действительно единственный возможный вариант отопления.

Устройство Потапова

Теплогенератор Потапова своими руками можно сделать с использованием следующих материалов:

— шлифовальная машина для углов; — сварочный прибор; — дрель и сверла; — накидные ключи на 12 и 13; — разные болты, гайки, шайбы; — металлические уголки; — краски и грунтовки.

Теплогенератор Потапова, своими руками сделанный, позволяет вырабатывать тепло на основе электрического двигателя с использованием насоса. Это очень экономичный вариант, изготовить который достаточно просто из обычных деталей. Двигатель выбирают в зависимости от существующего напряжения – 220 или 380 В.

С него начинают сборку, закрепляя на станине. Выполняется металлический каркас из угольника, сварка и болты, гайки помогают закрепить всю конструкцию. Делаются отверстия для болтов, внутри размещается двигатель, каркас покрывают краской. Затем подбирают центробежный насос, который будет раскручиваться двигателем. Насос устанавливают на раме, однако в данном случае потребуется соединительная муфта с токарного станка, которую можно заказать на заводе. Важно утеплить генератор специальным кожухом из жестяных листов или алюминия.

Бесплатное электричество своими руками (видео)

Получение бесплатного электричества дело не такое уж и мудреное, как кажется. Благодаря различного рода генераторам, работающих с разными источниками, уже не страшно остаться без света при отключении электроэнергии. Немного сноровки и у вас уже готова собственная мини-станция по выработке электричества.

Комментарии

0 Роман 27.12.2017 06:58 Вообще поговаривают, что за солнечными батареями будущее, мол они и будут давать людям энергию, когда иссякнут другие ресурсы, а так же ветровые генераторы позволят в ветряных местностях добывать электроэнергию.
Цитировать

0 Юля 11.12.2017 21:07 Идея с получением электричества бесплатно довольно не плохая, но такого электричества не на что не хватит, мощность довольно небольшая, у меня даже идей нет, как можно его использовать.

Цитировать

Обновить список комментариев RSS лента комментариев этой записи

Достоинства ТЭГ

Достоинства термоэлектрогенераторов:

  • выработка электричества происходит по замкнутой одноступенчатой схеме без использования сложных передающих систем и применения движущих частей;
  • отсутствие рабочих жидкостей и газов;
  • отсутствие выбросов вредных веществ, бросового тепла и шумового загрязнения окружающей среды;
  • устройство длительного автономного функционирования;
  • использование отработанного тепла (вторичные источники теплоты) с целью экономии энергоресурсов
  • работа в любом положении объекта независимо от среды эксплуатации: космос, вода, земля;
  • выработка постоянного тока при малом напряжении;
  • невосприимчивость к короткому замыканию;
  • неограниченный срок хранения, 100 % готовность к работе.

Роторный вихревой теплогенератор

В таком оборудовании роль статора отводится обычному центробежному насосу. Полый внутри и цилиндрический по форме корпус, может быть представлен отрезком трубы с наличием стандартных двухсторонних фланцевых заглушек. Внутри конструкции располагается ротор, являющийся главным конструктивным элементом.

Вся поверхность ротора представлена определенным количеством просверленных глухих отверстий, размеры которых зависят от показателей мощности устройства.


Вихревой генератор

Промежуток от корпуса до вращающейся части должен быть рассчитан индивидуально, но, как правило, размеры такого пространства варьируются в пределах двух миллиметров.

Важно отметить, что производительность роторного вихревого устройства примерно на 30% превышает такие показатели статического теплового генератора, но этот тип оборудования нуждается в контроле состояния всех элементов, а также отличается достаточно шумной работой.

Как определить термоэдс металла

Термоэдс металла определяется по отношению к платине. Для этого термопара, одним из электродов которой является платина (Pt), а другим испытуемый металл, нагревается до 100 градусов Цельсия. Полученное значение в милливольтах для некоторых металлов, показано ниже. Причем следует обратить внимание на то, что изменяется не только величина термоэдс, но и ее знак по отношению к платине.

Платина в этом случае играет такую же роль, как 0 градусов на температурной шкале, а вся шкала величин термоэдс выглядит следующим образом:

  • Сурьма +4,7
  • Железо +1,6
  • Кадмий +0,9
  • Цинк +0,75
  • Медь +0,74
  • Золото +0,73
  • Серебро +0,71
  • Олово +0,41
  • Алюминий +0,38
  • Ртуть 0
  • Платина 0

После платины идут металлы с отрицательным значением термоэдс:

  • Кобальт -1,54
  • Никель -1,64
  • Константан (сплав меди и никеля) -3,4
  • Висмут -6,5

Пользуясь этой шкалой очень просто определить значение термоэдс развиваемое термопарой, составленной из различных металлов.

Для этого достаточно подсчитать алгебраическую разность значений металлов, из которых изготовлены термоэлектроды. Например, для пары сурьма – висмут это значение будет +4,7 – ( — 6,5) = 11,2 мВ. Если в качестве электродов использовать пару железо – алюминий, то это значение составит всего +1.6 – (+0,38) = 1,22 мВ, что меньше почти в десять раз, чем у первой пары.

Если холодный спай поддерживать в условиях постоянной температуры, например 0 градусов, то термоэдс горячего спая будет пропорциональна изменению температуры, что и используется в термопарах.

Экономический вопрос

Прежде чем начать подробно разбираться, как сделать водородный генератор, желательно вспомнить школьный курс физики. Все преобразования происходят с потерей энергии, то есть, затраты электроэнергии на получение водорода не окупятся тепловой мощностью при сжигании полученного топлива.

Если учесть, что сжигать водород с максимальной температурой и теплоотдачей в домашних условиях попросту невозможно, становится понятным, что реальные потери будут даже выше тех, что рассчитаны для идеальных условий.

Итак, использовать водородный генератор, сделанный для отопления своими руками, не имеет никакого смысла, если у вас нет доступа к бесплатной электроэнергии. Установить для отопления дома электрический котел и тратить электроэнергию напрямую, без сложных преобразований, обойдется вам в 2-3 раза дешевле. Кроме того, электрокотел полностью безопасен, а эксплуатация кустарной установки грозит взрывом при несоблюдении правил монтажа и эксплуатации.

Очевидно, что получение дешевого водорода экологически чистым способом, к которым относится электролиз, — это вопрос будущего, над которым сегодня работают ученые в передовых странах мира.

Сфера применения и виды термоэлектрических генераторов

В виду низкого КПД для ТЭГ остается два варианта применения:

  1. В местах, где недоступны другие источники электроэнергии.
  2. В процессах, где имеется избыток тепла.

Приведем несколько примеров таких устройств.

Энергопечи

Данные, устройства, совмещающие в себе следующие функции:

  • Варочной поверхности.
  • Обогревателя.
  • Источника электроэнергии.

Это прекрасный образец, объединяющий все оба варианта применения.


Индигирка – три в одном

У представленной на рисунке энергопечи следующие параметры:

  • Вес – чуть больше 50 килограмм (без учета топлива).
  • Размеры: 65х43х54 см (с разобранным дымоходом).
  • Оптимальная загрузка оргтоплива – 30 литров. Допускается использование лиственной древесины, торфа, бурового (не каменного!) угля.
  • Средняя тепловая мощность устройства около 4,5 кВт.
  • Мощность электронагрузки от 45-50 Вт.
  • Стабилизированное постоянное напряжение на выходе – 12 В.

Как видите, эти параметры вполне приемлемы для условий, где нет электричества, отопления и газа. Что касается небольшой электрической мощности, то ее вполне достаточно для зарядки мобильных устройств или питания других гаджетов, через адаптер от автомобильного прикуривателя.

Радиоизотопные ТЭГ

В качестве источника тепла для ТЭГ может выступать тепловая энергия, выделяющаяся в процессе распада нестабильных элементов.

Такие источники называют радиоизотопными. Основное их преимущество заключается в том, что не требуется постоянная загрузка топлива. Недостаток – необходимость установки защиты от ионизирующего излучения, невозможность перезаправки топлива и необходимость утилизации.

Срок эксплуатации таких источников напрямую зависит от периода полураспада вещества, используемого в качестве топлива. К последнему предъявляется следующий ряд требований:

  • Высокий коэффициент объемной активности, то есть небольшое количество вещества должно обеспечивать нужный уровень выделения энергии.
  • Поддержка необходимого уровня мощности в течение длительного времени. На этот параметр отвечает, как было отмечено выше, влияет период полураспада, например у стронция-90 он 29 лет, следовательно, источник через это время потеряет половину своей мощности.
  • Ионизирующее излучение должно быть удобным для утилизации, то есть в нем должны преобладать α-частицы.
  • Необходимый уровень безопасности. То есть ионизирующее излучение не должно нанести вред экологии (в случае эксплуатации на земле) и питающемуся от такого источника оборудованию.

Таким критериям отвечают изотопы кюрия-244, плутония-238 и упоминавшийся выше стронций-90.

Сфера применения РИТЕГ

Несмотря на серьезные требования к таким источникам, сфера их применения довольно разнообразна, они используются как в космосе, так и на земле. Ниже на фото, изображен РИТЕГ, работавший на космическом аппарате Кассини. В качестве топлива использовался изотоп плутония-238. Период полураспада этого элемента чуть больше 87 лет. Под конец 20-ти летней мисси источник вырабатывал 650 Вт электроэнергии.


Радиоизотопное «сердце» Кассини

Кассини была приведена в качестве примера, а на счет массовости можно констатировать, что, практически, все КА для электропитания оборудования используют РИТЕГ. К сожалению, характеристики радиоизотопных источников энергии космических аппаратов, как правило, не публикуются.

На земле ситуация приблизительно такая же. Технология РИТЕГ как бы известна, но ее детали относятся к закрытой информации. Достоверно известно, что такие установки применяются в качестве источника питания навигационного оборудования в местности, где по техническим причинам невозможно получать электроэнергию другим способом. То есть, речь идет о труднодоступных регионах.

К сожалению, такие источники не самая подходящая альтернатива ТЭС с экологической точки зрения.


РИТЕГ поднятый с 14-митровой глубины возле Сахалина

Преимущества самодельного теплопроизводства

В целом есть два типа устройств: статические и роторные. Если в первом варианте в основе конструкции есть сопло, то другие машины создают кавитацию с помощью ротора. Эти вихревые конструкции можно сравнить между собой и выбрать подходящий вариант для сборки.

Теплогенератор, своими руками сконструированный, поможет обеспечить комфортным температурным режимом загородный дом, дачу, отдельный коттедж, квартиру – при отсутствии централизованного отопления, его дефектах, перебоях или авариях.

Также подобные устройства помогают компенсировать расходы на тепло, выбрать оптимальный вариант энергоснабжения. Они несложны в конструкционном плане и экономичны, экологически безопасны.

Изготовление гидродинамического контура


Применяемый в тепловом генераторе гидродинамический контур представляет собой стандартное устройство, представленное:

  • манометром, установленном на выходном участке сопла и предназначенным для измерения показателей давления;
  • термометром, необходимым для измерения температурных показателей на входе;
  • вентилем для эффективного удаления из системы воздуха;
  • вводным и выводным патрубками, оснащенными вентилями;
  • гильзой для температурного термометра на вход и выход;
  • манометром на входную часть сопла, предназначенным для измерения показателей давления на вход в систему.

Контур системы представлен трубопроводом, входная часть которого соединяется с выходной частью патрубка на насосном оборудовании, а выходная — с входной частью установленного насоса.

В трубопроводную систему обязательно вваривается сопло, а также основные элементы, представленные патрубками на подключение манометра, гильзами для температурного термометра, штуцером под вентиль для удаления воздушной пробки и штуцером для подключения отопительного контура.

Для подачи теплоносителя в контур системы используется нижний патрубок, а водоотвод осуществляется посредством верхнего патрубка. Вентиль, установленный на участке от входного до выходного патрубков, позволяет эффективно регулировать перепады давления.

Что представляет собой водород

Водород – это самое распространенное химическое вещество на нашей планете. Бесцветный газ, не содержащий токсинов, присутствует почти во всех соединениях. Вещество наделено уникальными свойствами. В твердом и жидком состоянии водород практически не имеет массы. Размер его атомов самый маленький в сравнении с другими химическими элементами.

Вещество, полученное в результате смешивания водорода с окружающим воздухом, очень долго может сохранять свои свойства, находясь в помещении, но от минимального соприкосновения с огнем может взорваться. Для транспортировки и хранения используются специальные баллоны, созданные из легированной стали.

Отзывы владельцев

На сегодняшний день большое количество владельцев домов уже выполнило разработку собственный агрегатов.
Если сделать теплогенератор своими руками, то, по мнению большинства умельцев, можно действительно получить экономичный вариант для обогрева помещения. Делать эти агрегаты можно буквально из подручных материалов, что позволяет всем желающим обзавестись собственным источником тепла. Некоторые модели требуют наличия заводских деталей, которые можно изготовить на заказ в промышленных условиях.

Конструкция термогенератора

Как уже было сказано, термогенератор предназначался для использования в сельской местности, где для освещения использовались керосиновые лампы «молния». Такая лампа, оснащенная термогенератором, становилась не только источником света, но и электричества. При этом дополнительных затрат топлива не требовалось, ведь в электричество превращалась именно та часть керосина, которая просто улетала в трубу. К тому же, такой генератор был всегда готов к работе, конструкция его была такова, что ломаться в нем просто нечему. Генератор мог просто лежать без дела, работать без нагрузки, не боялся коротких замыканий. Срок службы генератора, по сравнению с гальваническими батареями, казался просто вечным.

Роль вытяжной трубы у керосиновой лампы «молния» играет удлиненная цилиндрическая часть стекла. При использовании лампы совместно с термогенератором стекло делалось укороченным, и в него вставлялся металлический теплопередатчик 1, как показано на рис. 4.

Рис. 4. Керосиновая лампа с термоэлектрическим генератором

Внешняя часть теплопередатчика имеет форму многогранной призмы, на которой установлены термобатареи. Чтобы увеличить эффективность теплоотдачи теплопередатчик внутри имел несколько продольных каналов. Проходя по этим каналам горячие газы уходили в вытяжную трубу 3, попутно нагревая термобатарею, точнее, ее горячие спаи. Для охлаждения холодных спаев использовался радиатор воздушного охлаждения. Он представляет собой металлические ребра, прикрепленные к внешним поверхностям блоков термобатарей.

Термогенератор – ТГК3 состоял из двух независимых секций. Одна из них вырабатывала напряжение 2В при токе нагрузки до 2А. Эта секция использовалась для получения анодного напряжения ламп с помощью вибропреобразователя. Другая секция при напряжении 1,2В и токе нагрузки 0,5А использовалась для питания нитей накала ламп.

Нетрудно подсчитать, что термогенератор имел мощность не превышающую 5 Ватт, но для приемника ее вполне хватало, что позволяло скрашивать долгие зимние вечера. Сейчас, конечно, это кажется просто смешным, но в те далекие времена такое устройство было, несомненно, чудом техники.

Бытовой термогенератор

Уже в послевоенные пятидесятые годы советская промышленность начала выпускать термогенератор ТГК – 3. Основное его назначение состояло в питании батарейных радиоприемников в не электрифицированной сельской местности. Мощность генератора составляла 3 Вт, что позволяло питать батарейные приемники, такие как «Тула», «Искра», «Таллин Б-2», «Родина – 47», «Родина – 52» и некоторые другие.

Внешний вид термогенератора ТГК-3 показан на рис. 3.

Рис. 3. Термогенератор ТГК-3

Можно ли получить электрический ток бесплатно

Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.

Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.

Добыча из воздуха

Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.

В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.

Некоторые способы следующие:

  • грозовые батареи используют свойство электрического потенциала накапливаться;
  • ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
  • ионизатор (люстра Чижевского) — популярный бытовой прибор;
  • генератор TPU (тороидального) электричества Стивена Марка;
  • генератор Капанадзе — бестопливный энергетический источник.

Рассмотрим подробно некоторые из устройств.

Ветрогенераторы

Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.

[advice]Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.[/advice]

Грозовые батареи

Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.

Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.

[warning]Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.[/warning]

Тороидальный генератор С. Марка

Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.

Генератор TPU (тороидальный) может питать бытовые приборы.

Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.

Генератор Капанадзе

Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.

Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.

Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.

Добыча из Земли

Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.

Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.

Гальванический способ (с двумя стержнями)

Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).

Между стержнями из разных металлов в электролите появляется разность потенциалов.

Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.

От заземления

Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.

Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.

[advice]Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию.[/advice]

Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).

Другие способы

Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы. А именно: даром его могут дать самодельные пирамиды.

Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.

Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.

Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.

Однако, ведутся серьезные научные изыскания в области получения малого электричества из продуктов жизнедеятельности растений, переходящих в землю.

Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.

Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.

На практике своими руками жители районов с вулканической деятельностью могут самостоятельно сделать, например, геотермальный насос для отопления. А тепло известными способами можно превратить в электричество.

Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.

Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.

Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.

Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:

Оцените статью: Поделитесь с друзьями!

Электричество из тепла самодельная установка


Термоэлектрический генератор - конвертируем тепло в электричество термогенератором

Я расскажу как получить электричество из тепла и как построить своими руками термоэлектрогенератор средних размеров, который можно использовать в походах и на открытой природе, а также просто так, для зарядки электронных устройств, посредством зарядки перезаряжаемых батарей от любого источника огня. При использовании ракетной печи или походной печки и газа для более быстрого сгорания, сгенерируется больше энергии.

Термоэлектрический генератор идеально подходит для выживания в случае стихийных бедствий, поскольку позволяет производить электроэнергию из легкодоступного источника — огня. Солнечную энергию можно получить только днем, а сбор лунного света неэффективен и требует создания дорогой линзы, энергию ветра возможно получить не в любой день. Огонь — это мощный и опасный источник энергии, поэтому будьте осторожны при использовании устройства и остерегайтесь горячей части радиатора и т.д.

Шаг 1: Необходимые детали

  1. 1х Элемент Пельтье (термоэлектрический преобразователь)
  2. Алюминиевый радиатор среднего размера (я достал свой из старого ПК)
  3. Толстый электрический кабель двух цветов (опционально)
  4. Входные и выходные разъемы/гнезда, предварительно купленные или изготовленные (для ввода и вывода энергии) (опционально)
  5. Проектный корпус, частично теплозащищенный, если возможно. Используйте изоляционный материал, металл, фольгу и т.д. (опционально)
  6. Термопаста (опционально), алюминиевая фольга (желательно)
  7. Резак для резки тонких металлов
  8. Ножницы по металлу
  9. Разные отвертки (для закручивания винтов корпуса и входов/выходов)
  10. Разные винты и болты (для крепления металлических пластин и радиатора)
  11. Паяльник и припой (опционально) для надежного крепления
  12. Аккумуляторная батарея низкой или средней мощности (для подзарядки)
  13. Термоусадочные трубки для защиты проводов от тепла (необходимо)
  14. 1х блокирующий диод, чтобы предотвратить обратную зарядку.
  15. 2 алюминиевые банки (металлическая пластина)
  16. Толстая медная проволока
  17. Цифровой мультиметр

Все, что отмечено как опциональное, не обязательно к сборке термогенератора, но будет полезным, например корпус для аккумулятора и блокирующий диод.

Шаг 2: Конструирование

Построить корпус и тепловой генератор электричества довольно просто.

Во-первых, отрежьте от алюминиевых банок дно и крышку и разрежьте получившиеся куски пополам. Сложите 4 куска вместе и, прижав, вырежьте отверстия в углах для гаек. Прижмите листы гайками. Основа для устройства готова.

Если имеется термопаста, намажьте её на радиатор и основу, используя старую кредитку. Вам нужен квадрат размером с элемент Пельтье для выработки электричества. Поместите элемент Пельтье холодной стороной к радиатору, а горячей к алюминию. Проверить стороны можно подключив модуль к двум батареям 1.5v и потрогав каждую из сторон.

Нужно положить модуль между радиатором и алюминиевыми листами и немного вдавить в термопасту. Теперь, используя плоскогубцы, нужно обернуть медную проволоку вокруг выпирающих частей радиатора и под болтами на алюминиевой основе. Это соединит радиатор, основу и элемент Пельтье друг с другом. Основной блок сделан.

Шаг 3: Тестирование теплогенератора

Я использовал для теста термоэлектрического генераторного модуля одну маленькую свечку внутри оловянной банки, покрытой изоляционной лентой и подставку из металлического корпуса компьютерного вентилятора. В зависимости от количества тепла, мощность будет медленно подниматься и продолжать расти до заданного напряжения.

Также на эффективность влияет охлаждение радиатора, в холодный день радиатор будет остывать быстрее. К устройству могут быть подключены топливная или ракетная печь, этим можно заряжать аккумуляторы или электронные устройства.

На самом деле эта вещь не подходит для повседневного использования, поскольку элемент Пельтье рано или поздно сломается и сделает устройство неэффективным. В любом случае, оно может использоваться для получения электроэнергии в походе, при экстренных случаях и т. д.

Смотрите видео для тестов и показаний напряжения и скорости его подъема. Тест дома с питанием от свечки. Второй тест с маленькой печкой, в котором видно, что если непрерывно подавать топливо, то за 3-4 минуты можно зарядить батарею или две.

Файлы

Шаг 4: Улучшения

Возможные следующие модернизации устройства:

  1. Добавьте еще одну ячейку Пельтье чтобы удвоить выход напряжения.
  2. Подключите Joule Thief или несколько для небольшого увеличения напряжения.
  3. Используйте более качественные теплопроводные материалы, больший радиатор и более толстую алюминиевую или медную плиту в качестве основы.
  4. Можно качественнее закрепить ячейку Пельтье при помощи медной проволоки или термопасты, что улучшит перенос тепла.
  5. Используйте ракетную печь вместо открытых источников огня. Жар ракетных печей локализован, что будет эффективнее заряжать устройства.
  6. Используйте несколько связанных друг с другом устройств, соединив их последовательно над источником огня, чтобы увеличить выход напряжения.
  7. Можно улучшить термоизоляцию на проводах, фольге и изоляционной ленте (ракетные печи, как правило, немного плавят провода)
  8. Сделать запас компонентов и деталей (если что-то сломается или прогорит, всегда можно будет починить устройство)

Можно ли производить электроэнергию напрямую из тепла?

Если у вас много тепла, вы можете делать то же, что и электростанции - вы можете использовать тепло для выработки пара и использовать пар для вращения турбины . Турбина может приводить в действие генератор , вырабатывающий электричество. Эта установка очень распространена, но требует изрядного количества оборудования и места.

Если вы хотите вырабатывать электричество из тепла простым способом, не имеющим движущихся частей, для этого обычно используются термопары .

Термопары

используют преимущества электрического эффекта, возникающего на стыках между разными металлами. Например, возьмем две железные и одну медную проволоку. Скрутите вместе один конец медной проволоки и один конец одной из железных проволок. Проделайте то же самое с другим концом медной и другой железной проволоки. Если вы нагреете один из витых переходов (возможно, спичкой) и присоедините два свободных конца к вольтметру, вы сможете измерить напряжение.Точно так же, если вы подсоедините два металлических провода к батарее, одно соединение станет горячим, а другое - холодным.

Межпланетные спутники, летящие к таким планетам, как Юпитер и Сатурн, настолько далеки от Солнца, что не могут использовать солнечные батареи для выработки электроэнергии. Эти спутники используют РИТЭГов ( радиоизотопных термоэлектрических генераторов ) для выработки энергии. РИТЭГ использует радиоактивный материал (например, плутоний) для выработки тепла, а термопары преобразуют тепло в электричество.РИТЭГи не имеют движущихся частей, поэтому они надежны, а радиоактивный материал выделяет тепло в течение многих лет.

,

Отопление электричеством, преимущества и недостатки электрического отопления

Является ли электрическое отопление экологически чистым?

Определение того, является ли электричество эффективным и экологически ответственным способом обогрева дома, также должно включать начальное производство электроэнергии. Эффективность сжигания ископаемого топлива для выработки электроэнергии составляет около 30-60%. Существуют также значительные потери в линиях электропередачи, поэтому общая энергоэффективность электрического тепла значительно зависит от местоположения и местного источника производства электроэнергии.

Отопление электричеством из возобновляемых источников, таких как ветер, солнце или гидроэлектростанция, намного чище, чем электричество, произведенное за счет сжигания ископаемого топлива, такого как угольные или газовые электростанции. К счастью, доля зеленой электроэнергии в США растет с возобновляемой генерацией, что обеспечило новый рекорд в 742 миллиона мегаватт-часов (МВтч) электроэнергии в 2018 году, что почти вдвое превышает 382 миллиона МВтч, произведенных в 2008 году. Возобновляемые источники энергии обеспечили 17,6% выработки электроэнергии в США в 2018 году.

Почти 90% прироста возобновляемой электроэнергии в США в период с 2008 по 2018 год было связано с ветровой и солнечной генерацией. Выработка ветровой энергии выросла с 55 миллионов МВтч в 2008 году до 275 миллионов МВтч в 2018 году (6,5% от общего производства электроэнергии), уступая только традиционной гидроэлектростанции с 292 миллионами МВтч (6,9% от общего объема производства). Это хорошая новость для сокращения углеродного следа наших энергетических потребностей.

Это для сравнения с Канадой, где около 67% электроэнергии в Канаде поступает из возобновляемых источников и 82% из источников, не связанных с выбросами парниковых газов. Канада является вторым по величине производителем гидроэлектроэнергии в мире.

Особенность электрического отопления в новых или отремонтированных зеленых высокоэффективных домах заключается в том, что по мере увеличения процента выработки электроэнергии из возобновляемых источников ваша система отопления по умолчанию сокращает углеродный след.

Источники электрического тепла:

Отопление электричеством - это не только обогреватели на плинтусе или электрическая печь с принудительной подачей воздуха. КПД и БТЕ, передаваемые через электрические радиаторы, печи, конвекционные обогреватели или бойлеры для водяных излучающих полов, попадают в категорию «электрического тепла» и одинаково эффективны в БТЕ на ватт.По эффективности они также не уступают тепловложению, которое вы получали бы от электрической плиты, фена, тостера или даже электрической грелки вокруг больной шеи.

То, как какое-либо из этих устройств или приборов отдает тепло, будет иметь некоторое влияние на эффективность, но это больше связано с тем, насколько хорошо оно распределяется. Обогрев всего дома электрическими радиаторами, разбросанными по всему дому, будет лишь немного эффективнее, чем включение духовки и открытие двери, но это только потому, что в этом случае тепло концентрируется в одной области и, следовательно, происходит небольшое увеличение потерь тепла через стены возле источника, или как теплый воздух поднимается вверх и выходит через вытяжку печи.Подобные централизованные источники тепла также оставляют в некоторых частях дома более прохладную температуру, и, поскольку большинство людей склонны поддерживать в доме базовую температуру, с большей вероятностью в доме будут возникать горячие точки, особенно те, которые плохо изолированы.

При одинаковом вводе энергии количество тепла, добавляемого к дому через любой источник тепла электрического сопротивления (например, тостер или электрическую плиту), равно теплу, доставляемому обычными системами электрического отопления. Ходить по дому с феном было бы не менее эффективно (если не считать прилагаемых усилий), чем пользоваться электропечи.Даже работающий компьютер или заряжающий мобильный телефон добавят в ваш дом такое же количество БТЕ на ватт, что и настоящий «обогреватель».

Тепловой насос, работающий на электричестве, а не на газе, также квалифицируется как электрическое тепло; это единственное исключение из правила равной эффективности, так как это не электрическое сопротивление тепла, а электричество питает конденсатор и вентилятор. См. Наше видео-объяснение того, как работают тепловые насосы, для более подробной информации.

Типы электронагревателей сопротивления:

Пневматическая электропечь:

Хотя это дешевле, чем масляная печь, это не дешевый и эффективный способ обогрева с помощью электричества. Помимо стоимости работы печи и воздуховодов (которые могут быть довольно дорогими), для эксплуатации требуется не только выработка тепла, но и энергия, необходимая для его распределения по всему дому. Потери тепла могут происходить через воздуховоды в помещениях, которые вы не собираетесь отапливать, что еще больше снижает общую эффективность.

Электропечи также потребуют регулярного обслуживания, замены фильтров и очистки каналов. Эти затраты также следует учитывать. Ожидаемая продолжительность жизни от 15 до 20 лет.

Для наилучшей работы электропечи важен соответствующий размер, и больший размер не всегда лучше. Печь, слишком большая для данного помещения, завершит цикл нагрева быстрее, тратя больше времени на фазу запуска, а не на рабочий уровень максимальной эффективности. А печи меньшего размера дешевле, так что это беспроигрышная ситуация.

Электрические обогреватели плинтусов:

В электрических обогревателях плинтуса есть элементы, которые выделяют тепло, которое затем распределяется в процессе конвекции. Нагретый воздух поднимается через металлические ребра, а холодный воздух всасывается через дно.

Обогревателями плинтуса можно управлять в зональной системе, с термостатами в каждой комнате. Это может помочь снизить общее потребление, позволяя поддерживать более низкую температуру в редко используемых местах.

Оптимальное размещение обогревателей плинтуса - под окнами, так как именно там будут наибольшие потери тепла. Также важно, чтобы они были установлены на высоте дюйма над уровнем пола, чтобы воздух мог поступать через дно.

Электрические конвекционные обогреватели:

Конвекционный обогреватель похож на обогреватель для плинтуса, но с прикрепленным вентилятором. Итак, опять же, разница не в эффективности, а в доставке. Они могут обогревать комнату быстрее, чем плинтусы, и распределять тепло более равномерно, но, с другой стороны, дополнительное движение воздуха может мешать пыли больше, чем плинтусы, как печь. И, в зависимости от выходной мощности в децибелах конкретного устройства, он, возможно, также добавит элемент шума.

Выбор между плинтусами и конвекционными обогревателями - это только вопрос стоимости покупки и личных предпочтений, а не вопрос эффективности. Они немного дороже, так как в них есть движущиеся части, но их нельзя продавать в сравнении с конвекционными обогревателями, поскольку распространено заблуждение, что они обеспечивают большую эффективность.

Электрические теплые полы:

Нагревательные кабели можно прокладывать как под плиткой, так и под паркетом. Это не дешевая система в установке, но это очень удобный способ отвода тепла.Излучающее тепло в пол также может быть достигнуто с помощью систем водяного отопления, которые при нагреве водой от электрического бойлера снова предлагают такое же количество БТЕ на ватт, но этот тип системы действительно необходимо устанавливать при строительстве домов.

Другие страницы об экологически безопасных вариантах отопления см. Здесь , из EcoHome Руководства по экологическому строительству
,Инженеры

разрабатывают микросхемы, преобразующие потраченное впустую тепло в полезную энергию - ScienceDaily

По оценкам, до двух третей энергии, потребляемой в США каждый год, уходит в виде тепла. Возьмем, к примеру, автомобильные двигатели, портативные компьютеры, сотовые телефоны и даже холодильники, которые нагреваются от чрезмерного использования.

Представьте, если бы вы могли улавливать выделяемое ими тепло и превращать его в больше энергии.

Доцент кафедры машиностроения Университета штата Юта Матье Франкур (Mathieu Francoeur) открыл способ производить больше электричества из тепла, чем считалось возможным, создав кремниевый чип, также известный как «устройство», которое преобразует больше теплового излучения в электричество.Его результаты были опубликованы в статье A Near-Field Radiative Heat Transfer Device, в последнем выпуске Nature Nanotechnology .

Исследователи ранее определили, что существует теоретический «предел черного тела» на то, сколько энергии может быть произведено из теплового излучения (тепла). Но Francoeur и его команда продемонстрировали, что они могут выйти далеко за пределы черного тела и производить больше энергии, если они создадут устройство, которое использует две кремниевые поверхности очень близко друг к другу. Команда изготовила чип 5 мм на 5 мм (размером с головку ластика) из двух кремниевых пластин с наноскопическим зазором между ними толщиной всего 100 нанометров, или одной тысячной толщины человеческого волоса. Пока чип находился в вакууме, они нагревали одну поверхность и охлаждали другую поверхность, создавая тепловой поток, способный генерировать электричество. Идея создания энергии таким образом не уникальна, но Франкер и его команда обнаружили способ равномерно подогнать две кремниевые поверхности друг к другу в микроскопическом масштабе, не касаясь друг друга.Чем ближе они друг к другу, тем больше электроэнергии они могут произвести.

«Никто не может излучать больше излучения, чем предел черного тела», - сказал он. «Но когда мы перейдем к наномасштабу, вы сможете».

В будущем Francoeur предполагает, что такую ​​технологию можно будет использовать не только для охлаждения портативных устройств, таких как ноутбуки и смартфоны, но и для направления тепла на увеличение срока службы батареи, возможно, на 50%. Например, ноутбук с шестичасовой зарядкой может подскочить до девяти часов.

Чипы могут использоваться для повышения эффективности солнечных панелей за счет увеличения количества электричества от солнечного тепла или в автомобилях, чтобы забирать тепло от двигателя для питания электрических систем. Они также могут быть разработаны для установки в имплантируемые медицинские устройства, такие как кардиостимуляторы, для которых не требуются сменные батареи.

Еще одним преимуществом является то, что такая технология может помочь продлить срок службы компьютерных процессоров, сохраняя их прохладными и уменьшая износ, а также позволяет сэкономить больше энергии, которая в противном случае использовалась бы вентиляторами для охлаждения процессоров.По мнению Франкора, это также может помочь улучшить окружающую среду.

«Вы возвращаете тепло в систему как электричество», - сказал он. «Прямо сейчас мы просто выбрасываем его в атмосферу. Он нагревает вашу комнату, например, а затем вы используете кондиционер для охлаждения вашей комнаты, что тратит больше энергии».

История Источник:

Материалы предоставлены Университетом штата Юта . Примечание. Содержимое можно редактировать по стилю и длине.

,

Термогенератор своими руками - МозгоЧины

Специально 92 для mozgochiny.ru

В мире постоянно происходят различные катаклизмы. Мы не может от них защититься, но мы можем подготовиться к их последствиям. Землетрясение, наводнение, пожары вызывают перебои или отключение электричества. Чтобы себя защитить от его отсутствия предлагаю вашему вниманию статью о добыче электроэнергии с помощью тепла.

Шаг 1:

Отключения электроэнергии одна из главных проблем в современном мире. Многие люди беспокоятся о  последствиях молнии, сильного дождя и т. д., но забывают о более серьезных проблемах. Перебои с электричеством могут длиться от нескольких часов до нескольких недель. Попрощайтесь с телефоном, светом, обогревателем и со всеми электронными приборами и устройствами.

В качестве основы самоделки был выбран теплогенератор, который использует тепло для производства электроэнергии. Кроме самого зарядного устройства вы получаете:

  • Обогреватель;
  • Возможность приготовить пищу;
  • Освещение.

Альтернативным источником электроэнергии может быть солнце. Но солнечные панели всё ещё довольно дорогие, несмотря на то, что цены значительно снизились в последние годы. Кроме того, солнце светить не всё время. Что делать, если вы захотите подзарядить батарею после наступления темноты или когда небо затянуто тучами?

Динамо-машинка – это здорово, но для многих людей будет трудно всё время крутить рукоятку во время зарядки аккумуляторов.

Ветровой генератор – ветер дует не всегда и не везде. 😉

Шаг 2: Введение/материалы

Для изготовления поделки необходимо  использовать минимальный набор электронных компонентов ведь цель проекта – изготовление генератора в кратчайшие сроки в отсутствии доступа к благам цивилизации.

Ключевым компонентом всего проекта был модуль Пельтье. Этот небольшой 40×40 мм белый керамический квадрат творит волшебство. 🙂

Модуль напоминает структуру бутерброда: керамическая пластина, тонкая металлическая плёнка, полупроводник, тонкая металлическая плёнка, керамическая пластина. К двум проводам, которые выступают из модуля, подводится постоянное напряжение. В результате чего одна сторона становится более прохладной, а другая теплее, создавая при этом разность температур.

Однако если приложить разность температур к сторонам модуля то получим обратный результат, который известен, как эффект Зеебека. Этот принцип мы и будем использовать для получения электроэнергии.

Список деталей, которые необходимы для того, чтобы построить проект:

  • Элемент Пельтье;

  • Пружинные клеммы;

  • Батарейные блоки;
  • Аккумуляторы;
  • Большой радиатор охлаждения;
  • Медный провод;
  • Маленький пластиковый корпус;
  • Другие дополнительные материалы.

Шаг 3: Изготовление

Необходимо собрать цепь. При желании, вы можете создавать прототип схемы на макетной плате, прежде чем окончательно спаять все компоненты.

Чтобы прикрепить модуль к радиатору вырежем 25 мм отверстие в крышке банки. Затем отцентрируем его над отверстием и зажмём между радиатором и крышкой. Воспользуемся винтами и проволокой для надёжного крепления частей вместе. Оденем на провода термоусадку, чтобы оградить их от температурного воздействия. Для удобной переноски закрепим пружинные зажимы на коробке. После припаяем соответствующие провода и компоненты. Приклеим этикетки к пружинным клеммам в качестве инструкции  по подключению.

Модуль Пельтье вырабатывает электричество за счёт разности температур. Радиатор рассеивает тепло за счёт увеличения площади поверхности.

Далее, ток проходит диод Шоттки. Если диода не будет, то батарея будет отдавать всю накопленную энергию на модуль Пельтье.

Шаг 4: Воспользуемся печкой

Чтобы начать пользоваться самоделкой подключим красный провод к пружинному зажиму входного напряжения (отмеченного VIN), а чёрный провод в первый терминал (GND). Вставьте положительный провод аккумулятора в терминал напряжение (VOUT), а отрицательный провод в другую клемму заземления. Очень важно отметить полярность при подключении проводов. Поместите элемент Пельтье и радиатор над источником тепла крышкой вниз. Чтобы убедиться, что устройство работает правильно, перед зарядкой проверьте напряжение аккумуляторной батареи. Через некоторое время снова повторите измерения.

В качестве источника тепла используем печку, которая сделана своими руками. Она напоминает контейнер с вырезанным отверстием для подачи воздуха.

После испытаний были получены различные показания.

  • Источник тепла: печка с прямым пламенем.
  • Нагрузка: 1.2 вольт «D-образной» аккумуляторной батареи.
  • Температура воздуха (это влияет на перепад температур): — 10 градусов Цельсия.
  • Производительность: 2,2-3,2 В;
  • Сила тока: 350-400 мА;
  • Вт: 0.77-1.28 Вт.

Спасибо за внимание.

( Специально для МозгоЧинов #Fire-Power-Electricity-from-heat» target=»_blank»>)

Альтернативная энергетика для дома своими руками обзор лучших эко-технологий

Виды альтернативной энергетики

В зависимости от источника энергии, который в результате преобразования позволяет получать человеку электрическую и тепловую энергии, используемые в повседневной жизни, альтернативная энергетика классифицируется на несколько видов, определяющих способы ее генерации и типы установок служащих для этого.

Энергия солнца

Солнечная энергетика основана на преобразовании энергии солнца, в результате которого получается электрическая и тепловая энергии.

Получение электрической энергии основано на физических процессах, происходящих в полупроводниках под воздействием солнечных лучей, получение тепловой – на свойствах жидкостей и газов.

Для генерации электрической энергии комплектуются солнечные электростанции, основой которой служат солнечные батареи (панели), изготавливаемые на основе кристаллов кремния.

Основой тепловых установок — служат солнечные коллекторы, в которых энергия солнца преобразуется в тепловую энергию теплоносителя.

Мощность подобных установок зависит от количества и мощности отдельных устройств, входящих в состав тепловых и солнечных станций.

Энергия ветра

Ветровая энергетика основана на преобразовании кинетической энергии воздушных масс в электрическую энергию, используемую потребителями.

Основой ветровых установок служит ветровой генератор. Ветровые генераторы различаются по техническим параметрам, габаритным размерам и конструкции: с горизонтальной и вертикальной осью вращения, различным типом и количеством лопастей, а также по месту их расположения (наземное, морское и т.д.).

Сила воды

Гидроэнергетика основана на преобразовании кинетической энергии водных масс в электрическую энергию, которая также используемую человеком в своих целях.

К объектам данного вида относятся гидроэлектростанции различной мощности, устанавливаемых на реках и иных водных объектах. В таких установках, под воздействием естественного течения воды, или путем создания плотины, вода воздействует на лопасти турбины вырабатывающей электрический ток. Гидротурбина, является основой гидроэлектростанций.

Еще один способ получения электрической энергии путем преобразования энергии воды – это использование энергии приливов, посредством строительства приливных станций. Работа таких установок основана на использовании кинетической энергии морской воды в период приливов и отливов, происходящих в морях и океанах под воздействием объектов солнечной системы.

Тепло земли

Геотермальная энергетика, основана на преобразовании тепла, излучаемого поверхностью земли, как в местах выброса геотермальных вод (сейсмически опасные территории), так и в иных регионах нашей планеты.

Для использования геотермальных вод используются специальные установки, посредством которых внутреннее тепло земли преобразуется в тепловую и электрическую энергии.

Использования теплового насоса позволяет получать тепло из поверхности земли, вне зависимости от места его расположения. Его работа основана на свойствах жидкостей и газов, а также законах термодинамики.

Биотопливо

Виды биотоплива различаются по способам его получения, его агрегатному состоянию (жидкое, твердое, газообразное) и видам использования. Объединяющим все виды биотоплива показателем, служит то, что основой для их производства служат органические продукты, посредством переработки которых получается электрическая и тепловая энергии.

Твердые виды биотоплива — это дрова, топливные брикеты или пеллеты, газообразные – это биогаз и биоводород, а жидкие – биоэтанол, биометанол, биобутанол, диметиловый эфир и биодизель.

КОТЛЫ НА БИОТОПЛИВЕ – АЛЬТЕРНАТИВНЫЙ ИСТОЧНИК ОТОПЛЕНИЯ ЧАСТНОГО ДОМА И КВАРТИРЫ

Котлы на биотопливе – распространенные альтернативные источники энергии для частного дома, которые отличает высокое качество исполнения. Биотопливо в виде брикетов и пеллет из сырья растительного происхождения (опилки, стружка, отходы пиломатериалов, лузга подсолнечника) – альтернативное отопление, которое может служить идеальной заменой газовому отоплению в частном доме благодаря высокой теплоотдаче, которая может достигать 6-8 тыс. кКал/кг. Котел для биотоплива – универсальное отопительное устройство с высоким КПД, оснащенное автоматической системой управления, и может с успехом применяться и для отопления другими видами твердого топлива, в том числе углем, дровами, угольными брикетами.

Котлы на биотопливе, как альтернативные источники отопления частного дома, могут использоваться не только для отопления (одноконтурные котлы), но и обеспечивать горячее водоснабжение помещений – для этого можно приобрести двухконтурный котел или добавить к существующему устройству второй контур с бойлером соответствующего типа (проточный или накопительный). Несложное устройство котлов для биотоплива дает возможность обустроить альтернативное отопление дома своими руками, сэкономив, таким образом, часть средств семейного бюджета.

Ветровая энергия

Работа ветра используется человечеством достаточно давно – все парусные суда двигались благодаря его силе, ветряные мельницы благодаря ветру перемалывали зерно в муку.

Использованию потенциала ветра сегодня уделяется большое внимание – современные аналоги ветряных мельниц способны вырабатывать электро- и теплоэнергию в промышленных масштабах. Ветер – источник постоянной энергии, подаренный природой

Ветер – источник постоянной энергии, подаренный природой

Такой подъем в производстве ветрогенераторов стал возможен благодаря появлению новых композитных материалов. Их использование значительно увеличило мощность установок, использующих энергетику ветра, – более чем в 10 раз всего за последнее десятилетие.

Сегодня в России промышленно выпускают ветрогенераторы от самых компактных до огромных, существуют ветрогенераторы с вертикальной и горизонтальной осью вращения. Чтобы собрать для частного загородного дома самое простое устройство, достаточно иметь несколько магнитиков, проволоку и материал для лопастей.

Россия по использованию энергетического потенциала ветра находится на 56 месте в мире, уступая даже Люксембургу (в 3 раза больше мощность ветрогенераторов) и Кипру (в 5 раз больше мощность).  При том, что в России огромный потенциал энергии ветра, взять, к примеру, побережье Дальнего Востока.

Преимущества работы ветрогенераторов очевидны:

  • бесплатный источник неисчерпаемой энергии – ветер;
  • ветрогенератор работает постоянно, полученная энергия запасается на аккумуляторных батареях, т. е. имеется всегда;
  • экологическая чистота и бесшумность работы;
  • эффективность работы не зависит от температурного режима – может использоваться в северных широтах, где солнечные батареи малоэффективны;
  • производительность зимой возрастает, так как ветер зимой всегда сильнее;
  • стоимость оборудования для использования энергии ветра значительно ниже, чем у солнечных батарей, т.е. окупаются они значительно быстрее.

При использовании ветрогенератора, этого альтернативного источника энергии для частного дома, следует учитывать следующие правила:

  • для производительной работы установки необходим устойчивый (желательно сильный) ветер, открытое пространство;
  • ветрогенератору необходим профилактический уход – раз в год обязательно проводить техобслуживание согласно инструкции;
  • установка ветрогенераторов проводится на мачте значительной высоты – нужна высотная техника и специалисты по их установке, самостоятельно их монтировать не стоит.

Источники энергии для дома: фото

Кол-во блоков: 22 | Общее кол-во символов: 24523
Количество использованных доноров: 4
Информация по каждому донору:

  1. https://USamodelkina.ru/green-energy/: использовано 14 блоков из 15, кол-во символов 4416 (18%)
  2. https://akbinfo.ru/alternativa/alternativnaja-jenergija-gotovye-reshenija-svoimi-rukami.html: использовано 1 блоков из 2, кол-во символов 10560 (43%)
  3. https://220v.guru/vse-ob-elektroenergii/alternativnyy-istochnik-energii-dlya-chastnogo-doma.html: использовано 1 блоков из 4, кол-во символов 4210 (17%)
  4. https://sad24.ru/postrojki/sobiraem-alternativnyj-istochnik-energii.html: использовано 6 блоков из 8, кол-во символов 5337 (22%)

Отходы в доходы: биогазовые установки

Все альтернативные источники энергии имеют природное происхождение, но получать двойную выгоду можно только от биогазовых установок. В них перерабатываются отходы жизнедеятельности домашних животных и птицы. В результате получается некоторый объем газа, который после очищения и осушения можно использовать по прямому назначению. Оставшиеся переработанные отходы можно продать или использовать на полях для повышения урожайности — получается очень эффективное и безопасное удобрение.

Из навоза тоже можно получать энергию, только не в чистом виде, а в виде газа

Коротко о технологии

Образование газа происходит при брожении, и участвуют в этом бактерии, живущие в навозе. Для выработки биогаза подходят отходы любого скота и птицы, но оптимален навоз КРС. Его даже добавляют к остальным отходам для «закваски» — в нем содержатся именно нужные для переработки бактерии.

Для создания оптимальных условий необходима анаэробная среда — брожение должно проходить без доступа кислорода. Потому эффективные биореакторы — закрытые емкости. Чтобы процесс шел активнее, необходимо регулярное перемешивание массы. В промышленных установках для этого устанавливаются мешалки с электроприводами, в самодельных биогазовых установках это обычно механические устройства — от простейшей палки до механических мешалок, которые «работают» от силы рук.

Принципиальная схема биогазовых установок

В процессе образования газа из навоза участвуют два типа бактерий: мезофильные и термофильные. Мезофильные активны при температуре от +30°C до +40°C, термофильные — при +42°C до +53°C. Более эффективно работают термофильные бактерии. При идеальных условиях выработка газа с 1 литра полезной площади может достигать 4-4,5 литров газа. Но поддерживать в установке температуру в 50°C очень непросто и затратно, хотя затраты себя оправдывают.

Немного о конструкциях

Самая простая биогазовая установка — это бочка с крышкой и мешалкой. В крышке сделан вывод для подключения шланга, по которому газ поступает в резервуар. От такого объема много газа не получите, но на одну-две газовые горелки его хватит.

Более серьезные объемы можно получить от подземного или надземного бункера. Если речь о подземном бункере, то его делают из железобетона. Стенки от грунта отделяют слоем теплоизоляции, саму емкость можно разделить на несколько отсеков, в которых будет происходить переработка со сдвигом во времени. Так как работают в таких условиях обычно мезофильные культуры, весь процесс занимает от 12 до 30 дней (термофильные перерабатывают за 3 дня), потому сдвиг по времени желателен.

Схема бункерной биогазовой установки

Навоз поступает через бункер загрузки, с противоположной стороны делают люк выгрузки, откуда отбирают переработанное сырье. Заполняется бункер биосмесью не полностью  — порядка 15-20%  пространства остается свободным — тут скапливается газ. Для его отвода в крышку встраивается трубка, второй конец которой опускается в гидрозатвор — емкость частично заполненную водой. Таким образом газ осушается — в верхней части собирается уже очищенный, он отводится при помощи другой трубки и уже может подавиться к потребителю.

Использовать альтернативные источники энергии может каждый. Владельцам квартир осуществить это сложнее, а вот в частном доме можно хоть все идеи реализовать. Есть уже даже реальные примеры того. Люди обеспечивают полностью потребности свои и немалого хозяйства.

Электростанция на солнечных батареях

Установка солнечных панелей потребует:

  • Накопители, представляющие из себя фотоэлементы.
  • АКБ – для накопления заряда.
  • Контроллер, который позволит следить за аккумулятором.
  • Устройство для преобразования 12 или 24 В тока в 200 В.
  • Конструктивные и фиксирующие элементы.

Особенности установки на доме

Следует учесть, что угол наклона должен меняться. Зимой альтернативный солнечный накопитель следует переводить в положение с большим углом к горизонту. Делается это для того, чтобы на солнечном коллекторе не скапливался снег. Иначе это приведет к резкому уменьшению эффективности.

Выбирать следует участок крыши дома, которая обращена на южную, восточную или юго-восточную стороны света.

Солнечные коллекторы для нагрева воды

Для получения горячей воды и отопления в частном доме используют альтернативный коллектор, работающий от солнечного тепла. Принцип работы и устройство конструкции:

  1. Короб. Металлический прослужит дольше. Выполненный из плит ОСБ, ДВП, ДСП – более дешевый вариант, но его эксплуатации будет менее длительная. Для увеличения срока службы пропитывают плиту специальными септиками и лаками.
  2. На дно короба укладывается минеральная вата или пенопласт – они служат теплоизоляторами и предотвращают теплопотери.
  3. На плиту укладываются плотными рядами трубы. Лучший материал медь – обладает высокой теплопроводностью. Допускаются металлопластиковые варианты, но их энергоэффективность будет на 20% меньше медных.
  4. Входная часть и выходная снабжаются фиттингами. Они обеспечивают подключение к коммуникациям водоснабжения дома.
  5. Сверху короб закрывается стеклом. Можно также использовать акриловый материал или монолитный поликарбонат. Важный момент – поверхность должна быть не гладкой, а рифленой, для лучшего процесса нагрева. Солярное стекло обладает способностью устранять потери тепла. Оно обеспечивает меньшие энергопотери.

Далее вся альтернативная конструкция подключается к источнику воды, который будет циркулировать внутри помещения.

Солнечные панели собственноручного изготовления

Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза. Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.

Система солнечного электроснабжения: принцип работы

Понимание назначения каждого из элементов системы позволит представить ее работу в целом. Основные составляющие любой системы солнечного электроснабжения:

  • Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов. Их основная особенность состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Соответственно одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, что достаточно для зарядки 12-вольтовой аккумуляторной батареи.
  • Аккумуляторы. Одной батареи надолго не хватит, поэтому система может насчитывать до десятка таких устройств.  Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
  • Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
  • Инвертор. Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью  3-5 кВт.

Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.

Качественный контроллер и правильность подключения помогут как можно дольше сохранять работоспособность аккумуляторных батарей и автономность всей солнечной станции в целом

Виды альтернативных источников энергии.

Энергия ветра, солнца, воды, биотопливо, тепло Земли относительно неисчерпаемы и возобновимы. Преимущества альтернативных источников энергии неоспоримы, поскольку они сохраняют природные ресурсы. Кроме того, они в гораздо большей мере соответствуют требованиям экологической безопасности.

Ветровая энергетика.

Принцип использования силы ветра заключается в превращении кинетической энергии в электрическую, тепловую, механическую. Для получения электрической энергии используют ветровые генераторы. Они могут иметь различные технические параметры, размеры, конструкции, горизонтальную или вертикальную ось вращения. Паруса – классический пример использования силы ветра в морском транспорте, а ветряная мельница – преобразования в механическую энергию.

Диаметр лопастей и высота их расположения определяют мощность ветрогенератора. При силе ветра от 3 м/с генератор начинает вырабатывать ток и достигает максимальной величины при 15 м/с. Сила ветра свыше 25 м/с является критической – генератор отключается.

Гелиоэнергетика — дар Солнца.

Солнечная энергия как альтернативный источник энергии – естественное продолжение жизнетворящей миссии Солнца на нашей планете. Но пока человечество не научилось использовать ее напрямую. В настоящее время в качестве преобразователей солнечной энергии в электрическую применяют солнечные батареи, а для тепловой – солнечные коллекторы. Кроме того, в некоторых случаях используют совмещение двух видов.

Гелиотехнология заключается в нагреве поверхности солнечными лучами и в использовании нагретой воды для горячего водоснабжения, отопления или использования в паровых электрогенераторах. Для преобразования энергии солнца в тепловую используют солнечные коллекторы. Их общая мощность зависит от количества и мощности отдельных устройств, которые включены в систему солнечной или тепловой станции.

Солнечные батареи подразделяют на:

  • кремниевые
  • пленочные

Наибольшим спросом в настоящее время пользуются батареи с использованием кристаллов кремния, а самые удобные – пленочные. Кремниевые панели являются одним из лучших вариантов для частного дома.

ГЭС — использование силы воды.

Принцип действия турбин на гидроэлектростанциях заключается в воздействии силы воды на лопасти гидротурбины, которая вырабатывает электричество. Иногда к альтернативным видам энергии относят лишь те ГЭС, где не использованы мощные плотины, а выработка тока происходит под влиянием естественного течения воды. Это связано со значительным негативным воздействием мощных ГЭС на природные речные ландшафты, их обмелением и катастрофическими наводнениями.

Не вызывает возражений экологов использование естественной энергии морских и океанических приливов. Преобразование кинетической энергии в электрическую в этом случае происходит на специальных приливных станциях.

Геотермальная энергетика — тепло Земли.

Поверхность Земли излучает тепло не только в местах выброса горячих сейсмических источников, как, например, на Камчатке, но и практически во всех регионах планеты. Для извлечения тепла земли используют специальные тепловые насосы, а затем его преобразуют в электрическую энергию или используют как тепловую. Принцип действия установок базируется на законах термодинамики и физических законах поведения жидкостей и газа, в частности, фреона.

Тип конструкции насоса определяет первичный источник энергии, например, « грунт- воздух» или «грунт — вода».

Биотопливо.

Принцип получения биотоплива основан на переработке органических продуктов с помощью специальных установок. В ходе переработки вырабатывается тепловая или электрическая энергия. Виды биотоплива могут иметь жидкое, твердое или газообразное состояние. К твердым, например, относятся топливные брикеты, жидким – биоэтанол, к газообразным – биогаз. К его разновидностям относится свалочный газ, который образуется на свалках. Использование биогаза старых свалок помогает решить проблемы переработки отходов.

Как сэкономить на внедрении “зеленой энергетики”?

Проанализировав финансовую составляющую альтернативных видов отопления, можно прийти к неутешительному выводу – потребуются значительные средства на первоначальном этапе.

Вот спустя 3-7 лет, в зависимости от выбранного способа отопления, станет заметна существенная экономия благодаря энергонезависимой системе.


Выгодно и удобно использовать комбинированные источник альтернативного отопления. Для этого можно подобрать наиболее оптимальную комбинацию для своего дома

Сэкономить на использовании и установке альтернативных установок для выработки тепла можно. Многие домашние мастера с большим энтузиазмом подходят к созданию своими руками аналогов фабричным приборам преобразования альтернативной энергии.

Так, достаточно просто и недорого можно собрать гелиоустановку из шланга, которая послужит дополнительным источником нагрева воды.

Успешно собираются в домашних условиях небольшие ветряки из подручных средств. Также начитанные фермеры, проживающие в сельской местности, сооружают установки по преобразованию биологических отходов растительного и животного происхождения в биогаз.


Самодельные ветрогенераторы вполне работоспособны. Но для их сборки потребуется произвести предварительные расчеты, приобрести расходные материалы, потратить свое время

В дальнейшем он используется для потребностей хозяйства. В зависимости от размера резервуара для сбраживания отходов и площади частного дома, возможно полностью обеспечить хозяйство биогазом для удовлетворения всех нужд.

Виды альтернативного электричества

Всегда перед потребителем стоит выбор, основанный на вопросе, что лучше? И в этом плане подразумевается, во-первых, затраты на приобретение нового вида источника электричества, во-вторых, как долго этот прибор будет работать. То есть, будет ли это выгодно, окупится ли вся затея, а если окупится, то через какой промежуток времени? Скажем так, экономию денежных средств еще никто не отменял.

Как видите, вопросов и проблем и здесь хватает, потому что электричество своими руками – дело не только серьезное, но и достаточно затратное.

Электрогенератор

Начнем именно с этой установки, как с самой простой. Простота ее заключается в том, что вам необходимо приобрести электрогенератор, установить его в надежном закрытом помещении, которое будет соответствовать правилам пожарной безопасности. Далее, проводите подключение электрической сети частного дома к нему, заливаете жидкое топливо (бензин или солярку) и включаете. После чего в вашем доме появляется электричество, которое зависит лишь от наличия топлива в баке генератора. Если продумать автоматическую систему подачи топлива, то вы получаете маленькую тепловую электростанцию, которая от вас будет требовать минимального присутствия.

К тому же электрогенераторы – это надежные и удобные установки, которые работают практически вечно, если правильно их эксплуатировать. Но тут есть один момент. В настоящее время на рынке присутствует два вида генераторов:

Какой лучше? Скажем так, если вам требуется альтернативный источник энергии, который будет эксплуатироваться постоянно, тогда выбирайте дизельный. Если для временного использования, тогда бензиновый. И это еще не все. Дизельный электрогенератор имеет большие габаритные размеры, по сравнению с бензиновым, он сильно шумит при работе и выделяет огромное количество дыма и выхлопных газов. Плюс ко всему он дороже.

Появились недавно на рынке газовые генераторы, которые могут работать и от природного газа, и от сжиженного. Неплохой вариант, экологичный, не требующий специального помещения для установки. Можно к одному генератору подключить, к примеру, сразу несколько газовых баллонов, которые в автоматическом режиме будут подключаться к установке.

Альтернатива углеводородному топливу

Среди трех видов электрогенераторов газовый самый лучший и эффективный. Но стоимость топлива (жидкого или газообразного) – удовольствие не из дешевых, поэтому стоит задуматься над тем, что самостоятельно вырабатывать топливо, вкладывая в него минимум денежных средств. К примеру, биогаз, который можно получить из биомассы.

Кстати, альтернативные виды энергии, которые сегодня называются биологическими, могут заменить практически все альтернативные источники электроэнергии. К примеру:

  • Биогаз получается при помощи брожения навоза, птичьего помета, сельскохозяйственных отходов и так далее. Главное – установить оборудование, которое используется для улавливания метана.
  • Из мусора, к примеру, на свалках, добывается так называемый целлюлозный эталон. Или как его называют специалисты, свалочный газ.

Внимание! Ученые уже подсчитали, что если перерабатывать все свалки мира, то можно получить до 84 миллиардов литров свалочного топлива, которое можно использовать для получения электроэнергии. ИБГУ-1 — установка для получения биогаза

ИБГУ-1 — установка для получения биогаза

  • Из сои и рапса, а точнее, из их семян, вырабатываются жиры, из которых можно получить биосолярку.
  • Из свеклы, сахарного тростника, кукурузы можно изготавливать биоэталон (биобензин).
  • Ученые доказали, что с помощью обычных водорослей можно аккумулировать солнечную энергию.

То есть, существует большой ряд научных разработок, которые выдают альтернативные виды энергии. И многие из них уже получили практическое применение. К примеру, установка ИБГУ-1, с помощью которой из навоза можно получить в сутки до двенадцати кубометров биогаза. Отечественные фермеры по достоинству оценили труд ученых, поэтому это оборудование раскупается быстро.

Как сделать бесплатное электричество своими руками - Про дизайн и ремонт частного дома

Статическое электричество из воздуха на службе вашего быта

Дата публикации: 11 октября 2019

Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, и единственное, что имеет право на существование, это солнечные батареи и ветрогенераторы. Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздухе, знакомое практически каждому человеку, означает присутствие электроэнергии в пространстве в незначительном количестве. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.

Впервые попытку получить бесплатное электричество из воздуха своими руками предпринял знаменитый ученый-физик Никола Тесла. Он длительное время занимался исследованиями природы статического электричества и убедился в возможности его накопления. Более того, Тесла сумел создать прибор, «собирающий» статику из воздуха и хранящий накопленный заряд. К сожалению, это устройство не сохранилось, зато удалось восстановить и расшифровать рабочие записи и результаты исследований ученого. На их основе физикам удалось создать аналогичный прибор, способный получать электроэнергию из окружающей среды.

Опыты Тесла повторили многие специалисты и частные лица — любители из разных стран мира. Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получать электричество из воздуха как Тесла. В числе разработок – проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха стабильно подавал бесплатную энергию на подключенные устройства-потребители, не оказывая негативного влияния на их техническое состояние и работоспособность.

Электричество из воздуха: схемы, прошедшие проверку качества

Сегодня научные журналы и тематические сайты предлагают немало схем и чертежей для электричества из воздуха, пригодных для реализации в домашних условиях. Тем более что есть благоприятные условия для воплощения подобных замыслов. Разветвленная сеть линий электропередач дополнительно насыщает воздух ионами в огромном количестве. И остается только научиться аккумулировать рассеянную энергию и использовать ее для бытовых нужд.

Первый вариант – земля в качестве основания и металлическая пластина, играющая роль антенны. Здесь нет необходимости использовать накопительные или преобразовательные устройства. Энергетический потенциал между землей и антенной может увеличиваться по мере накопления заряда. Действие такой схемы аналогично действию молнии: при накоплении достаточного количества электричества возникает разряд и видимое искрение. Единственная сложность – предсказать его величину в следующий момент времени невозможно. А пустить для бытовых устройств крупный разряд – значит сжечь их в первую же секунду.

В числе достоинств предлагаемого решения:

  • Доступность реализации в домашних условиях;
  • Минимальную себестоимость благодаря отказу от покупки дорогостоящих устройств и дополнительных приборов. А металлическая пластина с токопроводящими свойствами легко найдется в запасах у любого домашнего мастера.

Однако в предложенном проекте есть и недостатки. О первом сказано выше: это невозможность рассчитать силу заряда хотя бы приблизительно. И еще один момент, касающийся вопросов безопасности: открытый контур способен притягивать грозовой разряд, убийственная мощность которого опасна для жизни.

Схема получения электричества из воздуха по проекту Стивена Марка

Генератор Стивена Марка также доступен для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которой предрекал большое будущее ее изобретатель. Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к появлению разряда сравнительно высокой мощности.

Схема получения электричества из воздуха выглядит следующим образом:

  • Основание прибора Марка – отрезок фанеры, резина или полиуретан, на которые будут уложены две коллекторные катушки и четыре катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.
  • Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
  • Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяют изолированный медный провод, который располагают по всей площади основания.
  • Устанавливается конденсатор на 10 микрофарад.
  • Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и прочие особенности конструкции.

Устройство готово к тестированию и первым пробным подключениям к маломощному энергозависимому устройству.

Несколько полезных советов по технике безопасности

  • Непредсказуемость статического электричества требует внимательного конструирования с учетом полярности, правильности подключения и изоляции устройства;
  • Испытания лучше проводить в помещении, откуда своевременно удалены легковоспламеняющиеся и взрывоопасные устройства.

Для тестирования лучше подобрать «ненужный» прибор, порча которого вследствие допущенных ошибок не принесет разочарования. И не поленитесь проверить готовый генератор несколько раз, прежде чем испытывать его работоспособность.

  • Новости альтернативной энергетики, 1-5 февраля 2015 года
  • Коста-Рика прожила 75 дней на возобновляемой энергии
  • В Европе разрабатывают хранилища тепла
  • Новости альтернативной энергетики от 2.02.2016

Вам нужно войти, чтобы оставить комментарий.

Бесплатное электричество: как получить электрический ток из земли и воздуха своими руками

Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.

Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.

Добыча из воздуха

Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.

В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.

Некоторые способы следующие:

  • грозовые батареи используют свойство электрического потенциала накапливаться;
  • ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
  • ионизатор (люстра Чижевского) — популярный бытовой прибор;
  • генератор TPU (тороидального) электричества Стивена Марка;
  • генератор Капанадзе — бестопливный энергетический источник.

Рассмотрим подробно некоторые из устройств.

Ветрогенераторы

Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.

[advice]Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.[/advice]

Грозовые батареи

Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.

Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.

[warning]Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.[/warning]

Тороидальный генератор С. Марка

Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.

Генератор TPU (тороидальный) может питать бытовые приборы.

Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.

Генератор Капанадзе

Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.

Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.

Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.

Добыча из Земли

Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.

Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.

Гальванический способ (с двумя стержнями)

Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).

Между стержнями из разных металлов в электролите появляется разность потенциалов.

Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.

От заземления

Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.

Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.

[advice]Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию.[/advice]

Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).

Другие способы

Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы. А именно: даром его могут дать самодельные пирамиды.

Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.

Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.

Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.

Однако, ведутся серьезные научные изыскания в области получения малого электричества из продуктов жизнедеятельности растений, переходящих в землю.

Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.

Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.

На практике своими руками жители районов с вулканической деятельностью могут самостоятельно сделать, например, геотермальный насос для отопления. А тепло известными способами можно превратить в электричество.

Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.

Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.

Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.

Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:

4 способа получить электричество из земли своими руками

Необходимость постоянного сжигания топлива для получения электроэнергии приводит к поискам способов удешевления этого процесса, а порой и создания теорий о возможности выработки халявного электричества. Подобные идеи не новы, их выдвигали еще знаменитые умы прошлого, стоявшие на заре зарождения массового использования электрических приборов.

Поэтому современные генераторы свободной энергии уже никого не удивляют, бесплатную электроэнергию предлагают получать самыми невероятными способами. Сегодня мы рассмотрим такой способ, как электричество из земли, насколько это реально и какие теории существуют в целом.

Мифы и реальность

Современная наука смогла доказать наличие собственного электромагнитного поля вокруг планеты. Оно не только создает естественные колебания в атмосфере Земли, но и призвано защищать все человечество от воздействия солнечного излучения, пыли и других мелких частиц, которые могли бы попасть из космоса. С теоретической точки зрения, если разместить один электрод на поверхности грунта, а второй поднять вверх на 500 м, то между ними получится разность потенциалов около 80 В. Если пропорционально увеличить расстояние до 1000 м, то и уровень напряжения должен увеличиться в два раза.

Однако на практике все получается далеко на так складно:

  • Во-первых, электроды должны иметь достаточно большую площадь, из-за чего они будут обладать парусностью и возникнут сложности с их массой и фиксацией на высоте.
  • Во-вторых, электромагнитное состояние поля земли непостоянно, поэтому оно во многом зависит от различных факторов и его распределение в пространстве также неравномерно.
  • В-третьих, верхний электрод будет главным претендентом на притяжение разрядов атмосферного электричества, что приведет к перенапряжению в генераторе.

Тем не менее, определенные опыты получения бесплатного электричества все же существуют, но их практическая реализация носит скорее экспериментальный, чем предметный характер.

Что можно попробовать сделать?

Но следует быть осторожным, так как некоторые из предложенных вариантов созданы исключительно в качестве коммерческой рекламы и не представляют пользы даже с теоретической точки зрения. Такие способы предназначены для продажи нерабочих устройств доверчивым соискателям бесплатного напряжения.

Однако, есть эксперименты, позволяющие извлечь электричество, пускай и относительно малого вольтажа. Среди существующих способов получения электричества из земли мы рассмотрим несколько действительно рабочих вариантов.

Схема по Белоусову

Название метода произошло от фамилии ученного, предложившего такой способ получения электричества из земли. Для этого используется двойное пассивное заземление без каких-либо активаторов, два конденсатора и катушки индуктивности. Схема Белоусова приведена на рисунке ниже:

Рис. 1. Схема получения электричества по Белоусову

Извлечение электричества из земли будет происходить по такому принципу:

  • Через цепь двух заземлений постоянно пропускаются высокочастотные разряды, присутствующие в грунте. Но их будет отсеивать индуктивная составляющая первой катушки схемы Тр.1.
  • Конденсаторы в схеме подключаются положительными пластинами друг к другу, важно соблюдать эту последовательность, иначе накопление электричества, как в единой емкости не произойдет.
  • Ко второй катушке подключается лампочка, которая при наличии электричества покажет, что вам удалось добывать ток. Это своеобразная нагрузка, которую вы можете заменить на любой прибор.

Из земли и нулевого провода

Этот способ получения электричества из земли основан на том, что нулевой проводник в системах с глухозаземленной нейтралью у частного потребителя имеет значительное удаление от контура подстанции или КТП. Изначально проверьте, существует ли разность потенциалов между нулевым проводом и контуром заземления. Как правило, вольтметр покажет разность потенциалов в 10 – 20В. Это не большая разность потенциалов, но ее также можно использовать. Тем более что его можно запросто повысить при помощи обычного трансформатора до нужного номинала.

Рис. 2. Между нулем и землей

Чтобы добывать электричество вам понадобится обзавестись собственным контуром заземления, если такового еще нет на вашем участке. Более детальную информацию о процессе изготовления вы можете почерпнуть из соответствующей статьи на сайте — https://www.asutpp.ru/kontur-zazemleniya.html. Заметьте, несмотря на использование системы центрального электроснабжения, приборы учета не будут принимать в учет это напряжение, поэтому его можно считать бесплатным.

Стержни из цинка и меди (гальванический способ)

В таком методе получения электричества из земли используется тот же способ, что и в обычной батарейке. Здесь источником электроэнергии выступает химическая реакция, которая возникает при взаимодействии металлических электродов с природным электролитом. Однако мощность этого природного генератора электричества и разность потенциалов будет зависеть от ряда факторов:

  • Габаритных размеров – длины, поперечного сечения и площади взаимодействия с грунтом. Чем больше площадь, тем большую добычу электричества можно осуществить таким методом.
  • Глубина расположения – чем глубже разместить электроды, тем больше электричества будет собираться по всей высоте металла.
  • Состав грунта – химическая составляющая любого электролита будет определять проводимость электрического тока, способность генерации электрического заряда и т.д. Поэтому наличие тех или иных солей, концентрации определенных элементов и станет основным отличием для естественного электролита на поверхности планеты.

Для практической реализации данного метода получения бесплатной энергии возьмите пару электродов из разных металлов, составляющих гальваническую пару. Наиболее популярным вариантом являются медь и цинк. Погрузите медный провод в грунт, а затем отступите от него на 25 – 30 см и погрузите в грунт цинковый электрод. Для лучшего эффекта землю между ними необходимо залить крепким раствором обычной пищевой соли.

Чтобы оценить результат эксперимента подождите минут 10 – 15, а затем подключите к выводам земляной батареи вольтметр. Как правило, вы получите напряжение от 1 до 3В, в зависимости от глубины залегания электродов и типа почвы показатели могут отличаться. Это конечно не много, но для питания светодиода или другого слаботочного прибора будет вполне достаточно. Со временем солевой раствор впитается и его действие начнет ослабевать, поэтому и ресурс электричества на выходе также снизится.

Если вы проделываете эти манипуляции для постоянного использования гальванического элемента, питающего какую-либо электрическую установку, то будет рациональным попробовать забивать электроды в разных местах на земельном участке. А после выбрать наиболее выгодный вариант. Если напряжения от пары штырей будет слишком малым, то нужно забить несколько и подключить их последовательно. Но помните, постоянное подливание растворенной соли сделает почву непригодной для выращивания сельскохозяйственных и декоративных культур.

Потенциал между крышей и землей

Такой метод получения электричества из земли возможен для домов с металлической крышей. Вам понадобится подключить один электрод к металлической пластине, которая представляет собой единую конструкцию или антенну. А второй подвести к проводу заземления, который соединяется с общим контуром, при его отсутствии можете просто вбить штырь в землю. Крыша здания обязательно должна быть изолирована от земли.

Рис. 4. Потенциал между крышей и землей

Чем большую площадь занимает металлическая антенна и чем выше она расположена, тем большее напряжение вы получите. Как правило, в частном секторе удается сгенерировать электричество в 1 – 2В, поэтому метод носит скорее экспериментальный, чем практический характер. Так как ни поднимать вверх, ни расширять площадь крыши ради нескольких вольт электричества будет нецелесообразным.

Выводы

Из рассмотренных выше методов видно, что в земле присутствует как огромные запасы статического электричества, так и большой потенциал других видов энергии, которую можно поставить на службу человеку. Для этого нет нужды сжигать топливо, однако не один из способов не дает возможности запитать мощный прибор.

Поэтому куда выгоднее в качестве альтернативных источников получения электричества использовать те же солнечные батареи или ветрогенераторы. Дальнейшее изучение методов генерации электричества из земли может принести более продуктивные результаты, но сегодня мы можем довольствоваться лишь энергией ради эксперимента.

Электричество на даче: откуда получить и как правильно распорядиться

Сегодня электричество в дачном доме уже не относится к излишествам: комфортный отдых и эффективный уход за участком сложно представить без соответствующего оборудования, так что задумываться об энергоснабжении рано или поздно придется.

Естественно, в этом процессе есть множество нюансов, и потому мы настоятельно рекомендуем вам ознакомиться с данной статьей. Конечно, все тонкости не раскроем, но общее представление о масштабах предстоящей работы вы получите.

Чтобы в загородном доме было тепло, светло и уютно, стоит позаботиться об энергоснабжении

Где взять?

Традиционные источники

Наиболее актуальным для владельцев загородных домов и дачных участков будет вопрос об источнике электричества (читайте также статью » GSM видеонаблюдение для дачи: присматриваем за участком в дистанционном режиме»).

И если ограничиваться лишь традиционными технологиями, то схем энергоснабжения можно выделить всего две:

Подключение к ЛЭП

  • Централизованное – участок «запитываем» от проходящей на относительно небольшом расстоянии линии электропередач.
  • Автономное – в качестве источника выступает генератор.

Рассмотрим оба варианта более подробно.

  • Если говорить об использовании централизованного энергоснабжения, то основным плюсом является достаточно высокая предоставляемая мощность. Так, в этом случае можно даже организовать обогрев дачи электричеством, не разорившись на топливе для генератора.

Присоединение к проводам на столбе

  • С другой стороны, сам процесс подключения к ЛЭП связан с весьма утомительными бюрократическими процедурами. Даже в том случае, если провода проложены сравнительно недалеко, на этапе согласования могут возникнуть проблемы.

Обратите внимание! Самовольное подключение к ЛЭП является правонарушением, и при обнаружении подобного факта вам придется заплатить немалый штраф. Также стоит помнить, что выполнять такие работы должны исключительно профессионалы с соответствующим уровнем допуска.

  • Аренда дизель — генератора для дачи или покупка такого устройства могут обеспечить вас энергией вне зависимости от расположения участка. Да, эта технология является более затратной с финансовой точки зрения, но так вы можете быть уверены, что свет в доме и на участке не пропадет даже во время непогоды (обрывы проводов, особенно в удаленных районах — не редкость).

Даже компактное устройство может обеспечить освещение целого дома

  • Еще один вариант автономного энергоснабжения – монтаж газового генератора. Конечно, цена прибора будет выше, чем у дизельной установки, да и обслуживать его могут только специалисты, но себестоимость киловатта энергии при этом получится существенно ниже.

В итоге оптимальная инструкция будет следующей: если есть возможность – подключаемся к линии электропередач и используем ее мощности, но на всякий случай устанавливаем в доме или сарае генератор с небольшим запасом топлива. Если возможности подключения нет – просто покупаем более производительный генератор, и проектируем электросеть участка с оглядкой на ограничения по производительности установки.

Альтернативные источники

Впрочем, современные технологии позволяют получить электричество на халяву для дачи. Под «халявой» в данном случае имеется полная или практически полная независимость от цен на энергоносители. Конечно, само альтернативное оборудование нужно приобретать, причем за довольно большие деньги, но со временем (от двух до пяти лет) оно окупается, и дальше работает «в плюс».

Фото крыльчатки ветряного генератора на крыше дома

Несколько наиболее эффективных технологий можно выделить, и их особенности мы свели в таблицу:

Методика Особенности выработки энергии
Геотермальная На участке пробуриваем скважину, в которую погружаем зонд с теплоносителем. Поскольку в глубине грунта температура практически постоянна, то при прохождении по зонду охлажденный теплоноситель будет отбирать часть грунтового тепла.

Извлеченная энергия может использоваться как для прямого обогрева дома, так и для выработки электричества.

Солнечная На крыше устанавливаются либо солнечные коллекторы из стеклянных трубок, заполненных теплоносителем, либо солнечные батареи.

Как и в случае с геотермальными установками, энергией солнца можно не только обогревать дом, но и питать инвертор для обеспечения электроснабжения.

Ветряная На крыше дома или на отдельной мачте устанавливаем ветряк, соединенный с генератором.

При вращении лопастей вырабатывается электричество, которое аккумулируется в батареях большой емкости и может быть использовано для решения самых разных задач.

Схема работы геотермального генератора

Впрочем, такое бесплатное энергоснабжение является достаточно капризным. Нет ветра или солнце зашло за тучи на целый день — и придется сидеть в темноте! Вот почему специалисты настоятельно рекомендуют комплектовать подобные установки емкими аккумуляторами, а в качестве резервного источника питания держать как минимум небольшой дизель-генератор.

Особенности монтажа электросети

Если с источниками все более-менее ясно, переходим к правилам обустройства самой электросети:

  • Монтаж проводки и электроприборов в дачном доме вполне можно выполнить и своими руками, а вот подключение к магистрали или генератору лучше доверить специалистам-электрикам.
  • На входе в дом обязательно устанавливаем щиток со счетчиком. Также каждую ветку проводов присоединяем к щитку через УЗО – автоматический размыкатель цепи. Использование таких предохранителей способно защитить систему от перепадов напряжения и коротких замыканий.

Совет! Если вы часто бываете в отъездах, то есть смысл обустроить дистанционное включение электричества на даче. Для этого в щитке монтируем специальный модуль с GSM-приемником, который активирует всю систему по сигналу с мобильного телефона. Особенно удобно использовать такой управляемый блок в зимнее время: к вашему приезду отопительные приборы как раз успеют прогреть воздух.

Для защиты от огня провода прокладываем в негорючих каналах

  • При использовании генераторов нужно тщательно рассчитывать мощность всех включаемых в сеть приборов. К примеру, обогрев дачного дома электричеством может потребовать установки отдельной генерирующей установки, иначе осенью и зимой придется выбирать: либо у нас работают батареи, либо светят лампочки.
  • Дачные дома из блок — контейнеров, каркасные конструкции и бревенчатые здания отличаются высокой горючестью. Чтобы снизить риск пожара, вся проводка должна прокладываться в негорючих, желательно металлических, коробах.

Правильное заземление — одно из условий безопасности

  • Весьма желательным является также заземление проводов. Для этого каждую ветку системы присоединяем к заземляющему контуру, выведенному наружу. Контур чаще всего представляет собой треугольник из стальных или омедненных стержней, вкопанных в землю и соединенных с домовой электросетью токопроводящим кабелем.

Вывод

Обеспечить электричество в доме и на даче – дело чести любого мастера. Благо, на сегодняшний день возможностей для этого более чем достаточно, и мы с легкостью сможем выбрать, что именно использовать в качестве источника энергии (см.также статью «Электричество на даче своими руками: от подготовки коммуникаций до выбора источника питания»).

Для более подробного ознакомления с данной темой рекомендуем вам просмотреть видео в этой статье: из него вы сможете почерпнуть несколько новых идей по электрификации вашего загородного дома.

Как добыть электричество из тепла без турбин

Попытки приспособить феномен термо-ЭДС для получения электричества предпринимались неоднократно. Соответствующие устройства, называемые термоэлектрическими конверторами, довольно активно разрабатывались в течение последних 50-ти лет и даже нашли свое применение в некоторых областях промышленности. Однако для массового производства электроэнергии они явно непригодны. Во-первых, КПД подобных преобразователей не поднимается выше 7%, в то время как у паровых турбин это показатель достигает 20%. А главное — эффективной термопаре требуются редкие металлы — висмут, теллурий, платина и др. Это обстоятельство делает термоэлектрические конверторы очень дорогими и весьма непрактичными устройствами.

Однако специалисты из Калифорнийского университета сумели получить эффект термо-ЭДС с помощью искусственно синтезированной органической молекулы, соединяющей два металлических проводника. По мнению ученых, это означает настоящий прорыв в преобразовании тепла в электричество: органика очень дешева и проста в производстве. В ходе экспериментов ученые соединяли пары золотых проводников через прослойки из трех различных органических соединений — бензен-дитиола, дибензен-дитиола и трибензен-дитиола. Затем один из проводников начинали нагревать для создания разницы в температурах. На каждый градус разницы исследователи регистрировали рост напряжения в 8,7 мкВ для первого, 12,9 мкВ для второго, и 14,2 мкВ для третьего соединения, соответственно. Максимальная разница температур, достигнутая в ходе тестов, составила всего 30О по Цельсию.

«Эти цифры могут показаться не слишком значительным, однако они вполне доказывают правильность нашей концепции. Органическое термоэлектричество сделало свой первый шаг," — заявил Прамод Редди (Pramod Reddy), один из участников исследования. В ближайшее время ученые намереваются протестировать ряд других органических соединений и металлов, чтобы добиться более выраженного эффекта термо-ЭДС.

Термоэлектрический генератор - конвертируем тепло в электричество термогенератором

Согласно мировой статистике, от общего числа выработанной электроэнергии, на ТЭС приходится более 60%. Как известно, для работы тепловых электростанций необходимо органическое топливо, запасы которого не бесконечны. Помимо того, положенный в основу техпроцесс не является экологически чистым. Но стоимость оргтоплива и высокий КПД ТЭС, позволяет получать «дешевое» электричество, что оправдывает применение данной технологии.Выход из сложившейся ситуации - альтернативные источники энергии, к таковой термоэлектрические генераторы (далее ТЭГ), о них и пойдет речь в этой статье.

Обогрев на дровах

Теплогенератор на дровах своими руками, обеспечит стабильный обогрев помещений при отсутствии централизованного отопления и достаточного количества древесного топлива. Как бы ни развивались технологии и строительные методы, дровяная печь, камин спасут при перебоях с теплоснабжением.

Для отопления на дровах осуществляется монтаж камина или традиционной печки.

Но такие системы требуют соблюдения норм безопасности. Важно определиться с местом установки печи - массивные агрегаты не всегда можно link в дачных домиках.

Сделать теплогенератор на дровах своими руками - это хорошее решение при необходимости автономного обогрева комнат. Иногда это действительно единственный возможный вариант отопления.

Устройство Потапова

Теплогенератор Потапова своими руками можно сделать с использованием следующих материалов:

- шлифовальная машина для углов; - сварочный прибор; - дрель и сверла; - накидные ключи на 12 и 13; - разные болты, гайки, шайбы; - металлические уголки; - краски и грунтовки.

Теплогенератор Потапова, своими руками сделанный, позволяет вырабатывать тепло на основе электрического двигателя с использованием насоса. Это очень экономичный вариант, изготовить который достаточно просто из обычных деталей. Двигатель выбирают в зависимости от существующего напряжения - 220 или 380 В.

С него начинают сборку, закрепляя на станине. Выполняется металлический каркас из угольника, сварка и болты, гайки позволяют закрепить всю конструкцию. Делаются отверстия для болтов, внутри размещается двигатель, каркас покрывают краской.Затем подбирают центробежный насос, который будет раскручиваться двигателем. Насосстанавливают на раме, однако в данном случае потребуется соединительная муфта с токарного станка, которую можно заказать на заводе. Важно утеплить генератор специальным кожухом из жестяных листов или алюминия.

Бесплатное электричество своими руками (видео)

Получение бесплатного электричества дело не такое уж и мудреное, как кажется. Из-за различных источников происхождения электроэнергии.Немного сноровки и у вас уже готова собственная мини-станция по выработке электричества.

Комментарии

0 Роман 27.12.2017 06:58 Вообще поговаривают, что за солнечными батареями будущее, мол они и будут давать людям энергию, когда иссякнут другие ресурсы, а так же ветровые генераторы позволят в ветряных местностях добывать электроэнергию.
Цитировать

0 Юля 11.12.2017 21:07 Идея с получением электричества довольно не плохая, но такого электричества не на что не хватит, мощность довольно небольшая, у меня даже идей нет, как можно его использовать.

Цитировать

Обновить список комментариев RSS ленты комментариев этой записи

Достоинства ТЭГ

Достоинства термоэлектрогенераторов:

  • выработка электричества происходит по замкнутой одноступенчатой ​​схеме без использования передающих систем и движущихся частей;
  • отсутствие рабочих жидкостей и газов;
  • отсутствие вредных веществ, бросового тепла и шумового загрязнения окружающей среды;
  • устройство длительного автономного функционирования;
  • использованного тепла (вторичные источники теплоты) с использованием цели экономии энергоресурсов
  • работа в любом положении объекта независимо от среды эксплуатации: космос, вода, земля;
  • выработка постоянного тока при малом напряжении;
  • невосприимчивость к короткому замыканию;
  • неограниченный срок хранения, 100% готовность к работе.

Роторный вихревой теплогенератор

В таком оборудовании роль статора отводится обычному центробежному насосу. Полый внутри и цилиндрический по форме, может быть представлен отрезком трубы с наличием стандартных двухсторонних фланцевых заглушек. Внутренняя структура ротора.

Вся поверхность ротора представлена ​​определенным просверленным глухих отверстий, размеры которых зависят от показателей мощности устройства.


Вихревой генератор

Промежуток от корпуса до вращающейся части должен быть настроен индивидуально, но, как правило, размеры пространства изменяются в пределах двух миллиметров.

Важно отметить, что характеристики роторного вихревого устройства примерно на 30% выше таких показателей статического теплового генератора, но этот тип оборудования нуждается в контроле состояния всех элементов, а также отличается достаточно шумной работой.

Как определить термоэдс металла

Термоэдс металла определяется по отношению к платине. Для этого термопара, одним из электродов, который является платиной (Pt), испытуемый металл нагревается до 100 градусов Цельсия. Полученное значение в милливольтах для некоторых металлов, показано ниже. Причем следует обратить внимание на то, что изменяется не только величина термоэдс, но и ее знак по отношению к платине.

Платина в этом случае играет такую ​​же роль, как 0 градусов на температурной шкале, а вся шкала величин термоэдс выглядит следующим образом:

  • Сурьма +4,7
  • Железо +1,6
  • Кадмий +0,9
  • Цинк +0,75
  • Медь +0,74
  • Золото +0,73
  • Серебро +0,71
  • Олово +0,41
  • Алюминий +0,38
  • Ртуть 0
  • Платина 0

Послеины идут металлы с отрицательной платой термоэдс:

  • Кобальт -1,54
  • Никель -1,64
  • Константан (сплав меди и никеля) -3,4
  • Вис -6,5

Пользуясь этой шкалой очень просто определить значение термоэдс развивающееся термопарой, составленной из различных металлов.Для этого достаточно подсчитать алгебраическую разность значений металлов, из которых изготовлены термоэлектроды. Например, для пары сурьма - висмут это значение будет +4,7 - (- 6,5) = 11,2 мВ. Если в качестве электродов использовать пару железо - алюминий, то это составит всего +1,6 - (+0,38) = 1,22 мВ, что меньше почти в десять раз, чем у первой пары.

Если холодный спай поддерживать в условиях постоянной температуры, например 0 градусов, то термоэдс горячего спая будет измена изменению температуры, и что используется в опарах.

Экономический вопрос

Прежде чем начать подробно разбираться, как сделать водородный генератор, желательно вспомнить школьный курс физики. Произведено сжигание энергии при сжигании получаемого топлива.

Если учесть, что сжигать водород с максимальной температурой и теплоотдачей в домашних условиях попросту невозможно, понятным, что реальные потери будут даже выше тех, что рассчитаны для идеальных условий.

Итак, использовать водородный генератор, сделанный для отопления своими руками, не имеет смысла, если у вас нет доступа к бесплатной электроэнергии. Установить для отопления дома электрический котел и тратить электроэнергию напрямую, без сложных преобразований, обойдется вам в 2-3 раза дешевле. Кроме того, электрокотел полностью безопасен, а эксплуатация кустарной установки грозит взрывом при несоблюдении правил монтажа и эксплуатации.

Очевидно, что получение дешевого водорода экологически чистым способом, к которому относится электролиз, - это вопрос будущего над которым работают сегодня ученые в передовых странах мира.

Сфера применения и виды термоэлектрических генераторов

В виду низкого КПД для ТЭГ остается два варианта применения:

  1. В местах, где недоступны другие источники энергии.
  2. В процессах, где имеется избыток тепла.

Приведем несколько примеров таких устройств.

Энергопечи

Данные, устройства, совмещающие в себе следующие функции:

  • Варочной поверхности.
  • Обогревателя.
  • Источника электроэнергии.

Это прекрасный образец, объединяющий все варианты применения.


Индигирка - три в одном

В представленной на рисунке энергопечи следующих параметров:

  • Вес - чуть больше 50 килограмм (без учета топлива).
  • Размеры: 65х43х54 см (с разобранным дымоходом).
  • Оптимальная загрузка оргтоплива - 30 литров. Допускается использование лиственной древесины, торфа, бурового (не каменного!) Угля.
  • Средняя тепловая мощность устройства около 4,5 кВт.
  • Мощность электронагрузки от 45-50 Вт.
  • Стабилизированное постоянное напряжение на выходе - 12 В.

Как видите, эти параметры вполне приемлемы для условий, где нет электричества, отопления и газа. Что касается небольшой электрической мощности, то ее вполне достаточно для зарядки мобильных устройств или питания других гаджетов, через адаптер от автомобильного прикуривателя.

Радиоизотопные ТЭГ

В качестве источника тепла для ТЭГ может выступать тепловая энергия, выделяющаяся в процессе распада нестабильных элементов.Такие источники называют радиоизотопными. Основное их преимущество заключается в том, что не требуется постоянная загрузка топлива. Недостаток - необходимость установки защиты от ионизирующего излучения, невозможность перезаправки топлива и необходимость утилизации.

Срок эксплуатации таких источников напрямую зависит от периода полураспада вещества текущего в качестве топлива. К последнему предъявляется следующий ряд требований:

  • Высокий коэффициент объемной активности, то есть небольшое количество средства обеспечения нужного уровня энергии.
  • Поддержка необходимого уровня мощности в течение длительного времени. На этот параметр отвечает, как было отмечено выше, влияет на полураспада, например, у стронция-90 он 29 лет, следовательно, период, через это время потеряет половину своей мощности.
  • Ионизирующее излучение должно быть завершено.
  • Необходимый уровень безопасности. То есть ионизирующее излучение не должно нанести вредных экологии (в случае эксплуатации на земле) и питающемуся от такого источника оборудованию.

Таким образом, отвечает изотопы кюрия-244, плутония-238 и упоминаввшийся выше стронций-90.

Сфера применения РИТЕГ

Несмотря на серьезные требования к таким источникам, сфера их применения довольно разнообразна, они используются как в космосе, так и на земле. Ниже на фото, изображен РИТЕГ, работающий на космическом аппарате Кассини. В качестве топлива использовался изотоп плутония-238. Период полураспада этого элемента чуть больше 87 лет. Под конец 20-ти летней мисси источник вырабатывал 650 Вт электроэнергии.


Радиоизотопное «сердце» Кассини

Кассини была приведена в качестве примера, а на счет массовости можно констатировать, что, практически, все КА для электропитания оборудования используют РИТЕГ. К сожалению, характеристики радиоизотопных источников энергии космических аппаратов, как правило, не публикуются.

На земле ситуация приблизительно такая же. Технология РИТЕГ как бы известна, но ее деталь к закрытой информации. Достоверно известно, что такие установки применяются в качестве источника питания навигационного оборудования в местности, где по техническим причинам невозможно обеспечить электроэнергию другим способом.То есть, речь идет о труднодоступных регионах.

К сожалению, такие источники не самая подходящая альтернатива ТЭС с экологической точки зрения.


РИТЕГ поднятый с 14-митровой глубины возле Сахалина

Преимущества самодельного теплопроизводства

В целом есть два типа устройств: статические и роторные. Если в первом варианте в основе конструкции есть сопло, то другие машины кавитацию с помощью ротора. Эти вихревые конструкции можно сравнить между собой и выбрать подходящий вариант для сборки.

Теплогенератор, сконструированный своими руками, поможет обеспечить комфортным температурным режимом загородный дом, дачу, отдельный коттедж, квартиру - при отсутствии централизованного отопления, его дефектах, перебоях или авариях.

Также подобные устройства позволяют компенсировать расходы на тепло, выбрать другой вариант энергоснабжения. Они несложны в конструкционном плане и экономичны, экологически безопасны.

Изготовление гидродинамического контура


Применяемый в тепловом генераторе гидродинамический контур представляет собой стандартное устройство, представленное:

  • манометром, установленном на выходном участке сопла и предназначенном для измерения давления;
  • термометром, необходимо для измерения температурных показателей на входе;
  • вентилем для эффективного удаления из системы воздуха;
  • вводным и выводным патрубками, оснащенными вентилями;
  • гильзой для температурного термометра на вход и выход;
  • манометром на входную часть сопла, предназначенного для измерения показателей давления на вход в систему.

Контур системы представлен трубопроводом, входная часть которого соединяется с выходной частью патрубка на насосном оборудовании, выходная часть - входной частью установленного насоса.

В трубопроводную систему обязательно вваривается сопло, а также основные элементы, представленные патрубками для подключения манометра, гильзами для температурного термометра, штуцером под вентиль для удаления воздушной пробки и штуцером для подключения отопительного контура.

Для подачи теплоносителя в контур системы используется нижний патрубок, а водоотвод осуществляется посредством верхнего патрубка. Вентиль, установленный на участке от входного до выходного патрубков, позволяет эффективно регулировать перепады давления.

Что представляет собой водород

Водород - это самое распространенное химическое вещество на нашей планете. Бесцветный газ, не нарушает токсинов, присутствует почти во всех соединениях. Вещество наделено уникальными свойствами. В твердом и жидком состоянии водород практически не имеет массы. Размер его самый маленький в сравнении с другими химическими элементами.

Вещество, полученное в результате смешивания водорода с окружающим воздухом, находясь в помещении, может взорваться. Для использования и хранения используются специальные баллоны, созданные из легированной стали.

Отзывы владельцев

На сегодняшний день большое количество владельцев домов уже выполнило собственные агрегаты.
Можно сделать теплогенератор своими руками, по признанным умельцев, можно действительно получить экономичный вариант для обогрева помещения.Делать эти агрегаты можно буквально из подручных материалов, что позволяет всем желающим обзавестись собственного тепла. Некоторые модели требуют наличия заводских деталей, которые можно изготовить на заказ в промышленных условиях.

Конструкция термогенератора

Как уже было сказано, термогенератор предназначался для использования в сельской местности, где для освещения использовались керосиновые лампы «молния». Такая лампа, оснащенная термогенератором, становилась не только источником света, но и электричества.При этом дополнительных затрат топлива не требовалось, ведь в электричество превращалась именно та часть керосина, которая просто улетала в трубу. К тому же, такой генератор был всегда готов к работе, конструкция его была такова, что ломаться в нем просто нечему. Генератор мог просто лежать без дела, работать без нагрузки, не боялся коротких замыканий. Срок генератора, по сравнению с гальваническими батареями, казался просто вечным.

Роль вытяжной трубы у керосиновой лампы «молния» играет удлиненная цилиндрическая часть стекла.При использовании лампы совместно с термогенератором стекло делалось укороченным, и в нем вставлялся металлический теплопередатчик 1, как показано на рис. 4.

Рис. 4. Керосиновая лампа с термоэлектрическим генератором

Внешняя часть теплопередатчика имеет форму многогранной призмы, на которой установлены термобатареи. Чтобы увеличить эффективность теплоотдачи теплопередатчик внутри нескольких продольных каналов. Проходя по этому каналм горячие газы уходили в вытяжную трубу 3, попутно нагревая термобатарею, точнее, ее горячие спаи.Для охлаждения холодных спаев использовался радиатор воздушного охлаждения. Он представляет собой металлические ребра, прикрепленные к внешним поверхностям блоков термобатарей.

Термогенератор - ТГК3 состоял из двух независимых секций. Одна из них вырабатывала напряжение 2В при токе нагрузки до 2А. Эта секция использовалась для получения анодного напряжения ламп с помощью вибропреобразователя. Другая секция при напряжении 1,2В и токе нагрузки 0,5А использовалась для питания нитей накала ламп.

Нетрудно подсчитать, что термогенератор имел мощность не превышающую 5 Ватт, но для приемника ее вполне хватало, что позволяло скрашивать долгие зимние вечера. Сейчас, конечно, это кажется просто смешным, но в те далекие времена такое устройство было, несомненно, чудом техники.

Бытовой термогенератор

Уже в послевоенные пятидесятые годы советская промышленность начала выпускать термогенератор ТГК - 3. Основное его назначение состояло в питании батарейных радиоприемников в не электрифицированной сельской местности.Мощность генератора составляла 3 Вт, что позволяет питать батарейные приемники, такие как «Тула», «Искра», «Таллин Б-2», «Родина - 47», «Родина - 52» и некоторые другие.

Внешний вид термогенератора ТГК-3 показан на рис. 3.

Рис. 3. Термогенератор ТГК-3

Можно ли получить электрический ток бесплатно

Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них.В настоящее время это стало реальностью.

Известны два метода: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получить даже мизерных его количеств.

Добыча из воздуха

Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.

В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применя сверхсложные устройства.

. Некоторые следующие способы:

  • грозовые батареи используют свойство электрического накапливаться;
  • ветрогенератор преобразовывает в электричество силу ветра, произведенное долгое время;
  • ионизатор (люстра Чижевского) - популярный бытовой прибор;
  • генератор TPU (тороидального) электричества Стивена Марка;
  • генератор Капанадзе - бестопливный энергетический источник.

Рассмотрим подробно некоторые из устройств.

Ветрогенераторы

Популярный и всеобще известный источник энергии, получаемой с помощью ветра - ветрогенератор. Подобные устройства давно применяются во многих странах.

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют поля с ветряными установками, абсолютно не наносящими вреда природе.

[совет] Стоит отметить: недостатком может считаться невозможность заранее определить величину напряжения и тока. [/ Advice]

Грозовые батареи

Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.

Схема устройства включает лишь антенну из металла и заземления, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному расчетному расчету и величина также непредсказуема.

[предупреждение] Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создаваемый контур притягивает молнии с напряжением до 2000 Вольт. [/ Предупреждение]

Тороидальный генератор С. Марка

Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.

Генератор ТПУ (тороидальный) может питать бытовые приборы.

Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.

Генератор Капанадзе

Изобретатель Капанадзе (Грузия) воспроизел генератор свободной энергии, на основе разработки которого лежал загадочный трансформатор Н.Тесла, дающий гораздо большую выходную мощность, чем в токе контура.

Генератор Капанадзе - бестопливное устройство, являющееся примером новых технологий.

Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется энергия, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически теория электричества и распространения волн, когда энергия передается от одной частицы среды к другому.

Добыча из Земли

Невзирая на то, что запасы Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.

Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.

Гальванический способ (с двумя стержнями)

естен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).

Между стержнями из разных металлов в электролите появляется разность потенциалов.

Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними соль (электролитом). Это способ получения некоторого количества бесплатного электричества.

От заземления

Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.

Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.

[совет] Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний.[/ Advice]

Количество электричества, взятое из нулевого провода, намного меньше, чем от солнечной батареи, если перепутать «фазовый» провод заземления с «нулевым», с которым можно получить энергию, токовый удар по всему зданию. ( От редакции: экспериментировать с данным методом опасно и категорически не рекомендуется).

Другие способы

Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы.А именно: даром его могут дать самодельные пирамиды.

Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть - пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.

Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее - дешевая) электрическая энергия, ток.

Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.

Однако, ведутся серьезные научные изыскания в области обучения малого бизнеса из продуктов жизнедеятельности растений, переходящих в землю.

Такие источники, д вечное электричество, то есть - работающие с восполнением энергии, используют в системах контроля за влажность.Судя по экспериментам на горшечных растениях, приборы можно делать и испытывать самостоятельно.

Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен электроэнергии также, как это делается посредством солнца и ветра.

На практике своими руками отрицательно действует насос, например, геотермальный насос для отопления.А тепло известными способами можно превратить в электричество.

Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышенных ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и используют энергию даже в значительных масштабах.

Изобретатели и ученые создают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра.Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.

Во всяком случае, человек не имеет права расширять этот запас энергии, не изучая процесс досконально с учетом последствий.

Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:

Оцените статью: Поделитесь с друзьями!

Термогенератор своими руками - МозгоЧины

Специально 92 для мозгочины.ру

В мире постоянно происходят различные катаклизмы. Мы не может от них защититься, но мы можем подготовиться к их последствиям. Землетрясение, наводнение, пожары вызывают перебои или отключение электричества. Чтобы себя защитить от его отсутствия предлагаю вашему вниманию статью о добыче электроэнергии с помощью тепла.

Шаг 1:

Отключения электроэнергии одна из главных проблем в современном мире.Многие люди беспокоятся о последствиях молнии, сильного дождя и т.д., но забывают о более серьезных проблемах. Перебои с электричеством может длиться от нескольких часов до нескольких недель. Попрощайтесь с телефоном, светом, обогревателем и со всеми электронными приборами и устройствами.

В качестве основы самоделки использует был выбран выбранный теплогенератор, который тепло для производства электроэнергии. Кроме самого зарядного устройства вы получаете:

  • Обогреватель;
  • Возможность приготовить пищу;
  • Освещение.

Альтернативным источником электроэнергии может быть солнце. Но солнечные панели всё ещё довольно дорогие, несмотря на то, что значительно снизились в последние годы. Кроме того, солнце светить не всё время. Что делать, если вы захотите подзарядить батарею после наступления темноты или когда небо затянуто тучами?

Динамо-машинка - это здорово, но для многих людей будет трудно всё время крутить рукоятку во время зарядки аккумуляторов.

Ветровой генератор - ветер дует не всегда и не везде.;-)

Шаг 2: Введение / материалы

Для изготовления . необходимо использовать минимальный набор электронных компонентов ведь цель проекта - изготовление генератора в кратчайшие сроки в отсутствии доступа к благам цивилизации.

Ключевым компонентом всего проекта был модуль Пельтье. Этот небольшой 40 × 40 мм белый керамический квадрат творит волшебство. 🙂

Модуль напоминает бутерброда: керамическая пластина, тонкая металлическая плёнка, полупроводник, тонкая металлическая плёнка, керамическая пластина.К двум проводам, которые выступают из модуля, подводится постоянное напряжение. В результате чего одна сторона становится более прохладной, а другая теплее, создавая при этом разность температур.

Однако если приложить разность температур к сторонам модуля то получим обратный результат, который известен, как эффект Зеебека. Этот принцип и будем использовать для получения электроэнергии.

Список деталей, которые необходимы для того, чтобы построить проект:

  • Элемент Пельтье;

  • Пружинные клеммы;

  • Батарейные блоки;
  • Аккумуляторы;
  • Большой радиатор охлаждения;
  • Медный провод;
  • Маленький пластиковый корпус;
  • Другие дополнительные материалы.

Шаг 3: Изготовление

Необходимо собрать цепь. При желании, вы можете создать прототип схемы на макетной плате, прежде чем окончательно спаять все компоненты.

Чтобы прикрепить модуль к радиатору вырежем 25 мм отверстие в крышке банки. Затем отцентрируем его над отверстием и зажмём между радиатором и крышкой. Воспользуемся винтами и проволокой для надёжного крепления частей вместе. Оденем на провода термоусадку, чтобы оградить их от температурного воздействия.Для удобной переноски закрепим пружинные зажимы на коробке. После припаяем соответствующие провода и компоненты. Приклеим этикетки к пружинным клеммам в качестве инструкции по подключению.

Модуль Пельтье вырабатывает электричество за счёт разности температур. Радиатор рассеивает тепло за счёт увеличения площади поверхности.

Далее, проходит ток диод Шоттки. Если диода не будет, то батарея будет отдавать всю накопленную энергию на модуль Пельтье.

Шаг 4: Воспользуемся печкой

Чтобы начать пользоваться самоделкой подключенный красный провод к пружинному зажиму входного напряжения (отмеченного VIN), чёрный провод в первом терминале (GND). Вставьте положительный провод аккумулятора в клемл напряжения (VOUT), отрицательный провод в клемму заземления. Очень важно отметить полярность при подключении проводов. Поместите элемент Пельтье и радиатор над теплообменником крышкой вниз.Чтобы убедиться, что устройство работает правильно, перед зарядкой проверьте напряжение аккумуляторной батареи. Через некоторое время снова измерения.

В качестве источника тепла использует печку, сделана своими руками . Она напоминает с вырезанным отверстием для подачи воздуха.

После испытаний были получены различные показания.

  • Источник тепла: печка с прямым пламенем.
  • Нагрузка: 1.2 вольт «D-образной» аккумуляторной батареи.
  • Температура воздуха (это влияет на перепад температур): - 10 градусов Цельсия.
  • Производительность: 2,2-3,2 В;
  • Сила тока: 350-400 мА;
  • Вт: 0,77–1,28 Вт.

Спасибо за внимание.

(Специально для МозгоЧинов # Fire-Power-Electricity-from-Heat »target =» _ blank »>)

Электричество из земли дома своими руками: как получить

Вопрос эффективности

Получение электричества из земли окутано мифами - в Интернет регулярно выкладываются материалы на тему использования бесплатной электроэнергии за счет использования неисчерпаемого преимущества электромагнитного поля планеты.Однако многочисленные установки используются для передачи сигналов из земли и электромоторы. Если бы получение электричества из земли было эффективно, атомная и гидроэнергетика давно ушли бы в прошлое.

Однако бесплатное электричество добыть из земной оболочки вполне реально и сделать это можно своими руками. Правда, полученного тока хватит только на светодиодную подсветку или на то, чтобы не торопясь подзарядить мобильное устройство.


Напряжение из магнитного поля Земли - возможно ли !?

Для получения тока из природной среды на постоянной основе (то есть, исключаем разряды молний), нам необходим проводник и разность потенциалов. Найти разность потенциалов всего в земле, объединяет все три среды - твердую, жидкую и газообразную. По своей структуре грунт представляет собой твердые частицы воды и пузырьки воздуха.

Важно знать, что элементарной системы измерений почвы является обладающий разной глинистостью потенциалов.Внешняя оболочка мицеллы накапливает отрицательный заряд, внутри нее формируется положительный. За счет того, что электроотрицательная оболочка мицеллы притягивает из окружающей среды ионы с положительным зарядом, в почве беспрерывно протекают электрохимические и электрические процессы. Этим почва выгодно отличается от водной и воздушной среды и дает возможность своими руками создать устройство для производительности электроэнергии.

Способы добычи энергии из земли

Не секрет, что легче всего добывать электричество из твердой и влажной среды.Самым популярным продуктом является почва, сочетающаяся с твердая, жидкая, и газообразная среда. Между мелкими минералами воды и пузырьки воздуха. К тому же в почве присутствует еще одна единица - мицелла (глинисто-гумусовый комплекс), которая является сложной системой с разницей потенциалов.

Если внешняя оболочка создает отрицательный заряд, то внутренняя - положительный. Мицеллы с отрицательным зарядом притягивают к верхним слоям ионы с положительным. В результате в почве постоянно происходят электрические и электрохимические процессы.

Учитывая тот факт, что в почве присутствуют электролиты и электричество, ее можно рассматривать не только как место для развития живых организмов и выращивания урожая, но и как компактную электростанцию. Большинство помещений концентрирует в эту оболочку внушительный потенциал, который предоставляется с помощью заземления.

В настоящее время используется 3 способ скорости энергии из почвы в домашних условиях. Первый заключается в таком алгоритме: нулевой провод - нагрузка - почва.Второй подразумевает использование цинкового и медного электрода, а третий задействует потенциал между крышей и землей.

В первом варианте напряжение в дом подается с помощью двух проводников: фазного и нулевого. Третий проводник, заземленный, напряжение от 10 до 20 В, чего вполне хватает для обслуживания нескольких лампочек.

Следующий способ базируется на получении энергии только из земли. Для этого нужно взять два стержня из токопроводящих материалов - один из цинка, а затем установить их в землю.Желательно использовать тот грунт, который находится в изолированном пространстве.

Найти промышленные устройства для получения электрики из земли проблематично, ведь их практически не продает. Но создать такое изобретение своими руками, следуя готовым схемам и чертежам, вполне реально.

Создавая прибор по добыче электроэнергии из воздуха, необходимо помнить об опасности, которая связана с риском принципа молнии. Чтобы избежать непредвиденных последствий, важно правильность подключения, полярность и прочие важные моменты.

Работы по изготовлению устройства для получения доступного электричества не требуют больших финансовых затрат или усилий. Достаточно подобрать простую схему и в точности выполнить пошаговому руководству.

Конечно же, сверхмощный прибор своими руками создать проблематично, так как он требует более сложных схем и может обойтись в кругленькую сумму. А вот что касается изготовления простых механизмов, то такую ​​задачу можно реализовать в домашних условиях.

В 1729 году мир узнал, что на земле существуют материалы (в основном это металлы), которые могут пропускать через себя ток.Эти материалы стали именоваться проводниками. Были найдены и другие вещества (например, янтарь, стекло, воск), которые не проводят ток которые стали именоваться изоляторами. Но применять электричество человечество смогло лишь в начале 17 века. Стало ясно, что ток может быть использован для получения тепла и света. Тогда же было установлено, что электричество - это поток небольших заряженных частиц - электронов. И каждый из них несет малый заряд энергии. Когда собирается много электронов, появляется заряд большим, вот тогда и появляется электрическое напряжение.Поэтому электричество может по проводам перемещаться на длинные расстояния.

Давайте рассмотрим одно занятное явление. Человек снимает свитер через голову и вдруг ни с того, ни сего раздается треск. Если можете раздеваться в темноте, то наблюдать, как этот треск сопровождается искрами. Это искрит и трещит одежда. Посмотрев внимательнее можно увидеть, что свитер прилегает к рубашке, которая еще была одета на тележки. Таким образом, между вещами возникает ток. Его проявление на разных предметах приводит не только к притяжению, но и к отталкиванию.Это и есть действие электричества. Выходит, что человек в нынешнее время не может и шагу ступить без электричества.

Способ с двумя электродами

Простейший получить в домашних условиях электроэнергию - использовать принцип, по которым устроены классические солевые батарейки, где примен гальваническая пара и электролит. При погружении стержней, выполненных из разных металлов, в соли, на их концах образует разность потенциалов.

Мощность такого гальванического элемента зависит от целого ряда факторов

, включая:

  • сечение и длину электродов;
  • глубину погружения электродов в электролит;
  • концентрацию солей в электролите и его температуру и т.д.

Чтобы получить электричество, требуется взять два электрода для гальванической пары - один из меди, второй из оцинкованного железа. Электроды погружают в грунт приблизительно на глубину в полметра, установив их на расстоянии около 25 см, относительно друга. Грунт между электродами следует хорошо пролить раствор соли. Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно построить, что система дает бесплатно ток около 3 В.


Добыча электричества с помощью 2-х стержней

Если провести ряд экспериментов на разных участках, выяснится, что показания вольтметра варьируются в зависимости от характеристик грунта и его размеров и глубины установки электродов.Для повышения эффективности рекомендуется ограничить при помощи куска трубы подходящего диаметра контура, куда будет заливаться солевой раствор.

Внимание! Требуется использовать насыщенный электролит, такая форма делает почву непривычной для роста растений.

Мифы и реальность

В просторах интернета есть большое количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электродвигатели и так далее. Еще больше есть различных текстовых материалов, подробно рассказывающих о земляных батареях.Подобной информации рекомендуется относиться слишком серьезно.

произведрев или прочитав эти материалы, вы действительно можете поверить в разные небылицы. Например, что электрическое или магнитное поле Земли содержит океан дармовой электроэнергии, получение которой довольно легко. Правда заключается в том, что запас энергии действительно огромен. Иначе никто бы уже не пользовался двигателем внутреннего сгорания, не обогревался природным газом и так далее.

Для справки.

Магнитное поле у ​​нашей планеты действительно и все живое от губительного воздействия разных частиц, идущих от Солнца. Силовые линии этого потока параллельно поверхности с запада на восток.

Если в соответствии с теорией провести некий виртуальный эксперимент, то можно убедиться, насколько непросто заполучить электричество из магнитного поля земли. Возьмем 2 металлических электрода, для чистоты эксперимента - в виде квадратных листов со 1 м.Один лист установим на поверхности земли перпендикулярно силовым линиям, а второй - поднимем на высоту 500 м и сориентируем его в пространстве таким же образом.

Теоретически между электродами возникнет разность потенциалов порядка 80 вольт. Тот же эффект будет наблюдаться. А теперь представьте такую ​​электростанцию ​​- в километр высотой, с огромной площадью поверхности электродов. Кроме того, станция должна противостоять ударам молний, ​​что обязательно будет бить именно по ней.Возможно, это реальность далекого будущего.

Тем не менее получить электричество от земли - вполне возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или немного зарядить сотовый телефон. Рассмотрим способы, позволяющие это сделать.

Способ с нулевым проводом

Напряжение в жилой дом подается с использованием двух проводников: один из них фаза, второй - нуль. Если дом оборудован качественным заземляющим контуром, в период интенсивного потребления электроэнергии часть тока уходит через заземление в грунт.Подключив к нулевому проводу и заземлению лампочку на 12 В, вы заставите ее светиться, поскольку между контактами нуля и «земли» напряжение может достигать 15 В. И этот ток электросчетчиком не фиксируется.


Добыча электричества с помощью нулевого провода

Схема, собранная по принципу ноль - потребитель энергии - земля, вполне рабочая. При желании для выравнивания колебаний можно использовать напряжение трансформатор. Недостатком является нестабильность появления электричества между нулем и заземлением - для этого требуется, чтобы дом потреблял много электроэнергии.

Обратите внимание! Данный способ добывать даровое электричество пригоден только в условиях частного домовладения. В квартирах нет надежного заземления, а использовать в этом качестве трубопроводы систем отопления или водоснабжения нельзя. Тем не менее, соединять схему заземления с фазой для электричества, так как заземляющая шина оказывается под напряжением 220 В, что смертельно опасно.

Несмотря на то, что такая система задействует для работы землю, ее нельзя отнести к источнику земной электроэнергии.Как добыть эту, используя электромагнитный потенциал планеты, остается открытым.

Энергия магнитного поля планеты

Земля представляет собой свой конденсатор сферической, на внутренней поверхности которой накапливается отрицательный заряд, а снаружи - положительный. Изолятором служит атмосфера - через нее электрический ток проходит, при этом разность потенциалов сохраняется. Утерянные заряды восполняются за счет магнитного поля, которое служит природным электрогенератором.

Как получить на практике электричество из земли? По сути, необходимо подключить к полюсу генератора и организовать надежное заземление.

Устройство, получающее электричество из природных ресурсов, должно состоять из следующих элементов

:

  • проводник;
  • заземляющий контур, к подключенному проводнику;
  • эмиттер (катушка Тесла, высоковольтный генератор, позволяющий электронам покидать проводник).


Схема получения электроэнергии
Верхняя точка конструкции, на которой расположен эмиттер, должна располагаться на такой высоте, чтобы за счет разницы потенциалов электрического поля планеты электроны поднимались по проводнику вверх. Эмиттер их будет освобождать из металла и в виде выпускать в атмосферу. Процесс будет продолжаться до тех пор, пока потенциал в верхних слоях атмосферы не станет вровень с электрическим полем планеты.

К цепи подключается потребитель энергии, причем чем эффективнее работает катушка Тесла, тем выше сила тока в цепи, тем больше (или мощнее) потребителей тока можно подключить к системе.

Так как электрическое поле окруженные заземленные проводники, к которым принадлежащие деревья, здания, различные высотные конструкции, в городскую черте верхняя часть системы должны располагаться выше всех объектов. Своими руками создать подобную конструкцию не реально.

Видео по теме:

Ветрогенераторы - электричество из энергии

А вот ветрогенератор сейчас ветра уже стала реальностью. Фактически такое устройство можно назвать потомком ветряной мельницы.Основная проблема получения электроэнергии таким способом - непостоянство ветра. Но там, где условия позволяют сейчас даже строятся электростанции, дающие неплохую отдачу буквально из движения воздуха.

Поиски новых источников энергии ведутся в современной науке постоянно. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.

Известны два метода: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли.Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получить даже мизерных его количеств.

Как сделать бесплатное электричество своими руками - Про дизайн и ремонт частного дома

Статическое электричество из воздуха в службе вашего быта

Дата публикации: 11 октября 2019

Получение электричества из воздуха может показаться чем-то из области фантастики. Действительно, на столь смелое заявление оппоненты могут возразить, что в окружающей среде нет мощного источника электрической энергии, что имеет право на существование, это солнечные батареи и ветрогенераторы.Однако их мнение не вполне соответствует действительности. Явление статического электричества в воздушном пространстве, знакомое практически каждому человеку. Научившись накапливать ее и использовать для работы бытовых энергозависимых приборов, человечество совершит прорыв в истории науки и заодно получит в свое распоряжение тысячи киловатт дешевых энергоресурсов с неисчерпаемым запасом.

Впервые попытка получить бесплатное электричество из воздуха своими руками предпринял знаменитый ученый-физик Никола Тесла.Он длительное время занимался исследованиями природы статического электричества и убедился в возможности его накопления. Более того, Тесла сумел создать прибор, «собирающий» статику из воздуха и хранящий накопленный заряд. К сожалению, это устройство не сохранилось, зато удалось восстановить и расшифровать рабочие записи и результаты исследований ученого. На их основе физикам удалось создать аналогичный прибор, способный получать электроэнергию из окружающей среды.

Опыты Тесла повторили многие специалисты и частные лица - любители из разных стран мира.Чьи-то опыты оказались бесплодными, но некоторым удалось приблизиться к ответу на вопрос, как получить электричество из воздуха как Тесла. В том числе разработок - проект изобретателя Стивена Марка. Сконструированный им тороидальный генератор способен накапливать и удерживать значительное количество энергии, которого вполне достаточно для питания слабых источников света и бытовой техники. Работая без дополнительной подзарядки в течение длительного времени, генератор электричества из воздуха, стабильно подавал энергию на подключенные устройства-пользователи, не оказывая негативного влияния на их техническое состояние и работоспособность.

Электричество из воздуха: схемы, прошедшие проверку качества

Сегодня приведены научные журналы и тематические сайты научные показания немало схем и чертежей для электричества из воздуха, пригодных для реализации в домашних условиях. Тем более что есть благоприятные условия для воплощения подобных замыслов. Разветвленная сеть линий электропередач насыщает воздух ионами в огромном количестве. И остается только научиться аккумулировать рассеянную энергию и использовать ее для бытовых нужд.

Первый вариант - земля в качестве основания и металлическая пластина, играющая роль антенны. Здесь нет необходимости использовать накопительные или преобразовательные устройства. Энергетический потенциал между землей и антенной может увеличиваться по мере накопления заряда. Действие такой схемы аналогично действию молнии: при накоплении достаточного количества электричества разряд и видимое искрение. Единственная способность - предсказать его сложить в следующий момент времени невозможно.А пустить для бытовых устройств крупный разряд - значит сжечь их в первую же секунду.

В числе достоинств предлагаемого решения:

.
  • Доступность реализации в домашних условиях;
  • Минимальная себестоимость благодаря отказу от покупки дорогостоящих устройств и дополнительных приборов. А металлическая пластина с токопроводящими свойствами легко найдется в запасах у любого домашнего мастера.

Однако в предложенном проекте есть и недостатки.О первом сказано выше: это невозможность рассчитать силу заряда хотя приблизительно. И еще один момент, касающийся вопросов безопасности: открытый контур способен притягивать грозовой разряд, мощная мощность которого опасна для жизни.

Схема получения электричества из воздуха по проекту Стивена Марка

Генератор Стивена Марка также доступна для реализации в бытовых условиях. Его работоспособность подтверждает патентование технологии, которая предрекал большое будущее ее изобретатель.Принцип прост: внутри кольцевой конструкции устройства токи и магнитные вихри резонируют, приводя к разряде сравнительно высокой мощности.

Схема получения электричества из воздуха следующим образом выглядит образом:

  • Основание прибора - отрезок фанеры, резина полиуретан, на которые будут уложены две коллекторные катушки и катушки управления. Последние должны соответствовать следующим параметрам: внутренний и наружный диаметр кольца соответственно 18 и 23 см, ширина 2,5 см, толщина 0,5 см.
  • Внутренняя коллекторная катушка наматывается с применением медного провода, в идеале намотка должна быть в три витка.
  • Управляющие катушки наматываются одножильными проводами плоской намоткой с зазором между витками не более 15 мм. Для монтажа последней катушки применяется изолированный медный провод, который работает по всей площади основания.
  • Устанавливается конденсатор на 10 микрофарад.
  • Выводы катушек соединяются. Для питания подбираются транзисторы, параметры которых учитывают тип проводов и особенности конструкции.

Устройство готово к тестированию и первым пробным подключением к маломощному энергозависимому устройству.

Несколько полезных советов по технике безопасности

  • Непредсказуемость статического электричества требует внимательного конструирования с учетом полярности, правильности подключения и изоляции устройства;
  • Испытания лучше проводить в помещении, откуда своевременно удаляются легковоспламеняющиеся и взрывоопасные устройства.

Для тестирования лучше подобрать «ненужный» прибор, порча системы допущенных ошибок не принесет разочарования. И не поленитесь проверить готовый генератор несколько раз, прежде чем испытывать его работоспособность.

  • Новости альтернативной энергетики, 1-5 февраля 2015 года
  • Коста-Рика прожила 75 дней на возобновляемой энергии
  • В Европе проектируют хранилища тепла
  • Новости альтернативной энергетики от 2.02.2016

Вам нужно войти, чтобы оставить комментарий.

Бесплатное электричество: как получить электрический ток из земли и воздуха своими руками

Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.

Известны два метода: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается.Иногда необходимо получить даже мизерных его количеств.

Добыча из воздуха

Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.

В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применя сверхсложные устройства.

Некоторые следующие способы:

  • грозовые батареи используют свойство электрического накапливаться;
  • ветрогенератор преобразовывает в электричество силу ветра, сделанное долгое время;
  • ионизатор (люстра Чижевского) - популярный бытовой прибор;
  • генератор TPU (тороидального) электричества Стивена Марка;
  • генератор Капанадзе - бестопливный энергетический источник.

Рассмотрим подробно некоторые из устройств.

Ветрогенераторы

Популярный и всеобще известный источник энергии, получаемой с помощью ветра - ветрогенератор. Подобные устройства давно применяются во многих странах.

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют поля с ветряными установками, абсолютно не наносящими вреда природе.

[совет] Стоит отметить: может считаться невозможность рассчитать заранее величину напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо. [/ Advice]

Грозовые батареи

Устройство, накапливающий потенциал с использованием атмосферных разрядов, называется грозовой батареей.

Схема устройства включает лишь антенну из металла и заземления, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному расчетному расчету и величина также непредсказуема.

[предупреждение] Важно знать: это свойство довольно опасно при реализации своими руками, так как создаваемый контур притягивает молнии с напряжением до 2000 Вольт. [/ Предупреждение]

Тороидальный генератор С. Марка

Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.

Генератор ТПУ (тороидальный) может питать бытовые приборы.

Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.

Генератор Капанадзе

Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н.Тесла, дающий гораздо большую выходную мощность, чем в токе контура.

Генератор Капанадзе - бестопливное устройство, являющееся примером новых технологий.

Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется энергия, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически теория электричества и распространения волн, когда энергия передается от одной частицы среды к другому.

Добыча из Земли

Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.

Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.

Гальванический способ (с двумя стержнями)

Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).

Между стержнями из разных металлов в электролите появляется разность потенциалов.

Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствор (электролитом). Это способ получения некоторого количества бесплатного электричества.

От заземления

Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.

Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.

[совет] Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний.Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить эту энергию, токовый удар придется по всему зданию. [/ Advice]

Количество электричества, взятое из нулевого провода, намного меньше чем от солнечной батареи. ( От редакции: экспериментировать с данным методом опасно и категорически не рекомендуется).

Другие способы

Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы.А именно: даром его могут дать самодельные пирамиды.

Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть - пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.

Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее - дешевая) электрическая энергия, ток.

Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.

Однако, ведутся серьезные научные изыскания в области малого электричества из продуктов жизнедеятельности растений, переходящих в землю.

Такие источники, дающие вечное электричество, то есть - работающие с восполнением энергии, используют в системе контроля за влажность.Судя по экспериментам на горшечных растениях, приборы можно делать и испытывать самостоятельно.

Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен электроэнергии также, как это делается посредством солнца и ветра.

На практике своими руками с вулканической деятельностью, например, геотермальный насос для отопления.А тепло известными способами можно превратить в электричество.

Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышенных ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и используют энергию даже в значительных масштабах.

Изобретатели и ученые создают проекты на основе токов в земной мантии, частиц частиц в виде солнечного ветра.Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.

Во всяком случае, человек не имеет права расширять этот запас энергии, не изучив процесс досконально с учетом последствий.

видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:

4 Способ получить электричество из земли своими руками

Необходимость постоянного сжигания топлива для выработки энергии приводит к поискам способов удешевления этого процесса, а порой и созданию энергии по выработке энергии халявного электричества.Подобные идеи не новы, их выдвигали еще знаменитые умы прошлого, стоявшие на заре зарождения массового использования электрических приборов.

Поэтому современные генераторы свободной энергии уже никого не удивляют, бесплатную электроэнергию вызывают самые невероятные методы. Сегодня мы рассмотрим такой способ, как электричество из земли, насколько это реально и какие теории существуют в целом.

Мифы и реальность

Современная наука смогла доказать наличие собственного электромагнитного поля вокруг планеты.Они не только создают естественные колебания в атмосфере Земли, но и предназначены для защиты всех человеческих воздействий от солнечного излучения, пыли и других частиц, которые могут попасть из космоса. С теоретической точки зрения, если ссылка на один электрод на поверхности грунта, а второй поднять вверх на 500 м, то между ними получится разность потенциалов около 80 В. Если неравномерно увеличить расстояние до 1000 м, то уровень напряжения должен увеличиться в два раза.

Однако практика все получается далеко на так складно:

  • Во-первых , электроды должны иметь достаточно большую площадь, из-за чего они должны быть получены массой и фиксацией на высоте.
  • Во-вторых, электромагнитное состояние поля земли непостоянно, поэтому оно зависит от различных факторов и его распределение в пространстве также неравномерно.
  • В-третьим, верхний электрод будет претендентом на притяжение разрядов атмосферного электричества, что приведет к перенапряжению в генераторе.

. Тем не менее, высококачественный опыты, опыты получения бесплатного электричества все же существуют, но их практическая реализация носит экспериментальный, чем предметный характер.

Что можно попробовать сделать?

следует быть осторожным, как некоторые из предложенных вариантов исключительно в коммерческой рекламе и не использовать пользы даже с теоретической точки зрения. Такие способы предназначены для продажи нерабочих устройств доверчивым соискателям бесплатного напряжения.

Однако, есть эксперименты, позволяющие извлечь электричество, пускай и относительно малого вольтажа. Среди способов получения электричества из земли мы рассмотрим несколько действительно рабочих вариантов.

Схема по Белоусову

Название метода произошло от фамилии ученного, предложившего такой способ получения электричества из земли. Для этого используется двойное пассивное заземление без каких-либо активаторов, два конденсатора и катушки индуктивности. Схема Белоусова приведена на рисунке ниже:

Рис. 1. Схема получения электричества по Белоусову

Извлечение электричества из земли будет происходить по такому принципу:

  • Через цепь двух заземлений постоянно пропускаются высокочастотные разряды, присутствующие в грунте.Но их будет отсеивать индуктивная составляющая первая катушки схемы Тр.1.
  • Конденсаторы в схеме подключаются положительными пластинами друг к другу, важно эту последовательность, иначе накопление электричества, как в единой системе не происходит.
  • Ко второй катушке подключается лампочка, которая при наличии электричества покажет, что вам удалось добывать ток. Это может своеобразная нагрузка, которую вы можете заменить на любой прибор.

Из земли и нулевого провода

Этот способ получения электричества из земли основан на том, что нулевой проводник в системе с глухозаземленной нейтралью у частного потребителя имеет значительное удаление от контура подстанции или КТП.Изначально проверьте, существует ли разность потенциалов между нулевым проводом и контуром заземления. Как правило, вольтметр покажет разность потенциалов в 10 - 20В. Это не большая разность потенциалов, но ее также можно использовать. Тем более что его можно запросто повысить при помощи обычного трансформатора до нужного номинала.

Рис. 2. Между нулем и землей

Чтобы добывать электричество вам понадобится обзавестись собственным контуром заземления, если такового еще нет на вашем участке.Более подробную информацию о процессе изготовления вы почерпнуть из статьи на сайте - https://www.asutpp.ru/kontur-zazemleniya.html. Заметьте, несмотря на использование системы центрального электроснабжения, приборы учета не будут принимать в учет это напряжение, поэтому его можно считать бесплатным.

Стержни из цинка и меди (гальванический способ)

В таком методе получения электричества из земли используется тот же способ, что и в обычной батарейке.Здесь устройство представляет собой химическую реакцию, которая возникает при взаимодействии металлических электродов с природным электролитом. Однако мощность этого природного генератора электричества и разность потенциалов будет зависеть от ряда факторов:

  • Габаритных размеров - длина, поперечного сечения и площади взаимодействия с грунтом. Чем больше площадь, тем большую добычу электричества можно осуществить таким методом.
  • Глубина расположения - чем глубже link электроды, тем больше электричества будет собираться по всей высоте металла.
  • Состав грунта - химическая составляющая электролита будет определять проводимость электрического тока, способность генерации электрического заряда и т.д. Поэтому наличие тех или других солей, источников элементов и станет отличием для естественного электролита на поверхности планеты.

Для практической реализации данного метода использование энергии возьмите пару электродов из разных металлов, составляющую гальваническую пару.Наиболее популярным прод медь и цинк. Погрузите медный провод в грунт, а затем отступите от него на 25 - 30 см и погрузите в грунт цинковый электрод. Для лучшего эффекта между ними необходимо залить крепким раствор обычной пищевой соли.

Чтобы оценить результат эксперимента подождите минут 10 - 15, а затем подключите к выводам земляной батареи вольтметр. Как правило, вы получаете показатели напряжения от 1 до 3В, в зависимости от глубины залегания электродов и типа почвы могут отличаться.Это конечно не много, но для питания светодиода или другого слаботочного прибора будет вполне достаточно. Со временем солевой раствор впитывается и его действие начало ослабевать, поэтому и ресурс электричества на выходе также снизится.

Если вы проделываете эти манипуляции для постоянного использования гальванического элемента, питающего какую-либо электрическую установку, то будет рациональным попробовать забивать электроды в разных местах на земельном участке. А после выбрать наиболее выгодный вариант.Если напряжение от пары штырей будет слишком малым, то нужно забить несколько и подключить их последовательно. Постоянное подливание растворенной соли почву непригодной для выращивания сельскохозяйственных и декоративных культур.

Потенциал между крышей и землей

Такой метод получения электричества из земли возможен для домов с металлической крышей. Вам понадобится подключить один электрод к металлической пластине, которая представляет собой единую конструкцию или антенну.А второй подвести к проводу заземления, который соединяется с общим контуром, при его отсутствии можно просто вбить штырь в землю. Крыша здания обязательно должна быть изолирована от земли.

Рис. 4. Потенциал между крышей и землей

Чем большая площадь занимает металлическая антенна, тем большее напряжение вы получите. Как правило, в частном секторе удается сгенерировать электричество в 1–2В, поэтому метод носит скорее экспериментальный, чем практический характер.Так как ни поднимать вверх, ни расширить площадь крыши ради нескольких вольт электричества будет нецелесообразным.

Выводы

Из рассмотренных выше методов видно, что в настоящее время присутствует как огромные запасы статического электричества, так и большой потенциал других видов энергии, который можно поставить на службу человеку. Для этого нет нужды сжигать топливо, однако один из способов не дает возможности запитать мощный прибор.

Поэтому куда выгоднее в качестве альтернативных источников получения электричества использовать те же солнечные батареи или ветрогенераторы.Дальнейшее изучение методов генерации электричества из земли может принести более продуктивные результаты, но сегодня мы довольствоваться лишь энергией ради эксперимента.

Электричество на даче: откуда получить и как правильно распорядиться

Сегодня электричество в дачном доме уже не относится к излишествам: комфортный отдых и эффективный уход за участком сложно представить без соответствующего оборудования, так что задумываться об энергоснабжении рано или поздно придется.

Естественно, в этом процессе есть набор нюансов, и потому мы рекомендуем вам ознакомиться с данной статьей. Общее представление о предстоящей работе вы получите.

Чтобы в загородном доме было тепло, светло и уютно, стоит позаботиться об энергоснабжении

Где взять?

Традиционные источники

Наиболее актуальным для владельцев загородных домов и дачных участков будет вопрос об источнике электричества (читайте также статью »GSM-видеонаблюдение для дачи: присматриваем за участком в дистанционном режиме»).

И если ограничивается лишь традиционными технологиями, то схем энергоснабжения можно выделить всего две:

Подключение к ЛЭП

  • Централизованное - участок «запитываем» от проходящей на относительно небольшом расстоянии линии электропередач.
  • Автономное - в качестве источника выступает генератор.

Рассмотрим оба варианта более подробно.

  • Если говорить об использовании централизованного энергоснабжения, то основной плюсом достаточно высокая предоставляемая мощность.Так, в этом случае можно даже организовать обогрев дачи электричеством, не разорившись на топливе для генератора.

Присоединение к проводам на столбе

  • С другой стороны, сам процесс подключения к ЛЭП связан с весьма утомительными бюрократическими процедурами. Даже в том случае, если провода проложены сравнительно недалеко.

Обратите внимание! Самовольное подключение к ЛЭП является правонарушением, и при обнаружении подобного факта вам заплатить немалый штраф.Также стоит помнить, что выполнять такие работы исключительно профессионалы с должным уровнем допуска.

  • Аренда дизель - генератора для дачи или покупка такого устройства могут обеспечить вас энергией вне зависимости от расположения участка. Да, эта технология является более затратной с финансовой точки зрения, но так вы можете быть уверены, что свет в доме и на участке не пропадет даже во время непогоды (обрывы проводов, особенно в удаленных районах - не редкость).

Даже компактное устройство может обеспечить освещение целого дома

  • Еще один вариант автономного энергоснабжения - монтаж газового генератора. Стоимость прибора будет выше, чем у дизельной установки, да и обслуживать его могут только специалисты, но себестоимость киловатта энергии при этом получится существенно ниже.

В итоге есть возможность - подключаем к линии электропередач и используем ее мощность, но на всякий случай установить в доме или сарае генератор с небольшим запасом топлива.Если возможности подключения нет - просто покупаем более производительный генератор, и проектируем электросеть участка с оглядкой на ограничения производительности установки.

Альтернативные источники

Впрочем, современные технологии позволяют получить электричество на халяву для дачи. Под «халявой» в данном случае имеется полная или практически полная независимость от цен на энергоносители. Оно, само альтернативное оборудование, нужно приобретать, причем за довольно большие деньги, но со временем (от двух до пяти лет) оно окупается, и дальше работает «в плюс».

Фото крыльчатки ветряного генератора на крыше дома

Несколько наиболее эффективных технологий можно использовать, и их особенности мы свели в таблицу:

Методика Особенности выработки энергии
Геотермальная На участке пробуриваем скважину, в которую погружаем зонд с теплоносителем. Температурный режим практически постоянная, температура при прохождении по зонду охлажденный теплоноситель будет отбирать часть грунтового тепла.

Извлеченная энергия одна как для обогрева дома, так и для выработки электричества.

Солнечная На крыше установлены либо солнечные коллекторы из стеклянных трубок, заполненные теплоносителем, либо солнечные батареи.

Как и в случае с геотермальными установками, энергией солнца можно не только обогревать дом, но и питать инвертор для обеспечения электроснабжения.

Ветряная На крыше дома или на отдельной мачте устанавливается ветряк, соединенный с генератором.

При вращении лопастей вырабатывается электричество, которое аккумулируется в батареях большой емкости и может быть использовано для решения самых разных задач.

Схема работы геотермального генератора

Впрочем, такое бесплатное энергоснабжение является достаточно капризным. Нет ветра или солнце зашло за тучи на целый день - и придется сидеть в темноте! Вот почему специалисты рекомендуют комплектовать держать установку емкими аккумуляторами, а в резервном источнике питания минимум как небольшой дизель-генератор.

Особенности монтажа электросети

Если с новыми людьми все более-менее ясно, переходим к правилам обустройства самой электросети:

  • Монтаж проводов и электроприборов в дачном доме вполне можно выполнить и своими руками, а вот подключение к магистрали или генератору лучше доверить специалистам-электрикам.
  • На входе в дом обязательно устанавливаем щиток со счетчиком. Также каждую ветку проводов присоединяем к щитку через УЗО - автоматический размыкатель цепи.Использование таких предохранителей способно защитить систему от перепадов напряжения и коротких замыканий.

Совет! Если вы часто бываете в отъездах, то есть смысл обустроить дистанционное включение электричества на даче. Для этого в щитке монтируем специальный модуль с GSM-приемником, который активирует всю систему по сигналу с мобильного телефона. Особенно удобно использовать такой управляемый блок в зимнее время: к вашему приезду отопительные приборы как раз успеют прогреть воздух.

Для защиты от огня провода прокладываем в негорючих каналах

  • При использовании генераторов нужно тщательно анализировать мощность всех включаемых в сеть приборов. К примеру, обогрев дачного дома электричеством может потребовать установки отдельной генерирующей установки, иначе осенью и зимой придется выбирать: либо у нас работают батареи, либо светят лампочки.
  • Дачные дома из блок - контейнеров, каркасные конструкции и бревенчатые здания отличаются высокой горючестью.Чтобы снизить риск пожара, вся проводка должна прокладываться в негорючих, желательно металлических, коробах.

Правильное заземление - одно из условий безопасности

  • Весь провод желательным является также заземлениеов. Для этой каждой ветку системы присоединяем к заземляющему контуру, выведенному наружу. Контур чаще всего представляет собой треугольник из стальных или омедненных стержней, вкопанных в землю и соединенных с домовой электросетью токопроводящим кабелем.

Вывод

Обеспечить электричество в доме и на даче - дело чести любого мастера. Может использоваться в качестве источника энергии (см.также статью «Электричество на даче своими руками: от коммуникаций до выбора источника питания»).

Для более подробного ознакомления с данной темой рекомендуем вам просмотреть вашего видео в этой статье: из него вы сможете почерпнуть несколько новых идей по электрификации загородного дома.

как дешево сделать систему электрообогрева своими руками

Давно уже прошли те времена, когда единственным способом обогрева частным домом дровяная печь. Современные технологии позволяют выбирать способ отопления из нынешних технологий, но специалисты в одном голосе утверждают, что в будущем именно электрическое отопление частного дома будет в приоритете. Всем известно, что запасы полезных ископаемых далеко не бесконечны и наступит время, когда от газа придется полностью отказаться и перейти на более чистый энергоноситель - электричество.

Электрические отопительные системы не имеют преимуществ, зачастую это единственный доступный способ обогрева.

Очень важно электрическое помещение еще на этапе постройки дома, так как в дальнейшем установка оборудования в уже готовое помещение может привести к необходимости переделки, и, как следствие, к дополнительным затратам. Точный тепловой расчет нужно делать с учетом норм СНиП. Несоблюдение этих требований к повышенным расходам на электроэнергию.

Плюсы и минусы обогрева дома электричеством

Электроотопление частного дома обладает преимуществами:

Простота и легкость установки

Для самостоятельного монтажа не потребуются дорогостоящий инструмент и специальные знания. Все оборудование имеет небольшие габариты, монтируется быстро и с минимальными затратами.

Все приборы легко транспортируются и переносятся в разные помещения. Отдельная котельная и дымоход также не потребуются.

Безопасность

Электрические системы не образуют угарных газов, продукты сгорания полностью отсутствуют. Вредные выбросы не выделяются даже при поломке или разборке системы.

Невысокие первоначальные затраты

Отсутствует необходимость подготовки проектной документации с приглашением специальных служб. Никакие разрешительные документы не нужны.

Надежность и бесшумность

Электрическое отопление не нуждается в регулярном сервисном обслуживании с привлечением специалистов.Все установки работают бесшумно, так как в системе отсутствуют вентилятор и циркуляционный насос.

Простота эксплуатации

В системе нет элементов, которые могли бы быстро выйти из строя. Нет необходимости постоянно следить за датчиком и уровнем топлива.

Блок управления системой.

Высокий уровень КПД

Позволяет быстро обогреть частный дом даже в самые сильные морозы. Электрическое отопление всегда оборудуется специальной системой, дающей возможность регулировать температуру в каждой отдельной комнате, что позволяет значительно сэкономить финансовые затраты в отопительный сезон.

Минусы работы

Главным недостатком электрическим считается отопления большой расход электроэнергии. В некоторых регионах цена на энергоносители достаточно высокая, поэтому такой способ может быть просто невыгодным.

Вторым недостатком считается энергозависимость. Если электричество по какой -либо причине будет отключено, обогрев помещения станет невозможен.

Использование генератора.

Третьим минусом можно считать электросеть, особенно это отрицательное значение.Приобретение собственного генератора снимает эту проблему, но увеличивает финансовые затраты.

Решили отапливать дом электричеством? Необходимо учесть состояние и мощность электропроводки. Для большого частного дома может понадобиться трехфазная электросеть. Потребуется точно узнать, какая мощность выделяется на дом и какую часть из выделенной мощности можно отдать на отопление.

Варианты электрического обогрева частного дома

.Электрическое отопление может работать напрямую, так и при помощи циркулирующего теплоносителя - антифриза, масла или воды.

Масляные радиаторы

Этот вид обогрева известен очень давно, и до сих пор он сохраняет свою популярность. Это мобильные агрегаты, часто на колесиках, работают напрямую от электрической розетки. КПД у таких приборов равен 100%, так как электрическая энергия переходит в тепловую напрямую, без каких-либо передающих устройств.

С помощью масляного радиатора можно обогреть небольшую комнату, но для целого дома такой способ конечно не пойдет.

Электроконвектор

Это довольно популярный и эффективный способ поддержки баланса в помещении, не сжигая при этом кислороде. Превосходные технические характеристики и диапазон мощностей позволяет использовать электроконвекторы для обогрева как маленькой комнаты, так и большого частного дома.

Основой конвектора выступает тэн - преобразователь электрической энергии в тепловую. Принцип работы основывается на конвекции воздуха.Холодный воздух заходит через прорези в нижней части нагревательного прибора, внутри устройства воздух нагревается от тэна и выходит через прорези в верхней части корпуса.

Сам нагревательный электроконвектор заключен в металлический кожух, который имеет эстетичный внешний вид и легко вписывается в любой интерьер. Конвектор может быть напольным, но чаще всего делается выбор в пользу настенного устройства. Работать конвектор может как отдельно, так и в системе, под контролем одного регулятора температуры.

Кондиционеры

Кондиционеры, работающие в режиме обогрева, тоже можно отнести к электрическим нагревательным приборам. Специалисты считают, что именно такое отопление - самое экономичное, так как затраты на электричество вполне покрываются покрытым теплом. К тому же расходы можно уменьшить за счет регулировки.

Но у такого вида отопления есть много недостатков и самый главный из них - техническая сложность обслуживания. К тому же кондиционеры имеют большую стоимость, а в случае поломки вызывают специалиста дополнительные финансовые расходы.

Инфракрасное отопление

Инфракрасное (пленочное) отопление можно назвать инновационным, но уверенно набирающим популярность способом отопления частного дома. Такое отопление - довольно экономичное в процессе использования, но дорогостоящее в плане стоимости оборудования и монтажа.

Принцип действия инфракрасного отопления заключается в следующем: тепло, исходящее от нагревательного элемента, с помощью обогревателя равномерно излучается на близлежащих предметов, а те, в свою очередь, отдают тепло воздуху.

Инфракрасные обогреватели потребляют мало энергии и позволяют избежать нерационального распределения температуры, так как можно выполнять зональный, так и точечный обогрев. После выключения оборудования предметы еще долго сохраняют и отдают тепло. Монтаж и демонтаж оборудования очень прост и легко выполняется самостоятельно.

Расположение обогревателей ограничивается только фантазией. Они могут располагаться на полу, за вешалкой, на потолке, но только не на уровне головы человека.

Следует помнить, что ИК-излучатели нагревают твердые предметы.

Система «теплый пол»

Такая система может служить основным видом отопления, так и дополнительным. Принцип работы системы заключается в том, что тепло от подогреваемого пола распространяется до потолка. Нагревательные секции состоят из одножильного или двужильного кабеля, укрытого сверху напольным покрытием. Терморегулятор может быть встроенным, накладным или программируемым.

К плюсам такого способа можно отнести долгий срок службы - до 80 лет, а также простоту в обслуживании и экологичности.

Но теплый пол неустойчив к механическим повреждениям и ремонт такой сопровождается демонтажем напольного покрытия, что ведет к дополнительным финансовым затратам. Для того чтобы определить место повреждения кабеля, потребуется специальная аппаратура.

При наличии базовых и навыков система «теплый дом» вполне можно сделать своими руками.

Инфракрасный теплый пол

Обогрев дома электриче при помощи инфракрасного теплого пола можно оценить как экономичное и достаточно эффективным, но малораспространенное средство.

Инфракрасный теплый пол не боится перепадов электроэнергии и не выходит из строя даже при частичном повреждении. Устраивать оборудование можно под любое напольное покрытие, кроме паркета.

Инфракрасные лучи способны нагревать исключительно твердые предметы, поэтому, прогревая пол, элемент не нагревается.Напольное покрытие отдает свое тепло воздуху, который посредством конвекции распространяется по всему помещению.

Имея элементарные навыки работы с электричеством, смонтировать и подключить такой пол своими руками не будет никакого труда.

Отопление электрический котлом

Отопление электричеством частным домом чаще всего осуществляется при помощи электрического котла, в котором нагревается жидкий теплоноситель. Стоят электрические котлы относительно дешево, монтаж своими руками не представляет никаких трудностей.

Электрические котлы по способу делятся на три типа:

  • тэновые;
  • электродные;
  • индукционные.

Тэновый электрический котел можно отнести к традиционным, в них жидкость нагревается всем привычным тэном. Тэн нагревается от электричества, отдает свое тепло теплоносителю, который, в свою очередь, по системе трубопроводов разносит его по установленным в комнатах радиаторам.

Элементы системы.

Котел прост в инструкции, снабжен терморегулятором, способным поддерживать заданную температуру.Потребляемую мощность можно регулировать при помощи определенного количества тэнов.

К минусам тэнового котла можно отнести накипливаемую накипь на нагревательном элементе, что может быстро вывести котел из строя, особенно, если вода жесткая. Поэтому иногда придется использовать различные средства против извести.

Электродный котел

Электродный электрический котел вместо тэна снабжен электродом, который воздействует на свободные ионы в воде, в результате чего появляется тепло.Такая конструкция уникальна по своей безопасности, так как совершенно невосприимчива к утечке теплоносителя. При отсутствии воды прибор просто перестает работать.

Такой способ передачи теплоносителя не провоцирует типичный известковый налет, но электроды имеют свойство постепенно разрушаться. К тому же, в качестве теплоносителя может быть только вода - незамерзающую жидкость использовать нельзя. Сама вода должна иметь удельное сопротивление определенного значения, измерять самостоятельно довольно затруднительно.

«Внутренности» индукционного котла.

Индукционный электрический котел, состоящий из излучателя и трубопровода, по которому циркулирует теплоноситель. Излучатель вырабатывает электромагнитное поле, которое взаимодействует с металлом. Электричество вихихревые потоки, которые, в свою очередь, передают энергию теплоносителю. Нагревательный элемент отсутствует.

Индукционный котел прост в эксплуатации и обслуживании, не содержит быстроизнашивающихся элементов, накипь в нем образуется в минимальных количествах, эффективен для отопления больших помещений.Теплоносителем может выступать масло, вода или антифриз.

Сделать индукционный котел своими руками несложно, по стоимости это выйдет намного дешевле покупного.

Существенным минусом можно считать большие габариты и большую цену за с тэновыми и электродными котлами. К тому же, в случае механического повреждения целостности контура, котел выйдет из строя из-за опасного повышения температуры. В этом прибор должен поставляться датчик, отключающим котел при отсутствии в нем воды.

Заключение

Были рассмотрены практически все популярные способы отопления загородного дома электричеством. Достоинств у каждого типа много - это и отсутствие необходимости в запасе топлива, экологичность, безопасность, бесшумность и простота эксплуатации. Учитывая, что электричество на данный момент стоит недешево, ждать особого экономического эффекта не приходится. Поэтому стоит особое внимание уделить утеплению частному дому, чтобы свести теплопотери к минимуму.

Как добыть электричество из тепла без турбин

Попытки приспособить феномен термо-ЭДС для получения электричества предпринимались неоднократно.Соответствующие устройства, называемые термоэлектрическими конверторами, довольно активно используются в течение последних 50-ти лет и даже свое применение в некоторых областях промышленности. Однако для массового производства электроэнергии они явно непригодны. Во-первых, КПД подобных преобразователей не поднимается выше 7%, в то время как у паровых турбин это показатель достигает 20%. А главное - эффективной термопаре требуются редкие металлы - висмут, теллурий, платина и др. Это обстоятельство делает термоэлектрические конверторы очень дорогими и весьма непрактичными устройствами.

Однако специалисты из Калифорнийского университета сумели получить эффект термо-ЭДС с помощью искусственно синтезированной органической молекулы, соединяющей два металлических проводника. По мнению ученых, это означает настоящий прорыв в преобразовании тепла в электричество: органика очень дешева и проста в производстве. В ходе экспериментов ученых соединяли пары золотых проводников через трех различных соединений - бензен-дитиола, дибензен-дитиола и трибензен-дитиола.Затем один из проводников начинали нагревать для создания разницы в температуре. На каждый градус разницы исследователи регистрировали рост напряжения в 8,7 мкВ для первого, 12,9 мкВ для второго, и 14,2 мкВ для третьего соединения, соответственно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *