Частотный регулятор для асинхронного двигателя своими руками: Самодельный частотник. Разрабатываем преобразователь вместе

Содержание

Частотный преобразователь своими руками - RadioRadar

Частотный преобразователь применяется для того, чтобы из одной фазы получить три. Трехфазное питание используется, в основном, в промышленности. Однако и в бытовых ситуациях потребуется управление, например, трехфазным асинхронным двигателем. На этот случай вполне можно обойтись самостоятельным изготовлением частотника, что позволит использовать устройство с минимальными потерями мощности.

Существует много схем, которые дают возможность запустить трехфазный двигатель. Но, часть из них не предусматривает плавного включения или выключения, или же создают дополнительные неудобства, которые не дадут использовать двигатель полноценно. Исходя из этого, и были изобретены частотные преобразователи. Они позволяют полностью контролировать работу двигателя, при экономичном расходе электроэнергии и безопасности эксплуатации.

Рис. 1. Схема запуска трехфазного двигателя

Составляющие частотного преобразователя

Для наглядности, схему можно разбить на три составляющих или три взаимосвязанных блока:

1. Выпрямитель.

2. Фильтр, предназначение которого есть сглаживание напряжения на выходе.

3. Инвертор, который собственно и отвечает за производство необходимой частоты.

Его использование дает значительное уменьшение пускового тока, при включении оборудования, что существенно продлевает эксплуатационный срок двигателя и устройства, где данный двигатель используется. Естественно, что избавившись таким образом от высоких показаний пускового тока, удается и сэкономить электроэнергию, которая уходила ранее при запуске оборудования. А это особенно актуально в условиях, где предусмотрены частые запуски и остановки устройств.

Рис. 2. Составляющие частотного преобразователя

 

Современные покупные инверторы широко используются в таких сферах, как производство, водоснабжение, энергетика, сельское и городское хозяйства, в электронике, и в автоматических линиях и комплексах.

Стоимость фирменного частотного преобразователя слишком высока, для того, чтобы изучить его процессы работы или использовать в быту или домашней мастерской. Поэтому часто используются в таких ситуациях самодельные частотники.

 

Сборка устройства

Стоит обратить внимание на то, что в домашних условиях крайне не рекомендуется использование двигателей, рассчитанных на мощность большую, чем 1 кВт. Таковы особенности домашней сети. 

Имея необходимый двигатель, потребуется для начала соединить его обмотки между собой способом "треугольник".

Рис. 3. Трёхфазный двигатель

 

Рис. 4. Соединение треугольник

 

Рис. 5. Соединение треугольник

 

 

Схема самого частотного преобразователя.

Рис. 6. Схема частотного преобразователя

 

Питание осуществляется от блока питания 27 Вольт постоянного напряжения. Это может быть, как регулируемый БП, так и сделанный собственноручно, рассчитанный на данное напряжение. Схема подключения двигателя;

Рис. 7. Схема подключения двигателя

 

Схема простая и проверенная и не содержит компонентов, которые сложно будет купить. Но, к сожалению, не лишена недостатков и годится для применения лишь в быту.
Более сложная в сборке схема, но и более результативная представлена ниже.

Рис. 8. Схема подключения двигателя

 

На данный момент это самая обсуждаемая схема частотного преобразователя, который можно сделать собственноручно. Прошивки микроконтроллера изобилуют на тематических форумах. Потребуется не только умение грамотно паять, но и прошивать микроконтроллеры.

Печатная плата.

Рис. 9. Печатная плата

 

Потребуется надежный источник питания на 24 Вольта. Предлагается его также изготовить собственноручно по схеме.
 

Рис. 10. Схема источника питания

 

Естественно, что устройство можно приобрести и готовым. Они бывают фирменными или сделанными народными мастерами, которые обладают положительными рекомендациями.

Автор: RadioRadar

Простой преобразователь частоты для асинхронного электродвигателя.

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Простой преобразователь частоты для асинхронного электродвигателя.

Итак коль уж асинхронный двигатель так распространён и трехфазная система напряжения созданная М. О. Доливо-Добровольским так удобна.  А  современная элементная база так хороша. То сделать преобразователь частоты –это лишь вопрос личного желания и некоторых финансовых возможностей.  Возможно кто  то скажет « Ну, зачем мне инвертор , я поставлю фазосдвигающий  конденсатор и все решено» . Но при этом обороты не покрутишь и в мощности потеряешь и потом это не интересно.

Возьмём за основу – в быту есть однофазная  сеть 220в, народный размер двигателя до 1 кВт.  Значить соединяем обмотки двигателя треугольником.  Дальше –проще, понадобится драйвер трехфазного моста IR2135(IR2133) выбираем  такой потому, что он применяется в промышленной технике имеет вывод  SD и удобное расположение выводов. Подойдёт и IR2132 , но у неё dead time больше и выхода SD нет. В качестве генератора PWM выберем микроконтроллер AT90SPWM3B  - доступен, всем понятен, имеет массу возможностей и недорого стоит, есть  простой программатор   -https://real. kiev.ua/avreal/. Силовые транзисторы  6 штук IRG4BC30W выберем с некоторым запасом по току  - пусковые токи АД могут превышать номинальные в 5-6 раз. И пока  не ставим "тормозной"  ключ и резистор, будем тормозить и намагничивать перед пуском  ротор постоянным током, но об этом позже .... Весь процесс работы отображается на 2-х строчном ЖКИ индикаторе.  Для управления достаточно 6 кнопок (частота +, частота -, пуск, стоп, реверс, меню).

Получилась вот такая схема.

Я вовсе не претендую  на законченность конструкции и предлагаю  брать данную конструкцию за некую основу для энтузиастов домашнего  электропривода.  Приведённые здесь платы были сделаны под имеющиеся в моём распоряжении детали.

Конструктивно инвертор выполнен на двух платах – силовая часть ( блок питания , драйвер и транзисторы моста , силовые клеммы) и цифровая часть (микроконтроллер + индикатор ). Электрически платы соединены гибким шлейфом. Такая конструкция выбрана для  перехода в будущем  на контроллер TMS320 или STM32 или STM8.
Блок питания собран по классической схеме и в комментариях не нуждается. Микросхема  IL300 линейная опто развязка  для управления током 4-20Ма. Оптроны ОС2-4 просто дублируют  кнопки «старт, стоп, реверс» для гальванически развязанного управления. Выход оптрона  ОС-1 «функция пользователя» (сигнализация и пр.)

Силовые транзисторы и диодный мост закреплены на общий радиатор. Шунт  4 витка манганинового провода диаметром 0.5мм  на оправке 3 мм.
Сразу замечу некоторые узлы и элементы вовсе не обязательны.  Для того что бы просто крутить двигатель ,  не нужно внешнее управление током 4-20 Ма. Нет необходимости в трансформаторе тока, для оценочного измерения подойдёт и токовый шунт. Не нужна внешняя сигнализация.  При мощности  двигателя 400 Вт и площади радиатора 100см2  нет нужды в термодатчике.

ВАЖНО! – имеющиеся на плате  кнопки управления изолированы от сети питания только пластмассовыми толкателями. Для безопасного управления необходимо использовать опторазвязку.

Возможные изменения в схеме в зависимости от микропрограммы.
Усилитель DA-1 можно подключать к трансформатору тока или к шунту. Усилитель DA-1-2 может быть использован для измерения напряжения сети или для измерения сопротивления терморезистора если не используется термодатчик  PD-1.

В случае длинных соединительных  проводов необходимо на каждый провод хотя бы надеть помехоподавляющие кольцо.  Имеют место помехи. Так например –пока я этого не сделал у меня «мышь» зависала.
Так же считаю важным отметить проверку надёжности изоляции АД –т.к. при коммутации силовых транзисторов выбросы напряжение на обмотках могут достигать значений 1,3 Uпит.

Общий вид.

Немного про управление.

Начитавшись  книжек с длинными  формулами в основном описывающих как делать синусоиду при помощи PWM. И как стабилизировать скорость вращения вала двигателя посредством таходатчика и ПИД регулятора. Я пришёл к выводу –АД имеет достаточно  жёсткую характеристику во всём диапазоне допустимых нагрузок на валу.
Поэтому для личных нужд вполне подойдет  управление описанное законом Костенко М.П. или как его ещё называют  скаляроное.  Достаточное для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40.  Т.е. грубо говоря мы в самом простом случае делаем обычную 3-х фазную розетку с переменной частотой и напряжением меняющимися в прямой зависимости.  С небольшими «но» на начальных участках характеристики необходимо выполнять IR компенсацию т.е. на малых частотах нужно фиксированное напряжение . Втрое «но» в питающие двигатель напряжение замешать 3 гармонику.  Всё остальное сделают за нас физические принципы  АД.  Более подробно про это можно прочесть в документе AVR494.PDF

Основываясь на моих личных наблюдениях и скромном опыте именно эти   методы без особых изысков чаще всего применяются в приводах мощностью до 15 кВт.
Далее не буду углубляться в теорию и  описание мат моделей АД. Это и без меня достаточно хорошо изложили профессора ещё в 60-х.
 
Но ни  в коем случае не стоит недооценивать сложности управления АД. Все мои упрощения  оправданны только некоммерческим применением инвертора.

Плата силовых элементов.

В программе V-1.0 для AT90SPWM3B  реализовано
1-  Частотное  управление  АД .Форма напряжения синусоида с 3 гармоникой.
2-  Частота  задания 5 Гц -50 Гц с шагом  1 Гц. Частота ШИМ  4 кГц.
3-  Фиксированное время разгона –торможения
4-  Реверс (только через кнопку СТОП)
5-  Разгон до заданной частоты с шагом 1 Гц
6 – Индикация показаний канала АЦП 6 (разрядность 8 бит.,  оконный фильтр апертура 4 бита)
       я использую этот канал для замера тока  шунта.
7 – Индикация режима работы START,STOP,RUN,RAMP, и Частота в Гц.
8-  Обработка сигнала авария от мс IR2135

Торможение двигателя принудительное – без выбега. При этом нужно помнить – если на валу будет висеть огромный вентилятор или маховик  то напряжение на звене постоянного тока может достичь опасных значений. Но я думаю вертолёты с приводом от АД строить никто не будет

Функции микропрограммы в будущих версиях    

1 -намагничивание ротора перед пуском
2- торможение постоянным током
3 –прямой реверс
4 – частота задания 1 -400  Гц.
5 – ограничение, контроль  тока двигателя.

6 -  переключаемые зависимости U/F
7 – контроль звена постоянного тока.
8 – некоторые макросы управления –это вообще в далёких планах.

Испытания.
Данная конструкции была проверена с двигателем 0.18кВт  и  0.4 кВт  и  0.8 кВт. Все двигатели остались довольны.
Только при малых оборотах и долговременной работе необходимо принудительное охлаждение АД.


 Строка для программатора
av_28r4.exe -aft2232 -az  +90pwm3b -e -w -v -fckdiv=1,psc2rb=0,psc1rb=0,psc0rb=0,pscrv=0,bodlevel=5 -c01.hex

Небольшое "вечернее" видео испытаний

Файлы:
плата микроконтроллера -layout5.0
силовой модуль -layout5.0
Программа для МК
Схема
схема S_plan7 -архив rar

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Частотное регулирование скорости асинхронных двигателей

В промышленности свыше 60% электроэнергии потребляется асинхронными электроприводами – в насосных, компрессорных, вентиляционных и других установках. Это наиболее простой, а потому дешевый и надежный тип двигателя.
Технологический процесс различных производств в промышленности требует гибкого изменения частоты вращения каких-либо исполнительных механизмов. Благодаря бурному развитию электронной и вычислительной техники, а также стремлению снизить потери электроэнергии появились устройства для экономного управления электродвигателями различного типа. В этой статье как раз и поговорим о том, как обеспечить максимально эффективное управление электроприводом. Работая в (группа компаний ЛАНИТ), я вижу, что наши заказчики всё больше внимания уделяют энергоэффективности

Большая часть электрической энергии, потребляемой производственными и технологическими установками, используется для выполнения какой-либо механической работы. Для приведения в движение рабочих органов различных производственных и технологических механизмов преимущественно используются асинхронные электрические двигатели с короткозамкнутым ротором (в дальнейшем именно о данном типе электродвигателя и будем вести повествование). Сам электродвигатель, его система управления и механическое устройство, передающее движение от вала двигателя к производственному механизму, образуют систему электрического привода.


Наличие минимальных потерь электроэнергии в обмотках за счет регулирования частоты вращения двигателя, возможность плавного пуска за счет равномерного увеличения частоты и напряжения — это основные постулаты эффективного управления электродвигателями.

Ведь ранее существовали и до сих пор существуют такие способы управления двигателем, как:

  • реостатное регулирование частоты путем введения дополнительных активных сопротивлений в цепи обмоток двигателя, последовательно закорачиваемых контакторами;
  • изменение напряжения на зажимах статора, при этом частота такого напряжения постоянна и равна частоте промышленной сети переменного тока;
  • ступенчатое регулирование путем изменения числа пар полюсов статорной обмотки.

Но эти и другие способы регулирования частоты несут с собой главный недостаток — значительные потери электрической энергии, а ступенчатое регулирование по определению является недостаточно гибким способом.

Преимущества применения частотно регулируемых приводов для управления АД

  1. Облегчает пусковой режим привода.
  2. Позволяет двигателю долго работать, независимо от степени загрузки.
  3. Обеспечивает большую точность регулировочных операций.
  4. Позволяет контролировать состояние отдельных узлов в цепях промышленной электрической сети. За счет этого возможно вести постоянный учет количества времени, наработанного двигателями, чтобы потом оценивать их результативность.
  5. Наличие электронных узлов дает возможность диагностировать неисправности в работе двигателя дистанционно.
  6. К устройству можно подключать различные датчики обратной связи (давления, температуры). В результате скорость вращения будет стабильна при постоянно меняющихся нагрузках.
  7. При пропадании сетевого напряжения включается управляемое торможение и перезапуск.
  • В результате:
  • повышается уровень КПД за счет чего можно сэкономить порядка 30-35 % электроэнергии;
  • количество и качество конечного продукта возрастает;
  • снижается износ комплектующих механизмов;
  • возрастает срок службы оборудования.

Изготовление своими руками

Если нет возможности, а также желания приобретать регулятор заводского типа, то можно собрать его своими руками. Хотя регуляторы типа » tda1085 » зарекомендовали себя очень хорошо. Для этого нужно детально ознакомиться с теорией и приступить к практике. Очень популярны схемы симисторного исполнения, в частности регулятор оборотов асинхронного двигателя 220в (схема 5). Сделать его несложно. Он собирается на симисторе ВТ138, хорошо подходящем для этих целей.

Схема 5 — Простой регулятор оборотов на симисторе.

Этот регулятор может быть использован и для регулировки оборотов двигателя постоянного тока 12 вольт, так как является довольно простым и универсальным. Обороты регулируются благодаря изменению параметров Р1, определяющему фазу входящего сигнала, который открывает переход симистора.

Принцип работы прост. При запуске двигателя происходит его затормаживание, индуктивность изменятся в меньшую сторону и способствует увеличению U в цепи «R2—>P1—>C2». При разряде С2 симистор открывается в течение некоторого времени.

Читать также: Какой просекатель для профиля гипсокартона лучше

Существует еще одна схема. Она работает немного по-другому: путем обеспечения хода энергии обратного типа, которое является оптимально выгодным. В схему включен довольно мощный тиристор.

Схема 6 — Устройство тиристорного регулятора.

Схема состоит из генератора сигнала управления, усилителя, тиристора и участка цепи, выполняющего функции стабилизатора вращения ротора.

Наиболее универсальной схемой является регулятор на симисторе и динисторе (схема 7). Он способен плавно убавить скорость вращения вала, задать реверс двигателю (изменить направление вращения) и понизить пусковой ток.

Принцип работы схемы:

  1. С1 заряжается до U пробоя динистора D1 через R2.
  2. D1 при пробитии открывает переход симистора D2, который отвечает за управление нагрузкой.

​Напряжение при нагрузке прямо пропорционально зависит от частотной составляющей при открытии D2, зависящего от R2. Схема применяется в пылесосах. Она содержит универсальное электронное управление, а также способность простого подключения питания 380 В. Все детали следует расположить на печатной плате, изготовленной по лазерно-утюжной технологии (ЛУТ). Подробно с этой технологии изготовления плат можно ознакомиться в интернете.

Таким образом, при выборе регулятора оборотов электродвигателя возможна покупка заводского или изготовление своими руками. Самодельный регулятор сделать достаточно просто, так как при понимании принципа действия устройства можно с легкостью собрать его. Кроме того, следует соблюдать правила безопасности при осуществлении монтажа деталей и при работе с электричеством.

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Выполненные проекты

НПО «Винт», г. Москва. Подруливающие устройства для судового привода. Суда, оборудованные ими, получают большую маневренность при швартовке, проходе узкостей, тралении. Значительно снижается риск столкновения судов. Сокращается время разгрузки и погрузки, что дает экономию времени и денег.
ООО «Стройбезопасность», г. Тихорецк. Оснащение приводов башенных кранов. Это решение упрощает управление, дает возможность тонко регулировать скорость в большом диапазоне, приводит к отсутствию пусковых бросков тока.

ОАО «Тагмет», г. Таганрог. Рольганги щелевой закалочной печи. Обеспечивают точный догон трубы в зоне загрузки и отрыв на выходе и безаварийную работу оборудования. Главный экономический эффект применения частотных преобразователей — это повышение качества продукции.

ОАО «Ульяновский сахарный завод», р.п. Цильна, Ульяновская обл. Привод жом-пресса 500 кВт. Регулирует обороты по нагрузке: в результате стружка подается неравномерно и не происходит перебросов при этом поддерживается нужный уровень давления в шахте. Увеличивается срок службы оборудования, снижается количество аварийных остановок, упрощается обслуживание процесса.

МУП «Водоканал», г. Новочебоксарск. Автоматизированная система оперативного диспетчерского управления (АСОДУ) водоснабжением г. Новочебоксарска. Кроме снижения прямых затрат на энергоресурсы, снизилась аварийность и улучшилось качество обслуживания.

Основные виды однофазных электроприводов

Как упоминалось однофазный двигатель не может развивать пусковой момент, следствием чего становится невозможность его самостоятельного запуска. Для этого придумали несколько способов компенсации магнитного поля противоположного по знаку основному.

Двигатели с пусковой обмоткой

В данном способе пуска кроме основной обмотки Р, имеющей фазную зону 120, на статор наматывают еще и пусковую П, которая имеет фазную зону 60. Также пусковая обмотка сдвигается относительно рабочей на 90 электрических. Для того, чтоб создать фазовый сдвиг между токами обмоток Iр и Iп последовательно в пусковую обмотку подключают элемент, приводящий к сдвигу фаз ψ (фазосдвигающее сопротивление Zп):

Где: а) схема подключения машины, б) векторные диаграммы при использовании различных сопротивлений.

Наилучшими условиями для пуска будет включения конденсатора в пусковую обмотку. Но поскольку емкость конденсатора довольно велика, соответственно и его стоимость и габариты тоже возрастают. Зачастую его применяют для получения повышенного момента для пуска. Пуск с помощью индуктивности имеет наихудшие показатели и в настоящее время не используется. Довольно часто могут применять запуск с помощью активного сопротивления, при этом пусковую обмотку делают с повышенным активным сопротивлением. После запуска электродвигателя пусковая обмотка отключается. Ниже показаны схемы включений и их пусковые характеристики:

Где: а,б) двигатели с пусковой обмоткой, в,г) конденсаторные

Конденсаторный двигатель

Данный тип электродвигателя имеет две рабочие обмотки, в одну из которых подключают рабочую емкость Ср. Данные обмотки сдвинуты относительно друг друга на 90 электрических и имеют фазные зоны тоже 90. При этом мощности обеих обмоток равны, но их токи и напряжения различны, также различны количества витков. Иногда величины конденсатора рабочего не достаточно для формирования нужного пускового момента, поэтому параллельно ему могут вешать пусковой, как это показано на рисунке выше. Схема приведена ниже:

Где: а) схема конденсаторного электродвигателя, б) его векторная диаграмма

В данном типе однофазных машин коэффициент мощности cosφ даже выше чем у трехфазных. Это объясняется наличием конденсатора. КПД такого электродвигателя выше, чем однофазного электродвигателя с пусковой обмоткой.

Методы настройки оборотов

Для предотвращения отрицательного влияния во время пуска нужно уменьшить обороты электродвигателя 220 в или 380 в. Существует несколько способов достижения этой цели:

  1. Изменение значения R цепи ротора.
  2. Изменение U в обмотке статора.
  3. Изменение частоты U.
  4. Переключение полюсов.

При изменении значения R роторной части при помощи дополнительных резисторов приводит к снижению частоты вращения, но в результате этого уменьшается мощность. Следовательно, получается значительная потеря электроэнергии. Этот тип регулирования следует применять для фазного ротора.

При изменении значений U на статорной катушке возможно механическое или электрическое управление частотой вращения ротора. В этом случае используется регулятор U. Использование такого способа позволяет применять его только при вентиляторном характере нагрузки (например, регулятор оборотов вентилятора 220в). Для всех остальных случаев применяют трехфазные автоматические трансформаторы, позволяющие плавно изменять значения U, или тиристорные регуляторы.

Читать также: Импульсный тахометр для бензопилы

Исходя из формулы зависимости частоты вращения от частоты питающего U можно производить регулирование количества оборотов ротора. Частота вращающегося магнитного поля статора вычисляется по формуле: Nст = 60 * f /p (f — частота тока питающей сети, p — число пар полюсов). Этот способ обеспечивает возможность плавного регулирования частоты вращения роторной части. Для получения высокого коэффициента полезного действия нужно изменять частоту и U. Этот способ является оптимальным для двигателей с короткозамкнутым ротором, так как потери мощности минимальны. Существует два метода изменения количества пар полюсов:

  1. В статор (в пазы) нужно уложить 2 обмотки с различным числом p.
  2. Обмотка состоит из двух частей, соединенных параллельно или последовательно.

Основным недостатком этого метода является поддержание ступенчатого характера изменения частоты электромотора с короткозамкнутым ротором.

Структура частотного регулятора

Все современные преобразователи частоты построены на принципе так называемого двойного преобразования. То есть, переменный ток преобразуется в постоянный через неуправляемый выпрямитель и фильтр. Далее, через импульсный инвертор (он трехфазный) происходит обратное преобразование тока постоянного в ток переменный. Инвертор сам состоит из шести силовых ключей (транзисторных). Так вот каждая обмотка электрического движка подключается к определенным ключам выпрямителя (положительному или отрицательному). Именно инвертор изменяет частоту напряжения, которое прикладывается к статорным обмоткам. По сути, именно через него происходит частотное регулирования электродвигателя.

В этом приборе на выходе устанавливаются силовые транзисторы. Они выполняют роль ключей. Если сравнивать их с тиристорами, то необходимо отметить, что первые вырабатывают сигнал в виде синусоиды. Именно данная форма создает минимальные искажения.


Преобразователь частоты

Ответ на главный вопрос жизни, вселенной и бездатчикового электропривода — Чтобы избежать этих негативных последствий, при уменьшении частоты приходится снижать и эффективное значение напряжения на обмотках двигателя.

Функционирование без датчика положения. Таким образом, амплитуда отрицательных и положительных импульсов напряжения всегда соответствует половине напряжения промежуточной цепи. Способ векторов точнее и эффективнее.


Выходные сигналы с элементов DD3. Данные документируются протоколом обмена и используются пользователями, создающими программы управления для электронной техники и контроллеров.


Использование в работе частотника дает возможность работать двигателю без перерыва, экономично. Большая часть экономической эффективности заключается в возможности регулирования при помощи частотного преобразователя технологических характеристик процессов, температуры, давления, скорости движения, скорости подачи главного движения.


Данные параметры также регулируются широтно-импульсной модуляцией, а сама ширина импульсов модулируется по синусоидальному закону. Промежуточная цепь одного из трех типов: a преобразующая напряжение выпрямителя в постоянный ток. Примечание: для большинства приложений использование только пропорциональной и интегральной составляющей без использования дифференциальной составляющей даёт хорошие результаты. Такой вид управления инвертором называется амплитудно-импульсной модуляцией АИМ.


Такие преобразователи используются в мегаваттном диапазоне мощности для формирования низкочастотного питающего напряжения непосредственно из сети частотой 50 Гц, при этом их максимальная выходная частота составляет около 30 Гц. Все это управляется при помощи двух кнопок и одного переключателя, который изменяет направление вращения вала. Резисторы, соединил параллельно по кОм с помощью затворных проходных конденсаторов, позади платы их напаял. А удерживание инициирует дальнейший разгон до 50 Гц в течении приблизительно 2 секунд. SFAVM SFAVM — пространственно-векторный способ модуляции, который позволяет случайным образом, но скачкообразно изменять напряжение, амплитуду и угол инвертора в течение времени коммутации.

В описываемой схеме вполне возможно применить драйверы IR или IR В каждом из проектов имеются 7 файлов: mckits.

Механические устройства не могут выполнить такие функции. Также происходит насыщение магнитопровода статора. Моторы переделывают электроэнергию в механическое движение. Катушка индуктивности преобразует изменяющееся напряжение выпрямителя в изменяющийся постоянный ток. Самодельный частотный преобразователь 220-380V собственной сборки

Схема прямого матричного преобразователя Непрямой матричный преобразователь indirect matrix converter состоит из двунаправленного трехфазного выпрямителя, виртуального звена постоянного тока и трехфазного инвертора.

Диоды позволяют току протекать только в одном направлении: от анода А к катоду К. И они творят революцию — успешно перевели на веб-платформу комплекс программных средств для разработки электрических принципиальных схем и печатных плат.

Состоит из выпрямителя и фильтрационных устройств.

Эти значения времени коммутации должны устанавливаться таким образом, чтобы допускать только минимум высших гармоник. Печатная плата комплекта разработчика устройств управления электродвигателями Есть особенность, которую должен учитывать разработчик устройств управления электродвигателями. В наше время существует несколько компоновок инверторов с управляемыми ключами: запираемые GTO тиристоры; биполярные IGBT-транзисторные ключи с затвором.

Выходное напряжение является результатом комбинации сегментов входного напряжения в котором основная гармоника следует за опорным сигналом. Транзистор-прерыватель управляет напряжением промежуточной цепи Фильтр промежуточной цепи сглаживает прямоугольное напряжение после прерывателя. Три проекта написаны так, чтобы в режиме сравнения файлов по содержимому однозначно идентифицировалось все, что с ней связано параметры, межблочные связи, расчетный код.

В состав преобразователей частоты входят четыре основных элемента: Рис. Нажимаем кнопку Event в окне программы. Аварийные ситуации при этом сводятся на нет.

Электрическая принципиальная схема частотного преобразователя

Частота задается конденсатором C1, регулировка частоты осуществляется переменным резистором R2. Проекты пошаговой разработки программного кода цифровой системы управления В дополнение к аппаратной части, инженеру предоставлен комплект проектов для пошаговой разработки программного кода векторной системы управления.

Задача перевода объекта из одного состояния в другое решается «программной машиной состояний». Расчёт производится по значению ошибки управления — расхождению между заданным значением и значением сигнала обратной связи обычно показания датчика какого-либо технологического параметра. Электрическая принципиальная схема комплекта разработчика устройств управления электродвигателями В нижней части схемы изображены импульсный преобразователь напряжения и линейные стабилизаторы, питающие фрагменты схемы. Основным различием способов являются критерии, которые используются при вычислении значений активного тока, тока намагничивания магнитного потока и крутящего момента. Частотник для регулирования оборотов трёхфазного двигателя

Источник

Отрасли применения ЧРП

Список отраслей получается обширным, сложнее найти отрасль, где бы не применялись ЧП:

Нефтедобыча и переработка

: насосное оборудование, привод аппаратов воздушного охлаждения (АВО) и градирен, комплексная автоматизация различных технологических линий.

Металлургия

: приводы рольгангов, конвейеров, прокатных станов, наматывающих устройств волочильных станов, насосов, вентиляторов.

Машиностроение

: привод обрабатывающих станков, насосы, конвейерные линии, полиграфические машины.

Горнодобывающее и обогатительное производство

: дробилки, мешалки, конвейеры, песковые и пульповые насосы.

Химическая промышленность

: насосы, мешалки, грануляторы, экструдеры, центрифуги, приводы дымососов и вентиляторов, АСУ.

Пищевая промышленность

: грануляторы, экструдеры, мельницы, дробилки, куттеры, жом-прессы, этикетировочные аппараты, конвейеры, технологические линии, насосы, вентиляторы.

ЖКХ

: различное насосное оборудование, АСУ.

Стройкомплекс

: краны, подъемные механизмы.

Транспорт

: судовой привод, электротранспорт.

Векторное управление с обратной связью

Векторное управление с обратной связью использует тот же алгоритм управления, что и ВУ без обратной связи. Основное различие заключается в наличии энкодера, что дает возможность частотно-регулируемому электроприводу развивать 200% пусковой момент при скорости 0 об/мин. Этот пункт просто необходим для создания начального момента при трогании с места лифтов, кранов и других подъемных машин, чтоб не допустить просадки груза.

Наличие датчика обратной связи по скорости позволяет увеличить время отклика системы более 50 Гц, а также расширить диапазон регулирования скорости до 1:1500. Также наличие обратной связи позволяет управлять не скоростью электрической машиной, а моментом

В некоторых механизмах именно значение момента имеет большую важность. Например, мотальная машина, механизмы закупорки и другие

В таких устройствах необходимо регулировать момент машины.

Советы по изготовлению регулятора частоты вращения электродвигателя

Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.

Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Как сделать регулятор своими руками

Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

Внедрение системы управления

Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

Регулировка работы

Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.

Стоит перечислить несколько разновидностей приборов:

  1. Лабораторные автотрансформеры (ЛАТР).
  2. Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
  3. Кнопки, которые применяются в конструкции электроинструментов.
  4. Бытовые разновидности регуляторов, которые оснащены особым плавным действием.

Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.

Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора.

Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.

Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.

В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.

Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.

Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.

Регулировка оборотов асинхронного двигателя: способы и схемы

Благодаря надежности и простоте конструкции асинхронные двигатели (АД) получили широкое распространение. В большинстве станков, промышленном и бытовом оборудовании применяются электродвигатели такого типа. Изменение скорости вращения АД производится механически (дополнительной нагрузкой на валу, балластом, передаточными механизмами, редукторами и т.д.) или электрическими способами. Электрическое регулирование более сложное, но и гораздо более удобное и универсальное.

Для многих агрегатов применяется именно электрическое управление. Оно обеспечивает точное и плавное регулирование пуска и работы двигателя. Электрическое управление производится за счет:

  • изменения частоты тока;
  • силы тока;
  • уровня напряжения.

В этой статье мы рассмотрим популярные способы, как может осуществляться регулировка оборотов асинхронного двигателя на 220 и 380В.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото — мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.


Фото — регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.


Фото — шим контроллер оборотов

Самый простой способ

Во многих электроинструментах, в которых используются коллекторные двигатели, установлен небольшой реостат, с помощью которого можно практически без потери мощности управлять частотой вращения ротора. Такой элемент можно снять с неисправной дрели, шуруповёрта или перфоратора и установить последовательно с электрическим мотором. Если подходящего реостата нет в наличии, то такую деталь можно недорого приобрести в специализированном магазине.

Небольшая сложность заключается в том, что рабочий ход такого регулировочного механизма очень небольшой и бывает очень непросто установить обороты двигателя на необходимом уровне. Эта проблема, как правило, решается установкой дополнительных механических преобразователей механической энергии. Таким образом, можно будет правильно установить частоту вращения ротора, а также обеспечить фиксацию прибора на необходимом уровне.

Кроме реостатов из ручных электрических инструментов можно использовать готовые магазинные приборы, которые достаточно подключить в розетку, а выводы двигателя подсоединить уже непосредственно к регулировочному прибору. Такие изделия позволяют осуществлять изменение напряжения в очень широком диапазоне, поэтому подобрать положение управляющего тумблера под определённые обороты двигателя не составит большого труда. Немаловажным плюсом магазинных реостатов является возможность использовать их с другими электронными приборами, то есть достаточно один раз приобрести изделие, с помощью которого можно будет осуществлять регулировку большого количества приборов, не ограничиваясь электромоторами.

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.


Фото — схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.


Фото — схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

Однофазные двигатели могут управляться:

  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

Преобразователи для однофазных двигателей

В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

Это модель Optidrive E2

Для стабильного запуска и работы двигателя используются специальные алгоритмы.

При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

Xc=1/2πfC

f — частота тока

С — ёмкость конденсатора

В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

Преимущества специализированного частотного преобразователя:

  • интеллектуальное управление двигателем
  • стабильно устойчивая работа двигателя
  • огромные возможности современных ПЧ:
  • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
  • многочисленные защиты (двигателя и самого прибора)
  • входы для датчиков (цифровые и аналоговые)
  • различные выходы
  • коммуникационный интерфейс (для управления, мониторинга)
  • предустановленные скорости
  • ПИД-регулятор

Минусы использования однофазного ПЧ:

  • ограниченное управление частотой
  • высокая стоимость

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.


Фото — схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Советы и рекомендации

Если все работы по подключению и использованию устройства по регулировке оборотов двигателя от стиральной машины осуществляются своими руками, то необходимо при выполнении работ придерживаться следующих правил:

  • Осуществлять подключение проводов мотора от стиральной машины только после того, как будут правильно определено назначение каждого проводника.
  • Соблюдать осторожность при работе с электрическим током. Все провода, по которым передаётся опасное для жизни напряжение, должны быть тщательно изолированы, а корпус электромотора заземлён.
  • При первом включении рекомендуется использовать сетевой фильтр со встроенным предохранителем, который сработает при допущении серьёзных ошибок в электрической схеме.
  • При работе самодельного или магазинного устройства не должно наблюдаться искрений, задымления или чрезмерного нагрева. Подобные явления могут указывать на неисправность устройства либо на работу контроллера при чрезмерной нагрузке.

В общем, собрать своими руками самодельный станок с регулировкой оборотов или любое другое полезное в хозяйстве устройство не составит большого труда, конечно, при условии правильного выполнения всех изложенных в этой статье рекомендаций.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Изготовление самодельных реле

Изготовить самодельный регулятор оборотов электродвигателя 12 В не составит какого-либо труда. Для такой работы потребуется следующее:

  • Проволочные резисторы.
  • Переключатель на несколько положений.
  • Блок управления и реле.

Использование проволочных резисторов позволяет изменять напряжение питания, соответственно, и частоту вращения двигателя. Такой регулятор обеспечивает ступенчатый разгон двигателя, отличается простой конструкции и может быть выполнен даже начинающими радиолюбителями. Такие простейшие самодельные ступенчатые регуляторы можно использовать с асинхронными и контактными двигателями.

Принцип работы самодельного преобразователя:

  1. Питание от сети направляется на конденсатор.
  2. Используемый конденсатор полностью заряжается.
  3. Нагрузка передается на резистор и нижний кабель.
  4. Электрод тиристора, соединенный с положительным контактом на конденсаторе, получает нагрузку.
  5. Передаётся заряд напряжения.
  6. Происходит открытие второго полупроводника.
  7. Тиристор пропускает полученную с конденсатора нагрузку.
  8. Конденсатор полностью разряжается, после чего повторяется полупериод.

В прошлом наибольшей популярностью пользовались механические регуляторы, выполненные на основе вариатора или шестеренчатого привода. Однако они не отличались должной надежностью и часто выходили из строя.

Самодельные электронные регуляторы зарекомендовали себя с наилучшей стороны. Они используют принцип изменения ступенчатого или плавного напряжения, отличаются долговечностью, надежностью, имеют компактные габариты и обеспечивают возможность тонкой настройки работы привода.

Дополнительное использование в схемах электронных регуляторов симисторов и аналогичных устройств позволяет обеспечить плавное изменение мощности напряжения, соответственно электродвигатель будет правильно набирать обороты, постепенно выходя на свою максимальную мощность.

Для обеспечения качественной регулировки в схему включаются переменные резисторы, которые изменяют амплитуду входящего сигнала, обеспечивая плавное или ступенчатое изменение числа оборотов.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.

Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Внедрение автоматических систем управления

Наличие в регуляторах и частотных преобразователях микроконтроллерного управления позволяет улучшить параметры работы привода, а сам мотор может работать в полностью автоматическом режиме, когда используемый контроллер плавно или ступенчато изменяет показатели частоты вращения агрегата. Сегодня в качестве микроконтроллерного управления используются процессоры, которые имеют отличающееся число выходов и входов. К такому микроконтроллеру можно подключить различные электронные ключи, кнопки, всевозможные датчики потери сигнала и так далее.

В продаже можно найти различные типы микроконтроллеров, которые отличаются простотой в использовании, гарантируют качественную настройку работы преобразователя и регулятора, а наличие дополнительных входов и выходов позволяет подключать к процессору различные дополнительные датчики, по сигналу которых устройство будет уменьшать или увеличивать число оборотов или же полностью прекращать подачу напряжения на обмотки электродвигателя.

Сегодня в продаже имеются различные преобразователи и регуляторы электродвигателя. Впрочем, при наличии даже минимальных навыков работы с радиодеталями и умении читать схемы можно выполнить такое простейшее устройство, которое будет плавно или ступенчато изменять обороты двигателя. Дополнительно можно включить в цепь управляющий симисторный реостат и резистор, что позволит плавно изменять обороты, а наличие микроконтроллерного управления полностью автоматизирует использование электрических двигателей.

Изменение скорости АД с короткозамкнутым ротором

Существует несколько способов:

  1. Управление вращением за счет изменения электромагнитного поля статора: частотное регулирование и изменение числа пар полюсов.
  1. Изменение скольжения электромотора за счет уменьшения или увеличения напряжения (может применяться для АД с фазным ротором).

Частотное регулирование

В данном случае регулировка производится с помощью подключенного к двигателю устройства для преобразования частоты. Для этого применяются мощные тиристорные преобразователи. Процесс частотного регулирования можно рассмотреть на примере формулы ЭДС трансформатора:

Подключение к 220 Вольт

Для того чтобы подключить электродвигатель к домашней электросети, понадобится мультиметр.

С его помощью прозваниваем выходные провода, идущие от электромотора. Цель данной операции: обнаружить среди проводов (от 2 до 4 штук) два с наибольшим сопротивлением (порядка 12 Ом). Соответственно, если проводов всего 2, то задача упрощается до минимума. На данный момент мы имеем на руках два силовых провода от катушки возбуждения двигателя стиральной машины.

Далее выявляем провода от коллектора и щеток двигателя. Их тоже два, так что перепутать их невозможно.

Третья необходимая нам пара проводов принадлежит таходатчику. В основном они прикреплены на корпусе двигателя. В противном случае придется его (мотор) частично разобрать.

Один из коллекторных проводов соединяем с катушечным. А оставшуюся пару (коллектор — катушка) подключаем удобным способом к сети 220 Вольт. Проводим пробный запуск.

Если вы не знаете, что означают и как выглядят названные нами детали: катушка возбуждения, коллектор, таходатчик и так далее, лучше отложите чтение данной статьи до ознакомления с устройством и принципом работы коллекторного двигателя стиральной машины-автомат.

Способы управления скоростью АД с фазным ротором

Изменение скорости вращения АД с фазным ротором производится путем изменения скольжения. Рассмотрим основные варианты и способы.

Изменение питающего напряжения

Этот способ также применяется для АД с КЗ ротором. Асинхронный двигатель подключается через автотрансформатор или ЛАТР. Если уменьшать напряжение питания, частота вращения двигателя снизится.

Но такой режим уменьшает перегрузочную способность двигателя. Этот способ применяется для регулирования в пределах напряжения не выше номинального, так как увеличение номинального напряжения приведет к выходу электродвигателя из строя.

Активное сопротивление в цепи ротора

При использовании данного метода в цепь ротора подключается реостат или набор постоянных резисторов большой мощности. Данное устройство предназначено для плавного увеличения сопротивления.

Скольжение растет пропорционально увеличению сопротивления, а скорость вращения вала электромотора при этом снижается.

  • большой диапазон регулирования в сторону понижения скорости вращения.
  • снижение КПД;
  • увеличение потерь;
  • ухудшение механических характеристик.

Асинхронный вентильный каскад и машины двойного питания

Изменение скорости работы асинхронных электромоторов в данных случаях выполняется путем изменения скольжения. При этом скорость вращения электромагнитного поля неизменна. Напряжение подается напрямую на обмотки статора. Регулировка происходит за счет использования мощности скольжения, которая трансформируется в цепь ротора, и образует добавочную ЭДС. Такие методы используются только в специальных машинах и крупных промышленных устройствах.

Функции и основные характеристики

Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.

Одноканальный регулятор для мотора

Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.

Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).

Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки.

Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора.

Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.


Принципиальная электрическая схема

Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.

Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.

Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.

Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).

Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.

Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото.

Источник питания (батарея 9 вольт) подключается на финальном этапе сборки.

Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.

Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).

Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!

Двухканальный регулятор для мотора

Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.

Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).

Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.

Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.

Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.

Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.

После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).

Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы . Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .

Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».

Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!

В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.

Источник: servodroid.ru Дополнительная статья ЧИТАТЬ

Источник: https://volt-index.ru/podelki-dlya-avto/regulyator-vrashheniya-dlya-motora.html

Плавный пуск асинхронных электродвигателей

АД кроме безусловных преимуществ, обладают существенными недостатками. Это рывок на старте и большие пусковые токи, в 7 раз превышающие номинальные. Для мягкого старта электродвигателя используются следующие методы:

  • переключение обмоток по схеме звезда – треугольник;
  • включение электродвигателя через автотрансформатор;
  • использование специализированных устройств для плавного пуска.

В большинстве частотных регуляторов есть функция плавного пуска двигателя. Это не только снижает пусковые токи, но и уменьшает нагрузки на исполнительные механизмы. Поэтому регулирование частоты и плавный пуск довольно сильно связаны между собой.

Через микросхему

Пришло время вспомнить про таходатчик и его выходы, которые мы на двигателе нашли, но до поры отставили в сторону. Именно таходатчик поможет нам подключить двигатель стиралки и регулировать его обороты без потери мощности. Сам таходатчик управлять двигателем не может, он лишь посредник. Реальное управление должно осуществляться посредством микросхемы, которая соединяется с таходатчиком двигателя, обмоткой и якорем и запитывается от сети 220 В. Принципиальную схему вы можете видеть на рисунке ниже.

Что происходит с двигателем, когда мы подключаем его к сети через эту микросхему? А происходит следующее, мы можем запустить двигатель своими руками на максимальных оборотах, а можем, повернув специальный тумблер обороты уменьшить. Даем внезапную нагрузку двигателю, подставив под вращающийся шкив деревянный брусочек. На долю секунды обороты падают, но потом снова восстанавливаются, несмотря на нагрузку.

Дело в том, что таходатчик определяет понижение оборотов из-за возникшей нагрузки и сразу же подает сигнал об этом на управляющую плату. Микросхема, получив сигнал, автоматически добавляет мощность, выравнивая, таким образом, обороты двигателя. Мечта самоделкина, как говорится, сбылась. При наличии такой схемы подключения из двигателя стиральной машины можно сделать и зернодробилку и дровокол и много других полезных вещей.

Подводя итог нашего повествования, ответим еще на один резонный вопрос, который может возникнуть у читателя: где взять такую плату? Можно собрать на основе схемы и списка деталей, которые мы прилагаем к настоящей статье, а можно заказать в готовом виде у специалистов. Благо в сети предложений на этот счет достаточно. Искать нужно схему TDA 1085.

Как сделать устройство для изменения скорости вращения электродвигателя своими руками

Для регулировки маломощных однофазных АД можно использовать диммеры. Однако этот способ ненадежен и обладает серьезными недостатками: снижением КПД, серьезным перегревом устройства и опасностью повреждения двигателя.

Для надежного и качественного регулирования оборотов электродвигателей на 220В, лучше всего подходит частотное регулирование.

Приведенная ниже схема позволяет собрать частотное устройство для регулировки электромоторов мощностью до 500 Вт. Изменение скорости вращения производится в границах от 1000 до 4000 оборотов в минуту.

Устройство состоит из задающего генератора с изменяемой частотой, состоящего из мультивибратора, собранного на микросхеме К561ЛА7, счетчика на микросхеме К561ИЕ8, полумоста регулятора. Выходной трансформатор Т1 выполняет развязку верхнего и нижнего транзисторов полумоста.

Демпфирующая цепь С4, R7 гасит всплески напряжения опасные для силовых транзисторов VT3, VT4. Выпрямитель, удвоитель напряжения питающей сети, включает в себя диодный мост VD9, с конденсатором фильтра на которых происходит удвоение напряжения питания полумоста.

Напряжение первичной обмотки: 2х12В, вторичной обмотки 12В. Первичная обмотка трансформатора управления ключами, состоит из 120 витков медного провода сечением 0,7мм, с отводом от середины. Вторичная – две обмотки, каждая по 60 витков повода сечением 0,7 мм.

Вторичные обмотки необходимо максимально надежно заизолировать друг от друга, так как разница потенциалов между ними доходит до 640 В. Подключение выходных обмоток к затворам ключей производится в противофазе.

Вот мы и рассмотрели способы регулировки оборотов асинхронных двигателей. Если возникли вопросы, задавайте их в комментариях под статьей!

«>

Схема на ШИМ-транзисторе

Регулировать скорость вращения вала у маломощных электродвигателей можно при помощи шин-транзистора и последовательного соединения резисторов в питании. Этот вариант отличается простотой реализации, однако имеет низкий КПД и не позволяет плавно изменять скорость вращения двигателя. Изготовить своими руками регулятор оборотов коллекторного двигателя 220 В с использованием шим-транзистора не составит особой сложности.

Принцип работы регулятора на транзисторе:

  • Используемые сегодня шин-транзисторы имеют генератор пилообразного напряжения частотой в 150 Герц.
  • Операционные усилители используются в роли компаратора.
  • Изменение скорости вращения осуществляется за счёт наличия переменного резистора, управляющего длительностью импульсов.

Транзисторы имеют ровную постоянную амплитуду импульсов, идентичную амплитуде напряжения питания. Это позволяет выполнять регулировку оборотов двигателя 220 В и поддерживать работу агрегата даже при подаче минимального напряжения на обмотку трансформатора.

Благодаря возможности подключения микроконтроллера к ШИМ-транзистору обеспечивается возможность автоматической настройки и регулировки работы электропривода. Такие схемы исполнения преобразователей могут иметь дополнительные компоненты, которые расширяют функциональные возможности привода, обеспечивая работу в полностью автоматическом режиме.

Регулятор оборотов асинхронного электродвигателя 220в своими руками

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото – мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.

Фото – регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.

Фото – шим контроллер оборотов

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.

Фото – схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.

Фото – схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.

Фото – схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:

Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

Разделы сайта

DirectAdvert NEWS

Друзья сайта

Рекламный блок

Рекламный блок

Рекламный блок

Статистика

Довольно часто для каких-либо хозяйственных нужд требуется использование трехфазного электродвигателя (например, в качестве привода для эл. наждака, циркулярной пилы, бетономешалки и т. д). Известно, что трехфазные электродвигатели рассчитаны и предназначены для работы в трехфазной сети и далеко не всегда в распоряжении домашнего мастера бывает нужное напряжение

380 В, ведь в подавляющем большинстве частные дома и, тем более квартиры подключены к питающей сети

Существуют разные способы включения трехфазного электродвигателя в однофазную сеть

220 В, самым простым и достаточно надежным из которых является применение фазосдвигающего конденсатора в схеме подключения его обмоток. Само название “фазосдвигающий конденсатор” говорит само за себя: он сдвигает ток по фазе на 90°, создавая в нем двухфазный вращающийся магнитный поток, который, собственно и вызывает вращение вала электродвигателя.

На схеме ниже показано подключение фазосдвигающих конденсаторов к обмоткам, соединенным в “звезду” и “треугольник”, однако, следует учесть, что для снижения потерь мощности электродвигателя гораздо целесообразнее использовать соединение обмоток электродвигателя по схеме “треугольник”.

Схемы подключения трехфазных электродвигателей с различными соединениями обмоток к однофазной сети

Стоит заметить, что для запуска любого электродвигателя требуется б́ольшая емкость конденсатора, чем для его работы (когда двигатель уже “набрал” обороты). Поэтому, на схеме ниже общая емкость “разбита” на два конденсатора: Сп – конденсатор с дополнительной емкостью для пуска электродвигателя и Ср – основной конденсатор с рабочей емкостью. В случае использования электродвигателя небольшой мощности (до 1 кВт) вполне можно “обойтись” лишь рабочей емкостью Ср, исключив из схемы конденсатор Сп.

Схема подключения трехфазного электродвигателя к однофазной сети:

Резистор R включен в схему в качестве сопротивления для разрядки конденсаторов Сп и Ср, для этого подойдет резистор с сопротивлением 300 Ом. Для изменения направления вращения вала электродвигателя, в схеме предусмотрен тумблер переключатель SA.

Для расчета ёмкости рабочего конденсатора можно воспользоваться формулой:

С раб = 4800 • I / U , мкФ – для двигателей с обмотками, соединенными “треугольником”

С раб = 2800 • I / U , мкФ – для двигателей с обмотками, соединенными “звездой”

Это самый точный и наиболее предпочтительный способ расчета ёмкости рабочего конденсатора, но для его использования необходимо знать значение тока I в цепи двигателя, т. е. потребуются дополнительные измерения. Зная номинальную мощность электродвигателя, рассчитать ёмкость рабочего конденсатора можно так-же по формуле:

С раб = 66• Рном , мкФ, где Рном – номинальная мощность электродвигателя.

Говоря проще, для нормальной работы трёхфазного двигателя в сети

220 В рабочий конденсатор должен иметь ёмкость, близкую к 7 мкФ на каждые 0,1 кВт его паспортной мощности.

Определившись с емкостью рабочего конденсатора, можно определить нужное ее значение для пускового конденсатора: она должна быть примерно в 2,5-3 раза больше рабочего емкости рабочего конденсатора.

Конденсаторы рабочей емкости следует использовать следующих типов: МБГЧ, КГБ, БГТ с рабочим напряжением, превышающим сетевое напряжение примерно в 1,5 раза. Чтобы набрать нужную емкость, можно соединить (спаять) конденсаторы параллельно: тогда их общая емкость будет равна суммарной. Пусковую емкость тоже лучше всего набрать из конденсаторов этих типов, но при кратковременном пуске (не более 2-3 сек) можно использовать электролитические, типов КЭ-2, К50-3, ЭГЦ-М с рабочим напряжением не менее 450 в.

В заключение стоит сказать, что при включении трехфазного электродвигателя в однофазную сеть

220 В следует иметь ввиду неминуемую потерю его мощности. Если частота вращения уменьшается совсем незначительно в этом режиме, то потеря мощности может составлять 50% от номинальной. Поэтому, лучше в сеть

220 В включать электродвигатели с обмотками, соединенными “треугольником”- в однофазной сети они способны развить до 75% от своей номинальной мощности.

Как известно можно изменять (регулировать) скорость вращения асинхронного безколлекторного электродвигателя изменяя частоту питающего двигатель переменного напряжения. На этом принципе был разработан, приведенный здесь, электронный регулятор скорости вращения. Регулятор позволяет изменять скорость вращения в довольно широких пределах – от 1000 до 4000 об/мин.

Регулятор состоит из задающего генератора с регулируемой частотой от 50 до 200 Гц, в который входят мультивибратор на микросхеме К561ЛА7 , счетчик К561ИЕ8 формирующий сигналы управления с фиксированным “мертвым временем” для управления силовыми полевиками полумоста регулятора.

Выходной трансформатор Т1 обеспечивает развязку верхнего и нижнего транзисторов полумоста. Выпрямитель, удвоитель напряжения питающей сети состоит из диодного моста VD9, включенного по нестандартной схеме и конденсаторов фильтра на которых и удваивается напряжение питания полумоста.
Демпфирующая цепь С4, R7 гасит всплески напряжения опасные для силовых транзисторов VT3, VT4.
Для трансформатора управления ключами, использовался каркас трансформатора от БП телевизора KORFUNG Ч/Б. Можно применить любой другой с аналогичным сечением железа – тип магнитопровода не имеет значения. Первичная обмотка содержит 120 витков провода диаметром 0,7мм, с отводом от середины, вторичная – две отдельные обмотки по 60 витков тем же проводом. Данные по вольтажу обмоток: первичка 2х12 вольт, вторички 12 вольт каждая, если сечение железа отличается от заданного, расчитать можно по формулам для трансформаторов на 50Гц. Марка провода роли не играет (медный).
Обе вторичные обмотки нужно хорошо изолировать друг от друга, так как потенциал между ними достигает 640 вольт. Подключать выходные обмотки к затворам ключей необходимо в противофазе.

Регулятор может работать с двигателями мощностью до 500Вт. Для применения регулятора с более мощными двигателями необходимо применить в схеме большее число силовых ключей в параллельном включении и увеличить емкость конденсаторов фильтра питания С3 и С4.
Конструктивно регулятор выполнен на печатной плате размрами 110 х 80мм, трансформатор управления ключами ставится отдельно.

Чтобы не применять дорогой и сложный коллекторный двигатель в механизмах требующих изменения оборотов двигателя, можно обойтись асинхронным трёхфазным двигателем, введя в фазовый провод реостат или простейший регулятор мощности.

Переделка двигателя заключается в изменении якоря двигателя.
По образцу якоря, установленного в двигателе изготавливается «массивный якорь» из магнитомягкой малоуглеродистой стали или из серого чугуна (СЧ). (Чугунный работает лучше.) Из старого якоря можно выпрессовать вал и насадить на него массивный якорь.

Схема устройства запуска приведена на рисунке ниже.

Двунаправленный электронный ключ выполнен на диодах VD1, VD2 и три-нисторах VS1, VS2. Диоды VD3 и VD4 образуют двухполупериодный выпрямитель сетевого напряжения, а резистор R1 и стабилитрон VD5 — стабилизатор выпрямленного напряжения. Управление тринисторами электронного ключа осуществляется транзисторами VT1, VT2. Момент включения электронного ключа устанавливают резистором R7 “Режим”. При минимальном сопротивлении резистора ключ открывается в момент максимального напряжения на обмотке Б электродвигателя (см. рис. 2,6), при максимальном — ключ закрыт. Перед запуском двигателя движок резистора R7 переводят в крайнее нижнее (по схеме) положение, соответствующее максимальному фазовому сдвигу токов и, следовательно, наибольшему пусковому моменту на валу двигателя. После запуска тем же резистором устанавливают оптимальный режим работы двигателя в зависимости от его мощности и нагрузки. Как показала практика, устройство запуска эффективно работает с электродвигателями, частота вращения якоря которых не превышает 1500 об/мин и их обмотки соединены треугольником.

Устройство испытано на работе с двумя двигателями: мощностью 370 Вт (типа АААМ63В4СУ1) 1360 об/мин и мощностью 2000 Вт 1380 об/мин. В обоих случаях оно обеспечивало более уверенный запуск двигателя в сравнении с конденсаторной системой и мощность на валу двигателя после запуска была примерно одинаковой.

Детали устройства монтируют на печатной плате, которую размещают в корпусе из изоляционного материала. Тринисто-ры VS1, VS2 и диоды VD1, VD2 устанавливают на плате без теплоотводов. Резисторы — МЛТ, С2-33, конденсатор — К73-17. Транзисторы VT1 и VT2 могут быть любыми из тех же серий. Вместо диодов Д231, тринисторов КУ202Н можно использовать аналогичные другие с допустимым прямым током не менее 10 А и обратным напряжением не менее 300 В. При работе с устройством запуска следует иметь в виду, что все его элементы находятся под напряжением сети 220 В, поэтому необходимо соблюдать меры предосторожности.

Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.

Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Как сделать регулятор своими руками

Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

Внедрение системы управления

Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

Регулировка работы

Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.

Стоит перечислить несколько разновидностей приборов:

  1. Лабораторные автотрансформеры (ЛАТР).
  2. Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
  3. Кнопки, которые применяются в конструкции электроинструментов.
  4. Бытовые разновидности регуляторов, которые оснащены особым плавным действием.

Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.

Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора.

Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.

Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.

В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.

Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.

Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.

“>

Простые устройства на микроконтроллерах своими руками. Частотный преобразователь для асинхронного двигателя на AVR. Частотомер II от DANYK

Принцип закрывания дверцы клетки весьма прост. Дверка клетки подпирается специальным упором, сделанным из медной проволоки. К упору крепится капроновая нить нужной длины. Если потянуть за нить, то упор соскальзывает, и дверка клетки под собственным весом закрывается. Но это в ручном режиме, а я хотел реализовать автоматический процесс без участия кого-либо.

Для управления механизмом закрывания дверцы клетки был применен сервопривод. Но в процессе работы он создавал шум. Шум мог спугнуть птицу. Поэтому сервопривод я заменил на коллекторный двигатель, взятый из радиоуправляемой машинки. Он работал тихо и идеально подходил, тем более что управлять коллекторным двигателем не составляло сложностей.

Для определения, находится ли уже птица в клетке, я использовал недорогой датчик движения. Сам датчик движения уже является законченным девайсом, и паять ничего не нужно. Но у данного датчика угол срабатывания весьма большой, а мне нужно, чтобы он реагировал только во внутренней области клетки. Для ограничения угла срабатывания я поместил датчик в цоколь, когда-то служившей эконом-лампы. Из картона вырезал своего рода заглушку с отверстием посередине для датчика. Пошаманив с расстоянием данной заглушки относительно датчика, настроил оптимальный угол для срабатывания датчика.

В качестве зазывалы для птиц я решил применить звуковой модуль WTV020M01 с записанным на микроSD карте памяти пением чижа и щегла. Именно их я и собирался ловить. Поскольку я использовал один звуковой файл, то и управлять звуковым модулем я решил простим способом, без использования протокола обмена между звуковым модулем и микроконтроллером.

При подаче на девятую ножку звукового модуля низкого сигнала, модуль начинал воспроизводить. Как только звук воспроизводился на пятнадцатой ноге звукового модуля, устанавливается низкий уровень. Благодаря этому микроконтроллер отслеживал воспроизведение звука.

Поскольку я реализовал паузу между циклами воспроизведения звука, то для остановки воспроизведения звука программа подает низкий уровень на первую ножку звукового модуля (reset). Звуковой модуль является законченным устройством со своим усилителем для звука, и, по большому счету, в дополнительном усилителе звука он не нуждается. Но мне данного усиления звука показалось мало, и в качестве усилителя звука я применил микросхему TDA2822M. В режиме воспроизведения звука потребляет 120 миллиампер. Учитывая, что поимка птицы займет какое-то время, в качестве автономной батареи питания я применил не совсем новый аккумулятор от бесперебойника (всё равно валялся без дела).
Принцип электронного птицелова прост, и схема состоит в основном из готовых модулей.

Программа и схема -

Бывает идешь мимо припаркованных машин, и замечаешь краем глаза, что кто то уже давно, судя по тусклому свечению ламп, забыл свет выключить. Кто то и сам так попадал. Хорошо когда есть штатный сигнализатор не выключенного света, а когда нету поможет вот такая поделка: Незабывайка умеет пищать, когда не выключен свет и умеет пропикивать втыкание задней передачи.

Схема цифрового индикатора уровня топлива обладает высокой степенью повторяемости, даже если опыт работы с микроконтроллерами незначителен, поэтому разобраться в тонкостях процесса сборки и настройки не вызывает проблем. Программатор Громова – это простейший программатор, который необходим для программирования avr микроконтроллера. Программатор Горомова хорошо подходит как для внутрисхемного, так и для стандартного схемного программирования. Ниже приведена схема контроля индикатора топлива.

Плавное включение и выключение светодиодов в любом режиме (дверь открыта, и плафон включен). Так же авто выключение через пять минут. И минимальное потребление тока в режиме ожидания.

Вариант 1 - Коммутация по минусу. (с применением N-канальных транзисторов) 1) "коммутация по минусу", т.е такой вариант при котором один питающий провод лампы соединен с +12В аккумулятора (источника питания), а второй провод коммутирует ток через лампу тем самым включает ее. В данном варианте будет подаваться минус. Для таких схем нужно применять N-канальные полевые транзисторы в качестве выходных ключей.

Сам модем небольшого размера, недорог, работает без проблем, четко и быстро и вообще нареканий нет к нему. Единственный минус для меня был, это необходимость его включать и выключать кнопкой. Если его не выключать, то модем работал от встроенного аккумулятора, который в итоге садился и модем снова было нужно включать.

Принцип работы прост: привращении крутилки регулируется громкость, при нажатии - выключение-включение звука. Нужно для кар писи на винде или андройде

Изначально в Lifan Smily (да и не только) режим работы заднего дворника - единственный, и называется он «всегда махать». Особенно негативно воспринимается такой режим в наступивший сезон дождей, когда на заднем стекле собираются капли, но в недостаточном для одного прохода дворника количестве. Так, приходится либо слушать скрип резины по стеклу, либо изображать робота и периодически включать-выключать дворник.

Немного доработал схему реле времени задержки включения освещения салона для автомобиля Форд (схема разрабатывалась для вполне конкретного автомобиля, как замена штатного реле Ford 85GG-13C718-AA, но была успешно установлена в отечественную "классику").

Уже не первый раз проскакивают такие поделки. Но почему-то люди жмуться на прошивки. Хотя в большинстве своём они основаны на проекте elmchan "Simple SD Audio Player with an 8-pin IC". Исходниник не открывают аргументируя, что пришлось исправлять проект, что в у меня качество лучше… и т.д. Короче взяли open source проект, собрали, и выдаёте за своё.

Итак. Микроконтроллер Attiny 13- так сказать сердце данного устройства. С его прошивкой долго мучился, никак не мог прошить.Ни 5ю проводками через LPT, ни прогромматором Громова. Компьютер просто не видит контроллер и все.

В связи с нововведениями в ПДД, народ стал думать о реализации дневных ходовых огней. Один из возможных путей это включение ламп дальнего света на часть мощности, об этом и есть данная статья.

Это устройство позволит ближнему свету автоматически включиться при начале движения и регулирует напряжение на лампах, ближнего света, в зависимости от скорости с которой вы едите. Так же, это послужит более безопасному движению и продлит срок службы ламп.

Теперь у меня на столе лежит два одинаковых программатора. А всё для того, чтобы попробовать новую прошивку. Эти близняшки буду шить друг друга. Все опыты проводятся под MS Windows XP SP3 .
Цель - увеличение скорости работы и расширение совместимости программатора.

Популярная среда разработки Arduino IDE привлекает большим количеством готовых библиотек и интересных проектов, которые можно найти на просторах Сети.


Некоторое время назад оказались в моем распоряжении несколько микроконтроллеров ATMEL ATMega163 и ATMega163L. Микросхемы были взяты из отслуживших свой срок девайсов. Данный контроллер очень похож на ATMega16, и фактически является его ранней версией.

Привет читателям Датагора! Мне удалось собрать вольтметр минимальных размеров с посегментной разверткой индикатора при довольно высокой функциональности, с автоматическим определением типа индикатора и выбором режимов.


Прочитав статьи Edward Ned’а, я собрал DIP-версию и проверил ее в работе. Действительно вольтметр работал, ток через вывод микросхемы к индикатору не превышал 16 миллиампер в импульсе, так что работа микросхемы без резисторов, ограничивающих токи сегментов, вполне допустима и не вызывает перегрузок элементов.
Не понравилось слишком частое обновление показаний на дисплее и предложенная шкала «999». Хотелось подправить программу, но исходных кодов автор не выкладывает.

В это же мне потребовались вольтметр и амперметр для небольшого блока питания. Можно было собрать на совмещенный вариант, а можно было собрать два миниатюрных вольтметра, причем габариты двух вольтметров получались меньше совмещенного варианта.
Свой выбор я остановил на микросхеме и написал исходный код для посегментной развертки индикатора.
В процессе написания кода возникла идея программируемого переключения шкал и положения запятой, что и удалось реализовать.


Механический энкодер - вещь удобная в использовании, но он имеет некоторые досадные недостатки. В частности, контакты со временем изнашиваются и приходят в негодность, появляется дребезг. Оптические энкодеры гораздо надежнее, но они дороже, многие из них боятся пыли, и они редко встречаются в таком виде, в котором их удобно было бы использовать в радиотехнике.

Короче, когда я узнал о том, что шаговый двигатель можно использовать как энкодер, эта идея мне очень понравилась.
Практически вечный энкодер! Замучить его невозможно: соберешь раз и можешь энкодить всю жизнь.

Предварительный усилитель-коммутатор с цифровым управлением. Применяем с программированием через оболочку Arduino, электронные потенциометры от Microchip, графический TFT.


Разрабатывать и собирать это устройство в мои планы не входило. Ну вот просто никак! У меня уже есть два предварительных усилителя. Оба меня вполне устраивают.
Но, как обычно происходит у меня, стечение обстоятельств или цепь неких событий, и вот нарисовалась задача на ближайшее время.

Здравствуйте, уважаемые читатели ! Хочу представить вам « » - проект подающего робота для настольного тенниса, который будет полезен новичкам и любителям при отработке приёма различного типа подач в любую зону стола, поможет рассчитать тайминг и силу приёма мяча.

А ещё можно просто привыкнуть к новой накладке или ракетке, и хорошенько простучать её.

Приветствую читателей ! Есть у меня пожилой компьютер, которому уже исполнилось лет десять. Параметры у него соответствующие: «пенёк» 3,0 ГГц, пара Гб ОЗУ и древняя материнская плата EliteGroup 915-й серии.


И задумал я куда-нибудь старичка пристроить (подарить, продать), т. к. выбрасывать жалко. Но мешала задуманному одна неприятность: у материнки не срабатывало включение от кнопки питания, и что бы я ни делал, начиная от проверки проводов и заканчивая прозвонкой транзисторов на плате, проблему найти так и не смог. Отдавать в ремонт спецам - ремонт окажется дороже всего компа.

Думал я, думал и нашёл способ запустить моего бедолагу. Выдернул батарею BIOS-а, от чего комп испугался и сразу стартанул при следующем появлении питания! А дальше - почти в каждом BIOS-е есть запуск ПК от любой кнопки клавиатуры или кнопки POWER на клавиатуре. Казалось бы, проблема решена. Ан нет, есть нюансы. С USB-клавиатур запуск не срабатывал. Плюс не хотелось пугать нового хозяина, компьютер должен стартовать от привычной кнопки питания на корпусе.

Поделки с микроконтроллерами – вопрос, как никогда актуальный и интересный. Ведь мы живем в 21 веке, эпохе новых технологий, роботов и машин. На сегодняшний день каждый второй, начиная с малого возраста, умеет пользоваться интернетом и различного рода гаджетами, без которых порою и вовсе сложно обойтись в повседневной жизни.

Поэтому в этой статье мы будем затрагивать, в частности, вопросы пользования микроконтроллерами, а также непосредственного применения их с целью облегчения миссий, каждодневно возникающих перед всеми нами. Давайте разберемся, в чем ценность этого прибора, и как просто использовать его на практике.

Микроконтроллер − это чип, целью которого является управление электрическими приборами. Классический контроллер совмещает в одном кристалле, как работу процессора, так и удаленных приборов, и включает в себя оперативное запоминающее устройство. В целом, это монокристальный персональный компьютер, который может осуществлять сравнительно обыкновенные задания.

Разница между микропроцессором и микроконтроллером заключается в наличии встроенных в микросхему процессора приборов «пуск-завершение», таймеров и иных удаленных конструкций. Применение в нынешнем контроллере довольно сильного вычисляющего аппарата с обширными способностями, выстроенного на моносхеме, взамен единого комплекта, существенно уменьшает масштабы, потребление и цену созданных на его основе приборов.

Из этого следует, что применить такое устройство можно в технике для вычисления, такой, как калькулятор, материнка, контроллеры компакт-дисков. Используют их также в электробытовых аппаратах – это и микроволновки, и стиральные машины, и множество других. Также микроконроллеры широко применяются в индустриальной механике, начиная от микрореле и заканчивая методиками регулирования станков.

Микроконроллеры AVR

Ознакомимся с более распространенным и основательно устоявшимся в современном мире техники контроллером, таким как AVR. В его состав входят высокоскоростной RISC-микропроцессор, 2 вида затратной по энергии памяти (Flash-кэш проектов и кэш сведений EEPROM), эксплуатационная кэш по типу RAM, порты ввода/вывода и разнообразные удаленные сопряженные структуры.

  • рабочая температура составляет от -55 до +125 градусов Цельсия;
  • температура хранения составляет от -60 до +150 градусов;
  • наибольшая напряженность на выводе RESET, в соответствии GND: максимально 13 В;
  • максимальное напряжение питания: 6.0 В;
  • наибольший электроток линии ввода/вывода: 40 мА;
  • максимальный ток по линии питания VCC и GND: 200 мА.

Возможности микроконтроллера AVR

Абсолютно все без исключения микроконтроллеры рода Mega обладают свойством самостоятельного кодирования, способностью менять составляющие своей памяти драйвера без посторонней помощи. Данная отличительная черта дает возможность формировать с их помощью весьма пластичные концепции, и их метод деятельности меняется лично микроконтроллером в связи с той либо иной картиной, обусловленной мероприятиями извне или изнутри.

Обещанное количество оборотов переписи кэша у микроконтроллеров AVR второго поколения равен 11 тысячам оборотов, когда стандартное количество оборотов равно 100 тысячам.

Конфигурация черт строения вводных и выводных портов у AVR заключается в следующем: целью физиологического выхода имеется три бита регулирования, а никак не два, как у известных разрядных контроллеров (Intel, Microchip, Motorola и т. д.). Это свойство позволяет исключить потребность обладать дубликатом компонентов порта в памяти с целью защиты, а также ускоряет энергоэффективность микроконтроллера в комплексе с наружными приборами, а именно, при сопутствующих электрических неполадках снаружи.

Всем микроконтроллерам AVR свойственна многоярусная техника пресечения. Она как бы обрывает стандартное течение русификатора для достижения цели, находящейся в приоритете и обусловленной определенными событиями. Существует подпрограмма преобразования запрашивания на приостановление для определенного случая, и расположена она в памяти проекта.

Когда возникает проблема, запускающая остановку, микроконтроллер производит сохранение составных счетчика регулировок, останавливает осуществление генеральным процессором данной программы и приступает к совершению подпрограммы обрабатывания остановки. По окончании совершения, под шефствующей программы приостановления, происходит возобновление заранее сохраненного счетчика команд, и процессор продолжает совершать незаконченный проект.

Поделки на базе микроконтроллера AVR

Поделки своими руками на микроконтроллерах AVR становятся популярнее за счет своей простоты и низких энергетических затрат. Что они собой представляют и как, пользуясь своими руками и умом, сделать такие, смотрим ниже.

"Направлятор"

Такое приспособление проектировалось, как небольшой ассистент в качестве помощника тем, кто предпочитает гулять по лесу, а также натуралистам. Несмотря на то, что у большинства телефонных аппаратов есть навигатор, для их работы необходимо интернет-подключение, а в местах, оторванных от города, это проблема, и проблема с подзарядкой в лесу также не решена. В таком случае иметь при себе такое устройство будет вполне целесообразно. Сущность аппарата состоит в том, что он определяет, в какую сторону следует идти, и дистанцию до нужного местоположения.

Построение схемы осуществляется на основе микроконтроллера AVR с тактированием от наружного кварцевого резонатора на 11,0598 МГц. За работу с GPS отвечает NEO-6M от U-blox. Это, хоть и устаревший, но широко известный и бюджетный модуль с довольно четкой способностью к установлению местонахождения. Сведения фокусируются на экране от Nokia 5670. Также в модели присутствуют измеритель магнитных волн HMC5883L и акселерометр ADXL335.


Беспроводная система оповещения с датчиком движения

Полезное устройство, включающее в себя прибор перемещения и способность отдавать, согласно радиоканалу, знак о его срабатывании. Конструкция является подвижной и заряжается с помощью аккумулятора или батареек. Для его изготовления необходимо иметь несколько радиомодулей HC-12, а также датчик движения hc-SR501.

Прибор перемещения HC-SR501 функционирует при напряжении питания от 4,5 до 20 вольт. И для оптимальной работы от LI-Ion аккумулятора следует обогнуть предохранительный светодиод на входе питания и сомкнуть доступ и вывод линейного стабилизатора 7133 (2-я и 3-я ножки). По окончанию проведения этих процедур прибор приступает к постоянной работе при напряжении от 3 до 6 вольт.


Внимание: при работе в комплексе с радиомодулем HC-12 датчик временами ложно срабатывал. Во избежание этого необходимо снизить мощность передатчика в 2 раза (команда AT+P4). Датчик работает на масле, и одного заряженного аккумулятора, емкостью 700мА/ч, хватит свыше, чем на год.

Минитерминал

Приспособление проявило себя замечательным ассистентом. Плата с микроконтроллером AVR нужна, как фундамент для изготовления аппарата. Из-за того, что экран объединён с контроллером непосредственно, то питание должно быть не более 3,3 вольт, так как при более высоких числах могут возникнуть неполадки в устройстве.


Вам следует взять модуль преобразователя на LM2577, а основой может стать Li-Ion батарея емкостью 2500мА/ч. Выйдет дельная комплектация, отдающая постоянно 3,3 вольта во всём трудовом интервале напряжений. С целью зарядки применяйте модуль на микросхеме TP4056, который считается бюджетным и достаточно качественным. Для того чтобы иметь возможность подсоединить минитерминал к 5-ти вольтовым механизмам без опаски сжечь экран, необходимо использовать порты UART.

Основные аспекты программирования микроконтроллера AVR

Кодирование микроконтоллеров зачастую производят в стиле ассемблера или СИ, однако, можно пользоваться и другими языками Форта или Бейсика. Таким образом, чтобы по факту начать исследование по программированию контроллера, следует быть оснащенным следующим материальным набором, включающим в себя: микроконтроллер, в количестве три штуки - к высоковостребованным и эффективным относят - ATmega8A-PU, ATtiny2313A-PU и ATtiny13A- PU.

Чтобы провести программу в микроконтроллер, нужен программатор: лучшим считают программатор USBASP, который дает напряжение в 5 Вольт, используемое в будущем. С целью зрительной оценки и заключений итогов деятельности проекта нужны ресурсы отражения данных − это светодиоды, светодиодный индуктор и экран.


Чтобы исследовать процедуры коммуникации микроконтроллера с иными приборами, нужно числовое приспособление температуры DS18B20 и, показывающие правильное время, часы DS1307. Также важно иметь транзисторы, резисторы, кварцевые резонаторы, конденсаторы, кнопки.

С целью установки систем потребуется образцовая плата для монтажа. Чтобы соорудить конструкцию на микроконтроллере, следует воспользоваться макетной платой для сборки без пайки и комплектом перемычек к ней: образцовая плата МВ102 и соединительные перемычки к макетной плате нескольких видов - эластичные и жесткие, а также П-образной формы. Кодируют микроконтроллеры, применяя программатор USBASP.

Простейшее устройство на базе микроконтроллера AVR. Пример

Итак, ознакомившись с тем, что собой представляют микроконтроллеры AVR, и с системой их программирования, рассмотрим простейшее устройство, базисом для которого служит данный контроллер. Приведем такой пример, как драйвер низковольтных электродвигателей. Это приспособление дает возможность в одно и то же время распоряжаться двумя слабыми электрическими двигателями непрерывного тока.

Предельно возможный электроток, коим возможно загрузить программу, равен 2 А на канал, а наибольшая мощность моторов составляет 20 Вт. На плате заметна пара двухклеммных колодок с целью подсоединения электромоторов и трехклеммная колодка для подачи усиленного напряжения.

Устройство выглядит, как печатная плата размером 43 х 43 мм, а на ней сооружена минисхемка радиатора, высота которого 24 миллиметра, а масса – 25 грамм. С целью манипулирования нагрузкой, плата драйвера содержит около шести входов.

Заключение

В заключение можно сказать, что микроконтроллер AVR является полезным и ценным средством, особенно, если дело касается любителей мастерить. И, правильно использовав их, придерживаясь правил и рекомендаций по программированию, можно с легкостью обзавестись полезной вещью не только в быту, но и в профессиональной деятельности и просто в повседневной жизни.

Представляю вторую версию двухканального циклического таймера. Были добавлены новые функции и изменилась принципиальная схема. Циклический таймер позволяет включать и выключать нагрузку, а также выдерживать паузу на заданные интервалы времени в циклическом режиме. Каждый из выходов таймера имеет 2 режима работы - "Логический" и "ШИМ". Если выбран логический режим устройство позволяет управлять с помощью контактов реле освещением, отоплением, вентиляцией и другими электроприборами. Нагрузкой могут выступать любые электрические приборы мощность нагрузки которых не превышает максимального тока реле. Тип выхода "ШИМ" позволяет например подключить через силовой транзистор двигатель постоянного тока, при этом есть возможность установить скважность ШИМ, чтобы двигатель вращался с определенной скоростью.

Часы собранные на микроконтроллере ATtiny2313 и светодиодной матрице показывают время в 6-ти различных режимах.

Светодиодная матрица 8*8 управляется методом мультиплексирования. Токоограничивающие резисторы исключены из схемы, чтобы не испортить дизайн, и, поскольку отдельные светодиоды управляются не постоянно, они не будут повреждены.

Для управления используется только одна кнопка, длительное нажатие кнопки(нажатие и удержание) для поворота меню и обычное нажатие кнопки для выбора меню.

Это хобби-проект, потому точность хода часов зависит лишь от калибровки внутреннего генератора контроллера. Я не использовал кварц в этом проекте, так как он занимал бы два нужных мне вывода ATtiny2313. Кварц может быть использован для повышения точности в альтернативном проекте (печатной плате).

На этот раз я представлю простой малогабаритный частотомер с диапазоном измерения от 1 до 500 МГц и разрешением 100 Гц.

В настоящее время, независимо от производителя, почти все микроконтроллеры имеют так называемые счетные входы, которые специально предназначены для подсчета внешних импульсов. Используя этот вход, относительно легко спроектировать частотомер.

Однако этот счетчый вход также имеет два свойства, которые не позволяют напрямую использовать частотомер для удовлетворения более серьезных потребностей. Одна из них заключается в том, что на практике в большинстве случаев мы измеряем сигнал с амплитудой в несколько сотен мВ, который не может перемещать счетчик микроконтроллера. В зависимости от типа, для правильной работы входа требуется сигнал не менее 1-2 В. Другое заключается в том, что максимальная измеримая частота на входе микроконтроллера составляет всего несколько МГц, это зависит от архитектуры счетчика, а также от тактовой частоты процессора.

Это устройство позволяет контролировать температуру воды в чайнике, имеет функцию поддержания температуры воды на определенном уровне, а также включение принудительного кипячения воды.

В основе прибора микроконтроллер ATmega8, который тактируется от кварцевого резонатора частотой 8МГц. Датчик температуры – аналоговый LM35. Семисегментный индикатор с общим анодом.

Эта декоративная звезда состоит из 50 специальных светодиодов RGB, которые контролируются ATtiny44A . Все светодиоды непрерывно изменяют цвет и яркость в случайном порядке. Также есть несколько разновидностей эффектов, которые также активируются случайно. Три потенциометра могут изменять интенсивность основных цветов. Положение потенциометра индицируется светодиодами при нажатии кнопки, а изменение цвета и скорость эффекта можно переключать в три этапа. Этот проект был полностью построен на компонентах SMD из-за специальной формы печатной платы. Несмотря на простую схему, структура платы довольно сложная и вряд ли подойдет для новичков.

В этой статье описывается универсальный трехфазный преобразователь частоты на микроконтроллере(МК) ATmega 88/168/328P . ATmega берет на себя полный контроль над элементами управления, ЖК-дисплеем и генерацией трех фаз. Предполагалось, что проект будет работать на готовых платах, таких как Arduino 2009 или Uno, но это не было реализовано. В отличие от других решений, синусоида не вычисляется здесь, а выводится из таблицы. Это экономит ресурсы, объем памяти и позволяет МК обрабатывать и отслеживать все элементы управления. Расчеты с плавающей точкой в программе не производятся.

Частота и амплитуда выходных сигналов настраиваются с помощью 3 кнопок и могут быть сохранены в EEPROM памяти МК. Аналогичным образом обеспечивается внешнее управление через 2 аналоговых входа. Направление вращения двигателя определяется перемычкой или переключателем.

Регулируемая характеристика V/f позволяет адаптироваться ко многим моторам и другим потребителям. Также был задействован интегрированный ПИД-регулятор для аналоговых входов, параметры ПИД-регулятора могут быть сохранены в EEPROM. Время паузы между переключениями ключей (Dead-Time) можно изменить и сохранить.

Этот частотомер с AVR микроконтроллером позволяет измерять частоту от 0,45 Гц до 10 МГц и период от 0,1 до 2,2 мкс в 7-ми автоматически выбранных диапазонах. Данные отображаются на семиразрядном светодиодном дисплее. В основе проекта микроконтроллер Atmel AVR ATmega88/88A/88P/88PA, программу для загрузки вы можете найти ниже. Настройка битов конфигурации приведена на рисунке 2 .

Принцип измерения отличается от предыдущих двух частотомеров. Простой способ подсчета импульсов через 1 секунду, используемый в двух предыдущих частотомерах(частотомер I, частотомер II), не позволяет измерять доли Герц. Вот почему я выбрал другой принцип измерения для своего нового частотомера III. Этот метод намного сложнее, но позволяет измерять частоту с разрешением до 0,000 001 Гц.

Это очень простой частотомер на микроконтроллере AVR. Он позволяет измерять частоты до 10 МГц в 2-х автоматически выбранных диапазонах. Он основан на предыдущем проекте частотомера I , но имеет 6 разрядов индикатора вместо 4-х. Нижний диапазон измерения имеет разрешение 1 Гц и работает до 1 МГц. Более высокий диапазон имеет разрешение 10 Гц и работает до 10 МГц. Для отображения измеренной частоты используется 6-разрядный светодиодный дисплей. Прибор построен на основе микроконтроллера Atmel AVR ATtiny2313A или ATTiny2313 . Настройку битов конфигурации вы можете найти ниже.

Микроконтроллер тактируется от кварцевого резонатора частотой 20 МГц (максимально допустимая тактовая частота). Точность измерения определяется точностью этого кристалла, а также конденсаторов C1 и C2. Минимальная длина полупериода измеряемого сигнала должна быть больше периода частоты кварцевого генератора (ограничение архитектуры AVR). Таким образом, при 50% рабочем цикле можно измерять частоты до 10 МГц.

Цепь однофазного частотно-регулируемого привода

VFD

В посте обсуждается однофазная схема частотно-регулируемого привода или схема частотно-регулируемого привода для управления скоростью двигателя переменного тока, не влияя на их рабочие характеристики.

Что такое VFD

Двигатели и другие подобные индуктивные нагрузки особенно не «любят» работу с частотами, которые могут выходить за рамки их производственных спецификаций, и, как правило, становятся неэффективными, если вынуждены делать это в таких ненормальных условиях.

Например, двигатель, предназначенный для работы с частотой 60 Гц, не может быть рекомендован для работы с частотами 50 Гц или другими диапазонами.

Это может привести к нежелательным результатам, таким как нагрев двигателя, более низкие или высокие скорости, чем требуемые, и чрезмерно высокое потребление, что делает вещи очень неэффективными и сокращает срок службы подключенного устройства.

Однако работа двигателей при различных условиях входной частоты часто становится вынужденной, и в таких ситуациях частотно-регулируемый привод или схема привода с переменной частотой могут стать очень удобными.

VFD - это устройство, которое позволяет пользователю управлять скоростью двигателя переменного тока, регулируя частоту и напряжение входного источника питания в соответствии со спецификациями двигателя.

Это также означает, что частотно-регулируемый привод позволяет нам управлять любым двигателем переменного тока через любую доступную сеть переменного тока, независимо от его характеристик напряжения и частоты, путем соответствующей настройки частоты и напряжения частотно-регулируемого привода в соответствии со спецификациями двигателя.

Обычно это делается с использованием данного элемента управления в виде регулируемой ручки, масштабируемой с помощью другой калибровки частоты.

Создание ЧРП в домашних условиях может показаться сложной задачей, однако взгляд на конструкцию, предложенную ниже, показывает, что, в конце концов, собрать это очень полезное устройство (разработанное мной) не так уж и сложно.

Работа схемы

Схема может быть принципиально разделена на два этапа: этап полубижного драйвера и этап логического генератора ШИМ.

В каскаде драйвера полумоста используется микросхема драйвера полумоста IR2110, которая в одиночку заботится о каскаде привода высокого напряжения, включая два МОП-транзистора с высокой и низкой стороны соответственно.

ИС драйвера, таким образом, является сердцем схемы, но для реализации этой важной функции требуется всего несколько компонентов.

Однако вышеуказанная ИС потребует высокой логики и низкой логики по частотам для управления подключенной нагрузкой на желаемой конкретной частоте.

Эти входные логические сигналы высокого и низкого уровня становятся рабочими данными для ИС драйвера и должны включать в себя сигналы для определения заданной частоты, а также ШИМ в фазе с сетевым переменным током.

Приведенная выше информация создается другим каскадом, состоящим из пары 555 микросхем и декадного счетчика.IC 4017.

Две микросхемы 555 отвечают за генерацию модифицированных синусоидальных ШИМ, соответствующих двухполупериодной выборке переменного тока, полученной с выхода понижающего мостового выпрямителя.

IC4017 функционирует как логический генератор на выходе тотемного полюса, чья переменная частота становится параметром, определяющим ОСНОВНУЮ частоту схемы.

Эта определяющая частота снимается с вывода №3 IC1, который также питает вывод запуска IC2, и для создания модифицированных ШИМ на выводе №3 IC2.

Модифицированные синусоидальные ШИМ сканируются на выходах микросхемы 4017 перед подачей на IR2110, чтобы наложить точную «печать» модифицированных ШИМ на выходе драйвера полумоста и, в конечном итоге, для двигателя, который работает.

Cx и значения потенциометра 180k должны быть соответствующим образом выбраны или отрегулированы, чтобы обеспечить правильную заданную частоту для двигателя.

Высокое напряжение на стоке МОП-транзистора верхнего плеча также должно быть рассчитано соответствующим образом и получено путем выпрямления доступного сетевого напряжения переменного тока после соответствующего повышения или понижения в соответствии со спецификациями двигателя.

Приведенные выше настройки определяют правильное значение вольт на герц (В / Гц) для конкретного двигателя.

Напряжение питания для обеих ступеней может быть объединено в общую линию, одинаковую для заземления.

TR1 - это понижающий трансформатор 0–12 В / 100 мА, который обеспечивает схемы необходимыми рабочими напряжениями питания.

Схема ШИМ-контроллера

Вам нужно будет соответствующим образом интегрировать выходы от IC 4017 из приведенной выше схемы во входы HIN и LIN на следующей схеме.Кроме того, подключите указанные диоды 1N4148 на приведенной выше схеме с затворами полевого МОП-транзистора нижнего уровня, как показано на схеме ниже.

Драйвер двигателя полного моста

Обновление:

Обсуждаемая выше простая конструкция с одним ЧРП может быть дополнительно упрощена и улучшена с помощью автоколебательной полной мостовой ИС IRS2453, как показано ниже:

Здесь IC 4017 полностью устранены, поскольку драйвер полного моста оснащен собственным каскадом генератора, и поэтому для этой ИС не требуется внешнего запуска.

Будучи полностью мостовой конструкцией, выходной регулятор двигателя имеет полный диапазон регулировки от нуля до максимальной скорости.

Гнездо на выводе № 5 микросхемы IC 2 может использоваться для управления скоростью и крутящим моментом двигателя с помощью метода ШИМ.

Для управления скоростью В / Гц Rt / Ct, связанные с IRS2453 и R1, связанные с IC1, могут быть соответственно настроены (вручную) для получения подходящих результатов.

Упрощение еще больше

Если вы обнаружите, что полная секция моста перегружает вас, вы можете заменить ее полной мостовой схемой на основе P, N-MOSFET, как показано ниже.Этот частотно-регулируемый драйвер использует ту же концепцию, за исключением секции драйвера полного моста, в которой используются полевые МОП-транзисторы с P-каналом на верхней стороне и N-канальные МОП-транзисторы на нижней стороне.

Хотя конфигурация может выглядеть неэффективной из-за использования полевых МОП-транзисторов с P-каналом (из-за их высокого рейтинга RDSon), использование множества параллельных полевых МОП-транзисторов с P-каналом может показаться эффективным подходом для решения проблемы низкого уровня RDSon.

Здесь 3 полевых МОП-транзистора используются параллельно для устройств с P-каналом, чтобы обеспечить минимальный нагрев устройств, наравне с N-канальными аналогами.

Что такое преобразователь частоты? Как это работает?

Работа с переменной частотой в виде генератора переменного тока существует с момента появления асинхронного двигателя. Измените скорость вращения генератора, и вы измените его выходную частоту. До появления высокоскоростных транзисторов это был один из немногих вариантов, доступных для изменения скорости двигателя, однако изменения частоты были ограничены, поскольку снижение скорости генератора приводило к снижению выходной частоты, но не напряжения. Мы увидим, почему это важно, чуть позже.В нашей отрасли насосы с регулируемой скоростью в прошлом были намного сложнее, чем сегодня. Один из более простых методов заключался в использовании многополюсного двигателя, намотанного таким образом, чтобы переключатель (или переключатели) мог изменять количество полюсов статора, которые были активными в любой момент времени. Скорость вращения можно было изменять вручную или с помощью датчика, подключенного к переключателям. Этот метод до сих пор используется во многих насосных системах с переменным расходом. Примеры включают циркуляционные насосы горячей и охлажденной воды, насосы для бассейнов, вентиляторы и насосы градирни.В некоторых отечественных подкачивающих насосах использовались гидравлические приводы или системы ременного привода с переменной скоростью (своего рода автоматическая трансмиссия) для изменения скорости насоса на основе обратной связи от напорного мембранного клапана. И несколько других были еще более сложными.

Судя по обручам, через которые нам приходилось преодолевать в прошлом, становится довольно очевидно, почему появление современного преобразователя частоты произвело революцию (еще один каламбур) в среде насосов с регулируемой скоростью. Все, что вам нужно сделать сегодня, это установить относительно простой электронный блок (который часто заменяет более сложное пусковое оборудование) на месте применения и, внезапно, вы можете вручную или автоматически изменить скорость насоса по своему желанию.

Итак, давайте взглянем на компоненты преобразователя частоты и посмотрим, как они на самом деле работают вместе, чтобы изменять частоту и, следовательно, скорость двигателя. Думаю, вы удивитесь простоте этого процесса. Все, что для этого потребовалось, - это созревание твердотельного устройства, известного как транзистор.

Преобразователь частоты Компоненты

Выпрямитель
Поскольку трудно изменить частоту синусоидальной волны переменного тока в режиме переменного тока, первая задача преобразователя частоты - преобразовать волну в постоянный ток.Как вы увидите немного позже, относительно легко управлять постоянным током, чтобы он выглядел как переменный ток. Первым компонентом всех преобразователей частоты является устройство, известное как выпрямитель или преобразователь, оно показано слева на рисунке ниже.

Схема выпрямителя преобразует переменный ток в постоянный и делает это почти так же, как в зарядном устройстве для аккумуляторов или в аппарате для дуговой сварки. Он использует диодный мост для ограничения распространения синусоидальной волны переменного тока только в одном направлении. В результате получается полностью выпрямленная форма волны переменного тока, которая интерпретируется цепью постоянного тока как естественная форма волны постоянного тока.Трехфазные преобразователи частоты принимают три отдельные входные фазы переменного тока и преобразуют их в один выход постоянного тока. Большинство трехфазных преобразователей частоты также могут принимать однофазное питание (230 В или 460 В), но, поскольку есть только две входящие ветви, мощность преобразователя частоты (HP) должна быть снижена, поскольку производимый постоянный ток уменьшается пропорционально. С другой стороны, настоящие однофазные преобразователи частоты (те, которые управляют однофазными двигателями) используют однофазный вход и вырабатывают выход постоянного тока, который пропорционален входу.

Есть две причины, по которым трехфазные двигатели более популярны, чем их однофазные счетчики, когда речь идет о работе с регулируемой скоростью. Во-первых, они предлагают гораздо более широкий диапазон мощности. Но не менее важна их способность начать вращение самостоятельно. С другой стороны, однофазный двигатель часто требует некоторого вмешательства извне, чтобы начать вращение. В этом случае мы ограничимся рассмотрением трехфазных двигателей, используемых в трехфазных преобразователях частоты.

Шина постоянного тока
Второй компонент, известный как шина постоянного тока (показан в центре рисунка), не виден и не во всех преобразователях частоты, потому что он не вносит прямого вклада в работу с переменной частотой.Но он всегда будет там в виде высококачественных преобразователей частоты общего назначения (производимых специализированными производителями преобразователей частоты). Не вдаваясь в подробности, шина постоянного тока использует конденсаторы и катушку индуктивности для фильтрации «пульсаций» переменного напряжения от преобразованного постоянного тока до того, как оно попадет в секцию инвертора. Он также может включать фильтры, препятствующие гармоническим искажениям, которые могут возвращаться в источник питания, питающий преобразователь частоты. Преобразователи частоты более старых версий и некоторые преобразователи частоты для конкретных насосов требуют отдельных сетевых фильтров для выполнения этой задачи.

Инвертор
Справа от рисунка - «внутренности» преобразователя частоты. Инвертор использует три набора высокоскоростных переключающих транзисторов для создания «импульсов» постоянного тока, которые имитируют все три фазы синусоидальной волны переменного тока. Эти импульсы определяют не только напряжение волны, но и ее частоту. Термин инвертор или инверсия означает «реверсирование» и просто относится к движению вверх и вниз генерируемой формы волны. Современный инвертор с преобразователем частоты использует метод, известный как «широтно-импульсная модуляция» (ШИМ), для регулирования напряжения и частоты.Мы рассмотрим это более подробно, когда рассмотрим выход инвертора.

Еще один термин, с которым вы, вероятно, столкнулись при чтении литературы или рекламы по преобразователям частоты, - это «IGBT». IGBT относится к «биполярному транзистору с изолированным затвором», который является переключающим (или импульсным) компонентом инвертора. Транзистор (который заменил лампу) выполняет две функции в нашем электронном мире. Он может действовать как усилитель и увеличивать сигнал, как в радио или стереосистеме, или он может действовать как переключатель и просто включать и выключать сигнал.IGBT - это просто современная версия, которая обеспечивает более высокие скорости переключения (3000 - 16000 Гц) и пониженное тепловыделение. Более высокая скорость переключения приводит к повышению точности эмуляции волн переменного тока и снижению слышимого шума двигателя. Уменьшение выделяемого тепла означает меньшие радиаторы и, следовательно, меньшую площадь основания преобразователя частоты.

Выход инвертора
На рисунке справа показана форма сигнала, генерируемого инвертором преобразователя частоты ШИМ, в сравнении с формой истинной синусоидальной волны переменного тока.Выход инвертора состоит из серии прямоугольных импульсов с фиксированной высотой и регулируемой шириной. В этом конкретном случае есть три набора импульсов - широкий набор в середине и узкий набор в начале и конце как положительной, так и отрицательной частей цикла переменного тока. Сумма площадей импульсов равна эффективному напряжению истинной волны переменного тока (мы обсудим эффективное напряжение через несколько минут). Если бы вы отрезали части импульсов выше (или ниже) истинной волны переменного тока и использовали их для заполнения пустых пространств под кривой, вы бы обнаружили, что они почти идеально совпадают.Таким образом, преобразователь частоты регулирует напряжение, подаваемое на двигатель.

Сумма ширины импульсов и пустых промежутков между ними определяет частоту волны (отсюда ШИМ или широтно-импульсная модуляция), воспринимаемой двигателем. Если бы импульс был непрерывным (то есть без пробелов), частота все равно была бы правильной, но напряжение было бы намного больше, чем у истинной синусоидальной волны переменного тока. В зависимости от желаемого напряжения и частоты преобразователь частоты будет изменять высоту и ширину импульса, а также ширину пустых промежутков между ними.Хотя внутренние компоненты, обеспечивающие это, относительно сложны, результат элегантно прост!

Теперь некоторые из вас, вероятно, задаются вопросом, как этот «поддельный» переменный ток (на самом деле постоянный ток) может управлять асинхронным двигателем переменного тока. В конце концов, разве не требуется переменный ток, чтобы «вызвать» ток и соответствующее ему магнитное поле в роторе двигателя? Что ж, переменный ток вызывает индукцию естественным образом, потому что он постоянно меняет направление. DC, с другой стороны, этого не делает, потому что обычно он неподвижен после активации цепи.Но постоянный ток может индуцировать ток, если его включать и выключать. Для тех из вас, кто достаточно взрослый, чтобы помнить, что автомобильные системы зажигания (до появления твердотельного зажигания) имели набор точек в распределителе. Назначение точек было «импульсное» питание от батареи в катушку (трансформатор). Это вызвало заряд в катушке, который затем увеличил напряжение до уровня, при котором свечи зажигания могли загореться. Широкие импульсы постоянного тока, показанные на предыдущем рисунке, на самом деле состоят из сотен отдельных импульсов, и именно это включение и выключение выхода инвертора позволяет возникать индукции через постоянный ток.

Действующее напряжение
Мощность переменного тока - довольно сложная величина, и неудивительно, что Эдисон почти выиграл битву за то, чтобы сделать постоянный ток стандартом в США. К счастью, для нас все сложности были объяснены, и все, что нам нужно сделать, это следовать правилам, изложенным до нас.

Одним из атрибутов, делающих переменный ток сложным, является то, что он непрерывно изменяет напряжение, переходя от нуля к некоторому максимальному положительному напряжению, затем обратно к нулю, затем к некоторому максимальному отрицательному напряжению и затем снова обратно к нулю.Как определить действительное напряжение, приложенное к цепи? На рисунке слева изображена синусоида 60 Гц, 120 В. Обратите внимание, однако, что его пиковое напряжение составляет 170 В. Как мы можем назвать это волной 120 В, если ее фактическое напряжение составляет 170 В? В течение одного цикла он начинается с 0 В и повышается до 170 В, затем снова падает до 0. Он продолжает падать до –170, а затем снова повышается до 0. Оказывается, площадь зеленого прямоугольника, верхняя граница которого находится на уровне 120 В, равна сумме площадей под положительной и отрицательной частями кривой.Может ли тогда 120 В быть средним? Что ж, если бы вы усреднили все значения напряжения в каждой точке цикла, результат был бы примерно 108 В, так что это не должно быть ответом. Почему тогда значение, измеренное VOM, составляет 120 В? Это связано с тем, что мы называем «эффективным напряжением».

Если бы вы измерили тепло, выделяемое постоянным током, протекающим через сопротивление, вы бы обнаружили, что оно больше, чем тепло, производимое эквивалентным переменным током. Это связано с тем, что переменный ток не поддерживает постоянное значение на протяжении всего цикла.Если вы проделали это в лаборатории в контролируемых условиях и обнаружили, что определенный постоянный ток вызывает повышение температуры на 100 градусов, его эквивалент по переменному току приведет к увеличению на 70,7 градуса или всего 70,7% от значения постоянного тока. Следовательно, эффективное значение переменного тока составляет 70,7% от постоянного. Также оказывается, что действующее значение переменного напряжения равно квадратному корню из суммы квадратов напряжения на первой половине кривой. Если пиковое напряжение равно 1, и вы должны были измерить каждое из отдельных напряжений от 0 до 180 градусов, эффективное напряжение будет равно 0.707 пикового напряжения. 0,707 пикового напряжения 170, показанного на рисунке, равно 120 В. Это эффективное напряжение также известно как среднеквадратическое или среднеквадратичное напряжение. Отсюда следует, что пиковое напряжение всегда будет в 1,414 пикового значения от эффективного напряжения. Ток 230 В переменного тока имеет пиковое напряжение 325 В, а 460 - пиковое напряжение 650 В. Эффект пикового напряжения мы увидим немного позже.

Что ж, я, вероятно, говорил об этом дольше, чем необходимо, но я хотел, чтобы вы получили представление об эффективном напряжении, чтобы вы поняли иллюстрацию ниже.В дополнение к изменению частоты преобразователь частоты также должен изменять напряжение, даже если напряжение не имеет ничего общего со скоростью, с которой работает двигатель переменного тока.

На рисунке показаны две синусоидальные волны 460 В переменного тока. Красный - это кривая 60 Гц, а синий - 50 Гц. Оба имеют пиковое напряжение 650 В, но 50 Гц намного шире. Вы можете легко увидеть, что область под первой половиной (0–10 мс) кривой 50 Гц больше, чем площадь первой половины (0–8,3 мс) кривой 60 Гц.И, поскольку площадь под кривой пропорциональна эффективному напряжению, его эффективное напряжение выше. Это увеличение эффективного напряжения становится еще более значительным при уменьшении частоты. Если позволить двигателю 460 В работать при этих более высоких напряжениях, его срок службы может значительно сократиться. Следовательно, преобразователь частоты должен постоянно изменять «пиковое» напряжение относительно частоты, чтобы поддерживать постоянное эффективное напряжение. Чем ниже рабочая частота, тем ниже пиковое напряжение и наоборот.По этой причине двигатели 50 Гц, используемые в Европе и некоторых частях Канады, рассчитаны на напряжение 380 В. Видите ли, я говорил вам, что кондиционер может быть немного сложным!

Теперь вы должны иметь довольно хорошее представление о работе преобразователя частоты и о том, как он управляет скоростью двигателя. Большинство преобразователей частоты предлагают пользователю возможность устанавливать скорость двигателя вручную с помощью многопозиционного переключателя или клавиатуры или использовать датчики (давления, расхода, температуры, уровня и т. Д.) Для автоматизации процесса.

Зачем использовать преобразователь частоты вместе с электродвигателем? - Леонардо Энергия

Стефан Фассбиндер (DKI)

Электродвигатель и электрогенератор - это в основном одно и то же. .

В принципе, любой электродвигатель также может вырабатывать электричество. Электроприводы намного опережают двигатели внутреннего сгорания, поскольку, к сожалению, автомобильный двигатель, который всасывает выхлопные газы во время торможения и спусков и преобразует их в топливо и свежий воздух, все еще находится в стадии разработки. Электродвигатель может обеспечить это, хотя в течение первого столетия его использования его использование в значительной степени затруднялось двумя основными недостатками:

  • Электродвигатель не имеет педали акселератора.
  • Розетка не имеет «водопроводного крана».

Когда электродвигатель работает, он генерирует напряжение с полярностью, противоположной питающему напряжению .

Следовательно, ток слишком высокий при первом включении, когда двигатель еще не работает. Для больших двигателей необходимо принять меры предосторожности, чтобы не повредить их и не сгореть предохранители. По мере увеличения скорости двигателя это индуцированное напряжение увеличивается. Фактически, при превышении скорости, при которой приложенное напряжение и напряжение сети равны, двигатель будет генерировать более высокое напряжение, чем напряжение в линии.Ток будет течь в обратном направлении, и двигатель изменит свою функцию на функцию генератора.

Это хорошо, так как предлагает отличные преимущества энергоэффективности , особенно для кранов, лифтов и т. Д., Которые фактически становятся электростанциями при движении вниз. Что не так хорошо, так это то, что линия всегда имеет примерно одинаковое напряжение, но относительно другие нагрузки, например огни, это должно быть так. Следовательно, положения должны быть предусмотрены снова, если скорость двигателя должна быть изменена .Раньше это было обременительной задачей. Приходилось использовать трансформаторы с несколькими ответвлениями, например, в локомотивах, но это было громоздкое и дорогое решение, или ограничивать ток резисторами, например, в трамваях, что было неэффективным решением.

А с двигателями переменного тока , однофазными или трехфазными, все становится еще сложнее. Принцип электродвигателя всегда заключается в создании вращательного движения за счет притяжения и отталкивания магнитных сил.В строгих терминах физики электродвигатели даже не существуют, но все они должны быть названы магнитными двигателями с точки зрения пуриста: электрический магнит притягивает другой - также электрический или постоянный - магнит, пока он не подойдет как можно ближе как может быть. Затем полярность тока в (одном из) электрического магнита (-ов) инвертируется, и сила притяжения превращается в отталкивающую. Механическая конструкция двигателя устроена так, чтобы допускать такое движение только по кругу, поскольку требуется вращательное движение.Двигатели переменного тока могут быть построены проще, чем двигатели постоянного тока, потому что периодическая смена полярности происходит в любом случае и не должна генерироваться внутри машины.

Но становится очевидным, что изменение скорости вращения затруднительно для двигателей постоянного тока , так как оно в значительной степени зависит от питающего напряжения, которое приблизительно стабильно, и невозможно для двигателей переменного тока, скорость которых строго совпадает с частотой сеть, которая технически полностью стабильна.

Теперь любой тип электродвигателя должен быть спроектирован таким образом, чтобы при желаемой (номинальной) скорости генерируемое в двигателе напряжение было примерно таким же, как приложенное (номинальное) рабочее напряжение.В двигателях постоянного тока индуцированное напряжение должно быть несколько ниже, чем в линии. При нагрузке двигатель постоянного тока немного теряет скорость, что приводит к дальнейшему падению индуцированного напряжения и, следовательно, большей разнице между линейным напряжением и более высокому входному току, соответствующему более высокой нагрузке. Таким образом, он адаптируется (более или менее) по своей природе к изменяющейся нагрузке.

Это преимущество перед двигателем внутреннего сгорания и одно из существенных отличий в рабочих характеристиках, которые будут обсуждаться здесь. Представьте, что вы выключаете двигатель автомобиля и кладете кирпич на педаль акселератора.Вы не должны этого делать. Электродвигатель, однако, не будет возражать против работы на полном напряжении без нагрузки - за исключением, возможно, одного конкретного типа - последовательно соединенной коллекторной машины. Большие блоки могут фактически быть разрушены центробежными силами, когда они питаются полным напряжением и без нагрузки. Небольшие блоки, например, используемые в кухонной технике и т. Д. грамм. для стеклоочистителя в автомобиле иметь достаточные потери на трение, чтобы предотвратить это. Но при приложенном фиксированном питающем напряжении определенная скорость всегда будет связана с фиксированной выходной и входной мощностью.Поскольку не существует простой и понятной вещи, такой как водопроводный кран на кухне и в ванной, который можно было бы подключить к розетке для управления потоком электричества, регулирование мощности и / или скорости электродвигателя было решено. сложная задача еще до изобретения силовой электроники.

В большей степени это относится к двигателям переменного тока. Скорость синхронной машины абсолютно стабильна, независимо от того, используется ли машина в качестве двигателя или генератора. Что ж, он действительно немного теряет скорость в течение очень ограниченного времени, когда, например, он переключается с нейтрального режима на двигатель, как раз до тех пор, пока фазовый угол между электрической фазой и положением ротора больше не будет «синфазным». .После этого короткого периода перехода скорость двигателя и частота сети снова будут синхронизированы. Можно представить себе этот процесс так:

Когда машина работает без нагрузки, генерируемое ею переменное напряжение высокое, когда линейное напряжение высокое, и низкое, когда линейное напряжение низкое. Они находятся в фазе друг с другом, поэтому ток практически не течет в обоих направлениях (грубо говоря, игнорируя аспекты реактивной мощности, специалисты подчеркнут здесь).

Поскольку электрическая мощность (а также ее мгновенные значения) рассчитывается как напряжение, умноженное на ток, изменение напряжения или тока на противоположное означает изменение знака и, следовательно, изменение направления потока энергии. Теперь, когда машина работает как двигатель, генерируемое ею переменное напряжение отстает от приложенного напряжения. Когда напряжение в сети уже достигает своего пика, оно все еще несколько ниже, поэтому ток будет течь из сети в машину; так что он действует как мотор. К тому времени, когда ток, наконец, поменяет полярность, линейное напряжение также поменяется местами, поэтому мы умножаем два раза на -1 и застреваем в работе двигателя.

Когда мы приводим вал машины в движение, чтобы она работала как генератор, генерируемое им переменное напряжение опережает приложенное напряжение. Оно уже снова падает, когда напряжение в сети достигает своего пика, поэтому ток будет течь из машины в сеть. К тому времени, как ток поменяет полярность… и так далее.

Теперь все становится трудным, когда мы переходим к обсуждению наиболее широко используемой электрической машины асинхронного двигателя , поскольку процессы, которые ее приводят в действие, трудно представить в иллюстративной форме.У него есть электромагниты с обеих сторон, в статоре и в роторе. Обмотки ротора закорочены и действуют как вторичные обмотки трансформатора. Магнитное поле, вращающееся в статоре, индуцирует ток в закороченных обмотках ротора, который затем создает собственное магнитное поле. Как и в синхронной машине, полюса полей статора, управляемые частотой сети, бегают по кругу и, так сказать, преследуют полюса поля ротора перед собой. Итак, ротор начинает вращаться.Асинхронный двигатель всегда будет вращаться немного медленнее, чем магнитные полюса статора. Эта небольшая разница, скольжение, необходима для поддержания тока в обмотках ротора и, таким образом, для сохранения магнитного поля ротора. Частота скольжения может составлять всего 1 Гц или даже меньше в большой машине, поэтому, если в 2-полюсном асинхронном двигателе с питанием от 50 Гц полюса статора вращаются со скоростью 3000 об / мин, ротор будет вращаться со скоростью 2940 об / мин. Когда вы его ускоряете, он действует как генератор. При 3060 / мин, скажем, при том же скольжении с обратным знаком выходной ток будет таким же, как и входной ток при 2940 / мин.

Вместе с двигателями постоянного тока, включая последовательно соединенные коллекторные двигатели, которые могут работать как от переменного, так и от постоянного тока, асинхронный трехфазный двигатель запускается самостоятельно, как только будет подано сетевое напряжение. Более того: это будет происходить очень резко, с многократным превышением номинального крутящего момента и потребляемого тока, как описано выше. Это следующее отличие двигателя внутреннего сгорания, для запуска которого требуется небольшой двигатель постоянного тока.

Синхронная машина сама по себе не может запуститься.По этой и другим причинам он обычно используется только как генератор.

Кстати, машина с последовательным коммутатором в принципе является машиной постоянного тока, но поскольку ее статор и ротор соединены последовательно, они оба меняют полярность при изменении тока, поэтому направление вращения остается прежним. Поэтому он также может работать как двигатель переменного тока, но при использовании в качестве генератора он будет генерировать постоянный ток, полярность которого зависит от некоторого случайного остаточного магнетизма, если он не определен специальной дополнительной катушкой.

Теперь, хотя управление мощностью и скоростью двигателя внутреннего сгорания совсем несложно, просто дросселируя подачу топлива, что, с другой стороны, является ужасной необходимостью, в то время как электродвигатель более или менее регулирует себя, «водопроводный кран» для электричества было окончательно изобретено в семидесятых: теперь доступны инверторы, которые преобразуют переменный ток в постоянный, а постоянный снова обратно в переменный с электронными компонентами (и очень низкими дополнительными потерями) . Выход переменного тока можно регулировать как по амплитуде, так и по частоте, чтобы адаптировать его к требованиям любого двигателя в любой желаемой точке работы.Скорость и крутящий момент теперь можно контролировать независимо друг от друга. Таким образом, инвертор преодолевает практически все недостатки электродвигателя по сравнению с любым двигателем внутреннего сгорания, в то время как преимущества остаются такими же выдающимися, как и есть, включая обратную связь по мощности (инверсию потока энергии), если используется 4-квадрантный инвертор (2 направления вращения, 2 направления вращения). направления потоков энергии).

В очень простых терминах такие инверторы создают соединение между постоянным напряжением в звене постоянного тока, когда мгновенное переменное напряжение в линии выше, чем напряжение постоянного тока в звене, что позволяет потреблять энергию и отключает оба от каждого из них. другое, когда напряжение «снаружи» ниже.Это принцип работы двигателя. Для возврата энергии в генераторном режиме инвертор, оправдывая свое название, делает обратное: подключается, когда напряжение в сети низкое, и отключается, когда оно высокое. Таким образом, энергия может поступать в любую сторону, даже если напряжение в сети постоянно, а постоянное напряжение в промежуточной цепи также может поддерживаться на постоянном уровне, в зависимости от конструкции.

Другой конец, сторона двигателя силового электронного инвертора, несколько сложнее. Еще раз упрощая, принцип состоит в том, чтобы включать и выключать двигатель очень быстро, намного быстрее, чем это может сделать любой механический переключатель.Путем изменения отношения времени включения / выключения средний ток двигателя может непрерывно изменяться, даже если напряжение постоянного тока в промежуточной цепи поддерживается на постоянной амплитуде. Этот принцип намного сложнее и намного дороже, чем управление потоком воды в ванне с помощью водопроводного крана, но преимущества настолько очевидны, что этот принцип неуклонно распространяется во всем мире электрических приводов.

Инверторы также могут использоваться в сетях постоянного тока .

В то время как старые трамваи - а многие из них все еще существуют - вполне могли использовать свои двигатели для торможения, электроэнергия не могла подаваться обратно в линии, потому что напряжение, генерируемое двигателем, было, грубо говоря, немного ниже, чем напряжение. на линии, поэтому инверсия потока мощности была невозможна.Электроэнергия, генерируемая при торможении, поглощалась резисторами и терялась в виде тепла. В настоящее время инверторы могут прерывать постоянный ток в переменный, переменный ток можно преобразовать (чем меньше трансформатор, тем выше выбирается частота прерывания), выпрямить обратно в постоянный ток и подать обратно в воздушную линию.

Теперь двигатель внутреннего сгорания имеет определенную номинальную выходную мощность, и все. Если вы попытаетесь получить немного больше крутящего момента, чем указано на паспортной табличке, вы просто заглушите двигатель.

Какая разница в поведении электродвигателя! Он также имеет определенную максимальную мощность и максимальный крутящий момент, но что он делает, если вы хотите большего? Это дает вам больше!

Скорость двигателя постоянного тока или асинхронного двигателя немного падает, в то время как в синхронном двигателе угол между приложенным и индуцированным напряжением становится немного больше. Оба приводят к более высокому потребляемому току, что обеспечивает более высокий выходной крутящий момент при примерно или точно такой же скорости, соответственно.Если вы захотите, двигатель предложит вам удвоенный номинальный крутящий момент. В зависимости от конструкции и размера двигателя он может быть более чем в 5 раз выше номинального. Единственная проблема заключается в том, что это позволяет это делать только в течение ограниченного времени, потому что чрезмерный ток генерирует избыточное тепло в двигателе, и в конечном итоге двигатель сгорит. Специальные защитные выключатели двигателя, которые регулируются в соответствии с номинальным током, прерывают ток двигателя, если номинальный ток превышается слишком долго. Лучше всего контролировать фактическую температуру двигателя.Или использовать инвертор. Его электронное управление предлагает неограниченные возможности программирования.

Итак, начнем:

  • Поскольку электродвигатель запускается сам по себе, а многие типы даже предлагают максимальный крутящий момент (тормозной момент) в режиме покоя, в электромобиле не требуется сцепление.
  • Поскольку электродвигатель обеспечивает гораздо больший крутящий момент в течение ограниченного времени, чем при непрерывной работе, в электромобиле не требуется переключение передач, поскольку транспортным средствам всегда требуется максимальная сила тяги только в течение ограниченных периодов разгона и движения в гору.

Таким образом, электродвигатель - гораздо лучший и более экологичный вариант для эксплуатации транспортного средства, чем двигатели внутреннего сгорания любого типа. Вместе с силовым электронным инвертором они близки к идеалу, в то время как привод внутреннего сгорания - это более или менее импровизированный способ передвижения транспортного средства, который только благодаря более чем 100-летнему опыту вместе с огромным и мощным рынком можно было оптимизировать путем: большое состояние, которое мы наблюдаем сегодня. Дальнейшего прогресса не видно.

Все, чего сейчас не хватает, так это годной батареи.Когда дело дойдет до всего наземного транспорта, сразу перейдут на электроприводы. Везде, где есть контактный провод, электропривод уже демонстрирует свое превосходство, и еще есть потенциал.

Мораль: двигатель внутреннего сгорания и электропривод не могут быть менее похожими. Если вы хотите разобраться в электрических приводах, первое, что вам нужно сделать, это забыть все о двигателе вашего автомобиля.

Возбуждение и управление высокоскоростным индукционным генератором

Аннотация
В этом проекте исследуется использование высокоскоростного индукционного генератора с короткозамкнутым ротором и преобразователя мощности для производства электроэнергии постоянного тока на борту кораблей и подводных лодок.Потенциальные преимущества высокоскоростных индукционных генераторов включают меньший размер и вес, повышенную долговечность, а также меньшую стоимость и меньшие затраты на обслуживание. К сожалению, индукционные генераторы требуют «подачи реактивной мощности» для работы и страдают от изменений выходного напряжения и частоты при любых изменениях возбуждения входной реактивной мощности, скорости механического привода и нагрузки. Преобразователь мощности может решить некоторые из этих проблем, распределяя изменяющуюся реактивную мощность, требуемую генератором, при одновременном управлении частотой статора для регулировки скольжения машины и управления реальной выходной мощностью.Эта комбинация управления активной и реактивной мощностью обеспечит постоянное напряжение на шине постоянного тока во всем диапазоне нагрузок. Испытания проводились на двигателе мощностью 3 лошадиных силы, чтобы помочь проверить модели и моделирование как на уровне двух киловатт, так и на уровне 5 мегаватт. После определения эквивалентной схемы демонстрационного двигателя, он был испытан как генератор в условиях подключенной сети и конденсаторного возбуждения. Автономный генератор мощностью 5 мегаватт, 12 000 об / мин, разработанный специально для работы с высоким КПД и коэффициентом мощности в диапазоне полной нагрузки, был использован для расчета параметров преобразователя.Были кратко рассмотрены различные стратегии возбуждения реактивной мощности, прежде чем было объяснено прохождение реактивных токов через преобразователь с использованием шестиступенчатого инвертора с двумя различными схемами переключения.

(продолжение) Моделирование устойчивого состояния и переходных процессов соответствовало измеренным характеристикам машины и проиллюстрировало эффективность стратегии управления при изменении нагрузки. Ключевые слова: индукционный генератор, самовозбуждение, реактивная мощность, преобразователь мощности, выпрямитель.

Описание
Диссертация (С.М.) - Массачусетский технологический институт, кафедра электротехники и компьютерных наук, 2005 г.

Включает библиографические ссылки (листья 97-99).

Отдел
Массачусетский Институт Технологий. Кафедра электротехники и информатики; Массачусетский Институт Технологий. Кафедра электротехники и информатики

Издатель

Массачусетский технологический институт

Ключевые слова

Электротехника и информатика.

Управление трехфазным асинхронным двигателем с использованием частотно-регулируемого привода и ПЛК

Различные процессы автоматизации в промышленности требуют управления асинхронными двигателями переменного тока с помощью приводов переменного тока. Здесь представлена ​​надежная система включения / выключения, изменения скорости и направления вращения промышленного трехфазного асинхронного двигателя с использованием частотно-регулируемого привода и ПЛК. Мы используем здесь моторный привод Delta AC для его работы.

Простая панель управления подключается с помощью ПЛК Allen Bradley для демонстрации. Также может быть разработана расширенная SCADA-система Wonderware для Intouch.

Электродвигатель - это электромеханическое устройство, преобразующее электрическую энергию в механическую. В случае трехфазного переменного тока наиболее широко используемым двигателем является трехфазный асинхронный двигатель, так как этот тип двигателя не требует никакого пускового устройства, поскольку является самозапускающимся двигателем.

Рис. 1: Общий вид системы Рис. 2: Блок-схема привода

Какие есть приводы

Часто в промышленности возникает потребность в управлении скоростью 3-фазного асинхронного двигателя. Электроприводы переменного тока Delta могут эффективно управлять скоростью двигателя, улучшать автоматизацию машин и экономить энергию.Каждый привод в своей серии частотно-регулируемых приводов (VFD) разработан для удовлетворения конкретных потребностей применения.

Приводы переменного тока

точно регулируют крутящий момент, плавно справляются с повышенными нагрузками и обеспечивают множество настраиваемых режимов управления и конфигурации. ЧРП может использоваться для изменения скорости, направления и других параметров трехфазного двигателя. Мы используем 2-проводной метод управления скоростью и направлением двигателя.

Работа частотно-регулируемого привода

Первой ступенью ЧРП является преобразователь, состоящий из шести диодов, которые похожи на обратные клапаны, используемые в водопроводных системах.Они позволяют току течь только в одном направлении; направление показано стрелкой в ​​символе диода. Например, всякий раз, когда напряжение фазы A (напряжение аналогично давлению в водопроводных системах) более положительно, чем напряжения фазы B или C, этот диод открывается и пропускает ток.

Когда фаза B становится более положительной, чем фаза A, диод фазы B открывается, а диод фазы A закрывается. То же самое и с тремя диодами на отрицательной стороне шины. Таким образом, мы получаем шесть импульсов тока при открытии и закрытии каждого диода.Это называется 6-пульсным частотно-регулируемым приводом, который является стандартной конфигурацией для современных частотно-регулируемых приводов.

Мы можем избавиться от пульсаций переменного тока на шине постоянного тока, добавив конденсатор. Конденсатор работает аналогично резервуару или аккумулятору в водопроводной системе. Он поглощает пульсации переменного тока и обеспечивает плавное постоянное напряжение.

Диодный мостовой преобразователь, преобразующий переменный ток в постоянный, иногда называют просто преобразователем. Преобразователь, который преобразует постоянный ток обратно в переменный, также является преобразователем, но, чтобы отличить его от диодного преобразователя, его обычно называют инвертором.В промышленности стало обычным называть любой преобразователь постоянного тока в переменный инвертором.

Когда мы замыкаем один из верхних переключателей инвертора, эта фаза двигателя подключается к положительной шине постоянного тока, и напряжение на этой фазе становится положительным. Когда мы замыкаем один из нижних переключателей преобразователя, эта фаза подключается к отрицательной шине постоянного тока и становится отрицательной. Таким образом, мы можем сделать любую фазу на двигателе положительной или отрицательной по желанию и, таким образом, можем генерировать любую частоту, которую мы хотим.Таким образом, мы можем сделать любую фазу положительной, отрицательной или нулевой.

Рис. 3: Принципиальная схема ЧРП Рис. 4: Формы сигналов на разных рабочих частотах и ​​средних напряжениях

Обратите внимание, что выходной сигнал частотно-регулируемого привода имеет прямоугольную форму. ЧРП не выдают синусоидального сигнала. Эта прямоугольная форма волны не будет хорошим выбором для распределительной системы общего назначения, но вполне подходит для двигателя.

Если мы хотим снизить частоту двигателя, мы просто переключаем выходные транзисторы инвертора медленнее.Но если мы уменьшаем частоту, мы также должны уменьшать напряжение, чтобы поддерживать соотношение В / Гц. Это делает широтно-импульсная модуляция (ШИМ).

Представьте себе, мы могли бы контролировать давление в водопроводе, открывая и закрывая клапан на высокой скорости. Хотя это было бы непрактично для водопроводных систем, это очень хорошо работает для частотно-регулируемых приводов.

Обратите внимание, что в течение первого полупериода напряжение присутствует половину времени и выключено в остальное время. Таким образом, среднее напряжение составляет половину 480В, то есть 240В. Импульсируя выход, мы можем получить любое среднее напряжение на выходе частотно-регулируемого привода.

Выбор Delta VFD-M в качестве привода переменного тока

Рис. 5: Delta VFD-M

Delta VFD-M - это векторный микропривод переменного тока без датчика. Его компактная конструкция идеально подходит для работы с двигателями малой и средней мощности. Привод M разработан для обеспечения сверхмалошумной работы и включает несколько инновационных технологий, снижающих помехи.

Этот привод может найти множество применений, таких как упаковочная машина, машина для приготовления пельменей, беговая дорожка, вентилятор с контролем температуры / влажности для сельского хозяйства и аквакультуры, миксер для пищевой промышленности, шлифовальный станок, сверлильный станок, малогабаритный токарный станок с гидравлическим приводом, элеватор, оборудование для нанесения покрытий, малогабаритный фрезерный станок, роботизированный манипулятор литьевого станка (зажим), деревообрабатывающий станок (двусторонний строгальный станок), кромкогибочный станок, эластификатор и т. д.

Рис. 6: Схема подключения выводов VFD-M Рис. 7: Управление цифровой клавиатурой на Delta VFD-M

Шаги для полного управления двигателем

  1. Проверить соединения L1, L2, L3; T1, T2, T3 (используются для подачи 3-фазного входа на частотно-регулируемый привод и подключения к нему двигателя) и провода, выходящие из M0, M1 и GND.
  2. Включите трехфазное питание.
  3. Для программирования VFD-M:
    (i) Нажмите Mode
    (ii) На F60.0 нажмите Enter
    (iii) Нажмите Mode
    (iv) Выберите соответствующий параметр с помощью клавиш вверх / вниз на клавиатуре.
    (v) Например, для Pr0 выберите P 00.
    (vi) В соответствии с руководством установите параметры для требуемого режима работы
    (vii) Нажмите EnterEnd

Примечание: В любой момент нажмите Mode, чтобы перейти к предыдущему шагу.

Для двигателя, работающего от внешнего управления, у нас есть три режима работы; два - 2-проводный метод, а один - 3-проводный. Помимо этого, существует метод по умолчанию, которым можно управлять с цифровой клавиатуры.

Сначала выполните пробный запуск, чтобы проверить все соединения.

Пробный пуск для ЧРП

Заводская установка источника управления - цифровая клавиатура (Pr.01 = 00). Вы можете выполнить пробный запуск с помощью цифровой клавиатуры, выполнив следующие действия:

  1. После подачи питания убедитесь, что на дисплее отображается F60.0Hz. Когда привод двигателя переменного тока находится в режиме ожидания, загораются светодиоды STOP и FWD.
  2. Нажмите кнопку «вниз», чтобы установить частоту 5 Гц.
  3. Нажмите кнопку запуска. Загораются светодиоды RUN и FWD, что указывает на поступление рабочей команды.А если вы хотите перейти на обратный ход, вам следует нажать кнопку «вниз». И если вы хотите замедлить, чтобы остановиться, нажмите кнопку остановки / сброса.

Программирование VFD-M

Есть два контакта, M0 и M1. Когда M0 закрыт, VFD переходит в рабочий режим. Если он открыт, двигатель не вращается. M1 определяет направление вращения. Если M1 открыт, он вращается в прямом направлении; если закрыт, то в обратном направлении.
Параметры для вышеуказанного режима установлены как:

Пр.00 настроен на 01 (для управления главной частотой с помощью потенциометра)
Pr.01 настроен на 01 (внешнее управление, через M0, M1)
Pr.38 установлен на 01 (M0, M1 настроены как работа / останов и вперед / назад)

Задайте для Pr.00 значение 00 для управления основной частотой с цифровой клавиатуры и 01 для управления с помощью потенциометра, прикрепленного, как показано на схеме подключения первого контакта.

Пар.38 должен быть установлен на 01, как показано на схемах выше.

После того, как все эти параметры установлены, следуйте рабочим шагам в 2-проводном режиме для запуска двигателя.

Рис. 8: Двухпроводный режим: только Пар.38 может быть установлен на «1»

Рис.9: лестничная диаграмма для управления

Использование ПЛК Рис. 10: Плата управления двигателем. Программируемые логические контроллеры (ПЛК)

очень эффективно поддерживают цифровой ввод / вывод. Таким образом, ПЛК также может использоваться для управления работой частотно-регулируемого привода, а следовательно, и для управления подключенным трехфазным асинхронным двигателем.

Рис. 11: Подключение ПЛК Allen Bradley

ПЛК Allen Bradley MicroLogix 1000 подключается к Delta VFD-M и программируется с помощью лестничного программирования с использованием RS Logix.

Мы подключили M0 и M1 к O2 и O3 (выходам) ПЛК и управляли O2 и O3 с помощью лестничной логики. На рис. 4 показана логика, определенная для режима 01, то есть Pr.38 = 01. O: 0,0 / 2 подключен к M0.

Рис. 12: Изменение скорости асинхронного двигателя с помощью потенциометра

Когда I: 0,0 / 2 установлено на, он переводит двигатель в рабочий режим. Теперь, даже если I: 0.0 / 2 выключен, O: 0.0 / 2 остается включенным из-за определенной логики. Его можно остановить только повторным нажатием I: 0.0 / 2.

I: 0,0 / 3 контролирует O: 0.0/5, который, в свою очередь, подключен к M1, который определяет направление вращения двигателя.

Рис. 13: Трехфазный асинхронный двигатель

0: 0,0 / 3 - это светодиод, который загорается, когда двигатель находится в рабочем режиме.

0: 0,0 / 5 - это светодиод, который загорается, когда двигатель вращается в прямом направлении, и гаснет при обратном вращении.

Любите читать эту статью? Вам также может понравиться Создание системы управления ПК с использованием Wonderware InTouch SCADA и Allen Bradley PLC

Джоби Энтони - магистр компьютерных технологий из США, в настоящее время работает инженером-инженером в ядерном межуниверситетском ускорительном центре (IUAC), Нью-Дели.Он также был приглашенным ученым в ЦЕРН, Женева,

.

Акшай Кумар - студент технологического факультета Делийского технологического университета, Нью-Дели, в настоящее время стажер в IUAC

Эта статья была впервые опубликована 22 июля 2016 г. и недавно обновлена ​​27 декабря 2018 г.

Что такое моторный дроссель и почему он используется?

Дроссель - это пассивное устройство, которое увеличивает индуктивность цепи.


Изображение предоставлено: KEB America

Индуктивность - это свойство катушки с проволокой, которая сопротивляется любому изменению тока, протекающего через нее.(Прямые провода также обладают небольшой индуктивностью.) Другими словами, если ток через катушку увеличивается, магнитное поле катушки создает напряжение (ЭДС), которое препятствует изменению. Индуктивность устройства определяет количество ЭДС, генерируемой при заданном изменении тока:

Где:

ЭДС = индуцированное напряжение (В)

L = индуктивность (В * с / А = Генри, Гн)

dI / dt = время нарастания тока (А / с)

Дроссель двигателя - это общее название индуктивного устройства, установленного между выходом сервопривода или частотно-регулируемого привода (VFD) и выводами серводвигателя или асинхронного двигателя переменного тока.Его цель - уменьшить пики тока, возникающие на выходе привода из-за широтно-импульсной модуляции (ШИМ) напряжения.

Дроссель двигателя - это индуктивное устройство, устанавливаемое между приводом и двигателем, которое часто рекомендуется, когда длина кабеля двигателя превышает 25 метров.
Изображение предоставлено: Force Control Industries

Широтно-импульсная модуляция - ключевой принцип работы большинства частотно-регулируемых приводов и сервоприводов. Он работает путем включения и выключения напряжения на управляющих транзисторах с очень высокой частотой - обычно в диапазоне 20 кГц - создавая импульсы напряжения.Частота переключения определяет ширину импульсов, а отношение времени включения к времени выключения определяет среднее напряжение, подаваемое на двигатель.

Без моторного дросселя длинные кабели могут привести к отраженным волнам, которые вызовут скачки напряжения на двигателе.
Изображение предоставлено: KEB America

Однако управление ШИМ вызывает резкие изменения сигналов привода, а также шум из-за высокочастотного переключения - проблемы, которые усугубляются при использовании длинных кабелей между приводом и двигателем.Как и катушки двигателя, кабели также обладают импедансом, и если импеданс кабеля сильно отличается от импеданса двигателя, может возникнуть отраженная волна, посылая напряжение обратно через кабель от клемм двигателя к приводу. Это напряжение может, в худшем случае, добавиться к напряжению, подаваемому приводом, и привести к очень высокому напряжению на двигателе, что приведет к значительному нагреву двигателя и повреждению изоляции двигателя и подшипников.

Дроссель двигателя помогает решить эти проблемы, увеличивая время нарастания (dV / dt) сигналов привода.Это уменьшает острые углы или пики формы волны напряжения до закругленных краев, защищая двигатель от скачков напряжения и связанного с ними нагрева. Дроссель, расположенный между приводом и двигателем, также помогает уменьшить электромагнитные помехи от кабелей и вероятность отраженных волн.

Без дросселя двигателя производители приводов обычно рекомендуют максимальную длину кабеля двигателя около 25 метров (рекомендации различаются в зависимости от двигателя, привода и области применения).С моторным дросселем максимальная длина кабеля может быть значительно увеличена, часто до 50 или 100 метров.


Дроссели и реакторы являются индуктивными устройствами, и термины «дроссель», «реактор» и «индуктор» часто используются как синонимы.

При обсуждении систем моторного привода термин «реактор» чаще всего используется для обозначения индуктивного устройства, расположенного между основным источником питания и приводом. Термин «дроссель» чаще всего используется для обозначения индуктивного устройства, расположенного между приводом и двигателем.И «дроссель», и «реактор» - это обычно используемые термины для индуктивного устройства, размещенного после входных диодов (между входным выпрямителем и звеном шины постоянного тока) в частотно-регулируемом приводе.

Как проверять двигатели с помощью осциллографа

Трехфазный асинхронный двигатель повсеместно используется в промышленности из-за своей надежности и необходимости нечастого обслуживания. Без щеток и внешней коммутации с помощью формы волны, поставляемой служебной программой, мало что может пойти не так.Однако в нужный момент и когда на большом объекте работает очень много единиц, кое-что случается.

Здесь мы не будем обсуждать частотно-регулируемый привод (VFD), синхронный двигатель или однофазные установки; это стоит своих статей. Для промышленного применения более 90% всех двигателей являются асинхронными. Большинство из них, которые не являются дробными единицами мощности, являются трехфазными. (Там, где доступно трехфазное питание, это правильный вариант. Эти двигатели менее дорогие, более эффективные и - с тремя проводами, не считая заземления оборудования - проводники меньше и проще в установке.)

Сначала основы. Подшипники двигателя и обмотки возбуждения жестко закреплены внутри корпуса двигателя. Вал и коллектор, если таковые имеются, вместе известные как якорь, поддерживаются подшипниками, поэтому они могут свободно вращаться без внеосевого движения.

Типичный асинхронный двигатель и его внутреннее устройство, как описано в Gibbons Engineering Group.

Ротор и статор создают магнитные поля. Один, но не оба этих компонента могут состоять из постоянных магнитов или тел из мягкого железа, которые обладают магнитным сопротивлением.Механизм вращения двигателя различается в зависимости от его типа. В двигателе постоянного тока электрический ток и, следовательно, магнитное поле должны периодически менять полярность, поэтому вращающееся магнитное поле ротора всегда преследует стационарное магнитное поле, создаваемое катушками возбуждения. Постоянно изменяющееся магнитное поле, связанное с якорем, становится возможным благодаря колебаниям электрического тока, который проходит в якорь через щетки, движущиеся вдоль коммутатора. Коммутатор состоит из соединенных в обратном направлении смежных проводящих сегментов, изолированных друг от друга.

Таким образом, щетки выполняют двойную функцию: вводят электрическую энергию в якорь и быстро переключают полярность, так что магнитное поле меняет направление по мере необходимости. Без переключающего действия вращательное движение составляло бы в лучшем случае пол-оборота, и тогда ротор оставался бы в состоянии покоя.

Синхронный двигатель переменного тока также состоит из одного магнитного поля, непрерывно ищущего другое, но коммутация выполняется совершенно другим способом. Реверсивный ток на самом деле связан с вращательной природой вращающихся турбин генерирующей установки.Из-за такой конструкции синхронный двигатель переменного тока, как и бесщеточный двигатель переменного тока, называется внешне коммутируемым.

В синхронном двигателе переменного тока все еще существует утомительная проблема подачи тока в якорь. В отличие от катушек возбуждения, якорь вращается и не может быть подключен напрямую. Здесь снова необходимы щетки, а это относительно дорогое решение, требующее больших затрат на обслуживание. В этом контексте мы видим большое преимущество асинхронного двигателя, которое объясняет его огромную популярность во всем мире во вращающихся приложениях.

В асинхронном двигателе обмотки возбуждения и обмотки ротора электрически ведут себя как первичная и вторичная обмотки простого трансформатора переменного тока. Электроэнергия переменного тока извне двигателя подключается к обмоткам возбуждения асинхронного двигателя, создавая колеблющееся магнитное поле. Это индуцирует электрический ток в роторе вместе с магнитным полем. Как следствие, якорь без прямого электрического входа начинает вращаться. Вращение можно использовать для выполнения полезной работы с помощью выходного вала.

Вращательное движение ротора не синхронизируется напрямую с вращающимся магнитным полем, связанным с катушками возбуждения. (Асинхронный двигатель также называется асинхронным двигателем.) На самом деле, магнитное поле катушки возбуждения и ротор вращаются с разной скоростью, соотношение между ними обычно выражается в процентах, обычно менее 10%. Этот процент известен как проскальзывание, которое актуально только для асинхронных двигателей. При заблокированном роторе скольжение составляет 100%. При полной нагрузке скольжение может составлять от 1% в больших асинхронных двигателях до 6% в двигателях с дробной мощностью.Не следует понимать скольжение как бесполезное движение. Это характерно для всех асинхронных двигателей, и без проскальзывания они вообще не вращались бы.

Обычно промышленный асинхронный двигатель представляет собой трехфазный агрегат, выходной вал которого приводит в движение такую ​​нагрузку, как вентилятор, конвейерную ленту, шнек, пильный диск или дробилку. Он питается от электрической энергии с выхода частотно-регулируемого привода или подходящего контроллера.

Асинхронный двигатель, не запитываемый от частотно-регулируемого привода, обычно имеет клеммы от электросети. Эта мощность может быть включена и выключена контроллером, и любые две ножки могут быть переключены, чтобы изменить направление вращения.Но напряжение и частота не изменяются и появляются на клеммах двигателя в соответствии с питанием от электросети. Рабочий цикл и ширина импульса не применимы, если ЧРП отсутствует на картинке.

Со временем у асинхронных двигателей могут появиться проблемы. Они могут состоять из одного или нескольких следующих элементов:

• Ненормальное повышение температуры, измеренное на поверхности корпуса двигателя. Если самая высокая температура измеряется на подшипнике, возможно, он не имеет смазки или его необходимо заменить.В крайнем случае ослабленный подшипник может позволить ротору тереться о статор. Убедитесь, что пыль или другой материал не скапливается снаружи или внутри шкафа и циркуляция воздуха не затруднена.

• Пониженная частота вращения, обычно сопровождающаяся повышением температуры, измеряется на выходном валу или проявляется в нагрузке.

• Повышенный ток, измеренный на выводах, подключенных к клеммам двигателя. Этот высокий ток также часто сопровождается повышением температуры. Ток часто вызывает срабатывание устройств защиты от сверхтока, в крайнем случае, когда двигатель не запускается.

Часто плохая работа двигателя вызвана заеданием или несоответствием нагрузки, поэтому это не является неисправностью двигателя, хотя двигатель может быть поврежден, если это состояние сохраняется. При возникновении проблемы не следует запускать двигатель в надежде, что он поправится сам по себе. Будет только хуже, и при этом будут повреждены обмотки двигателя или внутренняя изоляция от тепла.

После устранения неисправности подшипника, привода и нагрузки на очереди электрические измерения.Мультиметр в сочетании с токоизмерительными клещами электрика предоставит полезную информацию, но осциллограф лучше. Что нам нужно сделать, так это просмотреть форму волны электросети, чтобы оценить качество электроэнергии. Низкое линейное напряжение, фазовый дисбаланс или пропадание фазы, прерывистый шум, вызванный плохим соединением, или вредные гармоники могут привести к ухудшению работы двигателя, и все это можно быстро обнаружить на экране осциллографа.

Для измерения двигателя в полевых условиях лучший выбор - портативный осциллограф с питанием от батареи.Прочный резиновый корпус и защищенная от окружающей среды электроника подходят для суровых условий, характерных для заводского цеха или на открытом воздухе.

Что еще более важно, в отличие от заземленного настольного прибора, портативный осциллограф имеет каналы, изолированные от земли и друг от друга, поэтому нет опасности сильного тока короткого замыкания, если заземляющий возвратный провод подключен к провод или клемма привязаны к потенциалу, но не превышают потенциал земли. Большинство портативных осциллографов безопасны с этой точки зрения, но для уверенности лучше обратиться к документации производителя.

Когда большой двигатель впервые устанавливается и обнаруживается, что он работает правильно, рекомендуется снимать показания осциллографа, записывать результаты и повторять показания через равные промежутки времени, чтобы можно было создать базу данных. Тогда показания, снятые после начала ненормальной работы, будут более значимыми.

Чтобы получить полную картину, показания осциллографа следует снимать в доступных местах, начиная с сети в электрической сети, затем работая после входа и выхода разъединителя и контроллера двигателя и, наконец, на входных клеммах двигателя.Эти показания следует снимать при работающем двигателе, при включенной и не включенной нагрузке, а также при неработающем двигателе. Следует проводить измерения как напряжения, так и тока. Если проблема носит временный характер, измерения, возможно, придется проводить постоянно, а результаты регистрировать. Иногда проблемы с качеством электроэнергии возникают из-за другого оборудования на том же предприятии или из-за совместного использования линии электроснабжения. Возможно, проблемы возникают только в рабочее время, когда работает конкретное оборудование. При проведении этих измерений важными показателями являются:

• Входное напряжение: 10% часто указывается как максимально допустимое отклонение от номинала при полной нагрузке двигателя, но это значение может сократить срок службы двигателя, особенно потому, что во время запуска двигатель будет потреблять большой ток, что приведет к дальнейшему падению напряжения при вход двигателя.Низкое напряжение может быть вызвано внутренним износом двигателя, несоответствием или заеданием нагрузки, несоответствующим размером цепи ответвления, большой нагрузкой в ​​соседнем оборудовании или плохим электроснабжением. Показания высокого напряжения необычны, скорее всего, из-за неисправности в электросети.

• Несимметрия напряжения и / или тока: 5% отклонение между опорами может вызвать нагрев двигателя и сократить срок его службы. Иногда дисбаланс можно уменьшить, свернув соединения, не меняя местами любые два из них. Но чаще это знак того, что мотор необходимо перемотать или заменить.Другая возможность, однако, заключается в том, что проблема внешняя. Чтобы выяснить это, убедитесь, что все внешние нагрузки отключены, а все кабели и выводы не повреждены. Затем повторите измерения напряжения и тока.

• Измерения осциллограмм: Асинхронный асинхронный двигатель, как и другие двигатели переменного тока, работает с током, который является чистой синусоидой. Например, если двигатель питается от прямоугольной волны, производимой инвертором старого типа, двигатель перегреется и преждевременно выйдет из строя.Точно так же, если форма волны зашумлена, ограничена или имеет пики там, где их не должно быть, работа двигателя будет проблематичной. Во временной области форму сигнала на клеммах двигателя можно просматривать при работающем двигателе и без него, а также с подключенной нагрузкой и без нее.

Прямоугольная волна показана во временной и частотной областях. Обратите внимание на многочисленные гармоники.

Гармоники могут быть причиной перегрева двигателя и частых отключений. Гармоники можно измерить, просмотрев напряжение питания на входных клеммах двигателя в частотной области.Современные осциллографы имеют такую ​​возможность, доступ к которой обычно осуществляется нажатием кнопки с надписью Math. Затем перейдите к быстрому преобразованию Фурье (БПФ), и вы увидите представление сигнала в частотной области.

Синусоидальная волна отображается во временной и частотной областях. Единая основная частота без гармоник.

Как и в обычной временной области, ось Y представляет амплитуду. Вместо напряжения отображается мощность, откалиброванная для удобочитаемости в логарифмической шкале в дБ.Ось X представляет частоту. Хорошая синусоида будет иметь один сильный всплеск на основной частоте, единственной другой неровностью на графике является минимальный уровень шума осциллографа.

Сигнал, соответствующий неисправному источнику питания, будет иметь несколько уменьшенный пик на основной частоте и дополнительные выбросы, соответствующие гармоникам. Устранение этих гармоник приведет к улучшению работы двигателя.

Эти показания следует снимать при работающем двигателе и без него, и это начало для определения источника гармоник.Это хороший пример того, как ранние показания при нормальной работе двигателя важны для понимания дисплея осциллографа.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *