Стабилизатор тока с ттл модуляцией: Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

Содержание

Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

Лабораторный генератор ШИМ с широким диапазоном частот для проектирования высокочастотных импульсных стабилизаторов, преобразователей и испытания различных схем.

 

В наше время весь мир крутится вокруг широтно-импульсной модуляции (ШИМ), да что и говорить, даже день и ночь – и те подвластны ШИМу (зимой день короче чем ночь и наоборот J ). ШИМ сейчас используется везде, где только можно представить его применение: регуляторы, стабилизаторы, преобразователи, блоки питания и прочие устройства. Учитывая тенденцию увеличения мощности, неуклонного роста используемых частот в силовой и преобразовательной технике, а также уменьшению массо - габаритных показателей, я решил что иметь у каждого в домашней лаборатории широкодиапазонный генератор ШИМ просто обязательно. Но это, конечно же, должен быть не просто генератор. Нужно что бы он имел регулировку частоты в широком диапазоне, регуляторы коэффициента заполнения, регуляторы DEAD TIME, однотактный и двухтактный выходы, а также инверсию выходов  для каждого. Инверсия выходов необходима для проверки мостового преобразователя. Да и мало ли чего ещё захочется исследовать. Но в тоже время он должен быть простым для сборки, наладки и повторения. В данном случае будет достаточно перекрыть диапазон частот в однотактном режиме от 60  кГц до 2 МГц, в двухтактном режиме  от 30 кГц до 1 МГц. Регулировать коэффициент заполнения в  однотактном режиме от 1 % до 99%, а в двухтактном режиме  от 2 % до 98%, с возможностью регулирования паузы DEAD TIME («мертвая зона»). Генератор должен иметь минимальное число переключателей по диапазонам. Все должно регулироваться плавно и без скачков. Желательно иметь настройку грубо и точно на каждый параметр регулирования.

С помощью  такого генератора можно проверять качество работы драйверов управления полевых транзисторов, скоростные показатели работы различных компонентов и многое–многое другое.

Чтобы не утомлять прочтением всей статьи, сразу покажу, какой сигнал получился на выходах в разных режимах и на разных частотах:

 

 

С помощью этого генератора я запускаю любой блок питания, в котором микросхема не дает импульсов на запуск, или уходит в защиту по непонятной причине. Плавно увеличивая коэффициент заполнения, смотрю, что происходит на выходе блока, или токовом шунте ключевого транзистора. Отыскание неисправности в любых импульсных блоках с этим генератором - просто сказка и занимает по времени считанные минуты. Откидываю, например, затвор силового транзистора от родной микросхемы, и цепляю его к своему генератору с драйвером. Для того что бы подключаться например по высокой стороне к двухтактникам, иногда такое надо, необходимо использовать оптодрайвер на 6N137 или любых других быстрых оптопарах.

Ещё можно проверять на что годны операционные и аудио усилители. Поскольку самые низкие искажения имеют только повторители напряжения, проверку буду производить именно в этом режиме.

Приведу пример проверки самого распространенного операционного усилителя типа LM358. Тем самым ввергну в шок некоторых аудиофилов. Так вот, использовать LM358 в аудиоусилителях даже низкого класса категорически не рекомендую.

 

 

Ради прикола, беру самый первый советский операционник К140УД1Б и загоняю его на испытания. Показатели у него значительно лучше, чем у LM358.

 

 

Можно проверять время задержки в логических элементах и минимальную длительность импульса для триггеров.

 

 

Даже проверил, как себя поведет стабилитрон TL431 на частоте 1,3 МГц:

 

 

Желтым - вход, синим - выход.

А также испытать и проверить многое другое…….

Вот, вкратце, возможности моего генератора.

Когда я поставил перед собой задачу, попробовал погуглить и найти готовое решение. Поиски не увенчались успехом. В итоге было решено самому создать схему отвечающую запросам. Теперь я ознакомлю вас с результатами моих исследований длившихся около года

Мои исследования

 

   На первый взгляд самой привлекательной и простой схемой, найденной в даташитах и интернете, показалась схема на основе готового PULSE WIDTH MODULATION контроллера типа TL494 и её аналогах КА7500.  TL 494 и ее последующие версии - наиболее часто применяемая микросхема для построения двухтактных преобразователей питания.

 Но на деле это решение подходит под наши задачи только на 1/10 решения и её нельзя использовать на частотах более 100 кГц - в однотактном режиме и до 50 кГц - в двухтактном режиме.  Почему? Хотя по даташиту она может использоваться и до 300кГц, мне не понравилось, как она себя ведет на частотах выше 100 кГц.

Что гласит даташит:

Допустимы рабочие частоты от 1 до 300 кГц, рекомендованный диапазон Rt = 1...500кОм, Ct=470пФ...10мкФ. При этом типовой температурный дрейф частоты без учета дрейфа навесных компонентов +/-3%, а уход частоты в зависимости от напряжения питания - в пределах 0. 1% во всем допустимом диапазоне.  Да только дело то не в уходе частоты, а в непостоянстве регулирования коэффициента заполнения в зависимости от частоты.

Я попробовал испытать её возможности, и хотел перекрыть нужный мне диапазон в 2 МГц, но на частоте выше 1 МГц она нормально так и не запустилась. Пришлось пока ограничиться только 1 МГц. Сделал пять диапазонов регулирования частоты, поставил стабилизатор напряжения на 12 вольт по питанию с блокировочными конденсаторами, чтобы не нарушалась чистота эксперимента и начал испытание.

 

Схема:

 

 

Макетная плата подопытной схемы:

 

 

 

Джамперы для выбора частоты:

 

 

Результаты проведенного испытания возможностей TL494:

Данная микросхема для моего требования к генератору не подходит, и никакие средства и ухищрения разогнать её на большую частоту так ни к чему и не привели. Предел мечтаний с ней это 100 кГц (с большой натяжкой 150 кГц). На более высокой частоте даёт о себе знать очень уж медленный компаратор, использующийся в схеме кристалла. Также мешает повышению частоты и встроенная коррекция. Читаем из даташита особенности данной микросхемы:

Для стабильной работы триггера - время переключения цифровой части TL494 составляет 200 нс. На тактовых частотах до 150 кГц при нулевом управляющем напряжении фаза покоя = 3% периода (эквивалентное смещение управляющего сигнала 100..120 мВ), на больших частотах встроенная коррекция расширяет фазу покоя до 200..300 нс. Так как в ней очень медленные усилители ошибки  (фактически, операционные усилители с Ку = 70..95 дБ по постоянному напряжению, Ку = 1 на 300 кГц), я их не использую в схеме испытания вообще, и они заблокированы. Эти усилители не предназначены для работы в пределах одного такта рабочей частоты. При задержке распространения сигнала внутри усилителя в 400 нс они для этого слишком медленные, да и логика управления триггером не позволяет (возникали бы побочные импульсы на выходе). В реальных схемах преобразователей напряжения частота среза цепи ОС выбирается порядка 2  - 10кГц.

    Замечания по работе микросхемы 494 на повышенной частоте, которые меня не устраивают:

1. Встроенный генератор пилообразного напряжения на большое время замыкает конденсатор, вследствие этого перед новым циклом заряда появляется площадка с нулевым потенциалом.

    Осциллограммы работы генератора на разных частотах:

     

     2. Сильная зависимость коэффициента заполнения от частоты, которая проявляется с нарастающим эффектом после прохождения частоты 100 кГц.

      Рассматривая осциллограммы работы ШИМ регулятора с TL494 на разных частотах, при максимальном и минимальном коэффициенте заполнения, чётко заметны изменения минимального и максимального коэффициента заполнения в зависимости от частоты.

       

       

       

      Как видно, изменение минимального коэффициента заполнения на частоте 50 кГц =5% и на частоте 1 МГц = 14,3% отличаются почти в три раза.

      А вот изменение максимального коэффициента заполнения, тут вообще удивляет: на частоте 50 кГц = 93% и на частоте 1 МГц = 60,7% отличаются на 32%!!!

         Вот почему эту простую и удобную схему я отложил в сторонку. Она мне еще пригодится в дальнейшем: я к ней все-таки вернусь, но уже на дискретных быстрых компараторах и нормальных быстрых триггерах.

       

       

         Дальше на пути у меня была схема на NE555 таймере, которую я использовал лишь только в качестве генератора пилообразного напряжения. Я и не предполагал, что он тоже окажется довольно медленным, но все же, немного лучше, чем предыдущая TL494. С ним можно подняться к частотам около 200 кГц в однотактном режиме. Только надо добавить компаратор и триггер с логикой ИЛИ-НЕ.

      Схема генератора на 555 таймере:

       

       

      Осциллограммы работы генератора пилообразного напряжения на 555 таймере на частотах  332 кГц и 462 кГц.

       

       

      Тут видно округление вершин и спада импульса.

      На частоте более 500 кГц пила становится неузнаваема.

       

      Разочаровавшись в готовых решениях только на аналоговых элементах, я пробовал синтезировать ШИМ чисто на цифровых логических элементах и счетчиках с триггерами, без использования аналоговых компонентов, но там меня подстерегали другие, куда более сложные проблемы. Выравнивание задержек распространения сигнала по элементам и т.п. Особенно большую проблему составляют триггеры и счетчики, которые совсем не хотят щелкать на малой длительности импульса и просто тупо пропускают счет. А это значит, что ключам, на которые будет работать генератор, очень скоро придет конец. Отказался от этой затеи через неделю боя с 561 логикой. Она, оказывается, ну уж очень медленная для таких частот - 20 МГц при делении ШИМа по 10 %. Ещё через две недели отказался и от 1533 тоже.

      Финальная схема генератора.

       

           После нескольких неудачных попыток воплотить мечту в реальность (иметь в своей домашней лаборатории генератор с 2 МГц ШИМа), недельку- другую отдохнул, подумал, набрался сил и снова приступил к решению проблемы.

      На этот раз без выкрутасов и лёгких путей, учитывая предыдущие наработки и ошибки. Из всех опробованных решений самое большее удобство пользования предоставляла схема на TL494 или на таймере. Поэтому было решено клонировать начинку NE555 и TL494 на быстродействующих компонентах и собирать некий «симбиоз» двух микросхем на отдельных  компараторах и логике. Компараторы с ТТЛ выходом я взял те, что были у меня в столе - КР597СА2, но можно и любые другие, главное быстродействующие и с ТТЛ выходом. Ну, если вдруг захочется позверствовать, то ЭСЛ будет куда круче (тогда и 20 МГц не предел), но мне пока не нужна такая большая частота (разве для преобразователя с индуктивностью без ферритового сердечника). Тогда надо ставить КР597СА1, и логику серии К500.

      После первого запуска схемы обнаружилось много казусов, но по мере отладки многие грабли были убраны, и схема заработала как часы.

       

      Схема:

       

       

       

            Схема состоит из генератора пилообразного напряжения (состоящего из стабилизатора тока на транзисторах VT1, VT2, VT3; двух компараторов DA1, DA2; триггера DD1 и разрядного транзистора VT4), схемы выделения прямоугольных импульсов (с шириной зависящей от порогового напряжения на DA3), двух стабилизаторов опорного напряжения (2,5в и 2,9в), формирователя двухтактного сигнала (на триггере DD2  и элементах DD3 DD4 2-ИЛИ-НЕ), повторителя и инвертора для однотактного выхода (на DD5, DD6).

      Фото макетной платы:

       

       

      Для облегчения процесса настройки я приведу осциллограммы напряжений в каждой важной точке схемы. Итак…

      Генератор пилообразного напряжения. Конденсатор заряжается через стабилизатор тока. Канал 1 – напряжение на конденсаторе С5, канал 2 – напряжение на базе разрядного транзистора VT4.

       

       

       

       

      По графикам заметен необъяснимый факт ухода напряжения в область отрицательных значений, но это работе не мешает, так как в схему выделения прямоугольных импульсов в задающее напряжение позже я также внесу небольшое отрицательное смещение с помощью делителя R6, R10 для охвата всего диапазона изменения напряжения «пилы». R1 подбирается для ограничения верхней максимальной частоты (я ограничился лишь 2 МГц, хотя вся схема нормально работает и до 5 МГц).

      Осциллограммы напряжений на выходах компараторов DA1, DA2 на разной частоте. Канал 1 – напряжение на компараторе DA1 вывод 14, канал 2 – напряжение на компараторе DA2 вывод 14:

       

       

       

      Для борьбы со «звоном» компаратора вблизи зоны переключения, в схеме выделения прямоугольных импульсов на DA3, я ввел резисторы ПОС (положительной обратной связи) R16, R15 на одноименных входах - выходах компаратора. ПОС нужна на частоте ниже 1 МГц. На частоте в 2МГц данная цепь не требуется и сама перестает участвовать в работе, что видно по осциллограммам.  Осциллограммы напряжений на входах компаратора DA3 на разной частоте. Канал 2 – напряжение на компараторе DA3 вывод 2 – задание порога переключения, канал 1 – напряжение на компараторе DA3 вывод 3 с генератора «пилы». Осциллограмма на частоте 96 кГц. Канал 2 увеличено. Видна волнистая линия синхронно переключению компаратора – это и есть работа ПОС для задания гистерезиса. Глубину гистерезиса можно было бы и уменьшить, но на карту поставлены ключи, которыми будет управлять генератор, поэтому оставим все без изменения.

       

       

       

      Далее схема выделения прямоугольных импульсов с шириной зависящей от порогового напряжения на DA3. На прямой вход компаратора подается пилообразное напряжение, а на инверсный вход – напряжение задания порога переключения компаратора. На выходе получается прямоугольный импульс. Смотрим осциллограммы, разбираемся и вникаем.

       

       

       

      Здесь все понятно. Только если нужен для работы двухтактный выход, то увлекаться очень малым (99%) коэффициентом заполнения не стоит. Так как триггер на малой длительности входного импульса не успевает переключаться, и будет просто пропускать периоды,  выдавая на выходе вместо двухтактных импульсов по очереди – два одинаковых, однотактных, а это чревато нехорошими последствиями, типа сквозного пробоя одновременно открытых ключей.

      Дальше я покажу, как переключается триггер, когда длительность импульса достаточна для его нормальной работы на разных входных частотах. Частота на выходе D триггера равна половине  частоты на входе, и всегда имеет коэффициент заполнения 50% независимо от коэффициента заполнения на входе. Все это видно ниже на графиках.

       

      А вот так хулиганит триггер при входных импульсах недостаточной длительности:

       

      Видно как сбивается развертка и просматривается тот самый пропуск импульса. А это приводит например в полумостовом преобразователе к сквозному «кототоку».

       

      Далее покажу, как формируется полтакта двухтактного импульса, пройдя компаратор,  триггер и логический элемент 2ИЛИ-НЕ:

       

      То, что получилось на выходных контактах, я поместил в первой картинке. Внимательно смотрим, изучаем.  Как видно из графиков, минимальная длительность импульсов на двухтактном выходе завышена до 5%, для того, чтобы триггер четко переключался при входной частоте 2 МГЦ. На частотах до 500 кГц её можно установить и 1 % не опасаясь за пропуски импульса.

      Основной нюанс по настройке генератора: самое главное – чтобы стояли блокировочные керамические конденсаторы типа КМ-5 по 0,1 мкф минимум, или SMD импортные, на каждом корпусе микросхемы. Без них схема работает очень неустойчиво.  Одна сторона платы используется для дорожек, а вторая  используется как экран, её нужно соединить с корпусом в нескольких точках.

      Блок питания каких–либо особенностей не имеет. Для канала +12в используется КРЕНка или 7812, а для канала – 6в используется 7906

      Об выходных драйверах на 2 МГц напишу позже, а то и так много читать надо. Можно использовать готовые микросхемы драйверов, можно собирать на дискретных элементах.

      Спасибо за внимание, и за терпение, и за то, что хватило сил дочитать до этой строки.

      Ещё поздравляю и желаю много валерианки!!!

       

       

      Макетная плата в Layout 5, видео работы генератора в разных режимах и картинки отдельно в файлах.

      Файлы:
      плата
      архив картинок
      видео

      Все вопросы в Форум.

      ЧПУ на Ардуино | Сборка простого станка для гравировки / выжигания лазером

      Лазерный гравер с ЧПУ на Arduino

      Продолжаем дорабатывать простой станок с ЧПУ на Arduino. Теперь делаем из него лазерный гравер. Механическая часть в плане доработок отсутвует. Потребуется прикрепить радиатор лазера к платформе. Некоторая доработка потребуется для прошивки платы Ардуино, а также для программы управления станком.

      TTL-модуляция, подключение драйвера лазера к Ардуино

      Итак, нам потребуется лазерный модуль с драйвером и блоком питания. Я взял с с TTL-модуляцией. Это значит, что можно логическим сигналом включать и выключать лазер: +5v - включено, 0 - выключено. В случае, если к TTL ничего не подключено, драйвер находится в режиме «включено». Так как нам необходимо то включать, то выключать лазер нам потребуется управление через вход TTL. Мы будем управлять лазером с помощью Ардуино и TTL входа драйвера лазера. Итак, подключаем питание 12В к входам питания драйвера лазера. В качестве источника питания я использовал блок питания на 12В и 2А (24 Ватта), купленный в китайском интернет-магазине. Однако подойдёт любой блок питания на 12В и мощностью более 3 Ватт, например БП от компьютера.
      Подключаем TTL вход - к земле (Gnd) Ардуино, а ко входу + - цифровой пин Ардуино, находящийся в режиме Output. Теперь, если подать на цифровой пин сигнал HIGH, лазер включится, а если LOW, то выключится. Максимальная частота включения выключения лазера для купленного мной драйвера составляет 20кГц, чего более чем достаточно.
      Ниже представлена схема подключения драйвера лазера к Ардуино и источнику питания.

      Внимание! Если для лазерной гравировки вы используете драйверы, построенные по схеме двойной мост, например L298N, то TTL+ надо подключать к АНАЛОГОВОМУ пину 2. На Ардуино UNO и Nano не хватает цифровых пинов.

      Длина волны и мощность лазера для гравировки

      Для выжигания по дереву подходят высокочастотные лазеры. Длина волны лазера 405нм соответствует фиолетовому свету видимого спектра. Выбор пал на 405нм лазер с выходной оптической мощностью 300мВ. Излучение с длиной волны 405нм поглощается большим количеством материалов, что обеспечит большую универсальность граверу. Фиолетовый цвет выбран потому, что наиболее эффективно гравирует / выжигает на деревянной поверхности.

      Фото 12В лазерного модуля с длиной волны 405нм мощностью 300мв идрайвера с TTL-модуляцией. От драйвера наверх идут две пары проводов. Красный-чёрный - питание 12В, подключены к блоку питания, белый синий - TTL -модуляция, подключены к Arduino к пинам Dout и Gnd соответственно. На обратной стороне драйвера лазерного диода указано, каким образом необходимо подключать входы драйвера. Обратите внимание на то, что лазерный диод установлен внутри радиатора. На радиаторе стоит куллер. Лазерный модуль и драйвер я прикрепил к соответсвующей платформе.

      Для ослабления воздействия на глаза я использовал специальные красные очки, купленные также в китайском интернет-магазине. Соблюдение техники безопасности крайне важно при работе с лазером.

      Оптика лазерного гравера на Ардуино

      Купленный мной комплект включает лазерный диод, установленный на радиаторе, который охлаждается с помощью небольшого вентилятора. При покупке я не обратил внимание на то, что комплект продаётся без системы фокусировки. То есть отсутствует выпуклая линза или система линз, которые позволяют сфокусировать излучение лазерного диода в точку. Однако имеется трубка, которая вкручивается в радиатор. В неё должен встраиваться коллиматор. Покупать коллиматор, а затем прикручивать его к радиатору я не стал. Вместо этого купил обычный дверной глазок и вытащил из него выпуклую линзу. Фокусное расстояние моей линзы 2-3 см, что меня устраивало. Свет лазера видимый, так что оптическая линза из дверного глазка вполне подходит. Линзу я приклеил к трубке моментальным клеем. Полученную оптическую «систему» вкрутил в радиатор.

      Фото лазерного гравера с ЧПУ. За основу взят недорогой станок с ЧПУ на базе контроллера Ардуино, шаговых двигателей 17HS3404N в корпусе Nema 17 и драйверов ШД DM420A. Все электронные составляющие лазерного гравера, управляемого компьютером, приобретены в китайских интернет-магазинах.

      Фото морды гепарда, выгравированной лазерным станком с ЧПУ. Слева исходная фотография. Рядом лежит 50-копеечная монета для оценки размеров результата и точности выжигания с помощью лазерного гравера, управляемого программой на компьютере. Такой лазерный гравер с ЧПУ легко можно сделать самостоятельно в домашних условиях.

       

      cxema.org - Мощный стабилизатор тока и напряжения на TL494

      Мощный стабилизатор тока и напряжения на TL494

      Этот стабилизатор обладает неплохими характеристиками, имеет плавную регулировку тока и напряжения, хорошую стабилизацию, без проблем терпит короткие замыкания, относительно простой и не требует больших финансовых затрат.   Он обладает высоким кпд за счет импульсного принципа работы, выходной ток может доходить до 15 ампер, что позволит построить мощное зарядное устройство и блок питания с регулировкой тока и напряжения. При желании можно увеличить выходной ток до 20-и и более ампер.

      В интернете подобных устройств, каждое имеет свои достоинства и недостатки, но принцип работы у них одинаковый. Предлагаемый вариант - это попытка создания простого и достаточно мощного стабилизатора.

      За счет применения полевых ключей удалось значительно увеличить нагрузочную способность источника и снизить нагрев на силовых ключах. При выходном токе  до 4-х ампер транзисторы и силовой диод можно не устанавливать на радиаторы.

      Номиналы некоторых компонентов на схеме могут отличаться от номиналов на плате, т.к. плату разрабатывал для своих нужд.

      Диапазон регулировки выходного напряжения от 2-х до 28 вольт, в моем случае максимальное напряжение 22 вольта, т. к. я использовал низковольтные ключи и поднять напряжение выше этого значения было рискованно, а так при входном напряжении около 30 Вольт, на выходе спокойно можно получить до 28-и Вольт.  Диапазон регулировки выходного тока от 60mA до 15A Ампер, зависит от сопротивления датчика тока и силовых элементов схемы.

      Устройство не боится коротких замыканий, просто сработает ограничение тока.

      Собран источник на базе ШИМ контроллера TL494, выход микросхемы дополнен драйвером для управления силовыми ключами.

      Хочу обратить ваше внимание на батарею конденсаторов установленных на выходе. Следует использовать конденсаторы с низким внутренним сопротивлением на 40-50 вольт, с суммарной емкостью от 3000 до 5000мкФ.

      Нагрузочный резистор на выходе применен для быстрого разряда выходных конденсаторов, без него измерительный вольтметр на выходе будет работать с запаздыванием, т.к. при уменьшении выходного напряжения конденсаторам нужно время, для разрядки, а этот резистор быстро их разрядит. Сопротивление этого резистора нужно пересчитать, если на вход схемы подается напряжение больше 24-х вольт. Резистор двух ваттный, рассчитан с запасом по мощности, в ходе работы может греться, это нормально.

      Как это работает:

      ШИМ контроллер формирует управляющие импульсы для силовых ключей. При наличии управляющего импульса транзистор,  и питание по открытому каналу транзистора через дроссель поступает на накопительный конденсатор. Не забываем, что дроссель является индуктивной нагрузкой, которым свойственно накапливание энергии и отдача за счет самоиндукции. Когда транзистор закрывается накопленный в дросселе заряд через диод шоттки продолжит подпитывать нагрузку. Диод в данном случае откроется, т.к. напряжение с дросселя имеет обратную полярность. Этот процесс будет повторяться десятки тысяч раз в секунду, в зависимости от рабочей частоты микросхемы ШИМ. По факту ШИМ контроллер всегда отслеживает напряжение на выходном конденсаторе.

      Стабилизация выходного напряжения происходит следующим образом. На неинвертирующий вход первого усилителя ошибки микросхемы (вывод 1) поступает выходное напряжение стабилизатора, где оно сравнивается с опорным напряжением, которое присутствует на инверсном входе усилителя ошибки. При снижении выходного напряжения будет снижаться и напряжение на выводе 1, и если оно будет меньше опорного напряжения, ШИМ контроллер будет увеличивать длительности импульсов, следовательно транзисторы больше времени будут находиться в открытом состоянии и больше тока будет накачиваться в дроссель, если же выходное напряжение больше опорного, произойдет обратное - микросхема уменьшит длительность управляющих импульсов. Указанным делителем можно принудительно менять напряжение на неинвертирующщем входе усилителя ошибки, этим увеличивая или уменьшая выходное напряжение стабилизатора в целом. Для наиболее точной регулировки напряжения применён подстроечный многооборотный резистор, хотя можно использовать обычный.

      Минимальное выходное напряжение составляет порядка 2 вольт, задается указанным делителем, при желании можно поиграться с сопротивлением резисторов для получения приемлемых для вас значений, не советуется снижать минимальное напряжение ниже 1 вольта.

      Для отслеживания потребляемого нагрузкой тока установлен шунт. Для организации функции ограничения тока задействован второй усилитель ошибки в составе ШИМ контроллера тл494. Падение напряжения на шунте поступает на неинвертирующий вход второго усилителя ошибки, опять сравнивается с опорным, а дальше происходит точно тоже самое, что и в случае стабилизации напряжения. Указанным резистором можно регулировать выходной ток.

      Токовый шунт изготовлен из двух параллельно соединённых низкоомных резисторов с сопротивлением 0,05Ом.

      Накопительный дроссель намотан на желто белом кольце от фильтра групповой стабилизации компьютерного блока питания.

      Так как схема планировалась на довольно большой входной ток, целесообразно использовать два сложенных вместе кольца. Обмотка дросселя содержит 20 витков  намотанных двумя жилами провода диаметром 1,25мм в лаковой изоляции, индуктивность около 80-90 микрогенри.

      Диод желательно использовать с барьером Шоттки и обратным напряжением 100-200 вольт, в моем случае применена мощная диодная сборка MBR4060 на 60 вольт 40 Ампер.

      Силовые ключи вместе с диодом устанавливают на общий радиатор, притом изолировать подложки компонентов от радиатора не нужно, т.к. они общие.

      Подробное описание и испытания блока можно посмотреть в видео

      Печатная плата тут 

      Стабилизатор тока на lm317 | AUDIO-CXEM.RU

      Ток на выходе блока питания может увеличиться вследствие уменьшения сопротивления нагрузки (простой пример, короткое замыкание), также изменение тока нагрузки происходит из-за изменения напряжения питания. Стабилизатор тока на lm317 обеспечивает стабильность тока (ограничение тока) на выходе в случаях описанных выше.

      Данный стабилизатор может быть применён в схемах питания светодиодов, зарядных устройствах (ЗУ), лабораторных источников питания и так далее.

      Если, к примеру, рассматривать светодиоды, то необходимо учитывать тот факт, что для них нужно ограничивать ток, а не напряжение. На кристалл можно подать 12В и он не сгорит, при условии, что ток будет ограничен до номинального (в зависимости от маркировки и типа светодиода).

      Основные технические характеристики LM317

      Максимальный выходной ток 1.5А

      Максимальное входное напряжение 40В

      Выходное напряжение от 1.2В до 37В

      Более подробные характеристики и графики можно посмотреть в даташите на стабилизатор.

      Схема стабилизатора тока на lm317

      Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Минусом является низкий КПД (в счёт своей линейности), и поэтому происходит значительный нагрев кристалла микросхемы. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.

      За величину тока стабилизации (ограничения) отвечает резистор R1. С помощью данного резистора можно выставить ток стабилизации, например 100мА, тогда даже при коротком замыкании на выходе схемы будет протекать ток, равный 100мА.

      Сопротивление резистора R1 рассчитывается по формуле:

      R1=1,2/Iнагрузки

      Изначально необходимо определиться с величиной тока стабилизации. Например, мне необходимо ограничить ток потребления светодиодов равный 100мА. Тогда,

      R1=1,2/0,1A=12 Ом.

      То есть, для ограничения тока 0,1A необходимо установить резистор R1=12 Ом. Проверим на железе… Для проверки собрал схему на макетной плате. Резистор на 12 Ом искать было лень, зацепил в параллель два по 22 Ома (были под рукой).

      Выставил напряжение холостого хода, равное 12В (можно выставить любое). После чего, я замкнул выход на землю, и стабилизатор LM317 ограничил ток 0,1А. Расчеты подтвердились.

      При увеличении или уменьшении напряжения ток остается стабильным.

      Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.

      Если использовать данный стабилизатор тока на LM317 в лабораторном блоке питания, то необходимо устанавливать переменный резистор проволочного типа, простой переменный резистор не выдержит токи нагрузки протекающие через него.

      Для ленивых представляю таблицу значений резистора R1 в зависимости от нужного тока стабилизации.

      ТокR1 (стандарт)
      0.02551 Ом
      0.0524 Ом
      0. 07516 Ом
      0.113 Ом
      0.158.2 Ом
      0.26.2 Ом
      0.255.1 Ом
      0.34.3 Ом
      0.353.6 Ом
      0.43 Ома
      0.452.7 Ома
      0.52.4 Ома
      0.552.2 Ома
      0.62 Ома
      0.652 Ома
      0.71.8 Ома
      0.751.6 Ома
      0.81.6 Ома
      0.851.5 Ома
      0.91.3 Ома
      0.951.3 Ома
      11.3 Ома

      Таким образом, применив галетный переключатель и несколько резисторов, можно собрать схему регулируемого стабилизатора тока с фиксированными значениями.

       

      Даташит на LM317 СКАЧАТЬ


      Похожие статьи

      Стабилизатор тока на двух транзисторах (схема, плата, сборка, испытание) — Схемка: Электронные Радиосхемы

      Схема простейшего стабилизатора тока

      Выше представлена очень простая схема линейного стабилизатора тока на двух транзисторах: полевом и биполярном, первый силовой, он управляет нагрузкой (на схеме светодиод), а второй (маломощный) полупроводниковый прибор задаёт режим работы первого.

      Принцип работы (работа стабилизатора тока)

      Пусть наша нагрузка это R, будем считать, что её сопротивление почти не изменяется (R = const), ток мы хотим неизменный (I = const), а что у нас остаётся – только выходное напряжение на источнике тока, его то и будет подбирать схема, причём не просто от балды, а именно такое, при котором через вышеупомянутою нагрузку R потечёт ровно тот ток I, на который рассчитано устройство.

      А вот разбор работы самой схемы:

      после подключения источника питания через резистор R1 открывается полевой транзистор, через резистор R2-открытый канал сток-исток VT1 и нагрузку (светодиод) течёт ток. Чем больший ток, тем больше будет падать напряжения на резисторе, и когда оно достигнет значения открытия VT2 (для кремниевого биполярного примерно 0,60-0,75 В) тот откроется, через его ЭК потечёт ток от минуса к затвору VT1, тем самым прикрыв его, но не полностью, ведь R1 никуда не девается.

      Примечание. Детали для данного экземпляра взяты со старых плат, в частности мощный полевой N-канальный транзистор MTD20N06V в DPAK (TO-252) исполнении с материнки, у него сопротивление открытого канала 65 мОм, а максимальное длительно приложенное напряжение затвор-исток 20 Вольт, питается схема от БП 12 Вольт (скачки напряжения не более нескольких Вольт), поэтому диод Зенера не понадобится. Биполярный транзистор – это известный BC847A в SOT-23 корпусе. Резистор R1 = 11 кОм, R2 = 2 Ом типоразмера 1205 и мощностью 0.25 Вт. Этот экземпляр предназначен для стабилизированного тока:

      Iстаб = UБЭ * R2 = 0.6 В * 2 Ом = 300 мА

      Испытание

      Дорожки были начерчены маркером, поэтому плата немного отличается от разработанной, крепления под винтики сделаны не были. Подк

      схема, регулируемый, импульсный, конструкция и назначение

      Содержание статьи:

      Яркость светодиодных источников зависит от протекающего тока, а он в свою очередь – от напряжения питания. В условиях колебания нагрузки возникает пульсация светильников. Для ее предотвращения используется специальный драйвер – стабилизатор тока. При поломках элемент можно сделать самостоятельно.

      Конструкция и принцип работы

      Стабилизатор обеспечивает постоянство тока при его отклонении

      Стабилизатор обеспечивает постоянство показателей рабочего тока LED-диодов при его отклонении от нормы. Он предотвращает перегрев и выгорание светодиодов, поддерживает постоянство потока при перепадах напряжения или разрядке АКБ.

      Простейшее устройство состоит из трансформатора, выпрямительного моста, соединенного с резисторами и конденсаторами. Действие стабилизатора основывается на следующих принципах:

      • подача тока на трансформатор и изменение его предельной частоты до частоты электросети – 50 Гц;
      • регулировка напряжения на повышение и понижение с последующим выравниванием частоты до 30 Гц.

      В процессе преобразования также задействуются выпрямители высоковольтного типа. Они определяют полярность. Стабилизация электрического тока осуществляется при помощи конденсаторов. Для снижения помех применяются резисторы.

      Разновидности токовых стабилизаторов

      Светодиод загорается при достижении порогового значения тока. Для маломощных устройств этот показатель равняется 20 мА, для сверхъярких – от 350 мА. Разброс порогового напряжения объясняет наличие различных видов стабилизаторов.

      Резисторные стабилизаторы

      Стабилизатор КРЕН

      Для регулируемого стабилизатора параметров тока для маломощных светодиодов применяется схема КРЕН. Она предусматривает наличие элементов КР142ЕН12 либо LM317. Процесс выравнивания осуществляется при силе тока 1,5 А и напряжении на входе 40 В. В условиях нормального теплового режима резисторы рассеивают мощность до 10 т. Собственное энергопотребление составляет около 8 мА.

      Узел LM317 удерживает на главном резисторе постоянную величину напряжения, регулируемую подстроечным элементом. Основной, или токораздающий элемент может стабилизировать ток, пропущенный через него. По этой причине стабилизаторы на КРЕН применяются для зарядки аккумуляторов.

      Величина в 8 мА не изменяется даже при колебаниях тока и напряжения на входе.

      Транзисторные устройства

      Схема транзисторного стабилизатора напряжения

      Регулятор на транзисторах предусматривает использование одного или двух элементов. Несмотря на простоту схемы при колебаниях напряжения не всегда бывает стабильный ток нагрузки. При его увеличении на одном транзисторе повышается напряжение резистора до 0,5-0,6 В. после этого начинает работать второй транзистор. В момент его открытия первый элемент закрывается, а сила и величина тока, проходящие через него, понижается.

      Второй транзистор должен быть биполярным.

      Две схемы для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2

      Для реализации схемы с заменой стабилитронов на диоды применяются:

      • диоды VD1 и VD2;
      • резистор R1;
      • резистор R2.

      Подача тока через светодиодный элемент задается резистором R2. Для выхода на линейный участок ВАХ-диодов с привязкой к току базового транзистора используется резистор R1. Чтобы транзистор сохранял устойчивость, напряжение питания не должно быть меньше суммарного напряжения диодов + 2-2,5 В.

      Для получения тока 30 мА через 3 последовательно подключенных диода с напряжением 3,1 В по прямой производится запитка 12 В. Резисторное сопротивление должно равняться 20 Ом при мощности рассеивания 18 мВт.

      Схема нормализует режим работы элементов, снижает токовые пульсации.

      Схема с советскими транзисторами. Допустимое напряжение советских КТ940 или КТ969 – до 300 В, что подходит, если источник света – мощный SMD-элемент. Параметры тока задаются резистором. Напряжение стабилитрона составляет при этом 5,1 В, а мощность – 0,5 В.

      Минус схемы – падение напряжения при повышении силы тока. Его можно устранить, заменив биполярный транзистор на MOSFET с низкими параметрами сопротивления. Мощный диод заменяется элементом IRF7210 на 12 А или IRLML6402 на 3,7 А.

      Стабилизаторы тока на полевике

      Стабилизатор напряжения на полевом транзисторе

      Полевой элемент отличается закороченным истоком и затвором, а также встроенным каналом. При использовании полевика (IRLZ 24) с 3-мя выводами на вход подается напряжение 50 В, на выходе получается 15,7 В.

      Для подачи напряжения задействуется потенциал заземления. Параметры тока на выходе зависят от начального тока стока, и не привязываются к истоку.

      Линейные устройства

      Стабилизатор, или делитель постоянного показателя тока принимает нестабильное напряжение. На выходе линейный прибор его выравнивает. Он функционирует по принципу постоянного изменения параметров сопротивления для выравнивания питания на выходе.

      К преимуществам эксплуатации относятся минимальное число деталей, отсутствие помех. Недостатком является малый КПД при разнице питания на входе и выходе.

      Феррорезонансное устройство

      Стабилизатор для переменного тока устаревшей модели, схема которого представлена конденсатором и двумя катушками – с ненасыщенным и насыщенным сердечником. К насыщенному (индуктивному) сердечнику подается напряжение постоянного типа, не зависимое от параметров тока. Это облегчает подбор данных для второй катушки и емкостный диапазон стабилизации питания.

      Устройство работает по принципу качелей, которые сразу сложно остановить или раскачать сильнее. Подача напряжения происходит по инерции, поэтому возможны падения нагрузки или разрыв цепи питания.

      Особенности схемы токового зеркала

      Классическая схема токового зеркала

      Токовое зеркало, или отражатель выстраивается на паре транзисторов согласованного типа, т.е. с одинаковыми параметрами. Для их производства используется один светодиодный кристалл полупроводника.

      Схема токового зеркала по уравнению Эберса-Молла. Принцип работы заключается в том, что транзисторные базы объединяются, а эмиттеры подкидываются на одну шину питания. В итоге параметры переходного напряжения сцепки «база – транзистор-эмиттер» равны.

      Преимущества схемы заключаются в равном диапазоне устойчивости и отсутствии падения напряжение на резисторе-эмиттере. Параметры легче задаются при помощи тока. Недостаток заключается в эффекте Эрли – привязке напряжения на выходе к коллекторному и его колебания.

      Схема токового зеркала Уилсона. Токовое зеркало может стабилизировать постоянную величину выходного тока и реализуется так:

      1. Транзисторы № 1 и № 1 включены по принципу стандартного токового зеркала.
      2. Транзистор № 3 фиксирует потенциал коллектора элемента № 1 на удвоенный параметр падения диодного напряжения.
      3. Оно будет меньше, чем напряжение питания, что подавляет эффект Эрли.
      4. Коллектор транзистора № 1 задействуется для установления режима схемы.
      5. Ток на выходе зависит от транзистора № 2.
      6. Транзистор № 3 трансформирует выходной ток в нагрузку с переменным напряжением.

      Транзистор № 3 можно не согласовывать с остальными.

      Стабилизатор компенсационного напряжения

      Компенсационный стабилизатор напряжения

      Выпрямитель работает по принципу обратной связи цепи для напряжения. Полное или частичное напряжение приравнивает к опоре. В результате стабилизатор генерирует параметры напряжения ошибки, устраняя колебания яркости для светодиодов. Прибор состоит из следующих элементов:

      • Регулирующий элемент или транзистор, который совместно с сопротивлением нагрузки образует делитель напряжения. Эмиттерный показатель транзистора должен превышать ток нагрузки в 1,2 раза.
      • Усилитель – управляет РЭ, выполняется на базе транзистора №2. Маломощный элемент согласуется с мощным по составному принципу.
      • Источник напряжения опоры – в схеме задействуется стабилизатор параметрического типа. Он выравнивает напряжение стабилитрона и резистора.
      • Дополнительные источники.
      • Конденсаторы – для сглаживания пульсаций, устранения паразитного возбуждения.

      Стабилизаторы компенсационного напряжения работают по принципу увеличения входного напряжения с дальнейшим возрастанием токов. Закрытие первого транзистора увеличивает сопротивление и напряжение зоны коллектор-эмиттер. После подачи нагрузки оно выравнивается до номинала.

      Устройства на микросхемах

      Микросхема 142ЕН5

      Для стабилизующих приборов применяется микросхема 142ЕН5 или LМ317. Она позволяет выровнять напряжение, принимая по цепи обратной связи сигнал от датчика, подключенного к сети тока нагрузки.

      В качестве датчика задействует сопротивление, при котором регулятор может поддерживать постоянное напряжение и ток нагрузки. Сопротивление датчика будет меньше сопротивления по нагрузке. Схему задействуют для зарядных устройств, по ней же проектируется ЛЕД-лампа.

      Импульсные стабилизаторы

      Импульсный прибор отличается высоким КПД и при минимальных параметрах входного напряжения создают высокое напряжение потребителей. Для сборки используется микросхема МАХ 771.

      Регулировать силу тока будут один или два преобразователя. Делитель выпрямительного типа выравнивает магнитное поле, понижая допустимую частоту напряжения. Для подачи тока на обмотку светодиодный элемент передает сигнал транзисторам. Стабилизация на выходе осуществляется посредством вторичной обмотки.

      Как сделать стабилизатор тока для светодиодов самостоятельно

      Изготовление стабилизатора для светодиодов своими руками осуществляется несколькими способами. Новичку целесообразно работать с простыми схемами.

      На основе драйверов

      Понадобится выбрать микросхему, которую трудно выжечь – LM317. Она будет выполнять роль стабилизатора. Второй элемент – переменный резистор с сопротивлением в 0,5 кОм с тремя выводами и ручкой регулировки.

      Сборка осуществляется по следующему алгоритму:

      1. Припаять проводники к среднему и крайнему выводу резистора.
      2. Перевести мультиметр в режим сопротивления.
      3. Замерить параметры резистора – они должны равняться 500 Ом.
      4. Проверить соединения на целостность и собрать цепь.

      На выходе получится модуль с мощностью 1,5 А. Для увеличения тока до 10 А можно добавить полевик.

      Стабилизатор для автомобильной подсветки

      Стабилизатор L7812

      Для работы потребуется линейный прибор в виде микросхемы L7812, две клеммы, конденсатор 100n (1-2 шт.), текстолитовый материал и трубка с термоусадкой. Изготовление производится пошагово:

      1. Выбор схемы под L7805 из даташита.
      2. Вырезать из текстолита нужный по размеру кусок.
      3. Наметить дорожки, делая насечки отверткой.
      4. Припаять элементы так, чтобы вход был слева, а выход – справа.
      5. Сделать корпус из термотрубки.

      Стабилизирующее устройство выдерживает до 1,5 А нагрузки, монтируется на радиатор.

      В качестве радиатора задействуется кузов машины за счет соединения центрального вывода корпуса с минусом.

      Нюансы расчета стабилизатора тока

      Расчет стабилизатора производится на основании напряжения стабилизации U и тока (среднего) I. К примеру, напряжение входного делителя составляет 25 В, на выходе нужно получить 9 В. Вычисления предусматривают:

      1. Подбор по справочнику стабилитрона. Ориентируются на напряжение стабилизации: Д814В.
      2. Поиск среднего тока I по таблице. Он равен 5 мА.
      3. Вычисление подающего напряжения как разности стабильного напряжения входа и выхода: UR1 = Uвx — Uвых, или 25-9=16 В.
      4. Деление полученного значение по закону Ома на ток стабилизации по формуле R1 = UR1 / Iст, или 16/0,005=3200 Ом, или 3,2 кОм. Номинал элемента будет 3,3 кОм.
      5. Вычисление максимальной мощности по формуле РR1 = UR1 * Iст, или 16х0,005=0,08.

      Через резистор проходит ток стабилитрона и выходной, поэтому его мощность должна быть в 2 раза больше (0,16 кВт). На основании таблицы данному номиналу соответствует 0,25 кВт.

      Самостоятельная сборка стабилизатора для светодиодных устройств возможна только при знании схемы. Начинающим мастерам рекомендовано использовать простые алгоритмы. Рассчитать элемент по мощности можно на основании формул из школьного курса физики.

      Строительные, рабочие и проектные типы

      Так же, как ситуации, в которых нам нужно регулировать напряжение в наших конструкциях, существуют сценарии, в которых нам нужно регулировать ток, который подается в определенную часть нашей цепи. В отличие от преобразования (перехода от одного уровня напряжения к другому), которое обычно является одной из основных причин регулирования напряжения, регулирование тока обычно заключается в поддержании постоянного тока, который подается, независимо от изменений сопротивления нагрузки или входного напряжения.Цепи (встроенные или нет), которые используются для обеспечения постоянного тока , называются (постоянными) регуляторами тока , и они очень часто используются в силовой электронике.

      Хотя регуляторы тока использовались в нескольких приложениях на протяжении многих лет, возможно, до недавнего времени они не были одной из самых популярных тем в обсуждениях проектирования электроники. Текущие регуляторы теперь достигли своего рода повсеместного статуса благодаря их важным приложениям в светодиодном освещении среди других приложений.

      В сегодняшней статье мы рассмотрим эти регуляторы тока и исследуем лежащие в их основе принципы работы, их конструкцию, типы и применение, среди прочего .

      Принцип действия регулятора тока

      Работа регулятора тока аналогична работе регулятора напряжения с основным отличием в параметре, который они регулируют, и величине, которую они изменяют для обеспечения своего выхода. В регуляторах напряжения ток изменяется для достижения необходимого уровня напряжения, в то время как регуляторы тока обычно включают изменения напряжения / сопротивления для достижения необходимого выходного тока.Таким образом, хотя это возможно, обычно трудно одновременно регулировать напряжение и ток в цепи.

      Чтобы понять, как работают регуляторы тока, необходимо быстро взглянуть на закон Ома;

        В = ИК или I = В / П  

      Это означает, что для поддержания постоянного тока на выходе эти два свойства (напряжение и сопротивление) должны поддерживаться постоянными в цепи или настраиваться таким образом, чтобы при изменении одного значения другого соответственно регулировалось для сохранения такой же выходной ток. Таким образом, регулирование тока включает в себя регулировку напряжения или сопротивления в цепи или обеспечение неизменности значений сопротивления и напряжения независимо от требований / воздействий подключенной нагрузки.

      Рабочий регулятор тока

      Чтобы правильно описать, как работает регулятор тока, рассмотрим приведенную ниже принципиальную схему.

      Переменный резистор в приведенной выше схеме используется для обозначения действия регулятора тока.Предположим, что переменный резистор автоматизирован и может автоматически регулировать собственное сопротивление. Когда схема находится под напряжением, переменный резистор регулирует свое сопротивление, чтобы компенсировать изменения тока из-за изменения сопротивления нагрузки или напряжения питания. Относительно базового класса электричества вы должны помнить, что при увеличении нагрузки, которая по сути является сопротивлением (+ емкость / индуктивность), происходит эффективное падение тока и наоборот. Таким образом, когда нагрузка в цепи увеличивается (увеличение сопротивления), а не падение тока, переменный резистор уменьшает свое собственное сопротивление, чтобы компенсировать повышенное сопротивление и обеспечить одинаковые токи.Таким же образом, когда сопротивление нагрузки уменьшается, переменное сопротивление увеличивает свое собственное сопротивление, чтобы компенсировать уменьшение, таким образом поддерживая значение выходного тока.

      Другой подход к регулированию тока заключается в подключении достаточно высокого резистора параллельно с нагрузкой так, чтобы в соответствии с законами основного электричества ток протекал по пути с наименьшим сопротивлением, который в этом случае будет проходить через нагрузку с только «незначительное» количество тока, протекающего через резистор высокого номинала.

      Эти изменения также влияют на напряжение, так как некоторые регуляторы тока поддерживают ток на выходе, изменяя напряжение. Таким образом, практически невозможно регулировать напряжение на том же выходе, на котором регулируется ток.

      Конструкция регуляторов тока

      Регуляторы тока

      обычно реализуются с использованием стабилизаторов напряжения на основе микросхем, таких как MAX1818 и LM317, или с использованием пассивных и активных компонентов, таких как транзисторы и стабилитроны.

      Проектирование регуляторов тока с использованием регуляторов напряжения

      Для проектирования регуляторов тока с использованием регулятора напряжения на основе IC метод обычно включает настройку регуляторов напряжения с постоянным сопротивлением нагрузки, и обычно используются линейные регуляторы напряжения, поскольку напряжение между выходом линейных регуляторов и их землей обычно составляет Таким образом, жестко регулируемый, фиксированный резистор может быть вставлен между выводами так, чтобы фиксированный ток протекал к нагрузке.Хороший пример дизайна, основанного на этом, был опубликован Budge Ing в одной из публикаций EDN в 2016 году.

      Используемая схема использует линейный стабилизатор LDO MAX1818 для создания стабилизированного источника постоянного тока на стороне высокого напряжения. Источник питания (показанный на изображении выше) был разработан таким образом, что он питает RLOAD постоянным током, равным I = 1,5 В / ROUT. Где 1,5 В - предустановленное выходное напряжение MAX1818 , но его можно изменить с помощью внешнего резистивного делителя.

      Для обеспечения оптимальной производительности конструкции напряжение на входной клемме MAX1818 должно быть до 2,5 В, а не выше 5,5 В, поскольку это рабочий диапазон, указанный в техническом паспорте. Чтобы удовлетворить это условие, выберите значение ROUT, которое позволяет от 2,5 В до 5,5 В между IN и GND. Например, при нагрузке, скажем, 100 Ом при 5 В VCC, устройство правильно работает с ROUT выше 60 Ом, так как значение допускает максимальный программируемый ток 1,5 В / 60 Ом = 25 мА. Тогда напряжение на устройстве будет равно минимально допустимому: 5 В - (25 мА × 100 Ом) = 2.5В.

      Другие линейные регуляторы, такие как LM317, также могут использоваться в аналогичном процессе проектирования, но одно из основных преимуществ , которые имеют микросхемы типа MAX1818 по сравнению с другими, заключается в том, что они включают тепловое отключение, которое может быть очень важным в текущем регламенте , поскольку температура ИС имеет тенденцию к нагреванию при подключении нагрузок с высокими требованиями к току.

      Для стабилизатора тока на базе LM317 рассмотрите схему ниже;

      LM317 сконструированы таким образом, что регулятор продолжает регулировать свое напряжение до тех пор, пока напряжение между его выходным выводом и его регулировочным выводом не станет равным 1.25 В и как таковой делитель обычно используется при реализации в ситуации регулятора напряжения. Но для нашего случая использования в качестве регулятора тока это на самом деле очень упрощает нам задачу, потому что, поскольку напряжение постоянно, все, что нам нужно сделать, чтобы сделать ток постоянным, - это просто вставить резистор последовательно между выводами Vout и ADJ. как показано на схеме выше. Таким образом, мы можем установить выходной ток на фиксированное значение, которое задается:

        I = 1,25 / R 
       

      Со значением R, определяющим значение выходного тока.

      Чтобы создать регулятор переменного тока, нам нужно только добавить переменный резистор в схему вместе с другим резистором, чтобы создать делитель на регулируемом выводе, как показано на изображении ниже.

      Работа схемы такая же, как и предыдущая, с той разницей, что ток можно регулировать в цепи, поворачивая ручку потенциометра для изменения сопротивления. Напряжение на R составляет;

        В = (1 + R1 / R2) x 1.25  

      Это означает, что ток через R определяется выражением;

        I  R  = (1,25 / R) x (1+ R1 / R2). 
       

      Это дает цепи диапазон тока I = 1,25 / R и (1,25 / R) x (1 + R1 / R2)

      Зависит от установленного тока; Убедитесь, что номинальная мощность резистора R может выдерживать ток, протекающий через него.

      Преимущества и недостатки использования LDO в качестве регулятора тока

      Ниже приведены некоторые преимущества для выбора линейного стабилизатора напряжения a

      Использование полевых МОП-транзисторов с уровнями TTL (5 В и 3.3 Вольт) - Arduino, ESP8266, ESP32 и Raspberry Pi

      В различных проектах Arduino, которым необходимо переключать высокую нагрузку постоянного тока, для этого используются MOSFET, в соответствии со схемой справа (R1 не является обязательным и может потребоваться для отключения полевого транзистора, если на выводе низкий уровень.

      Популярные полевые МОП-транзисторы: IRF510 и IRF 520

      IRF510 IRF520

      Глядя на эти графики, можно увидеть, что при уровне от затвора до источника 5 В (уровни Arduino) IRF510 способен выдавать только 1 А, тогда как он рассчитан на постоянный ток 5,6 А.520 немного лучше: при 5 В он выдает 3 А при максимальных 9,2. Это связано с тем, что эти полевые транзисторы предназначены для пропускания максимального тока при напряжении на затворе около 10 вольт, что превышает возможности большинства микроконтроллеров.

      Для IRF522 еще хуже.

      Глядя на кривую, при напряжении затвор-исток 5 В IRF522 почти не включается. Вы ограничены током около 200 мА. Тогда гораздо лучше использовать дешевый транзистор Дарлингтона.

      IRF530 - лучший выбор:

      При напряжении 5V на затворе IRF530 передаст что-то около 4.5Ампер.

      Если вы покупаете MOSFET для Arduino, рассмотрите IRL540. L показывает, что это mosfet логического уровня. МОП-транзистор логического уровня означает, что он предназначен для полного включения с логического уровня микропроцессора. Стандартный МОП-транзистор (серия IRF и т. Д.) Рассчитан на работу от 10 В.

      Вот кривая для IRL540:

      Теперь при 5 В вы находитесь вне линейной области, и полевой МОП-транзистор уже может выдавать заданный постоянный ток в 28 Ампер.

      Вы также можете рассмотреть IRLZ44.2-R омическое рассеивание будет меньше 1 ватта, и это хорошо. Если мы используем Vgs = 4V, указанное для выходов микросхемы AVR, рассеиваемая мощность должна быть около 0,4 Вт при 25 ° C (0,8 Вт для Tj = 175 ° C).

      Если полевой МОП-транзистор является стандартным полевым МОП-транзистором, или «логический» полевой транзистор становится ясно из таблицы данных. Если, например, вы посмотрите техническое описание IRFZ44N на Rds (on), в нем указано «сопротивление в открытом состоянии» при условии, что Vgs = 10V (и Id = 25A). Если нет рейтинга для Rds (on) при Vgs = 5 В (или 4,5 В), то это не МОП-транзистор логического уровня.MOSFET логического уровня будет иметь Rds (on), заданное для Vgs = 5 В или 4,5 В. Если он указан только для Vgs = 10V, это не логический уровень.

      Еще одна вещь, которой следует остерегаться в таблицах данных, - это Vthresh (пороговое напряжение). Это не напряжение затвора для включения устройства, это напряжение затвора, при котором оно полностью выключается (обычно менее нескольких мкА). Если Vthresh задан как диапазон 2..4V, это не может быть MOSFET логического уровня (Vthresh обычно составляет от 0,5 до 1V для MOSFET логического уровня).

      При проектировании с MOSFET имейте в виду, что вместо Vsat, как у биполярного транзистора, полностью насыщенный MOSFET действует как линейный резистор с низким номиналом.2R Вт, т.е. 10x10x0,05 = 5 Вт. Для этого понадобится хороший радиатор, если нагрузка работает более одной или двух секунд, но это не проблема, если она будет получать миллисекундные импульсы каждые несколько секунд. Доступно «сопротивление в открытом состоянии» от 0,2 до 0,001 Ом (хотя менее 0,005 Ом становится дорого).

      Также возможен относительно дешевый BUZ11. Хотя это не полевой МОП-транзистор с логическим уровнем, он войдет в насыщение при напряжении затвора 5 В при примерно 7 А и VDS примерно от 0,5 до 1 В. Но это RDS (on) будет далек от идеала, и вы потеряете 3.5-7 Вт на полевом транзисторе:

      Однако, если вы застряли с полевым транзистором, таким как IRF522, которому действительно требуется высокое напряжение для эффективного переключения, используйте следующую схему:

      Поймите, однако, что это инвертирующая схема. ВЫСОКИЙ уровень на выходе Arduino отключит нагрузку. Также 520 и 510 будут более эффективными с этой схемой.

      Не забудьте использовать радиатор для полевого МОП-транзистора, если вы используете серьезные нагрузки

      Если вы используете эту схему для переключения любых серьезных нагрузок, то будет разумно припаять толстый провод к дорожкам, идущим от полевого МОП-транзистора.Здесь вы найдете полиграфический дизайн. Это для прямого переноса, поэтому оно уже правильно отражено.

      Если у вас не логический полевой транзистор (например, серия IRF, и вам нужна гальваническая развязка схемы микроконтроллера, то вам пригодится следующая схема:

      3,3 Вольт

      Долгое время «TTL» означал 5 вольт. В настоящее время все больше и больше плат на 3,3 В доступно как в серии Arduino, так и в популярных ESP8266 и Raspberry Pi.На этих платах хорошим выбором может стать STN4NF03L. Не идеальный выбор, но хороший. См. Раздел 2.1 рис. 4 в техническом описании.
      Другим хорошим выбором являются FQP30N60L или IRLZ44 (обсуждаемые выше, а практические результаты последнего приведены в комментарии Джеруна ниже)

      Нравится:

      Нравится Загрузка ...

      Связанные

      Широтно-импульсная модуляция

      с использованием Altera MAX Series

      Подробное описание реализации основано на устройствах MAX II.Это приложение также может быть реализовано в Устройства MAX V и MAX 10.

      Вверх и вниз входные сигналы используются для изменения рабочего цикла выходного сигнала. Первый модуль используется для генерации двух часов разной частоты с доступный генератор внутренней пользовательской флэш-памяти в устройствах MAX II. В 4-битный выходной сигнал модуля DUTY_CYCLE имеет положительный или отрицательный отрицательное приращение, в зависимости от увеличения или уменьшения.Второй 4-битный выходной сигнал COUNT (счетчик ссылок) увеличивается на единицу. постоянно на более высокой тактовой частоте, генерируемой в первом модуле. Этот сигнал сравнивается с DUTY_CYCLE на той же частоте в второй модуль. Результат сравнения, представляющий собой один бит, равен назначен на конечный выходной сигнал ШИМ.

      Рисунок 1. Реализация широтно-импульсной модуляции с использованием устройства MAX II

      Входы ШИМ состоят из сигналов вверх и вниз, используемых для изменить рабочий цикл выходного сигнала.В устройстве используются два основных модули для реализации работы ШИМ. Все входные и выходные сигналы состоят из одного бита.

      4-битный переменный сигнал DUTY_CYCLE допускает 16 различных вариантов рабочий цикл выходного сигнала. В этой реализации проекта ввод вверх имеет более высокий приоритет, чем вниз. Если оба высокие одновременно, выходной сигнал видит увеличение рабочего цикла.

      Вы можете реализовать этот пример конструкции с EPM240 или любым другим MAX II и наблюдайте за результатами, контролируя интенсивность одноцветные (красные) светодиоды и двухцветные (красный / зеленый) различных цветовых оттенков Светодиоды на демонстрационной плате MDN-B2. Реализуйте этот дизайн с помощью исходный код примера дизайна и выделить соответствующий элемент управления и выходные линии к линиям GPIO устройства MAX II, которые подключены к Светодиоды.Красные светодиоды управляются выходом PWM , что вызывает их интенсивность варьироваться. Двухцветные светодиоды управляются двумя взаимно дополнительные сигналы: PWM и PWM_INV . Частота работы вызывает явление стойкости человеческого зрения. Это создает небольшой спектр цветов, включающий два отдельных цвета двухцветные светодиоды, при этом их индивидуальная интенсивность варьируется в соответствии с к сигналу PWM .Вы можете управлять двумя кнопочными переключателями на демонстрационной версии. доска, чтобы постепенно создавать небольшой спектр цветов. Это также иллюстрирует изменение рабочего цикла выходного сигнала из-за разная яркость одноцветного светодиода.

      Рисунок 2. Схема демонстрации ШИМ на демонстрационной плате MDN-B2

      Таблица 1.Назначение контактов EPM240G. Назначьте неиспользуемые контакты как вход, трижды заявленные в Device и Pin Диалоговое окно параметров в программе Quartus II перед компиляцией.
      Сигнал Штифт
      ШИМ Штифт 87
      pwm1 Штифт 71
      pwm3 Штифт 73
      вверх Штифт 82
      pwn_inv Штифт 88
      pwm2 Штифт 72
      pwm4 Штифт 74
      дн Штифт 81

      Решенных проблем на выпрямителях - Сообщение электроники

      Q1.Применяемый вход переменного тока мощность на однополупериодный выпрямитель 100 Вт. Постоянный ток На выходе
      получается мощность 40 Вт.
      (i) Какова эффективность исправления?
      (ii) Что происходит с оставшимися 60 Вт?

      Решение:

      (я)

      (ii) КПД выпрямления 40% не означает, что 60% мощности теряется в цепи выпрямителя. Фактически, кристаллический диод потребляет мало энергии из-за своего небольшого внутреннего сопротивления. 100 Вт переменного тока мощность составляет 50 Вт в положительных полупериодах и 50 Вт в отрицательных полупериодах.50 Вт в отрицательных полупериодах вообще не подаются. Только 50 Вт в положительных полупериодах преобразуются в 40 Вт.

      Хотя 100 Вт переменного тока подавалось питание, однополупериодный выпрямитель принимал всего 50 ватт и преобразовывал его в 40 ватт постоянного тока. мощность. Поэтому уместно сказать, что эффективность выпрямления составляет 40%, а не 80%, что является энергоэффективностью.

      Q2. Переменный ток питание 230 В подается на схему однополупериодного выпрямителя через трансформатор
      с соотношением витков 10: 1.Найдите (i) выходной постоянный ток. напряжение и (ii) пиковое обратное напряжение. Допустим, диод идеальный.

      Рис.1

      Решение:

      Число витков от первичной до вторичной -

      Макс. вторичное напряжение

      (я)

      (ii) Во время отрицательного полупериода переменного тока. При питании диод имеет обратное смещение и, следовательно, не проводит ток.Следовательно, на диоде появляется максимальное вторичное напряжение.

      Q3. Для полуволнового выпрямления используется кристаллический диод с внутренним сопротивлением r f = 20 Ом. Если приложенное напряжение v = 50 sin ω t и сопротивление нагрузки R L = 800 Ом, найти:
      (i) Im, Idc, Irms (ii) a.c. потребляемая мощность и постоянный ток выходная мощность (iii) постоянный ток выходное напряжение (iv) эффективность выпрямления.

      Решение:

      (я)

      (ii)

      (iii)

      (iv)

      Q4.Однополупериодный выпрямитель используется для питания 50 В постоянного тока. до резистивной нагрузки 800 Ом. Диод
      имеет сопротивление 25 Ом. Рассчитайте переменный ток необходимое напряжение.

      Решение:

      Q5. Двухполупериодный выпрямитель использует два диода, внутреннее сопротивление каждого диода можно считать постоянным и равным 20 Ом. Среднеквадратичное значение трансформатора. вторичное напряжение от центрального ответвления до каждого конца вторичной обмотки составляет 50 В, а сопротивление нагрузки составляет 980 Ом. Найти: (i) средний ток нагрузки (ii) среднеквадратичное значение. значение тока нагрузки.

      Решение:

      (я)

      (ii)

      Q6. В схеме с центральным отводом, показанной на рис.2, предполагается, что диоды идеальны
      , т.е. имеют нулевое внутреннее сопротивление. Найдите: (i) d.c. выходное напряжение (ii) пиковое обратное напряжение (iii) эффективность выпрямления.

      Фиг.2

      Решение:

      Число витков от первичной до вторичной, N1 / N2 = 5

      (i) Средний ток, Idc =

      (ii) Пиковое обратное напряжение равно максимальному вторичному напряжению, т.е.e

      (iii)

      Q7. В схеме мостового типа, показанной на рис. 3, диоды считаются идеальными. Найдите: (i) d.c. выходное напряжение (ii) пиковое обратное напряжение (iii) выходная частота. Предположим, что число оборотов между первичными и вторичными частями равно 4.

      Рис.3

      Решение:

      Q8.На Рис. 4 (i) и Рис. 4 (ii) показаны схемы с центральным отводом и мостового типа, имеющие одинаковое сопротивление нагрузки и коэффициент трансформации трансформатора. Первичная обмотка каждого подключена к источнику питания
      230 В, 50 Гц. (i) Найдите постоянный ток. напряжение в каждом конкретном случае. (ii) PIV для каждого случая для одного и того же постоянного тока. вывод. Считаю диоды идеальными.

      Фиг.4

      Решение:

      (i) Выходное напряжение постоянного тока:

      Контур центрального отвода:

      Мостовая схема:

      Это показывает, что для того же вторичного напряжения d.c. выходное напряжение мостовой схемы в два раза больше, чем у схемы с центральным отводом

      (ii) PIV для того же постоянного тока выходное напряжение:

      Постоянный ток. выходное напряжение двух цепей будет одинаковым, если Vm (т. е. максимальное напряжение, используемое каждой цепью для преобразования в постоянный ток) одинаково. Для этого коэффициент трансформации трансформаторов должен быть таким, как показано на рис. 5.

      Рис.5

      Контур центрального отвода:

      Мостовая схема:

      Это показывает, что для того же d.c. выходное напряжение, PIV мостовой схемы вдвое меньше, чем у схемы с центральным ответвлением. Это явное преимущество мостовой схемы.

      Q9. Четыре диода, используемые в схеме мостового выпрямителя, имеют прямое сопротивление, равное
      , которое можно считать постоянным при 1 Ом, и бесконечное обратное сопротивление. Напряжение питания переменного тока составляет 240 В среднеквадратичное. сопротивление нагрузки 480 Ом. Рассчитайте (i) средний ток нагрузки и (ii) мощность, рассеиваемую в каждом диоде.

      Решение:

      Q10.В мостовом выпрямителе, показанном на рис. 6, используются кремниевые диоды. Найдите (i) d.c. выходное напряжение (ii) постоянный ток выходной ток. Используйте упрощенную модель для диодов

      Рис.6

      Решение:

      Условия проблемы предполагают, что напряжение переменного тока на вторичной обмотке трансформатора составляет 12 В (среднеквадратичное значение).

      Q11. Источник питания A выдает 10 В постоянного тока с пульсациями 0,5 В среднеквадратичного значения. в то время как источник питания
      B выдает 25 В постоянного тока с пульсацией 1 мВ среднеквадратичного значения. Какой блок питания лучше?

      Решение:

      Чем ниже коэффициент пульсации источника питания, тем он лучше.

      Для источника питания A

      Для источника питания B

      Q12. Для схемы, показанной на рисунке 7, найдите выходной постоянный ток. вольтаж.

      Рис.7

      Решение:

      Можно доказать, что выход постоянного тока напряжение определяется по формуле:

      Q13. Дроссель на рис.8 имеет постоянный ток. сопротивление 25 Ом. Что такое постоянный ток? напряжение, если двухполупериодный сигнал
      , подаваемый на дроссель, имеет пиковое значение 25,7 В?

      Рис.8

      Решение:

      На выходе двухполупериодного выпрямителя есть постоянный ток.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *