Стабилизатор напряжения ресанта принципиальная схема: Раздел удален

Содержание

▶▷▶▷ принципиальная схема стабилизатора напряжения

▶▷▶▷ принципиальная схема стабилизатора напряжения
ИнтерфейсРусский/Английский
Тип лицензияFree
Кол-во просмотров257
Кол-во загрузок132 раз
Обновление:27-05-2019

принципиальная схема стабилизатора напряжения - Схема стабилизатора напряжения - простой расчёт ostabilizatorerushemy-prostyh-stabilizatorov Cached На 2-м рисунке схема стабилизатора на транзисторе 2n 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона 6 В напряжение выхода, r1330, vd6,6 вольт Сетевой стабилизатор напряжения Микросхема спаятьрфpoleznye-skhemysetevojj-stabilizator Cached Сетевой стабилизатор напряжения , схема которого представлена чуть выше, включает последовательно с нагрузкой одну, две или три дополнительных обмотки трансформатора при девиации Принципиальная Схема Стабилизатора Напряжения - Image Results More Принципиальная Схема Стабилизатора Напряжения images Принципиальные схемы стабилизаторов напряжения Полезные teplobastruarticlessxema-stabilizator Cached Принципиальная электрическая схема релейного стабилизатора напряжения Схема работы электронного стабилизатора Стабилизатор напряжения для усилителя мощности tehnoobzorcomschemespitanie35-stabilizator Cached Качественный стабилизатор напряжения БП, предназначенный для питания аудиоусилителей средней мощности Принципиальная схема и технические характеристики стабилизатора Схемы стабилизаторов напряжения электронного, релейного и nabludaykinruvidy-i-sxemy-stabilizatorov-napryazheniya Cached Схема подключения стабилизатора напряжения малой мощности не представляет ничего сложного, поскольку на корпусе установлены розетки, а включение в сеть осуществляется шнуром с вилкой Принципиальная Схема Стабилизатора Напряжения Компас Чертеж lonestarrelizuaweeblycomblogprincipialjnaya-shema Cached Промотур КОМПАС v17 Схема электронная принципиальная , схема печатной платы, специфиуация, частично сборочный чертж, Генератор напряжения Плата печатная стабилизатора напряжения Пять схем простых стабилизаторов напряжения texnicrukonstrpitalopit1html Cached Рис4 Принципиальная схема стабилизатора с защитой от короткого замыкания в нагрузке и тиристорной схемой защитой при выходе из строя схемы самого стабилизатора 39) Параметрические стабилизаторы напряжения: схемы, принцип studfilesnetpreview5615959page:4 Cached В схеме параллельного стабилизатора при отклонении напряжения на выходе от номинального выделяется сигнал рассогласования, равный разности опорного и выходного напряжений Принципиальная схема подключения стабилизатора напряжения energiatrendrunewsprincipialnaja-shema Cached Принципиальная схема подключения стабилизатора напряжения 170215 Из-за того что в электрической сети постоянно наблюдаются скачки напряжения , подключённое оборудование может выйти из строя СХЕМА СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ elworupublskhemy_blokov_pitanijauniversalnyj Cached Предлагаемая схема стабилизатора напряжения , может быть названа универсальная КРЕНка, так как с ней при подборе номиналов резисторов и транзисторов я получаю диапазон напряжений от 5 до Promotional Results For You Free Download Mozilla Firefox Web Browser wwwmozillaorg Download Firefox - the faster, smarter, easier way to browse the web and all of 1 2 3 4 5 Next 28,200

  • 78xx семейство трёхвыводных линейных интегральных стабилизаторов положительного напряжения первого
  • поколения. Принципиальные схемы ИС на разные напряжения различаются величиной верхнего резистора в делителе выходного напряжения, принципиальные схемы ИС на разные выходные... Схемы и описания транси
  • елителе выходного напряжения, принципиальные схемы ИС на разные выходные... Схемы и описания трансиверов, усилителей, антенн и другой радиолюбительской аппаратуры, бытовой радиоаппаратуры. Справочники. Файловый архив. Библиотека литературы. Советы начинающим. Схема принципиальная электрическая. Стабилизаторы напряжения трехфазные ресанта. Купить Стабилизатор напряжения Sven Neo R 600 по доступной цене в интернет-магазине М.Видео или в розничной сети магазинов М.Видео города Москвы. Sven Neo R 600 - аксессуары, отзывы... Разработка источника питания с защитой от перегрузок Разработка источника питания с импульсным преобразователем напряжения, принципиальной схемы стабилизатора напряжения. Принципиальная схема импульсного стабилизатора. Назначение, принцип действия Импульсные стабилизаторы напряжения (СН) в настоящее время получили распространение не меньшее, чем непрерывные стабилизаторы... Для уяснения принципа работы рассмотрим импульсный последовательный стабилизатор напряжения... Принципиальная схема промоделированного источника питания приведена в Приложение 1, спецификация в Приложении 2. Основная его задача согласование по мощности нагрузки стабилизатора напряжения и маломощного усилителя сигнала ошибки. Принципиальная электриче- скорость генератора. ская схема генераторов ГС-12ТО 13 Обмотка дополнительных полюсов создает магнитное поле, ко- торое воздействует на поле якоря, нескомпенсированное компенса- ционной обмоткой. Схема электрическая принципиальная блока питания с резервированием. Выходное напряжение стабилизатора на DA1 регулируют с помощью резистора R3. Принципиальная схема простейшего однотактного импульсного БП. Сравнимые по выходной мощности с линейными стабилизаторами соответствующие им импульсные стабилизаторы обладают следующими основными достоинствами: Купил 3 месяца назад стабилизатор напряжения APC AVR Line-R LE1200-RS, установил на котел отопления и циркуляционные насосы, общая потребляемая мощность порядка 300Вт.

антенн и другой радиолюбительской аппаратуры

антенн и другой радиолюбительской аппаратуры

  • vd6
  • специфиуация
  • принцип studfilesnetpreview5615959page:4 Cached В схеме параллельного стабилизатора при отклонении напряжения на выходе от номинального выделяется сигнал рассогласования

принципиальная схема стабилизатора напряжения Картинки по запросу принципиальная схема стабилизатора напряжения Другие картинки по запросу принципиальная схема стабилизатора напряжения Жалоба отправлена Пожаловаться на картинки Благодарим за замечания Пожаловаться на другую картинку Пожаловаться на содержание картинки Отмена Пожаловаться Все результаты Схемы стабилизаторов напряжения электронного, релейного и nabludaykinruvidyisxemystabilizatorovnapryazheniya Схемы стабилизаторов напряжения различных типов довольно сильно Принципиальная схема стабилизатора напряжения этого типа имеет лишь Виды стабилизаторов Электромеханический Релейный стабилизатор Схема стабилизатора напряжения простой расчёт ostabilizatorerushemyprostyhstabilizatorovnaprjazhenijahtml Рейтинг голоса февр г Схемы стабилизаторов постоянного напряжения с регулировкой Параллельный параметрический и последовательный Компенсационный Стабилизаторы на Последовательный Схема электрическая стабилизатора elektronikamukru Схемы устройств Похожие Электрическая схема стабилизатора напряжения с использованием принципиальная схема релейно трансформаторного стабилизатора Схема Пять схем простых стабилизаторов напряжения Texnicru wwwtexnicrukonstrpitalopithtml Похожие Для питания устройств, с напряжением В, в этой схеме стабилизаторе можно Рис Принципиальная схема стабилизатора с защитой от короткого Принципиальная схема стабилизатора напряжения, расчет katodanodruarticles Похожие Чтобы увеличить ток стабилизатора , необходимо добавить в схему второй транзистор рассчитанный на более высокий ток и заменить стабилитрон Схемы стабилизаторов напряжения электронных, релейных Принципиальная схема стабилизатора напряжения включает основных элемента, функции которых заключаются в сравнении входных параметров Самодельный стабилизатор трансформатор вольт схемы Теория Схема стабилизатора напряжения в своими руками Содержание убрать Схема электрическая принципиальная электронного стабилизатора Мощный стабилизатор напряжения своими руками схема Электрика УЗО и автоматы мая г Подобраны схемы стабилизаторов , приведен пошаговый напряжения своими руками принципиальные схемы поэтапная Устройство стабилизации сетевого напряжения Сайт Паяльник cxemnet Питание Похожие Принципиальная схема устройства стабилизации сетевого напряжения стабилизатора DA и шунтированию напряжения на резисторе R Структурная схема стабилизатора и ее обоснование wwwinformaticspointruforpoishtml Структурная схема стабилизатора и ее обоснование Напряжение источников входной электроэнергии переменного тока, от которых питаются Принципиальные схемы стабилизаторов напряжения Бастион Похожие мая г Основные типы стабилизаторов напряжения приводятся в этой статье Опубликованы принципиальные схемы стабилизаторов Видео Простая схема импульсного стабилизатора напряжения Чип и Дип YouTube сент г Конструкция стабилизатора напряжения Чип и Дип YouTube дек г Стабилизатор напряжения ремонт и устройство oleg pl YouTube нояб г Все результаты Стабилизаторы напряжения классификация, схемы, параметры Стабилизаторы напряжения схемы , параметры, диаграммы Рассмотрим типичную принципиальную схему непрерывного стабилизатора рис Простые стабилизаторы напряжения и их расчёт Meandersru Рейтинг голосов нояб г Рассмотрены наиболее простые схемы стабилизаторов напряжения , принципы их работы и правила расчёта Изложенный в статье Принципиальная схема компенсационного стабилизатора к оглавлению Принципиальная схема компенсационного стабилизатора напряжения На рисунке представлена принципиальная схема Стабилизаторов напряжения схемы Стабилизатор Квант Виды и схемы стабилизаторов напряжения Автор Александр Старченко Принципиальная схема стабилизатора напряжения этого типа имеет лишь Стабилизатор напряжения Википедия Похожие Стабилиза́тор напряже́ния англ Voltage regulator электромеханическое или Такие стабилизаторы применяется для стабилизации напряжения схем с малым потребляемым током, так как для стабилизации напряжения ток Стабилизатор напряжения В для дома своими руками схема янв г Как самостоятельно сделать стабилизатор напряжения В для дома необходимые комплектующие и инструменты, схема , Однофазный стабилизатор напряжения В Схема и описание wwwjoytaru Бытовая электроника Похожие нояб г Стабилизатор напряжения на , в зависимости от фактического обоих реле находятся, так как указано на принципиальной схеме Компенсационные стабилизаторы Цифровая техника в радиосвязи digtehruBPStabilizatComp Похожие Компенсационный стабилизатор напряжения на двух транзисторах Рисунок Принципиальная схема простейшего компенсационного стабилизатора Стабилизатор схема, устройство, принципиальная схема wwwltechnokru Стабилизаторы напряжения Полезная информация Похожие Главная Стабилизаторы напряжения Полезная информация Стабилизатор схема, устройство, принципиальная схема стабилизатора напряжения и Компенсационные стабилизаторы напряжения с принципом Функциональная и принципиальная схемы стабилизатора напряжения с Функциональная схема стабилизатора напряжения постоянного тока Релейный стабилизатор напряжения Устройство и принцип Всё о релейном стабилизаторе напряжения устройство, принцип действия, схема , плюсы и минусы и многое многое другое Электрическая схема стабилизатора напряжения vekv Для подключения к сети переменного тока используют стабилизаторы напряжения на В Принципиальная электрическая схема такого устройства напряжение, которое должен выдавать стабилизатор! Схема electricadomcomstabilizatornapryazheniyanadezhnostrabotytekhnikivdom Похожие Стабилизатор напряжения надежность работы техники в доме принципиальная схема стабилизатора рис схема стабилизатора На этой Ремонт стабилизаторов напряжения Ресанта несложное дело electricadomcomremontstabilizatorovresantatonkostiirekomendaciihtml Похожие Схема стабилизатора напряжения Ресанта имеет несколько основных элементов рис В зависимости от модификации эта схема может Схемы стабилизаторов и преобразователей напряжения radiostoragenetpreobrazovatelinapryazheniya Принципиальные схемы стабилизаторов и преобразователей напряжения , самодельные инверторы напряжения Высокоточный стабилизатор напряжения вольт схема Высокоточный стабилизатор напряжения вольт схема Принципиальные схемы стабилизаторов напряжения Главная Электрооборудование Схема стабилизатора напряжения сети В ПаятельРу Все wwwpayatelrushemastabilizatoranapryazheniyasetivhtml Похожие Стабилизатор позволяет поддерживать выходное напряжение на Принципиальную схему можно разделить на слаботоковую схему или схему PDF Линейный стабилизатор напряжения с отрицательным выходным libraryeltechrufilesvkrbakalavriВКРКАСАТКИНpdf Принципиальная схема простого компенсационного стабилизатора напряжения представлена на Рис Рис Последовательный компенсационный СТРУКТУРНАЯ СХЕМА СТАБИЛИЗАТОРА И ЕЕ ОБОСНОВАНИЕ Напряжение источников электроэнергии переменного тока, от которых питается ИВЭП, в силу разных причин имеет широкие пределы изменения Стабилизатор напряжения вольт ампер своими руками апр г Стабилизатор напряжения вольт ампер своими руками Найдите идеи на тему Принципиальная Схема апреля г Простой стабилизатор напряжения сзащитой от КЗ Радио в Стабилизатор напряжения с внешними регулирующими транзисторами Принципиальная схема ограничителя тока Ардуино, Оборудование, Шрифты Стабилизаторы напряжения Схемы, статьи Бесплатной wwwdiagramcomualistshtml Похожие Статьи по стабилизаторам напряжения; схемы стабилизаторов напряжения ; описания стабилизаторов напряжения статьи Родин АВ, Блоки питания телевизоров принципиальные схемы Выпрямители для Схемы регулируемых стабилизаторов напряжения и тока wwwpeacefirstorgprizecomponentkitemlistuser Скачать Схемы блоков питания, стабилизаторов напряжения , и тп Этот ток Принципиальная схема компенсационного стабилизатора напряжения Ремонт стабилизаторов напряжения Ресанта Ремонт стабилизаторов напряжения Ресанта Ремонт стабилизаторов напряжения Принципиальная электрическая схема стабилизатора напряжения Разработка принципиальной схемы стабилизатора напряжения wwwtecheducatorrudexiushtml Для стабилизации выходного напряжения источника питания используются компенсационные стабилизаторы последовательного и параллельного Стабилизатор напряжения мощный трехфазный Ресанта АСН Описание стабилизатора напряжения Ресанта АСНЭМ Инструкция и технические харки Принципиальная схема стабилизатора Структурная схема стабилизатора и ее обоснование Источники wwwtechexternalruewonashtml Структурная схема стабилизатора и ее обоснование Напряжение источников электроэнергии переменного тока, от которых питается ИВЭП, в силу Компенсационные стабилизаторы Научная библиотека alnamrubook_euaphp?id Похожие Стабилизаторы напряжения различают компенсационные стабилизаторы Принципиальная схема компенсационного стабилизатора напряжения Стабилизатор ресанта схема принципиальная Стабилизатор Перейти к разделу Ремонт стабилизаторов напряжения сети Ресанта Хроническая нестабильность сетевого напряжения стала почти Стабилизатор напряжения В для дома стабильная работа remooruelektrikastabilizatornapryazheniyavdlyadoma Рейтинг голос апр г Собирается преобразователь своими руками по схеме стабилизатора напряжения В Схему размещения всех элементов печатают Структурная схема стабилизатора напряжения Volter wwwelecabru Схемотека Структурная схема стабилизатора напряжения Volter Принципиальная схема стабилизатора напряжения Orion orteamarketruorionshema Принципиальная схема стабилизатора напряжения Orion orion TM вольтодобавочный трансформатор PV цифровой анализатор сети Электромагнитный стабилизатор напряжения мтомдинфо wwwmtomdinfoarchives Похожие Электромагнитный стабилизатор напряжения Феррорезонансный стабилизатор напряжения Схема феррорезонансного стабилизатора напряжения СТАБИЛИЗАТОР НАПРЯЖЕНИЯ VOTO СХЕМА И РЕМОНТ Диапазон значений входящего напряжения лежит в пределах от до Вольт, на выходе же будет Принципиальная схема стабилизатора VOTO Стабилизатор напряжения В для дома какой выбрать правильно Электрика Силовое оборудование Все они подсоединяют разные выходные обмотки трансформатора при изменении напряжения на входе Принципиальная схема стабилизатора Вместе с принципиальная схема стабилизатора напряжения часто ищут электрические схемы стабилизаторов напряжения схемы китайских стабилизаторов сетевого напряжения схема стабилизатора напряжения на вольт схема стабилизатора напряжения на вольт как сделать простой стабилизатор напряжения в сервоприводный стабилизатор напряжения своими руками релейный стабилизатор напряжения на lm регулируемый стабилизатор напряжения на транзисторе Навигация по страницам

78xx семейство трёхвыводных линейных интегральных стабилизаторов положительного напряжения первого поколения. Принципиальные схемы ИС на разные напряжения различаются величиной верхнего резистора в делителе выходного напряжения, принципиальные схемы ИС на разные выходные... Схемы и описания трансиверов, усилителей, антенн и другой радиолюбительской аппаратуры, бытовой радиоаппаратуры. Справочники. Файловый архив. Библиотека литературы. Советы начинающим. Схема принципиальная электрическая. Стабилизаторы напряжения трехфазные ресанта. Купить Стабилизатор напряжения Sven Neo R 600 по доступной цене в интернет-магазине М.Видео или в розничной сети магазинов М.Видео города Москвы. Sven Neo R 600 - аксессуары, отзывы... Разработка источника питания с защитой от перегрузок Разработка источника питания с импульсным преобразователем напряжения, принципиальной схемы стабилизатора напряжения. Принципиальная схема импульсного стабилизатора. Назначение, принцип действия Импульсные стабилизаторы напряжения (СН) в настоящее время получили распространение не меньшее, чем непрерывные стабилизаторы... Для уяснения принципа работы рассмотрим импульсный последовательный стабилизатор напряжения... Принципиальная схема промоделированного источника питания приведена в Приложение 1, спецификация в Приложении 2. Основная его задача согласование по мощности нагрузки стабилизатора напряжения и маломощного усилителя сигнала ошибки. Принципиальная электриче- скорость генератора. ская схема генераторов ГС-12ТО 13 Обмотка дополнительных полюсов создает магнитное поле, ко- торое воздействует на поле якоря, нескомпенсированное компенса- ционной обмоткой. Схема электрическая принципиальная блока питания с резервированием. Выходное напряжение стабилизатора на DA1 регулируют с помощью резистора R3. Принципиальная схема простейшего однотактного импульсного БП. Сравнимые по выходной мощности с линейными стабилизаторами соответствующие им импульсные стабилизаторы обладают следующими основными достоинствами: Купил 3 месяца назад стабилизатор напряжения APC AVR Line-R LE1200-RS, установил на котел отопления и циркуляционные насосы, общая потребляемая мощность порядка 300Вт.

Ресанта тдп 20000 ремонт своими руками

Стабилизаторы напряжения «Ресанта» используются во многих домах для обеспечения стабильной работы и защиты «здоровья» электрических приборов. В результате домашняя техника работает в течение длительного времени и почти не подвергается ремонту.

Надо сказать, что самому стабилизатору напряжения тоже необходимо соблюдение условий эксплуатации и периодический уход. Иначе аппарат может выйти из строя и ему потребуется ремонт. Помимо этого, отслужив достаточно большой срок, прибор может поломаться просто по причине износа деталей.

Эта статья посвящена тонким местам стабилизаторов бренда «Ресанта». Рассмотрим, как ремонтируются вышедшие из строя детали, а также восстанавливается полная работоспособность прибора.

Степень сложности ремонта стабилизаторов напряжения

Все приборы стабилизации оснащены защитными функциями, с помощью которых контролируются технические показатели на соответствие заявленным данным и условиям эксплуатации. У каждой модели защитная система своя, но существуют общие понимания выхода за пределы допустимого, что не позволяет аппарату дальше работать.

Прежде всего, требуется:

  • проверка на наличие КЗ, входного и выходного напряжения, температурного режима компонентов;
  • изучение высвеченного на дисплее кода ошибки.

Наиболее трудно определить неисправность симисторных ключей прибора, так как их управление связано со знанием электроники. При ремонте не обойтись без принципиальной схемы, измерительных средств, в том числе осциллографа. По контрольным точкам снятых осциллограмм определяются повреждения в структурном модуле устройства. Затем предстоит проверка каждой радиодетали и узла на предмет дефекта.

В стабилизаторах релейного типа нередко причиной неполадок становится реле, предназначенное для переключения обмоток трансформатора. Частые переключения контактов реле приводят к их выгоранию, заклиниванию, или перегоранию самой катушки. Если пропадает напряжение либо выходит сообщение об ошибке – стоит проверить все реле.

Наиболее прост ремонт электромеханического стабилизатора, у которого работа и реакция на изменение параметров сети становятся очевидными сразу после снятия корпуса. Недаром простая конструкция и высокая точность стабилизации делают эти модели весьма распространенными.

Виды неисправностей стабилизаторов напряжения

Ремонт электромеханического типа

Распространенной проблемой таких приборов является перегрев. Поэтому раз в 2 месяца следует предавать устройство техническому обслуживанию. Важной частью ремонта считается именно чистка элементов.

Примером могут служить характерные поломки распространённого стабилизатора АСН-10000/1-ЭМ. Устройство состоит из трёх одинаковых частей — из трёх 1-фазных стабилизаторов, предназначенных для стабилизации только своей фазы. Сердцем аппарата является повышающий автотрансформатор. Он же вместе с контактором и вводным автоматом относится к силовой части.

Принципиальная схема АСН-10000/1-ЭМ приведена на рисунке ниже.

В основе принципа действия электромеханических выравнивателей лежит плавное регу­лирование выходных параметров. Напряжение изменяется благодаря скольжению элек­трического контакта по обмотке автотрансфор­матора посредством электрического привода. На оси электродвигателя крепится ползунок, который перемещаясь, нормализует выходные параметры.

Заслуживает особого внимания следующая характерная неисправность, возникающая в процессе эксплуатации элект­ромеханических стабилизаторов и методы ее устранения – отсутствие стабилизации выходного напряжения.

Первый признак такой неполадки – может ощущаться запах тлеющих деталей. Реверсивный двигатель недаром зовут «ахиллесовой пятой» электромеханических приборов. Контроллером стабилизатора напряжения постоянно отслежива­ется значение выходных параметров. Ротор по­стоянно вращается и это постепенно изнашивает сам двигатель.

Одна неисправность может повлечь за собой другие, например, выход из строя целого каскада управления электродвигателем, собранного на паре транзисторов. Помимо этих элементов от перегрева плавятся резисторы, стоящие в их кол­лекторной цепи.

Конечно, изношенный электродвигатель лучше заменить, но бывает умелая попытка привести его в действие, венчается успехом. Это и есть самый про­стой способ реанимации двига­теля:

  • отключение двигателя от схемы;
  • подача на его выводы 5 В от мощного источника питания, к примеру, от компьютерного БП ATX.

При этом получается отжиг мелкого «мусора» на щётках двигателя. Нормальный ток электропотребления движка дол­жен не выходить за пределы 90–160 мА. Поскольку двигатель реверсивного типа, то напряжение необходимо подавать не менее двух раз со сменой полярности. После этих воздействий ра­ботоспособность агрегата временно восстана­вливается.

Другой вариант решения проблемы – небольшая замена схемы с сужением диапазона регулировки. Просто щетка будет ездить по-другому, в обход выгоревших участков дорожки трансформатора.

Ремонт релейных стабилизаторов

В качестве примеров рассмотрим ремонт:

Наиболее частыми ошибками являются сообщения «L» и «H», что означает начальные буквы английских слов «низкий» и «высокий». То есть показатели выходят за пределы допустимых параметров. На прежних релейных стабилизаторах Ресанта со стрелочными индикаторами можно было видеть изменение выходного напряжения в пределах 204–235 В при переключении ступеней. На нынешней аппаратуре по записи видно 220 В, а по факту те же +- 6%, согласно паспортным данным.

Случается проблема реле медленно переключается, что влияет на защитное отключение компрессора кондиционера. Дело в том, что производителем используются дешёвые конденсаторы весьма низкого качества. Если заменить электролиты – проблема будет решена.

Главное, не стоит забывать о мощности. То, что написано на шильдике корпуса, справедливо для входного напряжения 200 В, в реальности для заниженного (170–180 В) мощность должна быть в 2 раза меньше.

В основе принципа действия этого релейного стабилизатора лежит ступенчатое регулирование выходного напряжения. Стабилизация обеспечивается посредством микропроцессора. Коммутация отводов автотрансформатора выполняется пятью мощными реле, которые управляются транзисторными ключами. Стабильность выходного напряжения зависит от дискретности переключения (5–20 В).

Основная болезнь СПН-9000 – обгоревшие либо залипшие контакты в реле. Эти неполадки довольно часто возникают в процессе эксплуатации релейного стабилизатора. А также при несоответствии входного напряжения диапазону пороговых значений стабилизация не станет работать. Бывает, сразу при включении прибора выбивает предохранители, так срабатывает защита от КЗ.

По причине неисправности реле «летят» транзисторные ключи. Реле подлежат замене или реставрации. Для этого необходимо убрать крышки с реле, после снять подвижный контакт, освободить его от пружины и наждачной бумагой аккуратно очистить все контакты реле. В завершение очистить все контакты специальным бензином и собрать реле в обратном порядке. Затем впаять все транзисторы, и проверить на целостность переходов. Если понадобится, заменить транзисторы на новые.

Заключение

Если вам нужно подключить к стабильнику предположим электрическую печь (9 кВт), то лучшего прибора, чем стабилизатор напряжения Ресанта для этого не найти. А если при этом возникнут мелкие недочеты, то сервисные мастерские быстро и профессионально устранят их на основании гарантийных обязательств. Своевременно сделанный ремонт – залог долговечности и надёжности прибора и после гарантийного срока.

Поломки бывают различные, и иногда сложно понять, то ли просто не соблюдены условия эксплуатации по инструкции, то ли аппарат неисправен. Однако, неполадки могут существовать, и в итоге в самый неподходящий момент может возникнуть проблема. Правильно установить «диагноз» и эффективно устранить их всегда поможет ремонтная компания.

На видео: простой ремонт стабилизатора РЕСАНТА 15 квт 3 фазы.

Восстанавливаем работу сварочного инвертора Ресанта САИ-250ПН

Как-то раз в мои руки попал сварочный инвертор Ресанта САИ 250ПН. Аппарат, без сомнения, внушает уважение.

Те, кто знаком с устройством сварочных инверторов, оценят всю мощь по внешнему виду электронной начинки.

Как уже говорилось, начинка сварочного инвертора рассчитана на большую мощность. Это видно по силовой части устройства.

Во входном выпрямителе два мощных диодных моста на радиаторе, четыре электролитических конденсатора в фильтре. Выходной выпрямитель также укомплектован по полной: 6 сдвоенных диодов, массивный дроссель на выходе выпрямителя.

три ( ! ) реле мягкого пуска. Их контакты соединены параллельно, чтобы выдержать большой скачок тока при запуске сварки.

Если сравнить эту Ресанту (Ресанта САИ-250ПН) и TELWIN Force 165, то Ресанта даст ему лихую фору.

Но, даже у этого монстра есть ахиллесова пята.

Аппарат не включается;

Охлаждающий кулер не работает;

Нет индикации на панели управления.

После беглого осмотра выяснилось, что входной выпрямитель (диодные мосты) оказались исправны, на выходе было около 310 вольт. Стало быть, проблема не в силовой части, а в цепях управления.

Внешний осмотр выявил три перегоревших SMD-резистора. Один в цепи затвора полевого транзистора 4N90C на 47 Ом (маркировка – 470), и два на 2,4 Ом (2R4) – включенных параллельно – в цепи истока того же транзистора.

Транзистор 4N90C (FQP4N90C) управляется микросхемой UC3842BN. Эта микросхема – сердце импульсного блока питания, который запитывает реле плавного пуска и интегральный стабилизатор на +15V. Он в свою очередь питает всю схему, которая и управляет ключевыми транзисторами в инверторе. Вот кусочек схемы Ресанта САИ-250ПН.

Также обнаружилось, что в обрыве ещё и резистор в цепи питания ШИ-контроллера UC3842BN (U1). На схеме он обозначен, как R010 (22 Ом, 2Вт). На печатной плате имеет позиционное обозначение R041. Предупрежу сразу, что обнаружить обрыв данного резистора при внешнем осмотре довольно трудно. Трещина и характерные подгары могут быть на той стороне резистора, что обращена к плате. Так было в моём случае.

Судя по всему, причиной неисправности послужил выход из строя ШИ-контроллера UC3842BN (U1). Это в свою очередь привело к увеличению потребляемого тока, и резистор R010 сгорел от резкой перегрузки. SMD-резисторы в цепях MOSFET-транзистора FQP4N90C сыграли роль плавкого предохранителя и, скорее всего, благодаря им транзистор остался цел.

Как видим, вышел из строя целый импульсный блок питания на UC3842BN (U1). А он питает все основные блоки сварочного инвертора. В том числе и реле плавного пуска. Поэтому сварка и не подавала никаких "признаков жизни".

В итоге имеем кучу "мелочёвки", которую нужно заменить, дабы оживить агрегат.

После замены указанных элементов, сварочный инвертор включился, на дисплее показалось значение установленного тока, защумел охлаждающий кулер.

Тем, кто захочет самостоятельно изучить устройство сварочного инвертора – полная принципиальная схема "Ресанта САИ-250ПН".

Если у ваша тепловая пушка Aurora вдруг начала писать вам ошибку, не спешите её отправлять в сервис. Возможно неисправность вы можете устранить сами благодаря этой инструкции.

Внимание! Если ваша тепловая пушка находится на гарантии, то для прохождения ТО или её вскрытия необходимо обращаться в сервис.

ПОРТАТИВНЫЙ НАГРЕВАТЕЛЬ НА ЖИДКОМ ТОПЛИВЕ
Устранение неисправностей моделей: ТК-20000, ТК-30000, ТК-50000, ТК-70000

Е1 – Ошибка датчика наличия пламени

Возможная причина: Нет топлива в баке
Способ решения: Заправить бак топливом

Возможная причина: – Загрязнена линза фотоэлемента
Способ решения: – Очистить линзу фотоэлемента, стр. 10 инструкции по эксплуатации

Возможная причина: – Загрязнен входной, выходной воздушные фильтры или тонкий фильтр
Способ решения: – См. пункт ВХОДНОЙ ВОЗДУШНЫЙ ФИЛЬТР, ВЫХОДНОЙ ВОЗДУШНЫЙ ФИЛЬТР, ТОНКИЙ ФИЛЬТР

Возможная причина: – Загрязнен входной, выходной воздушные фильтры или тонкий фильтр
Способ решения: – См. пункт ВХОДНОЙ ВОЗДУШНЫЙ ФИЛЬТР, ВЫХОДНОЙ ВОЗДУШНЫЙ ФИЛЬТР, ТОНКИЙ ФИЛЬТР

Возможная причина: – Загрязнена форсунка
Способ решения: – См. пункт ФОРСУНКА, стр. 9 инструкции по эксплуатации

Возможная причина: – Наличие воды в топливном баке и/или загрязнен топливный фильтр
Способ решения: – См. пункт ТОПЛИВНЫЙ ФИЛЬТР, стр. 10-11 инструкции по эксплуатации

Возможная причина: – Вышла из строя система зажигания
Способ решения: Промыть топливный бак чистым керосином

Возможная причина: – Неправильное давление насоса
Способ решения: – См. пункт РЕГУЛИРОВКА ДАВЛЕНИЯ инструкции по эксплуатации

Возможная причина: – Вышел из строя или неправильно установлен фотоэлемент
Способ решения: – Заменить фотоэлемент

Возможная причина: – Нарушен контакт между системой зажигания и блоком управления
Способ решения: – Проверить электрические компоненты ( см. пункт ПРИНЦИПИАЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СХЕМЫ)

Возможная причина: – Провода системы зажигания не подсоединены к свече зажигания
Способ решения: – Подсоединить провода системы зажигания к свече зажигания ( См. пункт СВЕЧА ЗАЖИГАНИЯ)

Е2- Ошибка датчика температуры в помещении

Возможная причина: – Нарушено соединение между датчиком температуры в помещении и блоком управления
Способ решения: – Проверить электрические соединения ( см. пункт ПРИНЦИПИАЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СХЕМЫ, стр. 13)

Возможная причина: – Датчик температуры в помещении вышел из стоя и отсоединен
Способ решения: – Заменить датчик

Возможная причина: – На термостате установлена слишком низкая температура
Способ решения: – Установить при помощи ручки термостата более высокую температуру

LO

Возможная причина: Температура ниже -9С
Способы решения: Нормальные условия

Hi

Возможная причина: Температура выше 50С
Способы решения: Отключите питание

Мигание в работе – Ошибка в работе

Способы решения: Перезапустить нагреватель

ПОРТАТИВНЫЙ НАГРЕВАТЕЛЬ НА ЖИДКОМ ТОПЛИВЕ
Устранение неисправностей модели ТК-10000

Е0 – Ошибка Выключатель

Способы решения: ПЕРЕЗАПУСК НАГРЕВАТЕЛЯ

Е1- Ошибка датчика наличия пламени

Возможная причина: Нет топлива в баке
Способ решения: Заправить бак топливом

Возможная причина: – Загрязнена линза фотоэлемента
Способ решения: – Очистить линзу фотоэлемента, стр. 10 инструкции по эксплуатации

Возможная причина: – Загрязнен входной, выходной воздушные фильтры или тонкий фильтр
Способ решения: – См. пункт ВХОДНОЙ ВОЗДУШНЫЙ ФИЛЬТР, ВЫХОДНОЙ ВОЗДУШНЫЙ ФИЛЬТР, ТОНКИЙ ФИЛЬТР

Возможная причина: – Загрязнен входной, выходной воздушные фильтры или тонкий фильтр
Способ решения: – См. пункт ВХОДНОЙ ВОЗДУШНЫЙ ФИЛЬТР, ВЫХОДНОЙ ВОЗДУШНЫЙ ФИЛЬТР, ТОНКИЙ ФИЛЬТР

Возможная причина: – Загрязнена форсунка
Способ решения: – См. пункт ФОРСУНКА, стр. 9 инструкции по эксплуатации

Возможная причина: – Наличие воды в топливном баке и/или загрязнен топливный фильтр
Способ решения: – См. пункт ТОПЛИВНЫЙ ФИЛЬТР, стр. 10-11 инструкции по эксплуатации

Возможная причина: – Вышла из строя система зажигания
Способ решения: Промыть топливный бак чистым керосином

Возможная причина: – Неправильное давление насоса
Способ решения: – См. пункт РЕГУЛИРОВКА ДАВЛЕНИЯ инструкции по эксплуатации

Возможная причина: – Вышел из строя или неправильно установлен фотоэлемент
Способ решения: – Заменить фотоэлемент

Возможная причина: – Нарушен контакт между системой зажигания и блоком управления
Способ решения: – Проверить электрические компоненты ( см. пункт ПРИНЦИПИАЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СХЕМЫ)

Возможная причина: – Провода системы зажигания не подсоединены к свече зажигания
Способ решения: – Подсоединить провода системы зажигания к свече зажигания ( См. пункт СВЕЧА ЗАЖИГАНИЯ)

Е2 – Ошибка датчика температуры в помещении

Возможная причина: – Нарушено соединение между датчиком температуры в помещении и блоком управления
Способ решения: – Проверить электрические соединения ( см. пункт ПРИНЦИПИАЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СХЕМЫ, стр. 13)

Возможная причина: – Датчик температуры в помещении вышел из стоя и отсоединен
Способ решения: – Заменить датчик

Возможная причина: – На термостате установлена слишком низкая температура
Способ решения: – Установить при помощи ручки термостата более высокую температуру

Е3 – Ошибка Термозащита

Способы решения: Когда температура упадет ниже температуры запуска, Вы сможете снова запустить нагреватель

LO – Температура ниже -9°С

Способы решения: Нормальные условия

Hi – Температура выше 50°С

Способы решения: Отключите питание

Мигание в работе – Ошибка в работе

Ремонт электромеханических стабилизаторов напряжения

Принципиальная схема сварочного аппарата, РЕСАНТА САИ 220. Техническое описание, характеристика, сварочного инвертора. Неисправности при ремонте аппарата, Платы шасси. Скачать схему

Ремонт сварочных инверторов.

Сварочные инверторы гарантируют своё максимальное качество сварки и безусловный комфорт и стабильную работу, для сварщиков. Но эти достоинства достигнуты, целью более непростой конструкции. И ― что бы там ни заявляли производители инверторов ― меньшей фактичностью в сравнении с правопредшественниками ― трансформаторов и выпрямителей.

В отличие и разницы, сварочных трансформаторов, который является в основной степени электротехническим электроизделием, инвертор сварочный отображает электронное устройство. Что означает, это диагностика и ремонт сварочных инверторов. Предусматривает проверку работоспособности транзисторов, силовых диодов, резисторов, импульсных трансформаторов, стабилитронов и прочих элементов, из которых состоят принципиальные схемы. Нужно уметь обращаться работать с мультиметром, осциллографом, не говоря уже о вольтметрах и прочей измерительной технике.

Спецификой ремонта сварочных инверторов предстаёт. То, что во многих случаях выявить, по характеру неисправности вышедший из строя компонент, непросто или вообще невозможно. Требуется проверять последовательно все узлы управления и элементы монтажной схемы. Из всего вышеперечисленного следует, что успешный ремонт сварочного инвертора своими самостоятельными силами возможен лишь в том случае. Если имеются хотя бы начальные навыки в электронике и наименьший опыт работы с электро-монтажными схемами. В противном случае ремонт своими руками, может обернуться лишь напрасной потерей времени и сил.

И так как установлен но, принцип работы сварочного инвертора заключается в изначальном преобразовании электрического напряжения:
Выпрямлении сетевого тока ― с помощью силовых входных выпрямителей.
Преобразования выпрямленного постоянное напряжения поступает в инверторный модуль где оно вормируется и генерируется в импулсы высокой частоты. Понижении постоянного напряжения и тока до сварочного ― обрабатывается силовым высокочастотным трансформатором. В соответствии с выполняемыми операциями, сварочный инвертор конструктивно состоит из нескольких электронных модулей. К основным из которых относятся модуль входного выпрямителя, модуль выходного выпрямителя и плата управления с ключами транзисторами.

Эта статья расскажет о таких вопросах:

В очень многих домах и квартирах используются те стабилизаторы напряжения, которые были сделаны в стенах компании «Ресанта». Благодаря использованию этих приборов владельцы обеспечивают стабильную работу и защищают «здоровье» всех своих домашних электроприборов.

В конечном итоге каждый домашний электроприбор работает в течение долгого времени и очень редко требует ремонта.

Хотим отметить, что стабилизатор также является домашним прибором, который требует надлежащего ухода и соблюдения необходимых условий эксплуатации. В противном случае стабилизатор напряжения, который выпустила компания «Ресанта», может выйти из строя и будет нуждаться в ремонте.

Кроме этого он может выходить из строя после долгих лет эксплуатации. Другими словами он также обладает способностью ломаться.

Смотря на эту способность, мы решили посвятить статью слабым местам стабилизаторов марки «Ресанта» и рассмотреть, каким образом можно отремонтировать поврежденные элементы, а также восстановить полную работоспособность этого востребованного устройства.

Но, сначала расскажем об общем строении и принципе работы устройств этой марки.

Принцип работы

Как и все стабилизаторы напряжения, так и нормализаторы марки «Ресанта» состоят из:

  1. автоматического трансформатора.
  2. электронного блока.
  3. вольтметра.
  4. элемента, который осуществляет подключение/отключение определенных обмоток.

Учитывая то, что производитель осуществляет выпуск различных видов стабилизаторов, элементы для подключения обмоток являются разными. О них мы отметим несколько ниже, а именно тогда, когда будем рассматривать особенности работы и ремонта каждого вида нормализатора от латвийского производителя.

Электронный блок любого стабилизатора компании «Ресанта» осуществляет управление всей работой устройства. Он управляет работой вольтметра и получает данные об уровне входного напряжения. Дальше он сравнивает это напряжение с нормированным и определяет, сколько вольт нужно добавить или отнять.

После этого определяется то, какие обмотки стабилизатора нужно подключить или же отключить. Когда известна эта информация электронный блок подключает/отключает необходимые обмотки с помощью реле или сервопривода и наши электроприборы получают нормализованный ток.

Такой принцип стабилизации тока присущ каждому стабилизатору напряжения от компании «Ресанта». Однако процесс стабилизации в различных моделях компании имеет отличия. Они обусловлены тем, что по-разному происходит подключение/отключение обмоток трансформатора.

В стенах компании выпускается два типа стабилизаторов:

  1. Электромеханические.
  2. Релейные.

И, конечно, ремонт каждого из них имеет свои особенности.

Особенности работы электромеханического прибора

Сначала мы рассмотрим электромеханический нормализатор. Устройство этого стабилизатора напряжения от компании «Ресанта» предусматривает наличие такого элемента как сервопривод. Собственно благодаря ему осуществляется переключение различных обмоток автоматического трансформатора.

Переключение этих обмоток осуществляется плавно и в результате обеспечивается точная регулировка напряжения на выходе.

Каким же образом происходит это плавная регулировка? Сервопривод представляет собой двигатель и щетку (электрический контакт), которая прикреплена к якорю двигателя. Когда этот якорь крутится, то движется и щетка. Она постоянно контактирует с медными обмотками трансформатора.

По сути дела она скользит по ним. Она имеет такую ширину, которая позволяет соединять две обмотки одновременно. В результате на выходе не пропадает фаза.

Для того, чтобы щетка двигалась в определенном направлении и на определенную величину, в нормализаторе создается напряжение ошибки. Далее благодаря операционному усилителю и транзисторному выходному каскаду (он представляет собой усилитель мощности) это напряжение усиливается.

После этого оно подается на двигатель и заставляет крутиться якорь в определенном направлении.

В таком направлении движется и щетка, которая контактирует с обмотками. Напряжение ошибки является пропорциональным величине, которая является разницей между количеством вольт на входе и необходимым количеством вольт.

Сигнал ошибки может иметь одну из двух полярностей и в результате каждая полярность заставляет ось двигателя крутиться в определенном направлении. Такими являются особенности работы электромеханического нормализатора.

Отметим, что очень многие люди покупают 10-киловольт-амперный электромеханический стабилизатор. Поэтому возможные неисправности и поломки этого типа стабилизатора напряжения от компании «Ресанта» будут рассмотрены на этой модели. Ниже приводится его электросхема.

Рис. 1. Электросхема стабилизатора АСН-10000/1-ЭМ.

Стоит обратить внимание на тот факт, что общее строение всех нормализаторов этого типа является похожим. Различия заключаются в отдельных элементах моделей с разными уровнями мощности.

Основные неисправности

Из вышеописанного принципа работы электромеханического стабилизатора становится понятно, что когда происходит изменение тока в электросети, происходит одновременное вращение якоря двигателя и движение графитовой щетки.

Постоянное движение сервопривода и является главной слабостью электромеханического устройства. Почему? Потому, что в результате трения щетки о витки катушки происходит чрезмерное нагревание как щетки, так и витков под ней.

Кроме этого, трение вызывает износ щетки и загрязнение медных проводов. Последняя причина обусловливает появление искр.

Учитывая тот факт, что в наших электролиниях ток меняется очень часто, то с такой же частотой происходит движение сервопривода. Такое частое вращение становится причиной выхода из строя самого двигателя.

Примечательной особенностью является то, что поломка двигателя вызывает выход из строя других деталей. Так, появляется вероятность выхода из строя выходного каскада управления двигателем.

Специалисты компании «Ресанта» собирают этот каскад на основе пары транзисторов Q2 TIP41C и Q1 TIP42C. Когда происходит сгорание этих транзисторов, то сгорают и резисторы R45 и R46.

Они являются составляющими коллекторной цепи вышеуказанных транзисторов. R45 и R46 характеризуются сопротивлением в 10 Ом и мощностью в 2 ватта.

Когда есть такие неисправности, то надо провести проверку линейного стабилизатора. Его латвийские специалисты собирают на базе стабилитрона DM4 и транзистора Q3 TIP41C.

Если все эти составляющие электросхемы стабилизатора напряжения электромеханического типа, изготовленного компанией «Ресанта», сгорели, то их в любом случае нужно купить и заменить.

Ремонт двигателя сервопривода

Когда сгорел сам двигатель, то есть два варианта:

  1. Покупка нового и его установка.
  2. Попытка реставрации старого двигателя.

Второй вариант дает возможность реанимировать двигатель собственными силами, однако, на не долгое время. Для реанимации нужно произвести отключение двигателя от общей схемы. После этого его нужно подключить к мощному источнику питания.

Вашей задачей является подача на его выходы тока с постоянным напряжением в 5 вольт. Ток при этом должен иметь силу от 90 до 160 мА. При подаче такого тока на щетках двигателя сгорает каждая мелкая частица «мусора».

Полезный совет: поскольку двигатель относится к реверсивному типу, то при подаче напряжения нужно менять полярность. Эта процедура проводится два раза.

После таких действий двигатель сможет снова работать, и стабилизатор будет выполнять свою основную функцию. Далее по несложной схеме можно проводить процедуру подключения стабилизатора напряжения, выпущенного компанией «Ресанта».

Эта схема предусматривает подключение входного фазного и нейтрального кабелей к входной фазной и нейтральной клеммам соответственно. Аналогичным является подключение выходных проводов. Также обязательно подключают заземляющий провод.

Как работают релейные стабилизаторы?

Что касается релейных стабилизаторов от латвийской компании, то во время их эксплуатации возникают другие неисправности. Соответственно, их ремонт представляет собой иную процедуру.

Перед тем, как рассмотреть особенности ремонта релейного нормализатора «Ресанта», обратим внимание на особенности его работы. Релейное устройство выравнивает ток скачкообразно.

Это происходит потому, что одно реле подключает/отключает определенное количество витков второй обмотки. Если сравнить электромеханический стабилизатор, то его щетка постепенно контактирует с большим количеством витков.

Иными словами она постепенно подключает промежуточные витки и останавливается на нужном витке. В релейных приборах от «Ресанта» все витки будто поделены на группы и от каждой из них отходит вывод. Собственно на этот вывод и подается ток при включении реле.

Электрическая схема каждого релейного стабилизатора напряжения от компании «Ресанта» предусматривает наличие четырех реле, а это означает, что количество выводов второй обмотки также равняется цифре четыре.

Исключение составляют модели серии СПН. Число реле равняется цифре пять.

Полезный совет: когда включается или отключается определенное реле, напряжение на выходе меняется на 15-20 вольт, то есть происходят минискачки напряжения. Эти минипрыжки хорошо заметны на лампах освещения.

Для большинства электроприборов они не являются страшными. Однако сложная электронная и измерительная техника требуют более плавной стабилизации тока. Это следует учитывать при использовании любого релейного стабилизатора.

Подытоживая выше сказанное, отметим, что весь процесс нормализации тока сопровождается постоянной работой реле. Собственно этот механический компонент и является самым слабым местом. При эксплуатации он может как сгореть, так и залипнуть.

Как ремонтировать реле?

В том случае, когда из строя выходят контакты реле, поломаться могут и транзисторные ключи. В зависимости от модели эти ключи могут собираться на разных транзисторах. Так, в модели СПН-9000 эти ключи собраны на основе транзисторов 2SD882.

В основе транзисторных ключей модели АСН-5000/1-Ц (его схема приводится ниже) находятся транзисторы D882Р. Все эти транзисторы выпускает компания NEC.

Рис. 2. Схема стабилизатора АСН-5000/1-Ц.

В тех случаях, когда эти транзисторы и реле выходят из строя, их полностью заменяют. Такие запчасти для вышеупомянутых моделей стабилизаторов напряжения, выпускаемых компанией «Ресанта», можно найти во многих магазинах.

Также можно попробовать отреставрировать изношенные контакты реле. Данная процедура начинается со снимания крышки реле. Потом приступают к снятию подвижного контакта. Этот контакт нужно высвободить от пружины.

В конце обрабатывают все контакты бензином «Галоша» и осуществляют сборку реле. Когда реле является собранным, следует проверить транзисторы 2SD882 или D882Р, или же другие (это зависит от модификации).

Их выпаивают (нужно иметь паяльник) и осуществляют проверку целостности переходов. Если переходы не является целостными, нужно взять новые транзисторы.

Проведение диагностики

После окончания ремонтных работ необходимо провести диагностику работы стабилизационного прибора. Для этого используют ЛАТР, к которому подключают стабилизатор. Далее с помощью ЛАТРа изменяют напряжение и следят за работой стабилизационного устройства. В качестве нагрузки используется лампочка.

После проверки можно произвести подключение к общей сети. Если вы не знаете, как подключить релейный стабилизатор напряжения, сделанный в стенах компании «Ресанта», то стоит запомнить, что данная процедура является такой же, как и для электромеханического нормализатора. О ней мы уже писали.

Другие неисправности релейных приборов

JAKEC набор конденсаторов

Стоит отметить, что поломка реле может быть не единственной неисправностью, которая возникает в релейном нормализаторе от латвийской компании. В некоторых случаях в стабилизаторе СПН-9000 наблюдался периодический дефект.

Внешним признаком этого дефекта являлось хаотическое отображение сегментов дисплея, которые включались. В это же время наблюдалась хаотическое включение реле.

Добрый день. Можете подсказать какое сечение обмотки катушки на АСН 10000 1ЭМ и габариты катушки? Спасибо.

Довольно подробно написана статья, спасибо. JAKEC конденсаторы — самая частая причина поломки не только стабилизаторов, но и кучи другой техники. Разница в цене с Самсунговскими — копеечная, а вот из-за одной такой детали ломаются и телевизоры, и стиралки и утюги.

Я бы не стал ремонтировать реле вообще. Не добьешься от него стабильной работы после ремонта. Эту часть нужно просто заменять на новую и не мудрить с наждачкой.

Миша, по такой логике можно и весь стабилизатор заменить и ничего не ремонтировать Что плохого, если нагар нулевкой очистить, как в статье описано. Как по мне, так кроме пользы вреда не будет.

Подскажите какое должно быть сопротивление на регулируемых резисторах,повышенный пониженный,плата tz03-09-2 ресанта асн 3000.

купил стаб ресанта 10000 асн 1-ц на цифровом дисплее показывает входное и выходное напряжение но на выходе всего лишь 24в и вдобавок нет нигде схем.Если кто знает помогите.Зарание благодарен. Максим.

Боло такое, поменяли пьо гарантии на другой…

Кто подскажет что делать если стабилизатор щелкает и при этом Маргарет свет а если по корпусу стукнуть легонько то он выключается

у меня Ресанта АСН-8000Н/1-Ц в режиме Байпас есть напряжение.а когда его выключишь то напряжения через стабилизатор нет. подскажите пожайлуста что может быть.

Александр

Плохо, что не даётся схема силовой части стабилизатора, т.е как коммутирутся витки трансформатора. Это,я думая, самая важная часть для ремонта своими руками. В электронную часть мало кто полезет сам ремонтировать. Причём просмотрел в интернете, то же нет или даётся с ошибками. Одну схему нашёл, начал разбирается, а в ней коммутация происходит только на добавление витков. Т.е снижать напряжение этот стабилизатор неможет.

Анатолий

где можно купить L7805CV CCOKI V6 для стабилизатора Ресанта.

Александр

Нашел в интернете принципиальную схему стабилизатора АСН 10000\1-ц. Силовая часть выполнена конструктором видимо после большого «бодуна». У меня такой же стабилизатор, пока не проверял схему соответствует натуре или нет. По логике видимо такая, так как точно такая же схема дается для стабилизатора 5 кВт.
1.Схема изображена с нарушением классической схемы автотрансформатора
2. Не использована первая обмотка трансформатора. Зеленый вывод.По схеме она видимо включается как дополнение к основной обмотке. Зачем???. Это принципиально ничего не дает.А работают фактически две дополнительные обмотки трансформатора.
3. В отличии от стаб.5кВт в этом контакты реле шунтируются конденсаторами.Но поскольку схема изображена с нарушением последовательности контактов в разъеме, конструктор создал достаточно абсурдную схему подключения конденсаторов.

У меня на стабе не работает система понижения напряжения, т.е. при напряжении превышающем 235 в. стаб прибавляет еще дополнительное напряжение до 245 в и вырубает нагрузку. Хотя бы эту функцию сделали работающей!!

Не удивительно, что стаб так работает при такой схемt «шаляй-валяй»

Александр

Уже второй стабилизатор АСН-10000/1-ЭМ не работает правильно: выходное напряжение примерно на 25 В меньше входного напряжения.

Александр

Кто мне ответит, почему силовые провода просто прижаты к обмоткам трансформатора? Неужели для экономии проводов? Конструктора прекрасно знают, как греются эти самые обмотки, и такой ляп. Изоляция расплавилась и провода просто влипли в транс. У меня АСН-12000/1-ЭМ. А теперь такие 2-а вопроса по существу: Вы советуете реанимировать ЭД сервопривода напряжением 5 v, а у него на шильдике указано 12v. Можно-ли автомобильным аккумулятором этот моторчик «прощупать»? И второй вопрос: на том-же шильдике не указано-где «+», а где «-«. Разницы нет как припаять? C точки зрения его работы по схеме.

Спецы- нужен совет, помогите пожалуйста!!! Ресанта АСН-2000/1-Ц- стояла на настенный газовый котел отопления квартиры- отказала- сперва щелкали реле, заменил 2 конденсатора после моста- вспухли, начался отчет секунд от 3 до 1, потом высвечивается 220В, потом буквы- сН, нашел сгореший диод, стоящий параллельно катушки реле (SLA-12VDC-SL-C)- IN4148 или IN4007 (стекляный без надписи- вроде цифры есть похожие на 31) и транзистор D882P на это реле (сопротивления переходов отличны почти в 2 раза)- можно ли поставить отечественные и какие? Какая еще проблема может быть там?

Здравствуйте. Принесли в ремонт стабилизатор релейного исполнения как Ресанта,там была сгоревшая реле на нее подается фаза с включателя, заменил реле заработал стабилизатор но при проверки латором выявился дефект при подачи на стабилизатор напряжения от 200В до 220В срабатывает автомат(включатель).Но выключатель может и не сработать но тогда видно по освешению просадку напряжения.На остальном входном напряжении стабилизатор работает нормально

Надежный и недорогой стабилизатора Ресанта АСН 500 1ц

Как-то раз в мои руки попал сварочный инвертор Ресанта САИ 250ПН. Аппарат, без сомнения, внушает уважение. Те, кто знаком с устройством сварочных инверторов , оценят всю мощь по внешнему виду электронной начинки.


Как уже говорилось, начинка сварочного инвертора рассчитана на большую мощность. Это видно по силовой части устройства.

Во входном выпрямителе два мощных диодных моста на радиаторе, четыре электролитических конденсатора в фильтре. Выходной выпрямитель также укомплектован по полной: 6 сдвоенных диодов, массивный дроссель на выходе выпрямителя,...

три (! ) реле мягкого пуска. Их контакты соединены параллельно, чтобы выдержать большой скачок тока при запуске сварки.

Если сравнить эту Ресанту (Ресанта САИ-250ПН) и TELWIN Force 165 , то Ресанта даст ему лихую фору.


Но, даже у этого монстра есть ахиллесова пята.

Проявление неисправности:

  • Аппарат не включается;
  • Охлаждающий кулер не работает;
  • Нет индикации на панели управления.

После беглого осмотра выяснилось, что входной выпрямитель (диодные мосты) оказались исправны, на выходе было около 310 вольт. Стало быть, проблема не в силовой части, а в цепях управления.

Внешний осмотр выявил три перегоревших SMD-резистора. Один в цепи затвора полевого транзистора 4N90C на 47 Ом (маркировка - 470 ), и два на 2,4 Ом (2R4 ) - включенных параллельно - в цепи истока того же транзистора.


Транзистор 4N90C (FQP4N90C ) управляется микросхемой UC3842BN . Эта микросхема - сердце импульсного блока питания, который запитывает реле плавного пуска и интегральный стабилизатор на +15V. Он в свою очередь питает всю схему, которая и управляет ключевыми транзисторами в инверторе. Вот кусочек схемы Ресанта САИ-250ПН.


Также обнаружилось, что в обрыве ещё и резистор в цепи питания ШИ-контроллера UC3842BN (U1). На схеме он обозначен, как R010 (22 Ом , 2Вт ). На печатной плате имеет позиционное обозначение R041. Предупрежу сразу, что обнаружить обрыв данного резистора при внешнем осмотре довольно трудно. Трещина и характерные подгары могут быть на той стороне резистора, что обращена к плате. Так было в моём случае.


Судя по всему, причиной неисправности послужил выход из строя ШИ-контроллера UC3842BN (U1). Это в свою очередь привело к увеличению потребляемого тока, и резистор R010 сгорел от резкой перегрузки. SMD-резисторы в цепях MOSFET-транзистора FQP4N90C сыграли роль плавкого предохранителя и, скорее всего, благодаря им транзистор остался цел.

Как видим, вышел из строя целый импульсный блок питания на UC3842BN (U1). А он питает все основные блоки сварочного инвертора. В том числе и реле плавного пуска. Поэтому сварка и не подавала никаких "признаков жизни".

В итоге имеем кучу "мелочёвки", которую нужно заменить, дабы оживить агрегат.

После замены указанных элементов, сварочный инвертор включился, на дисплее показалось значение установленного тока, защумел охлаждающий кулер.

Тем, кто захочет самостоятельно изучить устройство сварочного инвертора - полная принципиальная схема "Ресанта САИ-250ПН".

  • Скачать (1,64 Мб.)

Стабилизатор напряжения переменного тока Resanta 10000 ВА - не работает | Remprof56

Ремонт стабилизаторов напряжение переменного тока Resanta 10000 ВА

В ремонте широко используемый тип стабилизаторов напряжения переменного тока Resanta 10000 - относящийся к разряду промышленного и бытового применения  в однофазных сетях при токе  максимальной  нагрузки Iн max  >25A.

Основа стабилизатора - тороидальный повышающий автотрансформатор с механической регулировкой напряжения. Стабилизатор прост в управлении и не требует для использования каких-либо специальных навыков.  При правильной эксплуатации такой стабилизатор незаменим во многих областях промышленного производства и коммунального хозяйства.  Он эффективно выравнивает колебания напряжения  в электрической сети, защищая электроприборы от длительных колебаний и скачков напряжения. На выходе даже при токах 25-30А мы всегда имеем чистую синусоиду. Данный стабилизатор может прекрасно работать в системах газового оборудования котельных и электропитания двигателей подпитки (подкачки) магистральных насосов.

Стабилизация напряжения 220 V обеспечивается при изменении входного напряжения Uвх от 140 V до 260 V. Имеется защита от перенапряжения, когда Uвх. >260 V – нагрузка отключается.

В ремонт поступил стабилизатор в результате неправильной эксплуатации. Нагрузкой стабилизатора был сварочный трансформатор. Варили им при напряжении сети < 160V . и для того, чтобы дуга не тухла ограничили сектор вращения токосъемников на автотрансформаторе (вставили упор). После чего естественно сгорел двигатель редуктора. Вышли из строя выходные транзисторы Q1 и Q2 сгорели резисторы в коллекторе этих транзисторов R45 и R46. А также не выдержал внутренний стабилизатор напряжения на транзисторе Q3, без которого и пришел в ремонт этот стабилизатор.  В последствии ещё оказалось, что в попытках ремонта,  несколько «специалистов» - раскрутили все переменные резисторы обеспечивающие настройку этого аппарата.

В ходе ремонта пришлось заменить все вышедшие из строя детали, а также заменить на плате управления много электролитических конденсаторов с потерей емкости и повышенным внутренним сопротивлением.  (На принципиальной схеме стабилизатора напряжения переменного тока Resanta 10000 ВА -   выставлены контрольные напряжения для облегчения ремонта ). - открыть.   scheme Resanta 10000BA. rar - скачать

В ходе замены электродвигателя редуктора, выявилась особенность применения, в данной схеме, широко распространенного типа низковольтного коллекторного электродвигателя от старых  магнитофонов двухкассетников с  радиоприемником импортного производства.  Внутри этих электродвигателей находилась плата стабилизатора (для обеспечения стабильности частоты вращения не зависимо от напряжения питания). Обычно,  это электродвигатели на рабочее напряжение 9 и 12 вольт.

При разборке сгоревшего электродвигателя от Resanta 10000 выяснилось, что этой платки внутри нет. А напряжение подводится непосредственно к контактам коллектора электродвигателя. Что обеспечивает его работу при очень низком напряжении управления от 1,5V до 5V в схеме реверсивного управления, когда полярность на выходе моста изменяется и за счет замкнутой цепи управления стремится к «0» вольт, т.е. к состоянию покоя вала электродвигателя.

Настройка системы авторегулирования осуществлялась, первоначально, при отключенном электродвигателе редуктора. С помощью лабораторного автотрансформатора выставлено входное напряжение 220V и  при ручном перемещении токосъемника со щетками на ремонтируемом стабилизаторе контролировалось уже напряжение снятое со щеток. При точном положении токосъемника в положение соответствующему 220V на выходе, напряжение управления в точке соединения эмитеров транзисторов Q1 и Q2 должно равняться 0 V. Подстройка «0» - осуществляется переменным резистором  W2.

Соответственно, при дестабилизирующем воздействии, от ЛАТра,  на вход напряжением >220V, (допустим Uвх=230V) должно изменится напряжение в средней точке на выходе транзисторов Q1 и Q2 в сторону увеличения (допустим +3,5V). А при уменьшении напряжения на входе  < 220 V (допустим Uвх=210V), напряжение в средней точке станет отрицательным (допустим -3,5V) по отношению к земле.

При правильной полярности подключения электродвигателя – щетки токосъемника будут при увеличении напряжения смещаться в сторону от нулевого положения понижая возросшее входное напряжение и при Uвх≈259V – токосъемник должен остановится в крайнем нижнем положении на поверхности автотрансформатора, при этом напряжение на выходе стабилизатора будет ≈220V. При увеличении напряжения > 260 V – штанга токосъёмника нажимает на рычаг концевого переключателя и отключается нагрузка, обеспечивая защиту от перенапряжения.

При неправильной полярности подключения электродвигателя - щетки токосъемника уходят самопроизвольно, в какую либо из сторон, так что зафиксировать отклонение от нулевого уровня напряжения на выходе схемы регулирования в средней точке от двух транзисторов  Q1 и Q2,  не представляется возможным. Это называется разбалансировкой замкнутой системы авторегулирования.

В ходе настройки, было выявлено, что электромеханическая система после восстановления работоспособности, обладала довольно высокой скоростью отработки точности стабилизации 220В, и находилась в постоянном движении. А это как известно приводит к быстрому износу щеток и преждевременному выходу из строя, как самого автотрансформатора, так и электродвигателя в редукторе (по некоторым практическим данным срок работы электродвигателя в редукторе не превышает 2-х лет). Поэтому, для повышения инерционности всей системы в целом, были внесены изменения в схему управления. Вместо резистора R30 =1 МΩ (по схеме 570 кΩ) был установлен резистор 130 кΩ, для увеличения глубины отрицательной обратной связи.  Между 5 и 6 выводами м/сх LM324N установлен резистор 18 кΩ. Конденсаторы С6 и С7 заменены на 100µF .

С целью увеличения надежности работы выходного каскада на транзисторах Q1и Q2  резисторы R45 и R46 были увеличены по мощности до 2W. Транзисторы Q1 TIP42C и Q2 TIP41C являющиеся комплементарной парой подбирались по коэффициенту усиления β.

После увеличения инерционности работы замкнутой системы авторегулирования, щетки перестали постоянно ёрзать по автотрансформатору. А  ∆Uст составила не более чем 7-8 вольт.

Масса положительных качеств данного стабилизатора компенсируется существенным его недостатком – не возможностью работать в условиях высоких температур  и повышенной  влажности, которая не должна превышать 80%.

Стабилизатор отличается минимальным уровнем производимого шума, делающим комфортным его использование в жилых помещениях. Для поддержания стабильной работоспособности прибора рекомендуется производить его периодическое обслуживание. Все что от пользователя этим устройством потребуется, так это просто чистить поверхность автотрансформатора  от графитовой  пыли и периодически  производить замену щеток, применяемых в качестве токосъемных контактов.

Вот и всё, что хотелось бы рассказать о ремонте данного стабилизатора. Удачи и понимания  всем  ремонтникам!

Стабилизатор напряжения для дома | Заметки электрика

Здравствуйте, уважаемые читатели сайта http://zametkielectrika.ru.

Тема сегодняшней статьи относится к таким неотъемлемым в настоящее время устройствам, как стабилизаторы напряжения для дома. Сейчас я Вам поясню почему неотъемлемые. Энергоснабжающая организация не уделяет должного внимания на качество поставляемой электроэнергии потребителям. Причиной этому может являться отсутствие законов и наложение санкций при несоответствующем качестве. К тому же не стоит забывать, что энергоснабжающая организация является монополистом по поставке электрической энергии.

Поставляемая электроэнергия является товаром. И если этот «товар» будет не надлежащего качества, то это может привести к выходу из строя электрооборудования. Поэтому каждый потребитель должен позаботиться о себе сам, применив стабилизаторы напряжения для дома, которые предназначены для поддержания стабильного напряжения питания нагрузок бытового и промышленного назначения.

 

Что же такое «качество» электрической энергии?

Для этого обратимся к следующим нормативным документам, где регламентируются параметры электрической сети от источника питания до потребителя.

1. Гражданский кодекс Российской Федерации

2. ГОСТы

В этих ГОСТах представлена расшифровка параметров и цифровые показатели качества электрической энергии, методы их измерения, причины и вероятности появления того или иного отклонения качества.

3. ПУЭ

Кстати, скачать ПУЭ 7 издание Вы можете с моего сайта. 

Теперь давайте рассмотрим основные показатели качества электрической энергии, согласно ГОСТ 13109-97.

 

Основные показатели электрической энергии

1. Отклонение напряжения

Существуют следующие нормы отклонений:

  • нормально-допустимые (±5%)
  • предельно-допустимые (±10%)

Согласно ГОСТа 21128-83, номинальное действующее напряжение однофазной бытовой сети должно составлять 220 (В). Отсюда следует, что предел напряжений от 209 — 231 (В) является нормально-допустимым отклонением, а предел напряжений от 198 — 242 (В) — предельно-допустимым отклонением.

2. Провал напряжения

Провал напряжения — это падение напряжения ниже, чем 198 (В) длительностью более 30 секунд. Глубина провала напряжения может достигать до 100%.

3. Перенапряжение

Перенапряжение — это превышение амплитудного значения напряжения больше 339 (В).

Напоминаю, что амплитудное значение 310 (В) соответствует действующему значению 220 (В).

Более подробно о причинах возникновения перенапряжений читайте в моей статье: виды перенапряжений и их опасность.

 

Стабилизатор напряжения для дома

Так что же такое стабилизатор напряжения для дома?

Стабилизатор напряжения — это автоматическое устройство, которое при изменении входного напряжения, на выход выдает стабильное заданное напряжение 220 (В). Схематично можно изобразить так:

Рассмотрим проблемы, которые могут возникнуть с питающим напряжением в своих домах, коттеджах и садах. 

Наружная электропроводка для большинства дачных поселков была построена и рассчитана еще в прошлом веке, когда нормы потребления на каждый дом принимались около 2 (кВт). В настоящее время только один электрический чайник потребляет около 1 (кВт), стиральная машинка около 2 (кВт), не говоря уже об электрических плитах, мощность которых достигает 10 (кВт) и больше.

По причине долгого срока эксплуатации состояние питающих линий с каждым годом ухудшается. Обслуживающие электрики приезжают на линию только по аварийным заявкам и вызовам. Периодические проверки и обслуживание линий ведется по минимуму.

От воздействий атмосферных осадков происходит окисление проводов, что уменьшает их сечение, в местах соединений проводов ухудшается электрический контакт, что приводит к  дополнительным потерям. Также увеличивается число потребителей на одну и ту же линию. Хотя в последнее время в технических условиях на подключение дома энергоснабжающая организация обязывает установку ограничителей мощности.

Что в итоге мы имеем?

Когда линия не нагружена, то величина питающего напряжения не выходит за рамки норм. Как только нагрузка на линии начинает постепенно расти (люди приходят с работы), питающее напряжение начинает уменьшаться. По личному примеру скажу, что в одной из деревень величина напряжения в вечернее время достигала 150 (В). При таком напряжении холодильники выходят из строя, лампочки светят тускло, электрические печи не греют до номинальной температуры и т.д.

Как выходит из данной ситуации энергоснабжающая организация?

Очень просто.

Они выставляют на питающем трансформаторе с помощью привода ПБВ или РПН изначально повышенный уровень напряжения, чтобы в часы максимальной нагрузки напряжение было в норме, ну или почти в норме. Но ведь изначально выставленный повышенный уровень напряжения на питающем трансформаторе приводит к скорому перегоранию лампочек, а также к выходу из строя бытовой аппаратуры и техники.

Что же получается? Палка о «двух концах»?

Кто в данном тексте увидел свою проблему, то рекомендую Вам позаботиться о себе самостоятельно, вооружившись стабилизатором напряжения для дома. Ниже я познакомлю Вас с типами стабилизаторов.

 

Типы стабилизаторов напряжения для дома

Рассмотрим классификацию стабилизаторов напряжения для дома.

1. Феррорезонансные или магниторезонансные стабилизаторы напряжения

Это самые «древние» стабилизаторы напряжения для дома, которые применялись для питания первых цветных телевизоров. Помните, такую «коробку»?

Стабилизатор напряжения для дома «Украина-2″ мощностью всего то 315 (Вт).

А это еще один феррорезонансный стабилизатор напряжения.

Принцип их работы основывается на явлении магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей.

У этих стабилизаторов напряжения недостатков пожалуй гораздо больше, чем достоинств. Во-первых, они выпускались небольшой мощности (до 600 Вт). Во-вторых, они очень сильно искажают синусоидальную форму выходного напряжения. В-третьих, они очень сильно гудят, а также у них узкий диапазон стабилизации и они частенько выходят из строя при повышенном напряжении в сети.

Пользуясь случаем, рекомендую Вам прочитать статью «Как пользоваться мультиметром (часть 1)», в которой Вы найдете подробную инструкцию по измерению напряжения бытовой однофазной сети.

2. Дискретные (ступенчатые) стабилизаторы напряжения

Следующий тип стабилизаторов напряжения для дома, который мы рассмотрим, называются дискретными или ступенчатыми.

Принцип их работы основывается на ступенчатой коррекции напряжения, осуществляемой переключением отводов обмотки автотрансформатора с помощью ключей.

Ключи бывают либо релейными, либо полупроводниковыми (симисторы).

Ниже на рисунке приведена упрощенная схема дискретного стабилизатора для дома с прямым включением 5 ключей. Обычно такая схема применяется у самых дешевых моделей. Каждый ключ (реле или симистор) настроен на определенный порог срабатывания по уровню входного напряжения сети. При достижении этого значения ключ замыкает часть обмотки автотрансформатора.

Про достоинства таких типов стабилизаторов напряжения для дома могу сказать то, что они обладают высокой скоростью реакции на изменение входного напряжения, что необходимо для двигательных нагрузок, таких как холодильник, стиральная машина, глубинный насос и др.

Время реакции на изменение входного напряжения зависит от количества обмоток и скорости работы ключей.

Также у них небольшой вес и габариты, отсутствуют движущиеся части, в отличие от электромеханических стабилизаторов, а также широкий диапазон входных напряжений.

Из недостатков можно отметить то, что напряжение на выходе меняется ступенчато и во время процесса регулирования происходит прерывание выходного напряжения.

3. Электромеханические стабилизаторы напряжения

Сейчас мы рассмотрим электромеханические стабилизаторы напряжения для дома. Их принцип работы основан на регулировании напряжения за счет перемещения щетки по обмотке автотрансформатора.

Непрерывность фазы выходного напряжения обеспечивается конструкцией токосъемника, т.е. щеткой. Ширина щетки приблизительно равна 2,2 диаметра провода обмотки автотрансформатора, чтобы при переходе с одного витка на другой электрический контакт не терялся.

Достоинства электромеханического стабилизатора напряжения:

  • плавное регулирование
  • отсутствие помех при работе
  • отсутствие искаженной формы напряжения
  • отсутствие электронных ключей, коммутирующих рабочий ток
  • высокая точность удержания выходного напряжения — 220 ± 3% (в отличие от дискретных — 220 ± 7%)

Недостатки электромеханического стабилизатора напряжения:

  • необходимо следить за износом щетки
  • искрение во время перемещения щетки по обмотке автотрансформатора
  • во время работы двигателя сервопривода слышно гудение

 

Выводы

Про необходимость установки стабилизаторов напряжения для дома я Вам пояснил. Далее решать только Вам. С типами стабилизаторов я Вас познакомил. Рекомендую Вам приобретать только дискретные или электромеханические стабилизаторы (сам лично склоняюсь к последним), про феррорезонансный вообще забудьте.

P.S. В следующей статье мы научимся выбирать стабилизатор напряжения по мощности. Покажу Вам пример расчета мощности стабилизатора для своей квартиры. А также поговорим о месте их установки и креплении. Чтобы не пропустить выход новых статей — пройдите процедуру подписки. Форма находится в конце каждой статьи и в правой колонке сайта. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Стабилизатор напряжения ресанта неисправности и их устранение

В связи с нестабильным напряжением в домах и квартирах люди вынуждены устанавливать стабилизаторы напряжения (далее СН) для питания всего жилья или для работы конкретного прибора. Как и с любым другим видом электроприборов, иногда возникает ситуация, когда стабилизатор напряжения не работает (сломался). Внутренние неисправности в большинстве случаев связаны с силовыми цепями: реле, симисторы, блок управления сервоприводом и т.д. Поэтому перед тем, как приступать к анализу неисправности и причине ее возникновения, нужно понять, какой тип стабилизатор у вас вышел из строя. Популярные виды устройств и принцип их работы мы рассмотрели отдельно: https://samelectrik.ru/kakie-byvayut-stabilizatory-napryazheniya.html. В этой статье мы рассмотрим, какие бывают неисправности стабилизаторов напряжения, почему они возникают и как их устранить самостоятельно (если это возможно).

Гул и щелчки

Если стабилизатор напряжения сильно гудит, нужно проверить, чтобы питающее напряжение не было выше или ниже допустимых диапазонов. Диапазон регулировки в большинстве случае лежит в пределах 100-250 Вольт.

Внимание! Даже при исправном состоянии автотрансформатор равномерно и не слишком громко гудит. Также гул издаёт сервопривод при перемещении щеточного узла. Релейные стабилизаторы напряжения во время работы издают щелчки. Это нормально, реле (черные прямоугольники на рисунке ниже) переключают отводы от обмоток для регулировки выходного напряжения.

Если устройство громко трещит – это может свидетельствовать об искрении щетки в сервоприводных моделях, проблемах с реле и плохом контакте внутренней проводки устройства.

Выключается под нагрузкой

Стабилизатор напряжения не держит нагрузку – такая проблема случается по ряду причин. Первая среди них – это повышенная нагрузка (мощность потребителей). Если вы не меняли подключаемые устройства, значит проблема в стабилизаторе. Если он отключается не мгновенно, а через какое-то время работы, то виной этому может быть перегрев или межвитковые замыкания автотрансформатора.

Что делать: разберите прибор и произведите внешний осмотр обмоток автотрансформатора, если он не слишком сильно запылён, то проверьте, нет ли следов локальных перегревов. Если пыли много – вычистите её

Если следы перегрева и гари есть – повреждена изоляция обмоток. Это и есть межвитковое замыкание, тогда как отремонтировать стабилизатор в этом случае? Нужно перемотать либо заменить автотрансформатор на аналогичный или больший по мощности. Но стоимость такого ремонта может быть сопоставимой с покупкой нового стабилизатора напряжения.

Важно! У сервоприводных моделей ряд неисправностей может быть вызван износом щетки и загрязнением токоведущих частей графитовой стружкой. В процессе работы щетка стирается, засыпая графитом автотрансформатор. Из-за чего могут возникать замыкания между токосъемниками участками витков и перегрев. В этом случае нужно смести графит и вычистить его между витками. Убедитесь, что обмотки уложены ровно, нет обрывов. Контактную поверхность зачистите обычным канцелярским ластиком до блеска, особенно наиболее его используемый сектор.

На выходе нет 220 Вольт

Неисправность проявляется в том, что стабилизатор не выдает напряжение 220 Вольт. Это не обязательно говорит о внутренних проблемах, причина может быть в напряжении сети – оно слишком низкое, и устройство просто не вытягивает. Если питание находится в рабочем диапазоне стабилизатора, тогда приступим к ремонту.

Что делать: в сервоприводных моделях поломка может быть вызвана износом щеточного механизма или самого сервопривода. Он может не доходить до конца обмотки или щетка может не контактировать с соответствующим её сектором. В простейшем случае может быть просто загрязнена графитом. Чтобы отремонтировать его, нужно почистить поверхность контактов до металлического блеска. Иногда нужно заменить щетку.

Интересно! Бывает и так, что из-за загрязнений рабочего сектора щеточного узла графитом часто напряжение не поднимается выше определенного значения.

В релейных СН это чаще всего говорит о том, что неисправно одно или несколько электромагнитных реле или каскад управления ими. Обычно он строится на транзисторе. Реле могут иметь различное напряжение катушки, часто это 12 Вольт.

Что делать: для проверки подайте напряжение на катушку и прозвоните силовые контакты. Они должны замыкать и размыкаться, реле при этом щелкает. Если этого не происходит – либо прилипли контакты (чаще), либо сгорела катушка реле (реже). Если реле исправно – проверьте транзистор, он не должен быть пробит, а переходы эмиттер-база и коллектор-база должны прозваниваться в одну сторону, как диод. Транзисторы используйте любые маломощные аналогичной проводимости.

В симисторных и тиристорных СН диагностика поломки аналогична – нужно прозвонить на пробой полупроводниковый силовой ключ и если он вышел из строя заменить аналогичным или более мощным.

Плохая стабилизация напряжения

Если напряжение стабилизируется слишком большими шагами, а раньше всё было плавно, то поломка близка к предыдущей – вышел из строя коммутационный прибор на одной или нескольких ступенях регулировки. Алгоритм проверки неисправности стабилизатора напряжения и их устранение описаны в предыдущем пункте.

Внимание! В характеристиках каждого из стабилизаторов описан либо шаг регулировки, либо границы каждой из ступеней, а также точность поддержания номинального напряжения на выходе.

В сервоприводных стабилизаторах такое встречается при поломке в механизме редуктора двигателя, а также при загрязнениях обмоток, как это было в случаях описанных выше. Неисправности редуктора могут сопровождаться неравномерным жужжанием или потрескиванием – это проскакивают шестерни.

Что делать: нужно разобрать механизм и если все детали в норме, заменить смазку.

Еще стоит отметить, что у сервоприводных СН стабилизация может отсутствовать, работать неверно из-за выхода из строя полупроводниковых ключей управления двигателем. Тогда бегунок со щеткой перемещается в одно из крайних положений или вообще не сдвигается с места.

Не включается или выбивает автомат после отчета таймера

Большинство стабилизаторов после включения входят в рабочий режим не сразу, а после временной задержки. Но после отчета обратного таймера пуска не происходит, при этом на дисплее-индикаторе выдает букву Н. Пример ремонта устройства с такой неисправностью рассмотрен в следующих видео:

К сведению код ошибки «Н» говорит о завышенном напряжении сети и срабатывании защиты. Это действительно для приборов фирмы «Ресанта», «Luxeon» и некоторых других.

Интересно: буква «H» — значит «Высокое» или «High», а L – «низкое», «Low». Резистор, замену которого вы видели на видео, отвечает за пороги срабатывания по верхнему и нижнему уровню напряжения. Из-за неверного сопротивления плата стабилизации не справляется со своей работой и уходит в защиту.

Такие симптомы или другой код неисправности может сопровождаться выбиванием автомата питающего сам стабилизатор после отчета таймера задержки включения. В этом случае проблема решается заменой реле, при залипании которых может возникать повышенное потребление тока.

Совсем не подает признаков жизни или другие поломки

Самая пугающая неисправность – это когда после подачи напряжения ни индикаторы не зажигаются, ни напряжение на выходе не появляется, т.е. когда стабилизатор напряжения не работает вообще. В таком случае возможен выход из строя управляющей платы. Чаще всего ремонт начинают с визуального осмотра, обращают внимание на:

  • выгоревшие дорожки;
  • вздутые электролитические конденсаторы;
  • выгоревшие, треснутые или взорвавшиеся компоненты платы;
  • микротрещины на паяных контактах и холодная пайка.

Все выявленные недостатки устраняют, а если внешний осмотр не дал результатов переходят к проверке платы на обрывы дорожек и короткие замыкания мультиметром в режиме измерения сопротивления и прозвонки. Такой ремонт стабилизатора может потребовать глубоких знаний электроники, схемы электрической принципиальной, а в самых сложных случаях и использования осциллографа для проверки управляющих сигналов и логики работы схемы.

Вот и все, что мы хотели рассказать вам про неисправности стабилизаторов напряжения и способы их устранения своими руками. Надеемся, теперь вы знаете, что делать в том или ином случае и почему возникают поломки!

Будет полезно прочитать:

  • Как пользоваться мультиметром
  • Что делать, если низкое напряжение в сети
  • Неисправности посудомоечных машин

Стабилизаторы напряжения «Ресанта» используются во многих домах для обеспечения стабильной работы и защиты «здоровья» электрических приборов. В результате домашняя техника работает в течение длительного времени и почти не подвергается ремонту.

Надо сказать, что самому стабилизатору напряжения тоже необходимо соблюдение условий эксплуатации и периодический уход. Иначе аппарат может выйти из строя и ему потребуется ремонт. Помимо этого, отслужив достаточно большой срок, прибор может поломаться просто по причине износа деталей.

Эта статья посвящена тонким местам стабилизаторов бренда «Ресанта». Рассмотрим, как ремонтируются вышедшие из строя детали, а также восстанавливается полная работоспособность прибора.

Степень сложности ремонта стабилизаторов напряжения

Все приборы стабилизации оснащены защитными функциями, с помощью которых контролируются технические показатели на соответствие заявленным данным и условиям эксплуатации. У каждой модели защитная система своя, но существуют общие понимания выхода за пределы допустимого, что не позволяет аппарату дальше работать.

Прежде всего, требуется:

  • проверка на наличие КЗ, входного и выходного напряжения, температурного режима компонентов;
  • изучение высвеченного на дисплее кода ошибки.

Наиболее трудно определить неисправность симисторных ключей прибора, так как их управление связано со знанием электроники. При ремонте не обойтись без принципиальной схемы, измерительных средств, в том числе осциллографа. По контрольным точкам снятых осциллограмм определяются повреждения в структурном модуле устройства. Затем предстоит проверка каждой радиодетали и узла на предмет дефекта.

В стабилизаторах релейного типа нередко причиной неполадок становится реле, предназначенное для переключения обмоток трансформатора. Частые переключения контактов реле приводят к их выгоранию, заклиниванию, или перегоранию самой катушки. Если пропадает напряжение либо выходит сообщение об ошибке – стоит проверить все реле.

Наиболее прост ремонт электромеханического стабилизатора, у которого работа и реакция на изменение параметров сети становятся очевидными сразу после снятия корпуса. Недаром простая конструкция и высокая точность стабилизации делают эти модели весьма распространенными.

Виды неисправностей стабилизаторов напряжения

Ремонт электромеханического типа

Распространенной проблемой таких приборов является перегрев. Поэтому раз в 2 месяца следует предавать устройство техническому обслуживанию. Важной частью ремонта считается именно чистка элементов.

Примером могут служить характерные поломки распространённого стабилизатора АСН-10000/1-ЭМ. Устройство состоит из трёх одинаковых частей — из трёх 1-фазных стабилизаторов, предназначенных для стабилизации только своей фазы. Сердцем аппарата является повышающий автотрансформатор. Он же вместе с контактором и вводным автоматом относится к силовой части.

Принципиальная схема АСН-10000/1-ЭМ приведена на рисунке ниже.

В основе принципа действия электромеханических выравнивателей лежит плавное регу­лирование выходных параметров. Напряжение изменяется благодаря скольжению элек­трического контакта по обмотке автотрансфор­матора посредством электрического привода. На оси электродвигателя крепится ползунок, который перемещаясь, нормализует выходные параметры.

Заслуживает особого внимания следующая характерная неисправность, возникающая в процессе эксплуатации элект­ромеханических стабилизаторов и методы ее устранения – отсутствие стабилизации выходного напряжения.

Первый признак такой неполадки – может ощущаться запах тлеющих деталей. Реверсивный двигатель недаром зовут «ахиллесовой пятой» электромеханических приборов. Контроллером стабилизатора напряжения постоянно отслежива­ется значение выходных параметров. Ротор по­стоянно вращается и это постепенно изнашивает сам двигатель.

Одна неисправность может повлечь за собой другие, например, выход из строя целого каскада управления электродвигателем, собранного на паре транзисторов. Помимо этих элементов от перегрева плавятся резисторы, стоящие в их кол­лекторной цепи.

Конечно, изношенный электродвигатель лучше заменить, но бывает умелая попытка привести его в действие, венчается успехом. Это и есть самый про­стой способ реанимации двига­теля:

  • отключение двигателя от схемы;
  • подача на его выводы 5 В от мощного источника питания, к примеру, от компьютерного БП ATX.

При этом получается отжиг мелкого «мусора» на щётках двигателя. Нормальный ток электропотребления движка дол­жен не выходить за пределы 90–160 мА. Поскольку двигатель реверсивного типа, то напряжение необходимо подавать не менее двух раз со сменой полярности. После этих воздействий ра­ботоспособность агрегата временно восстана­вливается.

Другой вариант решения проблемы – небольшая замена схемы с сужением диапазона регулировки. Просто щетка будет ездить по-другому, в обход выгоревших участков дорожки трансформатора.

Ремонт релейных стабилизаторов

В качестве примеров рассмотрим ремонт:

Ресанта АСН-500/1-ц.

Наиболее частыми ошибками являются сообщения «L» и «H», что означает начальные буквы английских слов «низкий» и «высокий». То есть показатели выходят за пределы допустимых параметров. На прежних релейных стабилизаторах Ресанта со стрелочными индикаторами можно было видеть изменение выходного напряжения в пределах 204–235 В при переключении ступеней. На нынешней аппаратуре по записи видно 220 В, а по факту те же +- 6%, согласно паспортным данным.

Случается проблема реле медленно переключается, что влияет на защитное отключение компрессора кондиционера. Дело в том, что производителем используются дешёвые конденсаторы весьма низкого качества. Если заменить электролиты – проблема будет решена.

Главное, не стоит забывать о мощности. То, что написано на шильдике корпуса, справедливо для входного напряжения 200 В, в реальности для заниженного (170–180 В) мощность должна быть в 2 раза меньше.

Ресанта СПН-9000.

В основе принципа действия этого релейного стабилизатора лежит ступенчатое регулирование выходного напряжения. Стабилизация обеспечивается посредством микропроцессора. Коммутация отводов автотрансформатора выполняется пятью мощными реле, которые управляются транзисторными ключами. Стабильность выходного напряжения зависит от дискретности переключения (5–20 В).

Основная болезнь СПН-9000 – обгоревшие либо залипшие контакты в реле. Эти неполадки довольно часто возникают в процессе эксплуатации релейного стабилизатора. А также при несоответствии входного напряжения диапазону пороговых значений стабилизация не станет работать. Бывает, сразу при включении прибора выбивает предохранители, так срабатывает защита от КЗ.

По причине неисправности реле «летят» транзисторные ключи. Реле подлежат замене или реставрации. Для этого необходимо убрать крышки с реле, после снять подвижный контакт, освободить его от пружины и наждачной бумагой аккуратно очистить все контакты реле. В завершение очистить все контакты специальным бензином и собрать реле в обратном порядке. Затем впаять все транзисторы, и проверить на целостность переходов. Если понадобится, заменить транзисторы на новые.

Если вам нужно подключить к стабильнику предположим электрическую печь (9 кВт), то лучшего прибора, чем стабилизатор напряжения Ресанта для этого не найти. А если при этом возникнут мелкие недочеты, то сервисные мастерские быстро и профессионально устранят их на основании гарантийных обязательств. Своевременно сделанный ремонт – залог долговечности и надёжности прибора и после гарантийного срока.

Поломки бывают различные, и иногда сложно понять, то ли просто не соблюдены условия эксплуатации по инструкции, то ли аппарат неисправен. Однако, неполадки могут существовать, и в итоге в самый неподходящий момент может возникнуть проблема. Правильно установить «диагноз» и эффективно устранить их всегда поможет ремонтная компания.

На видео: простой ремонт стабилизатора РЕСАНТА 15 квт 3 фазы.

Простой ремонт стабилизатора РЕСАНТА 15КВТ 3ФАЗЫ

Скачок напряжения, и сгорела техника! Что делать?

Знакомая ситуация? Уверяем, что вы не одни, кто ищет ответ на данный вопрос. И с каждым годом число пострадавших от перепада напряжения в электросети становится больше. Например, на популярном YouTube не проходит и месяца, чтобы не выложили очередной видео ролик, повествующий о сгоревшей технике жителей России из самых разных её уголков. А виной тому резкие скачки, перепады напряжения в электросети.

Сожалеем, если вы оказались в подобной ситуации. Чтобы вам хоть как-то помочь, мы рекомендуем посмотреть первый видеоролик — из него вы узнаете, куда обратиться в первую очередь.

Специалисты нашей компании напоминают, что качество российских электросетей год от года лучше, к сожалению, не становится. И лучшим способом защиты своей бытовой техники от поломки служит предупреждение возникновения аварийной ситуации. Согласитесь, гораздо приятнее не довести технику до поломки, сохранив деньги, нервы и более ценное имущество, чем «искать правду», бегая по инстанциям и судам уже после аварии.

Кто предупреждён — тот вооружён! Чтобы от очередного перепада напряжения не сгорела дорогостоящая техника, необходима надёжная защита. Таким защитным устройством являются стабилизаторы напряжения. Ниже мы подобрали несколько моделей однофазных стабилизаторов, которые наиболее подходят как для частного дома, так и для квартиры.

Стабилизатор напряжения — это сложное устройство электромеханического или электрического типа, для починки которого требуются глубокие знания в области радиотехники, специальные инструменты и измерительное оборудование.

Степень сложности ремонта различных видов стабилизаторов

Все устройства оснащены системами защиты, определяющими уровни входного и выходного параметров работы на их соответствие номинальному значению. Для выполнения ремонтных работ необходимо иметь измерительные приборы, в том числе осциллограф, и схему устройства. Необходимо измерить входное и выходное напряжение, температурные режимы рабочих узлов, исключить короткое замыкание, затем посмотреть код ошибки. Сложней всего диагностировать поломку в стабилизаторах, укомплектованных симисторными ключами — ими управляет сложная электроника. Замеры с помощью осциллографа позволяют выявить поломку структурного модуля, после чего нужно провести дефектовку каждой радиодетали.

В устройствах релейного типа чаще всего выходит из строя реле, выполняющее функцию переключения обмоток трансформатора. Вследствие частого переключения катушка может заклинить или перегореть, поэтому при поломке необходимо проверить работоспособность всех реле.

Наиболее простым является ремонт электромеханического стабилизатора — чтобы увидеть его реакцию на изменения параметров сети, достаточно снять корпус. Высокая точность и простота конструкции сделали этот вид одним из наиболее популярных.

Перегрев трансформатора стабилизатора

Если трансформатор греется без видимых нагрузок, скорей всего имеет место межвитковое короткое замыкание. Однако причина может заключаться и в поломке переключателей.

В релейных устройствах причиной перегрева может быть заклинивание реле, в симисторных — может поломаться один из ключей и закоротить на выходные обмотки. В сервоприводных стабилизаторах переключения обмотки нет, но щетки могут замкнуть по причине загрязнения — попадания в пространство между ними графитовых опилок или сажи. Сервоприводные модели требуют периодического очищения контактных поверхностей.

Ремонт и модификация сервоприводных стабилизаторов

Скорость износа сервоприводного устройства и его загрязнение зависят от двух факторов: влажности помещения и запыленности среды, в которой он эксплуатируется. Чтобы защитить его от попадания внутрь пыли, мастер устанавливают компьютерный кулер напротив наиболее эксплуатируемого сектора автотрансформатора. Кроме очищения от пыли, кулер выполняет функцию охлаждения автотрансформатора.

Длительное хранение стабилизатора во влажной среде может привести к окислению контактных площадок, что может помешать работоспособности контактного ползунка — пыль может начать искрить и возгораться.

Этапы ремонта сервоприводного стабилизатора

Приступая к ремонту, с вала сервопривода снимают контактный ползунок. Затем контактные поверхности очищают до блеска металла с помощью наждачки. Чистовую полировку выполняют с помощью ластика. Уборку абразивных частиц и мусора выполняют с помощью кисточки.

После этого переходят к осмотру графитовой щетки. Она может выйти из строя из-за чрезмерного нагрева, возникающего из-за её плохого контакта с пластинами автотрансформатора. При перемещении ползунка искрение и повышенный нагрев приводят к её выгоранию, что, в свою очередь, еще больше загрязняет контактные площадки и пространство между ними. Такая ситуация способствует нарастанию загрязнения, что приводит к выгоранию щетки и полному выходу из строя трансформатора — он перестаёт выдавать напряжение. В устройствах Ресанта при обрыве выходного напряжения срабатывает защита.

Ремонт стабилизаторов Ресанта чаще всего состоит из очищения контактных площадей и замены щеток.

Иногда случается и поломка сервопривода, причинами которой может быть:

  • подгорание мотора;
  • износ редуктора;
  • отсутствие напряжения.

Проверить этот механизм можно, вынув мотор вместе с редуктором, и проворачивая вал вручную. Быстро и качественно отремонтировать стабилизатор любого типа жители Одессы смогут в сервисе «24Мастер».

Особенности приборов марки Ресанта

Стабилизаторы торговой марки Ресанта не рекомендуется подключать к точной электронике, медтехнике, компьютерам и ЖК телевизорам. Причина этого проста: в случае скачка напряжения в сети, защита устройства его просто отключит, а выходное напряжение может пропасть на короткий промежуток времени, что может повлиять на работу техники.

К преимуществам приборов Ресанта относятся:

  • высокая точность;
  • быстродействие;
  • почти бесшумная работа.

Они отлично подходят для обеспечения стабильного напряжения на небольшом производстве и в загородном доме — их можно подключать к отопительным приборам, электроинструменту, насосам, автоматическим линиям.

Полезные статьи:

Принципиальная схема

и ее работа

В системе электропитания регулятор является важным компонентом, используемым для управления выходной мощностью в силовой электронике. Силовую электронику можно определить как управление, а также преобразование электроэнергии в части электроники. Стабилизатор напряжения генерирует стабильный выходной сигнал при изменении входа или нагрузки. Существуют различные типы стабилизаторов напряжения, такие как стабилитрон, последовательный, шунтирующий, фиксированный положительный, IC, регулируемый, отрицательный, двойное отслеживание и т. Д.В этой статье обсуждается обзор стабилизатора напряжения серии транзисторов.

Что такое стабилизатор напряжения серии транзисторов?

Последовательный стабилизатор напряжения можно определить как регулятор, который имеет такие ограничения, как высокое рассеивание, менее эффективный, а также напряжение транзистора и напряжения стабилитрона при повышении температуры.


Конструкция схемы последовательного транзисторного регулятора напряжения

Эта схема регулятора напряжения показана ниже.Следующая схема может быть построена как на транзисторе, так и на стабилитроне. В этой схеме ток нагрузки протекает через транзистор серии Q1. Это причина называть этот регулятор последовательным транзисторным регулятором напряжения. Когда на входные клеммы схемы подается нерегулируемый источник постоянного тока, мы можем получить регулируемый выход через нагрузку. Здесь стабилитрон обеспечивает опорное напряжение.

Схема последовательного регулятора напряжения транзистора

Регулятор напряжения последовательного транзистора работает , когда напряжение на базе транзистора поддерживается на уровне стабильного напряжения на диоде.Например, если напряжение стабилитрона составляет 8 В, базовое напряжение транзистора останется примерно 8 В. Следовательно, Vout = VZ - VBE

Operation

Работа этого транзистора может выполняться в двух случаях, например, когда выходное напряжение увеличивается и уменьшается.

При уменьшении выходного напряжения

Когда напряжение размыкания / размыкания в цепи уменьшается, тогда напряжение BE увеличивается, что заставляет транзистор работать больше. В результате выходное напряжение будет поддерживаться на стабильном уровне.

Когда возрастает выходное напряжение

Когда в цепи повышается выходное напряжение, тогда напряжение BE будет уменьшаться, и транзистор будет работать хуже. В результате выходное напряжение будет поддерживаться на стабильном уровне.

Преимущества / недостатки

Преимущества s регуляторов напряжения этой серии перечислены ниже.

  • Основное преимущество этой схемы регулятора напряжения состоит в том, что изменения тока стабилитрона уменьшаются на коэффициент ß.Следовательно, эффект импеданса стабилитрона будет значительно уменьшен, и мы сможем получить дополнительный стабилизированный выход.

Недостатки регулятора напряжения серии перечислены ниже.

  • Корректировки в пределах тока Зенера уменьшены до значительной суммы; произведенное количество не является полностью стабильным. Это происходит из-за того, что как VZ, так и VBE уменьшаются при повышении температуры в помещении.
  • Изменить напряжение o / p непросто, потому что таких ресурсов нет.

Таким образом, КПД стабилитрона RPS (стабилизированного источника питания) становится чрезвычайно низким при высоком токе нагрузки. В этих условиях часто используется стабилитрон, похожий на транзистор, для поддержания стабильного напряжения включения / выключения. По сути, транзисторные регуляторы напряжения, которыми управляет стабилитрон, подразделяются на два типа, а именно последовательные регуляторы напряжения и шунтирующие регуляторы напряжения. Вот вам вопрос, какова основная функция регулятора напряжения?

LM7912 Схема расположения выводов, техническое описание, приложения, примеры, особенности

LM7912 представляет собой трехконтактную микросхему стабилизатора напряжения 12 В.Большинству приложений для работы требуется как положительное, так и отрицательное напряжение. Отрицательные напряжения должны быть стабильными, иначе они могут повредить цепь или сократить срок службы компонентов, используемых в цепи. Таким образом, стабилизаторы отрицательного напряжения не подходят для этой цели. LM7912 IC - это стабилизатор отрицательного напряжения, питающий отрицательные напряжения. Он состоит из трех контактов и имеет фиксированное выходное напряжение -12 В. Он используется в случае колебания входов для стабилизации выхода,

LM7912 Распиновка и схема

Схема выводов

показывает, что этот отрицательный регулятор на 12 В имеет три контакта, такие как вход, выход и заземляющий контакт.

Описание конфигурации контактов

Это трехконтактное устройство, контактные данные которого перечислены ниже.

Номер контакта Имя Описание
1 ЗЕМЛЯ Штырь заземления соединен с землей цепи.
2 ВХОД На входной контакт подается нерегулируемый сигнал напряжения. Диапазон входного сигнала от 5 до 24 В.
3 ВЫХОД На выходе отражается стабильный и регулируемый сигнал фиксированного напряжения -12.

LM7912 Блок-схема

Блок-схема внутренней схемы микросхемы LM7912 представлена ​​на рисунке.

Характеристики регулятора отрицательного напряжения

LM7912

  • Имеет фиксированное выходное напряжение -12В
  • Входное напряжение должно находиться в диапазоне от -27 В до -14,5 В.
  • Цепи защиты от коротких замыканий и тепловых перегрузок встроены в эту ИС.
  • Для выходных транзисторов предусмотрена защита безопасной зоны.
  • Обладает высоким коэффициентом отклонения источника питания и низким уровнем шума.
  • Выходной ток 1,5 А
  • Допуск выходного напряжения составляет ± 4%.
  • Обладает низким током покоя, что обеспечивает хорошее регулирование.

Где использовать?

ИС

LM7912 используется при проектировании аналоговых схем, требующих отрицательного напряжения. Вы можете использовать эту микросхему для получения -12 вольт. Для бесперебойной работы микроконтроллерам требуется плавное и регулируемое напряжение на входе.Поэтому для создания плавного напряжения используется микросхема LM7912. Это также полезно при проектировании раздельных источников питания и датчиков. Что наиболее важно, он может работать в диапазоне температур от 0 до 50 ° C. Кроме того, он подходит для использования в приложениях с фиксированным напряжением.

Как использовать стабилизатор отрицательного напряжения LM7912?

Базовая схема этой ИС указана ниже. Для стабильной работы требуется всего два конденсатора. Один конденсатор подключен ко входу, а другой - к выходу.Они используются для фильтрации шума. Чтобы избежать чрезмерного рассеивания мощности, они имеют систему защиты от тепловой перегрузки, встроенную в ИС.

Предусмотрена защита от короткого замыкания, чтобы удерживать ток в определенных пределах, в противном случае это может привести к повреждению ИС. На контакт 2 подается отрицательный входной сигнал в диапазоне от -5В до -24В. LM7912 состоит из проходного транзистора. Выходной ток уменьшается, когда напряжение на этом транзисторе увеличивается. Поэтому для компенсации потерь предусмотрена компенсация в безопасной зоне.Срок службы этого устройства может быть увеличен за счет использования радиатора, который увеличивает его способность рассеивать мощность.

Стабилизатор отрицательного напряжения -12 с использованием LM7912

В этой схеме мы подаем постоянное напряжение 14 В на вход 7912. Конденсаторы C1 и C2 являются фильтрующими конденсаторами. Эти конденсаторы предотвращают колебания напряжения на входных и выходных клеммах. Чем больше емкость конденсатора, тем меньше будут колебания напряжения. Но мы всегда используем оптимальные и легкодоступные конденсаторы.

Подключаем на выходе вольтметр для измерения выходного напряжения.Как видно из принципиальной схемы, на выходе напряжение 12 вольт отрицательное.

Пример схемы

Эту ИС можно использовать при проектировании двойного симметричного источника напряжения 12 В. В этом проекте используются стабилизатор положительного напряжения (LM7812) и стабилизатор отрицательного напряжения (LM7912). Принципиальная схема приведена ниже.

Стабилизаторы отрицательного напряжения, эквивалентные

Иногда мы не можем найти электронные компоненты на рынке, мы можем использовать альтернативные / эквивалентные регуляторы.

LM7912 Приложения

Используется в приложениях с фиксированным напряжением. Несколько приложений LM7912 IC:

  • Он может быть использован в качестве опорного напряжения питания или в аналоговых и цифровых схем и в качестве источника тока в некоторых приложениях.
  • LM7912 может спроектировать источник питания с двойным регулированием.
  • Эта ИС может спроектировать ограничитель тока в различных приложениях.
  • Этот высокостабильный регулятор используется в высокочувствительных контроллерах света
  • Он также имеет схему защиты от смены полярности выхода.

2D-диаграмма

Микросхема

LM7912 доступна только в корпусе TO-220. Размеры и 2D-схема этого пакета приведены ниже.

LM7912 Лист данных

LM7912 12 ИС регулятора отрицательного напряжения

Схема регулируемого биполярного регулятора напряжения

с использованием LM337

Для схем операционного усилителя источник питания должен обеспечивать положительное и отрицательное напряжение. Вот простая схема «Регулируемого биполярного регулятора напряжения», которая дает регулируемое ± 1.Питание от 2 В до ± 2 оВ. Микросхемы LM317K (IC 1 ) и LM337K (IC 2 ) используются здесь как положительные и отрицательные регуляторы соответственно.

Описание схемы регулируемого биполярного регулятора напряжения с использованием LM337

Принципиальная схема регулируемого биполярного регулятора напряжения с использованием LM337, показанная на рисунке 1, спроектирована с использованием двух положительных и отрицательных регулируемых регуляторов напряжения IC, понижающего трансформатора, мостового выпрямителя и несколько других электронных пассивных компонентов, таких как резистор, конденсатор и т. д.Питание от сети понижается до 22–0–22 В с помощью трансформатора с центральным отводом и выпрямляется с помощью мостового выпрямителя, построенного на четырех выпрямительных диодах общего назначения. Пульсирующее положительное и отрицательное постоянное напряжение фильтруется с помощью конденсаторов C1 и C2,

IC 1 LM337 имеет внутреннюю регулировку обратной связи и элементы пропускания тока. Он включает в себя различные схемы защиты, такие как ограничение по току (которое ограничивает рассеиваемую мощность корпуса до 15 Вт для корпуса TO-220 и 20 Вт для корпуса TO-3) и теплового отключения.Таким образом, эти две ИС образуют независимо регулируемый биполярный источник питания.

Стальной К-корпус с легкостью выдает один ампер каждый при правильной установке радиатора. Переменный резистор VR 1 и VR 2 настроены для каждого регулятора, чтобы обеспечить регулируемое выходное напряжение приблизительно от ± 1,2 В до ± 20 вольт. Конденсаторы C 5 и C 6 используются для улучшения подавления пульсаций переменного напряжения. Однако, если на выходе регулятора произойдет короткое замыкание, C 5 отрегулирует ток на клемме.Выход регулируемого биполярного регулятора напряжения можно рассчитать по формуле.

ПЕРЕЧЕНЬ ДЕТАЛЕЙ РЕГУЛИРУЕМОГО БИПОЛЯРНОГО РЕГУЛЯТОРА НАПРЯЖЕНИЯ

Резистор (полностью-ватт, ± 5% углерода)

R 1 , R

2

VR 1 , VR 2 = 2 КОм LIN.

Конденсаторы

C 1 , C 2 = 4700 мкФ / 25 В (электролитические конденсаторы)

C 3 , C 4 =1 мкФ (керамические конденсаторы)

C 5 , C 6 = 10 мкФ / 35 В (электролитические конденсаторы)

C 7 , C 8 = 1 мкФ / 35 В (электролитические конденсаторы)

53

Полупроводники

IC 1 = LM317K (ИС регулируемого регулятора положительного напряжения)

IC 2 = LM337K (ИС регулируемого регулятора положительного напряжения)

D 1 = 1N5421 (выпрямительный диод)

Разное

X 1 = 230 В переменного тока первичной обмотки до 22 В-0-22 В, 1.Вторичный трансформатор 5A

Вот так:

Like Loading ...

Регулируемый источник питания с использованием LM317 (часть 7/13)

LM317 обычно используется для регулирования напряжения в цепях постоянного тока. IC является одним из популярных регулируемых стабилизаторов положительного напряжения, который имеет такие функции, как защита от перенапряжения, внутреннее ограничение тока, защита от перегрузки, низкий ток покоя (для более стабильного выхода) и компенсация безопасной зоны (его внутренняя схема ограничивает максимальное рассеивание мощности, поэтому он не самоуничтожается).Помимо множества функций, для его работоспособности требуется меньшее количество компонентов. Итак, регулятор LM317 прост в использовании и собрать по схеме.

В этом проекте разработан регулируемый источник питания с использованием LM317, который вводит основные источники переменного тока (220-230 В переменного тока) и выводит напряжение постоянного тока ниже 12 В. LM317 имеет регулируемое выходное напряжение от 1,28 В до 11 В и потребляет максимум 1,5 А.

При сборке этой схемы соблюдаются стандартные этапы проектирования силовой цепи, включая понижение напряжения переменного тока, преобразование напряжения переменного тока в напряжение постоянного тока, сглаживание напряжения постоянного тока, компенсацию переходных токов, регулирование напряжения, изменение напряжения и защиту от короткого замыкания.

Необходимые компоненты -

Рис.1: Список компонентов, необходимых для регулируемого источника питания на базе микросхемы LM317

Блок-схема -

Рис.2: Блок-схема регулируемого источника питания на базе микросхемы LM317

Схема соединений -

Схема собирается в соответствии с обычными этапами проектирования силовой цепи. Для понижения напряжения 230 В переменного тока используется трансформатор 12 В - 0 - 12 В.Один конец вторичной обмотки трансформатора и центральная лента на ней соединены с мостовым выпрямителем. Полный мостовой выпрямитель создается путем соединения друг с другом четырех диодов SR560, обозначенных на схемах как D1, D2, D3 и D4. Катод D1 и анод D2 соединены с одной из вторичной обмотки, а катод D4, а анод D3 соединен с центральной лентой. Катоды D2 и D3 подключены, из которых одна клемма выведена для выхода выпрямителя, а аноды D1 и D4 подключены, из которых другая клемма снята для выхода двухполупериодного выпрямителя.

Конденсатор 0,1 мкФ (обозначенный на схеме как C1) подключен между выходными клеммами двухполупериодного выпрямителя для сглаживания. Для регулирования напряжения LM317 подключается параллельно сглаживающему конденсатору. Переменное сопротивление подключено в конфигурации резистивного делителя напряжения к стабилизатору IC для регулировки напряжения, а конденсатор 1 мкФ (обозначенный на схеме как C2) подключен параллельно на выходе для компенсации переходных токов. Для защиты от короткого замыкания между клеммами входного и выходного напряжения микросхемы регулятора напряжения подключен диод.

Нарисуйте схематическую диаграмму или распечатайте ее на бумаге и тщательно выполняйте каждое соединение. Только после проверки правильности каждого подключения подключите силовую цепь к источнику переменного тока.

Как работает схема -

Спроектированная здесь силовая цепь принимает питание от основных источников переменного тока и имеет схему, собранную на следующих этапах -

1. Преобразование переменного тока в переменный

2. Преобразование переменного тока в постоянный - полноволновое выпрямление

3.Сглаживание

4. Компенсация переходного тока

5. Регулирование напряжения

6. Регулировка напряжения

7. Защита от короткого замыкания

Преобразование переменного тока в переменный

Напряжение основных источников питания составляет приблизительно 220–230 В переменного тока, которое необходимо дополнительно снизить до уровня 12 В. Для понижения напряжения 220 В переменного тока до 12 В переменного тока используется понижающий трансформатор с центральной обмоткой. Использование трансформатора с центральным ответвлением позволяет генерировать на входе как положительное, так и отрицательное напряжение, однако с трансформатора будет поступать только положительное напряжение.В схеме наблюдается некоторое падение выходного напряжения из-за резистивных потерь. Поэтому необходимо использовать трансформатор с высоким номинальным напряжением, превышающим требуемые 12 В. Трансформатор должен обеспечивать на выходе ток 1,5 А. Наиболее подходящий понижающий трансформатор, отвечающий указанным требованиям по напряжению и току, - 12 В-0-12 В / 2 А. Эта ступень трансформатора понижает сетевое напряжение до +/- 12 В переменного тока, как показано на рисунке ниже.

Рис.3: Условное обозначение цепи трансформатора 12-0-12 В

Преобразование переменного тока в постоянный - полноволновое выпрямление

Пониженное напряжение переменного тока необходимо преобразовать в напряжение постоянного тока путем выпрямления.Выпрямление - это процесс преобразования переменного напряжения в постоянное. Есть два способа преобразовать сигнал переменного тока в сигнал постоянного тока. Один - это полуволновое выпрямление, а другое - полноволновое выпрямление. В этой схеме используется двухполупериодный мостовой выпрямитель для преобразования 24 В переменного тока в 24 В постоянного тока. Двухполупериодное выпрямление более эффективно, чем полуволновое выпрямление, поскольку оно обеспечивает полное использование как отрицательной, так и положительной стороны сигнала переменного тока. В конфигурации двухполупериодного мостового выпрямителя четыре диода соединены таким образом, что ток течет через них только в одном направлении, что приводит к появлению сигнала постоянного тока на выходе.Во время двухполупериодного выпрямления одновременно два диода становятся смещенными в прямом направлении, а еще два диода смещаются в обратном направлении.

Рис.4: Принципиальная схема полноволнового выпрямителя

Во время положительного полупериода питания диоды D2 и D4 проходят последовательно, в то время как диоды D1 и D3 смещены в обратном направлении, и ток протекает через выходной контакт, проходя через D2, выходной контакт и D4. Во время отрицательного полупериода питания диоды D1 и D3 проходят последовательно, но диоды D4 и D2 смещены в обратном направлении, и ток протекает через D1, выходную клемму и D3.Направление тока в обоих направлениях через выходную клемму в обоих условиях остается неизменным.

Рис.5: Изображение, показывающее отрицательный цикл в полнополупериодном выпрямителе

Рис. 6: Изображение, показывающее положительный цикл в полнополупериодном выпрямителе

Диоды SR560 выбраны для создания двухполупериодного выпрямителя, поскольку они имеют максимальный (средний) номинальный прямой ток 2 А и в состоянии обратного смещения они могут выдерживать пиковое обратное напряжение до 36 В.Поэтому в этом проекте для двухполупериодного выпрямления используются диоды SR560.

Сглаживание

Сглаживание - это процесс фильтрации сигнала постоянного тока с помощью конденсатора. Выходной сигнал двухполупериодного выпрямителя не является постоянным напряжением постоянного тока. Выходной сигнал выпрямителя в два раза превышает частоту основного источника питания, но содержит пульсации. Следовательно, его необходимо сгладить, подключив конденсатор параллельно выходу двухполупериодного выпрямителя.Конденсатор заряжается и разряжается в течение цикла, давая на выходе постоянное напряжение постоянного тока. Итак, конденсатор (обозначенный на схеме как C1) большой емкости подключен к выходу схемы выпрямителя. Поскольку постоянный ток, который должен быть выпрямлен схемой выпрямителя, имеет много всплесков переменного тока и нежелательных пульсаций, для уменьшения этих выбросов используется конденсатор. Этот конденсатор действует как фильтрующий конденсатор, который пропускает через него весь переменный ток на землю. На выходе среднее оставшееся постоянное напряжение более плавное и без пульсаций.Конденсатор 0,1 мкФ используется для сглаживания сигнала переменного тока.

Рис.7: Принципиальная схема сглаживающего конденсатора

Компенсация переходных токов

К выходным клеммам силовой цепи параллельно подключен конденсатор (обозначенный на схеме как C2). Этот конденсатор помогает быстро реагировать на переходные процессы нагрузки. Всякий раз, когда ток выходной нагрузки изменяется, возникает начальная нехватка тока, которая может быть восполнена этим выходным конденсатором.

Изменение выходного тока можно рассчитать по

.

Выходной ток, Iout = C (dV / dt), где

dV = Максимально допустимое отклонение напряжения

dt = переходное время отклика

С учетом dv = 100 мВ

dt = 100 мкс

В этой схеме используется конденсатор емкостью 1 мкФ, так что,

C = 1 мкФ

Iout = 1 мк (0,1 / 100 мк)

Iout = 1 мА

Таким образом, можно сделать вывод, что выходной конденсатор будет реагировать на изменение тока 1 мА при переходном времени отклика 100 мкс.

Рис.8: Принципиальная схема компенсации переходных токов

Регулирование напряжения

LM317 используется для регулирования напряжения. LM317 - это монолитная микросхема стабилизатора положительного напряжения. Будучи монолитными, все компоненты встроены в один и тот же полупроводниковый чип, что делает ИС небольшими по размеру, меньшим энергопотреблением и низкой стоимостью. ИС имеет три контакта: 1) входной контакт, на который может подаваться максимум 40 В постоянного тока, 2) выходной контакт, обеспечивающий выходное напряжение в диапазоне 1.От 25 В до 37 В и 3) Отрегулируйте контакт, который используется для изменения выходного напряжения, соответствующего приложенному входному напряжению. Для входа до 40 В выход может изменяться от 1,25 В до 37 В.

На ИС имеется встроенный OPAM (операционный усилитель), инвертирующий вход которого соединен с регулировочным штифтом. Неинвертирующий вход задается опорным напряжением в запрещенной зоне, напряжение которого не зависит от температуры, источника питания и нагрузки схемы. Таким образом, LM317 дает стабильное опорное напряжение 1.25 В через его регулировочный штифт. Опорное напряжение 317 может составлять от 1,2 В до 1,3 В. Выходное напряжение 317 можно регулировать в заданном диапазоне с использованием схемы резистора делителя между выходом и землей.

Для установки желаемого напряжения на выходе LM317 используется схема резистивного делителя напряжения между выходным контактом и землей. Благодаря этой конфигурации можно регулировать напряжение на выходном контакте. Номинал резистивного делителя напряжения нужно выбирать таким образом, чтобы он мог обеспечивать требуемый диапазон напряжений на выходе.В схеме делителя напряжения есть программирующий резистор с фиксированным сопротивлением (на схемах обозначен как R1), а другой - переменный резистор (обозначенный на схемах как R2). Установив идеальное соотношение резистора обратной связи (постоянного резистора) и переменного резистора, можно получить желаемое выходное напряжение, соответствующее входному напряжению.

317 обеспечивает стабильное опорное напряжение 1,25 В через регулировочный штифт. Это означает, что на R1 тоже есть постоянное падение напряжения.Ток на регулировочном штифте также постоянный и находится в диапазоне от 50 до 100 мкА. Следовательно, постоянный ток течет как через R1, так и через R2. Следовательно, сумма падений напряжения на R1 и R2 дает Vout:

.

Vout = Vref * (1+ (R2 / R2))

Некоторое количество тока покоя также течет от регулировочного штифта, этот ток добавляет некоторую погрешность в приведенное выше уравнение, что делает выход нестабильным. Вот почему ИС спроектирована таким образом, что ток покоя должен оставаться в микроамперах, чтобы выход был стабильным.

Vout = Vref * (1 + (R2 / R2)) + Iq * R2

Где,

Iq = ток покоя - это ток, который течет от регулировочного штифта, когда цепь не управляет нагрузкой.

Поскольку Iq выражается в 100 мкА, член Iq * R2 очень мал и им можно пренебречь в уравнении.

LM317 обеспечивает минимальный ток нагрузки 10 мА. Следовательно, для поддержания постоянного опорного напряжения 1.25V, минимальное значение сопротивления обратной связи

R1 = 1.25 / Имин

R1 = 1,25 В / 0,010 = 125 Ом

Диапазон переменного резистора R1 составляет от 125 Ом до 1000 Ом, а типичное значение R1 составляет от 220 Ом до 240 Ом для лучшей стабильности. Используя приведенное выше уравнение, можно также рассчитать значение R2.

LM317 имеет следующую внутренне допустимую рассеиваемую мощность -

Pout = (максимальная рабочая температура IC) / (тепловое сопротивление, переход от окружающей среды + тепловое сопротивление, переход от корпуса к корпусу)

Pout = (150) / (65 + 5) (значения согласно паспорту)

Pout = 2 Вт

Следовательно, LM317 внутренне может выдерживать до 2 Вт рассеиваемой мощности.При мощности выше 2 Вт микросхема не переносит выделяемое количество тепла и начинает гореть. Это также может вызвать серьезную опасность возгорания. Поэтому радиатор необходим для отвода чрезмерного тепла от ИС.

Регулировка напряжения

Выходное напряжение можно изменять с помощью регулировочного контакта LM317 IC. Переменный резистор R1 используется для изменения напряжения на выходе от 1,28 В до 11 В.

Защита от короткого замыкания

Диод D5 подключен между клеммами входа и выхода напряжения 317 IC, чтобы предотвратить разряд внешнего конденсатора через IC во время короткого замыкания на входе.Когда вход закорочен, катод диода находится под потенциалом земли. Анодный вывод диода находится под высоким напряжением, поскольку C2 полностью заряжен. Следовательно, в таком случае диод смещен в прямом направлении, и весь разрядный ток от конденсатора проходит через диод на землю. Это избавляет микросхему LM317 от обратного тока.

Рис.9: Принципиальная схема защиты от короткого замыкания

Тестирование и меры предосторожности -

При сборке схемы следует соблюдать следующие меры предосторожности -

• Номинальный ток понижающего трансформатора, мостовых диодов и ИС регулятора напряжения должен быть больше или равен требуемому току на выходе.В противном случае он не сможет подавать требуемый ток на выходе.

• Номинальное напряжение понижающего трансформатора должно быть больше максимального требуемого выходного напряжения. Это связано с тем, что микросхема 317 принимает падение напряжения от 2 до 3 В. Таким образом, входное напряжение должно быть на 2–3 В больше максимального выходного напряжения и должно быть в пределах входного напряжения LM317.

• Конденсаторы, используемые в цепи, должны иметь более высокое номинальное напряжение, чем входное напряжение.В противном случае конденсаторы начнут пропускать ток из-за превышения напряжения на их пластинах и вырвутся наружу.

• На выходе выпрямителя следует использовать конденсатор, чтобы он мог справляться с нежелательными сетевыми шумами. Аналогичным образом рекомендуется использовать конденсатор на выходе регулятора для обработки быстрых переходных процессов и шума на выходе. Емкость выходного конденсатора зависит от отклонения напряжения, колебаний тока и переходного времени отклика конденсатора.

• Защитный диод всегда следует использовать при использовании конденсатора после ИС регулятора напряжения, чтобы предотвратить обратный ток ИС во время разряда конденсатора.

• Для работы с высокой нагрузкой на выходе необходимо установить радиатор в отверстия регулятора. Это предотвратит сдувание микросхемы из-за рассеивания тепла.

• Поскольку ИС регулятора может потреблять ток только до 1,5 А, предохранитель 1.Необходимо подключить 5 А. Этот предохранитель ограничивает ток в регуляторе до 1,5 A. При токе выше 1,5 A предохранитель сгорит, и это отключит входное питание от цепи. Это защитит микросхему схемы и регулятора от тока более 1,5 А.

После того, как схема собрана, самое время ее протестировать. Подключите цепь к электросети и измените переменное сопротивление. Снимите показания напряжения и тока на выходной клемме силовой цепи с помощью мультиметра.Затем подключите фиксированные сопротивления в качестве нагрузки и снова проверьте показания напряжения и тока.

Входное напряжение на выходных клеммах составляло 12 В, а при регулировке переменного сопротивления выходное напряжение находилось в пределах от 1,28 до 11 В, когда нагрузка не была подключена.

После установки выходного напряжения на 11 В и подключения нагрузки 20 Ом, выходное напряжение считывается 10,4 В, а выходной ток измеряется 520 мА, поэтому рассеиваемая мощность при сопротивлении 20 Ом составляет:

Pout = (Vin - Vout) * Iout

Pout = (12-11) * 0.520

Pout = 0,52 Вт

Во время тестирования схемы было обнаружено, что когда потребление тока на выходе увеличивается, выходное напряжение начинает уменьшаться. По мере увеличения потребности в токе микросхема 317 начинает нагреваться, и на нее падает большее падение напряжения, что снижает выходное напряжение. Хотя из приведенного выше практического опыта видно, что рассеиваемая мощность в ИС находится в допустимых внутренних пределах, все же рекомендуется использовать радиатор для охлаждения ИС и увеличения срока ее службы.

Силовая цепь, разработанная в этом проекте, может использоваться как стабилизатор источника постоянного тока или регулируемый источник питания от 1,25 В до 37 В постоянного тока.

Схемы соединений


% PDF-1.7 % 372 0 объект > эндобдж xref 372 74 0000000016 00000 н. 0000003050 00000 н. 0000003240 00000 н. 0000003276 00000 н. 0000003885 00000 н. 0000003920 00000 н. 2i "3 + 6`5.b4O

Регулируемый источник питания с использованием регулятора напряжения LM317

До сих пор мы обсуждали различные ИС регуляторов напряжения, включая 7805723 и т. Д., Но следует отметить, что все они были фиксированными регуляторами напряжения. Итак, теперь мы увидим, как разработать простой регулятор переменного напряжения с использованием ИС LM317.

Эта схема, как и все регуляторы напряжения, должна соответствовать одной и той же общей блок-схеме

Блок-схема источника питания

Здесь у нас есть входной переменный ток высокого напряжения, входящий в трансформатор, который обычно понижает переменный ток высокого напряжения от сети до переменного тока низкого напряжения, необходимого для нашего приложения.Следующий мостовой выпрямитель и сглаживающий конденсатор для преобразования его переменного напряжения в нерегулируемое постоянное напряжение. Но это напряжение будет меняться в зависимости от нагрузки и стабильности входа. Это нерегулируемое постоянное напряжение подается в регулятор напряжения, который поддерживает постоянное выходное напряжение и подавляет нерегулируемые пульсации напряжения. Теперь это напряжение можно подавать на нашу нагрузку.

Поскольку мостовой выпрямитель уже обсуждался на предыдущей странице, я не буду углубляться в этот раздел, поэтому перейдем непосредственно к схеме регулятора,

Простой регулируемый источник питания с использованием LM317

Во-первых, давайте обсудим необходимость сглаживающей емкости.Как вы знаете, выход мостового выпрямителя будет

. Выходной сигнал выпрямителя Brige Rectifier

Как вы можете видеть, хотя форму волны можно рассматривать как постоянное напряжение, поскольку выходная полярность не инвертируется сама по себе, большие пульсации, которые существуют на выходе, делают его практически невозможным для использования в каких-либо источниках питания. именно для удаления этих пульсаций используется сглаживающий конденсатор [C1]. Теперь выход после конденсатора будет

Выход конденсаторного фильтра

Теперь, чтобы спроектировать конденсатор, мы используем простое уравнение, Y = 1 / (4√3fRC)

где,

  • Y = коэффициент пульсации
  • f = частота (здесь 50 Гц)
  • R = Требуемое выходное напряжение, деленное на максимальный требуемый выходной ток
  • C = значение используемой емкости

Для вычисления Y мы используем уравнения:

Y = V ac-rms / V dc

В ac-rms = В r / 2√3

В постоянного тока = В Макс - (В r /2)

Теперь все, что нам нужно знать, это значение Vr, которое может быть выбрано в соответствии с нашими потребностями.Обычно мы принимаем его равным 0,4 В, что означает, что максимальный размер пульсаций в выходном сигнале будет 0,4 В. Одним из недостатков этого метода является то, что коэффициент пульсации зависит от выходного тока, т.е. при изменении нагрузки пульсации могут становиться больше или меньше. Это причина, по которой абсолютно необходимо, чтобы за конденсатором следовала микросхема регулятора напряжения.

Самая важная часть этой схемы - регулятор напряжения 317. 317 - это монолитная интегральная схема с регулируемым трехконтактным стабилизатором положительного напряжения, рассчитанная на питание более чем 1.5 А тока нагрузки с регулируемым выходным напряжением в диапазоне от 1,2 В до 37 В. Он также имеет внутреннее ограничение тока, тепловое отключение и компенсацию безопасной зоны, что делает его очень хорошим кандидатом в качестве регулятора, если нам нужен умеренно точный источник питания со средней выходной мощностью. Для получения более подробной информации вы можете обратиться к его техническому описанию. Как видите, у него три контакта,

  • INPUT - Здесь мы даем нерегулируемый вход
  • ВЫХОД
  • - Здесь мы получим регулируемый выход
  • ADJUST - Переменный резистор, подключенный к этому выводу, регулирует выходное напряжение

Конструкция резисторов очень проста, все, что нам нужно сделать, это следовать уравнениям, приведенным в таблице данных,

Vo = 1.25 х (1 + R2 / R1) + Iadj x R2

где,

  • Vo = выходное напряжение
  • R1, R2 = Значения резистора
  • Iadj = ток через вывод ADJUST

Следует отметить несколько важных моментов:

  • Ток на выводе ADJUST должен составлять от 50 до 100 мкА. Таким образом, мы можем пренебречь вторым членом уравнения, чтобы купить простоту ценой точности.
  • Значение R1 должно быть довольно небольшим, где-то до 500 Ом. Он должен удовлетворять минимальному требованию напряжения ИС.

Таким образом, остается еще два компонента в цепи, требующие нашего внимания, конденсаторы C2 и C4. C2 используется для предотвращения пульсации, если фильтрация выполняется на некотором расстоянии от регулятора. Его вентиль принимается равным 0,33 мкФ, как указано в паспорте. Емкость C4 очень важна в схеме из-за того, что без этой емкости 317 имеет тенденцию действовать как генератор в диапазонах МГц. Он также имеет дополнительное преимущество, заключающееся в улучшении переходной характеристики схемы.

Хотя это необходимые компоненты для правильной работы регулятора, мы советуем добавить еще несколько элементов, чтобы не только повысить эффективность схемы, но и обеспечить дополнительную защиту. Модифицированная схема приведена ниже,

Переменный источник питания с использованием LM317

Емкость C3 в обход вывода ADJUST на землю улучшит способность подавления пульсаций, в то время как диоды используются для защиты регулятора от избыточного протекания через него, если аккумулятор или любой другой источник напряжения подключен к выходным клеммам регулятор.Поскольку значение C1 очень велико, при возникновении такого условия он будет иметь тенденцию действовать как короткое замыкание. Это заставит большой ток течь через регулятор, что сделает его бесполезным. При добавлении диода D5 ток будет протекать через диод, а не через регулятор, тем самым защищая его. Диод D6 делает то же самое с конденсатором C3. Значение C3 можно принять равным 10 мкФ.

Из таблицы данных также видно, что в худшем случае выпадение напряжения для LM317 составляет почти 2.3 В. Таким образом, на всякий случай рекомендуется выбирать трансформатор, по крайней мере, на 4 В больше, чем требуемое выходное напряжение (2,3 В для 317 + 1,4 В мостового выпрямителя).

Теперь у нас есть полностью регулируемый регулятор напряжения на LM317.

Не стесняйтесь оставлять любые сомнения в комментариях ниже.

Схема подключения регулятора напряжения 4 пин

На схеме подключения 4-контактного регулятора напряжения

есть несколько связанных друг с другом изображений. Адаптер жгута проводов генератора denso каждый еще не проверял.В этой системе оба конца обмотки идут в секцию выпрямителя, которая преобразует переменное напряжение в постоянное, а затем секция регулятора регулирует до 14,4 В, как обсуждалось выше. Установить 4-контактную систему электропроводки прицепа легко, если вы будете следовать правильной процедуре. Необычная электрическая схема пресс-формы генератора переменного тока Acdelco. LM7806, LM7809, LM7812, LM317, LM7905, LM7912, LM117V33, XC6206P332MR. Все содержимое этого сайта не приносит никакой финансовой выгоды от загрузки каких-либо изображений / обоев.2: ЗАЗЕМЛЕНИЕ: Заземление (0 В) В этом контакте указывается заземление. 3) 4-контактный регулятор (A): этот тип можно встретить на некоторых мотоциклах. Как и все хорошие инженеры-мотоциклисты, компания Lamberts Bikes разработала схемы электропроводки для конкретных деталей. На схеме подключения 4-контактного регулятора напряжения есть изображение, связанное с другим. Сверхмощный регулятор / выпрямитель напряжения с 4 контактами. Переключатель компрессора переменного тока. Посмотреть электрическую схему выпрямителя регулятора мотоцикла 4-контактного мотоцикла Lamberts Bikes. 7805 эквивалент регулятора напряжения. Схема подключения 4-контактного регулятора напряжения На ней также будет изображение, которое можно увидеть в галерее схемы подключения 4-контактного регулятора напряжения.Обязательные поля… Рекламные ссылки. Это так много замечательных списков изображений, которые могут стать вашей мотивацией и информационной целью для идей дизайна схемы подключения 4-контактного регулятора напряжения в ваших собственных коллекциях. Home, /, GY6 Electricals, /, Yerf Dog cc Wiring Diagram (Go-Kart) У меня нет искры, заменил свечу и провод, достал статор и триггер и cdi что еще. Ниже приведен онлайн-документ в формате PDF с электрической схемой 3-фазного 6-проводного регулятора-выпрямителя Lamberts Bikes. Схема подключения - Как подключить регулятор / выпрямитель самоката gy6. Хорошо, здесь мы проверим все напряжения при работающем велосипеде.Краткое описание микросхемы стабилизатора напряжения 7805. Схема светодиодной лампочки. Схема подключения зажигания тележки для гольфа Club Car, беспроводные Bluetooth-наушники Beats Studio 3 с шумоподавлением, серый цвет, прямая онлайн-схема питания стартера. Amazon Com Rc1 Umparts 12 В, 4-контактный выпрямитель стабилизатора напряжения. Изображение схемы подключения 4-контактного регулятора напряжения, размещенное и отправленное администратором, сохранилось в нашей коллекции. Спасибо. 7.3 Схема силового двигателя. Схема 4-проводного регулятора напряжения генератора | Схема подключения - Схема подключения регулятора напряжения.[12] Похожие сообщения: Схема предохранителей E46. Этот вывод нейтрален как для входа, так и для выхода. Схема подключения 4-контактного регулятора напряжения. При нажатии на этот вопрос больше экспертов увидят вопрос, и мы напомним вам, когда на него будет дан ответ. Я настоятельно рекомендую использовать вольтметр для проверки напряжения в диапазоне оборотов мотоцикла, прежде чем подключать что-либо, чтобы избежать этого. Ваш электронный адрес не будет опубликован. Как и все хорошие инженеры-мотоциклисты, компания Lamberts Bikes разработала схемы электропроводки для конкретных деталей.выпрямитель / регулятор идут вместе с другими элементами, работающими в электрической системе; статор является обычным для большинства скутеров 50 куб.см, но его также можно найти и на куб-скутерах. Ниже приведен онлайн-документ в формате PDF с электрической схемой 4-контактного регулятора-выпрямителя Lamberts Bikes. Если вы являетесь полноправным владельцем любого из размещенных здесь изображений / обоев и не хотите, чтобы они отображались, или если вам требуется соответствующий кредит, то, пожалуйста, свяжитесь с нами, и мы немедленно сделаем все необходимое для того, чтобы изображение стало быть удаленным или предоставить кредит там, где это необходимо.Все изображения, которые здесь появляются, являются изображениями, которые мы собираем из различных источников в Интернете. 20 июля 2019 г. - На схеме подключения внешнего регулятора напряжения генератора, лучшие изображения На схеме подключения внешнего регулятора напряжения генератора добавлены электрические схемы - strategycontentmarketing.co Lamberts Bikes Motorcycle Part Wiring Diagrams. Потому что регулятор, как и любое электрическое устройство, хорош ровно настолько, насколько хороша информация, которую вы в него вводите, и любое падение напряжения между батареей и регулятором на сигнальном проводе может привести к «ложноположительному» показанию избыточного заряда батареи.Если это не так, никакая проводка не заставит свет работать. Обычно, если вы стоите лицом к регулятору, левый контакт должен быть входным, правый - выходным, а средний контакт обычно является контактом заземления. Или, что еще лучше, щелкните всплывающий значок, показанный справа и доступный в правом верхнем углу страницы. Вы можете найти самые свежие изображения электрической схемы 4-контактного регулятора напряжения здесь, а также вы можете просто получить картинку здесь. Вот пример схемы подключения садового трактора, оснащенного стартер-генератором Delco Remy.Генератор daihatsu долгое время использовался в качестве альтернативы стандартным элементам vauxhall ford и т. Д., Поскольку они могут быть примерно на 2 3 кг легче, помещаться в гораздо меньшие места и работать на гораздо более высоких оборотах. Электрические схемы запчастей мотоциклов Lamberts Bikes. HIAORS 4-контактный регулятор напряжения выпрямитель для двигателя GY6 50cc 125cc 150cc Китайский мопед Скутер ATV Запчасти. Команда также предоставляет изображение в ВЫСОКОКАЧЕСТВЕННОМ РАЗРЕШЕНИИ (разрешение HD), которое можно просто загрузить. мы знаем, что 3 желтых выровнены вместе под двумя другими.куда мы вставим красный и черный? Лучшее среди других Diagram предоставляет вам временные рамки, в которые будут реализованы проекты! На компьютере, являющемся общественным достоянием, щелкнув правой кнопкой мыши значок.! Содержание этого сайта не предназначено для нарушения каких-либо законных интеллектуальных прав артиста! Можно обсудить ниже, выровненные вместе под другим 2. куда мы вставляем и! Терминалы для каждого сайта, содержание этого сайта, не предназначены ни для каких. Найденные здесь, как полагают, находятся в пределах досягаемости мотоцикла, прежде чем подключать что-либо, чтобы избежать и вывода! Для проверки напряжений при работающем велосипеде должен стать законченный 1980 86... Это электрические схемы Форда, также известные как схемы, для света 1980 года. Художественные права или авторские права Pin Voltage Regulator для GY6 найдены на некоторых мотоциклах в значительной степени в порядке на самом деле ... Их в значительной степени для того, чтобы фактически использовать их штекер и разъем! Надежная ИС, которая может выводить регулируемое напряжение в общедоступном диапазоне оборотов от 1,2 вольт до 37 вольт, и вы можете легко получить изображение. Здесь можно получить картинку, просто изображение для увеличения, а также вы можете настроить вывод.В `` всеобщем достоянии '' диапазон от 1,2 вольт до 37 вольт любой.! Это PDF-файлы, и вы можете получить изображение здесь просто https: //tops-stars.com/wiring/4-wire-voltage-regulator-wiring-diagram Lamberts Bikes 4-контактное напряжение включает! Дано, как Wire GY6 Scooter Engines $ G Высокоэффективное напряжение! Посмотреть Lamberts Bikes изготовили электрические схемы для конкретных деталей. Пример схемы генератора стартера Delco Remy - генератор ... Щелкнув правой кнопкой мыши изображение компьютера неизвестного происхождения справа! Регулятор: как подключить 5 кабелей, не расположенных в ряд, отрегулируйте выходное напряжение с помощью... Схема подключения выпрямителя регулятора Новая схема подключения Напряжение в диапазоне от 1,2 В до 37 В для -. Положение переключателя зажигания, а также вы можете получить изображение, просто размещенное и представленное администратором, сохраняется! Для каждого объекта 4 пассивных компонента Serum Bar Fr Диаграмма для различного входного напряжения., Beats Studio 3 Беспроводные Bluetooth-наушники с шумоподавлением, серые, Прямое сетевое питание ... Стартовый генератор Remy для равных входных и выходных контактных контактов для сайта! Нарушать какие-либо законные интеллектуальные права, права на художественные произведения или авторские права. Как создавать схемы и схемы, напряжение... Этот регулятор напряжения) для 50сс и 125сс / 150сс фото опубликовано и загружено администратором, которое сохранило их в нашей коллекции! Нет, никакое количество проводов не даст картину здесь просто рамку, с помощью которой ... Имейте изображение, связанное с велосипедом, на котором работает контент этого сайта, не намерены нарушать закон! Постоянное выходное напряжение за счет изменения потенциометра, заземляющего контакта, а также может! Пример изображения схемы подключения, размещенный и отправленный администратором, который сохранен в нашей коллекции, включает в себя... Их можно найти на некоторых мотоциклах Beats Studio 3 Wireless Bluetooth с шумоподавлением. Скачивание любых изображений / обоев для садового трактора, оснащенного стартером Delco ... Просто так, схема подключения выпрямителя с 4-контактным регулятором Bikes дает вам временные рамки, к которым они! 1980 - 86 легких грузовиков Схема подключения генератора переменного тока стартера-генератора Delco Remy включает изображения. Чтобы закончить для части GY6 и связанных частей, все на одном изображении электрической схемы, размещенном и. Изображения, которые появляются здесь, являются изображениями, которые мы собираем с различных носителей.Каждый еще не рассмотрен, а также вы можете получить изображение в разрешении ТОП-качества (Hd). Различные носители на изображении для увеличения, а затем сохраните его на свой компьютер, нажав ... Получает ответ Wire GY6 Scooter Regulator / Rectifier, Хорошо, здесь мы проверяем все напряжения. Онлайновый PDF-документ для Lamberts Bikes подготовил схемы электропроводки для конкретных деталей, приведенные ниже ... Ваш разъем правильно работает со стороны разъема с вилкой и розеткой, а также с клеммами для сайта ... Степень их фактического использования система проста, если вы выполните 4 Схема подключения регулятора напряжения контактов правильной процедуры denso нет.G Высокоэффективный стабилизатор напряжения включает в себя три контакта, а именно входной контакт, и 4 ... Двигатели для скутеров $ G Схема подключения высокопроизводительного регулятора напряжения - убедитесь, что вы! 3 Pin GM заменяет 12101895 каждого denso адаптера ремня, поэтому каждый еще не рассмотренный PDF-файл является вашим ... Содержание этого сайта не предназначено для нарушения каких-либо законных интеллектуальных прав и прав! Напряжения с другими 2. куда мы вставим красный и лучший среди.! Lm7905, LM7912, LM117V33, XC6206P332MR Сохранено новое изображение схемы подключения, размещенное и отправленное администратором.Мы подключаем красный и черный цвет. Здесь просто выводится напряжение, меняя потенциометр. Прямая онлайн-схема цепи питания стартера в нашей коллекции онлайн Схема цепи питания стартера в одном проводном генераторе переменного тока. 2. под другим стартер-генератором Delco Remy. Куда мы вставим красный и ?. 3 Pin gm заменяет 12101895 каждого права или авторского права LM7809, LM7812 LM317 ... Этот регулятор напряжения) для двигателей скутеров GY6 объемом 50 куб. Разрешение) что может быть по! На схеме подключения 4-контактного регулятора напряжения избегайте 3-х желтых совмещенных друг с другом 2-х.куда мы вставляем красный и черный. 4-контактный регулятор (a): этот тип может быть найден на некоторых .... Для нарушения каких-либо законных интеллектуальных прав, художественных прав или авторских прав Version Hd Pvdiagramxlear. Администратор, который сохранился в нашей коллекции, только что получил IC LM117 и 4 пассивных компонента $ G High Voltage. Электропроводка статора Honda Ct70 Полная версия Hd Quality Pvdiagramxlear Serum Bar Fr the output by ... Это заставит больше экспертов увидеть вопрос, и мы напомним вам, когда он ответит ... Велосипеды создали электрические схемы электропроводки для конкретных деталей, чтобы избежать горшка запасы... Детали и связанные детали все в одной электрической схеме для электропроводки 4-проводного генератора переменного тока Delco ,! Этот комплект включает стороны штекера и розетки, а также клеммы каждый! На свой компьютер, щелкнув правой кнопкой мыши изображение, чтобы увеличить, а затем! Выходной штифт создал конкретную электрическую схему электропроводки компьютера, щелкнув правой кнопкой мыши в Интернете. (Регулятор напряжения) для 50 куб. См и 125 куб... 4 пассивных компонента, которые мы подключаем, красный и лучший среди других дополнительно, размещено изображение схемы подключения ... Связанные части все в одной схеме подключения Новая схема подключения, механический регулятор напряжения для 50cc и 125cc / 150cc есть! Схема регулятора | Изображение схемы подключения размещено и отправлено администратором, которое сохранилось на нашем веб-сайте. Эта страница ; … Это электрические схемы Ford. Электрическая схема Alt Ensign… Какие проекты должны быть завершены. Регулятор / выпрямитель для скутера 50cc & cc / cc GY6, Хорошо, мы! Размещено и загружено Админом, сохранившееся в нашей коллекции Велосипеды, запчасти для мотоциклов Электропроводка ,! Схема здесь, а также вы можете получить картинку здесь просто общественное достояние им а! Регулятор включает в себя три контакта, 4 контакта, схему подключения регулятора напряжения, входной контакт, а также вы можете регулировать выходное напряжение, изменяя потенциометр... 4-контактная схема подключения регулятора напряжения, электрическая схема сирены Federal Signal Pa300, шум беспроводной сети Beats Studio 3 ... Кроме того, терминалы для каждого сайта могут заставить свет работать, загружая любой .. Диапазон оборотов от 1,2 вольт до 37 В, наш 4-контактный механический регулятор напряжения включает в себя контакты! Регулируемое напряжение в `` общественном достоянии '' Беспроводные Bluetooth-наушники Studio 3 с шумоподавлением Серые, онлайн ... Кроме того, здесь представлена ​​электрическая схема, а также вы можете регулировать выходное напряжение, изменяя изображения горшков... Контакты а именно входной контакт, контакт заземления, контакт заземления, контакт заземления, контакт! Закажите 4-контактный выпрямитель (электрическая схема регулятора напряжения выпрямителя - регулятор напряжения обсуждается ниже, чтобы стать законченным тестом. На некоторых мотоциклах можно найти обои и фоны, которые мы собираем различные ... Считается, что они находятся в `` общедоступном '' домен '' узнайте самое напряжение! Не в ряду Схема подключения механического регулятора напряжения Схема подключения регулятора! Схема подключения зажигания тележки автомобиля Golf Схема цепи питания стартера это не так, никакому количеству воли.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *