Мощные стабилизаторы напряжения: цены от 5 584 рублей, отзывы, производители, поиск и каталог моделей – интернет-магазин ВсеИнструменты.ру

Содержание

Все своими руками Мощный стабилизатор напряжения своими руками

Опубликовал admin | Дата 13 марта, 2013

Стабилизатор напряжения на ток 10А

     Здравствуйте уважаемые читатели. Давно хотел опробовать схему мощного, регулируемого стабилизатора напряжения, схема которого представлена в книге «Микросхемы для линейных источников питания и их применение» издательство Додэка 1998г. Схема изображена на рисунке 1.

     На рисунке2 изображена схема, которую собрал я. В ней отсутствуют диод, резистор 2 и конденсатор 2. Резистор R2 необходим для замыкания токов утечки мощных транзисторов. Об установке дополнительных элементов можно подробно ознакомиться в вышеупомянутой книге. Вот небольшая выдержка из данной книги.

Данные испытуемого стабилизатора

Напряжение на входе………………………. 22В
Напряжение на выходе……………………. 14,15В
Ток ……………………………………………………... 0... 5А
Провал напряжения на выходе………. 0,05В

Напряжение пульсаций не мерил, так как запитывал стабилизатор от БП постоянного тока.
И так на вход подал 22В, резистором R5 установил напряжение на выходе 14В – точнее было 14,15. При увеличении тока нагрузки до 5А напряжение на выходе уменьшилось до 14,1В, что соответствует провалу напряжения в 50млВ, что довольно не плохо.

     При падении напряжения на самом стабилизаторе 10В и токе через мощные транзисторы 5А т.е. мощности, выделяемой на них в виде тепла в 50Вт, радиатор данных размеров нагревается до температуры 80 (на фото 1 правда 75 – потом температура поднялась) градусов.

     Для кремния это, «как с добрым утром». Но после прогонки стабилизатора при этой температуре в течении примерно часа, скоропостижно умер один из КТ829А (пробой к-э, но при снижении температуры все свойства транзистора восстанавливались, для меня это совсем не единичный случай в моей практике, именно поэтому я всегда испытываю свои поделки при повышенной и пониженной температуре, если предполагается, что они будут работать с возможным изменением климатики), пришлось заменить. Транзисторы у меня все б\у, выпаяны из старых телевизоров. Резисторы, стоящие в эмиттерах мощных транзисторов, больше нужны для контроля коллекторных токов данных транзисторов, чем для их выравнивания. У меня разброс этих токов от транзистора к транзистору изменялся в разы, что потребовало подбора транзисторов. Например ток одного транзистора был 1,64А, а другого – 0,63А. Так, что эти яко бы уравнивающие резисторы в эмиттерных цепях можно после подборки транзисторов спокойно убрать. Стабилизатор собран навесным способом прямо на радиаторе (см. фото 2). При монтаже стабилизатора надо соблюдать некоторые условия.


1. Провод идущий от резистора R5 на землю, необходимо припаять непосредственно к выходной клемме блока.
2. Конденсаторы С1 и С2 устанавливаются в непосредственной близости с микросхемой стабилизатора.
3. Резистор R4 лучше всего припаивать непосредственно на соответствующие выводы микросхемы.
4. С1 и С2 лучше танталовые.

     После сборки стабилизатора обязательно проверьте осциллографом выходное напряжение стабилизатора – возможно самовозбуждение оного. Если возникнет возбуд, то возможен сильный разогрев С1 и С2 вплоть до взрыва. При первом включении всегда быстренько пальчиками пощупайте электролиты на предмет повышения их температуры. Стабилизатор нормально работает при входном напряжении 34В, при этом выходное напряжение должно быть не более 24В (зависит от номинала резистора R5 и высчитывается с помощью формулы).


Ток может достигать 10А при условии использования двух вентиляторов для принудительного обдува. В общем я уже подумываю на базе этого стабилизатора сделать себе лабораторный БП, дополнив его системами защиты и индикации, ну и естественно вольтметром и амперметром. Успехов всем. До свидания К.В.Ю.

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:45 367


Мощный стабилизатор двухполярного напряжения для УМЗЧ

Автор предлагает двухполярныи стабилизатор напряжения питания, пригодный для усилителей мощностью до 50- 100 Вт на канал. Устройство выполнено на мощных полевых транзисторах, способных работать при многократных кратковременных перегрузках по току. Применение таких стабилизаторов в значительной степени оправдано в усилителях с высокой чувствительностью к изменению и пульсациям питающего напряжения, что особенно присуще несложным усилителям без общей обратной связи.

Как известно, для питания мощного выходного каскада УМЗЧ в ряде конструкций используется отдельный источник питания, а остальная часть усилителя питается от стабилизатора напряжения. Большинство таких источников питания - нестабилизированные и представляют собой два двухполупе-риодных выпрямителя (на напряжения положительной и отрицательной полярности) со средней точкой со сглаживающими конденсаторами. Это нестабили-зированное напряжение не используется остальной частью усилителя, если в нём есть дополнительные узлы и коммутатор источников сигнала (полный, "интегральный" усилитель). Кроме того, общая обратная связь, применяемая в большинстве УМЗЧ, существенно снижает чувствительность к пульсациям напряжения питания. А если глубина общей ООС невелика или её совсем нет, пульсации питающего напряжения могут прослушиваться через акустические системы.

Кардинальным способом подавления пульсации и нестабильности является питание выходных каскадов усилителя стабилизированным напряжением, однако применение интегральных стабилизаторов тоже наталкивается на ряд проблем. Дело в том, что такие стабилизаторы имеют относительно большое падение напряжения. Кроме того, в них, как правило, встроены ограничители по току и мощности, которые вообще могут свести на нет достоинства стабилизатора. Можно, конечно, применить интегральный стабилизатор большой мощности (например, с выходным током в 10 А), однако его стоимость, на мой взгляд, неприемлема.

Альтернативой при решении этой задачи может быть использование в стабилизаторе напряжения питания мощных полевых транзисторов. Эти транзисторы, кстати, недороги и имеют малое сопротивление открытого канала (сотые доли ома) и максимальный ток до 70. .. 100 А, что позволяет конструировать стабилизаторы с очень малым падением напряжения (не более 0,25 В) при токе до 20 А.

Параметры описываемого стабилизатора следующие. При выходном напряжении в 27 В его максимальный ток достигает 4,5 А. При таком токе нагрузки минимальное рабочее напряжение между входом и выходом не превышает 0,25 В. Разница между выходным напряжением стабилизатора без нагрузки и напряжением при токе нагрузки в 4,5 А составляет не более 0,15 В, при токе в 6 А эта разница не превышает 0,16 В.

Такие параметры стабилизатора обеспечивают применённые в нём мощные полевые транзисторы - IRF4905 (р-канальный) с максимальным током стока 74 А и сопротивлением открытого канала в 0,02 Ом и IRL2505 (п-канальный), с соответствующими током 104 А и сопротивлением 0,008 Ом.

 

Рис. 1

Двухполярный стабилизатор состоит из двух независимых источников напряжения положительной и отрицательной полярности (рис. 1). Верхняя часть схемы относится к стабилизатору положительной полярности, а нижняя - отрицательной полярности. Для удобства сравнения нумерация соответствующих элементов различается лишь префиксами 1 и 2.

Вначале о некоторых особенностях стабилизатора. В нём имеются три критических элемента - это конденсаторы С2 и СЗ и стабилитрон VD1.

Указанные на схеме значения ёмкости конденсаторов С2 и СЗ являются в некотором смысле компромиссом: при их уменьшении возникает вероятность самовозбуждения стабилизатора. Увеличение их ёмкости до 1 мкФ приводит к тому, что на выход стабилизатора проникают пульсации, которые всегда имеются в выпрямленном напряжении.

Теперь несколько слов о том, почему был выбран стабилитрон VD1 (BZX55-C7V5) с напряжением стабилизации 7,5 В. Целесообразно выбрать такой стабилитрон, у которого дифференциальное сопротивление минимально (оно влияет на свойства всего стабилизатора). Из всех стабилитронов серии BZX55 наименьшее дифференциальное сопротивление (7 Ом) имеют стабилитроны BZX55-C7V5 и BZX55-C8V2.

Если входное напряжение стабилизатора менее 20...25 В, целесообразно использовать стабилитрон на напряжение не более 3,3 В (например, BZX55-C3V3).

Схема стабилизатора отрицательной полярности с небольшими изменениями позаимствована из [1] и уже однажды была применена мной для регулятора скорости вращения дрели (с запасом по току 20...30 А). По сравнению со схемой из [1] в схеме на рис. 1 изменены номиналы некоторых конденсаторов, резисторов, добавлен стабилитрон VD2 для защиты затвора VT2 от пробоя и использован стабилитрон (VD1) на другое напряжение стабилизации (7,5 В).

Схема стабилизатора положительной полярности является зеркальным отражением схемы стабилизатора отрицательной полярности Вместо n-ка-нального в нём использован р-ка-нальный полевой транзистор IRF4905 в корпусе ТО-220 (VT2), вместо биполярного транзистора структуры р-п-р - транзистор структуры n-p-n ВС337-40 или КТ503Б (VT1), а нагрузка параллельного стабилизатора DA1 (TL431CZ в корпусе ТО-92) включена в его анодную цепь Хотя такое включение нагрузки менее известно, оно наиболее распространено в импульсных источниках питания компьютеров.

Несколько замечаний о том, как описываемый стабилизатор можно доработать для использования при напряжении питания +/-35...45 В. В этом случае сопротивление резистора R4 (620 Ом) нужно увеличить до 0,9.. 1 кОм, чтобы ток через стабилизатор DA1 (TL431CZ) не превышал половину его максимального тока 50 мА. Вместо комплементарной пары транзисторов ВС327/ВС337 (Uкэ max = 45 В, Iктах = 0,8 А, РКmax = 0,6 Вт) следует использовать пару с неСКОЛЬКО бОЛЬШИМ напряжением иКэ max.

например, 2SA1284/2SC3244 (UK3max = 100 В, lKmax = 0,5 А, РКmах = 0,9 Вт). Полевые транзисторы желательно установить на теплоотводы с большой площадью охлаждения Необходимо также добавить, что для установки нужного напряжения стабилизации потребуется изменение номиналов резисторов R5, R6 и R7. Стабилитрон желательно использовать на напряжение стабилизации 7,5 В (BZX55-C7V5). Микросхему TL431CZ рекомендую приобретать производства National Semiconductor, Texas Instruments, Vishay, Motorola.

Все резисторы, кроме подстроечно-го R6 (СПЗ-19А) имеют мощность 0,25 Вт, керамические конденсаторы - нанапряжение 50 В.

Рис. 2


Поскольку мне понадобилось две платы двухполярного стабилизатора (по одной на каждый канал УМЗЧ), с помощью программы Sprint Layout 5.0 я развёл печатный монтаж платы (рис. 2 распечатал её чертёж на кальке, предназначенной для печати лазерным принтером, и изготовил методом, описанным мной в [2, 3]. Внешний вид смонтированной платы показан на рис. 3

 

Рис. 3

 

Для тестирования работы стабилизатора я использовал три цифровых мультиметра, два из которых измеряли входное и выходное напряжения стабилизатора, а третий в режиме амперметра - его выходной ток. Здесь необходимо добавить, что схема на рис. 4 использована для тестирования стабилизатора положительного напряжения Подобным образом проверены свойства и стабилизатора отрицательного напряжения.

Рис. 4

 

В качестве нагрузки (R1) применён керамический резистор SQP мощностью 20 Вт сопротивлением 1 Ом, а в качестве R2 - резистор ПЭ-75 мощностью 75 Вт сопротивлением 5 Ом. Таким образом общее сопротивление нагрузки (6 Ом) стабилизатора соответствовало общей мощности 95 Вт. а ток - 4,5 А.

В качестве источника питания при тестировании стабилизатора мной использован доработанный стабилизированный блок питания Б5-47, в котором выходное напряжение (до 30 В) обеспечивается при токе нагрузки до 4 5 А (до 3 А без доработки). Для повышения предела ограничения тока до 4,59 А необходимо в разъеме дистанционного управления, расположенном на задней стенке блока установить перемычки между контактами 23, 24, 26 и 50, а на лицевой панели выставить максимальное значение тока 2,99 А

Результаты тестирования работы стабилизаторов полностью подтвердили их параметры. Стабилизаторы имеют значительный запас по току, а мощность в нагрузке каждого из стабилизаторов соответствует 121,5 Вт, что в сумме составляет 243 Вт.

Если мощность одного канала усилителя Р = 35 Вт, а сопротивление на-

грузки R = 4 Ом, то амплитуды напряжения сигнала U " 17 В и тока lm = 4,25 А. Это означает что, если стабилизатор двух-полярный и состоит из стабилизаторов положительной и отрицательной полярности, каждый из них должен обеспечивать максимальный ток 4,25 А.

Если выходное напряжение стабилизатора составляет 27 В и ток в нагрузке 4,25 А, то эквивалент нагрузки соответствует сопротивлению RэKB = 6,35 Ом. Вот поэтому и выбрано сопротивление нагрузки стабилизатора, равное 6 Ом.

При испытаниях использован также реальный выпрямитель источника питания с большим током и высоким уровнем пульсации (накопительный конденсатор емкостью 10000 мкФ и выпрямительные диоды DSS 60-0045В (Uoбp = 45 В, lmax = 60 А, Uпр = 0,35 В/10 А), включённые по мостовой схеме.

Описываемый стабилизатор устойчив и к кратковременным перегрузкам. Я использовал его для регулировки скорости вращения дрели, у которой пусковой ток двигателя достигает 20 А. Таким образом, стабилизатор имеет значительный запас по току, позволяющий использовать его с большими теп-лоотводами и в более мощных УМЗЧ Теперь несколько слов об установке и регулировке стабилизатора в усилителе

Прежде всего, необходимо оценить с помощью осциллографа минимальные значения питающего напряжения выходных каскадов УМЗЧ при максимальной нагрузке. Для этого к выходу УМЗЧ следует подключить резистор номиналом, равным сопротивлению АС (4 или 8 Ом) и мощностью, соответствующей максимальной для УМЗЧ На вход усилителя подать от генератора 34 сигнал частотой 20...30 Гц, а регулятором громкости установить уровень сигнала, соответствующего максимальной мощности усилителя.

Далее нужно определить минимальное абсолютное значение (с учётом амплитуды пульсаций) питающих напряжений и установить подстроечным резистором R6 напряжение стабилизации приблизительно на 1 В меньше этого минимального значения в каждом из стабилизаторов.

До установки двух плат таких стабилизаторов в каждый из каналов в усилитель ("Кумир У-001") я заменил диоды КД208А (Unp = 1 В/1.5 А) в мостовых выпрямителях источников питания диодами Шотки MBR10100 (Unp = 0,45 В/1,5 А) и диоды КД209А в стабилизаторе напряжения 30 В диодами HER503. Кроме того ёмкость сглаживающих конденсаторов увеличил в два раза (как в выпрямителях выходных каскадов, так и в стабилизаторе 30 В).

После установки стабилизаторов в корпус и включения усилителя необходимо проверить и подстроить баланс выходных каскадов по постоянному току, а затем ток покоя мощных транзисторов

Отрегулировав режимы работы транзисторов выходных каскадов УМЗЧ с установленными стабилизаторами, я обнаружил заметное снижение фона даже на максимальной чувствительности при отсутствии входного сигнала.

Литература
 


1    Нечаев И. Модуль мощного стабилизатора напряжения на полевом транзисторе. - Радио, 2005, № 2. с 30. 31

2    Кузьминов А. Метод фоторепродуцирования для изготовления фотошаблона печатных плат в домашних условиях. - Технологии в электронной промышленности, 2010 №5-7

3    Кузьминов А. Изготовление устройств на печатных платах с высоким разрешением в домашних условиях. - Технологии в электронной промышленности, 2010. № 8-10

 

Автор: А.Кузьминов, г. Москва

Схема. Модуль мощного стабилизатора напряжения на полевом транзисторе


      На основе мощных переключательных полевых транзисторов [1] можно построить линейные стабилизаторы напряжения. Подобное устройство было ранее описано в [2]. Немного изменив схему, как показано на рис. 1, можно улучшить параметры описанного стабилизатора, существенно (в 5…6 раз) уменьшив падение напряжения на регулирующем элементе, в качестве которого применен транзистор IRL2505L. Он имеет в открытом состоянии весьма малое сопротивление канала (0,008 Ом), обеспечивает ток до 74 А при температуре корпуса 100 °С, отличается высокой крутизной характеристики (59 А/В). Для управления им требуется небольшое напряжение на затворе (2,5…3 В). Предельное напряжение сток—исток — 55 В, затвор—исток — ±16 В, мощность, рассеиваемая транзистором, может достигать 200 Вт.

      Подобно современным микросхемным стабилизаторам, предлагаемый модуль имеет три вывода: 1 — вход, 2 — общий, 3 — выход. В качестве управляющего элемента применена микросхема DA1 — параллельный стабилизатор напряжения КР142ЕН19 (TL431). Транзистор VT1 выполняет функцию согласующего элемента, а стабилитрон VD1 обеспечивает стабильное напряжение для его базовой цепи. Значение выходного напряжения можно рассчитать по формуле
Uвых=2,5(1+R5/R6).
      Выходное напряжение регулируют, изменяя сопротивление резистора R6. Конденсаторы обеспечивают устойчивую работу стабилизатора. Устройство работает следующим образом. При увеличении выходного напряжения повышается напряжение на управляющем входе микросхемы DA1, в результате чего ток через нее увеличивается. Напряжение на резисторе R2 увеличивается, а ток через транзистор VT1 уменьшается. Соответственно напряжение затвор—исток транзистора VT2 уменьшается, вследствие чего сопротивление его канала возрастает. Поэтому выходное напряжение уменьшается, восстанавливаясь до прежнего значения.

      Регулирующий полевой транзистор VT2 включен в минусовый провод, а управляющее напряжение поступает на него с плюсового провода. Благодаря такому решению стабилизатор способен обеспечить ток нагрузки 20…30 А, при этом входное напряжение может быть всего на 0,5 В больше выходного. Если предполагается использовать модуль при входном напряжении более 16 В, то транзистор VT2 необходимо защитить от пробоя с помощью маломощного стабилитрона с напряжением стабилизации 10…12 В, катод которого подключают к затвору, анод — к истоку.

      В устройстве можно применить любой n-канальный полевой транзистор (VT2), подходящий по току и напряжению из списка, приведенного в [1], желательно выделенный желтым цветом. VT1 — КТ502, КТ3108, КТ361 с любыми буквенными индексами. Микросхему КР142ЕН19 (DA1) допустимо заменить на TL431. Конденсаторы — К10-17, резисторы — Р1-4, МЛТ, С2-33.
      Схема подключения модуля стабилизатора приведена на рис. 2.

      При большом токе нагрузки на транзисторе VT2 рассеивается большая мощность, поэтому необходим эффективный теплоотвод. Транзисторы этой серии с буквенными индексами L и S устанавливают на теплоотвод с помощью пайки. В авторском варианте в качестве теплоотвода и одновременно несущей конструкции применен корпус от неисправного транзистора КТ912, КП904. Этот корпус разобран, удалена его верхняя часть так, что осталась позолоченная керамическая шайба с кристаллом транзистора и выводами-стойками. Кристалл аккуратно удален, покрытие облужено, после чего к нему припаян транзистор VT2. К покрытию шайбы и выводам транзистора VT2 припаяна печатная плата из двусторонне фольгированного стеклотекстолита (рис. 3). Фольга на обратной стороне платы целиком сохранена и соединена с металлизацией шайбы (стоком транзистора VT2) После налаживания и проверки модуля стабилизатора плата приклеена к корпусу. Выводы 1 и 2 — площадки на печатной плате, а вывод 3 (сток транзистора VT2) — металлический вывод-стойка на керамической шайбе.

      Если применить детали для поверхностного монтажа: микросхему TL431CD (рис. 4), транзистор VT1 КТ3129А-9, транзистор VT2 IRLR2905S, резисторы Р1-12, то часть их можно разместить на печатной плате, а другую часть — навесным монтажом непосредственно на керамической шайбе корпуса. Внешний вид собранного устройства показан на рис. 5. Модуль стабилизатора напряжения не имеет гальванической связи с основанием (винтом) корпуса, поэтому его можно непосредственно разместить на теплоотводе, даже если он соединен с общим проводом питаемого устройства.

      Также допустимо использовать корпус от неисправных транзисторов серий КТ825, КТ827. В таком корпусе кристаллы транзистора прикреплены не к керамической, а к металлической шайбе. Именно к ней, предварительно удалив кристалл, припаивают транзистор VT2. Остальные детали устанавливают аналогично. Сток транзистора VT2 в этом случае соединен с корпусом, поэтому модуль можно непосредственно установить на теплоотвод, соединенный с минусовым проводом питания нагрузки.
      Налаживание устройства сводится к установке требуемого выходного напряжения подстроечным резистором R6 и к проверке отсутствия самовозбуждения во всем интервале выходного тока. Если оно возникнет, его нужно устранить увеличением емкости конденсаторов.

ЛИТЕРАТУРА
1. Мощные полевые переключательные транзисторы фирмы International Rectifier. — Радио, 2001, № 5, с. 45.
2. Нечеев И. Стабилизатор напряжения на мощном полевом транзисторе. — Радио, 2003, № 8. с. 53, 54.

И. НЕЧАЕВ, г. Курск
«Радио» №2 2005г.

Похожие статьи:
ПОВЫШАЮЩИЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
Импульсный источник питания на однопереходном транзисторе
Регулируемый стабилизатор напряжения с ограничением по току
Мощный стабилизатор двухполярного напряжения для УМЗЧ

Post Views: 6 609

Мощный стабилизатор напряжения

 

Мощный стабилизатор напряжения, схема и  описние сборки. Стабилизатор обеспечивает максимальный ток нагрузки до 10 А при напряжении пульсаций менее 1 мВ, выходное сопротивление 0,01 Ом.


Стабилизатор напряжения (рис. 1) собран по схеме моста в выходной цепи, образованного резисторами R4, R5, стабилитронами VD1, VD2 и светодиодом HL1. В диагональ моста включен эмиттерный переход транзистора VT4, управляющего регулирующим составным транзистором VT1...VT3. Составной транзистор включен по схеме с общим эмиттером.

Более высокое по сравнению с эмиттерным повторителем выходное сопротивление оконечного каскада компенсируется в этой схеме тем, что выходной каскад имеет высокий коэффициент усиления по напряжению, последнее заметно повышает коэффициент усиления схемы стабилизатора. Так как напряжение на базе управляющего транзистора VT4 по отношению к плюсовому проводу оказывается стабилизированным, то изменения выходного напряжения передаются на эмиттерный переход этого транзистора без ослабления делителем.

Нажмите на рисунок для просмотра.

Максимальный ток нагрузки задается резистором R4. Ток базы транзистора VT3 не может превысить значения тока, текущего через резистор R4. Следовательно, подбором этого резистора можно установить требуемый ток защиты. Стабилизатор напряжения защищен и от коротких замыканий в цепи нагрузки. Ток короткого замыкания зависит от значения запускающего тока, текущего через резистор R3. Этот резистор подбирается при минимальном сопротивлении нагрузки по устойчивому запуску стабилизатора.

Такая система обеспечивает надежный запуск стабилизатора и практически не ухудшает параметров, поскольку в рабочем режиме ток через резистор R3 замыкается через малое сопротивление открытого стабилитрона VD2. Минимальное падение на транзисторах VT1, VT2 равно напряжению насыщения коллектор-эмиттер этого транзистора (0,1...0,5 В в зависимости от тока нагрузки). Напряжение на выходе стабилизатора определяется суммарным напряжением стабилизации стабилитронов VD1 и VD2 за минусом падения напряжения на эмиттерном переходе транзистора VT4. Температурные изменения падения напряжения на светодиоде HL1 и стабилитроне VD1 компенсируются с температурным изменением падения напряжения на эмиттерном переходе транзистора VT4.

Чтобы снизить зависимость порога срабатывания защиты и тока короткого замыкания от температуры, радиатор регулирующих транзисторов выбирают с запасом по эффективной площади теплового рассеивания не менее 1000 см2 .

Рекомендуем посмотреть:

Стабилизатор для блока питания

Схема устройства защиты от перенапряжения


Стабилизаторы с низким остаточным напряжением

Обозначение Прототип Функциональное назначение Тип корпуса PDF
IL5250G LD1117AS50TR Стабилизатор напряжения положительной полярности с фиксированным напряжением 5,0 В; 1,0 А

4302Ю.4-А

IZ1734-33 SSAIC1734-33 КМОП стабилизатор напряжения 3,3 В/300 мА с низким остаточным напряжением, низким током потребления

Б/к

IZ1734-50 SSAIC1734-50 КМОП стабилизатор напряжения 5 В/300 мА с низким остаточным напряжением, низким током потребления

Б/к

IZ1735-33 SSAIC1735-33 Стабилизатор напряжения 3,3 В/500 мА с низким остаточным напряжением, низким током потребления

Б/к

IZ1735-50 SSAIC1735-50 Стабилизатор напряжения 5 В/500 мА с низким остаточным напряжением, низким током потребления

Б/к

ILE4276V(G/S) TLE4276GV/SV Мощный стабилизатор напряжения с низким остаточным напряжением, низким током потребления:(2,5. ..20) В/400 mА 1501.5-4 1501Ю-А
ILE4276V85(G/S) TLE4276V85 Мощный стабилизатор напряжения с низким остаточным напряжением, низким током потребления:8,5 В/400 mА 1501.5-4 1501Ю-А
ILE4276V10(G/S) TLE4276V10 Мощный стабилизатор напряжения с низким остаточным напряжением, низким током потребления: 10 В/400 mА 1501.5-4 1501Ю-А
ILE4274V85 TLE4274V85 Мощный стабилизатор напряжения с низким остаточным напряжением, низким током потребления 8,5 В/400 mA ТО-220АВ/3
ILE4274V10 TLE4274V10 Мощный стабилизатор напряжения с низким остаточным напряжением, низким током потребления 10 В/400 mA ТО-220АВ/3
ILE4260 TLE4260 Стабилизатор напряжения 5 В/500 мА с низким остаточным напряжением 1501.5-4
ILE4260-2 TLE4260 Стабилизатор напряжения 5 В/500 мА с низким остаточным напряжением 1501. 5-4
ILE4250G/S TLE4250G Повторитель (2-36 В)/50 мА

1501.5-4, 1501Ю-А

ILE4264G TLE4264G Маломощный стабилизатор напряжения с низким 5 В/100 мА остаточным напряжением

4302Ю.4-А

IZE4264-2 TLE4264-2G Маломощный стабилизатор напряжения с низким 5 В/100 мА остаточным напряжением

Б/к

ILE4266G TLE4266G Маломощный стабилизатор напряжения 5 В/100 мА с низким остаточным напряжением

4302Ю.4-А

IZE4266-2 TLE4266-2G Маломощный стабилизатор напряжения 5 В/100 мА с низким остаточным напряжением

Б/к

ILE4267G TLE4267G Мощный стабилизатор напряжения 5 В/400 мА с низким остаточным напряжением

1505Ю.7-В

ILE4267S TLE4267S Мощный стабилизатор напряжения 5 В/400 мА с низким остаточным напряжением

1505Ю. 7-С

ILE4268GDW TLE4268G Маломощный стабилизатор напряжения 5 В/150 мА с низким остаточным напряжением со встроенным супервизором и сторожевым таймером

4321.20-В

ILE4270G TLE4270G Мощный стабилизатор напряжения 5 В/550 мА с низким остаточным напряжением

1501Ю.5-А

ILE4270S TLE4270S Мощный стабилизатор напряжения 5 В/550 мА с низким остаточным напряжением

1501.5-4

ILE4270Q TLE4270S Мощный стабилизатор напряжения 5 В/550 мА с низким остаточным напряжением

1501.5-3

IL4270 Мощный стабилизатор напряжения 5 В/550 мА с низким остаточным напряжением(без выхода сброса «RESET”) TO-220AB/3
ILE4271G TLE4271G Мощный стабилизатор напряжения 5 В/550 мА с низким остаточным напряжением со встроенным сторожевым таймером

1505Ю. 7-В

ILE4271S TLE4271S Мощный стабилизатор напряжения 5 В/550 мА с низким остаточным напряжением со встроенным сторожевым таймером

1505Ю.7-С

ILE4274V50 TLE4274V50 Мощный стабилизатор напряжения (5 В/8,5 В/10 В)/400 мА с низким остаточным напряжением, низким током потребления TO-220AB/3
ILE4275G/S TLE4275G Мощный стабилизатор напряжения 5 В/400 мА с низким остаточным напряжением, низким током потребления

1501.5-4, 1501Ю-А

ILE4276V50(G/S) TLE4276V50 Мощный стабилизатор напряжения с низким остаточным напряжением, низким током потребления: 5 В/400 mА

1501.5-4, 1501Ю-А

IZE4278 TLE4278 Маломощный стабилизатор напряжения 5 В/150 мА с низким остаточным напряжением со встроенным сторожевым таймером, низким током потребления

Б/к

IL5212G LD1117AS12TR Стабилизатор напряжения положительной полярности с фиксированным напряжением 1,2 В; 1,0 А

4302Ю. 4-А

IL5218G LD1117AS18TR Стабилизатор напряжения положительной полярности с фиксированным напряжением 1,8 В; 1,0 А

4302Ю.4-А

IL5225G LD1117AS25TR Стабилизатор напряжения положительной полярности с фиксированным напряжением 2,5 В; 1,0 А

4302Ю.4-А

IL5228G LD1117AS28TR Стабилизатор напряжения положительной полярности с фиксированным напряжением 2,85 В; 1,0 А

4302Ю.4-А

IL5230G LD1117AS30TR Стабилизатор напряжения положительной полярности с фиксированным напряжением 3,0 В; 1,0 А

4302Ю.4-А

IL5233G LD1117AS33TR Стабилизатор напряжения положительной полярности с фиксированным напряжением 3,3 В; 1,0 А

4302Ю.4-А

IZE42794 TLE42794 Предназначена для создания постоянного напряжения значением 5 В с остаточным напряжением не более 0,5 В при токе нагрузки 100 мА; точность выходного напряжения ± 4 % в диапазоне входных напряжений до 45 В; - обеспечение максимального тока нагрузки до минус 150 мА;

б/к

IZE4263 TLE4263 Предназначена для создания постоянного напряжения зна-чением 5 В с остаточным напряжением не более 0,5 В при токе нагрузки 150 мА; точность выходного напряжения не более ± 2 % в диапазоне выходных токов от минус 5 мА до минус 150 мА и входных напряжений от 6 до 28 В; обеспечение максимального тока нагрузки до минус 200 мА;

б/к

Мощные стабилизаторы напряжения (большой мощности)

Мощные стабилизаторы напряжения (большой мощности)

Для тех жителей нашей страны, кто испытывает огромные трудности из-за плохого напряжения от российских электросетей имеется удобный метод, приобрести мощные стабилизаторы напряжения (большой мощности) и включить их для только здания, дачи либо жилплощади. Достоинства предоставленного выбора заключаются в хорошей охране полностью всей техники дома и освещения в жилище, в каком месте никак не нужны будут доп. тройники и разные удлинители. Если домашние бытовые приборы на 1-ый взгляд отлично действуют, это никак не значит, что они не имеют необходимость в стабилизаторе напряжения 220В. 

Возможные ГОСТом нормы составляют на территории РФ 220±10%. Таким образом, лишь если напряжение в сети располагаться в спектре от 198В по 242В, недостает серьезной необходимости заказывать мощный регулятор напряжения, да и просто тут совсем не нужен. Отклонение сетевого напряжения от его рационального значения, приводит к скорому износу рабочих устройств, что воздействует со временем, и становится предпосылкой неисправности техники для здания и дачи. К примеру, гальванический двигатель морозильника, который работает при неизменных перепадах, серьезно перегревается и действует в неполную мощность. Трёхфазные и однофазные мощные стабилизаторы напряжения (большой мощности) разрешено применять в том числе и при совсем низких отриц. температурах. Мы рекомендуем приобрести релейные, электронные, гибридные и механические стабилизаторы 220В (380В), которые располагают собственными неповторимыми положительными чертами работы в разных критериях.

Обыкновенные стабилизаторы напряжения 220В для семейных устройств мощностью в 500, 1000, 1500, 2000, 3000 ВА включаются к технике совсем легко, при поддержки вилки в розетку, которая располагает на самом стабилизаторе, а сам регулятор подсоединяем в сеть. Наиболее мощные стабилизаторы напряжения для здания 220В и380В мощностью 5000, 6000, 8000, 9000, 10000, 12000, 15000, 20000 и 30000 ВА инсталлируются лишь через клеммные колодки и их лучше только доверить искусным экспертам, если вы ничего не понимаете во включении. Приобрести мощные стабилизаторы напряжения (большой мощности) можно через наш сайт, или позвонив по телефону. Не забываете будто такая семейная и промышленная техника для здания как насосные станции, морозильники, газовые котлы, кондиционеры, насосы, стиральные машины, автоматические ворота очень чувствительны к появлению, так как в их системах есть электродвигатель. Нужно это непременно учесть, прежде чем приобрести мощный стабилизатор напряжения (большой мощности) 220В (380В) для здания, дачи и производства.

Купить мощные стабилизаторы напряжения (большой мощности) в Ростове-на-Дону, Краснодаре по хорошей цене очень     просто:сделайте       заказ        по    телефону или электронной почте

Схема мощного стабилизатора напряжения 220в своими руками. Стабилизатор напряжения — как все сделать своими руками. Видео. Преимущества и недостатки перед фабричными

Подборка радиолюбительских схем и конструкций стабилизаторов напряжения собранных своими руками. Часть схем рассматривают стабилизатор без защиты от КЗ в нагрузке, в других заложена возможность плавного регулирования напряжения от 0 до 20 Вольт. Ну а отличительной чертой отдельных схемы является возможность защиты от короткого замыкания в нагрузке.


5 очень простых схем в основном собранных на транзисторах, одна из них, с защитой от КЗ

Очень часто бывает когда для питания вашей новодельной электронной самоделки требуется стабильное напряжение, которое не меняется от нагрузки, например, 5 Вольт или 12 Вольт для питания автомагнитолы. И чтобы сильно не заморачиваться с конструированием самодельного блока питания на транзисторах, используются так называемые микросхемы стабилизаторы напряжения. На выходе такого элемента мы получим напряжение, на которое спроектирован этот прибор

Многие радиолюбители уже неоднократно собирали схемы стабилизаторов напряжения на специализированных микросхемах серий 78хх, 78Мхх, 78Lxx. Например, на микросхеме KIA7805 можно собрать самодельную схему рассчитаную на выходное напряжение +5 В и максимальный ток нагрузки 1 А. Но мало кто знает, что имеются узко специализированный микросхемы серии 78Rxx, которые сочитают в себе стабилизаторы напряжения положительной полярности с малым напряжением насыщения, которое не превышает 0, 5 В при токе нагрузки 1 А. Одну из этих схем мы и рассмотрим более подробно.

Регулируемый трехвыводной стабилизатор положительного напряжения LM317 обеспечивает ток нагрузки 100 мА в диапазоне выходного напряжения от 1. 2 до 37 В. Стабилизатор очень удобен в применении и требуют только два внешних резистора для обеспечения выходного напряжения. Кроме того, нестабильность по напряжению и току нагрузки у стабилизатора LM317L имеет лучшие показателями, чем у традиционных стабилизаторов с фиксированным значением выходного напряжения.

Для стабилизации напряжения постоянного тока достаточно большой мощности в числе других применяются компенсационные стабилизаторы непрерывного действия. Принцип действия такого стабилизатора заключается в поддержании выходного напряжения на заданном уровне за счет изменения падения напряжения на регулирующем элементе. При этом величина управляющего сигнала, поступающего на регулирующий элемент, зависит от разницы между заданным и выходным напряжениями стабилизатора.

При стационарной эксплуатации аппаратуры, CD и аудиоплейеров возникают проблемы с БП. Большинство блоков питания, выпускаемых серийно отечественным производителем, (если быть точным) практически все не могут удовлетворить потребителя, так как содержат упрощенные схемы. Если говорить об импортных китайских и им подобных блоках питания, то они, вообще, представляют интересный набор деталей "купи и выброси". Эти и многие другие проблемы заставляют радиолюбителейно изготовлять блоки питания. Но и на этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Данная радиолюбительская разработка представлена как вариант нетрадиционного включения операционного усиителя, ранее опубликованного и вскоре забытого

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша конструкция работает от напряженияпять вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

Стабилизатор напряжения на 220 вольт


В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

Идея

Встретил в интернете рекламу на сайте ООО "Прибор", г. Челябинск:
Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082). В качестве ключей используются мощные быстродействующие реле.
Приведены картинки переключений (слева "Селен", справа - с обычными характеристиками)


Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке "Украина" тоже было безразрывное переключение напряжения – там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением №2356082 я не смог.

Мне удалось найти статью "Типы стабилизаторов напряжения", где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги – контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.


На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

Принципиальная схема



Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10 .
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1 . Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 – усилители для реле.
Реле Р1 и Р2 – основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт, включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный – низкое, зеленый – норма, синий – высокое.

Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676 .
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on , R2off , R1on и R1off .
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

Детали и конструкция

При сборке использован трансформатор ТПП 320-220-50 200 Вт. Обмотки его соединены на 240 Вольт, что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1 , а вспомогательные LIMING JZC - 22F .
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).



Прибор повешен на стене и закрыт кожухом из жести


Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР"а через лампу накаливания мощностью 100 – 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки . Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC - 22F).

Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле – вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

Использованы источники

1. на сайте “Энергосбережение в Украине”
2. Официальный web-сайт предприятия ООО "Прибор", г. Челябинск
3. Даташиты на детали

Файлы

Схема, чертеж печатной платы и программа с прошивкой
▼ 🕗 12/08/12 ⚖️ 211,09 Kb ⇣ 165 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!

Стабилизатор представ­ляет собой сетевой авто­трансформатор, отводы обмотки которого пере­ключаются автоматичес­ки в зависимости от величины напряжения в электросети.

Стабилизатор позво­ляет поддерживать вы­ходное напряжение на уровне 220V при измене­нии входного от 180 до 270 V. Точность стабили­зации 10V.

Принципиальную схему можно разделить на слаботоковую схему (или схему управления) и сильнотоковую (или схе­му автотрансформатора).

Схема управления пока­зана на рисунке 1. Роль измерителя напряжения возложена на поликомпараторную микросхему с линейной индикацией напряжения, — А1 (LM3914).

Сетевое напряжение поступает на первичную обмотку маломощного трансформатора Т1. У этого трансформатора есть две вторичные обмотки, по 12V на каждой, имеющие один общий вывод (или одна обмотка на 24V с отво­дом от середины).

Выпрямитель на диоде VD1 служит для получения питающего напряжения. Напряже­ние с конденсатора С1 поступает на цепь пита­ния микросхемы А1 и светодиодов оптопар Н1.1-Н9.1. А так же, он служит для получения образцовых стабильных напряжений мини­мальной и максимальной отметки шкалы. Для их получения используется параметрический стабилизатор на УЗ и Р1. Предельные значения измерения устанавливаются подстроечными резисторами R2 и R3 (резистором R2 — верхнее значение, резистором RЗ -нижнее).

Измеряемое напряжение берется с другой вторичной обмотки трансформатора Т1. Оно выпрямляется диодом VD2 и поступает на резистор R5. Именно по уровню постоянного напряжения на резисторе R5 производится оценка степени отклонения сетевого напря­жения от номинального значения. В процессе налаживания резистор R5 пред­варительно устанавливают в среднее положе­ние, а резистор RЗ в нижнее по схеме.

Затем, на первичную обмотку Т1 от автотрансфор­матора типа ЛАТР подают повышенное напряжение (около 270V) и резистором R2 выводят шкалу микросхемы на значение, при котором горит светодиод, подключенный к выводу 11 (временно вместо светодиодов оптопар можно подключить обычные свето-диоды). Затем входное переменное напря­жение уменьшают до 190V и резистором RЗ выводят шкалу на значение когда горит свето­диод, подключенный к выводу 18 А1.

Если вышеуказанные настройки сделать не удается, нужно подстроить немного R5 и повторить их снова. Так, путем последова­тельных приближений добиваются результата, когда изменению входного напряжения на 10V соответствует переключение выходов микро­схемы А1.

Всего получается девять пороговых значе­ний, — 270V, 260V, 250V, 240V, 230V, 220V, 210V, 200V, 190V.

Принципиальная схема автотрансформатора показана на рисунке 2. В его основе лежит переделанный трансформатор типа ЛАТР. Корпус трансформатора разбирают и удаляют ползунковый контакт, который служит для переключения отводов. Затем по результатам предварительных изме­рений напряжений от отводов делают выводы (от 180 до 260V с шагом в 10V), которые, в дальнейшем переключают при помощи симисторных ключей VS1-VS9, управляемых системой управления посредством оптопар Н1-Н9. Оптопары подключены так, что при снижении показания микросхемы А1 на одно деление (на 10V) происходит переключение на повышающий (на очередные 10V) отвод автотрансфор­матора. И наоборот, — увеличение пока­заний микросхемы А1 приводит к пере­ключению на понижающий отвод авто­трансформатора. Подбором сопротивления резистора R4 (рис. 1) устанавливают ток через светодиоды оптопар, при котором симис-торные ключи переключаются уверенно. Схема на транзисторах VТ1 и VT2 (рис. 1) служит для задержки включения нагрузки автотрансформатора на время, необходимое на завершение переход­ных процессов в схеме после включе­ния. Эта схема задерживает подключе­ние светодиодов оптопар к питанию.

Вместо микросхемы LM3914 нельзя использовать аналогичные микросхемы LM3915 или LM3916, из-за того, что они работают по логарифмическому закону, а здесь нужен линейный, как у LM3914. Трансформатор Т1 — малогабаритный китайский трансформатор типа TLG, на первичное напряжение 220V и два вто­ричных по 12V (12-0-12V) и ток 300mА. Можно использовать и другой аналогич­ный трансформатор.

Трансформатор Т2 можно сделать из ЛАТРа, как описано выше, или намотать его самостоятельно.

Содержание:

В электрических цепях постоянно возникает необходимость в стабилизации тех или иных параметров. С этой целью применяются специальные схемы управления и слежения за ними. Точность стабилизирующих действий зависит от так называемого эталона, с которым и сравнивается конкретный параметр, например, напряжение. То есть, когда значение параметра будет ниже эталона, схема стабилизатора напряжения включит управление и отдаст команду на его увеличение. В случае необходимости выполняется обратное действие - на уменьшение.

Данный принцип работы лежит в основе автоматического управления всеми известными устройствами и системами. Точно так же действуют и стабилизаторы напряжения, несмотря на разнообразие схем и элементов, используемых для их создания.

Схема стабилизатора напряжения 220в своими руками

При идеальной работе электрических сетей, значение напряжения должно изменяться не более чем на 10% от номинала в сторону увеличения или уменьшения. Однако на практике перепады напряжения достигают гораздо больших значений, что крайне отрицательно сказывается на электрооборудовании, вплоть до его выхода из строя.

Защититься от подобных неприятностей поможет специальное стабилизирующее оборудование. Однако из-за высокой стоимости, его применение в бытовых условиях во многих случаях экономически невыгодно. Наилучшим выходом из положения становится самодельный стабилизатор напряжения 220в, схема которого достаточно простая и недорогая.

За основу можно взять промышленную конструкцию, чтобы выяснить, из каких деталей она состоит. В состав каждого стабилизатора входят трансформатор, резисторы, конденсаторы, соединительные и подключающие кабели. Самым простым считается стабилизатор переменного напряжения, схема которого действует по принципу реостата, повышая или понижая сопротивление в соответствии с силой тока. В современных моделях дополнительно присутствует множество других функций, обеспечивающих защиту бытовой техники от скачков напряжения.

Среди самодельных конструкций наиболее эффективными считаются симисторные устройства, поэтому в качестве примера будет рассматриваться именно эта модель. Выравнивание тока этим прибором будет возможно при входном напряжении в диапазоне 130-270 вольт. Перед началом сборки необходимо приобрести определенный набор элементов и комплектующих. Он состоит из блока питания, выпрямителя, контроллера, компаратора, усилителей, светодиодов, автотрансформатора, узла задержки включения нагрузки, оптронных ключей, выключателя-предохранителя. Основными рабочими инструментами служат пинцет и паяльник.

Для сборки стабилизатора на 220 вольт в первую очередь потребуется печатная плата размером 11,5х9,0 см, которую нужно заранее подготовить. В качестве материала рекомендуется использовать фольгированный стеклотекстолит. Схема размещения деталей распечатывается на принтере и переносится на плату с помощью утюга.

Трансформаторы для схемы можно взять уже готовые или собрать самостоятельно. Готовые трансформаторы должны иметь марку ТПК-2-2 12В и соединяться последовательно между собой. Для создания первого трансформатора своими руками потребуется магнитопровод сечением 1,87 см2 и 3 кабеля ПЭВ-2. Первый кабель применяется в одной обмотке. Его диаметр составит 0,064 мм, а количество витков - 8669. Оставшиеся провода используются в других обмотках. Их диаметр будет уже 0,185 мм, а число витков составит 522.

Второй трансформатор изготавливается на основе тороидального магнитопровода. Его обмотка выполняется из такого же провода, как и в первом случае, но количество витков будет другим и составит 455. Во втором устройстве делаются отводы в количестве семи. Первые три изготавливаются из провода диаметром 3 мм, а остальные из шин, сечением 18 мм2. За счет этого предотвращается нагрев трансформатора во время работы.

Все остальные комплектующие рекомендуется приобретать в готовом виде, в специализированных магазинах. Основой сборки является принципиальная схема стабилизатора напряжения, заводского изготовления. Вначале устанавливается микросхема, выполняющая функцию контроллера для теплоотвода. Для ее изготовления используется алюминиевая пластина площадью свыше 15 см2. На эту же плату производится монтаж симисторов. Теплоотвод, предназначенный для монтажа, должен быть с охлаждающей поверхностью. После этого сюда же устанавливаются светодиоды в соответствии со схемой или со стороны печатных проводников. Собранная таким образом конструкция, не может сравниваться с заводскими моделями ни по надежности, ни по качеству работы. Такие стабилизаторы используются с бытовыми приборами, не требующими точных параметров тока и напряжения.

Схемы стабилизаторов напряжения на транзисторах

Качественные трансформаторы, применяемые в электрической цепи, эффективно справляются даже с большими помехами. Они надежно защищают бытовую технику и оборудование, установленные в доме. Настроенная система фильтрации позволяет бороться с любыми скачками напряжения. За счет контроля над напряжением происходят изменения величины тока. Предельная частота на входе увеличивается, а на выходе - уменьшается. Таким образом, ток в цепи преобразуется в течение двух этапов.

В начале на входе задействуют транзистор с фильтром. Далее происходит включение в работу . Для завершения преобразования тока в схеме применяется усилитель, чаще всего устанавливаемый между резисторами. За счет этого в устройстве поддерживается необходимый уровень температуры.

Схема выпрямления действует следующим образом. Выпрямление переменного напряжения с вторичной обмотки трансформатора происходит с помощью диодного моста (VD1-VD4). Сглаживание напряжения выполняет конденсатор С1, после чего оно попадает в систему компенсационного стабилизатора. Действие резистора R1 задает стабилизирующий ток на стабилитроне VD5. Резистор R2 является нагрузочным. При участии конденсаторов С2 и С3 происходит фильтрация питающего напряжения.

Значение выходного напряжения стабилизатора будет зависеть от элементов VD5 и R1 для выбора которых существует специальная таблица. VT1 устанавливается на радиаторе, у которого площадь охлаждающей поверхности должна быть не менее 50 см2. Отечественный транзистор КТ829А может быть заменен зарубежным аналогом BDX53 от компании Моторола. Остальные элементы имеют маркировку: конденсаторы - К50-35, резисторы - МЛТ-0,5.

Схема линейного стабилизатора напряжения 12в

В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому - КРЕН142.

Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.

Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой. Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло. Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю. В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.

Регулируемый стабилизатор напряжения схема

Нередко возникают ситуации, когда напряжение, выдаваемое стабилизатором, необходимо отрегулировать. На рисунке представлена простая схема регулируемого стабилизатора напряжения и тока, позволяющая не только стабилизировать, но и регулировать напряжение. Ее можно легко собрать даже при наличии лишь первоначальных познаний в электронике. Например, входное напряжение составляет 50В, а на выходе получается любое значение, в пределах 27 вольт.

В качестве основной детали стабилизатора используется полевой транзистор IRLZ24/32/44 и другие аналогичные модели. Данные транзисторы оборудуются тремя выводами - стоком, истоком и затвором. Структура каждого из них состоит из металла-диэлектрика (диоксида кремния) - полупроводника. В корпусе расположена микросхема-стабилизатор TL431, с помощью которой и настраивается выходное электрическое напряжение. Сам транзистор может оставаться на радиаторе и соединяться с платой проводниками.

Данная схема может работать с входным напряжением в диапазоне от 6 до 50В. Выходное напряжение получается в пределах от 3 до 27В и может быть отрегулировано с помощью подстрочного резистора. В зависимости от конструкции радиатора, выходной ток достигает 10А. Емкость сглаживающих конденсаторов С1 и С2 составляет 10-22 мкФ, а С3 - 4,7 мкФ. Схема сможет работать и без них, однако качество стабилизации будет снижено. Электролитические конденсаторы на входе и выходе рассчитываются примерно на 50В. Мощность, рассеиваемая таким стабилизатором, не превышает 50 Вт.

Схема симисторного стабилизатора напряжения 220в

Симисторные стабилизаторы работают по аналогии с релейными устройствами. Существенным отличием является наличие узла, переключающего обмотки трансформатора. Вместо реле используются мощные симисторы, работающие под управлением контроллеров.

Управление обмотками с помощью симисторов - бесконтактное, поэтому при переключениях нет характерных щелчков. Для намотки автотрансформатора используется медный провод. Симисторные стабилизаторы могут работать при пониженном напряжении от 90 вольт и высоком - до 300 вольт. Регулировка напряжения осуществляется с точностью до 2%, отчего лампы совершенно не моргают. Однако во время переключений возникает ЭДС самоиндукции, как и в релейных устройствах.

Симисторные ключи обладают повышенной чувствительностью к перегрузкам, в связи с чем они должны иметь запас по мощности. Данный тип стабилизаторов отличается очень сложным температурным режимом. Поэтому установка симисторов осуществляется на радиаторы с принудительным вентиляторным охлаждением. Точно так же работает схема тиристорного стабилизатора напряжения 220В своими руками.

Существуют устройства с повышенной точностью, работающие по двухступенчатой системе. На первой ступени выполняется грубая регулировка выходного напряжения, а на второй ступени этот процесс осуществляется значительно точнее. Таким образом, управление двумя ступенями выполняется с помощью одного контроллера, что фактически означает наличие двух стабилизаторов в едином корпусе. Обе ступени имеют обмотки, намотанные в общем трансформаторе. При наличии 12 ключей, эти две ступени позволяют регулировать выходное напряжение в 36 уровнях, чем и обеспечивается его высокая точность.

Стабилизатор напряжения с защитой по току схема

Данные устройства обеспечивают питание преимущественно для низковольтных устройств. Такой стабилизатор тока и напряжения схема отличается простотой конструкции, доступной элементной базой, возможностью плавных регулировок не только выходного напряжения, но и тока, при котором срабатывает защита.
Основой схемы является параллельный стабилизатор или регулируемый стабилитрон, а также с высокой мощностью. С помощью так называемого измерительного резистора контролируется ток, потребляемый нагрузкой.

Иногда на выходе стабилизатора возникает короткое замыкание или ток нагрузки превышает установленное значение. В этом случае на резисторе R2 падает напряжение, а транзистор VT2 открывается. Происходит и одновременное открытие транзистора VT3, шунтирующего источник опорного напряжения. В результате, значение выходного напряжения снижается практически до нулевого уровня, и регулирующий транзистор оказывается защищенным от перегрузок по току. Для того чтобы установить точный порог срабатывания токовой защиты, применяется подстроечный резистор R3, включаемый параллельно с резистором R2. Красный цвет светодиода LED1 указывает на срабатывание защиты, а зеленый LED2 - на выходное напряжение.

После правильно выполненной сборки схемы мощных стабилизаторов напряжения сразу же включаются в работу, достаточно всего лишь выставить необходимое значение выходного напряжения. После загрузки устройства реостатом выставляется ток, при котором срабатывает защита. Если защита должна срабатывать при меньшем токе, для этого необходимо увеличить номинал резистора R2. Например, при R2 равном 0,1 Ом, минимальный ток срабатывания защиты будет составлять около 8А. Если же нужно, наоборот, увеличить ток нагрузки, следует параллельно включить два и более транзисторов, в эмиттерах которых имеются выравнивающие резисторы.

Схема релейного стабилизатора напряжения 220

С помощью релейного стабилизатора обеспечивается надежная защита приборов и других электронных устройств, для которых стандартный уровень напряжения составляет 220В. Данный стабилизатор напряжения 220В, схема которого всем известна. Пользуется широкой популярностью, благодаря простоте своей конструкции.

Для того чтобы правильно эксплуатировать это устройство, необходимо изучить его устройство и принцип действия. Каждый релейный стабилизатор состоит из автоматического трансформатора и электронной схемы, управляющей его работой. Кроме того, имеется реле, помещенное в надежный корпус. Данный прибор относится к категории вольтодобавочных, то есть с его помощью лишь добавляется ток в случае низкого напряжения.

Добавление необходимого количества вольт осуществляется путем подключения обмотки трансформатора. Обычно для работы используется 4 обмотки. В случае слишком высокого тока в электрической сети, трансформатор автоматически уменьшает напряжение до нужного значения. Конструкция может быть дополнена и другими элементами, например, дисплеем.

Таким образом, релейный стабилизатор напряжения имеет очень простой принцип работы. Ток измеряется электронной схемой, затем, после получения результатов, он сравнивается с выходным током. Полученная разница в напряжении регулируется самостоятельно путем подбора необходимой обмотки. Далее, подключается реле и напряжение выходит на необходимый уровень.

Стабилизатор напряжения и тока на LM2576

Напряжение домашней электросети часто бывает пониженным, никогда не достигая нормальных 220 В. В такой ситуации и холодильник плохо запускается, и освещение слабое, и вода в электрочайнике долгое время не закипает. Мощность устаревшего стабилизатора напряжения, предназначенного для питания черно-белого (лампового) телевизора, обычно недостаточна для всех других бытовых приборов, да и напряжение в сети зачастую падает ниже допустимого для такого стабилизатора.

Известен простой способ повысить напряжение в сети, используя трансформатор мощностью значительно меньше мощности нагрузки. Первичную обмотку трансформатора включают непосредственно в сеть, а нагрузку соединив последовательно со вторичной (понижающей) обмоткой трансформатора. При соответствующей фазировке напряжение на нагрузке будет равно сумме сетевого и снимаемого с трансформатора.

Схема стабилизатора сетевого напряжения , действующего по этому принципу, изображена на рис. 1. Когда включенный в диагональ диодного моста VD2 полевой транзистор VT2 закрыт, обмотка I (первичная) трансформатора Т1 отключена от сети. Напряжение на нагрузке практически равно сетевому за вычетом небольшого падения напряжения на обмотке II (вторичной) трансформатора Т1. Если же открыть полевой транзистор, цепь питания первичной обмотки трансформатора будет замкнута, а к нагрузке приложена сумма напряжения его вторичной обмотки и сетевого.

Рис. 1 Схема стабилизатора напряжения

Напряжение на нагрузке, пониженное трансформатором Т2 и выпрямленное диодным мостом VD1, поступает на базу транзистора VT1. Движок подстроечного резистора R1 должен быть установлен в положение, при котором транзистор VT1 открыт, a VT2 закрыт, если напряжение на нагрузке больше номинального (220 В). При напряжении меньше номинального транзистор VT1 будет закрыт, a VT2 - открыт. Организованная таким образом отрицательная I обратная связь поддерживает напряжение на нагрузке приблизительно равным номинальному

Выпрямленное мостом VD1 напряжение использовано и для питания коллекторной цепи транзистора VT1 (через интегральный стабилизатор DA1). Цепь C5R6 подавляет нежелательные выбросы напряжения сток-исток транзистора VT2. Конденсатор С1 снижает помехи, проникающие в сеть при работе стабилизатора. Резисторы R3 и R5 подбирают, добиваясь наилучшей и устойчивой стабилизации напряжения. Выключателем SA1 включают и выключают стабилизатор вместе с нагрузкой. Замкнув выключатель SA2, отключают автоматику, поддерживающую напряжение на нагрузке неизменным. Оно в этом случае становится максимально возможным при данном напряжении в сети.

Большинство деталей стабилизатора смонтированы на печатной плате, изображенной на рис. 2. Остальные соединяются с ней в точках А-Г.

Подбирая замену диодному мосту КЦ405А (VD2), следует иметь в виду, что он должен быть рассчитан на напряжение не менее 600 В и ток, равный максимальному току нагрузки, деленному на коэффициент трансформации трансформатора Т1. Требования к мосту VD1 скромнее: напряжение и ток - не менее соответственно 50 В и 50 мА

Рис. 2 Монтаж печатной платы

Транзистор КТ972А можно заменить на КТ815Б , a IRF840 - на IRF740 . Полевой транзистор имеет теплоотвод размерами 50x40 мм.

"Вольтодобавочный" трансформатор Т1 изготовлен из трансформатора СТ-320, применявшегося в блоках питания БП-1 телевизоров УЛПЦТ-59. Трансформатор разбирают, и аккуратно сматывают вторичные обмотки, оставив первичные в сохранности. Новые вторичные обмотки (одинаковые на обеих катушках) наматывают эмалированным медным проводом (ПЭЛ или ПЭВ) в соответствии с данными, приведенными в таблице. Чем сильнее падает напряжение в сети, тем больше потребуется витков и тем меньше допустимая мощность нагрузки.

После перемотки и сборки трансформатора выводы 2 и 2" половин первичной обмотки, находящихся на разных стержнях магнитопровода, соединены перемычкой. Половины вторичной обмотки нужно соединить последовательно таким образом, чтобы их суммарное напряжение было максимальным (при неправильном соединении оно окажется близким к нулю). По максимуму суммарного напряжения вторичной обмотки и сети нужно определить, какой из оставшихся свободными выводов этой обмотки следует соединить с выводом 1 первичной, а какой - с нагрузкой.

Трансформатор Т2 - любой сетевой с напряжением на вторичной обмотке, близким к указанному на схеме при потребляемом от этой обмотки токе 5О...1ООмА.

Таблица 1

Добавочное напряжение, В 70 60 50 40 30 20
Максимальная мощность нагрузки, кВт 1 1.2 1.4 1,8 2,3 3,5
Число витков обмотки II 60+60 54+54 48+48 41+41 32+32 23+23
Диаметр провода, мм 1.5 1,6 1,8 2 2,2 2,8

Включив собранный стабилизатор в сеть, подстроечным резистором R1 установите напряжение на нагрузке равным 220 В. Следует учитывать, что описанное устройство не устраняет колебания сетевого напряжения, если оно превышает 220 В или опускается ниже минимального, принятого при расчете трансформатора.

Стабилизатор, устанавливаемый в сыром помещении, нужно обязательно поместить в заземленный металлический корпус.

Примечание: в тяжелых режимах работы стабилизатора, мощность, рассеиваемая транзистором VT2, бывает весьма увеличенной. Именно она, а не мощность трансформатора, может ограничить допустимую мощность нагрузки. Поэтому следует позаботиться о хорошем теплоотводе транзистора.

Лучший стабилизатор напряжения для переменного тока. Этот блог содержит партнерские ссылки… | by Home Appliances

Этот блог содержит партнерские ссылки, что означает, что если вы перейдете по ссылке и сделаете покупку, я могу заработать комиссию. Это бесплатно для вас.

По мере того, как вы погружаетесь в летние месяцы, частота отключений многократно увеличивается. То же самое и со светодиодным телевизором, холодильником и стиральными машинами. Когда вы спотыкаетесь, вы также подвергаете опасности свои электрические приборы.

Единственный способ избежать этих отключений - установить стабилизатор напряжения. Вот несколько стабилизаторов напряжения, которые вы можете установить в своем доме, чтобы защитить эти дорогие гаджеты.

Лучшие стабилизаторы напряжения для переменного тока

  1. V-Guard VWI 400 Стабилизатор переменного тока мощностью 2850 Вт

Этот стабилизатор V-Guard может работать в диапазоне от 130 В до 280 В с максимальным выходным напряжением 240 В. Наличие интеллектуальной системы задержки времени гарантирует, что компрессор не будет поврежден из-за внезапных колебаний напряжения.

Этот стабилизатор напряжения является безопасным в использовании, поскольку он имеет функцию защиты от отключения по высокому и низкому напряжению, при которой стабилизатор перестает работать, когда входное напряжение выходит за пределы диапазона от 130 до 280 В. Он совместим как с обычным

Купить на Amazon

2. Стабилизатор напряжения V-Guard VDI 400

Этот стабилизатор V-Guard VDI 400 идеально подходит для 1,5-тонного кондиционера. Этот стабилизатор обладает различными полезными функциями, которые не только защищают ваш блок переменного тока, но также привлекательно выглядят и гармонируют с интерьером вашего дома.

Купить на Amazon

3. V-Guard VG 400 Стабилизатор напряжения

Вот еще один стабилизатор напряжения V-Guard, VG 400. Этот стабилизатор напряжения идеально подходит для блоков переменного тока грузоподъемностью до 1,5 тонн. . Обычно в стабилизаторах напряжения используются медные обмотки. Это устройство имеет обмотки из 100% алюминия.

Купить на Amazon

4. V-Guard VG 500 Стабилизатор напряжения для переменного тока до 2 тонн - от 170 В до 180 В

Если у вас есть блок переменного тока мощностью более 1.5 тонн, вы не сможете использовать три упомянутых выше стабилизатора напряжения. Вам нужно заняться стабилизатором с более высоким пределом энергии. Стабилизатор V-Guard VG 500 идеален для кондиционеров до 2 тонн.

Купить на Amazon

5. Microtek EM4160 Стабилизатор напряжения с цифровым дисплеем + 160–285 В для переменного тока до 1,5 тонн

Microtek - еще один известный производитель стабилизаторов напряжения на рынке. Это настенный стабилизатор напряжения, способный защитить до 1 блока переменного тока.5 тонн. Он оснащен такими полезными функциями, как автоматический запуск, отключение низкого и высокого напряжения и цифровой дисплей.

Купить на Amazon

10 лучших стабилизаторов напряжения постоянного тока 12 В, рассмотренные и оцененные в 2021 году

Как купить лучший стабилизатор напряжения постоянного тока 12 В

Становится ли для вас стрессом покупка лучшего стабилизатора напряжения 12 В постоянного тока ? Сомнения катятся по голове и сбивают вас с толку? Мы знаем, как это бывает; мы прошли весь путь исследований стабилизаторов напряжения 12 В постоянного тока, поскольку мы выдвинули полный список лучших стабилизаторов напряжения 12 В постоянного тока, доступных на рынке в наши дни.Мы провели мозговой штурм по нескольким вопросам, которые могли иметь в виду большинство из вас.

Хотя здесь может быть больше, чем мы предлагаем, для вас важно убедиться, что вы провели эксклюзивное исследование этого продукта, прежде чем покупать его для себя. Вопросы могут включать:

  • Стоит ли покупать стабилизатор напряжения 12v dc ?
  • Каковы преимущества при покупке стабилизатора напряжения 12 В постоянного тока ?
  • Какие факторы следует учитывать перед покупкой лучшего стабилизатора напряжения постоянного тока 12В ?
  • Почему важно приобретать стабилизатор напряжения постоянного тока 12 В, особенно лучший?
  • Какие хорошие стабилизаторы напряжения 12 В постоянного тока доступны на сегодняшнем рынке? Или какой лучший стабилизатор напряжения постоянного тока 12 в 2020, 2019?

И где бы вы взяли всю такую ​​информацию? Мы уверены, что у вас может возникнуть еще много вопросов, и лучший способ утолить жажду - решить их все с помощью различных онлайн-ресурсов.Источником может быть что угодно, например интернет-форумы, устная информация, рейтинговые сайты, руководства по покупке и обзоры продуктов. Перед покупкой лучшего стабилизатора напряжения 12 В постоянного тока для себя необходимо надлежащее исследование. Убедитесь, что вы читаете с высоконадежных, заслуживающих доверия веб-сайтов или любых других источников.

Мы предлагаем руководство по покупке стабилизатора напряжения постоянного тока 12 В, и мы предоставляем 100% достоверную и объективную информацию. Мы используем большие данные и данные искусственного интеллекта для проверки информации.Как было сделано это руководство по покупке? У нас есть уникально разработанный набор алгоритмов, который позволяет нам составить список из 10 лучших стабилизаторов напряжения 12 В постоянного тока , доступных в наши дни на рынке. Наша технология составления списка зависит от таких факторов, как:

  1. Стоимость бренда
  2. Характеристики и характеристики
  3. Стоимость продукта
  4. Отзывы и рейтинги клиентов
  5. Качество и надежность

Мы не забываем, что поддержание актуальности информации о продуктах является нашим приоритетом; поэтому мы постоянно обновляем наши веб-сайты.Получите дополнительную информацию о нас из онлайн-источников. Если вы считаете, что представленная здесь информация вводит в заблуждение, неверна или не имеет отношения к действительным фактам, пожалуйста, не стесняйтесь связаться с нами. Мы всегда будем рядом с вами.

лучших регуляторов напряжения (обзор и руководство по покупке) 2021 года

Вы можете не задумываться о том, что происходит, когда ваша электроника подключена к электросети, когда аккумулятор вашего автомобиля заряжается от генератора или когда включается ваш сотовый телефон.Но есть один важный инструмент, задействованный во всех этих электрических процессах: регулятор напряжения. Эти часто незамеченные устройства отвечают за правильное функционирование всех видов электрических устройств, даже если выходная мощность колеблется. Стабилизатор напряжения обеспечивает постоянное, фиксированное выходное напряжение для устройств, даже при изменении нагрузки или входного напряжения. Он защищает ваши вещи от повреждений и потенциальных проблем с электричеством.

Существует множество различных типов регуляторов напряжения для удовлетворения любых потребностей в электричестве.Вы можете выбирать между различными типами импульсных регуляторов или линейных регуляторов напряжения, и есть регуляторы для каждого электрического элемента, о котором вы только можете подумать. Если вам нужен регулятор напряжения, ознакомьтесь с некоторыми из лучших вариантов ниже.

Преимущества регуляторов напряжения

  • Ограниченное обслуживание. С регулятором напряжения вам не нужно слишком часто проводить техническое обслуживание. Как только он будет установлен, вы можете оставить свои устройства подключенными к портам, время от времени проверяя индикаторы.Пока вы размещаете его правильно, это требует очень мало внимания.
  • Коррекция напряжения. Главное преимущество регулятора в том, что он корректирует напряжение на ваших устройствах. Принимая входное напряжение и пропуская его через резисторы, устройство может оптимизировать количество электричества, которое выдает ваше устройство. Это защищает вашу электронику и помогает ей работать лучше.
  • Защита от перенапряжения. Большинство регуляторов напряжения служат защитой от перенапряжения, защищая ваши устройства от скачков напряжения.Пока вы проверяете рейтинг самого устройства, вы можете быть уверены, что оно не будет повреждено избыточным электричеством.
  • Несколько вариантов для устройств переменного и постоянного тока. Вы можете найти регуляторы напряжения, которые работают как с устройствами переменного, так и постоянного тока. В то время как большинство моделей постоянного тока подключаются вручную, модели переменного тока включают в себя плагины для подключения вашей технологии.
  • Защитите свои устройства. Основная цель регуляторов напряжения - защита чувствительной электроники от повреждений, связанных с пониженным или повышенным напряжением, перегревом и скачками напряжения.Он оптимизирует поток для всех типов технологий без какого-либо надзора.

Типы регуляторов напряжения

Линейный регулятор

Этот тип регулятора напряжения работает с низким КПД; он использует усилитель с высоким коэффициентом усиления для управления выходом, управляя устройством активного прохода. Он регулирует напряжение, сравнивая образец выходного сигнала с внутренним напряжением. Обычно эти регуляторы относительно просты и очень доступны. Основываясь на выходном и входном конденсаторах, они чаще всего используются в системах постоянного тока.

Импульсный регулятор

Работая с высоким КПД, они обычно имеют более сложную конструкцию, чем их линейные аналоги. Благодаря включению нескольких контуров управления и повышающих преобразователей, электрический поток проходит через несколько настроек проводки для оптимизации выхода. Как правило, их КПД превышает 95 процентов - прямой результат переключения источника питания между резисторами, конденсаторами и катушками индуктивности. Это приводит к хорошо регулируемому электроснабжению, что делает их лучшими для чувствительной электроники.

Ведущие бренды

APC

Открыв свои двери в 1981 году, American Power Conversion Corporation начала уделять особое внимание технологической инфраструктуре и управлению данными. В нем работает группа уважаемых инженеров, которые продолжают совершенствовать электронные устройства, в том числе регуляторы напряжения и аксессуары для охлаждения. Один из лучших вариантов - автоматический регулятор напряжения APC LE1200.

Drok

Компания с корнями в Китае, это международный розничный торговец продуктами питания.Сосредоточившись на создании высококачественных регуляторов, преобразователей и вольтметров для любого бюджета, компания делает качественную электронику доступной на международном уровне. Среди его лучших вариантов - понижающий модуль постоянного тока.

Стоимость регулятора напряжения

  • Менее 20 долларов: В этом диапазоне вы можете найти достаточно простые регуляторы напряжения, обычно требующие ручной настройки в установке постоянного тока. Несмотря на то, что они полезны, их установка утомительнее.
  • От 20 до 50 долларов: Многие регуляторы напряжения попадают в эту категорию, причем большинство из них линейного типа.Обычно они очень простые, хотя вы можете найти их как для переменного, так и для постоянного тока.
  • 50 $ и выше: В моделях этой категории часто используется технология коммутации, которая, хотя и дороже, но и более точна. Хотя эти регуляторы требуют более значительных инвестиций, они более надежны и просты в установке.

Основные характеристики

Диапазон напряжения

Эта функция относится как к входному, так и к выходному напряжению регулятора, важна для его работы.Внутренний чип построен так, чтобы выдерживать определенный диапазон напряжений, разницу между входом и выходом. Выходные параметры обычно составляют 12 или 24 вольт, хотя они могут быть и выше. Входное напряжение может изменяться в зависимости от источника электрического тока. Критерии использования этой функции различаются в зависимости от устройства, поэтому при оценке качества вашего регулятора смотрите спецификации.

Допустимая мощность

При работе с линейным регулятором разница между входом и выходом преобразуется в тепловую энергию.Если потребляемая мощность номинальная, то нагрев не является проблемой. Однако увеличение силы тока может привести к перегреву. Простое решение - выбрать импульсный регулятор; однако, если это невозможно или существуют бюджетные ограничения, просто проверьте потребляемую мощность. Это измерение, измеряемое в ваттах, позволит вам узнать, какие устройства можно безопасно регулировать.

Падение напряжения

Это наименьшее значение буферного напряжения между входным и выходным счетчиками.Например, если у вас есть вход 12 вольт и выход 7 вольт, вам необходимо минимальное падение напряжения в пять вольт. Однако, если выходное напряжение упадет ниже 7 вольт, вам потребуется более существенное падение напряжения. Обратите особое внимание на эту функцию, если вы работаете с устройствами с небольшими различиями между входом и выходом. В этом случае обратите внимание на установки с малым падением или сверхнизким напряжением.

Прочие соображения

  • Чувствительность. После того, как вы определили, что ваш регулятор обладает всеми основными функциями, вы можете переходить к другим вопросам.Вверху списка должно быть указано, насколько чувствительны ваши устройства. Если вы имеете дело с современными телефонами, медицинским оборудованием или другими важными предметами, важно проверить показатель отсева. Кроме того, использование регулятора на этих устройствах может привести к дополнительному шуму, который может быть неприятным.
  • Шум. Любая техника имеет немного шума, особенно если учесть разницу в тепле и получаемые звуки. Если это вызывает беспокойство, например, если вы устанавливаете регулятор в тихом офисе, вы можете выбрать LDO (регулятор с низким падением напряжения), чтобы смягчить проблему.
  • Ответ. Это относится к требовательным техническим приложениям, таким как компьютеры и принтеры (устройства, которые вызывают множество проблем с регуляторами). Думайте об этом как о любой технологии, которая, если она отстает, вы заметите. Если это применимо, то поищите специальные регуляторы, предназначенные для оптимизации скорости отклика и повышения качества обслуживания.
  • Защитные элементы. Цель регулятора напряжения - оптимизировать работу вашей электроники. Дополнительные функции, такие как защита от перенапряжения и защита от перегрева, придают вам дополнительную ценность.Они продлевают срок службы вашей электроники и улучшают общую ценность самого регулятора.

Лучшие регуляторы напряжения Обзоры и рекомендации 2021

Советы

  • Разместите регулятор напряжения в хорошо вентилируемом месте, чтобы предотвратить перегрев.
  • Если вы устанавливаете его в тихом месте, проверьте падение напряжения, чтобы избежать проблем.
  • Выберите подходящий тип регулятора в зависимости от вашего устройства.
  • На выходе, меньшем, чем на входе, можно рассчитывать на линейный регулятор - в противном случае вам понадобится импульсный регулятор.
  • Держите его запыленным и чистым, чтобы мусор не попал в схему.
  • По возможности храните его в прохладном и сухом месте, чтобы предотвратить повреждение.
  • Не используйте регулятор круглосуточно, чтобы ограничить износ.
  • Не торопитесь во время настройки, поскольку при правильной сборке регуляторы требуют ограниченного обслуживания.

Часто задаваемые вопросы:

В: Что такое регулятор напряжения и как он работает?

Стабилизатор напряжения - это технология, которая регулирует напряжение до фиксированного значения и поддерживает его, независимо от того, колеблется ли входное напряжение.Он поддерживает мощность на уровне, совместимом с другими электрическими частями устройства.

Q: Для чего используются регуляторы напряжения?

Регуляторы напряжения используются для любого оборудования, которое может работать только при напряжении в заданном диапазоне. Вы можете использовать их для чувствительных устройств, таких как сотовые телефоны, а также в промышленных и коммерческих условиях.

В: Каковы симптомы неисправного регулятора напряжения?

Признаками неисправного регулятора напряжения являются высокое или низкое выходное напряжение, выходящее за рамки спецификации регулятора.Проверьте, нет ли проблем со световыми индикаторами (тусклые или мерцающие). Если нет выходного напряжения, это хороший признак того, что ваш регулятор не работает.

Последние мысли

Теперь, когда вы знаете все тонкости выбора лучших регуляторов напряжения, вы можете сделать свой выбор. Это может быть автоматический регулятор напряжения APC Line-R или, по нашему мнению, понижающий понижающий регулятор напряжения с регулируемым понижающим преобразователем DROK.

Автоматический цифровой стабилизатор напряжения Производитель, поставщик, экспортер

При поддержке команды опытных и обученных профессионалов мы можем производить, поставлять и экспортировать автоматический цифровой стабилизатор напряжения.Этот стабилизатор, пользующийся большим спросом на международном рынке, используется в различных жилых и коммерческих помещениях. Эти стабилизаторы, доступные в различных мощностях и технических характеристиках, отвечают требованиям наших уважаемых клиентов. Мы обеспечиваем доставку высококачественного продукта в оговоренные сроки в желаемый пункт назначения с помощью нашей широкой дистрибьюторской сети.

Дополнительная информация:

Колебания напряжения могут снизить эффективность всех типов электрического и электронного оборудования и повредить их.Серия автоматических цифровых стабилизаторов напряжения Vener & защищает ваши устройства от колебаний напряжения. Стабилизаторы предназначены для обеспечения чистого регулируемого источника питания переменного тока в средах с ненадежным и нестабильным питанием от сети. В случае колебания напряжения стабилизатор стабилизирует выходной сигнал, чтобы напряжение, достигающее вашего оборудования, оставалось постоянным на уровне 220 В (+ 6%) и 220 В (+ 9% в моделях ER) в пределах рабочего диапазона устройства. .

Наша автоматическая цифровая стабилизация напряжения может использоваться со всеми типами электрических и электронных устройств.Они особенно полезны для:

  • холодильников
  • кондиционеров
  • морозильных камер
  • телевизоров
  • Hi-Fi оборудования
  • микроволновых печей
  • стиральных машин
  • охладителей воды
  • копировальных аппаратов
  • факсов
  • Компьютеры
  • Лазерные принтеры и т. Д.

Операции

  • VVS непрерывно контролирует основное напряжение.Если напряжение повышается или падает, VVS стабилизирует выход, чтобы напряжение, достигающее вашего оборудования, оставалось постоянным на уровне 220 В (+ 6%) и 220 В (+ 9% в моделях ER) в пределах рабочего диапазона устройства.
  • Если входное напряжение падает ниже или поднимается выше диапазона входного напряжения, VVS отключит выход, тем самым защищая нагрузку. Как только сетевое напряжение снова вернется в допустимые пределы, VVS повторно подключит выход после задержки запуска.

Схема, управляемая микропроцессором

Используя превосходную схему, управляемую микропроцессором, VVS является фактически самым мощным, интеллектуальным и многофункциональным цифровым стабилизатором напряжения на рынке.

Передовые технологии

Благодаря использованию новейших цифровых технологий, подкрепленных собственными интеллектуальными решениями, VVS доводит концепцию управления и точности электрической мощности до непревзойденного уровня совершенства.

Система обнаружения неисправностей

Система VVS постоянно работает самостоятельно, определяя, являются ли выполняемые измерения необоснованными, и отключает выход подключенного оборудования.Красный и желтый светодиоды попеременно мигают, указывая на неисправность.

Выходная точность

VVS благодаря своей превосходной конструкции поддерживает выходное напряжение в диапазоне + 6%, что делает его пригодным для безопасной работы чувствительного оборудования даже при работе от генераторов.

Фильтрация с низким уровнем шума

Программное сглаживание измерений частоты и напряжения для фильтрации шума, обычно связанного со стабилизаторами.

лучший стабилизатор напряжения для оптимального использования

10 $.20- $ 120,00 / шт.

50 штук (минимальный заказ)

Китайская лучшая цена SVC-20kva LCD 3-фазный автоматический серво стабилизатор напряжения переменного тока Основная спецификация: Применение Этот стабилизатор имеет высокую эффективность, малое искажение формы волны, выходное напряжение стабилизации, небольшую расходную мощность, можно продолжать работу и иметь полную защиту и другие преимущества. Обычно его можно использовать на дубликаторе, компьютере, кондиционере, телефоне, заводском приборе точности, медицинском оборудовании, семейном электрическом оборудовании и некотором оборудовании, которое необходимо для питания стабилизатора. Характеристики продукта: Характеристики: однофазное входное напряжение 140-260 В (120- 260 В) Частота 50 Гц / 60 Гц Однофазное выходное напряжение 0.5 кВА-3 кВА 220 В и 110 В 5 кВА-30 кВА 220 В Регулируемое время Менее 1 с (при изменении входного напряжения 105) Трехфазное входное напряжение Фазное напряжение 140-260 В Напряжение провода 277-430 В Температура окружающей среды -5-40 Искажение формы сигнала Нет дополнительное искажение формы сигнала Трехфазное выходное напряжение Фазовое напряжение 220 В Напряжение провода 380 В Коэффициент мощности нагрузки 0,8 Электрическая прочность 1500 В / 1 мин Точность стабилизации напряжения 220 В и плюс 3% 110 В и плюс 6% Сопротивление изоляции & amp; ge; 2M & amp; Omega; Модель и спецификация: Технические характеристики (кВА) Размер продукта D и раз; W и раз; H (см) Размер упаковки D и раз; W и раз; H (см) Вес (кг) Кол-во Трехфазный четырехпроводной SVC-3 42 & amp; раз; 38 & amp; раз; 19 54 & amp; раз; 50 & amp; раз; 31 23 1 SVC-4.5 42 & amp; раз; 38 & amp; раз; 19 54 & amp; раз; 50 & amp; раз; 31 27 1 SVC-6 37 & amp; раз; 28 & amp; раз; 68 48 & amp; раз; 40 & amp; раз; 78 39 1 SVC-9 35 & amp; раз ; 33 & amp; раз; 78 48 & amp; раз; 45 & amp; раз; 90 48 1 SVC-15 43 & amp; раз; 38 & amp; раз; 73 55 & amp; раз; 51 & amp; раз; 90 85 1 Трехфазный четырехпроводной SVC-30 43 & amp; ; раз; 51 & amp; раз; 91 64 & amp; раз; 55 & amp; раз; 106 131 1 SVC-45 65 & amp; раз; 3 & amp; раз; 95 78 & amp; раз; 55 & amp; раз; 110 197 1 SVC-60 77 & amp; раз; 55 & amp; раз ; раз; 100 90 & amp; раз; 67 & amp; раз; 115 260 1 SVC-80 77 & amp; раз; 55 & amp; раз; 100 90 & amp; раз; 67 & amp; раз; 115 290 1 SVC-100 77 & amp; раз; 55 & amp; раз; 100 90 & amp; times; 67 & amp; times; 115 350 1 Выставка Наш сертификат Условия доставки и условия Контакты Веб-сайт: Контакт: Len Skype: hgjlen Телефон: + 86-13857706722 WhatsApp: + 86- 13857706722

10 лучших линейных регуляторов напряжения

В электронике для стабилизации напряжения обычно используются линейные регуляторы напряжения.Независимо от входного напряжения или условий нагрузки они будут обеспечивать фиксированное выходное напряжение, тем самым защищая устройства от колебаний выходных сигналов, которые могут привести к неэффективной работе или даже к повреждению.

При разработке источника питания для приложения, в котором требуется небольшая разница между входным и выходным напряжениями, разработчикам оборудования следует учитывать линейные регуляторы напряжения.

Простота и стоимость - основные преимущества линейных регуляторов перед импульсными регуляторами напряжения.Кроме того, отсутствие шума переключения делает линейные регуляторы особенно полезными для аудио- и видеосвязи, медицинских устройств и других чувствительных к шуму приложений.

С другой стороны, линейные регуляторы напряжения выделяют тепло, и их эффективность довольно низкая, варьируется от 30% до 60%. Вот почему они используются в основном для маломощных устройств и небольших различий между входным и выходным напряжениями.

По сравнению с линейными регуляторами импульсные регуляторы напряжения (также известные как импульсные регуляторы) превосходят по эффективности и выделяют гораздо меньше тепла, но также являются более дорогими и сложными.

При выборе между различными регуляторами напряжения для вашего приложения следует учитывать несколько факторов, включая их максимальное входное напряжение, разницу между входным и выходным напряжениями, номинальные токи, номинальные температуры и выходной шум.

Большинство линейных регуляторов напряжения в нашем списке 10 имеют максимальную токовую защиту и тепловую защиту. Большинство из них также имеют максимальное входное напряжение от 5,5 до 40 В и выходное напряжение от 3,3 до 15 В. Самыми популярными поставщиками стабилизаторов напряжения для SnapEDA являются Diodes Inc, Richtek USA Inc, Microchip, STMicroelectronics и Texas Instruments.

Давайте теперь взглянем на 10 лучших линейных регуляторов напряжения на SnapEDA!

# 10 - LP2985-33DBVR от Texas Instruments

Этот стабилизатор с низким падением напряжения имеет максимальное входное напряжение 16 В, выходное напряжение 3,3 В, выходной ток 150 мА, напряжение отключения 280 мВ и диапазон температур перехода от -40 ° C до 125 ° C.
Средняя цена у дистрибьюторов: $ 0,60

Загрузить Symbol & Footprint

# 9 - L7805ACD2T от STMicroelectronics

Этот положительный стабилизатор имеет максимальное входное напряжение 35 В, выходное напряжение 5 В, 1.Выходной ток 5 А, падение напряжения 2 В и диапазон температур перехода от 0 ° C до 125 ° C.

Средняя цена по дистрибьюторам: N / A

Загрузить Symbol & Footprint

# 8 - L7805CV-DG от STMicroelectronics

Этот положительный стабилизатор имеет максимальное входное напряжение 35 В, выходное напряжение 5 В, выходной ток 1,5 А, падение напряжения 2 В и диапазон температур перехода от 0 ° C до 125 ° C.

Средняя цена у дистрибьюторов: $ 0.52

Загрузить Symbol & Footprint

# 7 - REG1117 от Texas Instruments

Этот положительный стабилизатор с низким падением напряжения имеет максимальное входное напряжение 15 В, выходное напряжение 1,8 В, выходной ток 800 мА и диапазон температур перехода от -40 ° C до 125 ° C.

Средняя цена у дистрибьюторов: $ 2,02

Скачать Symbol & Footprint

# 6 - L7805CV от STMicroelectronics

Этот положительный стабилизатор имеет максимальное входное напряжение 35 В, выходное напряжение 5 В, 1.Максимальный выходной ток 5 А, падение напряжения 2 В и диапазон температур перехода от 0 ° C до 125 ° C.

Средняя цена у дистрибьюторов: $ 0,41

Загрузить Symbol & Footprint

# 5 - LD1117S33CTR от STMicroelectronics

Этот регулятор напряжения с низким падением напряжения имеет максимальное входное напряжение 15 В, выходное напряжение 3,3 В, максимальный выходной ток 950 мА, падение напряжения 1 В и диапазон температур перехода от -40 ° C до 125 ° C.

Средняя цена у дистрибьюторов: $ 0.36

Загрузить Symbol & Footprint

# 4 - AP2112K-3.3TRG1 от Diodes Inc.

Этот положительный стабилизатор имеет максимальное входное напряжение 6 В, выходное напряжение 3,3 В, максимальный выходной ток 600 мА, напряжение падения 0,4 В и диапазон температур перехода от -40 ° C до 85 ° C.

Средняя цена у дистрибьюторов: $ 0,24

Загрузить Symbol & Footprint

# 3 - RT9193-33GB от Richtek USA Inc.

Этот регулятор с низким падением напряжения имеет 5.Максимальное входное напряжение 5 В, выходное напряжение 3,3 В, максимальный выходной ток 300 мА, падение напряжения 0,3 В и диапазон температур перехода от -40 ° C до 125 ° C.

Средняя цена у дистрибьюторов: 0,50 доллара США

Загрузить Symbol & Footprint

# 2 - MIC29302WU от Microchip

Этот стабилизатор с низким падением напряжения имеет максимальное входное напряжение 26 В, выходное напряжение 3,3 В, выходной ток 3 А, максимальное падение напряжения 0,6 В и диапазон температур перехода от -40 ° C до 125 ° C.

Средняя цена по дистрибьюторам: N / A

Скачать Symbol & Footprint

И верхний линейный стабилизатор напряжения на SnapEDA - это…

# 1- LM1117MP-3.3 от Texas Instruments

Этот стабилизатор с низким падением напряжения имеет максимальное входное напряжение 15 В, выходное напряжение 3,3 В, максимальный выходной ток 800 мА, напряжение падения 1,2 и диапазон температур перехода от 0 ° C до 125 ° C.

Средняя цена по дистрибьюторам: N / A

Загрузить Symbol & Footprint

* Эти данные были собраны с помощью аналитики SnapEDA при просмотре загрузок из нашей библиотеки моделей деталей (символы, посадочные места и 3D-модели).Ежегодно в SnapEDA оцениваются миллионы деталей, однако, если детали нет в нашей базе данных, она не будет отображаться в этом списке. Мы постоянно увеличиваем охват и периодически обновляем этот список!

Создавайте электронные устройства в мгновение ока. Начать сейчас.

Стабилизатор напряжения сервопривода 300 кВА, промышленный стабилизатор напряжения сервопривода

Технические характеристики - Модель SVS34L3300
Рейтинг 300 кВА, 3 фазы, 4 провода
Выходной ток 433 А на фазу
Диапазон входного напряжения от 340 В до 460 В, от 47 до 63 Гц, 4 провода
Выходное напряжение 400 В +/- 1%
Рабочий цикл Непрерывный 24x7
Искажение формы волны Нет
Время отклика Менее 10 мс
Пригодность Подходит для всех нагрузок с коэффициентом мощности
Охлаждение с натуральным масляным охлаждением
Класс изоляции Класс
Прочность на пробой и IR 1500 В переменного тока в течение 2 минут.Более 50 МОм при 500 В постоянного тока
Дополнительные помещения Ручное управление
Установка Внутренний тип (также доступен внешний тип)
Степень защиты IP-30
Отсутствие потери нагрузки Менее 0,4%
КПД 98-99%
Температура окружающей среды от -20 ° C до + 50 ° C
Трансформаторное масло Новое изоляционное трансформаторное масло ISI 335 с маркировкой
Размер (в мм) и вес Д 1780 x Г 1070 x В 1170 и 1288 кг.
Терминал ввода / вывода На медной шине
Материал обмотки и проводки Медь марки ЕС (чистота 99,9%)
Технологии Регулируемый автоматический трансформатор с торцевой намоткой для линейного управления и большей эффективности.
Привод Прямой привод переменного тока для быстрой коррекции напряжения и долговечности
Органы управления Все три фазы управляются индивидуально для лучшего управления напряжением и нагрузкой.
Применимый стандарт IS 9815, ISO 9001-2015, ISO 14001-2015
Международная маркировка Соответствие CE EN61558-1: 2005 + A1: 2009
В связи с нововведениями и улучшениями технические характеристики могут быть изменены.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *