Линейные стабилизаторы – — , » :

Содержание

Мощный линейный стабилизатор напряжения

Мощный линейный стабилизатор напряжения
Для питания различных электронных устройств и схем, сделанных своими руками нужен такой источник питания, напряжение на выходе которого можно регулировать в широких пределах. С его помощью можно наблюдать, как ведёт себя схема при том или ином напряжении питания. При этом он должен иметь возможность выдавать большой ток, чтобы питать мощную нагрузку, и минимальные пульсации на выходе. На роль такого источника питания отлично подойдёт линейный стабилизатор напряжения – микросхема LM338, она обеспечивает ток до 5 А, имеет защиту от перегрева и короткого замыкания на выходе. Схема её включения достаточно проста, она представлена ниже.

Схема


Мощный линейный стабилизатор напряжения
Микросхема LM338 имеет три вывода – вход (in), выход (out) и регулирующий (adj). На вход подаём постоянное напряжение определённой величины, а с выхода снимаем стабилизированное напряжение, величина которого задаётся переменным резистором Р2. Напряжение на выходе регулируется от 1,25 вольт до величины входного, с вычетом 1,5 вольт. Проще говоря, если на входе, например, 24 вольта, то на выходе напряжение будет меняться в пределах от 1,25 до 22,5 вольт. Подавать на вход более 30 вольт не следует, микросхема может уйти в защиту. Чем больше ёмкость конденсаторов на входе, тем лучше, ведь они сглаживают пульсации. Ёмкость конденсаторов на выходе микросхемы должна быть небольшой, иначе они будут долго сохранять заряд и напряжение на выходе будет регулироваться неверно. При этом каждый электролитический конденсатор должен быть зашунтирован плёночным или керамическим с малой ёмкостью (на схеме это С2 и С4). При использовании схемы с большими токами микросхему обязательно нужно установить на радиатор, ведь она будет рассеивать на себе всё падение напряжения. Если токи небольшие – до 100 мА, радиатор не потребуется.

Мощный линейный стабилизатор напряжения

Сборка стабилизатора


Вся схема собирается на небольшой печатной плате размерами 35 х 20 мм, изготовить которую можно методом ЛУТ. Печатная плата полностью готова к печати, отзеркаливать её не нужно. Ниже представлены несколько фотографий процесса.
Мощный линейный стабилизатор напряжения
Мощный линейный стабилизатор напряжения
Мощный линейный стабилизатор напряжения
Дорожки желательно залудить, это уменьшит их сопротивление и защитит от окисления. Когда печатная плата готова – начинаем запаивать детали. Микросхема запаиваться прямо на плату, спинкой в сторону края. Такое расположение позволяет закрепить на радиаторе всю плату с микросхемой. Переменный резистор выводится от платы на двух проводках. Можно использовать любой переменный резистор с линейной характеристикой. При этом средний его вывод соединяется с любым из крайних, полученные два контакта идут на плату, как видно на фото. Для подключения проводов входа и выхода удобнее всего использовать клеммник. После сборки необходимо проверить правильность монтажа.
Мощный линейный стабилизатор напряжения
Мощный линейный стабилизатор напряжения

Запуск и испытания


Когда плата собрана, можно переходить к испытаниям. Подключаем на выход маломощную нагрузку, например, светодиод с резистором и вольтметр для контроля напряжения. Подаём напряжение на вход и следим за показаниями вольтметра, напряжение должно меняться при вращении ручки от минимума до максимума. Светодиод при этом будет менять яркость. Если напряжение регулируется, значит схема собрана правильно, можно ставить микросхему на радиатор и тестировать с более мощной нагрузкой. Такой регулируемый стабилизатор идеально подойдёт для использовании в качестве лабораторного блока питания. Особое внимание стоит уделить выбору микросхемы, ведь её очень часто подделывают. Поддельные микросхемы стоят дёшево, но легко сгорают при токе уже 1 – 1,5 Ампера. Оригинальные стоят дороже, но зато честно обеспечивают заявленный ток до 5 Ампер. Удачной сборки.
Мощный линейный стабилизатор напряжения

Смотрите видео


На видео наглядно показана работа стабилизатора. При вращении переменного резистора напряжение плавно меняется от минимума к максимуму и наоборот, светодиод при этом меняет яркость.

sdelaysam-svoimirukami.ru

Линейный стабилизатор напряжения с регулировкой на TL431 и NPN транзисторах

Всем привет!
В последнее время я увлекся сборкой схем линейных стабилизаторов напряжения. Такие схемы не требуют редких деталей, а подборка компонентов и настройка также не вызывает особых сложностей. В этот раз я решил собрать схему линейного стабилизатора напряжения на «регулируемом стабилитроне» (микросхеме) TL431. TL431 выступает в качестве источника опорного напряжения, а силовую роль выполняет мощный NPN транзистор в корпусе ТО -220.

При входном напряжении 19В, схема способна служить источником стабилизированного напряжения в пределах от 2,7 до 16 В при токе до 4А. Стабилизатор оформлен в виде модуля, собранного на макетной плате. Выглядит следующим образом:

Видео:

Стабилизатор требует блок питания постоянного тока. Имеет смысл применять такой стабилизатор с классическим линейным блоком питания, состоящим из железного трансформатора, диодного моста и конденсатора большой емкости. Напряжение в сети может меняться в зависимости от нагрузки и как следствие, будет меняться напряжение на выходе трансформатора. Данная схема будет обеспечивать стабильное выходное напряжение при изменяющимся входном. Нужно понимать, что стабилизатор понижающего типа, а также на самой схеме падает 1-3 В напряжения, поэтому максимальное выходное напряжение будет всегда меньше входного.


В качестве блока питания для данного стабилизатора в принципе можно использовать и импульсные блоки питания, например от ноутбука на 19 В. Но в этом случае, роль именно стабилизации будет минимальной, т.к. заводские импульсные блоки питания и так на выходе выдают стабилизированное напряжение.

Схема:

Подбор компонентов
Максимальный ток, который может через себя пропустить микросхема TL431, согласно документации – 100 мА. В моем случае, я ограничил ток с запасом до примерно 80 мА при помощи резистора R1. Нужно рассчитать резистор по формулам.

Для начала нужно определить сопротивление резистора. При максимальном входном напряжении 19В по закону Ома сопротивление рассчитывается следующим образом:
R= U/I = 19В / 0,08A = 240 Ом

Нужно рассчитать мощность резистора R1:
P=I^2*R = 0,08 А * 0,08 А * 240 Ом = 1,5 Ватта

Я использовал советский резистор на 2 Ватта

Резисторы R2 и R3 образуют делитель напряжения, которое «программирует» TL431, причем резистор R3 переменный, что позволяет менять опорное напряжение, которое потом повторяется каскадом из транзисторов. Я использовал R2 – 1К Ом, R3 - 10К оМ. Мощность резистора R2 зависит от выходного напряжения. Например, при выходном напряжении 19В:
P=U^2/R = 19 * 19/ 1000 = 0,361 Ватт

Я использовал резистор в 1 Ватт.

Резистор R4 служит для ограничения тока на базе транзистора VT2. Номинал подбирать лучше опытным путем, контролируя выходное напряжение. Если сопротивление будет слишком большим, это заметно ограничит выходное напряжение схемы. В моем случае – это 100 Ом, мощность годится любая.


В качестве основного силового транзистора (VT1) лучше использовать транзисторы в корпусе ТО – 220 или более мощном (ТО247, ТО-3). Я использовал транзистор Е13009, купленный на Али Эксресс. Транзистор на напряжение до 400В и ток до 12А. Для подобной схемы высоковольтный транзистор – не самое оптимальное решение, но работать будет нормально. Транзистор скорее всего поддельный и 12 А не выдержит, а вот 5-6А вполне. В нашей схеме ток до 4А, поэтому для данной схемы годится. В данной схеме транзистор должен быть способен рассеять мощность до 30-35 Ватт.

Рассчитывается рассеваемая мощность как разница между входным и выходным напряжением умноженная на ток коллектора :
P = (U выход -U вход)*I коллектора
Например, входное напряжение у нас 19 В, мы выставили выходное напряжение 12 В, а ток коллектора у нас 3 А
Р = (19В-12В) *3А = 21 Ватт – вполне нормальная ситуация для нашего транзистора.

А если мы продолжим снижать выходное напряжение до 6В, то картина будет другая:
Р = (19В-6В) *3А = 39 Ватт , что не очень хорошо для транзистора в корпусе ТО-220 (еще нужно учитывать, что при закрытии транзистора ток тоже будет уменьшаться: на 6В ток будет около 2-2,5А, а не 3). В таком случае лучше либо использовать другой транзистор в более массивном корпусе, либо уменьшить разницу между входным и выходным напряжением (например, если блок питания трансформаторный, путем переключения обмоток).


Также транзистор должен быть рассчитан на ток от 5А и больше. Лучше брать транзистор со статическим коэффициентом передачи тока от 20. Китайский транзистор вполне соответствует данным требованиям. Перед запайкой в схему, я его проверил (ток и рассеиваемую мощность) на специальном стенде.

Т.к. TL431 может выдавать ток не более 100 мА, а для питания базы транзистора требуется больший ток, потребуется ещё один транзистор, который будет усиливать ток с выхода микросхемы TL431, повторяя опорное напряжение. Для этого и нужен транзистор VT2.
Транзистор VT2 должен быть способен подавать достаточный ток на базу транзистора VT1.

Грубо определить необходимый ток можно через статический коэффициент передачи тока (h31э или hFE или β) транзистора VT1. Если мы хотим на выходе иметь ток в 4 А, а статический коэффициент передачи тока VT1 равен 20, то:
I базы = I коллектора / β = 4 А / 20 = 0,2 А.


Статический коэффициент передачи тока будет меняться в зависимости от тока коллектора, так что это значение ориентировочное. Замер на практике показал, что нужно около 170 мА подать на базу транзистора VT1, чтобы ток коллектора был 4А. Транзисторы в корпусе ТО-92 начинают заметно греться при токах выше 0,1 А, поэтому в данной схеме я использовал транзистор КТ815А в корпусе ТО-126. Транзистор рассчитан на ток до 1,5А, статический коэффициент передачи тока - около 75. Небольшой радиатор для данного транзистора будет уместен.
Конденсатор С3 нужен для стабилизации напряжения на базе транзистора VT1, номинал - 100 мкФ, напряжение 25В.

На выходе и входе установлены фильтры из конденсаторов: С1 и С4 (электролитические на 25В, 1000 мкФ) и С2, С5 (керамические 2-10 мкФ).
Диод D1 служит для защиты транзистора VT1 от обратного тока. Диод D2 нужен для защиты от транзистора при питании коллекторных электродвигателей. Двигатели при отключении питания ещё какое-то время крутятся и в режиме торможения работают как генераторы. Вырабатываемый таким образом ток идет в обратном направлении и может повредить транзистор. Диод в данном случае замыкает двигатель на себя и ток не доходит до транзистора. Резистор R5 выполняет роль малой нагрузки для стабилизации в холостом режиме, номинал 10к Ом, мощность любая.


Сборка
Схема собирается в виде модуля на макетной плате. Я использовала радиатор из импульсного блока питания.

С радиатором такого размера не стоит максимально нагружать схему. При токе больше 1 А, необходимо заменить радиатор на более массивный, обдув вентилятором тоже не помешает.

Важно помнить, что чем больше разница между входным и выходным напряжением и чем больше ток, тем больше выделяется тепла и тем сильнее нужно охлаждение.
На пайку ушло около часа. В принципе хорошим тоном было бы сделать плату методом ЛУТ, но т.к. плата мне требуется только в одном экземпляре, не хотелось тратить время на проектирование платы.

Получился вот такой модуль:

После сборки проверил характеристики:

Схема практически не имеет защит (имеется в виду, что нет защиты от КЗ, защиты от переполюсовки, плавного старта, ограничения по току и т.д.), поэтому использовать ее нужно очень аккуратно. По той же причине не рекомендуется использовать подобные схемы в «лабораторных» блоках питания. Для этой цели лучше подойдут готовые микросхемы в корпусе ТО-220 на токи до 5А, например КР142ЕН22А. Либо как минимум для данной схемы нужно сделать дополнительный модуль для защиты от КЗ.


Схему можно назвать классической, как и большинство схем линейных стабилизаторов. Современные импульсные схемы имеют множество преимуществ, например: более высокий КПД, гораздо меньший нагрев, меньшие габариты и вес. В то же время линейные схемы проще освоить начинающим радиолюбителям, и если КПД и габариты не особо важны, они вполне годятся для питания устройств стабилизированным напряжением.

И конечно же ничто не сравниться с чувством, когда запитал какое-то устройство от самодельного источника питания, а линейные схемы для начинающих радиолюбителей более доступны, как ни крути. Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Стабилизаторы напряжения: классификация, схемы, параметры, достоинства

рис. 2.82 вПараметры стабилизаторов напряжения

Важнейшими параметрами стабилизатора напряжения являются коэффициент стабилизации Kст, выходное сопротивление Rвых и коэффициент полезного действия η.

Коэффициент стабилизации определяют из выражения Kст= [ ∆uвх/ uвх] / [ ∆uвых/ uвых]

где uвх, uвых — постоянные напряжения соответственно на входе и выходе стабилизатора; ∆uвх — изменение напряжения uвх; ∆uвых — изменение напряжения uвых, соответствующее изменению напряжения ∆uвх.

Таким образом, коэффициент стабилизации — это отношение относительного изменения напряжения на входе к соответствующему относительному изменению напряжения на выходе стабилизатора.

Чем больше коэффициент стабилизации, тем меньше изменяется выходное напряжение при изменении входного. У простейших стабилизаторов величина K

ст составляет единицы, а у более сложных — сотни и тысячи.

Выходное сопротивление стабилизатора определяется выражением Rвых= | ∆uвых/ ∆iвых|

где ∆uвых— изменение постоянного напряжения на выходе стабилизатора; ∆iвых— изменение постоянного выходного тока стабилизатора, которое вызвало изменение выходного напряжения.

Выходное сопротивление стабилизатора является величиной, аналогичной выходному сопротивлению выпрямителя с фильтром. Чем меньше выходное сопротивление, тем меньше изменяется выходное напряжение при изменении тока нагрузки. У простейших стабилизаторов величина Rвых составляет единицы Ом, а у более совершенных — сотые и тысячные доли Ома. Необходимо отметить, что стабилизатор напряжения обычно резко уменьшает пульсации напряжения.

Коэффициент полезного действия стабилизатора ηст — это отношение мощности, отдаваемой в нагрузку Рн, к мощности, потребляемой от входного источника напряжения

Рвх: ηст = Рн / Рвх

Традиционно стабилизаторы разделяют на параметрические и компенсационные.

Интересное видео о стабилизаторах напряжения:

Параметрические стабилизаторы

Являются простейшими устройствами, в которых малые изменения выходного напряжения достигаются за счет применения электронных приборов с двумя выводами, характеризующихся ярко выраженной нелинейностью вольт-амперной характеристики. Рассмотрим схему параметрического стабилизатора на основе стабилитрона (рис. 2.82). рис. 2.82 а и б
Проанализируем данную схему (рис. 2.82, а), для чего вначале ее преобразуем, используя теорему об эквивалентном генераторе (рис. 2.82, б). Проанализируем графически работу схемы, построив на вольт-амперной характеристике стабилитрона линии нагрузки для различных значений эквивалентного напряжения, соответствующих различным значениям входного напряжения (рис. 2.82, в). рис. 2.82 в


Из графических построений очевидно, что при значительном изменении эквивалентного напряжения uэ (на ∆uэ), а значит, и входного напряжения uвх, выходное напряжение изменяется на незначительную величину ∆uвых.

Причем, чем меньше дифференциальное сопротивление стабилитрона (т. е. чем более горизонтально идет характеристика стабилитрона), тем меньше ∆uвых.

 Определим основные параметры такого стабилизатора, для чего в исходной схеме стабилитрон заменим его эквивалентной схемой и введем во входную цепь (рис. 2.82, г) источник напряжения, соответствующий изменению входного напряжения ∆uвх (на схеме пунктир): Rвых= rд|| R0≈ rд, т.к. R0>> rд ηст = ( uвых· Iн) / ( uвх· Iвх) = ( uвых· Iн) / [ uвх( Iн + Iвх) ].

Kст= ( ∆uвх/ uвх

) : ( ∆uвых/ uвых) Так как обычно Rн>> rд Следовательно, Kст≈ uвых / uвх· [ ( rд+ R0) / rд]

Обычно параметрические стабилизаторы используют для нагрузок от нескольких единиц до десятков миллиампер. Наиболее часто они используются как источники опорного напряжения в компенсационных стабилизаторах напряжения. рис. 2.82 г

Компенсационные стабилизаторы

Представляют собой замкнутые системы автоматического регулирования. Характерными элементами компенсационного стабилизатора являются источник опорного (эталонного) напряжения (ИОН), сравнивающий и усиливающий элемент (СУЭ) и регулирующий элемент (РЭ).

Напряжение на выходе стабилизатора или некоторая часть этого напряжения постоянно сравнивается с эталонным напряжением.

 В зависимости от их соотношения сравнивающим и усиливающим элементом вырабатывается управляющий сигнал для регулирующего элемента, изменяющий его режим работы таким образом, чтобы напряжение на выходе стабилизатора оставалось практически постоянным.

В качестве ИОН обычно используют ту или иную электронную цепь на основе стабилитрона, в качестве СУЭ часто используют операционный усилитель, а в качестве РЭ — биполярный или полевой транзистор.

Чаще всего регулирующий элемент включают последовательно с нагрузкой. В этом случае стабилизатор называют последовательным (рис. 2.83, а).

рис. 2.83
Иногда регулирующий элемент включают параллельно нагрузке, и тогда стабилизатор называют параллельным (рис. 2.83, б. Здесь СУЭ и ИОН с целью упрощения не показаны). В параллельном стабилизаторе используется балластное сопротивление Rб, включаемое последовательно с нагрузкой.

В зависимости от режима работы регулирующего элемента стабилизаторы разделяют на непрерывные и импульсные (ключевые, релейные).

В непрерывных стабилизаторах регулирующий элемент (транзистор) работает в активном режиме, а в импульсных — в импульсном.

Рассмотрим типичную принципиальную схему непрерывного стабилизатора (рис. 2.84, а). рис. 2.84 а
Эта схема соответствует приведенной выше структурной схеме последовательного стабилизатора. Для того чтобы выполнить наиболее просто анализ этой схемы на основе тех допущений, которые были рассмотрены при изучении операционного усилителя,изобразим эту схему по-другому. При этом цепи питания операционного усилителя для упрощения рисунка изображать не будем. рис. 2.84 б
Из схемы (рис. 2.84, б) очевидно, что на элементах R2, R3, DA и VT построен неинвертирующий усилитель на основе ОУ с выходным каскадом в виде эмиттерного повторителя на транзисторе VT, а входным напряжением для него является выходное напряжение параметрического стабилизатора напряжения на элементах R1 и VD. В соответствии с указанными выше допущениями получаем:

uR3= uст, т.е. iR3· R3= uст

uR2 = uR3 – uвых

iR2 = − iR3 = − uст/ R3

Подставляя выражение для iR2 в предыдущее уравнение, получим − uст/ R3· R2= uст – uвых. Следовательно, uвых = uст· ( 1 + R2/ R3)

Последнее выражение в точности повторяет соответствующие выражения для неинвертирующего усилителя (входным напряжением является напряжение uст).

Полезно отметить, что ООС охватывает два каскада — на операционном усилителе и на транзисторе. Рассматриваемая схема является убедительным примером, демонстрирующим преимущество общей отрицательной обратной связи по сравнению с местной.

Основным недостатком стабилизаторов с непрерывным регулированием является невысокий КПД, поскольку значительный расход мощности имеет место в регулирующем элементе, так как через него проходит весь ток нагрузки, а падение напряжения на нем равно разности между входным и выходным напряжениями стабилизатора.

В конце 60-х годов стали выпускать интегральные микросхемы компенсационных стабилизаторов напряжения с непрерывным регулированием (серия К142ЕН). В эту серию входят стабилизаторы с фиксированным выходным напряжением, с регулируемым выходным напряжением и двухполярным и входным и выходным напряжениями. В тех случаях, когда через нагрузку необходимо пропускать ток, превышающий предельно допустимые значения интегральных стабилизаторов, микросхему дополняют внешними регулирующими транзисторами.

Некоторые параметры интегральных стабилизаторов приведены в табл. 2.1, а вариант подключения к стабилизатору К142ЕН1 внешних элементов — на рис. 2.85. рис. 2.85 Таблица 2.1
Резистор R предназначен для срабатывания защиты по току, а R1 — для регулирования выходного напряжения. Микросхемы К142УН5, ЕН6, ЕН8 являются функционально законченными стабилизаторами с фиксированным выходным напряжением, но не требуют подключения внешних элементов.

Импульсные стабилизаторы напряжения в настоящее время получили распространение не меньшее, чем непрерывные стабилизаторы.

Благодаря применению ключевого режима работы силовых элементов таких стабилизаторов, даже при значительной разнице в уровнях входных и выходных напряжений можно получить КПД, равный 70 − 80 %, в то время как у непрерывных стабилизаторов он составляет 30 − 50%.

В силовом элементе, работающем в ключевом режиме, средняя за период коммутации мощность, рассеиваемая в нем, значительно меньше, чем в непрерывном стабилизаторе, так как хотя в замкнутом состоянии ток, протекающий через силовой элемент, максимален, однако падение напряжения на нем близко к нулю, а в разомкнутом состоянии ток, протекающий через него, равен нулю, хотя напряжение максимально. Таким образом, в обоих случаях рассеиваемая мощность незначительна и близка к нулю.

Малые потери в силовых элементах приводят к уменьшению или даже исключению охлаждающих радиаторов, что значительно уменьшает массогабаритные показатели. Кроме того, использование импульсного стабилизатора позволяет в ряде случаев исключить из схемы силовой трансформатор, работающий на частоте 50 Гц, что также улучшает показатели стабилизаторов.

К недостаткам импульсных источников питания относят наличие пульсаций выходного напряжения.

Рассмотрим импульсный последовательный стабилизатор напряжения (рис. 2.86). рис. 2.86
Ключ S периодически включается и выключается схемой управления (СУ) в зависимости от значения напряжения на нагрузке. Напряжение на выходе регулируют, изменяя отношение tвкл / tвыкл, где tвкл, tвыкл — длительности отрезков времени, на которых ключ находится соответственно во включенном и выключенном состояниях. Чем больше это отношение, тем больше напряжение на выходе.

В качестве ключа S часто используют биполярный или полевой транзистор.

Диод обеспечивает протекание тока катушки индуктивности тогда, когда ключ выключен и, следовательно, исключает появление опасных выбросов напряжения на ключе в момент коммутации. LC-фильтр снижает пульсации напряжения на выходе.

Ещё одно интересное видео о стабилизаторах:

pue8.ru

Пять особенностей линейных стабилизаторов, о которых нужно знать

16 января

С первого взгляда линейные регуляторы (LDO) кажутся достаточно простыми компонентами, однако очень часто возникают ситуации, когда они работают нештатно. В данной статье рассматриваются пять особенностей стабилизаторов: поведение LDO при запуске, потребление LDO при малых входных напряжениях, особенности отклика LDO при изменении нагрузки, влияние собственного шума и PSRR стабилизатора на общий выходной шум, а также реализация входной защиты LDO. Понимание этих особенностей делает выбор стабилизатора более осознанным и упрощает процесс отладки. Приводятся примеры интегральных стабилизаторов производства Maxim Integrated, в которых учтены перечисленные особенности.

В настоящий момент выбор подходящего линейного стабилизатора зачастую заключается в просмотре бесконечных таблиц с применением параметрических фильтров. Какое выходное напряжение нужно? Каков максимальный нагрузочный ток? Каково предельно допустимое входное напряжение? Какой диапазон входных напряжений требуется? Какое следует выбрать корпусное исполнение? Какие габариты будут у компонентов обвязки? Перечень подходящих регуляторов может быть уменьшен с учетом дополнительных параметров. Например, что если нагрузка чувствительна к колебаниям напряжения питания? Тогда стабилизатор должен обладать очень малым собственным шумом и высоким коэффициентом подавления нестабильности питания (PSRR). Если же разрабатывается устройство с батарейным питанием, то потребуется регулятор со сверхмалым уровнем потребления.

С учетом перечисленных требований исходный список стабилизаторов сократится до нескольких подходящих моделей. Но это еще не все. Перед тем как сделать окончательный выбор, нужно ответить еще на пять вопросов:

  • Как регулятор ведет себя при запуске?
  • Останется ли ток потребления малым, если входное напряжение окажется на нижней границе рабочих напряжений (или даже меньше)?
  • Как ведет себя стабилизатор при изменении нагрузки?
  • Что является основным источником выходного шума: собственный шум стабилизатора или внешний шум из-за малого значения PSSR?
  • Как стабилизатор ведет себя при выключении?

Эти вопросы могут показаться не такими важными, пока не возникнут проблемы. Но когда проблемы появятся вы, скорее всего, почувствуете себя обманутым или, по крайней мере, недостаточно осведомленным. Придется потратить дополнительное время на устранение неполадок и, возможно, на доработку своей платы.

Попробуем пролить свет на эти вопросы. Возможно, предложенная информация будет полезна в ближайшем будущем при очередном выборе линейного регулятора.

Запуск

Многие стабилизаторы имеют вход разрешения, с помощью которого можно включать и выключать регулятор при необходимости экономии энергии. Обычно в таких стабилизаторах есть также функция плавного запуска (Soft Start). Плавный запуск предотвращает перегрузку регулятора при включении. Данная функция может быть реализована двумя способами.

Плавный запуск с ограничением тока

Первый способ – плавный запуск с ограничением тока (Current Soft Start). В большинстве регуляторов существует ограничение выходного тока. Функция плавного запуска заключается в плавном или пошаговом увеличении тока ограничения при запуске (рисунок 1). При этом выходное напряжение будет плавно нарастать, так как ток заряда выходного конденсатора оказывается меньше, чем максимально допустимый нагрузочный ток стабилизатора. Преимущество данного подхода заключается в том, что входной ток регулятора будет плавно увеличиваться согласно заданному шаблону, и помехи от пускового тока нагрузки не будут передаваться на вход стабилизатора.

Рис. 1. Временные диаграммы режимов плавного запуска с ограничением тока и напряжения

Рис. 1. Временные диаграммы режимов плавного запуска с ограничением тока и напряжения

Анализируя переходные процессы при включении стабилизатора, можно обнаружить, что на осциллограмме выходного напряжения есть точки перелома, в которых напряжение начинает уменьшаться. Рассмотрим эту особенность подробнее. После включения линейного регулятора происходит заряд выходного конденсатора и питание нагрузки. Если выходной ток превышает значение тока ограничения, напряжение на нагрузке падает ниже определенного уровня и происходит его возврат в состояние сброса. Далее цикл повторяется, и нагрузка то включается, то выключается. В конце концов, значение тока ограничения становится достаточно высоким, чтобы обеспечить необходимый ток, и схема начинает работать в штатном режиме.

Плавный запуск с ограничением напряжения

Второй способ – плавный запуск с ограничением напряжения (Voltage Soft Start). При таком подходе выходное напряжение увеличивается плавно и линейно, без каких-либо скачков при включении (рисунок 1). Подобное поведение также защищает нагрузку от повторных сбросов, так как напряжение пересекает пороговую точку сброса один раз.

В данном случае пусковой ток определяется выходной емкостью, скоростью нарастания выходного напряжения и током, потребляемым нагрузкой. Как правило, скорость нарастания выходного напряжения устанавливается на уровне, который обеспечивает пусковой ток в диапазоне 1…10% от максимального выходного тока (при использовании рекомендованного минимального выходного конденсатора). Установка пускового тока на уровне менее 10% позволяет использовать выходные конденсаторы большей емкости и компенсировать повышенный ток нагрузки. Недостатком системы запуска с ограничением напряжения является то, что входной ток зависит от нагрузки и не контролируется напрямую. А ее преимущество заключается в отсутствии множественных переходов нагрузки в состояние сброса.

На рисунке 1 представлено сравнение временных диаграмм режимов плавного запуска с ограничением тока и с ограничением напряжения.

Увеличение тока потребления при работе с малыми входными напряжениями

Если схема питается от аккумулятора, то величина собственного потребления стабилизатора имеет большое значение. Нагрузка может находиться в активном состоянии в течение краткого интервала времени, а потом надолго переходить в режим ожидания, экономя энергию. В этом случае время автономной работы будет в значительной степени определяться собственным потреблением регулятора. Если это так, вы, скорее всего, выберете линейный регулятор с минимальным питающим током.

Теперь представьте, что ваша аккумуляторная батарея разряжена до такой степени, что разница между входным и выходным напряжением стабилизатора становится минимальной. При работе в таком режиме стабилизатор старается как можно сильнее открыть внутренний силовой транзистор, чтобы обеспечить минимальное падение напряжения, даже если выходной ток нагрузки очень мал. Проблема заключается в том, что «усиленное» открывание транзистора приведет к увеличению потребления схемы управления затвором (рисунок 2). В результате режим ожидания превращается в режим быстрой разрядки батареи.

Рис. 2. Увеличение тока потребления при работе с малыми входными напряжениями из-за роста потребления схемы управления затвором силового транзистора

Рис. 2. Увеличение тока потребления при работе с малыми входными напряжениями из-за роста потребления схемы управления затвором силового транзистора

Подобное увеличение тока при работе с малыми входными напряжениями – не редкость даже для самых лучших стабилизаторов. Двукратный рост потребления не является чем-то необычным, а некоторые регуляторы характеризуются увеличением потребления в 10 раз и более. Иногда информация об увеличении потребляемого тока при работе с малыми входными напряжениями приводится в документации в виде таблиц и графиков. Однако чаще всего эта информация отсутствует.

Если в конкретном приложении величина тока потребления имеет большое значение, следует выбирать стабилизатор, для которого в документации приведена подробная информация об этом параметре или самостоятельно измерять уровень тока, чтобы убедиться, что регулятор отвечает предъявляемым требованиям.

Отклик стабилизатора на изменение нагрузки

Линейные регуляторы имеют возможность стабилизации выходного напряжения при изменении нагрузки. Когда происходит изменение нагрузки, напряжение на затворе встроенного силового транзистора также должно измениться. Время, необходимое для того чтобы напряжение на затворе достигло нового значения, обычно определяет уровень перерегулирования и недорегулирования.

Обычно быстрый переход к полной нагрузке является худшим случаем с недорегулированием выходного напряжения. Перед сравнением динамических характеристик регуляторов всегда следует проверять значения начальных токов. Переход от нагрузки 10% к нагрузке 100% будет более быстрым, чем переход от начальной нагрузки 1% к нагрузке 100%, так как в первом случае выходное напряжение будет ближе к конечному значению. Гораздо труднее добиться хороших показателей при переходе от состояния с нулевой нагрузкой к полной нагрузке.

Можно предположить, что поддержание некоторого минимального тока нагрузки поможет избежать значительной задержки при включении максимальной нагрузки. Да, поможет, но это не всегда является хорошим решением. Дело в том, что при обратном переходе от полной нагрузки к минимальной часто возникает перерегулирование выходного напряжения. При этом регулятор находится в наиболее уязвимом состоянии, в котором его внутренний силовой транзистор полностью отключен. Если в этот момент нагрузка вновь увеличится, то будет наблюдаться недорегулирование, которое окажется еще более значительным, чем при первоначальном переходе.

Если работа схемы предполагает наличие быстрых перепадов нагрузки, следует проверять динамические характеристики стабилизаторов с использованием описанного выше алгоритма. На рисунке 3 показано ухудшение отклика регулятора при повторном быстром увеличении нагрузки.

Рис. 3. Ухудшение отклика регулятора при повторном быстром увеличении нагрузки

Рис. 3. Ухудшение отклика регулятора при повторном быстром увеличении нагрузки

Собственный шум стабилизатора и коэффициент подавления помех по питанию (PSRR)

Регуляторы, предназначенные для создания малошумящих приложений, как правило, обладают и высоким значением коэффициента подавления нестабильности питания (PSRR). Это логично, так как чувствительность нагрузки к помехам не зависит от причины их возникновения.

Если стабилизатор подключен к импульсному регулятору, то малый коэффициент PSRR может создать больше проблем, чем собственный выходной шум стабилизатора. Рассмотрим случай совместного использования стабилизатора с понижающим импульсным регулятором для питания чувствительной к шуму нагрузки. Если на частоте 100 кГц пульсации выходного напряжения импульсного преобразователя составляют 50 мВ (от пика до пика), а величина PSRR линейного регулятора на той же частоте 100 кГц равна 60 дБ, то на выходе стабилизатора будут наблюдаться пульсации 50 мкВ (от пика до пика), что эквивалентно среднеквадратичному выходному шуму 15 мкВ. Допустим, выбран малошумящий стабилизатор, для которого в полосе частот 10 Гц…100 кГц собственный выходной шум составляет менее 5 мкВ (среднеквадратичное значение). Тогда окажется, что шум из-за входных пульсаций от DC/DC-преобразователя и малого PSRR будет в три раза выше собственного шума стабилизатора (рисунок 4).

Рис. 4. Общий выходной шум определяется вкладом PSRR

Рис. 4. Общий выходной шум определяется вкладом PSRR

При работе с высокими выходными напряжениями собственный шум линейного регулятора может преобладать над PSRR. Это связано с тем, что собственный шум увеличивается в соответствии с делителем обратной связи. Рассмотрим схему, в которой линейный регулятор используется для преобразования зашумленного напряжения 17 В от повышающего DC/DC-преобразователя в напряжение 16 В с уровнем пульсацией менее 100 мВ. Если PSRR стабилизатора на частоте переключений составляет 60 дБ, то пульсации 50 мВ (от пика до пика) от повышающего преобразователя будут ослаблены до 50 мкВ (от пика до пика) или 15 мкВ (ср.кв.) на выходе. Шум 5 мкВ (ср.кв.) встроенного опорного источника может показаться малым и не представляющим опасности. Однако если сигнал обратной связи уменьшается до 1,25 В, а напряжение на резисторе обратной связи 16 В, то выходной шум составит 5 мкВ × (16 В/1,25 В) или 64 мкВ (ср.кв). Таким образом, собственный шум стабилизатора будет вносить основной вклад в общий выходной шум (рисунок 5).

Рис. 5. Увеличение выходного шума при работе с высокими напряжениями

Рис. 5. Увеличение выходного шума при работе с высокими напряжениями

При поиске оптимального стабилизатора для чувствительной нагрузки следует учитывать как выходной шум, так и PSRR.

Защита входа

Обычно в линейных регуляторах присутствует обратный диод, встроенный в силовой МОП-транзистор. Из-за этого диода выходное напряжение не может превышать входное напряжение больше, чем на 0,7 В. В большинстве случаев этот диод не влияет на работу стабилизатора, но есть два случая, когда он может создать проблемы.

Защита от обратного напряжения

Иногда возникают ситуации, когда на вход устройства подается напряжение питания обратной полярности, например, при использовании стандартных батареек. Хотя разъем для установки батареек в отсеке питания имеет особую формовку выводов и защищает от неправильного подключения, тем не менее, он не гарантирует полную защиту и допускает возможность ошибки с возникновением кратковременных обратных напряжений.

Защита от обратной полярности позволяет напряжению на входе быть меньше напряжения на выводе земли без существенного увеличения тока. Для этого необходимо отключить встроенный диод силового транзистора с помощью дополнительного последовательного ключа. У большинства регуляторов на входе есть диоды, защищающие от обратной полярности и электростатических разрядов (ESD). Их также необходимо исключить и использовать специализированную схему защиты (рисунок 6).

Рис. 6. Защита от обратного напряжения

Рис. 6. Защита от обратного напряжения

Примером стабилизатора с защитой от обратной полярности является MAX1725, который способен выдерживать обратные напряжения до -12 В без значительного увеличения входного тока.

Защита от обратного тока

Очень часто защиту от обратного тока в линейных регуляторах путают с защитой от обратного напряжения. Хотя для ее реализации также требуется блокировка встроенного диода силового транзистора, тем не менее, механизм защиты имеет значительные отличия. На рисунке 7 показано как работает схема защиты от обратного тока.

Рис. 7. Защита от обратного тока

Рис. 7. Защита от обратного тока

Рассмотрим случай, когда значительная емкостная нагрузка, например, аудиосистема со множеством развязывающих конденсаторов, питается от линейного регулятора. Предположим также, что линейный регулятор, в свою очередь, питается от мощного понижающего преобразователя. Кроме того, при выключении выход импульсного преобразователя замыкается на землю. Вполне ожидаемо, что при первом же выключении линейный регулятор выйдет из строя, так как конденсаторы нагрузки начнут одновременно разряжаться, и ток будет протекать через встроенный диод силового транзистора стабилизатора.

В линейных регуляторах с защитой от обратного тока эта проблема решена. В них внутренний диод отключается, если уровень входного напряжения падает ниже выходного. Если до этого стабилизатор находился в рабочем состоянии, то силовой транзистор отключится не сразу, и некоторое время ток будет течь в обратном направлении. Стоит отметить, что данная функция защищает от протекания тока от выхода ко входу, и не ограничивает входной ток при приложении входного напряжения обратной полярности.

Примером стабилизатора с защитой от обратного тока является MAX8902, который блокирует обратный разрядный ток выходных конденсаторов нагрузки, если вход закорочен на землю.

Заключение

Рассмотренные в статье особенности линейных регуляторов могут оказаться чрезвычайно важными для многих приложений. К сожалению, они редко учитываются в параметрическом поиске. Кроме того, по предоставляемой документации не всегда удается определить, какой набор функций имеет тот или иной стабилизатор. Тем не менее, знание возможных потенциальных проблем делает выбор оптимального регулятора более осознанным.

Оригинал статьи

•••

Наши информационные каналы

www.compel.ru

1. Линейные стабилизаторы напряжения. Параметрический стабилизатор.

Схема представляет делитель напряжения, состоящий из резистора R0 и стабилитрона VD. Нагрузочный резистор Rн включен параллельно стабилитрону. Поэтому в режиме стабилизации, когда напряжение стабилитрона почти постоянно, постоянным будет и напряжение на нагрузке.

Нагрузочная характеристика линейной подсхемы представляет прямую, проходящую через точки, соответствующие режимам холостого хода Uxx = βUвx и короткого замыкания Iкз = Uвх / R0 . Здесь β = Rн /( R0 + Rн ).

В параметрических стабилизаторах напряжения в качестве

регулирующих используют нелинейные элементы, имеющие участок ВАХ, на

котором напряжение остается неизменным при изменении тока. Такой участок

имеет обратная ветвь ВАХ стабилитрона.

Для поддержания режима стабилизации сопротивление R0

Коэффициент стабилизации определяется по формуле

Плюсы: простота и надежность, ток до неск. десятков миллиампер Минусы: КПД не более 50%, узкий диапазон напряжения.

2. Линейные стабилизаторы напряжения. Компенсационный стабилизатор.

Схема работает следующим образом. Предположим, что по каким-

либо причинам выходного напряжение стабилизатора U2 уменьшилось. При этом сигнал ошибки, равный разности напряжения на стабилитроне VD1 и на выходе делителя напряжения R1 – R2 увеличится. Это приведет к увеличению тока базы. Увеличится и ток эмиттера регулирующего транзистора до величины, при которой выходное напряжение примет первоначальное значение.

Расчет стабилизатора выполняется в следующем порядке. 1. Определяем минимальное входное напряжение с помощью соотношения

2. По заданным значениям Uвыхmaх , Uвыхmin , I нma выбираем тип транзистора, реализующего регулирующий элемент (РЭ).

3. Выбираем стабилитрон из условия Uст =Uвыхmin –(2 ÷3 )В.

4. Рассчитываем сопротивление резистора R0 по формуле R0 = (2 ÷3 )/Iстmin. Здесь Iстmin – минимальный ток стабилитрона, мА. 5. Рассчитываем суммарное сопротивление делителя напряжения из условия, что ток делителя должен составлять в номинальном режиме 5 – 10 мА. Сопротивления резисторов делителя определяются выражениями RΣ = R1 + R2 ;

3. Линейные стабилизаторы напряжения. Интегральные стабилизаторы.

Простые стабилизаторы выполнены в виде законченных устройств(вход-выход-земля). Они обычно бывают на 5-24В с током до 1А. А интегральные стабилизаторы имеют встроенные механизмы ограничения выходного тока и защиту от перегрева. Упрощенная схема ИС: VD1 – источник опорного напряжения

VT1+VT2 – усилитель ошибки (дифусилитель на транзисторах)

VT4+VT5 – регулирующий элемент

R1 и R2 образуют цепь отрицательной обратной связи VT3+R5 – ограничитель тока

Выходное напряжение стабилизатора

4. Импульсные источники напряжения. Повышающий преобразователь.

Он относится к классу так называемых обратноходовых преобразователей.

Его работу можно разделить на 2 фазы по ключу: 1.Ключ замкнут(активная): энергия источника напряжения E передается не в нагрузку, а запасается в индуктивности L.

2.Ключ разомкнут(пассивная): к нагрузке RН через диод D оказывается приложенной сумма напряжений источника E и наведенной в индуктивности ЭДС. Выходное напряжение в такой схеме всегда оказывается выше входного. Энергия, накопленная в индуктивности, полностью или частично отдается в нагрузку. Такой тип преобразователя называется обратноходовым, так как отдача энергии в нагрузку происходит в пассивной фазе, на «обратном ходу». Диод D нужен для предотвращения шунтирования выходного напряжения замкнутым ключом. Емкость C сглаживает «провалы» напряжения на нагрузке в активной фазе.

В данном случае за время пассивной фазы индуктивность не отдает всю запасенную энергию в нагрузку. Это называется режимом непрерывного тока:

studfile.net

Введение в теорию линейных стабилизаторов

Линейный стабилизатор является исходной формой стабилизирующих источников питания. Для понижения уровня входного напряжения до стабилизированного выходного в нем используется переменная проводимость активного электронного элемента. При этом линейный стабилизатор теряет много энергии в виде тепла и потому нагревается.

Линейные источники питания занимают значительную нишу в приложениях, где невысокий КПД таких источников не играет особой роли. К таким приложениям относится стационарное наземное оборудование, для которого принудительное воздушное охлаждение — не проблема. Сюда же относятся приборы, в которых измеритель настолько чувствителен к электрическому шуму, что требует электрически "тихого" источника питания. Среди таких приборов можно назвать аудио- и видеоусилители, радиоприемники и т.п. Линейные стабилизаторы популярны также в качестве локальных, встроенных в плату стабилизаторов. В данном случае плате требуется лишь несколько ватт, поэтому еще несколько ватт, ушедших в тепло, могут быть нейтрализованы с помощью простого радиатора. Если требуется диэлектрическая изоляция от входного источника переменного тока, то она обеспечивается трансформатором переменного тока или магистральной системой электроснабжения.

Обычно линейные стабилизаторы особенно полезны для приложений источников питания, требующих не более 10 Вт выходной мощности. При выходной мощности более 10 Вт обязательный теплоотвод становится столь громоздким и дорогостоящим, что более привлекательными становятся импульсные источники питания.

Принцип работы линейного стабилизатора

Все источники питания — будь то линейные или более сложные импульсные — работают по одному и тому же базовому принципу. Все источники питания имеют в своей основе замкнутый контур отрицательной обратной связи. Единственное назначение этого контура — удерживать постоянное значение выходного напряжения. На рис. 2.1 показаны главные составляющие последовательного линейного стабилизатора.

Рис. 2.1. Базовый линейный стабилизатор

Линейные стабилизаторы бывают только понижающими. Это означает, что входное напряжение источника должно быть выше, чем требуемое выходное напряжение. Существует два типа линейных стабилизаторов: параллельные (shunt) и последовательные (series-pass). Параллельный стабилизатор (стабилизатор с параллельным включением регулирующего элемента) — это стабилизатор напряжения, подключенный параллельно нагрузке. Источник нерегулируемого тока соединен с источником более высокого напряжения, параллельный стабилизатор принимает выходной ток для поддержания постоянного напряжения на нагрузке с учетом переменного входного напряжения и тока нагрузки. Распространенным примером такого стабилизатора является стабилизатор на стабилитроне. Последовательный линейный стабилизатор более эффективен, чем параллельный, и в качестве последовательно включенного регулирующего элемента использует активный полупроводник между входным источником и нагрузкой.

Последовательно включенный проходной элемент работает в линейном режиме. Это означает, что он не проектировался для работы в полностью включенном (ON) или полностью выключенном (OFF) режиме, а работает в "частично включенном" режиме. Контур отрицательной обратной связи определяет степень электропроводности, которую должен принимать проходной элемент для обеспечения требуемого уровня выходного напряжения.

Основой контура отрицательной обратной связи является операционный усилитель с большим коэффициентом усиления, называемый усилителем напряжения ошибки. Его назначение— постоянно сравнивать разницу между высокостабильным опорным напряжением и выходным напряжением. Если эта разница составляет хотя бы милливольты, то выполняется корректировка электропроводности проходного элемента. Стабильное опорное напряжение подается на неинверсный вход операционного усилителя и обычно ниже, чем выходное напряжение. Выходное напряжение делится до уровня опорного и подается на инверсный вход операционного усилителя. Таким образом, при номинальном выходном напряжении центральная точка делителя выходного напряжения идентична опорному напряжению.

Усиление усилителя отклонения обеспечивает напряжение, соответствующее сильно увеличенной разнице между опорным и выходным напряжениями (напряжение ошибки). Напряжение ошибки непосредственно управляет электропроводностью проходного элемента, поддерживая тем самым номинальное выходное напряжение. С увеличением нагрузки выходное напряжение падает, что приводит к повышению выходной мощности усилителя, а это обеспечивает больший ток к нагрузке. Аналогично, при уменьшении нагрузки выходное напряжение будет расти, на что усилитель ошибки ответит снижением тока через проходной элемент на нагрузку.

Скорость, с которой усилитель ошибки отвечает на любые изменения на выходе, и насколько точно поддерживается требуемый уровень выходного напряжения, зависит от компенсации контура обратной связи усилителя ошибки. Компенсация обратной связи управляется размещением элементов внутри делителя напряжения и между отрицательным входом и выходом усилителя ошибки. Его конструкция диктует, насколько выполняется усиление при постоянном токе, что, в свою очередь, определяет точность выходного напряжения. Он также определяет степень усиления при повышенной частоте и полосе пропускания, что в свою очередь определяет время, затрачиваемое на реакцию на изменения выходной нагрузки, или продолжительность переходных процессов.

Как видите, принцип действия линейного стабилизатора очень прост. Точно такая же цепь присутствует во всех стабилизаторах, включая более сложные импульсные стабилизаторы. Контур обратной связи по напряжению выполняет конечную функцию источника питания: поддерживает уровень выходного напряжения.

nauchebe.net

Как работает стабилизатор напряжения - принцип действия

Стабилизатором напряжения называется устройство, к которому подключается напряжение на его вход, с неустойчивыми и нестабильными свойствами для нормальной работы потребителей. На выходе прибора напряжение имеет необходимые качества и свойства, способствующие нормальному функционированию нагрузки потребителей.

Стабилизаторы постоянного тока

Питание сети постоянного тока требует выравнивания при входном напряжении ниже или выше допустимого предела. При протекании тока по стабилизатору, оно выравнивается до необходимой величины. Также схему стабилизатора можно выполнить со сменой полярности питания.

Линейные

Такой прибор является делителем, на который поступает нестабильное напряжение, а на его выходе напряжение выравнивается и имеет необходимые свойства. Его принцип действия состоит в постоянном изменении значения сопротивления для создания выровненного питания на выходе.

Достоинства:

  • При эксплуатации отсутствуют помехи.
  • Простое устройство с малым числом деталей.

Недостатки:

  • При значительной разнице выходящего и входящего питания линейный стабилизатор показывает малый КПД, так как значительная часть производимой мощности переходит в тепло и расходится на сопротивлении.

Параметрический

Такое исполнение прибора с контрольным элементом, подключенным параллельно нагрузке, выполнено на полупроводниковых и газоразрядных стабилитронах.

По стабилитрону проходит ток, который выше в десять раз тока на резисторе. Поэтому такая схема подходит для стабилизации питания только в маломощных устройствах. Чаще всего его применяют в качестве составного компонента преобразователей тока со сложной конструкцией.

Последовательный

Работа прибора видна на изображенной схеме.

Эта схема соединяет два компонента:

  1. Биполярный транзистор, повышающий ток. Он является эмиттерным повторителем.
  2. Параметрический стабилизатор, рассмотренный выше.

Выходное напряжение не зависит от проходящего по стабилитрону тока. Однако оно зависит от вида вещества полупроводника. По причине сравнительной независимости этих величин выходное напряжение получается устойчивым.

При протекании по транзистору напряжение на выходе прибора повышается. При применении одного транзистора напряжение может не удовлетворить потребителя. В этом случае выполняют прибор из нескольких транзисторов, чтобы повысить ток до необходимой величины.

Компенсационный последовательный

Компенсационный последовательный стабилизатор имеет обратную связь. В нем выходное напряжение сравнивается с эталоном. Разница между ними нужна для создания сигнала устройству, контролирующему напряжение.

С сопротивления снимается некоторое количество выходного напряжения, сравнивающееся с основным значением стабилитрона. Эта разница поступает на усилитель и подается на транзистор.

Устойчивое функционирование создается при сдвиге фаз. Так как часть напряжения на выходе поступает на усилитель, то оно сдвигает фазу на угол 180 градусов. Транзистор, подключенный по типу усилителя, фазы не сдвигает, и петлевой сдвиг равен 180 градусов.

Импульсные

Электрический ток, обладающий неустойчивыми свойствами, с помощью коротких импульсов поступает на устройство накопления стабилизатора, которым является конденсатор или катушка.

Накопленная энергия далее выходит на потребитель с другими свойствами. Есть два способа стабилизации:

  1. Управление длиной импульсов.
  2. Сравнение выходного напряжения с наименьшим значением.

Импульсный стабилизатор может изменять напряжение с разными результатами. Их делят на виды:

  • Инвертирующий.
  • Повышающе-понижающий.
  • Повышающий.
  • Понижающий.

Достоинства:

  • Малая потеря энергии.

Недостатки:

  • Помехи в виде импульсов на выходе.

Стабилизаторы переменного напряжения

Такие приборы предназначены для выравнивания переменного напряжения независимо от его параметров входа. Выходное напряжение должно быть в виде идеальной синусоиды, независимо от входных дефектов питания. Различают несколько видов стабилизаторов

Накопители

Это стабилизаторы, накапливающие энергию от входного источника, а далее энергия создается снова, однако уже с постоянными параметрами.

Двигатель-генератор

Принцип работы стабилизатора напряжения такого типа состоит в изменении электроэнергии в кинетический вид, применяя электродвигатель. Далее генератор снова производит обратное изменение, уже с постоянными параметрами.

Основным компонентом системы является маховик, накапливающий энергию и выравнивающий напряжение. Он соединен с подвижными элементами генератора и двигателя, имеет большую массу, инерцию, которая сохраняет быстродействие. Так как скорость маховика постоянная, то напряжение также будет постоянным, даже при малых перепадах напряжения на входе.

Феррорезонансный

Прибор состоит:

  • Конденсатор.
  • Катушка с ненасыщенным сердечником.
  • Катушка индуктивности с насыщенным сердечником.

К катушке с сердечником насыщенным приложено постоянное напряжение, и не зависит от тока, поэтому можно подобрать данные второй катушки и емкости для стабилизации питания в необходимых пределах.

Работа такого устройства сравнивается с качелями. Их трудно сразу остановить, или сделать скорость качания выше. Качели также не нужно постоянно подталкивать, так как инерция делает свое дело. Поэтому могут быть значительные падения и обрыв питания.

Инверторный

Схема такого прибора состоит:

  • Преобразователь напряжения.
  • Микроконтроллер.
  • Емкость.
  • Выпрямитель с регулятором мощности.
  • Фильтры входа.

Принцип работы инверторного стабилизатора заключается в протекании 2-х процессов:

  1. Вначале входное переменное напряжение изменяется в постоянное при прохождении по выпрямителю и корректору. При этом электроэнергия накапливается в емкостях.
  2. Далее постоянное напряжение изменяется в переменное на выходе. Из емкости ток течет к инвертору, трансформирующему ток в переменный с постоянными данными.

Корректирующие

  • Электромагнитный, который имеет отличие от феррорезонансного отсутствием емкости, и пониженной мощностью.
  • Электромеханический и электродинамический.
  • Релейный.

ostabilizatore.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о