Заземление 10 ом: Сопротивление заземления

Содержание

Сопротивление заземления

Сопротивление заземления (сопротивление растеканию электрического тока) определяется как величина "противодействия" растеканию электрического тока в земле, поступающего в неё через заземлитель.

Измеряется в Ом и должно иметь минимально низкое значение. Идеальный случай - нулевая величина, что означает отсутствие какого-либо сопротивления при пропускании "вредных" электротоков, что гарантирует их ПОЛНОЕ поглощение землей.

Так как идеала достигнуть невозможно, все электрооборудование и электроника создаются исходя из некоторых нормированных величин сопротивления заземления = 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом

    При подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора) должно быть не более 4 Ом (ПУЭ 1.

    7.101). Данное условие выполняется без каких-либо дополнительных мероприятий при правильном заземлении источника тока (трансформатора либо генератора)

Подробнее об этом на странице "Заземление дома".

  • при подключении газопровода к дому должно выполняться стандартное требование для заземления дома. Однако из-за использования опасного оборудования необходимо выполнять локальное заземление с сопротивлением не более 10 Ом
    (ПУЭ 1.7.103; для всех повторных заземлений)

    Подробнее об этом на странице "Заземление газового котла / газопровода".


  • для заземления, использующегося для подключения молниеприёмников, сопротивление заземления должно быть не более 10 Ом (РД 34.21.122-87, п. 8)

    Подробнее об этом на странице "Молниезащита и заземление".


  • для источника тока (генератора или трансформатора) сопротивление заземления должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока (ПУЭ 1.
    7.101)

  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.

  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление
    не более 2 или 4 Ом

  • для подстанции 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)

Приведённые выше нормы сопротивления заземления справедливы для нормальных грунтов с удельным электрическим сопротивлением
не более 100 Ом*м (например, глина / суглинки).

Если грунт имеет более высокое удельное электрическое сопротивление - то часто (но не всегда) минимальные значения сопротивление заземления повышаются на величину 0,01 от удельного сопротивления грунта.

Например, при песчаных грунтах с удельным сопротивлением
500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S повышается в 5 раз - до 150 Ом (вместо 30 Ом).

Заземление газового котла,заземление газа,заземление котла,заземление газового оборудования,заземление для газа

Требования к качеству заземления:        

Приведённое значение* сопротивления необходимое для подключения газового котла/ газопровода должно быть:

  • в обычном глинистом грунте не более 10 Ом

    (при линейном напряжении 220 В источника однофазного тока или при линейном напряжении 380 В источника трехфазного тока) 

    (ПУЭ 1.7.103; для всех повторных заземлений)

  • в песчаном грунте не более 50 Ом

    (при линейном напряжении 220 В источника однофазного тока или при линейном напряжении 380 В источника трехфазного тока)

    (ПУЭ 1.7.103; для всех повторных заземлений для грунтов с с сопротивлением более 500 Ом*м)

Не смотря на то, что пункт ПУЭ 1. 7.103 описывает менее жесткие нормы для сопротивления каждого из повторных заземлений (в обычном грунте не более 30 Ом) - представители газовых компаний требуют выполнения заземления с сопротивлением не более 10 Ом в обычном грунте.

Данное требование разумно и связано с распространённым явлением: отсутствием повторного заземления каждого столба воздушной линии (ВЛ).

Таким образом, для компенсации каких-либо нарушений с стороны электосети -  непосредственно на месте необходимо обеспечить сопротивление заземления не более 10 Ом и этим выполнить тре

бования ПУЭ по общему сопротивлению растеканию заземлителей PEN-проводника каждой ВЛ.


* Приведённое значение - это значение сопротивления во все времена года, т.е. зимой, весной, летом, осенью. Исходя из этого вводится поправочный коэффициент, равный 1,5. Таким образом приведённое значение равно, измеренное значение умноженное на поправочный коэффициент. Следовательно, что бы иметь в любое время года значение 10 Ом, необходимо при монтаже получить значение 10 Ом/1,5 = 6,6 Ом.
                 Комплект для заземления:

Использование современных технологий позволит быстро и легко построить

эффективное заземление, которое будет служить очень долго, не требуя

 обслуживания  и ремонта. 

В дополнение к этому Вам не придется перекапывать свой участок вдоль и поперёк для монтажа горизонтальных заземлителей из стальных уголков и получить качественное заземление на компактной пощади (0.5 х 0.5 м)  либо в подвале дома, либо вблизи него.


                                                         
                     

Готовые комплекты заземления являются лишь рекомендованными наборами. В каждом индивидуальном случае возможен подбор Вашего набора из отдельных комплектующих.

Универсального комплекта может и не хватить для достижения нужного сопротивления, а может остаться и лишние штыри в зависимости от типа грунта и его влажности, но в 9 случаев из 10, 15 метрового  комплекта вполне достаточно для заземления под газ.

                                                                                                                                                                                                                                                                                      

Сопротивление заземляющего устройства | Заметки электрика

Здравствуйте, дорогие посетители сайта заметки электрика.

Сегодня мы узнаем какое сопротивление заземляющего устройства удовлетворяет требованиям нормативных документов.

Итак, в прошлой статье мы рассмотрели как правильно выполнить монтаж контура заземления. Но для каждого контура заземления имеется свое требование к сопротивлению.

Сопротивление заземляющего устройства, еще его называют сопротивление растекания электрического тока — это величина, которая прямо пропорциональна напряжению на заземляющем устройстве, и обратно пропорциональна току растекания в «землю».

Единица измерения — Ом.

И чем меньше это значение, тем лучше.  В идеальном случае — сопротивление заземляющего устройства должно быть равно нулю. Но реально добиться такого сопротивления просто невозможно.

И как всегда, по нормам сопротивления заземлений, обратимся к нормативному документу ПУЭ 7 издания, к главе 1.7.

ПУЭ. Раздел 1. Глава 1.7.

Для каждой электроустановки и ее уровня напряжения, в ПУЭ четко определены сопротивления заземления. 

В данной статье мы рассмотрим нормативы сопротивлений только тех электроустановок, которые нам интересны, т.е. бытового напряжения 380 (В) и 220 (В).

Вышеперечисленные нормы сопротивления заземляющих устройств относятся к грунтам, идеально подходящим для монтажа контура заземления (глина, суглинок, торф).

P.S. А на десерт, интересное видео…

macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,40,0">

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Измерение сопротивления заземления в Санкт-Петербурге | Услуги

Замер сопротивления заземления (любых, в том числе в частных домах , самодельных заземлений)- это ваша безопасность!

самостоятельно забитые штыри или закопанные рамки не показатель что сопротивление вашей заземляющей конструкции укладывается в рамки НОРМ!

Требования применяемые к заземлению :

С подключением к электросетям имеющим 220 Вольт / 380 Вольт, заземление необходимо иметь для частных домов с рекомендованным сопротивлением не больше, чем 30 Ом.

стандартное требование для заземления дома при выполнении подключения к дому газопровода необходимо выполнять локальное заземление с сопротивлением не более 10 Ом, из-за использования опасного типа оборудования .

Сопротивление заземления быть должно не больше чем 10 Ом (РД 34.21.122-87, п. 8) для заземления, которое используется при подключении молниеприемников.

цена 1000р + бензин по области.
замер производится по методике с помощью цифрового прибора нового поколения.

!!!!!ВНИМАНИЕ!!!
омметром сопротивление заземление не измеряется!!!!

ПУЭ
Про сопротивление повторного заземления воздушного ввода в дом читаем в п. 1.7.102-1.7.103:

«1.7.102. На концах ВЛ или ответвлений от них длиной более 200 м, а также на вводах ВЛ к электроустановкам, в которых в качестве защитной меры при косвенном прикосновении применено автоматическое отключение питания, должны быть выполнены повторные заземления PEN-проводника...»

«1.7.103. Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.»

Сопротивление заземления молниезщиты - нормативы, периодичность замеров

Принцип действия громоотвода - перехват молнии и перенаправление разряда в землю для нейтрализации. Но эффективность всей системы зависит от величины сопротивления заземления молниезащиты, то есть от способности грунта поглощать электрический ток. Параметр измеряется в Ом, должен стремиться к нулю, однако, структура почв не позволяет достичь идеального значения.

Нормы для сопротивления заземления молниезащиты

В Инструкции по устройству молниезащиты РД 34.21.122-87 регламентированы максимальные значения противодействия растеканию тока для различных категорий зданий и сооружений, с учетом удельного сопротивления грунта:

  • I и II категория - 10 Ом;
  • III категория - 20 Ом;
  • Если электропроводность превышает 500 Ом*м - 40 Ом;
  • Наружные установки - 50 Ом.

Сопротивление падает в 2-5 раз при увеличении силы тока молнии.

Качество заземления молниезащиты

Ключевой параметр - сопротивление заземления - зависит от конфигурации заземлителя и удельного сопротивления почвы. Для вычисления значения существует специальная формула. Но для готовых заземлителей задача значительно упрощается: производитель предоставляет заранее подсчитанный коэффициент, который достаточно умножить на удельное сопротивление грунта, чтобы получить искомое значение.

Удельное сопротивление для различных грунтов

Значение прежде всего зависит от влажности и состава почвы, плотности прилегания пластов, наличия кислот, солей и щелочей. Вычисляется путем проведения геологических изысканий. Это комплекс сложных мероприятий, поэтому при расчетах принято использовать справочные величины:

  • Песчаный грунт, увлажненный поземными водами - 10-60 Ом*м;
  • Песок сухой - 1500-4200 Ом*м;
  • Бетон - 40-1000 Ом*м;
  • Чернозем - 60 Ом*м;
  • Глина - 20-60 Ом*м;
  • Илистая почва - 30 Ом*м;
  • Садовая земля - 40 Ом*м;
  • Супесь - 150 Ом*м;
  • Суглинок полутвердый - 100 Ом*м;
  • Солончак - 20 Ом*м.

На практике сопротивление молниезащиты всегда будет ниже расчетного значения: при погружении электрода в землю значительно снижается удельное сопротивление из-за уплотнения и увлажнения почвы грунтовыми водами.

Требования к заземлителю

Согласно РД 34.21.122-87 для заземления необходимо не менее трех электродов вертикального типа. Расстояние между ними — как минимум в два раза больше, чем глубина погружения. Кроме того, СО 153-34.21.122-2003 требует, чтобы расстояние от стен здания до электродов было не менее 1 метра.

Уменьшение сопротивления заземления

Поскольку удельное сопротивление почвы — величина относительно постоянная, для увеличения электропроводности необходимо изменять конфигурацию заземлителя: увеличивать площадь соприкосновения электродов с грунтом. Можно удлинить проводник или создать контур заземления: несколько отдельно стоящих электродов соединяются в единую сеть. В расчет берется сумма площадей.

Современные заземлители — эффективны и просты в установке. Электроды заглубляются до 30 метров. Благодаря этому удается значительно уменьшить общую площадь, компактно разместить заземлитель молниезащиты в условиях ограниченного пространства. Для монтажа не нужны специальные инструменты, штыри стыкуются между собой муфтой с резьбовым соединением. Медное покрытие электродов обеспечивает защиту от коррозии, увеличивая срок службы до 100 лет!

Измерение сопротивления заземления и периодичность проверок

Производятся с помощью специальных приборов (измерительных комплексов) по заданной схеме измерений в нескольким точках смонтированного контура молниезащиты. Данные показаний заносятся в специальную форму - протокол проверки сопротивлений заземлителей и  заземляющих устройств.

Замеры производят всегда по окончании монтажа системы молниезащиты и заземления, а также после выполнения ремонтных работ как на устройствах молниезащиты, так и на самих защищаемых объектах и вблизи них. Полученные данные заносят в акты (протоколы проверок), паспорта заземляющих устройств и журналы учета.

Примеры протоколов и паспортов можно посмотреть по этой ссылке.

Кроме внеочередных мероприятий существует регламент проведения измерения значений сопротивления, которые осуществляют для разных категорий зданий и сооружений с следующей периодичностью: для категории I II - 1 раз в год перед сезоном гроз, для III категории - не реже 1 раза в 3 года, для взрывоопасных объектов и производств - не реже 1 раза в год.

Важно использовать при этом приборы, поверенные должным образом, а также правильно выбрать точки измерений. Вот почему необходимо обращаться при этом в специализированные организации, которые имеют в своем распоряжении квалифицированный персонал и необходимые приборы, а также могут гарантировать вам качество работ на определенное время.

Компания "МЗК-Электро" предлагает квалифицированный монтаж заземления. Опытные специалисты проведут необходимые расчеты, подберут оптимальное по стоимости и эффективности решение для конкретного объекта. В работе используем сертифицированное оборудование от ведущих производителей. Доверьте проектирование громоотвода профессионалам - вы гарантированно получите надежную молниезащиту!

Комплекты заземления каталог

Готовые комплекты заземления используются для выполнения контура заземления частных домов, промышленных объектов и административных зданий.

Посмотрите видео - как подобрать заземление

Схема монтажа заземления дома


Как выбрать комплект заземления ?

Комплекты заземления различаются длиной, материалом и диаметром стержней.

Чем меньше сопротивление заземления - тем лучше. 

Для частных домов после монтажа комплекта сопротивление заземления не должно превышать 30 Ом (не зависит от величины выделенной нагрузки на дом, с напряжением 220В и 380В)

Для домов с газовыми котлами сопротивление требуется менее 10 Ом (требование газовых служб)

Для телекоммуникационного, медицинского и ДГУ менее 4 Ом (зависит от требований проектной документации и тех-паспорта)

Из какого материала выполнить заземление ?

Используется: сталь, омедненная сталь, нержавеющая сталь

Материал влияет на срок службы и цену. Так как сопротивление грунта значительно превышает удельное сопротивление металлов, комплекты из стали, омедненной стали и нержавеющей стали равной длины показывают схожие значения сопротивления заземления после монтажа. 

Расчетный срок службы: 
  • сталь - 10-15 лет
  • омедненная сталь от 30 до 100 лет
  • нержавеющая сталь от 100 - 200 лет

Какой длины выбрать комплект заземления?

Зависит от требуемого в итоге значения сопротивления, которое зависит от типа грунта и высоты грунтовых вод.

Ниже представлена рекомендация по подбору в зависимости от грунта ( на основе практических данных монтажа )

Если комплект заземления доходит до грунтовых вод, то сопротивление обычно достигается менее 10 Ом, что подходит для частного дома и дома с газовым котлом.

Для частного дома достаточно комплекта заземления глубиной 6 метров (кроме песчаных грунтов) - значения менее 30 Ом

Для частного дома с газовым котлом лучше рассмотреть комплекты длиной 9 метров, а для песчаной почвы 15 метров - значение менее 10 Ом

Сопротивление заземления уменьшается в среднем на 30 % после монтажа в течении месяца, это обусловлено обсадкой грунта после погружения.


Безопасная покупка - оплата при получении в пункте выдачи



Какое сопротивление контура заземления?

Единой величины сопротивления контура заземления нет. Все значения существуют в привязке к различному электрооборудованию и регламентируются правилами устройства электроустановок (ПУЭ), а эксплуатационные величины правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Берём трансформаторную подстанцию с напряжением до 1 киловольта. Согласно ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 при проведении замеров сопротивления в непосредственной близости к подстанции, сопротивление контура заземления должно соответствовать 15 ом для напряжения в 660 вольт, 30ом для 380 вольт и 60 Ом для 220 вольт, при измерении с учетом естественных заземлителей.

ПТЭЭП, Приложение № 3, таблица 36 нам говорит вот что: (трёхфазная/однофазн­ая сеть)сопротивление контура заземления - 15 ом для напряжений 660-380 вольт, 30 ом для напряжений 380-220 вольт и 60 Ом для напряжений 220-127 вольт. , а если измерения проводятся с учётом присоединённых повторных заземлений, то значения будут совсем иными, величины должны составлять не более 2, 4 и 8 Ом при соответствующих напряжениях. (660вольт, 380 вольт, 220 вольт)

При напряжением больше 1Кв контур заземления для трансформаторной подстанции и распредпунктов согласно ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 будет иметь величины: при замерах сопротивления в электроустановках с глухозаземленными или эффективно заземленными нейтралями электрическое сопротивление должно быть не более чем 0,5 Ом.

Далее смотрим ПТЭЭП, Прил. № 3, таб-ца 36 сообщает нам: при замерах в электроустановках напряжением от 110 кВ и выше, в электрических сетях с эффективно заземлённой нейтралью, электрическое сопротивление заземляющего контура не должно превышать 0,5 Ом. В электроустановках от 3 до 35 кВ в сетях с изолированной нейтралью не более 10 Ом.

Норма сопротивления контура заземления для воздушной линии электропередачи напряжением выше 1 кВ составит согласно ПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 : Для заземляющих устройств опор высоковольтных линий при величине удельного сопротивления грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10ом, 15ом, 20ом и 30 Ом соответственно.

Если взять ПТЭЭП, приложение № 31, таблица 35, п. 4, то мы узнаем: А. Для воздушной линии электропередачи на напряжениях свыше 1Кв

Б: Для опор, имеющих грозозащитный трос или иные приспособления для грозозащиты, металлические или ж/бетонные опоры ВЛ 35 кВ, а так же опоры ВЛ 3 на 20 кВ в населённых пунктах, заземлители оборудования для опора 110 киловольт и выше: 10ом, 15ом, 20ом и 30 Ом при величине удельного сопротивления грунта, соответственно составит: 100, 100-500, 500-1000, 1000-5000 Ом·м. Б. Для воздушных ЛЭП на напряжение сети до 1Кв: опоры ВЛ с наличием грозозащиты составит 30 Ом, Опоры ЛЭП с повторным заземлителем нулевого провода – 15ом для напряжения 660-380 вольт, 30ом для 380-220 вольт и 60 Ом соответственно для напряжений питающей сети 220-127 вольт (для трёхфазной/однофазно­й сети) соответственно

Кто заботится о 25 Ом или меньше?

Узнайте, почему правило Национального электротехнического кодекса «25 Ом или меньше» может иметь меньшее отношение к качеству электроэнергии, чем вы думаете.

Почти все электрики и электротехники знакомы с требованиями Национального электротехнического кодекса в гл. 250-54, что требует, чтобы сопротивление заземления одноразового электрода (например, заземляющего стержня) составляло 25 Ом или меньше. К сожалению, похоже, что многие специалисты-электрики на самом деле не тестируют систему заземляющих электродов (GES), чтобы убедиться, что они соответствуют этому требованию.Еще меньше из вас считают, что проверка системы заземления стоит того. С точки зрения качества электроэнергии, возможно, вы правы.

А ГЭС предоставляет:

• Эталон нулевого напряжения для поставляемых или производных систем электроснабжения.

• Путь для рассеивания тока молнии или короткого замыкания (для систем с более высоким напряжением).

• Путь для рассеивания электростатических токов.

GES состоит из двух компонентов: проводника заземляющего электрода (GEC) и заземляющего электрода.

Вы можете выбрать GEC без покрытия или с изоляцией (размер по Таблице 250-66) из меди или алюминия. GEC подключает заземляющий электрод к проводнику заземленной цепи, проводнику заземления оборудования или к тому и другому на основном сервисном оборудовании или источнике отдельно производной системы.

Наиболее распространенные типы заземляющих электродов (обозначенные в разделах 250-50 и 250-52):

• Конструкционная сталь
• Металлическая труба подземного водоснабжения
• Кольцо заземления
• Стержни заземления

Как тестировать. Вы должны измерить сопротивление электрода по отношению к окружающей почве на участке. Вы можете сделать это только с помощью метода падения потенциала с помощью трехконтактного тестера сопротивления заземления. Чтобы правильно проверить сопротивление GES, вы должны соблюдать несколько простых правил:

1. Отсоедините проверяемый электрод от остальной электрической системы. Учитывая это, практически невозможно проверить систему заземляющих электродов.

2.Не используйте измеритель, который вводит постоянный ток в заземляющий стержень. Не используйте стандартные ВОМ.

3. Не выполняйте тестовые измерения, если ток на GES превышает 5А.

Вопреки распространенному мнению, тестеры сопротивления заземления с зажимом могут быть неточными в полевых условиях. Для этих тестеров требуется контур обратной связи с низким сопротивлением и достаточным расстоянием между системами электродов для получения достоверных показаний. Многие люди часто добавляют высокое сопротивление (вызванное неплотным соединением в цепи обратной связи) к отображаемому значению измерителя.Кроме того, недостаточное расстояние между электродами приводит к тому, что измеритель проводит только сравнительный тест на соединение, что почти всегда приводит к низкому значению сопротивления.

Зачем мне нужно достигать 25 Ом? Наиболее достоверный ответ на этот вопрос: 25 Ом - разумное значение, к которому следует стремиться, учитывая среднее удельное сопротивление почвы для большинства регионов США. Однако имейте в виду, что 25 Ом не является обязательным требованием при установке нескольких электродов. Это требование только для единичных электродов, за сек.250-56. Если вы управляете первым стержнем и получаете показание сопротивления более 25 Ом, NEC позволяет вам отвести дополнительный стержень на 6 футов от первого стержня.

Скажем, например, вы вбиваете заземляющий стержень в почву, но вместо того, чтобы проверить этот стержень, чтобы убедиться, что он соответствует критериям 25 Ом, вы запускаете второй. Когда два стержня соединятся вместе, считайте, что GES завершен. Но если вы не проводите измерения, как узнать, соответствует ли ваша установка Кодексу?

Проверка реальности. В большинстве коммерческих и промышленных низковольтных энергосистем технические специалисты не проводят испытания сопротивления заземления. Но это не должно вас удивлять. Неофициальный опрос 50 электриков показал, что только четыре из них проводили испытания заземления в прошлом. Причины отказа от тестирования были названы:

• Тестеры были слишком дорогими.
• Тест был слишком запутанным и занял слишком много времени.
• Достаточно двух стержней (наиболее частая реакция).

Влияние качества электроэнергии. Вы не поверите, но почти все электронное оборудование будет работать должным образом без использования GES с низким сопротивлением. Исследования качества электроэнергии на объекте показали, что в ситуациях, когда сопротивление заземляющего электрода составляет от 5 Ом до 105 Ом, оно не влияет на оборудование. Однако вы можете связать большинство проблем с некачественным подключением в системе заземления оборудования. Поэтому вам следует уделять меньше внимания измерению GES и больше - импедансу системы заземления оборудования и проверке низкоомных соединений между плоскостями заземления.

Какой урок здесь? Тратьте меньше времени на тестирование и аттестацию сопротивления GES и больше времени на проверку соединения между точками и импеданса заземляющего проводника оборудования.

Почему заземление, зачем тестировать? | Fluke

Плохое заземление способствует ненужному простою, но отсутствие хорошего заземления опасно и увеличивает риск отказа оборудования.

Без эффективной системы заземления вы можете подвергнуться риску поражения электрическим током, не говоря уже об ошибках приборов, проблемах гармонических искажений, проблемах с коэффициентом мощности и множестве возможных периодически возникающих дилемм.Если токи короткого замыкания не имеют пути к земле через правильно спроектированную и обслуживаемую систему заземления, они обнаружат непредусмотренные пути, которые могут затронуть людей. Эти организации предоставляют рекомендации и / или разрабатывают стандарты заземления для обеспечения безопасности.

OSHA (Управление по охране труда) »
NFPA (Национальная ассоциация противопожарной защиты)»
ANSI / ISA (Американский национальный институт стандартов и приборостроительное общество) »
TIA (Ассоциация индустрии телекоммуникаций)»
IEC (Международная электротехническая комиссия) »
CENELEC (Европейский комитет по стандартизации в области электротехники)»
IEEE (Институт инженеров по электротехнике и электронике) »

Хорошее заземление - это больше, чем мера безопасности, оно также предотвращает повреждение промышленных установок и оборудования. Хорошая система заземления повысит надежность оборудования и снизит вероятность повреждения из-за молнии или токов короткого замыкания. Ежегодно на рабочих местах теряются миллиарды долларов из-за электрических пожаров. Это не учитывает связанные с этим судебные издержки и потерю личной и корпоративной производительности.

Зачем тестировать наземные системы?

Со временем коррозионные почвы с высоким содержанием влаги, высоким содержанием соли и высокими температурами могут разрушить заземляющие стержни и их соединения.Несмотря на низкие значения сопротивления заземления при первоначальной установке, эти значения могут увеличиться, если заземляющие стержни разъедены.

Тестеры заземления, такие как измеритель сопротивления заземления Fluke 1623-2 GEO и тестер заземления Fluke 1625-2 GEO, являются незаменимыми инструментами для поиска и устранения неисправностей, помогающими поддерживать время безотказной работы. С неприятными периодически возникающими электрическими проблемами проблема может быть связана с плохим заземлением или плохим качеством электроэнергии.

Все заземления и заземляющие соединения должны проверяться не реже одного раза в год в рамках вашего обычного плана профилактического обслуживания.Во время этих плановых проверок следует исследовать увеличение сопротивления на 20%. После обнаружения проблема должна быть исправлена ​​путем замены или добавления заземляющих стержней в систему заземления.

Что такое земля и для чего она нужна?

NEC, Национальный электротехнический кодекс, статья 100 определяет заземление как «соединенное (соединяющееся) с землей или с проводящим телом, которое расширяет заземление». Когда мы говорим о заземлении, это две разные темы.

  1. Заземление заземления: намеренное соединение проводника цепи, обычно нейтрального, с заземляющим электродом, помещенным в землю.
  2. Заземление оборудования: обеспечивает правильное заземление рабочего оборудования внутри здания.

Эти две системы заземления необходимо держать отдельно, за исключением соединения между двумя системами. Это предотвращает разность потенциалов напряжения из-за возможного пробоя при ударах молнии. Цель заземления, помимо защиты людей, растений и оборудования, состоит в том, чтобы обеспечить безопасный путь для рассеивания токов короткого замыкания, ударов молний, ​​статических разрядов, сигналов EMI и RFI и помех.

Что такое хорошее значение сопротивления заземления?

Существует большая путаница относительно того, что является хорошим заземлением и каким должно быть значение сопротивления заземления. В идеале заземление должно иметь нулевое сопротивление.

Не существует единого стандартного порога сопротивления заземления, признанного всеми агентствами. Однако NFPA и IEEE рекомендуют значение сопротивления заземления 5,0 Ом или меньше.

Согласно NEC, убедитесь, что полное сопротивление системы относительно земли меньше 25 Ом, указанного в NEC 250.56. В помещениях с чувствительным оборудованием оно должно быть 5,0 Ом или меньше.

В телекоммуникационной отрасли часто используется номинальное сопротивление 5,0 Ом или меньше для заземления и соединения. Целью сопротивления заземления является достижение минимально возможного значения сопротивления заземления, которое имеет смысл с экономической и физической точек зрения.

Обратитесь к специалисту

Статьи по теме

Заземление системы электроснабжения и измерения сопротивления заземления



__3. Выбор системы заземления

Как обсуждалось ранее, обычно используются различные методы заземления: глухозаземленный, заземленный по сопротивлению, заземленный по реактивному сопротивлению и замыкание на землю нейтрализатор заземлен. Незаземленная система, в полном смысле этого слова, заземлен, потому что зарядная емкость от фазного проводника к земле действует как точка заземления. Существуют различные способы заземления. показанный на фиг. 7.

Выбор системы заземления должен основываться на следующих системные факторы:

Величина тока короткого замыкания

Переходное перенапряжение

Молниезащита

Применение защитных устройств для селективной защиты от замыканий на землю

Типы обслуживаемой нагрузки, например, двигатели, генераторы и т. Д.

Ограничения по применению и руководство по различным методам заземления для Учет вышеперечисленных факторов отражен в TBL. 1 и обсуждались в следующих разделах.


РИС. 7 Способы заземления нейтрали системы. а) надежно заземлены; (б) сопротивление заземлено; (c) реактивное сопротивление заземлено; (d) нейтрализатор замыкания на землю.

=======

ТБЛ. 1 Методы заземления для систем низкого и среднего напряжения

Замечания по практике заземления системы Система среднего напряжения (2,400-13,800 V) Генератор в системе с соединением звездой Используйте заземляющий резистор с низким сопротивлением. Позволяет использовать молниеотводы нейтрального типа, если X0 / X1 = 3 X0 / X1 = 10 для ограничения переходных перенапряжений Трансформатор, соединенный звездой на система Используйте заземляющий резистор с низким сопротивлением R Не допускает использования молниеотводов нейтрального типа Для ограничения переходных перенапряжений, R0 / X0 = 2 Система незаземлена (т. е., генераторы или трансформатор не соединены звездой) Используйте заземляющий трансформатор с резистором Зигзагообразный трансформатор R Некоторые комментарии как для трансформатора, соединенного звездой Система низкого напряжения (120-600 В) Соединение звездой генератор в системе Используйте низковольтное реактивное сопротивление относительно заземления нейтрали генератора Ток замыкания на землю должен быть не менее 25% от тока трехфазного замыкания. Соединение звездой Система питания трансформатора Земля нейтраль трансформатора надежно заземлен; Ток замыкания на землю может быть равен трехфазному замыканию. ток (или больше на вторичной обмотке трансформатора, соединенного треугольником) Система незаземленная (т.е., трансформатор не соединен звездой) Используйте заземляющий трансформатор. глухо заземленный Зигзагообразный трансформатор Ток замыкания на землю должен быть равен не менее 25% тока трехфазного короткого замыкания R G

=======

__3. 1 Система с глухим заземлением

Система с глухим заземлением - это система, в которой генератор, трансформатор или нейтраль заземляющего трансформатора напрямую заземлена на землю или станцию земля.

Поскольку реактивное сопротивление источника (генератора или трансформатора), импеданс равно включенная последовательно с нейтралью, эта система не может считаться цепь с нулевым сопротивлением.Почти во всех заземленных системах желательно иметь ток замыкания на землю в диапазоне 25% -110% от трехфазного ток короткого замыкания, чтобы предотвратить развитие высоких переходных процессов Напряжение. Чем выше ток замыкания на землю, тем меньше переходный процесс. перенапряжения.

В этой системе могут быть применены молниеотводы с заземлением нейтрали. при условии, что ток замыкания на землю составляет не менее 60% от трехфазного замыкания Текущий. Другой способ выразить это значение - выразить реактивное сопротивление и соотношениями сопротивлений:

… где X0 - реактивное сопротивление нулевой последовательности, X1 - реактивное сопротивление прямой последовательности. реактивное сопротивление R0 - сопротивление нулевой последовательности

Обычно прямое заземление генератора нежелательно, поскольку ток замыкания на землю может превышать ток трехфазного замыкания.Поскольку генератор рассчитан на максимальный трехфазный ток короткого замыкания, нежелательно иметь более высокие токи замыкания на землю, чем ток трехфазного замыкания.

Следовательно, большинство заземленных систем с генераторами заземляются через низкие значения реактивного сопротивления для поддержания токов замыкания на землю менее трех фаз ток короткого замыкания. Как правило, низковольтные системы (т.е. ниже 600 В) надежны. заземлен. Системы среднего напряжения могут быть как с постоянным, так и с низким сопротивлением. заземлен.

__3.2 Заземление с низким сопротивлением

При заземлении с низким сопротивлением нейтраль заземляется через сопротивление низкого омического значения. Причины использования системы резистивного заземления следующие:

Для уменьшения тока замыкания на землю для предотвращения повреждения распределительного устройства, двигателей, кабели и т. п.

Для минимизации магнитных и механических напряжений

Для минимизации паразитных токов замыкания на землю для безопасности персонала

Для уменьшения мгновенных провалов сетевого напряжения путем устранения замыканий на землю

Напряжение между фазой и землей, которое может существовать при возникновении неисправности, может быть таким же высоким, как напряжение в незаземленных системах.Однако временный перенапряжения не такие уж и высокие. Если система правильно заземлена сопротивлением, нет опасности разрушительного перенапряжения.

__3.3 Заземление с высоким сопротивлением

В этой системе нейтраль заземлена через высокоомное сопротивление. ценить. Линейное напряжение неповрежденных фаз при замыкании на землю почти равно линейному напряжению. Если была выбрана система утепления для заземленной системы он будет подвержен состоянию перенапряжения во время замыкания на землю.

Ток замыкания на землю, доступный в этом типе системы, очень мал, обычно 25 А или меньше. Следует помнить, что при использовании этой системы ток замыкания на землю никогда не должен быть меньше зарядного тока.

Причем молниеотводы для этой системы должны быть незаземленными. тип. Этот тип системы подвержен следующим типам перенапряжения. условия:

Тип феррорезонанса, то есть резонансные эффекты последовательно индуктивно-емкостного типа. схемы;

Ограниченные переходные условия перенапряжения;

Условия перенапряжения из-за прямого подключения к более высоким напряжениям;

Причины использования заземления с высоким сопротивлением аналогичны причинам низкоомное заземление, за исключением того, что в этой системе ток замыкания на землю ограничено очень маленьким значением.

__3.4 Реактивное заземление

В системе с заземлением по реактивному сопротивлению цепь нейтрали заземлена через реактор. Обычно для заземления генератора используется реактивное заземление. нейтралов. Стоимость выбранного реактора обычно такова, что земля ток короткого замыкания составляет не менее 25% от тока трехфазного замыкания для предотвращения серьезные переходные перенапряжения при устранении замыкания на землю. Значение X0 должно быть меньше или равно 10-кратному значению X1 для этого типа системы.

__3.5 Нейтрализаторы замыкания на землю (с резонансным заземлением)

В этой системе реактор со специально подобранным высоким значением реактивного сопротивления соединен нейтралью с землей. Ток, протекающий через реактор во время замыкания на землю равен и 180 ° не совпадает по фазе с зарядным током, протекающим в двух неисправных фазах. В этом случае два тока отменяются, оставляя ток короткого замыкания. только из-за сопротивления.Поскольку резистивный ток находится в фазе с напряжение, ток повреждения гасится, когда напряжение и неисправность ток проходит через нулевую ось.

Меры предосторожности, необходимые в этой системе, заключаются в том, чтобы следить за тем, чтобы нейтрализатор замыкания на землю настроен на емкость системы. Если какое-либо переключение выполняется для отключения цепей, значения реактивного сопротивления нейтрализатора должны быть поменял регулировкой метчиков нейтрализатора. Нейтрализаторы замыканий на землю были используются лишь в ограниченной степени и не так распространены, как другие системы заземления.

__4. Общие сведения о сопротивлении заземления

Термин "земля" определяется как проводящее соединение, с помощью которого цепь или оборудование подключено к земле. Соединение используется для установления и поддерживая в максимально возможной степени потенциал Земли на цепь или подключенное к ней оборудование. Земля состоит из заземления проводник, соединительный элемент, его заземляющий электрод (-ы) и почва контактирует с электродом.

Grounds имеет несколько основных защитных приложений. Для естественного явления, такие как молния, заземление используются для обеспечения пути разряда для тока, чтобы снизить опасность поражения персонала электрическим током и предотвратить повреждение к оборудованию и имуществу.

Для наведенных потенциалов из-за неисправностей в электроэнергетических системах с землей возвраты, основания помогают в обеспечении быстрой срабатывания реле защиты за счет обеспечения путей тока короткого замыкания с низким сопротивлением.Это предусматривает максимально быстрое снятие наведенного потенциала. Земля должна истощить наведенный потенциал до того, как персонал получит травму и или система связи повреждена.

В идеале, чтобы поддерживать опорный потенциал для безопасности прибора, для защиты от статического электричества и ограничить заземляющее напряжение оборудования для безопасность оператора, сопротивление заземления должно быть 0 Ом. На самом деле, как объяснялось в этом тексте это значение не может быть достигнуто.Однако низкое сопротивление заземления требуется NEC, OSHA и другими нормами и стандартами электробезопасности.

__4.1 Сопротивление заземляющего электрода

РИС. 8 Заземляющий электрод. Заземляющий стержень и зажим; Контактное сопротивление между стержнем и почвой; Концентрические оболочки земли


РИС. 8 показан заземляющий стержень (электрод). Сопротивление заземление состоит из следующих компонентов:

1. Сопротивление самого электрода и соединения с ним

2.Контактное сопротивление окружающей земли к электроду

3. Сопротивление земли, непосредственно окружающей заземляющий электрод. или удельное сопротивление земли, которое часто является наиболее значимым фактором

заземляющие электроды обычно изготавливаются из очень проводящего металла (медь или покрытый медью) с соответствующим поперечным сечением, чтобы общее сопротивление незначительно. Сопротивление между электродом и окружающим земля незначительна, если электрод не покрыт краской, жиром или другим покрытие, и если земля плотно утрамбована.

Единственный оставшийся компонент - это сопротивление окружающей земли.

Электрод можно представить как окруженный концентрическими оболочками. земли или почвы одинаковой толщины. Чем ближе раковина к электрод, тем меньше его поверхность; следовательно, тем больше его сопротивление. Чем дальше оболочки от электрода, тем больше поверхность оболочки; следовательно, тем ниже сопротивление. В конце концов, добавление оболочек на расстоянии от заземляющего электрода перестанет заметно влиять общее сопротивление заземления вокруг электрода.Расстояние на возникает этот эффект, называется эффективной площадью сопротивления. и напрямую зависит от глубины заземляющего электрода.

Когда ток замыкания на землю течет от заземляющего стержня к земле, он течет в во всех направлениях через серию концентрических сфер или оболочек, обычно называются эффективными цилиндрами земли, окружающими стержень. Сопротивление сферы, ближайшей к заземляющему стержню, является самым высоким, потому что это самая маленькая сфера.

По мере увеличения расстояния от заземляющего стержня сопротивление становится равным меньше, потому что сфера становится больше. В конце концов, расстояние от электрод достигается, когда сопротивление сферы становится равным нулю. Следовательно, при любом измерении сопротивления заземления только часть сопротивления заземления считается, что составляет основную часть сопротивления. Теоретически сопротивление заземления системы заземления следует измерять до бесконечности расстояние от заземляющего стержня.Однако для практических целей эффективная цилиндр земли (снаряды), который составляет большую часть земли сопротивление в два раза превышает длину заземляющего стержня.

Теоретически сопротивление заземления можно вычислить по общей формуле:

… где…

R - сопротивление заземления

r - удельное сопротивление грунта

L - длина заземляющего электрода

А площадь

Эта формула показывает, почему оболочки концентрической земли уменьшаются в сопротивление, чем дальше они от заземляющего стержня: толщина оболочки; Удельное сопротивление почвы; площадь; R

В случае сопротивления земли - однородное удельное сопротивление земли (или почвы) предполагается во всем объеме, хотя в природа. Уравнения для систем электродов очень сложные и часто выражается только как приближение. Наиболее часто используемая формула для одинарного заземления электродные системы, разработанные профессором Х. Р. Дуайтом из Массачусетса Технологический институт:

R - сопротивление заземляющего стержня к земле (или грунту) (Ом) L - длина заземляющего электрода r - радиус заземляющего электрода r - среднее удельное сопротивление (Ом-см) грунта

__4.2 Влияние размера и глубины заземляющего электрода на сопротивление

Размер: Увеличение диаметра стержня существенно не уменьшает его сопротивление. Удвоение диаметра заземляющего стержня снижает сопротивление менее чем на 10%, как показано на фиг. 9.


РИС. 9 Сопротивление заземления в зависимости от размера заземления.


РИС. 10 Сопротивление заземления в зависимости от глубины заземляющего стержня.

=======

ТБЛ. 2 Удельное сопротивление различных грунтов

Удельное сопротивление (Ом-см) Минимум Средний Максимум Зола, шлак, рассол, отходы 590 2,370 7,000 Глина, сланец, гумбо, суглинок 340 4,060 16,300 То же, с песок и гравий различной пропорции 1020 15 800 135 000 Гравий, песок, камни с мелкой глиной или суглинком 59,000 94,000 458,000

========

Глубина: когда заземляющий стержень вбивается глубже в землю, его сопротивление существенно снижается.Как правило, удвоение длины стержня снижает сопротивление еще на 40%, как видно на фиг. 10. NEC требует минимум 8 футов (2,4 м) для контакта с почвой. Самый распространенный представляет собой цилиндрический стержень длиной 10 футов (3 м), соответствующий нормам NEC. Минимальный диаметр 5/8 дюйма (1,59 см) требуется для стальных стержней и 1/2 дюйма (1,27 см) для стальные стержни, плакированные медью или медью. Минимальный практический диаметр для вождения ограничения для штанг 10 футов (3 м) составляют 1/2 дюйма (1. 27 см) в средней почве 5/8 дюйма (1,59 см) во влажной почве 3/4 дюйма (1,91 см) в твердой почве или более глубина проходки более 10 футов

__4.3 Влияние удельного сопротивления грунта на сопротивление заземляющего электрода

Формула Дуайта, приведенная ранее, показывает, что сопротивление заземления электроды к земле зависит не только от глубины и площади поверхности заземления электроды, но и удельное сопротивление грунта. Удельное сопротивление почвы - ключ к успеху коэффициент, определяющий сопротивление заземляющего электрода. быть, и на какую глубину его необходимо загнать, чтобы получить низкое сопротивление заземления.Удельное сопротивление почвы сильно различается по всему миру и меняется. сезонно. Удельное сопротивление почвы во многом определяется содержанием в ней электролитов, состоящий из влаги, минералов и растворенных солей. Сухая почва имеет высокую удельное сопротивление, если оно не содержит растворимых солей, как показано в TBL. 2.

__4.4 Факторы, влияющие на удельное сопротивление почвы

Два образца почвы при тщательном высушивании могут стать очень хорошими. изоляторы, имеющие удельное сопротивление более 109 Ом-см.Удельное сопротивление образца почвы меняется довольно быстро до тех пор, пока примерно Достигнута влажность 20% или более, как указано в TBL. 3.

На удельное сопротивление почвы также влияет температура. TBL. 4 показывает изменение удельного сопротивления супеси, содержащей 15,2% влаги, при изменении температуры от 20 ° C до -15 ° C. В этом температурном диапазоне видно, что удельное сопротивление колеблется от 7 200 до 330 000 Ом-см.

=====

ТБЛ.3 Влияние влаги на удельное сопротивление почвы Содержание влаги (% по масса) Удельное сопротивление (Ом-см) Верхний слой почвы Супеси

=====

ТБЛ. 4.Влияние температуры на удельное сопротивление почвы. (Ом-см)

=====


РИС. 11 Сезонное изменение сопротивления заземления с электродом 3/4 дюйм трубы в каменистой глинистой почве. Глубина электрода в земле составляет 3 фута для кривой 1 и 10 футов для кривой 2.

======

ТБЛ.5 Влияние содержания соли на удельное сопротивление добавленной в почву соли (% от массы влаги) Удельное сопротивление (Ом-см)

=======

ТБЛ. 6 Влияние температуры на удельное сопротивление почвы, содержащей сальту Температура (° C) Удельное сопротивление (Ом-см)

======


РИС. 12 Номограмма, показывающая зависимость глубины заземляющего электрода от заземляющего электрода сопротивление.

1. Выберите необходимое сопротивление по шкале R

2.Выберите кажущееся сопротивление по шкале P

3. Положите линейку на шкалы R и P и дайте ей пересечься со шкалой K.

4. Отметьте точку шкалы K

5. Положите линейку на шкалу K по шкале точек и диаметров (DIA) и позвольте пересекаться со шкалой D

6. Точкой на шкале D будет глубина стержня, необходимая для сопротивления по шкале R

======

Поскольку удельное сопротивление почвы напрямую зависит от влажности и температуры, разумно предположить, что сопротивление любой системы заземления будет варьируются в зависимости от времени года.Такие вариации показанный на фиг. 11. Поскольку температура и влажность становятся больше устойчив на больших расстояниях от поверхности земли, он следует что должна быть построена система заземления, которая будет наиболее эффективной в любое время. с заземляющим стержнем, опущенным на значительное расстояние ниже поверхности земли. Наилучшие результаты достигаются, если заземляющий стержень достигает воды. стол.

В некоторых местах удельное сопротивление земли настолько велико, что низкое сопротивление заземление может быть получено только при значительных затратах и ​​при тщательно продуманном система заземления. В таких ситуациях может быть экономичным использовать заземление. стержневую систему ограниченного размера и периодически снижать удельное сопротивление грунта. увеличение содержания растворимых химикатов в почве. TBL. 5 показаны существенные снижение удельного сопротивления супеси за счет увеличения химическое содержание солей.

Химически обработанный грунт также подвержен значительным колебаниям удельного сопротивления. при изменении температуры, как показано в TBL. 6. Если применяется солевое лечение, Конечно, необходимо использовать заземляющие стержни, устойчивые к коррозии.

===

ТБЛ. 7 типичных значений сопротивления заземления подстанций для различных Установки Тип установки Максимальное сопротивление заземления подстанции Значения

a Коммерческие металлические здания = 25 Ом (по NEC), мокрые колодцы и т. Д.

Дома Промышленность Общие помещения 5 Ом Химическая 3 Ом Компьютер

<1-3 Ом Быстродействующие загрузочные устройства для химикатов

<1 Ом Электроэнергетика Генераторные станции 1 Ом a Большие подстанции 1 Ом Районные подстанции 1. 5-5 Ом Малые подстанции 5 Ом a Для глухозаземленных системы.

===

__4.5 Влияние глубины заземляющего электрода на сопротивление

При определении приблизительной глубины заземляющего стержня, необходимой для получения желаемой сопротивления можно использовать номограмму заземления. Номограмма, показанная на ИНЖИР. 12, указывает на то, что для получения сопротивления заземления 20 Ом в грунт с удельным сопротивлением 10 000 Ом-см, стержень с внешним диаметром 5/8 дюйма должен быть забит 20 футов.Обратите внимание, что значения, указанные на номограмме, основаны на предположение, что грунт однороден и, следовательно, имеет одинаковое удельное сопротивление. Значение номограммы является приблизительным.

__5. Значения сопротивления заземления

Код NEC гласит, что сопротивление заземления не должно превышать 25 Ом. Это максимальное значение сопротивления заземления и в большинстве случаев применения требуется гораздо меньшее сопротивление заземления.

"Насколько низким должно быть сопротивление заземления?" Произвольный ответ на этот вопрос сложно.Чем ниже сопротивление заземления, тем безопаснее, а для надежной защиты персонала и оборудования стоит усилие стремиться меньше 1 Ом. Как правило, нецелесообразно достигать такое низкое сопротивление в распределительной системе или линии передачи или на небольших подстанциях.

В некоторых регионах сопротивление 5 Ом или меньше может быть получено без много хлопот. В других случаях может быть трудно вызвать сопротивление ведомых земли ниже 100 Ом.

Принятые отраслевые стандарты предусматривают, что передающие подстанции должны быть спроектированным таким образом, чтобы сопротивление не превышало 1 Ом. На распределительных подстанциях, максимальное рекомендуемое сопротивление составляет 5 Ом или даже 1 Ом. В большинстве случаях подземная электросеть любой подстанции обеспечит желаемый сопротивление.

В легкой промышленности или в центральных телекоммуникационных центрах 5 Ом часто принимаемое значение. Для молниезащиты разрядники должны быть соединенным с максимальным сопротивлением заземления 1 Ом.TBL. 7 показывает типичный значения сопротивления заземления для различных типов установок.

Номограмма заземления:

Эти параметры обычно достигаются при правильном применении основных теория заземления. Всегда будут существовать обстоятельства, которые заставят трудно получить сопротивление заземления, требуемое NEC или другим стандарты безопасности. Когда эти ситуации развиваются, несколько методов опускания можно использовать сопротивление заземления.К ним относятся системы параллельных стержней, системы стержней с глубоким забиванием, использующие секционные стержни и химическую обработку почвы. Дополнительные методы, обсуждаемые в других опубликованных данных, скрытые пластины, скрытые проводники (противовес), электрически связанные строительная сталь и железобетонная сталь с электрическими соединениями.

Электрическое подключение к существующим системам водоснабжения и газораспределения часто считалось, что оно дает низкое сопротивление заземления; однако недавний дизайн изменения, связанные с использованием неметаллических труб и изоляционных соединений, сделали это метод получения заземления с низким сопротивлением сомнительный и во многих случаях неприемлемый.

__6. Измерение сопротивления заземления

Для поддержания достаточно низких значений сопротивления систем заземления их требуется периодическое тестирование. Тестирование включает в себя измерения для обеспечения что они не превышают проектных ограничений. Методы измерения и тестирования сопротивление грунта и удельное сопротивление грунта следующие:

Двухточечный метод • Трехточечный метод • Метод падения потенциала • Коэффициент метод • Четырехточечный метод • Измерение потенциала прикосновения • Метод зажима

Измерение сопротивления заземления может производиться только с помощью специальных разработанное испытательное оборудование. Самый распространенный метод измерения сопротивления заземления использует принцип падения потенциала переменного тока (AC) 60 Гц или более высокая частота, циркулирующая между вспомогательным электродом и проверяемый заземляющий электрод; показания будут даны в омах и представляет собой сопротивление заземляющего электрода окружающим земной шар. Кроме того, один производитель недавно представил зажим для заземления. тестер сопротивления.

__6.1 Двухточечный метод

Этот метод может использоваться для измерения сопротивления одиночной управляемой земли. стержень.В нем используется вспомогательный заземляющий стержень, сопротивление которого либо известно, либо можно измерить. Значение сопротивления вспомогательного заземляющего стержня также должно быть очень маленьким по сравнению с сопротивлением ведомого заземляющего стержня. так что можно предположить, что измеренное значение полностью зависит от ведомый заземляющий стержень. Например, этот тест может применяться при измерении сопротивления одиночного ведомого заземляющего стержня для жилого помещения или в перегруженных области, где найти место для привода двух вспомогательных тяг может быть проблемой.

В этом случае можно принять муниципальный металлический водопровод. в качестве вспомогательного заземляющего стержня, сопротивление которого составляет примерно 1 Ом или менее.

Это значение довольно мало по сравнению со значением одиночного пробегающего заземления. стержень, значение которого составляет порядка 25 О. Полученное значение таково, что из двух оснований последовательно. Также будут измерены сопротивления проводов. и должны быть вычтены из окончательных измерений. Этот метод обычно адекватно там, где требуется испытание, не требующее сдачи.Соединения для этот тест показан на фиг. 13.

===


РИС. 13 Двухточечный метод измерения сопротивления заземления.

Уровень земли Общий полюс Заземляющий провод Заземляющий стержень Клеммы закорочены с перемычкой Вспомогательный стержень (Y-Z закорочен) Приклад

===

__6.2 Метод трех точек

Этот метод аналогичен двухточечному методу, за исключением того, что в нем используются два вспомогательных стержни. Для получения точных значений измерения сопротивления сопротивление вспомогательных электродов должно быть примерно равно или меньше электрод тестируемого.Связи для трехточечного метода показаны на фиг. 14.

РИС. 14 Трехточечный метод испытаний и его эквивалентная схема.

Для проведения этого теста можно использовать переменный ток 60 Гц или постоянный ток. Преимущество использования переменного тока заключается в том, что он сводит к минимуму влияние паразитных токов на измерения чтения. Однако, если паразитные токи имеют одинаковую частоту, ошибка будет внесена в показания. Использование постоянного тока для этого Тест полностью устранит паразитные токи переменного тока.Однако случайный DC и образование газа вокруг электродов приведет к ошибке в показаниях при использовании постоянного тока для этого теста. Влияние паразитных DC можно свести к минимуму с помощью снятие показаний при токе в обратном направлении. Среднее значение два показания дадут точное значение теста. Применять только токи достаточно долго, чтобы снимать показания.

Значение сопротивления испытательного электрода можно рассчитать следующим образом. Пусть ....

__6.3 Метод падения потенциала

Этот метод измерения сопротивления заземляющего электрода основан на принципе падения потенциала через сопротивление. Также используются два вспомогательных электрода. (один токовый стержень, а другой - потенциальный стержень), которые размещены на достаточном расстояние от тестовых электродов; пропускается ток известной величины через тестируемый электрод и один из вспомогательных электродов (ток стержень). Падение потенциала между испытуемым электродом и второй вспомогательный электрод (потенциальный стержень) измеряется.Соотношение вольт падение возраста (V) до известного тока (I) укажет сопротивление цепь заземления. Для подключения можно использовать источник постоянного или переменного напряжения. проводя этот тест.

При использовании этого метода можно встретить несколько проблем и ошибок, например поскольку (i) паразитные токи в земле могут привести к тому, что показания вольтметра будут либо высокое или низкое и (ii) сопротивление вспомогательного электрода и электрического Провода могут вносить ошибки в показания вольтметра.Эта ошибка может быть минимизируется за счет использования вольтметра с высоким значением импеданса.

Этот метод можно использовать либо с отдельными вольтметром и амперметром, либо один прибор, который обеспечивает показания непосредственно в омах (см. РИС. 15). Для измерения сопротивления заземляющего электрода токовый электрод размещается на подходящем расстоянии от заземления

испытуемый электрод. Как показано на фиг. 16, разность потенциалов между стержни X и Y измеряется вольтметром, а ток между стержнями X и Z измеряются амперметром.(Примечание: X, Y и Z могут относиться к как X, P и C в трехточечном тестере или C1, P2 и C2 в четырехточечном тестере. тестером.) По закону Ома E = RI или R = E / I. По этой формуле мы можем получить сопротивление заземляющего электрода R. Если E = 20 В и I = 1 А, то ...


РИС. 15 Прибор для измерения сопротивления заземления методом падения потенциала.


РИС. 16 Метод падения потенциала.

__6.3.1 Положение вспомогательных электродов при измерениях

Целью точного измерения сопротивления заземления является размещение вспомогательный токовый электрод Z достаточно далеко от заземляющего электрода под проверьте, чтобы вспомогательный потенциальный электрод Y находился за пределами эффективные площади сопротивления (эффективный цилиндр земли) как земли электрод и вспомогательный токовый электрод. Лучший способ узнать если вспомогательный потенциальный стержень Y находится за пределами эффективных областей сопротивления заключается в перемещении его между X и Z и снятии показаний в каждом месте. Если вспомогательный потенциальный стержень Y находится в зоне эффективного сопротивления (или в оба, если они перекрываются, как на фиг. 17а), смещая его, снятые показания будет заметно отличаться по стоимости. В этих условиях нет точного значения для сопротивление заземления может быть определено.

С другой стороны, если вспомогательный потенциальный стержень Y расположен снаружи эффективных площадей сопротивления, как на фиг.17b, поскольку Y перемещается назад и в дальнейшем вариация чтения минимальна. Снимаемые показания должны быть относительно близко друг к другу и являются лучшими значениями сопротивления заземления. земли X. Показания должны быть нанесены на график, чтобы убедиться, что они в области «плато», как показано на фиг. 17b. Регион часто называется площадью 62%, которая обсуждается в следующем разделе.

====


РИС. 17 Области эффективного сопротивления (цилиндры земли) (а) перекрытие и (б) не перекрываются.(a) (b) Расстояние X-Y Эффективные области сопротивления (без перекрытия) Вариация показаний Сопротивление Y_ Y XZ Y_ Расстояние X-Y Эффективное области сопротивления (перекрывающиеся) Вариация показаний Сопротивление

====


РИС. 18 Метод падения потенциала, показывающий потенциальное местоположение стержня на 62% расстояние от испытуемого электрода.

====


РИС. 19 Перекрытие эффективных областей сопротивления.

Тестируемый заземляющий электрод Вспомогательный потенциальный электрод XYZ Вспомогательный токовый электрод Перекрытие эффективных областей сопротивления Расстояние от Y к заземляющему электроду Сопротивление

====


РИС. 20 эффективных зон сопротивления не перекрываются.

Расстояние от Y до заземляющего электрода Сопротивление заземляющего электрода 62% от D 38% от D D Сопротивление вспомогательного токового электрода Эффективное сопротивление области не перекрываются Вспомогательный токовый электрод Вспомогательный потенциальный электрод Тестируемый заземляющий электрод Сопротивление XYZ

===

__6.3.2 Измерение сопротивления заземляющих электродов (метод 62%)

Метод 62% является расширением метода падения потенциала и имеет был принят после графического рассмотрения и после реальных испытаний.Его самый точный метод, но он ограничен тем, что земля проверена это единое целое.

Этот метод применяется только тогда, когда все три электрода находятся на прямой линии. а земля представляет собой одиночный электрод, трубу, пластину и т. д., как показано на рисунке. на фиг. 18.

Рассмотрим фиг. 19, где показаны эффективные площади сопротивления (концентрические оболочки) заземляющего электрода X и вспомогательного токового электрода Z. Эффективные цилиндры земли стержней X и Z перекрываются.Если показания снимались перемещением вспомогательного потенциального электрода Y в сторону X или Z, разница в показаниях будет большой, и нельзя будет получить значение в разумных пределах допуска. Чувствительные области перекрываются и действовать постоянно для увеличения сопротивления по мере удаления Y от X.

Теперь рассмотрим фиг. 20, где электроды X и Z достаточно разнесены чтобы области эффективного сопротивления не пересекались. Если мы построим измеренное сопротивление, мы обнаруживаем, что измерения выравниваются, когда Y расположен на 62% расстояния от X до Z, и что показания на любом сторона начальной настройки Y, скорее всего, будет в пределах установленного полоса допуска.Этот диапазон допуска определяется пользователем и выражается в процентах от начального показания: ± 2%, ± 5%, ± 10% и т. д.

===

ТБЛ. 8 Приблизительное расстояние (футы) до вспомогательного

Электроды

с использованием метода 62% от глубины до оси Y Расстояние до З 64572 85080 10 55 88 12 60 96 18 71 115 20 74 120 30 86140

===

ТБЛ. 9 Расстояние между системами с несколькими электродами (футы) Максимальное расстояние сетки; Расстояние до Y Расстояние до Z

===

__6.3.3 Расстояние между вспомогательными электродами

Нет определенного расстояния между X и Z, так как это расстояние относительно диаметра испытуемого электрода, его длины, однородности исследуемого грунта и, в частности, эффективных площадей сопротивления. Тем не мение, приблизительное расстояние можно определить по TBL. 8, который дан для однородный грунт и электрод диаметром 1 дюйм. (Для диаметра 1/2 дюйма, уменьшите расстояние на 10%; для диаметра 2 дюймаувеличивать расстояние на 10%.) Рекомендуется проводить тест на сопротивление заземляющего электрода для каждого времени года. Данные должны сохраняться для каждого сезона для сравнения и анализа. Серьезное отклонение тестовых данных за предыдущие годы, кроме сезонных колебаний, может средняя коррозия электрода.


РИС. 21 Многоэлектродная система (заземляющая сетка).


РИС. 22 Проверка на паразитные напряжения.

__6.3.4 Система с несколькими электродами

Электрод заземления с одним приводом - экономичное и простое средство создание хорошей системы заземления. Но иногда одного стержня недостаточно. низкое сопротивление, и несколько заземляющих электродов будут управляться и подключаться параллельно кабелем. Очень часто, когда два, три или четыре заземляющих электрода используются, движутся по прямой; когда используются четыре или более, используется конфигурация с полым квадратом, а заземляющие электроды все еще соединены параллельно и на равном расстоянии друг от друга, как показано на фиг.21.

В многоэлектродных системах расстояние между электродами метода 62% не может быть дольше применяться напрямую (см. TBL. 9). Расстояние вспомогательного электроды теперь основаны на максимальном расстоянии сетки (т. е. в квадрате, диагональ; в строке общая длина, например, квадрат со стороной 20 футов будет иметь диагональ примерно 28 футов).

Чрезмерный шум. Чрезмерный шум может помешать тестированию из-за длинные выводы, используемые для проверки падения потенциала.Вольтметр может использоваться для выявления этой проблемы. Подключите кабели X, Y и Z к вспомогательные электроды как для стандартного испытания сопротивления заземления. Использовать вольтметр для проверки напряжения на клеммах X и Z, как показано на ИНЖИР. 22. Показание напряжения должно быть в пределах допуска паразитного напряжения. приемлемо для используемого наземного тестера. Если тест превышает это значение, попробуйте следующие методы:

1. Скрутите вспомогательные кабели вместе.Это часто приводит к отмене из синфазных напряжений между этими двумя проводниками.

2. Если предыдущий метод не помог, попробуйте изменить выравнивание вспомогательного кабели так, чтобы они не были параллельны линиям электропередач выше или ниже земля.

3. Если удовлетворительное значение низкого напряжения все еще не получено, используйте экранированных кабелей может потребоваться. Щит защищает внутреннее проводник, захватив напряжение и опустив его на землю, как показано на фиг.23.

Чрезмерное сопротивление вспомогательного стержня. Собственная функция падения потенциала тестер заземления предназначен для ввода постоянного тока в землю и измерения падение напряжения с помощью вспомогательных электродов. Чрезмерное сопротивление одного или обоих вспомогательных электродов может препятствовать этой функции. Это вызвано высоким удельным сопротивлением почвы или плохим контактом вспомогательного электрода и окружающая грязь. Чтобы обеспечить хороший контакт с землей, проштампуйте вниз в почву непосредственно вокруг вспомогательного электрода, чтобы удалить воздушные зазоры образуется при вставке стержня. Если проблема связана с удельным сопротивлением почвы, залейте вода вокруг вспомогательных электродов. Это уменьшает вспомогательный электрод. контактное сопротивление без влияния на измерение.

=====


РИС. 23 Использование экранированных кабелей для минимизации паразитных напряжений.

X 1742 X Y Z Y Электрод Поплавковый экран Поплавковый экран Подключите все три экрана вместе Z-электрод Заземляющий стержень Заземляющий экран Заземляющий провод

=====


РИС.24 Использование экранов в качестве вспомогательных электродов. Штанга заземления

====

Гудрон или бетонный мат. Иногда необходимо провести испытание заземляющего стержня. который окружен смолой или бетонным матом, где вспомогательные электроды нельзя легко водить. В таких случаях можно использовать металлические экраны и воду. используются для замены вспомогательных электродов, как показано на фиг. 24. Разместите экраны на полу на таком же расстоянии от тестируемого заземляющего стержня, как и вспомогательные электроды при стандартном испытании на падение потенциала.Налить воду экраны и дайте ему впитаться. Теперь эти экраны будут выполнять та же функция, что и вспомогательные электроды.

__6.4 Метод соотношения

В этом методе для измерения серии используется мост Уитстона или омметр. сопротивление заземляющего электрода и вспомогательного электрода. Тест соединения показаны на фиг. 25. Потенциометр скользящей проволоки используется с мост Уитстона для этого теста. Потенциометр подключен к проверяемый заземляющий электрод и первый вспомогательный электрод.В скользящий контакт потенциометра подключен ко второму вспомогательному электрод через детектор для определения нулевой точки. Сопротивление испытательного электрода и первого вспомогательного электрода измеряется сначала мост Уитстона или омметр. Затем с помощью потенциометра и Уитстона мост, новая нулевая точка определяется вторым электродом в тестовая схема.

Сопротивление заземляющего электрода - это отношение сопротивления испытательного электрода. сопротивление к общему сопротивлению двух последовательно соединенных.Процедура и уравнения имеют следующий вид:

Измерьте Rx + Ry с помощью моста Уитстона или омметра. от потенциометра соотношение RA / (RA + RB) Вставьте второй вспомогательный электрод (Rz) в испытательной цепи и получить нулевую точку

__6.5 Измерение удельного сопротивления почвы (четырехточечное измерение)

Измерение удельного сопротивления грунта преследует три цели. Во-первых, такие данные используются для проведения подземных геофизических исследований в качестве помощи в идентификации рудные местоположения, глубина до коренных пород и другие геологические явления.Второй, удельное сопротивление оказывает прямое влияние на степень коррозии в подземных условиях. трубопроводы. Снижение удельного сопротивления связано с увеличением коррозии. активности и, следовательно, диктует необходимость использования защитного лечения. В третьих, удельное сопротивление почвы напрямую влияет на конструкцию системы заземления и Именно на эту задачу и направлено данное обсуждение. При проектировании обширного системы заземления, желательно найти зону с наименьшим удельным сопротивлением грунта. чтобы добиться наиболее экономичной установки заземления.

Два типа измерения удельного сопротивления - двухточечный метод и четыре точечный метод. Двухточечный метод - это просто сопротивление, измеренное между два очка. Для большинства приложений наиболее точным методом является четырехточечный метод. Четырехточечный метод, как следует из названия, требует вставки четырех электродов, расположенных на одинаковом расстоянии друг от друга, в испытательную зону.

Известный ток от генератора постоянного тока пропускается между крайние электроды. Падение потенциала (как функция сопротивления) затем измеряется на двух внутренних электродах. Удельное сопротивление земли основан на формуле, приведенной ниже, и счетчик откалиброван для чтения прямо в ом.


РИС. 25 Коэффициентный метод измерения сопротивления заземления.

Это значение представляет собой среднее удельное сопротивление грунта на эквивалентной глубине. на расстояние A между двумя электродами.

... где A - расстояние между электродами (см) B - электрод глубина (см) R - значение сопротивления, измеренное четырехконтактным тестером заземления. Если A> 20B, формула принимает следующий вид:

() p = 2 дюйм см AR A r

() = 191.5 дюймов AR A r

= Удельное сопротивление грунта в Ом (-см) r

__6.6 Измерение потенциала прикосновения

Основная причина проведения измерений сопротивления заземления - это обеспечить электробезопасность персонала и оборудования. Периодический заземляющий электрод или измерения сопротивления сети рекомендуются, когда:

1. Электрод / сетка относительно небольшие, и их можно удобно отсоединить.

2. Предполагается коррозия, вызванная низким удельным сопротивлением почвы или гальваническим воздействием.

3.Замыкания на землю очень маловероятны вблизи земли при испытании

.

В некоторых случаях степень электробезопасности можно оценить по другая перспектива. Градиент напряжения - серьезная проблема безопасности. распределительные устройства и подстанции высокого напряжения. Таким образом, система наземной сети этих объектов разработан, чтобы гарантировать, что градиенты напряжения из-за чтобы индуцированные токи или токи короткого замыкания оставались на низком уровне и не представляли опасности к персоналу или оборудованию.Максимальный предел напряжения для этих градиентов определяется следующим образом:

Потенциал прикосновения: Потенциал прикосновения - это разница напряжений между рука и ноги человека, вызванные градиентом напряжения из-за неисправности или индуцированный ток. Предполагается, что ток проходит через сердце и, следовательно, этот потенциал должен быть сведен к нулю, чтобы обезопасить персонал. кто может случайно соприкоснуться с оборудованием и конструкциями в распределительное устройство или подстанции.

Потенциал ступени: Потенциал ступени - это разность напряжений между футов, вызванного градиентом напряжения из-за повреждения или индуцированного тока.

Предполагается, что ток проходит по ножкам и, следовательно, это потенциал должен быть близок к нулю, чтобы обезопасить персонал.

Измерение потенциала прикосновения рекомендуется при следующих факторах: присутствуют.

1. Отключить землю физически или экономически невозможно. для тестирования.

2. Можно разумно ожидать, что замыкания на землю произойдут вблизи земли. или рядом с тестируемым оборудованием, заземленным на землю.

3. Площадь заземленного оборудования сопоставима с размером земля для тестирования. (Площадь основания - это контур части оборудования. контактирует с землей.) При измерении потенциала прикосновения, Используется четырехполюсный тестер сопротивления заземления. Во время теста прибор вызывает замыкание на землю низкого уровня в некоторой близости от объекта земля.На приборе отображается потенциал касания в вольтах на ампер ток короткого замыкания. Затем отображаемое значение умножается на наибольшее ожидаемое значение. ток замыкания на землю, чтобы получить потенциал прикосновения в наихудшем случае для данного установка.

Например, если прибор показывает значение 0,100 при подключении к системе, где максимальный ток короткого замыкания должен был быть 5000 А, максимальный потенциал касания будет 500 В.

Измерения потенциала прикосновения аналогичны измерениям падения потенциала. в том, что оба измерения требуют размещения вспомогательных электродов в или на земле.Расстояние между вспомогательными электродами при потенциале касания измерения отличаются от расстояния между электродами падения потенциала, как показано на фиг. 26.

===


РИС. 26 Измерение потенциала прикосновения. C1 P1 1742 Соединения с забором, Предполагаемая точка разлома, проложенный кабель 1 м; Штанги заземляющие приводные P2 C2

===

Рассмотрим следующий сценарий. Если скрытый кабель, показанный на фиг. 26 произошел пробой изоляции возле показанной подстанции, неисправность токи будут проходить через землю к земле подстанции, создавая градиент напряжения.Этот градиент напряжения может быть опасным или потенциально опасным. смертельно опасно для персонала, соприкасавшегося с поврежденной землей.

Чтобы проверить приблизительные значения потенциала прикосновения в этой ситуации, выполните следующие действия. следующее. Подключите кабели между ограждением подстанции и С1 и P1 четырехполюсного измерителя сопротивления заземления. Поместите электрод в заземление в точке, в которой ожидается замыкание на землю, и подключите его к C2.

По прямой между ограждением подстанции и предполагаемой неисправностью точку, поместите вспомогательный электрод в землю на 1 м (или длины) от ограждения подстанции и подключите его к P2.Повернуть прибор включен, выберите диапазон тока 10 мА и наблюдайте за измерением. Умножьте отображаемое значение на максимальный ток короткого замыкания ожидаемого вина.

Путем размещения электрода P2 в различных положениях вокруг ограждения рядом с предполагаемой линией разлома может быть получена карта градиента напряжения.

__6.7 Измерение сопротивления заземления клещами

Этот метод измерения является новым и довольно уникальным. Он предлагает возможность измерить сопротивление без отключения заземления.Этот тип измерение также дает преимущество включения заземления и общие сопротивления заземляющих соединений.

__6.7.1 Принцип работы

Обычно система с заземлением общей распределительной линии может быть смоделирована как простая базовая схема, показанная на фиг. 27, или эквивалентную схему как показанный на фиг. 28. Если напряжение E приложено к любому измеренному полюсу заземления Rx через специальный трансформатор, по цепи протекает ток I, тем самым устанавливая следующее уравнение:


РИС.27 Простая принципиальная схема распределительной заземленной системы.


РИС. 28 Эквивалентная схема простой распределительной системы с заземлением.

Следовательно, E / I = Rx устанавливается. Если I обнаружен с постоянным E, можно получить измеренное сопротивление полюса заземления.

Обратимся снова к фиг. 27 и 11.28. Ток подается на специальный трансформатор. через усилитель мощности от генератора постоянного напряжения 1,6 кГц. Этот ток обнаруживается трансформатором тока обнаружения (CT).Только 1.6 Частота сигнала кГц усиливается фильтрующим усилителем перед подачей в аналогово-цифровой (A / D) -конвертер и после синхронного выпрямления он отображается на жидкокристаллическом дисплее (LCD).

Фильтр-усилитель используется для отключения тока заземления на промышленной частоте. и высокочастотный шум. Напряжение измеряется катушками, намотанными на инжекционная КТ, а затем усиленная и выпрямленная для сравнения по уровню компаратор.Если зажим не закрыт должным образом, сигнализатор открытых губок появляется на ЖК-дисплее. Накладной прибор для измерения сопротивления заземления показан на фиг. 29.

__6.7.2 Измерения в полевых условиях

Ниже приведены примеры измерения сопротивления заземления в типичных условиях. полевые ситуации:

Трансформатор на опоре: удалите все молдинги, закрывающие провод заземления, и обеспечьте достаточно места для зажимов тестера заземления.Зажимы должны легко смыкаться вокруг проводника. Челюсти могут размещать вокруг самого заземляющего стержня.

Примечание: Зажим должен быть размещен так, чтобы губки находились на пути электрического тока. от нейтрали или заземляющего провода системы к заземляющему стержню или стержням в качестве схема обеспечивает.

Выберите диапазон тока A. Зажмите заземляющий провод и измерьте ток заземления. Максимальный диапазон составляет 30 А. Если ток заземления превышает 30 А, измерение сопротивления заземления невозможно."Не продолжать далее с измерением. »Отметив ток заземления, выберите диапазон сопротивления заземления Ом и измерьте сопротивление напрямую.

Показание, которое вы измеряете с помощью тестера заземления, указывает не только на сопротивление стержня, но соединения с нейтралью системы и все соединения между нейтралью и штоком.

Обратите внимание, что на фиг. 30 имеется как затыльник, так и заземляющий стержень.

В этой схеме необходимо расположить клещи тестера выше облигацию так, чтобы оба основания были включены в тест.Для справки в будущем, Обратите внимание на дату, показания в омах, текущее показание и номер полюса. Заменять любые молдинги, которые вы могли снять с проводника.

Примечание: высокое значение указывает на одно или несколько из следующего:

Плохой заземляющий стержень.

Открытый заземляющий провод.

Соединения с высоким сопротивлением на стержне или соединениях проводника; следить за заглубленные разъемные стыки, зажимы и ударные соединения.


РИС. 29 Накладной прибор для измерения сопротивления заземления.

Служебный вход или счетчик: следуйте в основном той же процедуре, что и в первый пример. Обратите внимание, что фиг. 31 показывает возможность множественного заземления стержни и на фиг. 32 штанги заземления заменены на водопровод. земля. Вы также можете использовать оба типа в качестве основания. В этих случаях, необходимо провести измерения между сервисной нейтральностью и обе точки заземления.


РИС. 30 Измерение сопротивления заземления полюсного трансформатора. Полезность полюс Уровень земли Заземляющий стержень Заземляющий провод

Затыльник приклада


РИС. 31 Измерение сопротивления заземления служебного входа, имеющего несколько заземляющие стержни.

Уровень земли Стержни заземления Сервисный счетчик Стена здания Напольный трансформатор

Сервисный ящик


РИС. 32 Измерение сопротивления заземления служебного входа с водой труба грунт. Сервисный счетчик, Водопровод, Стена здания, Напольный трансформатор; Сервисный ящик; Трансформатор на подставке

Примечание: Никогда не открывайте корпуса трансформаторов.Они являются собственностью электрические сети. Если необходимо выполнить наземный тест с помощью утилиты трансформатора, согласовать с персоналом коммунального предприятия для такого испытания.

«Соблюдайте все требования безопасности - присутствует опасно высокое напряжение». Найдите и пронумеровать все стержни (обычно присутствует только один стержень). Если земля стержни находятся внутри корпуса, см. РИС. 33 и если они снаружи корпус, см. фиг. 34. Если в ограждении найден один стержень, измерение следует проводить на проводнике непосредственно перед приклеиванием заземляющий стержень.Часто к этому зажиму подключается более одного заземляющего провода, возвращение в корпус или нейтраль.


РИС. 33 Измерение сопротивления заземления трансформатора, установленного на подставке, с заземляющие стержни внутри корпуса. Открытая дверь Корпус Шина Концентрическая нейтраль Штанга заземления Open door Service

Подземная служба:

Во многих случаях наилучшие показания можно получить, зажимая инструмент. на сам заземляющий стержень, ниже точки, когда заземляющие проводники прикреплены к стержню, так что вы измеряете цепь заземления.Необходимо соблюдать осторожность, чтобы найти проводник только с одним обратным путем к нейтральный.

Как правило, очень низкие показания при измерении указывают на то, что вы на петле и нужно проверить ближе к стержню. На фиг. 34, земля стержень находится вне корпуса. Зажмите при указанном измерении точку, чтобы получить правильные показания. Если в разных уголков вольера, надо будет определить, как они подключен, чтобы правильно измерить сопротивление заземления.


РИС. 34 Измерение сопротивления заземления трансформатора, установленного на подставке, с заземляющие стержни вне корпуса. Стержни заземления; Корпус; Под землей сервис

__6.7.3 Передаточные башни

«Соблюдайте все требования безопасности - присутствует опасно высокое напряжение». Найдите заземляющий провод в основании башни.

Примечание : Существует множество различных конфигураций. При поиске следует соблюдать осторожность для заземляющего проводника.ИНЖИР. 35 показывает единственную опору, установленную на бетоне. площадка с внешним заземляющим проводом. Точка, в которой вы зажимаете Тестер заземления должен быть прежде всего сростками и соединениями, которые позволяют несколько удилищ, приклада или затыльника.

__6.7.4 Расположение центрального офиса

Основной заземляющий провод из окна заземления или заземляющего слишком большой, чтобы его можно было зажать. Из-за практики проводки в центральном офис, есть много мест, где можно посмотреть на водопровод или противовес изнутри здания.Эффективное местоположение обычно на шине заземления в силовой или рядом с резервным генератором.

Измеряя в нескольких точках и сравнивая показания, вы будете возможность определения нейтральных петель, хозяйственных площадок и площадок центрального офиса. Тест эффективен и точен, потому что заземленное окно подключено к общему заземлению только в одной точке, в соответствии со стандартной практикой.


РИС. 35 Измерение сопротивления заземления опоры электропередачи с помощью одиночного ножка устанавливается на бетонную площадку с внешним заземляющим проводом.Конкретный колодка заземляющий стержень, опора

__7. Измерение целостности сети заземления

Ни измерения сопротивления заземления, ни измерения потенциала прикосновения предоставить информацию о возможности заземляющих проводов и соединений для безопасного отвода токов замыкания на землю на землю. Опыт показал, что ток замыкания на землю может привести к серьезным повреждениям оборудования и вызвать угроза безопасности персонала, когда он не находит путь с низким сопротивлением к заземляющей сети и, следовательно, к материнской земле.Следовательно, имеет смысл периодически проверять и проверять целостность соединений сети заземления.

Цель этого измерения - определить, заземления каркаса, конструкций или корпуса подключаются к заземлению электрод или заземляющая сетка с низким сопротивлением. Значение сопротивления таких ожидается, что соединения будут очень низкими (100 мкОм или меньше). Лучший путь для проведения испытаний на целостность заземляющих электросетевых соединений следует использовать большой но практический ток и некоторые средства обнаружения падения напряжения вызвали этим течением.Доступен тестовый набор для проведения этого измерения с использованием Переменный ток. Этот метод тестирования известен как метод сильноточного тестирования. Этот метод заключается в пропускании 300 А через сеть заземления между опорная земля (обычно нейтраль трансформатора) и земля (провод и соединения) для проверки. Падение напряжения и величина тока и направление контролируются для проверки целостности заземляющих соединений.

Испытательный комплект GTS-300 показан на фиг.36. Тестовые соединения для проведения этот тест показан на фиг. 37.

Приведенные ниже рекомендации предлагаются при использовании сильноточного метода. проверки целостности заземляющих сетей и заземлений. Однако следует имейте в виду, что это всего лишь рекомендации, так как каждое основание должно рассматриваться по существу по сравнению с другими основаниями в ближайшем будущем окрестности.


РИС. 36 Комплект для проверки целостности сети заземления ГТС-300.


РИС. 37 Сильноточный метод проверки целостности сети заземления. [Amps High-current источник Вольт P1 Амперметр-клипса Амперметр-клипса Аппаратура подстанции Амперметр-клипса амперметр Амперметр с зажимом Эталонное заземление Тестовое заземление Потенциальный провод Потенциал Токоподвод Токопровод P2 C2 C1]

1. Падение напряжения сети заземления увеличивается примерно на 1 В для каждого 50 футов на прямом расстоянии от опорной точки.

2. На оборудовании с одинарным заземлением заземление можно считать удовлетворительным. если падение напряжения соответствует пункту 1 выше и расход не менее 200 А к проверяемому заземлителю в сеть.

На большинстве оборудования этого типа ток 300 А в сеть; однако в в некоторых случаях ток также будет проходить через фундаментные болты и / или трубопроводы.

3. На оборудовании с несколькими заземлениями заземление можно считать удовлетворительным. если падение напряжения соответствует пункту 1 выше и расход не менее 150 А к проверяемому заземлителю в сеть.

Если ток в сети меньше 150 А, заземление должно быть отключено. от оборудования и снова нужно пропустить 300 А через землю.Если земля проходит через 300 А и падение напряжения больше не увеличивается чем на 0,5 В выше предыдущего уровня, заземление можно считать удовлетворительным.

"Внимание! Перед удалением заземления с оборудования убедитесь, что параллельно с временной землей 2/0 CU, например с землей грузовика или другие основания до отключения ".

4. Чтобы проверить нейтраль трансформатора или контрольную точку, пропустите 300A через нейтраль трансформатора в точке выше уровня земли, но ниже любых заземляющих соединений или зажимы на баке.Если на сеть заземления поступает не менее 150 А, то эталонный балл можно считать удовлетворительным.

5. Установите опорную землю, предпочтительно трансформатор нейтральной. Из Сильноточный источник переменного тока (GTS-300) подключите один измерительный провод к заземлению испытано, как показано на фиг. 37. Подключите испытательный провод к точке над уровнем земли. но ниже склеивающих соединений или зажимов. Пропустить 300 А через землю сетке и запишите падение напряжения в сети. С помощью накладного амперметра измерить количество испытательного тока, протекающего выше (к оборудованию) и ниже (к сетке) тестовый провод на тестируемой земле.Напряжение падение должно производиться в соответствии с пунктом 1 выше. Испытательные амперы должны соответствовать пунктам 2 и 3 данного списка.

Заземление ESD - резистор 1 МОм


Это хороший вопрос. МОмный резистор

A1 позволяет любому статическому заряду, будь то от стола через изделие, а затем от заземленного человека или оператора или наоборот, полностью разряжаться с течением времени, обычно менее 1 секунды.

Без сопротивления 1 мегапиксель статический разряд был бы мгновенным стоком прямо на землю через изделие.В качестве примера возьмем случай сильно заряженного оператора, который не носит рассеивающую обувь и не заземлен с помощью браслета: если антистатический коврик или проводящая металлическая поверхность, на которую опирается блок чувствительной печатной платы (CCA), заземлен с помощью простого электрического провода, подключенного непосредственно к земле, нет ничего, что могло бы замедлить разряд оператора через CCA и через токопроводящий коврик на землю.

CCA мгновенно принимает на себя всю тяжесть электрического разряда (событие ESD), и именно этот мгновенный разряд может повредить компоненты CCA.

Если резистор сопротивлением 1 МОм включен последовательно с этим проводом, заряд уходит в течение нескольких миллисекунд, и это снижает удар по CCA. Антистатические браслеты обычно имеют встроенный резистор на 1 мегапиксель. Это сделано для защиты от сильно заряженного мата или незаземленной поверхности от мгновенного разряда через CCA, а затем через оператора на заземление, к которому подключен браслет.

Ремни для ног и обувь от электростатического разряда также рассчитаны на рассеивание тепла.Полы ESD рассеивают, маты рассеивают, инструменты ESD рассеивают, все эти вещи работают, чтобы позволить накопившимся электрическим зарядам достичь равновесия (без разницы электрических потенциалов) в течение нескольких миллисекунд, но никогда не мгновенно.

Инженерное дело - это не что иное, как управление силами, пытающимися достичь равновесия, будь то температура, газ, химия, электрические или гидравлические силы. Однако это не работает для духовных или политических сил. Они бросают вызов логической или научной реакции.Да пребудет с вами Сила.

Ричард Д. Стадем
Продвинутый инженер / ученый
General Dynamics

Ричард Д. Стадем - продвинутый инженер / научный сотрудник General Dynamics, а также инженер-консультант в других компаниях. У него 38-летний опыт работы в инженерии, он работал в компаниях Honeywell, ADC, Pemstar (теперь Benchmark), Analog Technologies и General Dynamics.


Краткий ответ на ваш вопрос: «Для безопасности оператора».

Подумайте ... для чего нужен заземляющий браслет? Обеспечивает заземление для электрической энергии. Проблема в том, что в электронной промышленности мы постоянно работаем с источниками электроэнергии.

Если бы у оператора был простой провод на запястье, он определенно был бы заземлен для защиты от электростатических разрядов. Однако он или она также будут заземлены, если этот человек наткнется на оголенный провод, несущий 110 В или, во многих случаях, 220 В или более. В таких случаях браслет превращается из простого средства защиты от электростатического разряда в потенциально опасную для жизни землю.

Электрическая энергия, полная сила 110, 220 или более, теперь проходит через тело оператора, легко связываясь с землей. Типичная бытовая электрическая цепь может иметь ток от 15 до 20 ампер. Прохождение всего лишь 0,25 ампер через грудь человека может вызвать потенциально смертельное сердечное заболевание.

Поместив резистор 1 МОм в заземляющий провод, оператор защищен от поражения электрическим током, травм или даже смерти.

Крис Роберсон
Менеджер по сборочным технологиям
IPC

Крис Роберсон имеет опыт работы в качестве оператора станков, техника и инженера-технолога в компаниях, включая Motorola и US Robotics.Крис сертифицирован как мастер-инструктор по стандартам IPC-7711/7721, IPC A-610 и IPC J-STD 001.


Для защиты пользователя от поражения электрическим током, если его браслет попадет под напряжение сети. 1 МОм более чем достаточно для безопасного отвода электростатического разряда на землю, а также для защиты пользователя.
Пол Остен
Старший инженер проекта
Electronic Controls Design Inc

Пол работал в Electronic Controls Design Inc.(ECD) в Милуоки, штат Орегон, более 39 лет в качестве старшего инженера проекта. Он видел и работал с электронной производственной промышленностью со многих точек зрения, в том числе: техник, инженер, производитель и заказчик. Его внимание было сосредоточено на разработке и применении измерительных инструментов, используемых для улучшения производственных тепловых процессов, а также решений для хранения чувствительных к влаге компонентов.


Чтобы предотвратить накопление электростатического заряда для защиты от электростатического разряда, все, что может накапливать заряд, заземлено, включая людей, которые там работают.Рабочие используют токопроводящую обувь и повязку с заземлением на запястье, чтобы оставаться заземленным.

Однако, если кто-то хорошо заземлен и прикоснется к чему-либо, находящемуся под высоким напряжением, он может легко получить очень сильный и опасный электрический шок. Чтобы предотвратить это, люди, работающие в такой среде, заземляются не напрямую, а через резистор, который ограничивает ток, протекающий через них, до безопасного значения. Обычно это ограничение тока осуществляется с помощью резистора 1 МОм в заземляющем проводе.

Этот резистор 1 МОм ограничивает ток до значения намного меньше 1 мА, если кто-то случайно коснется провода с сетевым потенциалом (230 В).

Сантош Кумар
Менеджер по исследованиям и разработкам
MK Electron Co. Ltd

Сантош Кумар является менеджером по исследованиям и разработкам в MK Electron Co. Ltd., Корея, и занимается разработкой материалов для электронных межсоединений и техническим маркетингом. Его основные направления - новые бессвинцовые припои, упаковка для электроники, материалы и технологии для соединения проводов.


Сопротивление 1 МОм используется по двум причинам:
  1. Оно ограничивает скорость прохождения заряда, предотвращая быструю разрядку предмета, что является одним из способов вызвать повреждение предмета электростатическим разрядом (другой - быстрый разряд от заряженный предмет к изделию)
  2. Обеспечивает безопасность оператора, ограничивая ток в случае контакта пользователя заземляющего устройства с высоким напряжением.
Фриц Байл
Инженер-технолог
Астронавтика

Карьера Фрица в производстве электроники включала различные инженерные должности, включая изготовление печатных плат, толстопленочную печать и огонь, SMT и технологию волновой / селективной пайки, а также разработку электронных материалов и маркетинг.Фриц получил образование в области машиностроения с акцентом на материаловедение. Методы планирования экспериментов (DoE) были областью независимых исследований. Фриц опубликовал более десятка статей на различных отраслевых конференциях.


Резистор используется в качестве меры предосторожности. Поскольку электрическое оборудование также подключено к земле ... (у некоторых компаний нет отдельного электрического заземления от их заземления ESD), существует вероятность того, что электрическое оборудование может замкнуться на электрическое заземление и, таким образом, передать большие токи в ленты ESD. лиц.

Это могло быть катастрофой. Следуйте стандартам EOS / ESD, и все будет хорошо.

Обратите внимание, что заземление стоек и оборудования также необходимо проверять с помощью измерителя сопротивления. Вы хотите, чтобы оборудование и рабочие поверхности имели «одноточечное заземление» ... это означает, что ножки оборудования должны быть электрически изолированы от токопроводящих полов.

В противном случае эффективное сопротивление параллельных цепей следует этой формуле ... 1 / Rt = 1 / R1 + 1 / R2 + 1 / R3 + ...

Я могу объяснить более подробно, если вы хотите связаться со мной напрямую .

Рик Перкинс
Президент
Chem Logic

Рик Перкинс - инженер-химик с более чем 33-летним опытом работы в области материалов и процессов. Он работал с Honeywell Aerospace в области высоконадежного производства, а также с несколькими компаниями-производителями нефтяных месторождений. Он также хорошо разбирается в нормах охраны окружающей среды, здоровья и безопасности.


Резистор - это средство безопасности, ограничивающее ток в случае прикосновения оператора к проводнику, находящемуся под напряжением.Резистор сопротивлением 1 МОм обычно используется для защиты от обычных источников питания от 110 до 220 В переменного тока.
Ричард Хенрик
Менеджер по обеспечению качества / соблюдению нормативных требований
Sanmina Corporation

Ричард имеет 18-летний опыт работы в индустрии медицинской электроники как у контрактных производителей, так и у производителей оригинального оборудования. Его опыт включает в себя производство PWA и готовых устройств в качестве инженера-технолога, а в течение последних 7 лет - в качестве менеджера по обеспечению качества / соблюдению нормативных требований.Он имеет 5 сертификатов Американского общества по качеству и является сертифицированным тренером IPC 610.


Высокое сопротивление, например 1 МОм, используется для медленного разряда статического электричества. Разрядка статического электричества быстро приводит к возникновению искры, а искра в источнике разряда или рядом с ним приводит к электростатическому перенапряжению (повреждению высокого напряжения) микросхем и чувствительных схем.

Заземление чувствительного оборудования или персонала через резистор 1 МОм является общепринятой практикой и предписывается множеством стандартов ESD.

Гэри Фридман
Президент
Colab Engineering

Тридцатилетний ветеран сборки электроники с крупными производителями комплектного оборудования, включая Digital Equipment Corp., Compaq и Hewlett-Packard. Президент Colab Engineering, LLC; консалтинговое агентство, специализирующееся на производстве электроники, анализе первопричин и улучшении производства. Обладатель шести патентов на процессы в США. Автор нескольких разделов и глав по сборке схем для отраслевых справочников.Написал трактат по лазерной пайке для Справочника по лазерной обработке материалов LIA LIA Laser Institute of America. Разнообразный фон включает значительные усилия и вклад в электрохимию, фотовольтаику, рост кристаллов кремния и лазерную обработку до того, как войти в мир PCA. Член SMTA. Член комитета технических журналов Ассоциации технологий поверхностного монтажа.


Просто для защиты персонала от поражения электрическим током в случае короткого замыкания любого электрического оборудования на токопроводящей поверхности стола.

Ток в случае короткого замыкания проходит через кратчайший путь сопротивления, один мегабайт делает цепь, проходящую через тело человека, более резистивной, тем самым предотвращая поражение электрическим током.

Для защиты от электростатического разряда важно заземлять оборудование, персонал и сборки, работающие от электростатического разряда, с одинаковым потенциалом.

KN Murli
Head-Quality
Astra Microwave Products, Хайдарабад, AP Индия

Имеет степень инженера, начинал как ученый / инженер в ISRO (Индийская организация космических исследований) в области обеспечения качества космического оборудования Электроника Производство.Работал в области деталей, материалов и процессов; DPA, FA и квалификация процессов для космического и наземного оборудования. Позже перешел в частный сектор и работал в области систем менеджмента качества и сертификации ISO 9001. В настоящее время занимаю должность директора по контролю качества продукции ВЧ / СВЧ-диапазона для оборонного и аэрокосмического сегментов.


Резистор защищает оператора от попадания на землю в случае контакта с действующим напряжением. Получили ли вы доступ и загрузили текущую EOS / ESD ST 20.20?

Использование резистора на 1 МОм было частью безопасности EOS / ESD в течение как минимум 25 лет. Я рекомендую вам ознакомиться со стандартами, которые внедряются годами.

Я понятия не имею, в какой стране вы находитесь, но использование защиты 1 мегом является нормой для любого качественного браслета, продаваемого в настоящее время на рынке.

Джерри Карп
Президент
JSK Associates

Базируется в.Северная Калифорния с 1971 года. Основана JSK Associates в 1979 году. Активно занимается пайкой, очисткой, химическим производством. 30-летний опыт работы в области контроля EOS / ESD.

Комментарий читателя

Если речь идет о наручных ремешках, без сомнения, для этого требуется резистор 1M (для двойных наручных ремешков по два резистора 1M в каждой половине). Что касается уменьшения силы разряда, давайте проверим эту теорию под нагрузкой - что, если этот резистор составляет 10 МОм? 100 млн? 1G?

А как насчет пресловутой дверной ручки, которая имеет бесконечное сопротивление относительно земли, но при соприкосновении с ней можно сработать, идя по ковру? Очевидно, что теория резистора 1M, используемого для «замедления» или уменьшения силы разряда, не выдерживает критики.

Металлические предметы, например, верстаки и др., Имеют емкость относительно земли, большую или малую. Заряженный металлический объект, входящий в гальванический контакт с таким рабочим столом или другим проводником, заземленным или нет, будет быстро выравнивать напряжение между двумя объектами, независимо от того, присутствует ли где-либо вообще какой-либо резистор.

Если вы хотите уменьшить ток разряда при контакте, уменьшите контакт металла с металлом (на ум приходит рассеивающий пинцет) или убедитесь, что соприкасающиеся объекты имеют одинаковое напряжение, предпочтительно оба равны заземлению.В этом вся цель заземления верстаков и других металлических предметов.

Резистор 1M не способствует снижению силы разряда, но увеличивает вероятность наведенного напряжения на объектах от излучаемых источников, таких как люминесцентные лампы, линии электропередач, работа инструментов и т. Д.

Владимир Краз, OnFILTER, США

Комментарий читателя

Если удельное сопротивление напольного покрытия слишком низкое, рекомендуется установить рассеивающий напольный коврик, подключенный к земле через 1 МОм в защищаемой зоне.

Swaroop Pawar, Schneider Electric

Комментарий читателя

Владимир Краз рассказал об этом, но я повторю еще раз.

Требуется ли в цепи заземления резистор 1 МОм? Не обязательно, либо из-за риска электростатического разряда, либо из-за соответствия стандартам. Некоторые люди без проблем заземлили металлические скамейки.

Если вас беспокоит опасность электростатического разряда заряженного устройства, резистор в цепи заземления не поможет. В этом случае вам нужно предотвратить контакт между устройством, чувствительным к электростатическому разряду (ESDS), и проводящими материалами (поверхностное сопротивление <10 кОм).Или перед контактом ESDS и материал должны находиться под примерно одинаковым напряжением.

Если вас беспокоит заземление при наличии линии электропередачи или других высоких напряжений, вам потребуется защитное сопротивление в соответствии с заземлением, соответствующее имеющемуся напряжению питания и максимальному электростатическому напряжению, которое вы можете выдержать на теле человека. 1 МОм обычно является хорошим решением для этого. Посмотрите на ANSI / ESD S20.20 и ESD S541 или IEC61340-5-1 и IEC 61340-5-3.

Джереми Смоллвуд, Electrostatic Solutions Ltd

Общие сведения об испытаниях на удельное сопротивление почвы | Коммунальные товары

Влияние удельного сопротивления грунта на сопротивление заземляющего электрода

и факторы, влияющие на удельное сопротивление грунта

Джон Олобри

Измерение удельного сопротивления грунта преследует три цели.Во-первых, данные используются для проведения геофизических исследований под землей в качестве помощи в определении местоположения руды, глубины до коренных пород и других геологических явлений. Во-вторых, удельное сопротивление напрямую влияет на степень коррозии подземных трубопроводов. Снижение удельного сопротивления связано с увеличением коррозионной активности и, следовательно, требует использования защитной обработки. В-третьих, удельное сопротивление почвы напрямую влияет на конструкцию системы заземления, и именно к этой задаче и направлено данное обсуждение.

При проектировании обширной системы заземления рекомендуется определять зону с наименьшим удельным сопротивлением почвы, чтобы обеспечить наиболее экономичную установку заземления. Для выполнения этой задачи вам понадобится прибор для проверки сопротивления заземления, способный проводить испытания с использованием четырех электродов (обычно называемый четырехточечным или четырехполюсным тестером). Также вам понадобятся четыре вспомогательных электрода и четыре катушки с проволокой.

Метод Веннера является более популярным и простым в использовании для проверки удельного сопротивления почвы для системы заземляющих электродов.Результаты представлены греческой буквой Rho (ρ) и выражаются в ом-метрах или ом-сантиметре, представляющих сопротивление кубического метра почвы. Упрощенная формула:

ρ = 2πAR

Где:

ρ = Ом-см

π - постоянная величина = 3,1414

A = расстояние между электродами (в сантиметрах сэкономит время при получении результатов без необходимости преобразования)

R = значение сопротивления теста в Ом.

Прежде чем мы перейдем к собственно тесту, сначала давайте посмотрим на состав почвы. Почвы, состоящие из золы, сланца или суглинка, как правило, имеют самое низкое удельное сопротивление почвы. Грунты, состоящие из гравия, песка или камня, имеют наивысшее удельное сопротивление почвы. Рисунок 1. Четыре электрода расположены на равном расстоянии друг от друга по прямой линии с интервалом, равным глубине испытания.

Содержание влаги, температура и соли также влияют на удельное сопротивление почвы. Почва, которая содержит 10 процентов влаги по весу, будет иметь удельное сопротивление почвы в пять раз ниже, чем та, которая содержит 2.5 процентов. Сопротивление почвы при комнатной температуре будет в четыре раза ниже, чем при 32 градусах. Таким образом, время года, когда вы проводите тест, может сыграть важную роль в результатах.

Наконец, на результаты во многом влияет содержание соли. Простое изменение состава на 1 процент может снизить удельное сопротивление почвы в 20 раз. Таким образом, быстрый визуальный анализ рабочей площадки может дать вам хорошее представление о том, можно ли ожидать низкого сопротивления от установленной системы заземляющих электродов. состоит из одного заземляющего стержня или если вам потребуется установить несколько стержней для достижения необходимых результатов.Эти условия должны быть записаны и сохранены вместе с результатами испытаний. Температуру, влажность и тип почвы легко определить. Содержание соли определить труднее.

Теперь мы готовы провести некоторые измерения. Поскольку большинство имеющихся в продаже заземляющих стержней имеют длину от 8 до 10 футов, имеет смысл проверять ожидаемое удельное сопротивление почвы на глубине 10 футов. Проверка на высоте 20 футов - тоже хорошая идея для сравнения.

Используя метод Веннера, вам необходимо расположить четыре электрода на равном расстоянии друг от друга по прямой линии и с интервалом, равным глубине, подлежащей тестированию (см.Рис.1). Если мы проводим тестирование на глубине 10 футов, то четыре электрода должны быть расположены по прямой линии на расстоянии 10 футов друг от друга. Если мы проводим тестирование на глубине 20 футов, электроды должны быть расположены на расстоянии 20 футов друг от друга и так далее.

Чтобы получить точное представление об удельном сопротивлении почвы в месте установки заземляющего электрода, мы должны провести пять измерений и усреднить их для окончательного ответа. Мы должны взять их в виде квадрата, а затем по одной на внутренней диагонали квадрата (см. Рис. 2).

Теперь, чтобы использовать упрощенную формулу, описанную ранее, нам нужно соблюдать одно правило: глубина испытательных электродов должна быть не более 1/20 расстояния между стержнями.Для тестирования на глубине 10 футов электроды следует помещать не более чем на 6 дюймов в землю. Для увеличения междурядья не нужно загонять глубже.

Со стержнями, расположенными на расстоянии 10 футов друг от друга и всего на 6 дюймов в земле, прибор готов к подключению к стержням (см. Рис. 3). Последовательно подсоедините клеммы прибора к стержню, используя прилагаемые катушки с проволокой. После того, как соединения будут установлены, вы можете запустить тест. Включите прибор, установите переключатель в положение проверки удельного сопротивления почвы и нажмите кнопку проверки.Наблюдайте и запишите измеренное значение сопротивления. Проделайте то же самое для каждого из 5 измерений. Для нашего тестового примера предположим, что наше среднее значение для 5 измерений составило 3,4 Ом. Теперь примените формулу:

.

ρ = 2πAR = 2 (3,1414) (305 см) (3,4) = 6,515 Ом-см

Обратите внимание, мы преобразовали 10 футов в 305 сантиметров, чтобы упростить нашу математику: (10 x 30,5) = 305

Давайте посмотрим на процесс расчета глубины, необходимой для установки новой заземляющей штанги. Для этого воспользуемся вычислительным инструментом, называемым номограммой (см. Рис.4). Номограмма заземления была разработана в 1936 г. Х. Б. Дуайтом. Это математический инструмент, состоящий из нескольких нелинейных шкал, на которых могут быть нанесены известные значения, а желаемое неизвестное значение может быть получено путем простого соединения точек линейкой и нахождения результата путем считывания точки пересечения на желаемом масштабе. В случае сопротивления заземления мы будем иметь дело с известными значениями удельного сопротивления грунта, диаметра стержня и желаемого сопротивления заземления системы. Неизвестно, какую глубину необходимо решить для достижения желаемого сопротивления..

Для начала нам нужно принять несколько решений. Во-первых, какое сопротивление заземляющего электрода необходимо? Во-вторых, какой диаметр заземляющих стержней мы будем использовать? С этими двумя ответами плюс измеренное удельное сопротивление почвы мы можем использовать номограмму для расчета глубины, необходимой для достижения нашей цели. Допустим, нам нужно, чтобы сопротивление этой системы заземления было не более 10 Ом, и что мы выбрали заземляющие стержни диаметром 5/8 дюйма.

Глядя на нашу номограмму, у нас есть пять шкал для работы: шкала R представляет желаемое сопротивление, необходимое для нашей работы (10 Ом).Шкала P представляет удельное сопротивление почвы. Наше среднее значение составляет 6 515 Ом-сантиметров, полученное с помощью 4-полюсного измерителя сопротивления заземления по методу Веннера. Шкала D представляет собой глубину, и мы будем использовать ее, чтобы найти ответ. Шкала K содержит константы, которые помогут нам определить глубину. Наконец, DIA представляет собой диаметр используемых стержней. Мы выполним несколько простых шагов, чтобы получить ответ на глубину. Рисунок 2. Чтобы получить хорошее представление об удельном сопротивлении почвы в месте установки заземляющего электрода, выполните пять измерений и усредните их для получения окончательного ответа.

Используя номограмму, мы сначала ставим точку на 10 Ом на шкале R, так как это желаемое сопротивление.

Затем мы ставим точку на уровне 6,515 на шкале P, представляющую наши измерения удельного сопротивления почвы. Нам нужно будет сделать все возможное, чтобы приблизить местоположение этой точки между 5000 и 10000 хэш-меток.

Затем мы берем линейку и проводим линию между точками, которые мы разместили на шкалах R и P, и позволяем этой линии пересекаться со шкалой K и помещаем точку в точку пересечения.Рисунок 3. Последовательно подсоедините клеммы прибора к стержню, используя прилагаемые катушки с проволокой.

Теперь мы снова берем линейку и проводим линию от отметки 5/8 на шкале DIA, представляющую диаметр нашего стержня через точку на шкале K, и продолжаем до пересечения со шкалой D и помещаем точку на шкале D. в этой точке пересечения.

Значение в этой точке - это глубина, необходимая для того, чтобы продвинуть стержень диаметром 5/8 дюйма для достижения 10 Ом сопротивления заземляющего электрода с учетом измеренного удельного сопротивления почвы.Глядя на заполненную номограмму (см. Рис. 5), мы видим, что один стержень должен быть погружен на глубину 30 футов, чтобы соответствовать нашей цели 10 Ом. Во многих случаях забивать глубокие штанги непрактично.

Альтернативой является использование двух или более стержней для достижения желаемых результатов.

При использовании нескольких штанг следует учитывать несколько важных моментов. Во-первых, установка дополнительных стержней не приведет к линейным результатам. Например, три 10-футовых удилища не дадут таких же результатов, как 30-футовые удилища.Нам нужно применить поправочный коэффициент. Во-вторых, для достижения наилучшего эффекта от дополнительных стержней их следует располагать друг от друга как минимум на равную глубину, а желательно на удвоенную глубину. Например, несколько 10-футовых стержней должны быть расположены на расстоянии 20 футов друг от друга, чтобы они не попадали в сферу влияния друг друга (см. Рис. 6).

Коэффициент регулировки, необходимый для нескольких удилищ, показан на рисунке 7. Если бы мы использовали три 10-футовых параллельно вместо одной 30-футовой удочки, мы бы ожидали, что каждая удочка будет давать 1.В 29 раз больше теоретического значения. Другими словами, если мы разделим необходимые 10 Ом на 3, чтобы найти ожидаемое значение каждого стержня, мы получим 3,33 Ом. Применяя поправочный коэффициент из таблицы для 3 стержней параллельно, мы получаем 3,3 x 1,29 или 4,25 Ом, вносимые каждым стержнем, что в сумме составляет 12,75 Ом. В этом случае нам нужно будет задействовать четвертый стержень, чтобы снизить сопротивление ниже желаемых 10 Ом.

Иногда нельзя получить окончательный результат путем добавления дополнительных стержней. Для этого может просто не хватить недвижимости, или район слишком каменистый и т. Д.В этих случаях можно использовать методы улучшения почвы или химические стержни. Есть несколько компаний, которые специализируются на решении таких проблем, с которыми можно проконсультироваться. Рисунок 6. Несколько 10-футовых стержней должны быть расположены на расстоянии 20 футов друг от друга, чтобы не оказаться в сфере влияния друг друга.

Измерение удельного сопротивления почвы перед установкой системы заземляющих электродов может сэкономить много времени и усилий при правильном планировании системы. Использование нескольких простых инструментов и процедур может дать вам качественный результат менее чем за час.Имейте в виду, что эти результаты основаны на однородных условиях, которые не обязательно будут существовать на площадке. Рисунок 7. Показан поправочный коэффициент, необходимый для нескольких стержней.

Еще больше упрощает сегодняшнюю задачу тот факт, что новые испытатели теперь имеют возможность рассчитывать удельное сопротивление грунта с помощью внутреннего вычисления Rho, что дополнительно экономит время и усилия. UP

Автор: Джон Олобри (John Olobri) - директор по продажам и маркетингу компании AEMC® Instruments, где в течение последних 20 лет он активно участвовал в таких областях, как сопротивление изоляции, тестирование сопротивления заземления, проверка качества электроэнергии, регистрация данных и экологические испытания.Он имеет ученую степень в области электротехники и промышленного инжиниринга и более 35 лет проработал в области проектирования и маркетинга контрольно-измерительных приборов. Он также проводит аккредитованные семинары по тестированию сопротивления заземления в различных городах страны. Узнайте больше на

% PDF-1.6 % 5911 0 объект > эндобдж xref 5911 171 0000000016 00000 н. 0000008285 00000 н. 0000008390 00000 н. 0000009141 00000 п. 0000009320 00000 н. 0000009485 00000 н. 0000009600 00000 н. 0000009713 00000 н. 0000012903 00000 п. 0000013369 00000 п. 0000013996 00000 п. 0000014081 00000 п. 0000014534 00000 п. 0000015088 00000 п. 0000015184 00000 п. 0000015823 00000 п. 0000016499 00000 н. 0000016613 00000 п. 0000021306 00000 п. 0000027396 00000 п. 0000027420 00000 н. 0000027499 00000 н. 0000094464 00000 п. 0000094826 00000 п. 0000094895 00000 п. 0000095013 00000 п. 0000095037 00000 п. 0000095116 00000 п. 0000176293 00000 н. 0000268065 00000 н. 0000268454 00000 н. 0000268523 00000 н. 0000268641 00000 н. 0000268677 00000 н. 0000268756 00000 н. 0000284349 00000 н. 0000284677 00000 н. 0000284746 00000 н. 0000284864 00000 н. 0000284981 00000 н. 0000285017 00000 н. 0000285096 00000 н. 0000310307 00000 н. 0000310639 00000 п. 0000310708 00000 н. 0000310826 00000 н. 0000310850 00000 н. 0000310929 00000 п. 0000311293 00000 н. 0000311607 00000 н. 0000312073 00000 н. 0000312142 00000 н. 0000312260 00000 н. 0000312377 00000 н. 0000312413 00000 н. 0000312492 00000 н. 0000327987 00000 н. 0000328314 00000 н. 0000328383 00000 н. 0000328501 00000 н. 0000328525 00000 н. 0000328604 00000 н. 0000328993 00000 н. 0000329062 00000 н. 0000329180 00000 н. 0000329216 00000 н. 0000329295 00000 н. 0000344747 00000 н. 0000345072 00000 н. 0000345141 00000 п. 0000345259 00000 н. 0000366122 00000 н. 0000366163 00000 н. 0000366228 00000 н. 0000366264 00000 н. 0000366343 00000 п. 0000545158 00000 п. 0000545496 00000 п. 0000545565 00000 н. 0000545683 00000 н. 0000930310 00000 п. 0000930711 00000 н. 0000930790 00000 н. 0000930814 00000 н. 0000930893 00000 п. 0000931152 00000 п. 0000931221 00000 н. 0000931339 00000 п. 0000931404 00000 п. 0000931440 00000 п. 0000931519 00000 п. 0000935485 00000 н. 0000935819 00000 н. 0000935888 00000 н. 0000936008 00000 н. 0000936319 00000 п. 0000936599 00000 н. 0000936678 00000 п. 0000936792 00000 н. 0000937071 00000 п. 0000937136 00000 п. 0000937172 00000 п. 0000937251 00000 п. 0000969833 00000 н. 0000970163 00000 п. 0000970232 00000 н. 0000970350 00000 н. 0000970714 00000 н. 0000971028 00000 н. 0000971541 00000 н. 0000971620 00000 н. 0000971644 00000 н. 0000971723 00000 н. 0000972087 00000 н. 0000972401 00000 п. 0000972867 00000 н. 0000972936 00000 н. 0000973054 00000 н. 0000973119 00000 н. 0000973155 00000 н. 0000973234 00000 н. 0001005774 00000 п. 0001006103 00000 п. 0001006172 00000 п. 0001006290 00000 н. 0001006654 00000 п. 0001006968 00000 п. 0001007485 00000 п. 0001007768 00000 п. 0001007847 00000 п. 0001007973 00000 п. 0001008234 00000 п. 0001008299 00000 п. 0001008335 00000 п. 0001008414 00000 п. 0001010276 00000 п. 0001010617 00000 п. 0001010686 00000 п. 0001010805 00000 п. 0001010841 00000 п. 0001010920 00000 п. 0001025736 00000 п. 0001026081 00000 п. 0001026150 00000 п. 0001026278 00000 п. 0001028140 00000 п. 0001050383 00000 п. 0001050844 00000 п. 0001050923 00000 п. 0001051185 00000 п. 0001051250 00000 п. 0001051286 00000 п. 0001051365 00000 п. 0001051706 00000 п. 0001051775 00000 п. 0001051894 00000 п. 0001051930 00000 п. 0001052009 00000 п. 0001052356 00000 п. 0001052425 00000 п. 0001052553 00000 п. 0001053012 00000 п. 0001053091 00000 п. 0001053357 00000 п. 0001057728 00000 п. 0001227403 00000 п. 0001231530 00000 п. 0001401000 00000 п. 0001406762 00000 п. 0001501342 00000 п. 0000003716 00000 н. трейлер ] / Назад 7765723 >> startxref 0 %% EOF 6081 0 объект > поток hWy \ {ۿ i9] {¹mBR * u * ܎ $ eP aJm = J)% Lбdzsv {]

Как правильно заземлить FIBC типа C

Полезные советы по правильному заземлению мешков FIBC типа C:

• Убедитесь, что мешки типа C изготовлены в соответствии с электростатическими рекомендациями IEC 61340-4-4 / NFPA 77 или CLC / TR: 50404.
• Убедитесь, что выбранная система заземления может проверять и непрерывно контролировать полный диапазон сопротивления через мешок.
• Убедитесь, что система заземления не только проверяет состояние резьбы, рассеивающей статическое электричество, но и гарантирует, что цепь заземления включает прямое и контролируемое соединение с проверенной точкой заземления True Earth.
• Убедитесь, что система заземления не контролирует ограниченный процент допустимого диапазона сопротивления, так как они могут пройти через дефектные пакеты и отклонить приемлемые пакеты.

Мешки типа C
Мешки типа C предназначены для рассеивания статического электричества через нити, рассеивающие статическое электричество, которые вплетены в материал мешка. Заземляющие контакты, расположенные на мешках, представляют собой точки, к которым можно подключить системы заземления, чтобы статическое электричество не накапливалось на мешке. Чтобы мешки, предназначенные для использования во взрывоопасных зонах, не накапливали статическое электричество до опасного уровня, существует несколько стандартов, которые содержат рекомендации по ключевым параметрам, которым должны соответствовать мешки типа C.

Основным стандартом является IEC 61340-4-4, «Электростатика - Часть 4-4: Стандартные методы испытаний для конкретных применений - Электростатическая классификация мягких промежуточных контейнеров для массовых грузов (FIBC)». Этот стандарт был выпущен в начале 2012 года и устанавливает основные требования к сумкам типа C в отношении устранения риска накопления заряда на сумке. В нем указано, что сопротивление через сумку должно быть менее 1 x 107 Ом (10 МОм). Это означает, что сопротивление от точки на сумке до вывода заземления никогда не должно быть выше 10 МОм.Последнее издание NFPA 77, «Рекомендуемая практика по статическому электричеству», рекомендует это значение сопротивления.

Этот стандарт заменяет рекомендации, содержащиеся в техническом отчете CENELEC за 2003 год, называемом CLC / TR 50404, который устанавливает максимальное значение 1 x 108 Ом (100 МОм). Последнее издание TRBS 2153: 2009 рекомендует такое же значение сопротивления.

Сумки для проверки и заземления типа C
Когда компания желает использовать мешки типа C, они должны предоставить средства для заземления мешка.Это может быть достигнуто либо пассивными (однополюсный зажим и кабель), либо активными средствами (системы мониторинга), но с учетом масштаба заряда, который может накапливаться на мешках, и результирующей энергии, которая может быть достигнута статическими искрами в сочетании с наличие облака горючей пыли, активная система заземления - лучший выбор.

Это связано с тем, что система может определить, соответствует ли конструкция мешка рекомендациям указанных выше стандартов, а также обеспечит заземление мешка на время операции наполнения / опорожнения.Основное преимущество проверки сопротивления через мешок состоит в том, чтобы убедиться, что после многих циклов повторного использования нити, рассеивающие статическое электричество, функционируют правильно, и, что более важно, гарантировать, что мешки не конструкции типа C не могут использоваться в опасная зона. Дополнительные преимущества систем заземления заключаются в том, что они могут контролировать движение порошка через выходные контакты, заблокированные с помощью клапанов или ПЛК.

На рисунке показано, как можно проверить мешок на способность рассеивать статическое электричество в сочетании с обеспечением активного заземления мешка.После соединения двух быстросъемных зажимов система Earth-Rite FIBC определит, работает ли сумка в соответствии с соответствующим стандартом. Это достигается путем отправки искробезопасного (одобренного Hazloc) сигнала (красная линия на рисунке) через пакет. Если зеленые индикаторы состояния заземления непрерывно мигают, операторы знают, что сумка заземлена. Система проверяет заземление сумки, обеспечивая возврат сигнала через проверенное истинное заземление. Если на сумке есть какой-либо заряд, он покинет сумку через нити, рассеивающие статическое электричество, на проверенную землю.Если выходные контакты заблокированы процессом, материал не может течь без разрешения оператора.

Что представляют собой пакеты FIBC типа C на 10 или 100 МОм?
Основной вопрос, который следует решить при выборе системы заземления FIBC типа C, - это определить, по какому стандарту сконструированы используемые мешки. Хотя количество пакетов, изготовленных в соответствии с требованием 10 мегомов, растет, существует значительный процент FIBC типа C, изготовленных в соответствии с требованием 100 мегомов.

Если компания намерена использовать 100-мегомные мешки типа C, соответствующие стандарту CENELEC, то система заземления должна контролировать весь диапазон сопротивления.

Это гарантирует, что пакеты с разной статической рассеивающей способностью могут быть проверены и отслежены на предмет полного допустимого диапазона сопротивления. Любые мешки, работающие за пределами этого диапазона, должны быть отклонены.

Аналогичным образом, если компания намерена использовать 10-мегомные мешки, соответствующие IEC / NFPA 77, допустимый диапазон сопротивления, за которым должна следить система заземления, должен составлять от 0 Ом до 10 МОм.

Убедитесь, что выбранная вами система заземления соответствует типу сумки, используемой на объекте
Если выбрана система заземления, которая контролирует узкий диапазон сопротивления, например, мониторы от 0 Ом до 50 МОм, это создает проблему, и эта проблема может иметь два результата.

Во-первых, если для участка указаны пакеты на 10 мегомов, система может пропустить неисправные пакеты, поскольку она пройдёт через любой мешок, который показывает сопротивление от 10 до 50 мегомов.Прямым следствием этой особенности является то, что это могут быть пропускные мешки, изготовленные не в соответствии с IEC-61340-4-4 и рекомендациями NFPA77.
Второй вариант - если для сайта указаны мешки на 100 мегомов. Поскольку система заземления имеет сопротивление отсечки 50 МОм, она выйдет из строя любой сумке, работающей от 50 до 100 МОм. Прямым следствием этой проблемы является то, что система может отклонить мешок, который полностью соответствует требованиям, и привести к задержке операций, пока операторы заменяют мешок.

Таким образом, чрезвычайно важно определить, какие типы пакетов типа C будут использоваться на объекте. Исходя из этого, сайт может выбрать систему, которая будет контролировать весь диапазон сумок 10 мегомов, или выбрать систему, которая будет контролировать весь диапазон сумок 100 мегом.

Получите дополнительную информацию или зарегистрируйтесь на Международной выставке и конференции порошков и сыпучих материалов, 3-5 мая 2016 г.

Для получения соответствующих статей, новостей и обзоров оборудования посетите нашу зону взрывозащиты и оборудования безопасности

Щелкните здесь, чтобы просмотреть список производителей оборудования для взрывозащиты и безопасности

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *