Защита от скачков напряжения 380 вольт: Защита от скачков напряжения бытовые электрические товары во владивостоке

Содержание

Защита от скачков напряжения бытовые электрические товары во владивостоке

Как правильно защитить бытовую технику

Не стоит недооценивать важность защиты от скачков напряжения. Регулярные перепады в сети приводят в неисправное состояние электронику точного оборудования, выводят из строя реле и двигатели холодильников, морозильных камер

Часто даже способствуют сгоранию техники. Чтобы этого не случалось, нужно оборудовать дом надежными защитными приборами.

Реле контроля напряжения

Реле контроля напряжения трехфазное ZUBR 3F, 5А

Такая защита от повышенного напряжения позволяет мгновенно отключать все приборы от сети. Устройство контролирует параметры Вольт и при их резком повышении блокирует подачу питания к бытовой технике. После того как сеть стабилизирует свою работу, аппарат снова включается в работу и запускает технику.

Различают точечные реле (вилки и переходники), а также устройства по типу автомата для установки на DIN-рейку к распределительному щитку. В первом случае аппараты контролируют и защищают отдельные бытовые приборы. Так сказать, являются индивидуальными. Второй вариант — это надежный автомат защиты от перепадов напряжения в сети для всего дома.

Стабилизатор напряжения

Релейный стабилизатор напряжения

Такая защита по напряжению предполагает изменение параметров по Вольтам до тех пор, пока они не будут приведены к нормальному состоянию. К примеру, стиральная машина или телевизор, подключенные через стабилизатор, работают всегда на одном напряжении. Если аппарат улавливает резкий скачок, то пропускает к бытовой технике лишь нормальный показатель 220-230 В.

Главные технические параметры стабилизаторов — время реакции на скачок, точность стабилизации, диапазоны входного напряжения и уровень издаваемого шума.

Все устройства такого типа делят на несколько видов:

  • Релейные. Самые дешевые виды стабилизаторов. Имеют низкий уровень мощности. Если и используются до сих пор, то на отдельные бытовые устройства.
  • Электромеханические (их еще называют сервоприводными). Рабочие характеристики подобных аппаратов мало отличаются от стабилизаторов релейных. Единственная разница между первыми и вторыми – чуть более высокая цена.
  • Электронные. Подобные устройства собирают на базе симистора или тиристора. Такие стабилизаторы отличаются хорошей мощностью, долговечностью, точностью реакции на скачки напряжения. При максимально быстром своем действии электронные устройства обеспечивают надёжную защиту от перепадов напряжения.
  • Электронные двойного преобразования. Подобные стабилизаторы — самые дорогие из всех. При этом они хорошо защищают как отдельные бытовые приборы, так и всю электросеть в доме. Выделяют одно- и трехфазные устройства. Первые применяют в быту. Вторые — на крупных промышленных, коммерческих объектах. Стабилизаторы двойного преобразования способны сглаживать резкие перепады в диапазонах от 90 до 380 Вольт с отменной точностью.

ИБП (источник бесперебойного питания)

Источник бесперебойного питания (ИБП) APC Back-UPS CS 650VA/400W

Главная задача ИБП — не защита от высокого напряжения, а обеспечение автономного резервного электроснабжения при резких и непродолжительных отключениях энергии.

Подобные аппараты особенно нужны в частных домах, если в поселке остро стоит проблема частого отключения света.

Есть также разновидность источника бесперебойного питания с функцией стабилизатора. Если случится резкий высокий скачок напряжения, такой ИБП способен мгновенно переключиться на резервное питание и выровнять параметры Вольт в сети до оптимальных.

Датчик перепадов напряжения

Сетевой фильтр MOST EHV 2м (белый)

Это небольшое устройство, так же как и реле, контролирует скачки напряжения в сети. Но его монтируют сразу с УЗО (устройством защитного отключения). Если датчик выявляет нарушение сетевых параметров, он провоцирует утечку тока. В этом случае УЗО обнаруживает её и отключает питание на дом в аварийном режиме.

Скачки напряжения в электросети: что делать?

Если в квартире часто происходят скачки напряжения, то сначала узнайте, на чьём балансе находятся ваши сети. Если на балансе МКД, то обращайтесь в Управляющую компанию, если в СНТ — то к председателю садового общества.

Одновременно с этим сообщите о проблеме в энергоснабжающую организацию. Электросети внутри МКД находятся на балансе Управляющей компании, а за внешние сети отвечают энергетики.

Далее соберите подписи тех жильцов, у которых также бывают скачки напряжения. Напишите жалобу и отнесите её в УК, а также в РЭС, в отдел по работе с физлицами. Сейчас во многих городах при ресурсоснабжающих компаниях открыты центры обслуживания потребителей. Если в вашем городе такой центр существует, позвоните туда (телефоны и адреса можно посмотреть на сайтах компаний, например, Ленэнерго, Мосэнерго, Алтайэнерго).

Если вопрос никак не решается, то подайте жалобу на сайт Россетей, указав, что местные компании игнорируют проблему. Чтобы вопрос решался оперативнее, можно написать, что в доме проживают маленькие дети или ветеран войны, труда, инвалид, и такие скачки напряжения угрожают их жизни и здоровью.

А теперь представьте такую ситуацию: после колебания напряжения в сети не включается телевизор, холодильник, микроволновка и пр.

Что делать, если сгорела техника от перепада или скачка напряжения? Опять же, в первую очередь обращайтесь в УК: звоните, оставляйте заявку. Не реагируют? Тогда зафиксируйте причинённый ущерб на бумаге и обратитесь в суд.

Действует ли гарантия на технику, испорченную вследствие скачка напряжения? Нет, данный случай не является гарантийным, так как по закону эти поломки являются следствием пользования техникой с нарушением правил пользования (превышение напряжения в 220W).

Однако судебная практика насчитывает тысячи дел, решённых в пользу потребителя, понёсшего убытки. Возмещение взыскивается с поставщика электроэнергии.

А теперь краткий алгоритм действий для тех потребителей, которые понесли убытки и из-за скачков напряжения в сети:

  1. Зафиксируйте дату и точное время перепада напряжения.
  2. Сдайте в ремонтную мастерскую вышедший из строя прибор; попросите мастера составить акт и указать причину поломки.
  3. Оплатите услугу по ремонту, сохраните платёжный документ.
  4. Составьте претензию, подробно описав в ней все обстоятельства случившегося. Приложите копию акта из сервисной мастерской. Потребуйте возместить сумму понесённых расходов по ремонту.
  5. Направьте претензию поставщику электроэнергии; копию претензии с подписью сотрудника о принятии и печатью организации оставьте у себя.
  6. Если по истечении 14 дней не последует никакой реакции, направьте исковое заявление в суд о возмещении ущерба в соответствии с п. 1 ст.13 вышеупомянутого закона.

В подавляющем большинстве случаев суд принимает сторону истца по таких спорам. Если не сможете составить претензию, исковое заявление, являться в суд самостоятельно, наймите юриста. Все расходы будут взысканы с ответчика.

Устройство защитного отключения

Немного по-другому работают устройства другого типа, УЗО (устройство защитного отключения) и ДИФ (дифференциальный автомат), которые срабатывают при утечке тока. Задача ДИФ – защитить человека от поражения током при соприкосновении с неисправной проводкой или электроприборами при утечке тока и перенапряжения, вызванного другими причинами.

Устройство защищает сеть от перегрузок и коротких замыканий, при этом имея функцию УЗО – автоматическое отключение при утечке. Применяются дифустройства в однофазных и трехфазных сетях переменного тока. Они значительно повышают уровень безопасности в процессе постоянной эксплуатации электроприборов.

Визуально УЗО и дифавтомат похожи, функции их схожи. Чем же они отличаются и что лучше выбрать? Оба защищают и утечек электричества. Но только ДИФ еще и от замыканий и перегрузок в сети. УЗО – это только индикатор утечек, связанных с повреждение изоляции, например. При утечке УЗО отключит подачу электричества, но не защитит от перегрузки в сети.

Причины скачков напряжения в электросети

Для начала разберёмся в том, что такое скачок напряжения. В быту скачками напряжения принято называть резкое изменение показателей напряжения.

В судебной практике данный вопрос рассматривается в случаях, когда перенапряжение становится причиной нанесения ущерба.

Нормативная документация различает следующие понятия:

  1. Отклонение напряжения. Это изменение амплитуды продолжительностью более 1 минуты. Различают нормально и предельно допустимое отклонение напряжения. Максимально допустимым считается отклонение в 10% от номинального.
  2. Колебание напряжения — изменение амплитуды продолжительностью менее 1 минуты.
  3. Перенапряжение. Это повышение напряжения свыше 242 В, которое может длиться даже менее 1 секунды.

Таким образом, скачками напряжения можно называть как небольшие, но длительные изменения показателей напряжения, так и кратковременные, но значительные превышения показателей нормы («импульсные скачки»).

Излишняя энергия, вызванная скачком в электросети, воздействует на приборы, потребляющие ток, что приводит к их поломке.

Что такое УЗИП и для чего оно нужно?

Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку

Ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений — УЗИП.

Устройства защиты от импульсных перенапряжений — как раз и призваны защитить электрооборудование от подобных ситуаций. Они служат для ограничения переходных перенапряжений и отвода импульсов тока на землю, снижения амплитуды перенапряжения до уровня, безопасного для электрических установок и оборудования. УЗИП применяются как в гражданском строительстве, так и на промышленных объектах.

Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002, «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

УЗИП призваны обеспечить защиту от ударов молнии в систему молниезащиты здания (объекта) или воздушную линию электропередач (ЛЭП), защитить высокочувствительное оборудование и технику от импульсных перенапряжений и коммутационных бросков питания. Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку.

Аппараты защиты от импульсных напряжений включают в себя устройства нескольких категорий:

Тип устройства Для чего предназначено
Где применяется
I класс Для защиты от непосредственного воздействия грозового разряда. Защищают от импульсов 10/350 мкс: попадание молнии в систему внешней молниезащиты и попадание молнии в линию электропередач вблизи объекта. Амплитуда импульсных токов с крутизной фронта волны 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс. Устанавливаются на вводе питающей сети в здание (ВРУ/ГРЩ). Данными устройствами должны укомплектовываться вводно- распределительные устройства административных и промышленных зданий и жилых многоквартирных домов.
II класс Обеспечивают защиту от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции дополнительной молниезащиты. Предназначены для защиты от импульсов 8/20 мкс. Они защищают от ударов молнии в ЛЭП, от переключений в системе электроснабжения. Амплитуда токов — 15-20 кА. Монтируются и подключаются к сети в распределительных щитах. Служат дополнительной защитой от импульсов, которые не были полностью нейтрализованы УЗИП I класса.
III класс Для защиты от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нейтралью. Также работают в качестве фильтров высокочастотных помех. Предназначены для защиты от остаточных импульсов 1,2/50 мкс и 8/20 мкс импульсов после УЗИП I и II классов. Используются для защиты чувствительного электронного оборудования, поблизости от которого и устанавливаются. Характерные области применения — ИТ- и медицинское оборудование. Также актуальны для частного дома или квартиры — подключаются и устанавливаются непосредственно у потребителей.

Конструкция УЗИП постоянно совершенствуется, повышается их надежность, снижаются требования по техническому обслуживанию и контролю.

Перенапряжение в результате коммутации

Такое явление может произойти при включении в линию или выключении приборов, дающих высокую индуктивную нагрузку. К ним относятся блоки питания, электромоторы, а также мощные инструменты, запитывающиеся от сети.

Этот эффект обусловлен законами коммутации. Моментальное изменение величины тока в соленоиде, а также разности потенциалов на конденсаторе произойти не может. Когда цепь с такой нагрузкой соединяется или размыкается, то в месте контакта отмечается появление вызванного самоиндукцией и коммутационными процессами электрического потенциала.

Течение переходного процесса всегда сопровождается выбросом напряжения, которое обладает полярностью, обратной входному. Небольшая емкость проводников в сети вызывает резонанс, длящийся короткое время и вызывающий высокочастотные колебания. По завершении переходного процесса они затухают.

Сколько продлится перенапряжение и какова будет его величина, зависит от следующих показателей:

  • Индуктивность нагрузки.
  • Моментальное значение разности потенциалов при коммутации.

  • Емкость подключающих электрических кабелей.
  • Реактивная мощность.

Чем опасны перенапряжения и с чем связаны?

Перенапряжения имеют разную природу и от этого различаются длительностью и величиной. Обычно длительные перенапряжения возникают из-за какой-либо поломки понижающего трансформатора на подстанции или обрыва нулевого провода в сети.

Пути разноса перенапряжения

Данные перенапряжения обладают сравнительно небольшими показателями, но действуют достаточно долгое время и представляют реальную угрозу для человека, и для вашего оборудования.

Долгое повышение напряжения может случиться из-за неравномерного распределения нагрузок по всем фазам во внешней сети. Именно тогда возникнет перекос фаз, при котором напряжение на загруженной фазе будет ниже, а на незагруженной естественно выше номинального.

Краткие по времени всплески напряжения могут появиться из-за переключений в энергосети или во время включения достаточно сильных реактивных нагрузок.

Сильные импульсные перенапряжения возникают в результате воздействия грозовых разрядов.

И напряжение может достигнуть десятков киловольт. Данные импульсы длятся в течение сотни микросекунд, и специальные защитные автоматы просто не успевают на них среагировать, потому что самые современные виды автоматов имеют время срабатывания единицы миллисекунд, и это может быть причиной выхода из строя и повреждения изоляции между фазой и нейтралью.

Хотя, это не приведет к короткому замыканию и не нарушит работу сети, но приведет к небольшой утечке тока в месте повреждения изоляции. И если будет проходить между фазой и нейтралью, то не будет фиксироваться и автоматами защиты, и это приведет к повышенному нагреву изоляции и ускоренному процессу ее старения. По истечении времени сопротивление изоляции на данном участке значения уменьшается, и ток утечки возрастет.

Почему происходят скачки напряжения в энергетической сети

Обратимся к закону Ома (точнее к его следствиям). Мощность потребления исчисляется, как произведение величины силы тока на значение напряжения. Если генерирующее устройство имеет ограничение по мощности нагрузки, то при увеличении тока потребления, напряжение в линии пропорционально снижается. Аналогично происходит обратный процесс: если при фиксированной мощности генератора, снижается ток потребления, резко повышается напряжение в сети.

Разумеется, генерирующие электроустановки проектируются таким образом, чтобы напряжение в сети автоматически стабилизировалось.

Однако на практике, параметров стабилизирующих схем часто недостаточно.

Еще одна причина, не связанная с неисправностью сети — перекос фаз. Как правило, все трансформаторные подстанции работают по трехфазной схеме 380 вольт. Возьмем, к примеру 90 квартирный многоэтажный дом. Питание помещений организуется следующему принципу: общая нейтраль, и по одной фазе 220 вольт на каждые 30 квартир.

Если на одной из фаз пропадает нагрузка (обрыв линии, сработал автомат защиты, и прочее), на оставшихся вводах автоматически возрастет напряжение.

Виды перепадов напряжения

Известно несколько видов перепадов напряжения в сети, классифицируемых по их продолжительности и амплитуде. В соответствии с этими признаками, все они делятся на следующие группы:

  • Кратковременные всплески небольшой величины, связанные с переходными процессами из-за включения силового оборудования (лифта или насосных станций, подключенных на эту же фазу) или с сильными грозовыми разрядами;
  • Длительные падения напряжения ниже допустимого ПУЭ уровня;
  • Сильное превышение допустимого максимума (перенапряжение, достигающее значений 260-300 Вольт) в течение длительного времени;
  • Постоянные всплески напряжения значительной по величине амплитуды, возникающие из-за неисправности станционного оборудования.

Обратите внимание! Все приведённые выше отклонения расположены в порядке возрастания их опасности для подключённой к бытовой сети аппаратуры. В связи с указанной классификацией для защиты от перепадов напряжения должны применяться различные типы оборудования (включая устройства, реагирующие на кратковременные всплески)

Указанное обстоятельство предполагает совершенно иной подход к выбору защитных приборов, применяемых для подключения бытовой техники

В связи с указанной классификацией для защиты от перепадов напряжения должны применяться различные типы оборудования (включая устройства, реагирующие на кратковременные всплески). Указанное обстоятельство предполагает совершенно иной подход к выбору защитных приборов, применяемых для подключения бытовой техники.

Если при кратковременных всплесках в сети чаще всего срабатывают входные двухполюсные автоматы, то в ситуации с длительным превышением напряжением значений порядка 300 Вольт могут случиться очень неприятные вещи. При этом возможно полное выгорание дорогостоящего оборудования, не защищённого качественным стабилизирующим устройством. Такие же последствия наблюдаются в случае попадания в строение сильного грозового разряда (особо опасно это явление в сельской местности).

Стабилизаторы напряжения

Стабилизатор (нормализатор) напряжения применяется для поддержания стабильного и качественного напряжения в сети. Его назначение — поддерживать выходной сигнал на уровне 220 вольт, независимо от его уровня на входе. Стабилизатор не улучшает форму сигнала, не исправляет синусоиду, а только корректирует величину напряжения. При этом стоит заметить, что к стабилизаторам, вносящим изменение в синусоиду входного сигнала из-за своей конструкции, подключать приборы содержащие электродвигатели нельзя, так как это приводит к их перегреву.

Виды и их параметры

Стабилизаторы выпускаются с точной регулировкой, но с медленным реагированием на изменение входного сигнала (электромеханические) или с высокой скоростью реакции, но с погрешностью при подстройке уровня сигнала. Перед тем как подобрать себе вид оптимального нормализатора, необходимо померить уровень сигнала в сети. Измерения проводятся в разное время суток на протяжении недели.

Таким образом, определяется требуемый диапазон работы, а при возможности нужно исследовать, насколько быстро изменяется величина напряжения, и вид стабилизатора. Если величина изменяется медленно, оптимальным будет электромеханический тип. Если существуют резкие провалы, то ступенчатый. По принципу работы различают:

  1. Релейные. Основными радиоэлементами, входящими в состав такого типа устройств, являются многообмоточный трансформатор и мощные реле. При отклонениях сети от номинального напряжения происходит автоматическое переключение обмотки с использованием силового реле. Такой нормализатор характеризуется низкой ценой, но главный его недостаток в ступенчатой подстройке величины напряжения. При этом на выходе получается уже не чистая синусоида.
  2. Сервомоторные. Другое название — электромеханические. В работе используется автотрансформатор и двигатель, последним управляет система контроля. Обладает: низкой ценой, плавной регулировкой, компактными размерами и чистой синусоидой на выходе. К недостаткам относят шум и низкую скорость срабатывания.
  3. Инверторные. Действуют на основе двойного преобразования, сначала переменный ток в постоянный, а затем снова в переменный. Всё управление происходит с применением микроконтроллера. Работают в большом диапазоне входного сигнала с высокой скоростью реагирования. Обеспечивают защиту и от импульсных помех, но при этом являются самыми дорогими устройствами.
  4. Симисторные. Принцип работы такой же, как у релейного типа, но вместо механических узлов используются полупроводники, работающие в режиме ключа. Отличаются быстротой срабатывания и высоким коэффициентом полезного действия. При этом они совершенно бесшумные, но сложны в своих схемотехнических решениях.
  5. Феррорезонансные. Для бытового применения не используются, так как имеют большой вес и высокий уровень шума. Работают на эффекте феррорезонанса.

При изготовлении стабилизаторов используются различные методы достижения стабильного сигнала на выходе устройства. Любой нормализатор обязан поддерживать напряжение в допустимом диапазоне при его отклонении. Если отклонение составит большее значение, стабилизатор отключится и прервёт подачу электричества к подключённой нему нагрузке. Нормализаторы характеризуются такими параметрами:

  1. Максимальное входное напряжение. Это максимальный уровень сигнала, понижающийся стабилизатором до 220 вольт.
  2. Минимальное входное напряжение. Это минимальный уровень сигнала, повышающийся стабилизатором до 220 вольт.
  3. Выходное напряжение. Величина максимального выходного напряжения, подающегося со стабилизатора на нагрузку.
  4. Полная мощность. Пиковая мощность, которую может выдержать устройство, измеряется в ВА.
  5. Вид индикации. Может использоваться цифровой экран или аналоговые приборы.
  6. Тип. Принцип работы.
  7. Количество фаз. В зависимости от типа электропроводки бывают двух видов: однофазные и трёхфазные.

Причины возникновения и опасность скачков напряжения

В момент перепада напряжения в электрических сетях его амплитуда изменяется на короткий промежуток времени. После этого она быстро восстанавливается с параметрами, приближенными к начальному уровню.

Подобный импульс электрическим током продолжается буквально в течение нескольких миллисекунд, а его возникновение обусловлено следующими причинами:

  • Грозовые разряды. Вызывают скачки напряжения до нескольких киловольт, которые не сможет выдержать ни один прибор. Подобные перепады нередко становятся причиной отключения сети и пожара.
  • Перенапряжение, вызываемое процессами коммутации, когда подключаются или отключаются потребители с высокой мощностью.
  • Явление электростатической индукции при подключении электросварки, коллекторного электродвигателя и другого аналогичного оборудования.

Опасность последствий от перенапряжений наглядно отражается на рисунке, где грозовой и коммутационный импульсы существенно отличаются от номинального сетевого напряжения. Изоляционный слой в большинстве проводов рассчитан на значительные перепады и пробоев обычно не случается. Часто импульс действует очень недолго и напряжение, проходя через блок питания и стабилизатор, просто не успевает подняться до критического уровня.

Иногда слой изоляции сети 220 В может не выдержать возрастающего напряжения. В результате случается пробой, сопровождающийся появлением электрической дуги. Для потока электронов образуется свободный путь в виде микротрещин, а проводником служат газы, наполняющие микроскопические пустоты. Этот процесс сопровождается выделением большого количества тепла, под действием которого токопроводящий канал расширяется еще больше. Из-за постепенного нарастания тока, срабатывание защитной автоматики немного запаздывает, и этих нескольких мгновений вполне хватает, чтобы вывести из строя в частном доме всю электропроводку.

Особую опасность представляют повышенное и пониженное напряжение, находящееся в таком состоянии долгое время. В основном это происходит по причине аварийных ситуаций, которые требуется устранить, чтобы ток пришел в норму. Других способов нормализации и каких-либо специальных приборов, защищающих от этого явления, не существует.

Как работает реле контроля фаз в сети 380В

В сети 380В может быть установлено трехфазное реле напряжения. Это имеет смысл, если в доме имеется оборудование с трехфазным питанием.

Подключение реле напряжения в сети 380В

В этом случае реле срабатывает при отклонении напряжения на любой фазе и отключает нагрузку по всем трем линиям. При отсутствии потребителей с питанием 380В удобнее и дешевле подключить три отдельных реле напряжения. В этом случае мы получаем три группы потребителей 220В, для которых могут быть установлены различные предельные значения напряжения и время задержки.

Схема подключения реле напряжения на каждой фазе в сети 380В

Обзор цен

Купить защитное устройство можно в любом магазине электрических товаров

Обращаем Ваше внимание, что цена может варьироваться в зависимости от нужного типа защиты от перенапряжений и конкретной марки устройства (Зубр, Альбатрос и прочие)

Рассмотрим приблизительную стоимость автоматики:

В большинстве случаев, при покупке комплектов защиты от перенапряжения предоставляются скидки.

Как часто в вашей квартире горела техника? Задавались ли вы вопросом о том, почему это произошло? Возможно более правильным было бы изначально позаботиться о том, что бы защитить свою технику от подобных ситуаций, ведь в нашей жизни они далеко не редкость. Во вторичном фонде электрика находится в плачевном состоянии и рассчитывать на то, что вас минует скачек напряжения не приходится. При том состоянии, в котором находятся наши городские электросети, скачки напряжения обыденная вещь. Просто сегодня он был незначительным и вы его не заметили, а завтра сгорела техника и крайнего вы вряд ли найдете.

Нас достаточно часто нанимают обслуживающие организации для проведения замены подъездной электрики и вводных распределительных устройств. Насмотрелись мы в домах таких ужасов, что рассказывать слишком долго, да и смысла в этом нет. В обще домовой электрике не предусмотрено никаких средств защиты, только в ТП стоят жуткие вставки, которые срабатывают уже тогда, когда в общем — то поздно. Спасают они разве что сам кабель, идущий от дома к ТП.

Как же обезопасить себя и технику в вашей квартире от подобной ситуации. Техника зачастую дорогостоящая, а ее внутренняя защита не предназначена для условий эксплуатации в России. Ведь в цивилизованных странах сам поставщик электроэнергии не пропустит к потребителю завышенное или заниженное значение напряжения, отключив питание до выяснения причин неисправности. У нас же в первую очередь страдают потребители и страдают без шансов на восстановление справедливости. За время работы в подобных домах я не слышал ни одного случая, когда жилец добивался компенсаций, а с жильцами в первую очередь приходится общаться именно нам. Впоследствии многие из них становились нашими клиентами и мы помогали организовать защиту от подобных ситуаций.

Только испытав на себе дорогостоящий ремонт техники люди понимают, что намного дешевле сразу приобрести и установить защиту, нежели потом разводить руками и искать виноватых.

Виды изменений в сети

График допустимых показаний отклонения в сети

Выделяют несколько типов скачков напряжения:

  • Отклонения. Здесь подразумевается изменение амплитуды, длительность каждой из которых составляет больше 60 сек. Причем есть нормально допустимое и предельно дозволенное отклонения. Во втором случае нормой считается показатель не больше 10% от нормального.
  • Колебания (падение напряжения). Здесь амплитуда меняется в меньшую сторону и составляет до 60 сек. Также нормальным считается показатель до 10% от оптимального.
  • Перенапряжение. Это резкое увеличение тока выше отметки 242 Вольт. Длительность таких скачков до 1 сек.

Защита от перенапряжения в сети 380 вольт

Обзор устройств для защиты от перенапряжения в сети

В современных бытовых приборах используется чувствительная электроника, что делает эти устройства уязвимыми перед перепадами напряжения. Поскольку устранить их не представляется возможным, необходима надежная защита. К сожалению, ее организация не входит в сферу обязанностей службы ЖКХ, поэтому заниматься этим вопросом приходится самостоятельно. Благо защитные устройства приобрести сегодня не проблема. Прежде чем перейти к описанию и принципу действия таких приборов, кратко расскажем о причинах, вызывающих скачки напряжения, и их последствиях.

Что такое перепад напряжения и его природа?

Под этим термином подразумевается краткосрочное изменение амплитуды напряжения электросети, с последующим восстановлением, близким к первоначальному уровню. Как правило, длительность такого импульса исчисляется я миллисекундами. Существует несколько причин для его возникновения:

  1. Атмосферные явления в виде грозовых разрядов, они способны вызвать перенапряжение в несколько киловольт, что не только гарантированно выведет электроприборы из строя, а и может стать причиной пожара. В данном случае жителям многоэтажек проще, поскольку организация защиты от таких предсказуемых явлений входит в обязанности поставщиков электричества. Что касается частных домов (особенно с воздушным вводом), то их жильцы должны самостоятельно заниматься этим вопросом или обращаться к специалистам.
  2. Скачки при коммутационных процессах, когда происходит подключение-отключение мощных потребителей.
  3. Электростатическая индукция.
  4. Подключение определенного оборудования (сварка, коллекторный электродвигатель и т.д.).

На рисунке ниже наглядно продемонстрирована величина грозового (Uгр) и коммутационного импульса (Uк) по отношению к номинальному напряжению сети (Uн).

Грозовой и коммутационный импульсы перенапряжения

Для полноты картины следует упомянуть и о долгосрочном повышении и понижении напряжения. Причиной первого является авария на линии, в результате которой происходит обрыв нулевого провода, что вызывает повышение до 380 вольт. Нормализовать ситуации никакими приборами не получится, потребуется ждать устранения аварии.

Длительное снижение напряжения можно часто наблюдать в сельской местности или дачных поселках. Это связано с недостаточной мощностью трансформатора на подстанции.

В чем заключается опасность перепадов?

В соответствии с допустимыми нормами, допускается отклонение от номинала в диапазоне от -10% до +10%. При скачках напряжение может существенно выйти за установленные границы. В результате блоки питания бытовой техники подвергаются перегрузке и могут выйти из строя или существенно сократить свой ресурс. При высоких или длительных перепадах велика вероятность возгорания проводки, и, как следствие, пожара.

Пониженное напряжение также грозит неприятностями, особенно к этому критичны компрессоры холодильных установок, а также многие импульсные блоки питания.

Защитные устройства

Существует несколько видов защитных устройств различающихся как по функциональности, так и по стоимости, одни из них обеспечивают защиту только одному бытовому прибору, другие – всем имеющимся в доме. Перечислим хорошо зарекомендовавшие себя и наиболее распространенные защитные устройства.

Сетевой фильтр

Наиболее простой и доступный по деньгам вариант защиты маломощного бытового оборудования. Отлично зарекомендовал себя при бросках до 400-450 вольт. На более высокие импульсы устройство не рассчитано (в лучшем случае оно примет удар на себя, спасая дорогостоящую аппаратуру).

Фильтр удлинитель Swen Fort Pro

Основной элемент защиты у такого устройства – варистор (полупроводниковый элемент изменяющий сопротивление в зависимости от приложенного напряжения). Именно он выходит из строя при импульсе более 450 В. Вторая важная функция фильтра – защита от высокочастотных помех (возникают при работе электродвигателя, сварки и т.д.) отрицательно влияющих на электронику. Третьим элементом защиты является плавкий предохранитель, срабатывающий при КЗ.

Не следует путать фильтры с обычными удлинителями, которые не обладают защитными функциями, но похожи по внешнему виду. Чтобы различить их достаточно посмотреть паспорт изделия, где приведены полные характеристики. Отсутствие такового должно само по себе вызывать подозрение.

Стабилизатор

В отличие от предыдущего типа приборы этого класса позволяют нормализовать напряжение в соответствии с номинальным. Например, установив границу в пределах 110-250 В, на выходе устройства будет стабильные 220 В. Если напряжение выйдет за пределы допустимого, прибор отключит питание и возобновит его подачу после нормализации работы электросети.

Стабилизатор EDR-1000 от производителя Luxeon

В некоторых случаях (например, в сельской местности) установка стабилизатора является единственным способом повысить напряжение до необходимой нормы. Бытовые стабилизаторы выпускают двух модификаций:

  • Линейные. Они предназначены для подключения одного или нескольких бытовых приборов.
  • Магистральные, устанавливаются на входе электросети здания или квартиры.

И первые, и вторые следует подбирать исходя из мощности нагрузки.

Источники бесперебойного питания

Основное отличие от предыдущего типа является возможность продолжения подачи питания подключенного устройства после срабатывания защиты или полного отключения электричества. Время работы в таком режиме напрямую зависит от емкости аккумуляторной батареи и мощности нагрузки.

Бесперебойный блок питания APC, модель SC-420

В быту эти устройства в основном используются для подключения стационарных компьютеров, чтобы при проблемах с электросетью не потерять данные. При срабатывании защиты ИБП будет продолжать подачу питания в течение определенного времени, как правило, не более получаса (зависит характеристик устройства). Этого времени вполне достаточно, чтобы сохранить необходимые данные и корректно отключить компьютер.

Современные модели ИБП могут самостоятельно управлять работой компьютера через USB интерфейс, например, закрыть текстовый редактор (предварительно сохранив открытые документы), после чего произвести отключение. Это довольно полезная функция, если пользователь при срабатывании защиты не находился рядом.

Устройства защиты от импульсных перенапряжений

Все перечисленные выше приборы обладают общим недостатком, у них не реализована действенная защита от импульса высокого напряжения. Если таковой произойдет, он, практически гарантированно выведет такие устройства из строя. Следовательно, защита должна быть организована таким образом, чтобы после срабатывания можно было оперативно привести ее в рабочее состояние. Этому требованию, как нельзя лучше отвечают УЗИП. На их основе организуется многоуровневая система защиты внутренних линий частного дома.

Одна из принятых классификаций таких устройств показана в таблице.

Таблица 1. Классификация УЗИП

Реле контроля напряжения в трехфазной сети 380В

Здравствуйте, уважаемые читатели сайта http://elektrik-sam.info!

В этой публикации мы рассмотрим, как обезопаситься от перепадов и скачков напряжения в трехфазных электрических сетях 380В.

О том, как влияют перепады напряжения на электропроводку и подключенные к ней приборы я уже подробно рассматривал. Напомню вкратце.

Повышение напряжения выше допустимого приводит к выходу из строя бытовой техники – она просто сгорает.

Снижение напряжения ниже допустимого уровня опасно для бытовой техники с электродвигателями, поскольку увеличиваются пусковые токи, что может привести к повреждению их обмоток.

Поэтому, с целью защиты электропроводки и подключаемых к ней электроприборов, применяют реле контроля напряжения, которые также еще называют реле перенапряжения, «барьерами» или реле максимального и минимального напряжения.

Эти реле осуществляют контроль действующего значения напряжения в электрической сети и, в случае выхода его за установленный диапазон, отключают внешнюю питающую электрическую сеть от внутренней сети, защищаю саму внутреннюю электропроводку и подключенные к ней электрические приборы.

В этой статье мы рассмотрим две различные схемы и два различных варианта использования реле напряжения в трехфазных электрических сетях 380В на примере реле напряжения DigiTOP.

Цель этой статьи – показать схематичное решение по защите от перепадов напряжения в трехфазных электрических сетях. Можно применять реле других производителей, принцип остается такой же.

Подробно описание принципа работы самого реле напряжения и схемы я рассматривал в статье по реле напряжения в однофазных сетях. Подробную инструкцию на само реле вы можете скачать в интернете, здесь напомню вкратце, что реле имеет две уставки:

— первая при превышении напряжением максимального значения, по умолчнию 250В;
— вторая уставка при снижении напряжения ниже 170В (по умолчнию).

Эти параметры выставляются на передней панели самого реле с помощью кнопок.

При выходе напряжения за этот диапазон, реле размыкает свой силовой контакт и отключает внешнюю электрическую сеть от внутренней.

Также можно задать время задержки на повторное подключение. После того, как реле отключилось, схематехника реле отслеживает значение напряжения, и когда оно снова возвращается в рабочий диапазон, спустя задержку времени реле снова замыкает свой силовой контакт и подключает внешнюю электрическую сеть к внутренней.

В тех квартирах и домах, где электропроводка трехфазная, все равно в основном используются однофазные потребители – обычные бытовые приборы и техника.

Потребители группируются по фазам, чтобы по возможности была равномерная нагрузка по каждой из фаз.

Давайте рассмотрим все это на конкретном примере.

Трехфазное напряжение подводится через вводной автоматический выключатель, трехфазный счетчик электрической энергии к электропроводке квартиры.

Потребители сгруппированы по каждой из трех фаз следующим образом:

— в первую фазу LA подключена электроплита;
— во вторую фазу LB подключены кондиционер, стиральная машина и розетки одной из комнат;
— в третью фазу LC подключены розетки кухни, розетки другой комнаты и освещение.

Для того, чтобы при выходе напряжения за свои допустимые значения при срабатывании реле контроля напряжения не обесточивалась сразу вся квартира, вместо одного общего устанавливают три отдельных реле напряжения в каждую фазу.

Если в одной из фаз напряжение выйдет за свой рабочий диапазон, сработает соответствующее реле и отключит внутреннюю проводку только в этой фазе. В оставшихся фазах, если величина напряжения находится в заданном диапазоне, потребители останутся подключенными и работоспособными.

Подробно пошаговую работу этой схемы смотрите в видео внизу этой статьи.

В случае подключения трехфазных потребителей применяется несколько другая схемотехника.

Для этого применяют специальное трехфазное реле напряжения, которое позволяет контролировать напряжение в каждой отдельной фазе, последовательность чередования фаз и контроль перекоса фаз.

Схема подключения в этом случае будет выглядеть следующим образом.

К реле напряжения подключаются все три фазы и ноль, чтобы контроллер реле контролировал напряжение отдельно по каждой из фаз, правильность чередования фаз и контроль перекоса фаз.

Через силовые контакты реле контроля напряжения подключен контактор К1. Один конец обмотки контактора подключен к нулевому проводу, второй через силовые контакты реле подключен к одной из фаз. На нашей схеме к фазе LA.

Силовые нормально-разомкнутые контакты К1.1, К1.2, К1.3 контактора подключают внешнюю трехфазную электрическую сеть к трехфазной нагрузке. Это могут быть электродвигатели, мощные калориферы, проточные водонагреватели и др.

Реле напряжения контролирует уровень действующих напряжений во всех трех фазах и, если они находятся в допуске, то через силовой контакт реле подается питание на контактор К1. Контакты контактора находятся в замкнутом состоянии и трехфазное напряжение внешней сети подается к нагрузке.

Если в одной из фаз напряжение выходит за установленный диапазон, реле напряжения размыкает свой силовой контакт, снимая питание с обмотки контактора К1. Контакты контактора размыкаются, отключая нагрузку от внешней трехфазной сети.

Когда напряжение вернется в свой рабочий диапазон, реле напряжения, спустя выдержку времени, вновь замкнет свой силовой контакт, подавая питание на обмотку контактора.

Контакты контактора замкнутся и нагрузка снова подключится к питающей сети.

Таким вот образом работает эта схема. В быту эта схема применяется редко, это больше промышленный вариант, чаще всего применяется первая схема.

Более подробно пошагово смотрите работу этих схем в видео:

Реле контроля напряжения. Защита от скачков напряжения в трехфазных сетях

Рекомендую материалы по теме:

Защита от перенапряжения в частном доме

Довольно часто происходят поломки электрической бытовой техники, ведь любой электротехнический агрегат при создании рассчитывается на работу с определенным уровнем электроэнергии, т.е. на конкретные показатели силы и напряжения тока в сетях подключения. Поэтому при превышении этих норм может случиться аварийная ситуация.

Использование дорогостоящей домашней техники, агрессивные природно- атмосферные явления, не слишком высокий уровень прокладки линий электропередач делает жизненно необходимым для собственников квартир и домов принятие мер по защите от перенапряжения электросетей в частном доме и минимизации возможных последствий.

Откуда возникает перенапряжение

Планировка и строительство многих многоэтажек еще пару десятков лет назад производилась без прицела на сегодняшнее многообразие бытового электрооборудования: микроволновки, многокамерные холодильники, утюги высокой мощности и другие приборы, имеющие электрическое питание. Поэтому максимумы потребления электричества по утрам и вечерам пагубно влияют на работу всей электросети в любом жилище.

Электричество, текущее по кабелю или проводу, неспособному выдерживать такую нагрузку, способствует их ненормальному нагреву в дневные часы и охлаждению в вечерние. В силу законов физики, проводник ослабевает, поскольку он делается то шире, то уже. Контакты в щитке на первых этажах или в едином вводно-распределяющем устройстве в доме заметно ослабевают. Также нулевые контакты могут отгореть, что приводит к перепаду напряжения от 110 до 360 вольт на всех этажах, выше этажа с перегоревшими контактами.

Перенапряжение в электросети может произойти в результате попадания молниевого разряда в линию электропередач, подстанцию или элементы дома, при этом сила тока просто огромная, порядка 200 килоампер. При попадании в молниеприемник и дальнейшем прохождении молнии по контуру заземления в проводниковых материалах возникает электродвижущая сила, измеряемая в киловольтах.

Также вызвать резкий скачок напряжения могут сварочные работы или одновременное включение многими соседями электроприборов или подключение/отключение мощного потребителя. Для защиты дорогостоящей электротехники и всего частного дома необходима защита от перенапряжения в сети.

Особенности защиты домашней электропроводки

Организация защиты от возникающего высокого напряжения – один из ключевых вопросов при прокладке электросети в жилом доме. Осуществляется она с помощью особых трансформаторов и фильтров сети. Во многих домах на этажных щитках устанавливаются автоматические выключатели, которые защищают от электротоков при коротком замыкании и временных перегрузок.

Когда возможна высокая нагрузка, все устройства, защищающие сети от повышенного напряжения, должны иметь приспособления для автоотключения и выключатели, реагирующие на изменения показателей тока. Как правило, самая надежная защита от подобных скачков ставится на входном силовом проводе, поскольку именно он испытывает наибольшее воздействие во время пиков нагрузки.

Схема защиты от перенапряжения домашней электросети бывает простой и многоуровневой. Простая – представлена в основном реле перенапряжения в этажных щитках, а многоступенчатая (комбинированная, защищающая как от бытовых скачков напряжения, так и от импульсных, при грозах) – УЗИП, т.е. устройства защиты от импульсных перенапряжений. Такие устройства наиболее часто встречаются в частных домах.

Обратите внимание! Электронные приборы выходят из строя как из-за повышенного, так и из-за пониженного напряжения в сети (например, холодильники тяжело запускаются, что негативно сказывается на их дальнейшей работе).

Изоляционные слои домашних электросетей рассчитаны, как правило, на стандартные 220в, поэтому, если напряжение возрастает многократно, в диэлектрическом слое проскакивает искра, которая может спровоцировать электродугу и дальнейшее возгорание.

Чтобы не допустить негативных последствий, применяют следующие защиты, функционирующие по таким принципам:

  • при резком внеплановом повышении напряжения происходит отключение электросхемы в доме или в квартире;
  • вывода полученного сверхнормативного электрического потенциала от электроприборов путем перевода его в земляной контур.

Если напряжение поднимается незначительно (например, до 380 вольт), на помощь приходят различные стабилизаторы. Однако их защитные возможности довольно ограничены – они больше рассчитаны на поддержание заданных рабочих значений в электросетях.

При проектировании защиты для частного дома рассматривают различные конструкционные решения и их технические характеристики. Необходимо учитывать принципы формирования базы ограничителей перенапряжения (опн). Например, газонаполненные разрядники после того, как импульс прошел, пропускают через себя т.н. сопровождающий ток, напряжение которого сопоставимо с коротким замыканием. По этой причине они сами могут быть источником возгорания, и их нельзя применять для защиты от электрического пробоя.

Для домашних сетей чаще всего применяют варисторное устройство защиты (полупроводниковые резисторы) – реостаты, скомпанованные из варисторных «таблеток» из смеси оксидов цинка, висмута, кобальта и других. При штатном функционировании электросети такой автомат защиты допускает микроскопические утечки, а при проходе импульса повышенной вольтажности – способен мгновенно перестроиться на режим «туннеля» и «спустить» больше тысячи ампер за очень короткий промежуток времени, поскольку сопротивление на этом приспособлении снижается с возрастанием силы тока, после чего происходит быстрое возвращение к штатной «боевой готовности».

Классы стойкости электропроводки

Все электроприборы в бытовых зданиях разделяется по четырем основным категориям, в зависимости от максимально выдерживаемого перенапряжения:

  • IV категория – до 6 киловольт;
  • III категория – до 4 киловольт;
  • II категория – до 2,5 киловольт;
  • I категория – до 1,5 киловольт.

В соответствии с этими категориями выстраивается система защиты, которая сокращенно называется узо (устройство защитного отключения) с защитой от перенапряжения, в целях маркетинга их чаще всего называют ограничителями, используют и другие наименования. Ограничители монтируются по ходу движения возможного импульса. Так, на участке от вводного щитка идет 6-киловольтный импульс, в первой зоне он снижается ограничителем перенапряжения до 4 киловольт, в следующей зоне он падает до 2,5 киловольт, а в жилой зоне с помощью УЗИП III категории потенциал импульса снижают до 1,5 киловольт. Устройства защиты всех классов функционируют в комплексе, последовательно понижая потенциал до нормальных значений, с которыми легко справляется изоляция домашней электропроводки.

Важно! При неисправности хотя бы одного из звеньев этой защитной цепочки может возникнуть электропробой в изоляции, что приведет к выходу конечного электроприбора из строя. Поэтому необходимо периодически проверять исправность каждого элемента устройств защитного отключения.

Основные устройства системы защиты

Один из лучших способов спасти электросеть от скачков напряжения – монтаж стабилизатора, подходящего по техническим характеристикам. Это недешевые устройства, и не всегда они используются, поскольку напряжение в сетях и так бывает достаточно стабильным.

Также устранить нестабильность в работе сети помогают реле контроля напряжения. При обрыве нулевой жилы и замыкании в провисших кабелях такое реле способно включить защитные функции даже быстрее стабилизатора, нужно лишь 2-3 миллисекунды.

Такие реле очень компактны – для монтажа они требуют меньше места, чем стабилизаторы, легко ставятся на простейшую din-рейку, кабеля подключаются элементарно (в отличие от монтажа стабилизаторов, когда вынужденно вклиниваются в электросеть или устанавливают особый короб для него). Стабилизаторы заметно гудят, поэтому в жилых помещениях их устанавливать нежелательно, а вот реле работают практически бесшумно. Кроме того, аппараты, контролирующие разность электрических потенциалов, потребляют очень мало электричества. Цена на такие реле в несколько раз ниже тех, что сложились на стабилизаторы.

Принцип работы реле контроля состоит в том, что при постоянном поступлении электротока устройство определяет разность потенциалов и сравнивает ее с допустимыми значениями. Если показатели в норме, ключи остаются открытыми, и ток продолжает течь по сети. Если же проходит мощный импульс, происходит моментальное закрытие ключей и отключение подачи электроэнергии потребителям. Такая быстрая и однозначная реакция помогает обезопасить все подключенные бытовые агрегаты.

Дополнительная информация. Возвращение в штатный режим происходит с некоторой задержкой, регулируемой таймером. Это необходимо для того, чтобы крупные электроприборы, такие как холодильники, кондиционеры и другие, включились с соблюдением правил и технической настройкой.

Подключение реле производится по фазному кабелю, при этом нуль-кабель включается во внутреннюю схему для питания энергией.

Имеется два способа: сквозное подключение (по прямой) или с использованием прибора – контрактора для коммуникации. Оптимально подключать релейный механизм до подключения счетчика, чем обеспечится и его защита от перенапряжения. Однако, при наличии на приборе учета пломбы придется монтировать реле за ним.

Импульсные перенапряжения в электросети частных домов возникают из-за грозы с молниями или коммутационных скачков. Для безопасности электропроводки применяются специальные устройства УЗИП. Как правило, это ограничители перенапряжений нелинейные (ОПН), стабилизаторы и реле контроля потенциалов. Конечно, обустройство такой системы – мероприятие затратное, однако его стоимость гораздо ниже дорогих электробытовых приборов.

Видео

Как защитить сеть от перенапряжения и что для этого нужно

Основные причины возникновения

Чаще всего перенапряжение в сети 220 и 380 Вольт возникает по следующим причинам:

  1. Обрыв нулевого провода на питающей линии. Нулевой проводник обеспечивает симметричность напряжения по фазам питающей сети, при различной величине нагрузки по фазам. В случае обрыва нуля напряжение по каждой из фаз изменяется в зависимости от разницы нагрузок по фазам: на менее нагруженной фазе оно резко возрастает вплоть до 300 и более Вольт, а на более загруженной фазе резко падает до значений ниже 200 В. Поэтому без защиты от перенапряжений при высоком напряжении бытовая техника может выйти из строя практически сразу, а при низком напряжении электроприборы будут работать некорректно. При этом высока вероятность выхода из строя электроприборов, в конструкции которых есть электродвигатели (компрессоры).
  2. Ошибка при подключении в электрощите. Если в доме выполнен трехфазный ввод и при подключении однофазной линии проводки 220 В ошибочно был подключен вместо нуля проводник второй фазы, то в розетке вместо 220 В появится 380 В.
  3. Возникло импульсное напряжение вследствие попадания грозы в ЛЭП (именно поэтому рекомендуют отключать всю бытовую технику во время грозы, а также делать молниезащиту на участке).
  4. Коммутационные перенапряжения. В случае возникновения аварийных ситуаций в электрической сети: короткого замыкания на смежных линиях, скачкообразного изменения нагрузки из-за отключения (подключения) участка электрической сети, аварий на электростанциях, могут наблюдаться перепады напряжения, которые, в зависимости от величины, могут негативно повлиять на работу домашних электроприборов.

Как Вы видите, на перегрузку в однофазной и трехфазной сети влияет множество факторов, в том числе и природные. Поэтому домашнюю проводку нужно обязательно защитить, чтобы не стать жертвой несчастного случая.

Устройства для защиты от перенапряжения

В современном мире существует множество различных устройств для защиты от перенапряжения в сети, которые несложно подключить своими руками. Рассмотрим устройства, которые применяют для защиты от нежелательных перепадов напряжения.

Среди наиболее полезных для применения в доме и квартире выделяют:

  1. Стабилизатор. Данное устройство осуществляет преобразование (стабилизацию) входного напряжения в напряжение заданной величины. Стабилизатор актуально ставить в том случае, если в сети наблюдаются постоянные перепады напряжения. Следует учитывать, что стабилизатор работает только при напряжении, которое не выходит за пределы допустимых значений, которые указываются в его технических характеристиках. В случае возникновения скачков напряжения выше допустимых границ, стабилизатор может выйти из строя. Поэтому необходимо выбирать стабилизатор напряжения со встроенной защитой от перенапряжения, а при отсутствии такой функции устанавливать для защиты реле напряжения. О том, как подключить стабилизатор напряжения, мы рассказывали в соответствующей статье!
  2. Реле напряжения. Данное защитное устройство, в отличие от СН, не осуществляет преобразование входного напряжения. Реле напряжения предназначено для отключения домашней проводки от электрической сети в случае возникновения нежелательных перепадов напряжения (ГОСТ 3699-82). На реле устанавливают границы минимального и максимального напряжения, и в случае возникновения скачка выше установленных пределов, реле обесточивает домашнюю электропроводку, тем самым защищая домашние электроприборы. РН может быть выполнено в виде модульного аппарата для установки в распределительный щиток (всем известный Барьер), встроенное в удлинитель (сетевой фильтр с соответствующей функцией), а также в виде электрической вилки (к примеру, ЗУБР). О том, как выбрать реле напряжения мы рассказывали в отдельной статье.
  3. Устройство защиты многофункциональное (УЗМ). Данное устройство может быть установлено в распределительный щиток вместо реле напряжения. УЗМ выполняет несколько функций, одной из которых является защита электрической сети от перепадов напряжения. О том, как работает УЗМ-51М и как его подключить, мы рассказали в отдельной статье.
  4. Источник бесперебойного питания. Опять-таки, на своем опыте подтвержу его эффективность. Более десяти раз ИБП спасал мой компьютер от резкого выключения при срабатывании реле напряжения в электрощите. «Бесперебойник» имеет небольшую стоимость, поэтому купить такой вариант защиты от перенапряжения при наличии ПК крайне необходимо. К тому же большинство современных источников бесперебойного питания имеют встроенный стабилизатор, что особенно актуально для компьютерной техники, которая больше из всей бытовой техники подвержена негативному воздействию перепадов. О том, как выбрать ИБП, читайте в нашей статье: https://samelectrik.ru/sovety-po-vyboru-besperebojnika.html.
  5. УЗИП. От импульсных напряжений (возникают во время грозы и могут вывести технику из строя) можно защититься, установив в доме УЗИП. Данный аппарат является достаточно популярным на сегодняшний день и широко применяется как в быту, так и на производстве. Более подробно о том, что такое УЗИП и как он работает, мы рассказали в отдельной статье, с которой настоятельно рекомендуем ознакомиться. Следует отметить, что УЗИП могут также называть модульными ограничителями перенапряжения (ОПН).
  6. Обращение в энергоснабжающую службу. Энергоснабжающая организация в соответствии с договором по электроснабжению обязана обеспечивать нормальный (в пределах допустимых норм) уровень напряжения электрической сети в соответствии с ГОСТ 29322-2014 (IEC 60038:2009). Поэтому если у вас постоянно чрезмерно низкое или, наоборот, повышенное напряжение, то нужно обращаться в снабжающую организацию с соответствующей жалобой. Наиболее эффективно обращаться с коллективной жалобой, так как одиночные обращения, как правило, игнорируют. Обращение в снабжающую организацию — единственный способ решения проблемы в том случае, если у вас наблюдаются сильные перепады напряжения, так как в таком режиме любой СН быстро выйдет из строя.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

После установки необходимых устройств может быть обеспечена защита от перенапряжения в сети 220 и 380 Вольт, после чего можно не беспокоиться о том, что пострадает бытовая техника, электропроводка и главное – Ваша жизнь в опасной ситуации.

Устройство защиты от перенапряжения

В конструкцию всех современных бытовых приборов входят чувствительные электронные компоненты. В результате, несмотря на все положительные качества и высокие технические характеристики, данное оборудование крайне отрицательно реагирует на перепады напряжения. Подобные скачки присутствуют во всех электрических сетях и полностью устранить их практически невозможно. Поэтому, чтобы сберечь дорогостоящую технику, требуется устройство защиты от перенапряжения.

Причины возникновения и опасность скачков напряжения

В момент перепада напряжения в электрических сетях его амплитуда изменяется на короткий промежуток времени. После этого она быстро восстанавливается с параметрами, приближенными к начальному уровню.

Подобный импульс электрическим током продолжается буквально в течение нескольких миллисекунд, а его возникновение обусловлено следующими причинами:

  • Грозовые разряды. Вызывают скачки напряжения до нескольких киловольт, которые не сможет выдержать ни один прибор. Подобные перепады нередко становятся причиной отключения сети и пожара.
  • Перенапряжение, вызываемое процессами коммутации, когда подключаются или отключаются потребители с высокой мощностью.
  • Явление электростатической индукции при подключении электросварки, коллекторного электродвигателя и другого аналогичного оборудования.

Опасность последствий от перенапряжений наглядно отражается на рисунке, где грозовой и коммутационный импульсы существенно отличаются от номинального сетевого напряжения. Изоляционный слой в большинстве проводов рассчитан на значительные перепады и пробоев обычно не случается. Часто импульс действует очень недолго и напряжение, проходя через блок питания и стабилизатор, просто не успевает подняться до критического уровня.

Иногда слой изоляции сети 220 В может не выдержать возрастающего напряжения. В результате случается пробой, сопровождающийся появлением электрической дуги. Для потока электронов образуется свободный путь в виде микротрещин, а проводником служат газы, наполняющие микроскопические пустоты. Этот процесс сопровождается выделением большого количества тепла, под действием которого токопроводящий канал расширяется еще больше. Из-за постепенного нарастания тока, срабатывание защитной автоматики немного запаздывает, и этих нескольких мгновений вполне хватает, чтобы вывести из строя в частном доме всю электропроводку.

Особую опасность представляют повышенное и пониженное напряжение, находящееся в таком состоянии долгое время. В основном это происходит по причине аварийных ситуаций, которые требуется устранить, чтобы ток пришел в норму. Других способов нормализации и каких-либо специальных приборов, защищающих от этого явления, не существует.

Длительные перенапряжения и провалы из-за недостатка напряжения

Как правило, причиной длительных перенапряжений в сетях становится обрыв нулевого провода. В этом случае нагрузка на фазные жилы распределяется неравномерно, что приводит к перекосу фаз, когда разность потенциалов смещается к проводнику с максимальной нагрузкой.

Таким образом, неравномерный трехфазный ток, воздействуя на нулевой кабель, находящийся без заземления, способствует концентрации на нем избыточного напряжения. Этот процесс будет продолжаться до полного устранения неисправности или до тех пор, пока линия окончательно не выйдет из строя.

Другим опасным состоянием сети является провал или недостаток напряжения. Подобные ситуации очень часто возникают в сельской местности. Суть явления заключается в падении напряжения ниже допустимой величины. Такие проседания представляют серьезную опасность и реальную угрозу для оборудования. Многие современные приборы оборудованы несколькими блоками питания и недостаточное напряжение приводит к кратковременному выключению одного из них.

В результате, последует незамедлительная реакция электронной аппаратуры в виде ошибки, выведенной на дисплей, и полной остановки рабочего процесса. Если подобная ситуация сложилась с отопительным котлом в зимнее время года, тогда отопление дома будет прекращено. Устранить проблему возможно с помощью стабилизатора, фиксирующего такие проседания и поднимающего напряжение до номинальной величины.

Виды и принцип действия защитных устройств

Защита электрической сети от скачков напряжения может осуществляться разными способами. Наиболее распространенными и эффективными считаются следующие:

  • Молниезащитные системы.
  • Стабилизаторы напряжения.
  • Датчики повышенного напряжения, используемые совместно с УЗО. В случае неполадок они вызывают токовую утечку, под влиянием которой произойдет срабатывание защитного устройства.
  • Реле перенапряжения.

Похожие функции выполняют блоки бесперебойного питания, с помощью которых компьютеры подключаются к домашней сети. Данные приборы не защищают от перенапряжений, они действуют как аккумуляторы, позволяя выполнить нормальное выключение компьютера и сохранить нужную информацию в случае внезапного отключения света. Стабилизировать напряжение это устройство не может.

Под действием молнии возникают электрические импульсы. Защита от их негативного воздействия осуществляется путем установки грозозащитного разрядника, используемого совместно с УЗИП – устройством защиты от импульсных перенапряжений. Он также известен, как автомат для защиты от перенапряжения. Кроме того, необходимо обеспечить дополнительную безопасность от электронного потока с параметрами, отличающимися от рабочих характеристик данной сети. Для этих целей используются специальные датчики, используемые с УЗО, и реле защиты от перенапряжения. Назначение и принцип работы данных устройств не такие, как у стабилизатора.

Основной функцией обоих компонентов является прекращение подачи электрического тока, когда перепад напряжения превысит максимальное значение, определенное паспортными техническими показателями этих устройств. После того как параметры сети нормализуются, реле включается самостоятельно и возобновляет подачу тока.

Молниезащита от перенапряжений

Защитные системы против грозовых разрядов могут быть устроены разными способами, в зависимости от технических условий.

1.

Первый вариант предполагает внешнюю молниезащиту, устанавливаемую дома (рис. 1). В этом случае допускается максимальная сила удара молнии непосредственно в элементы самой системы. Расчетная величина такого тока составит примерно 100 кА. Защититься от мощного импульса при перегрузке возможно с помощью комбинированного УЗИП, который устанавливается внутрь вводного электрического щита и действует как выключатель. Одно такое устройство защитит все оборудование, находящееся в доме.

В другом случае внешняя молниезащита отсутствует, а напряжение подается к дому по воздушной линии (рис. 2). Молния ударяет в опору ЛЭП с расчетным током, проходящим через УЗИП, величиной тоже 100 кА. Защитить электрооборудование от мощного импульса помогут специальные устройства с защитой, размещаемые во вводном щите, на стене здания или на самом столбе, в месте ответвления линии. При использовании распределительного щита, защита организуется по такой же схеме, как и в предыдущем варианте.

2.

Если же УЗИП устанавливается на столбе, то нецелесообразно применять дифференциальные устройства 3 в 1, поскольку на участке от столба до здания возможно появление наведенных, то есть, повторных перенапряжений. Поэтому будет вполне достаточно прибора класса 1+2, а при расстоянии до дома свыше 60 метров, внутри дома в главный щит дополнительно устанавливается УЗИП 2-го класса.

И, наконец, третья ситуация, когда питание дома подается через подземный кабель, в том числе и в сети 380 В, а внешняя молниезащита тоже отсутствует (рис. 3). Максимум, что может случиться – появление наведенных импульсных перенапряжений. Ток молнии не попадет в сеть даже частично. Величина расчетного импульсного тока составляет около 40 кА. Чтобы защитить электрооборудование достаточно УЗИП 2-го класса, установленного во вводный электрический щит.

3.

Ограничители перенапряжений

Рассматривая вопросы защиты от перенапряжения сети, следует отметить, что данную функцию в первую очередь должны выполнять организации, отвечающие за электроснабжение. Именно они устанавливают на ЛЭП необходимые защитные устройства. Однако, как показывает практика, это выполняется далеко не всегда, и проблемы защиты дома от перенапряжений вынуждены решать сами потребители.

Защита от перенапряжения в сети на подстанциях и воздушных ЛЭП осуществляется с помощью ОПН – нелинейных ограничителей перенапряжения. Основной этих устройств является варистор, имеющий нелинейные характеристики. Его нелинейность состоит в изменяющемся сопротивлении элемента в соответствии с величиной приложенного напряжения.

Когда электрическая сеть работает в нормальном режиме, а напряжение имеет свое номинальное значение, ограничитель напряжения в это время обладает большим сопротивлением, препятствующим прохождению тока. Если же при ударе молнии возникает импульс перенапряжения, наступает резкое снижение сопротивления варистора до минимального значения и вся энергия импульса уходит в контур заземления, соединенный с ОПН. Таким образом, обеспечивается безопасный уровень напряжения, и все оборудование оказывается надежно защищенным.

Для электрических сетей дома или квартиры существуют компактный блок модульных ограничителей перенапряжений, не занимающих много места в распределительном щитке. Они работают точно так же, как и в линиях электропередачи. Эти приборы подключены к заземляющему контуру или к рабочему заземлению, по которому уходят опасные импульсы.

Другие виды защитных устройств

Существуют и другие варианты защиты от перенапряжения в сети. Они широко применяются в быту и считаются одними из наиболее эффективных средств.

Сетевые фильтры

Отличаются простой конструкцией и доступной стоимостью. Несмотря на свою малую мощность, это устройство вполне способно защитить оборудование при скачках, достигающих 380 вольт и даже 450 вольт. Более высокие импульсы фильтр не выдерживает. Он просто сгорает, сохраняя в целости дорогостоящую электронику.

Данное устройство защиты от перенапряжения оборудуется варистором, играющим ключевую роль в обеспечении защиты. Именно он сгорает при импульсах свыше 450 В. Кроме того, фильтр надежно защищает от помех высокой частоты, возникающих при работе сварки или электродвигателей. Еще одним компонентом служит плавкий предохранитель, срабатывающий при коротких замыканиях.

Стабилизаторы

В отличие от сетевых фильтров, эти устройства позволяют выполнить нормализацию напряжения дома и привести его в соответствие с номиналом. Путем регулировок устанавливаются граничные пределы от 110 до 250 вольт, и на выходе устройства получаются требуемые 220 В. В случае скачков напряжения и выходе его за допустимые пределы, стабилизатор автоматически отключает питание. Подача напряжения возобновляется лишь после приведения сети к нормальному рабочему режиму.

Что лучше сетевой фильтр или стабилизатор напряжения. В определенных условиях, например, за городом или в сельской местности, стабилизаторы являются наиболее эффективной защитой от перенапряжения, выступают в качестве единственного варианта, способного выровнять напряжение до установленных норм.

Все стабилизирующие устройства, используемые в быту, разделяются на два основных типа. Они могут быть линейными, когда к ним подключается один или несколько бытовых приборов, или магистральными, устанавливаемыми на вводе сети в квартире или во всем здании.

Защита сети 220 вольт от перенапряжения — как защитить электроприборы в вашем доме?

Хотя подача электричества в квартиры и дома регулируется законодательством, жильцам не стоит полностью рассчитывать на то, что соответствующие службы обеспечат подачу электроэнергии нужного качества. Если из-за бросков сетевого напряжения дорогостоящие электроприборы выйдут из строя, получить компенсацию будет практически невозможно. А поскольку неполадки на электролиниях – не редкость, то стоит самостоятельно принять меры, которые помогут уберечь бытовую технику от поломки. Для этого нужна защита от перенапряжения, обеспечить которую можно, установив в сети соответствующий прибор – защитное реле, датчик с УЗО или стабилизатор напряжения.

Допустимые параметры электроэнергии

Номинал напряжения, обозначенный на всей бытовой электротехнике, составляет 220В, однако в реальной жизни это значение стабильно далеко не всегда. Это учитывается при изготовлении современных приборов, и они могут устойчиво работать при колебании напряжения от 209 до 231В, а также переносить разброс от 198 до 242В. Если бы небольшие перепады разности потенциалов не были предусмотрены конструкцией бытовой техники, она ломалась бы постоянно. Более значительные отклонения приводят к перегрузке сети, и это снижает эксплуатационный ресурс аппаратуры.

Чтобы сгладить колебания напряжения и обеспечить безопасность приборов, достаточно установить стабилизатор. Гораздо опаснее для электротехники перенапряжение (так называется резкий скачок разности потенциалов).

Разновидности перенапряжений

Перенапряжение может длиться как короткое, так и достаточно продолжительное время. Оно может быть вызвано ударом молнии во время грозы или коммутацией, возникшей из-за неполадок подстанции. Для защиты от них в сеть 220 или 380 Вольт (бытовую или промышленную) включается УЗИП (устройство защиты от импульсных перенапряжений). Его автоматическое срабатывание помогает обезопасить линию при воздействии, например, мощного грозового разряда, от которого не сможет спасти стабилизатор напряжения.

Наглядно про УЗИП на видео:

Удар молнии приводит к появлению мощного электромагнитного импульса, под влиянием которого в расположенных рядом с местом разряда проводниках возникают электрические потенциалы, и происходит резкий скачок напряжения. Длится он всего около 0,1 с, но величина разности потенциалов при этом составляет тысячи вольт.

Понятно, что при поступлении такого напряжения в домашние и производственные сети последствия могут быть очень тяжелыми.

Перенапряжение в результате коммутации

Такое явление может произойти при включении в линию или выключении приборов, дающих высокую индуктивную нагрузку. К ним относятся блоки питания, электромоторы, а также мощные инструменты, запитывающиеся от сети.

Этот эффект обусловлен законами коммутации. Моментальное изменение величины тока в соленоиде, а также разности потенциалов на конденсаторе произойти не может. Когда цепь с такой нагрузкой соединяется или размыкается, то в месте контакта отмечается появление вызванного самоиндукцией и коммутационными процессами электрического потенциала.

Течение переходного процесса всегда сопровождается выбросом напряжения, которое обладает полярностью, обратной входному. Небольшая емкость проводников в сети вызывает резонанс, длящийся короткое время и вызывающий высокочастотные колебания. По завершении переходного процесса они затухают.

Сколько продлится перенапряжение и какова будет его величина, зависит от следующих показателей:

  • Индуктивность нагрузки.
  • Моментальное значение разности потенциалов при коммутации.
  • Емкость подключающих электрических кабелей.
  • Реактивная мощность.

Опасность перенапряжения

Поскольку изоляция проводов рассчитана на величину напряжения, значительно превышающую номинал, пробоя чаще всего не случается. Если электроимпульс действует в течение незначительного времени, то напряжение на выходе блоков питания со стабилизатором не успевает возрасти до критического показателя. Это же касается и обычных лампочек – если резко возросшее напряжение быстро нормализуется, то спираль не успевает не только перегореть, но даже перегреться.

Если же изоляционный слой не выдерживает увеличившегося напряжения и происходит его пробой, то появляется электрическая дуга. В этом случае поток электронов проникает сквозь микротрещины, возникшие в изоляции, и идет через газы, которыми наполнены образовавшиеся мельчайшие пустоты. А большое количество тепла, выделяемое дугой, способствует расширению токопроводящего канала. В итоге нарастание тока происходит постепенно, и автомат защиты срабатывает с некоторым опозданием. И хотя оно занимает всего несколько мгновений, их оказывается вполне достаточно для выхода электропроводки из строя.

Какими устройствами обеспечивается защита сети от перенапряжения?

Схема защиты электрической линии от скачков напряжения может включать в себя:

  • Систему молниезащиты.
  • Стабилизатор напряжения.
  • Датчик повышенного напряжения (устанавливается вместе с УЗО).
  • Реле перенапряжения.

Отдельно нужно сказать о блоках бесперебойного питания, через которые в домашних сетях чаще всего подключают компьютеры. Этот прибор не предназначен для защиты от перенапряжения в сети. Его функция заключается в другом: при внезапном отключении света он работает как аккумулятор, позволяя пользователю сохранить информацию и спокойно выключить ПК. Поэтому путать его со стабилизатором напряжения не следует.

Принцип работы защитных устройств

Для защиты от электроимпульсов, возникающих под действием молнии, устанавливается грозозащитный разрядник вместе с УЗИП. А обезопасить линию от потока электронов, параметры которого не соответствуют рабочим характеристикам сети, можно с помощью специальных датчиков, а также реле перенапряжения.

Следует сказать, что как ДПН, так и реле по принципу действия и назначению отличаются от стабилизатора.

Задача этих элементов состоит в том, чтобы прекратить подачу электроэнергии в случае превышения величиной перепада максимального порога, указанного в техническом паспорте средства защиты или выставленного регулятором.

После нормализации параметров электрической линии происходит самостоятельное включение реле. ДПН для защиты линии следует устанавливать только в паре с устройством защитного отключения. Его задача заключается в том, чтобы при обнаружении неполадок вызвать утечку тока, под воздействием которой сработает УЗО.

Наглядно про реле напряжения на видео:

Недостаток такой схемы заключается в необходимости ее ручного включения после того, как напряжение придет в норму. В этом плане выгодно отличается стабилизатор напряжения. Это устройство предусматривает регулируемую временную задержку токоподачи, если происходит его срабатывание под воздействием чрезмерного напряжения. Стабилизатор часто используют для подключения кондиционеров и холодильных аппаратов.

Длительные перенапряжения

Продолжительные перенапряжения очень часто происходят из-за обрыва нулевого проводника. Неравномерность нагрузки на фазных жилах становится причиной перекоса фаз – смещения разности потенциалов к проводнику с самой большой нагрузкой.

Иначе говоря, под воздействием неравномерного трехфазного электротока на нулевом кабеле, не имеющем заземления, начинает скапливаться напряжение. Ситуация не нормализуется до тех пор, пока повторная авария окончательно не выведет линию из строя или специалист не устранит неисправность.

При обрыве нулевого провода в электророзетке будет происходить изменение напряжения в соответствии с нагрузкой, которую пользователи, не знающие о неполадках, будут подключать на различные фазы. Пользоваться неисправной цепью практически невозможно, даже если в линию питания включен хороший стабилизатор. Дело в том, что сетевые параметры, регулярно выходящие за пределы стабилизации, приведут к тому, что прибор будет постоянно выключаться.

Наглядно про обрыв ноля и что нужно при этом делать – на видео:

Недостаток напряжения (провал)

Это явление особенно хорошо знакомо людям, проживающим в деревнях и селах. Провалом (проседанием) называется падение величины напряжения ниже допустимого предела.

Опасность проседаний заключается в том, что в конструкцию многих бытовых приборов входит несколько блоков электропитания, и недостаток напряжения приведет к тому, что один из них кратковременно выключится. Аппарат среагирует на это выдачей ошибки на дисплее и остановкой работы.

Если речь идет об отопительном котле, а неисправность произошла в зимнее время, то дом останется без отопления. Избежать такой ситуации поможет подключение стабилизатора. Этот прибор, зафиксировав проседание, повысит величину напряжения до номинала. Стабилизатор может спасти ситуацию, даже если напряжение в сети упало по вине трансформаторной подстанции.

Заключение

В этой статье мы рассказали, для чего нужна защита от перенапряжения в сети, какими устройствами она обеспечивается и как правильно ими пользоваться. Приведенные рекомендации помогут читателям разобраться в причинах сбоя сетевого напряжения, а также выбрать и установить устройство для защиты электросети.

Устройство защиты от перенапряжения с реле РКН

5 лет назад был случай. Электрик ЖКХ шабашил в нашей девятиэтажке. Сосед врач был на работе. Его жена включила стиралку, готовила обед, смотрела телевизор. Дочка сидела за компьютером.

Электрик по ошибке снял не тот провод и оборвал общий ноль на вводе в подъезд. На стояке соседа во всех квартирах погорели бытовые приборы.

Его потери: морозильник, холодильник с загруженными продуктами, стиральная машина, телевизор, компьютер, радиотелефон и пяток лампочек освещения. Часть денег ему удалось вернуть через суд, но сколько нервов и времени ушло на это…

Вот и делайте вывод: нужно ли устройство защиты от перенапряжения в квартире на простом реле РКН или не стоит обращать на него внимание.

Содержание статьи

Современная промышленность выпускает различные защиты от перенапряжения со множеством функций при появлении аварийной ситуации в виде:

  1. Простого снятия питания с подключенной нагрузки и автоматического ввода ее в работу при восстановлении параметров питающей сети.
  2. Исправления уровня напряжения за счет подключения к цепям автотрансформатора дополнительных обмоток с разными схемами управления (сервопривод с электромеханическим приводом, релейная схема, электронные ключи на тиристорах или симисторах).
  3. Переключения потребителя на альтернативный генератор системой автоматического включения резерва (АВР).

В этой статье я рассказываю о самом простом и доступном для каждого владельца квартиры первом способе: реле РКН. Оно относится к бюджетным защитам, но в то же время обладает высокой степенью надежности.

Перепады напряжения в электросети: как возникают и чем опасны

Современный российский стандарт, изложенный в ПУЭ, определяет уровень напряжения для однофазного электроснабжения при частоте 50 герц, как 230+/-10% вольт. То есть нормой считается 207÷253 вольта.

Именно это значение обязаны обеспечивать и поддерживать все без исключения энергоснабжающие организации. Однако на практике не все так просто.

Стихийные природные явления, ошибки электротехнического персонала, критические условия эксплуатации оборудования энергоснабжающих организаций периодически сказываются на качестве электроэнергии.

Поэтому в бытовой проводке, рассчитанной для надежной эксплуатации при рабочем уровне напряжения, создаются аварийные режимы или перепады напряжения в электросети. Они связаны с тем, что к нам в квартиру вместо заложенной правилами нормы поступает:

  • повышенное напряжение более 253 вольт;
  • или пониженное: менее 207.

Эти процессы происходят очень быстро, за что их называют «скачки напряжения».

Аварийный режим часто связан с искажением формы у стандартной частоты синусоиды, например, при ударе молнии в линию электропередачи.

Внешний импульс энергии накладывается на гармоничную синусоиду. Форма сигнала, принимая суммарное непредвиденное значение, отрицательно сказывается на работе электрических приборов, не приспособленных к таким условиям эксплуатации.

Кроме характерных ударов молний форму синусоиды искажают апериодические составляющие переходных процессов, вызванные переключениями нагрузок больших мощностей или работой сложных защит в энергосистеме.

При возникновении коротких замыканий или перегрузок в схеме электроснабжения происходит просадка напряжения или понижение его величины ниже минимально допустимого уровня.

Бытовые приборы в таких ситуациях подвергаются серьезным испытаниям: могут сгореть. Им необходима автоматическая защита от подобных аварийных режимов.

Повышенное напряжение в сети: откуда ждать неприятности в бытовой проводке

Сейчас я намеренно опускаю случаи проникновения импульсов молнии в домашнюю проводку. Эта большая тема раскрыта в очередной статье об ограничителях перенапряжения — УЗИП. Читайте там.

Разбирать будем другие случаи, связанные с ошибочной работой оборудования или электротехнического персонала.

Еще раз приведу схему трехфазного подключения с общей нейтралью, по которой работают все бытовые сети. Я о ней упоминал в статье об вычислениях электрического напряжения.

Между тремя фазами линий создается напряжение 380 вольт, а относительно любой фазы и нуля (нейтрали) — 220. Это упрощенный идеальный случай.

Он не учитывает то, что все потребители, включая провода и кабели, имеют различное электрическое сопротивление. Оно влияет на картину протекания тока и распределение падений напряжений на участках цепи.

Линейные и фазные напряжения на каждом участке немного отличаются друг от друга. Но это не сказывается на качестве работы бытовых электрических приборов.

Аварийный режим и их повреждения происходят по другой причине. Характерный пример — обрыв нуля. Его еще называют отгорание нуля.

Повышенное напряжение в сети происходит не столько из-за старости проводки, хотя она тоже сказывается, сколько за счет плохого монтажа и безобразной эксплуатации электриков ЖКХ.

Приведенная на составной фотографии картинка демонстрирует ужасный способ подключения алюминиевого провода обычной намоткой вокруг контакта предохранителя. Случай-то это не единичный.

Им искусственно создано высокое переходное сопротивление, на котором происходит нагрев изоляции. Она плавится, разрушается.

Под действием возросшего тока нагрузки перегреву будет подвергнут металл токопроводящей жилы: со временем она отгорит и разорвет цепь подключения общей нейтрали.

Подобные случаи, к сожалению, еще встречаются. Часто они заканчиваются аварийными ситуациями.

Обрыв ноля практически не сказывается на работе питающего трансформатора на подстанции: он по-прежнему выдает симметричные линейные напряжения на выходе. Каждое из них начинает работать на подключенную к ним нагрузку.

Поясняю их действие на примере контура АВ. В нем разность линейных потенциалов UАВ приложена к суммарному сопротивлению квартир RА и RВ, подключенным последовательно.

Величина этих сопротивлений носит чисто случайный характер: зависит от количества включенных в работу электроприборов. Например, владелец квартиры A пользуется только холодильником и дома у него сейчас никого нет.

Хозяйка квартиры B в это время стирает белье, у нее работает посудомоечная машина и электрическая плита, освещение. Могут быть включены и другие потребители.

Получается, что один общий ток IAB протекает по цепочкам обеих квартир, но к схеме A приложено довольно маленькое напряжение, а вся остальная часть действует на соседа. На практике эта величина может очень близко подходить к линейному значению 380 вольт.

От него сгорает холодильник и вся включенная в работу бытовая техника.

Однако не стоит забывать о других соседях. Квартира C тоже обладает каким-то случайным сопротивлением. По контурам BC и CA складываются свои падения напряжений.

За счет их взаимовлияния при обрыве нуля смещается нейтральная точка нуля из положения n в другое место n1.

На точке n1 появляется опасный потенциал относительно контура земли. Если кто-то из “умных соседей” выполнил зануление своих бытовых приборов, то на их корпусе автоматически оказывается это напряжение: появляется предпосылка получения электротравмы.

Когда «грамотный домашний электрик» ноль своей проводки садит на контур земли через трубопроводы отопления, водопровода, металлоконструкции лифта и подобные магистрали, то все эти части оказываются под опасным напряжением.

Система зануления используется как крайний случай защиты специфичного электроинструмента в промышленных условиях, носит временный характер, требует применения дополнительных защитных средств. В быту она опасна, да и давно потеряла свою актуальность.

Чем опасно повышенное напряжение в сети для потребителей электроэнергии

Давайте вспомним треугольник закона Ома и выразим для него электрический ток по формуле для участка цепи.

Сразу становится понятным, что на одинаковом сопротивлении повышение напряжения вызывает увеличение тока нагрузки. От него создается перегрев:

  • нитей накаливания ламп и они перегорают;
  • изоляции проводов токоведущих частей и особенно — обмоток электродвигателей. Лак плавится, провода слипаются, сгорают;
  • электронных блоков питания сложной бытовой техники. Они выходят из строя.

Пониженное напряжение в сети: что происходит с бытовыми потребителями

Резистивные нагрузки типа ламп накаливания и Тэны просто недополучают питание. Они не справляются со своими задачами. А вот работающие электродвигатели могут сгореть.

Например, электрический двигатель насоса холодильника должен прокачивать хладон по внутренним магистралям. Но пониженное напряжение в сети не позволит обеспечить достаточную мощность для нормальной раскрутки ротора.

Создается большой противодействующий момент сил трения и гидравлического сопротивления среды, тормозящий раскрутку. В обмотках двигателя возникают повышенные токи, разрушающие изоляцию. Холодильник сгорает.

Аналогичные процессы происходят с электродвигателем стиральной или посудомоечной машины, которые должны насосом прокачать воду.

Обрыв нуля в однофазной сети и две фазы в розетке

Разрыв нулевого потенциала однофазной схемы питания не приносит таких бед, как отгорание нейтрали в сети 380 вольт. Здесь просто обрывается цепь протекания тока, а подключенные приборы перестают работать.

В этой ситуации может проявиться эффект, который принято называть “Две фазы в розетке”: при отключенном нулевом проводе и параллельно включенной нагрузке фазный потенциал присутствует на обоих контактах розетки.

Повреждения бытовых приборов при такой ситуации не происходит, но работать они без нормального питания не могут.

Реле защиты от скачков напряжения: 3 принципа работы

В своей практике релейщика мне пришлось эксплуатировать и налаживать 3 вида реле напряжения:

  1. максимального действия, когда логика защиты контролирует уровень входного сигнала и при превышении заранее заданной уставки отключает питание с подключенной схемы;
  2. минимального действия — контроль понижения установленного уровня;
  3. комбинированного типа, включающего в себя первые 2 действия для поддержания работоспособности оборудования от нижнего до верхнего предела напряжения.

Для бытовых целей производители массово выпускают реле контроля напряжения (РКН), которые выполнены по комбинированному принципу, поддерживая на оборудовании только допустимые уровни.

Современные модули реле контроля напряжения можно условно разделить на два типа отличающихся конструкций:

  1. электромеханические или аналоговые, реагирующие на величину напряжения за счет точно сбалансированной системы усилий пружин и силы притяжения электромагнита;
  2. цифровые модули на микропроцессорах.

Первый тип массово использовался несколько десятилетий назад, а сейчас он постепенно вытесняется современными разработками.

При провалах и перенапряжениях эти типы реле просто отключают питание от нагрузки, выполняя таким способом свою защиту. Когда же уровень сигнала восстанавливается до нормального состояния, то логика устройств вновь замыкает свои контакты.

Здесь может встретиться особенность, когда конструкция выходных контактов реле защиты от скачков напряжения по мощности может не справиться с коммутируемой нагрузкой.

Приведу пример. Эта величина указывается в киловаттах или амперах прямо на корпусе реле РКН либо в сопроводительной технической документации.

Делаем пересчет нагрузки подключаемых приборов и по нему анализируем возможности отключающих контактов.

Если их мощности не хватает для надежного разрыва тока, то используем схему реле повторителя или дополнительного контактора, когда:

  • наша защита своей выходной цепью управляет только работой обмотки добавочного модуля;
  • его силовые контакты переключают мощную нагрузку.

Реле контроля напряжения 1 фазное: виды конструкций для квартиры

Наша бытовая сеть чаще всего работает по однофазной схеме. С нее и начну обзор различных моделей реле РКН. Прежде чем их выбирать рекомендую уточнить технические характеристики оборудования, которое планируете защищать.

Дорогие модели холодильников с высоким классом энергосбережения уже имеют встроенное реле защиты двигателя. Его вполне достаточно для сохранения работоспособности при перепадах напряжения.

Основные технические характеристики указаны наклейкой на корпусе и в сопроводительной документации.

Если такая защита уже встроена внутрь дорогого оборудования, то для неответственных потребителей можно приобрести индивидуальные защиты, выполненные в форме переходников:

  • розетки с вилкой, подключаемой в схему питания;
  • или удлинителя.

Подобные современные модули имеют:

  1. малогабаритную электронную схему;
  2. табло отслеживания основных электрических параметров;
  3. индикацию режимов срабатывания.

Защита на реле контроля напряжения 1 фазном, устанавливаемая на Din рейку, может использоваться для нескольких потребителей розеточных групп. Они имеют возможность простой настройки ряда характеристик.

Любителям мастерить все своими руками рекомендую для сборки простую схему реле напряжения с доступной базой.

Нечто подобное я собирал для советского холодильника Атлант после того, как его двигатель сгорел от броска напряжения. Было это очень давно. Уставки тщательно отбил на лабораторном стенде. Но допустил тогда две ошибки. Советую вам их учесть:

  1. Выходное реле, переключающее силовые контакты, у меня было подобрано по мощности номинальной нагрузки с небольшим запасом. Его не хватило на надежное отключение аварийных токов, усиленных переходными процессами.
  2. После проверки на стенде я подключил свою самоделку в схему и забыл о ней. Только где-то года через четыре решил проверить ее работоспособность. Принес на стенд, а она не работает. Вскрыл и увидел спекшиеся контакты.

Если будете собирать подобные схемы, то подбирайте реле по мощным силовым контактам или используйте схему с повторителем на контакторе. Не забываете о сроках периодических проверок.

Кстати, последний пункт рекомендую почаще выполнять даже для заводских модулей любых защит.

Внутри насыщенной электрооборудованием квартиры имеет смысл использовать три реле контроля напряжения:

  • первое осуществляет защиты всех потребителей сети из электрического щитка в пределах 207÷253 вольта как резерв;
  • второе настраивается под электродвигатели;
  • третье защищает всю бытовую электронику.

Реле контроля напряжения 3 фазное для защиты частного дома

Современные производители выпускают большое разнообразие подобных модулей. Принцип работы и подключения их разберем на примере реле напряжения DigiTOP V-protector 380V.

Оно больше всего мне понравилось своими техническим характеристиками, красивым дизайном, прочным корпусом и удобными настройками из всех тех модулей, с которыми я ознакомился.

Реле контроля напряжения 3 фазное ставится на Din рейку. Его внешний вид показан в рабочем положении.

На входные клеммы 5÷8 сверху подаются 3 фазы и ноль прямого чередования, а снизу они снимаются. Цифровой дисплей указывает величину действующего фазного напряжения.

Если цифра мигает, а не постоянно светится, то это указание на то, что выходные цепи разомкнуты.

Светодиодная индикация используется при настройках. Справа на корпусе имеются четыре кнопки управления:

  • 2 верхние предназначены для изменения величины уставки срабатывания вверх или вниз;
  • Кнопка S позволяет выбирать режим симметрии или асимметрии.
  • С помощью кнопки Т выставляют времена срабатывания.

Упрощенная схема реле напряжения DigiTOP V-protector 380V показана на картинке ниже. Я ее взял с сайта производителя и для наглядности дополнил цветовой маркировкой проводов.

Модуль защиты рассчитан на коммутации номинальных токов 63 ампера. Для частного дома это более чем достаточно. Никаких дополнительных контакторов использовать не потребуется.

Внутри компактного корпуса размещены мощные клеммы с толстыми медными токопроводами. Они изолированными от печатного монтажа на платах: излишний нагрев исключен.

Модульная конструкция каждой фазы имеет свою микросхему управления и может работать автономно на встроенное однофазное реле.

Его мощные переключающие контакты внушают доверие, хорошо экранированы от электрической дуги, сопровождающей разрыв цепи столь большого тока.

Возможности настроек

Режим асимметрии выбирается для подключения трех независимых однофазных нагрузок. Здесь реле работает как 3 индивидуальных модуля защиты на 220 вольт.

При отклонении напряжения на любой фазе от величины уставки эта неисправность отключается встроенной защитой, а две другие остаются в работе.

После восстановления параметров питающей сети автоматика с установленной задержкой времени включает оборудование в работу.

Если происходит обрыв нуля в трехфазной схеме, то реле защищает оборудование от опасных последствий созданного режима. Оно использует среднюю точку, искусственно созданную на симметричной нагрузке, поддерживая нормальное электроснабжение.

Стоит вывести из работы любой из однофазных потребителей, как реле в этой ситуации автоматически обесточит остальные.

Если при работе происходит нарушение порядка чередования фаз, то реле сразу отключает все потребители. Такая защита в первую очередь необходима для электродвигателей: они сразу меняют направление вращения.

Симметричный режим применяется для питания трехфазного оборудования. Особую актуальность он имеет для асинхронных электродвигателей.

Реле напряжения DigiTOP V-protector 380V имеет возможность настройки уставки отклонения асимметрии от 20 до 80 вольт между любыми фазами. Оно имеет встроенную энергонезависимую память и хранит в ней все введенные параметры.

Подробное объяснение настроек этого реле и его испытание в своем видеоролике показывает Дмитрий электромонтажник Дурнев. Считаю, что его материал полезен для всех специалистов.

Заканчиваю тему про устройство защиты от перенапряжения с реле РКН. Многие вопросы еще могут потребовать дополнительной информации. Спрашивайте в комментариях. Отвечу.

Защита от перенапряжения в сети 380 вольт - советы электрика

Устройства защиты от перенапряжения в сети

Вы здесь:Защита от перенапряжения в сети – очень важное мероприятие, которое позволит не только продлить срок службы электропроводки, но и повысит безопасность при скачках напряжения.

Если не защитить линию от перенапряжения, то можно не только вывести из строя всю бытовую технику, но и подвергнуть свое жилье пожару, не говоря уже о собственном здоровье.

Далее мы рассмотрим основные причины возникновения перенапряжения, а также устройства, которые позволят уберечь электропроводку от губительных последствий данного явления.

Основные причины возникновения

Чаще всего перенапряжение в сети 220 и 380 Вольт возникает по следующим причинам:

  1. Обрыв нулевого провода (на схеме обозначается как N, синего цвета). Предназначение нуля – выровнять ток в фазах и, соответственно, при его обрыве происходит резкий сбой, при котором одни потребители получают меньше необходимых 220 В, а часть больше, вплоть до 380 В. Если в первой случае техника будет просто некорректно работать, то во втором она попросту выйдет из строя, если не установлены устройства защиты.
  2. Невнимательность при подсоединении контактов в щите, в результате чего по жилам пойдет перенапряжение — не 220, а 380 В.
  3. Возникло импульсное напряжение вследствие попадания грозы в ЛЭП (именно поэтому рекомендуют отключать всю бытовую технику во время грозы, а также делать молниезащиту на участке).
  4. Питание от одной линии с мощным заводом, который в определенный момент может запустить все свое оборудование, создав огромный скачок тока в сети. Происходит редко, но все же отдельные случаи наблюдались.

Наглядный видео пример действия перенапряжения

Как Вы видите, на перегрузку в однофазной и трехфазной сети влияет множество факторов, в том числе и природные. Поэтому домашнюю проводку нужно обязательно защитить, чтобы не стать жертвой несчастного случая.

Устройства для решения проблемы

В современном мире существует множество различных устройств для защиты от перенапряжения в сети, которые несложно подключить своими руками. Изделия могут эффективно справляться не только с перепадами напряжения, но и со сверхтоками, которые также губительно влияют на домашнюю проводку.

Среди наиболее полезных для применения в доме и квартире выделяют:

  1. Стабилизатор. Является своего рода предохранителем, который контролирует напряжение в сети и в случае его предельно допустимого отклонения, отключает электричество в доме. К примеру, на своем опыте могут сказать, что стабилизатор не раз спасал нашу бытовую технику от перепадов, вызванных сварочными работами, проходящими вблизи. Устройства имеют диапазон от 150 В и до 240 В (как пример). Как только значение выйдет из данного диапазона, аппарат выключится. В то же время, когда все стабилизируется, устройство защиты снова включится. О том, как подключить стабилизатор напряжения, мы рассказывали в соответствующей статье!
  2. Реле. Вы наверняка не раз сталкивались с данными устройствами, которые являются миниатюрной версией стабилизатора. Чаще всего реле напряжения используется для защиты от перенапряжения одного определенного агрегата, к примеру, компьютера. Работает по такой же схеме, как и предыдущий вариант. Может быть представлен в виде электрической вилки (к примеру, ЗУБР), удлинителя и отдельного аппарата (всем известный Барьер), которое крепится на DIN-рейку щита. О том, как выбрать реле напряжения мы рассказывали в отдельной статье.
  3. Устройство защитного отключения. Широко применяется для защиты сети в домашних условиях, что вызвано высоким качеством работы и небольшой стоимостью. УЗО должно работать в паре со специальным датчиком ДПН, который будет подавать сигнал на отключение, если обнаружит перенапряжение в сети. Вместо этого можно использовать альтернативный вариант для защиты дома — устройство защиты многофункциональное. О том, как работает УЗМ-51М и как его подключить, мы рассказали в отдельной статье.
  4. Источник бесперебойного питания. Опять-таки, на своем опыте подтвержу его эффективность. Более десяти раз ИБП спасал мой компьютер от резкого выключения при срабатывании стабилизатора. «Бесперебойник» имеет небольшую стоимость, поэтому купить такой вариант защиты от перенапряжения при наличии ПК крайне необходимо.
  5. УЗИП. От импульсных напряжений (возникают во время грозы и могут вывести технику из строя) можно защититься, установив в доме УЗИП. Данный аппарат является достаточно популярным на сегодняшний день и широко применяется как в быту, так и на производстве. Более подробно о том, что такое УЗИП и как он работает, мы рассказали в отдельной статье, с которой настоятельно рекомендуем ознакомиться. Следует отметить, что УЗИП могут также называть модульными ограничителями перенапряжения (ОПН).

Купив все эти устройства для защиты от перенапряжения в сети 220 и 380 Вольт можно не беспокоиться о том, что пострадает бытовая техника, электропроводка и главное – Ваша жизнь в опасной ситуации.

Видео пример срабатывания ДПН и УЗО

Рекомендуем прочитать:

Видео пример срабатывания ДПН и УЗОНаглядный видео пример действия перенапряжения

Другие статьи по теме

  • Что такое изолированная нейтраль и где она используется
  • Что такое вибрация и пляска проводов, от чего зависят эти явления

  • Источник: https://samelectrik.ru/ustrojstva-zashhity-ot-perenapryazheniya-v-seti.html

    Защита от перенапряжения сети для дома (220 и 380 вольт)

    В современных бытовых приборах используется чувствительная электроника, что делает эти устройства уязвимыми перед перепадами напряжения. Поскольку устранить их не представляется возможным, необходима надежная защита.

    К сожалению, ее организация не входит в сферу обязанностей службы ЖКХ, поэтому заниматься этим вопросом приходится самостоятельно. Благо защитные устройства приобрести сегодня не проблема.

    Прежде чем перейти к описанию и принципу действия таких приборов, кратко расскажем о причинах, вызывающих скачки напряжения, и их последствиях.

    Что такое перепад напряжения и его природа?

    Под этим термином подразумевается краткосрочное изменение амплитуды напряжения электросети, с последующим восстановлением, близким к первоначальному уровню. Как правило, длительность такого импульса исчисляется я миллисекундами. Существует несколько причин для его возникновения:

    1. Атмосферные явления в виде грозовых разрядов, они способны вызвать перенапряжение в несколько киловольт, что не только гарантированно выведет электроприборы из строя, а и может стать причиной пожара. В данном случае жителям многоэтажек проще, поскольку организация защиты от таких предсказуемых явлений входит в обязанности поставщиков электричества. Что касается частных домов (особенно с воздушным вводом), то их жильцы должны самостоятельно заниматься этим вопросом или обращаться к специалистам.
    2. Скачки при коммутационных процессах, когда происходит подключение-отключение мощных потребителей.
    3. Электростатическая индукция.
    4. Подключение определенного оборудования (сварка, коллекторный электродвигатель и т.д.).

    На рисунке ниже наглядно продемонстрирована величина грозового (Uгр) и коммутационного импульса (Uк) по отношению к номинальному напряжению сети (Uн).

    Грозовой и коммутационный импульсы перенапряжения

    Для полноты картины следует упомянуть и о долгосрочном повышении и понижении напряжения. Причиной первого является авария на линии, в результате которой происходит обрыв нулевого провода, что вызывает повышение до 380 вольт (если быть точным, то ). Нормализовать ситуации никакими приборами не получится, потребуется ждать устранения аварии.

    Длительное снижение напряжения можно часто наблюдать в сельской местности или дачных поселках. Это связано с недостаточной мощностью трансформатора на подстанции.

    В чем заключается опасность перепадов?

    В соответствии с допустимыми нормами, допускается отклонение от номинала в диапазоне от -10% до +10%. При скачках напряжение может существенно выйти за установленные границы.

    В результате блоки питания бытовой техники подвергаются перегрузке и могут выйти из строя или существенно сократить свой ресурс.

    Обратите внимание

    При высоких или длительных перепадах велика вероятность возгорания проводки, и, как следствие, пожара.

    Пониженное напряжение также грозит неприятностями, особенно к этому критичны компрессоры холодильных установок, а также многие импульсные блоки питания.

    Защитные устройства

    Существует несколько видов защитных устройств различающихся как по функциональности, так и по стоимости, одни из них обеспечивают защиту только одному бытовому прибору, другие – всем имеющимся в доме. Перечислим хорошо зарекомендовавшие себя и наиболее распространенные защитные устройства.

    Сетевой фильтр

    Наиболее простой и доступный по деньгам вариант защиты маломощного бытового оборудования. Отлично зарекомендовал себя при бросках до 400-450 вольт. На более высокие импульсы устройство не рассчитано (в лучшем случае оно примет удар на себя, спасая дорогостоящую аппаратуру).

    Фильтр удлинитель Swen Fort Pro

    Основной элемент защиты у такого устройства – варистор (полупроводниковый элемент изменяющий сопротивление в зависимости от приложенного напряжения). Именно он выходит из строя при импульсе более 450 В.

    Вторая важная функция фильтра – защита от высокочастотных помех (возникают при работе электродвигателя, сварки и т.д.) отрицательно влияющих на электронику. Третьим элементом защиты является плавкий предохранитель, срабатывающий при КЗ.

    Стабилизатор

    В отличие от предыдущего типа приборы этого класса позволяют нормализовать напряжение в соответствии с номинальным. Например, установив границу в пределах 110-250 В, на выходе устройства будет стабильные 220 В. Если напряжение выйдет за пределы допустимого, прибор отключит питание и возобновит его подачу после нормализации работы электросети.

    Стабилизатор EDR-1000 от производителя Luxeon

    В некоторых случаях (например, в сельской местности) установка стабилизатора является единственным способом повысить напряжение до необходимой нормы. Бытовые стабилизаторы выпускают двух модификаций:

    • Линейные. Они предназначены для подключения одного или нескольких бытовых приборов.
    • Магистральные, устанавливаются на входе электросети здания или квартиры.

    И первые, и вторые следует подбирать исходя из мощности нагрузки.

    Источники бесперебойного питания

    Основное отличие от предыдущего типа является возможность продолжения подачи питания подключенного устройства после срабатывания защиты или полного отключения электричества. Время работы в таком режиме напрямую зависит от емкости аккумуляторной батареи и мощности нагрузки.

    Бесперебойный блок питания APC, модель SC-420

    В быту эти устройства в основном используются для подключения стационарных компьютеров, чтобы при проблемах с электросетью не потерять данные.

    При срабатывании защиты ИБП будет продолжать подачу питания в течение определенного времени, как правило, не более получаса (зависит характеристик устройства).

    Этого времени вполне достаточно, чтобы сохранить необходимые данные и корректно отключить компьютер.

    Современные модели ИБП могут самостоятельно управлять работой компьютера через USB интерфейс, например, закрыть текстовый редактор (предварительно сохранив открытые документы), после чего произвести отключение. Это довольно полезная функция, если пользователь при срабатывании защиты не находился рядом.

    Устройства защиты от импульсных перенапряжений

    Все перечисленные выше приборы обладают общим недостатком, у них не реализована действенная защита от импульса высокого напряжения. Если таковой произойдет, он, практически гарантированно выведет такие устройства из строя.

    Следовательно, защита должна быть организована таким образом, чтобы после срабатывания можно было оперативно привести ее в рабочее состояние. Этому требованию, как нельзя лучше отвечают УЗИП.

    На их основе организуется многоуровневая система защиты внутренних линий частного дома.

    Одна из принятых классификаций таких устройств показана в таблице.

    Таблица 1. Классификация УЗИП

    Категория Применение
    В (I) Обеспечивают защиту при прямом попадании грозового разряда по системе молниезащиты. Место установки – вводно-распределительное устройство или главный распределительный щит. Основная нормирующая характеристика – величина импульсного тока.
    С (II) Защищают токораспределительную сеть от коммутационных импульсов, а также играют роль второго защитного уровня при грозовом разряде. Место установки – распределительный щит.
    D (III) Обеспечивают последний уровень защиты, при которой к потребителям не допускаются остаточные броски напряжения и дифференциальные перенапряжения. Помимо этого обеспечивается фильтрация высокочастотных помех. Установка производится перед потребителем. Могут быть выполнены в виде модуля под розетку, удлинителя и т.д.

    Пример организации трехуровневой защиты продемонстрирован ниже.

    Организация трехуровневой защиты от перенапряжения

    Конструктивные особенности УЗИП.

    Устройство представляет собой платформу (С на рис. 6) со сменным модулем (В), внутри которого находятся варисторы. При их выходе из строя индикатор (А) изменит цвет (в приведенной на рисунке модели на красный).

    УЗИП Finder (категория II)

    Внешне устройство напоминает автоматический выключатель, крепление – такое же (под DIN рейку).

    Особенностью УЗИП является необходимость замены модулей при выходе варисторов из строя (что довольно просто).

    Важно

    Конструкция модулей выполнена таким образом, что установить их на платформу с другим номиналом невозможно. Единственный серьезный недостаток связан с характерными особенностями варисторов.

    Им необходимо время, чтобы остыть, многократное попадание грозового разряда существенно усложняет этот процесс.

    Защитное реле

    В завершении рассмотрим реле контроля напряжения (РКН), эти устройства способны обеспечить защиту бытовых приборов от коммутационных импульсов, перекоса фаз, а также пониженного напряжения.

    С грозовыми импульсами они не справятся, поскольку на это не рассчитаны.

    Их сфера применения – защита внутренней сети квартиры, то есть там, где обеспечение грозозащиты входит в обязанности электрокомпаний.

    Приборы могут устанавливаться во входном щитке, непосредственно, после электросчетчика, для этого предусмотрено крепление под DIN рейку.

    РКН можно подключать после счетчика

    Помимо этого выпускаются модификации приборов в виде удлинителей питания и модулей под розетку.

    РКН в виде удлинителя и розеточного модуля

    Данные устройства могут произвести только защитное отключение сети, при выходе напряжения за указанные пределы (устанавливается кнопками управления), после нормализации электросети производится ее подключение. Стабилизация и фильтрация не производятся.

    Предостережения

    Не следует доверять защиту своего дома самодельным конструкциям, в бытовых условиях бывает проблематично настроить собранную схему и протестировать ее работу в критических режимах.

    Все манипуляции с электрощитом, приборами и проводкой необходимо проводить только при отключенном электропитании.

    Источник: https://www.asutpp.ru/zashhita-ot-perenapryazheniya.html

    Чем опасно перенапряжение в сети 220 В: как реле обеспечивает защиту электроприборов, как защитить сеть 380 В

    Электрические приборы сегодня присутствуют в каждом доме. Удобство их использования и срок службы напрямую зависит от подаваемого напряжения. Зачастую в бытовых сетях происходят скачки, из-за которых современная электроника выходит из строя. Уберечь её от поломок помогут специальные приборы, такие как реле защиты от перенапряжения, устройство защитного отключения и другие.

    Сетевое перенапряжение может быть чревато поломкой дорогостоящих приборов. Есть несколько факторов, по которым величина напряжения в сети резко меняется:

    • Неверное соединение проводов в щите. Случается это чаще всего из-за банальной невнимательности. Если подлежащие соединению провода были перепутаны, это приведёт к возникновению скачка.
    • Разрыв нулевого провода. Именно он отвечает за то, чтобы в сети было правильное ровное напряжение без перепадов. Его разрыв непременно повлечёт за собой сбой, при котором один участок электрической цепи получит 220 В, а другой — 380 В.
    • Просчёт операторов. В процессе работы на подстанциях иногда специалисты производят несогласованное регулирование подаваемого тока.
    • Электропитание от одной линии. Такие линии обладают заводом очень большой величины. Когда всё оборудование, подключённое к ней, одномоментно запускается, внутри сети происходит резкий подъём тока.
    • Природные факторы. В первую очередь к таким факторам относится гроза. Разряд молнии, попадающий в линию электропередач, провоцирует импульсное напряжение, достигающее десятков тысяч вольт. Чтобы не нарушить работу электрических приборов в такой ситуации следует в обязательном порядке обесточивать их во время грозы либо заранее позаботиться об установке молниезащиты.

    Современные приборы, работающие от электросети, создаются с учётом возникновения небольшого перенапряжения. Если его величина не превосходит 1000 В, то благодаря встроенной защите поломки не случаются.

    Но в случаях когда перепад превышает установленную норму, наступает короткое замыкание, проявляющееся в перегреве проводов, пробоях изоляционной оболочки, появлению искр. Подобная ситуация весьма опасна для человека.

    Стабилизатор тока

    Опасность короткого замыкания заключается в том, что оно может вызвать возгорание оборудования и пожар. Именно поэтому защита от перенапряжения сети 220 В, применяемого в быту, чрезвычайно важна. Для этих целей потребители часто используют стабилизатор напряжения. При его выборе необходимо учитывать следующие характеристики:

    • Тип сети. По числу проводов они делятся на однофазные (с двумя проводами) и трехфазные (с четырьмя проводами).
    • Мощность. Перед приобретением стабилизатора следует посчитать суммарную нагрузку всех устройств, которые планируется защитить. Показатель мощности защитного прибора должен на ступень превосходить полученное число.
    • Пусковой ток. Этот параметр необходимо брать во внимание при защите устройств с асинхронными двигателями (насосов, холодильников). Для их бесперебойной работы требуется стабилизирующее устройство с запасом до 25%.

    Что касается необходимого числа стабилизирующих приборов, то оно зависит от того, сколько электрических устройств работает в одной сети. Система, состоящая из 2−3 маломощных электроустройств, будет эффективно работать при наличии одного стабилизатора, встроенного в неё на входе.

    Защитное реле и УЗО

    Уменьшенным вариантом стабилизатора является реле защиты от перенапряжения. В зависимости от модификации оно может иметь вид:

    • Удлинителя. Имеет несколько розеток, защищённых одним предохранителем.
    • Электрической вилки (модель «Зубр»). Присоединяется к квартирной розетке, имеет цифровое табло, на котором высвечивается уровень напряжения в данный момент.
    • Отдельного модуля, устанавливающегося на DIN-рейку в электрощитке (модель «Барьер»). Способен обезопасить всю технику в пределах одной квартиры (дома). Для этого его потребуется установить внутри распределительной коробки.

    Все модели защитных реле имеют схожую схему работы и могут обезопасить как отдельное устройство (компьютера, телевизора и др.), так и несколько приборов. Преимущество реле перед стабилизатором заключается в быстроте его действия. Скорость срабатывания однофазного прибора в случае перенапряжения в сети 220 В составляет несколько наносекунд.

    Ещё одна возможность обезопасить домашнюю электросеть — приобрести устройство защитного отключения (УЗО), отличающееся высоким качеством при достаточно невысокой стоимости.

    В процессе его работы происходит сравнение величины тока в фазном и нулевом проводнике. При наличии высокой разницы между показателями срабатывает автоотключение.

    Для полноценной защиты от опасных скачков тока УЗО должно дополняться специальным датчиком, сигнализирующим о перенапряжении и отключающим электропитание приборов.

    Стабилизация сетей 380 вольт

    Электросетям, работающим под напряжением в 380 В, отводится важная роль. С их помощью обеспечивается работа общественного транспорта (троллейбусов, электричек, метро), работают уличные фонари, электрифицируются частные дома в посёлках. Защита высоковольтных линий имеет свои особенности:

    • Должно постоянно отслеживаться распределение электричества по фазам.
    • Для предохранения от перепадов лучше использовать несколько однофазных приборов, чем один трехфазный. Таким образом удастся сохранить электропитание в сети при выходе из строя одного стабилизирующего прибора. Ремонт такого прибора обойдётся дешевле.
    • Работа электродвигателей в высоковольтной системе должна быть защищена трехфазными стабилизирующими устройствами.

    Источник: https://220v.guru/fizicheskie-ponyatiya-i-pribory/napryazhenie/zaschita-ot-perenapryazheniya-rele-dlya-setey-220-v-i-380-v.html

    Устройство защиты от перепадов, скачков напряжения и перенапряжения сети 220в в частном доме или квартире

    Современная жизнь приводит к появлению все большего количества сложной бытовой техники, оборудования и электроники в наших домах и квартирах.

    При этом качество электроснабжения желает быть лучшим по различным причинам.

    С другой стороны, промышленность предлагает целый ряд электротехнических приборов, позволяющих решать обозначенные проблемы своими руками в собственном жилье. Давайте познакомимся с ними и сделаем свой выбор.

    Контроль уровня напряжения в сети

    Виды скачков напряжения в сети электроснабжения

    Трудно выбрать правильную систему защиты от перепадов напряжения, не зная их природу и характер. При этом все они имеют природный или техногенный характер:

    1. Зачастую напряжение в сети становится стабильно низким. Причина – перегрузка устаревшей линии электропередачи (ЛЭП), например, в результате массового подключения электронагревателей или кондиционеров в соответствующий сезон.
    2. В этих же условиях напряжение может оказаться завышенным длительное время при недостаточной нагрузке.
    3. Возможна ситуация, когда при стабильном общем уровне питания в линии электроснабжения появляются импульсы и скачки высокого напряжения. Причиной бывает работа сварочного аппарата, мощного электроинструмента, технологического оборудования или некачественного контакта в ЛЭП.
    4. Довольно неприятной неожиданностью является обрыв нулевого провода в сети 380 В питающей подстанции. В результате различной нагрузки по трем фазам возникает перекос напряжения, то есть на Вашей линии оно окажется слишком низким или завышенным.
    5. Удар молнии в ЛЭП вызывает огромный скачок перенапряжения, что приводит к выходу из строя и бытовой техники, и внутренней проводки зданий, что приводит к пожару.

    Как защищают бытовую технику пробки и автоматы

    Долгое время в наших домах и квартирах универсальным средством обороны от перечисленных выше неприятностей оставались плавкие предохранители под названием пробки.

    На смену им пришли современные автоматические выключатели (автоматы), и бесшабашный народ перестал ставить «жучки», восстанавливая сгоревшие пробки.

    Сегодня во многих квартирах автоматические выключатели остаются практически единственным средством защиты от проблем в домашней электросети.

    Автоматические выключатели приходят на смену плавким предохранителям

    Во время работы автоматический выключатель срабатывает, когда протекающий через него ток превышает значение, указанное на его корпусе.

    Совет

    Это позволяет защитить электропроводку от перегрева, короткого замыкания и возгорания в случае перегрузки.

    При этом перенапряжение успевает вывести из строя электронику, а при коротком скачке автомат даже не сработает.

    Таким образом, мощный импульс, вызванный ударом молнии, проходит через автоматический выключатель и может пробить проводку с перечисленными последствиями.

    Зачем в домашней сети подключают УЗИП

    Специально для организации системы защиты от ударов молнии и возникающих при этом импульсов перенапряжения разработаны УЗИП – устройства защиты от импульсных помех. Отметим, что ЛЭП имеют определенные средства компенсации ударов молнии. Также в блоках питания современных электронных устройств имеются УЗИП класса III.

    Модульные УЗИП для монтажа в электрощите

    Однако этого недостаточно, если Вы живете в частном доме, запитанном от воздушной линии электропередачи.

    Методика выбора и подключения УЗИП приводится в статье «Устройство защиты от импульсных грозовых перенапряжений, схема подключения».

    В любом случае для защиты от молнии поможет громоотвод, о котором рассказано в статье «Как правильно сделать громоотвод и молниезащиту в частном доме своими руками».

    Функции УЗО в схеме электроснабжения дома

    В схеме электроснабжения современного дома обязательно присутствует УЗО – устройство защитного отключения. Его основное предназначение – защита людей от удара электрическим током, а также защита электропроводки от пробоя и утечки, что может привести к пожару. Методика выбора и подключения УЗО приводится в специальной статье.

    Однофазное и трехфазное УЗО

    Несомненно, если в Вашем доме еще не установлено УЗО, это нужно обязательно сделать. При этом от перепадов напряжения устройство защитного отключения спасает лишь в некоторой степени и косвенным образом.

    Защита электроприборов с помощью стабилизатора напряжения

    Электрический стабилизатор — это прибор, который поддерживает на выходе стабильное напряжение при его изменении на входе в допустимых пределах. Прибор может иметь различную мощность и обеспечивать стабильное электропитание всего дома, либо отдельных потребителей.

    Стабилизаторы напряжения различной мощности

    Стабилизатор прекрасно справляется с коррекцией медленно меняющегося пониженного или повышенного напряжения. В зависимости от принципа работы он компенсирует резкие скачки или импульсы перенапряжения в разной степени.

    В современных агрегатах имеется функция отключения подачи питания, когда его уровень в сети принимает предельные значения. После возвращения входного напряжения к допустимой величине электроснабжение восстанавливается.

    Из рассмотренных нами устройств стабилизатор является наиболее дорогим. Читайте статью «Как правильно выбрать бытовой стабилизатор напряжения 220в для дачи и частного дома».

    Альтернативный вариант — реле контроля напряжения в сети

    Бюджетной альтернативой стабилизатору является реле контроля напряжения, которое выполняет оговоренную нами функцию отключения электропитания при выходе напряжения в сети за допустимые пределы. В зависимости от исполнения, устройство срабатывает при перенапряжении, либо контролирует и его нижний уровень.

    Варианты модульных реле напряжения

    Существуют модификации реле, которые восстанавливают питание автоматически при его возвращении к допустимым пределам, или это нужно делать вручную.

    Наиболее совершенные устройства предоставляют возможность установки уровней напряжения, при которых наступает отключение потребителей и времени задержки при возвращении питания.

    Например, холодильник нельзя включать в сеть повторно в течение пяти минут, чтобы не повредить компрессор. Именно такое значение можно задать на реле.

    Реле напряжения ASV-3M после срабатывания необходимо включить вручную

    При этом реле не обеспечивает стабильное напряжение, не компенсирует импульсные скачки и не защищает от грозового перенапряжения.

    Иными словами, такой способ защиты подходит в ситуации, когда напряжение в сети нормальное, но возможны его редкие и значительные отклонения, в том числе, в результате аварии в сети электроснабжения.

    Реле напряжения для маломощных потребителей

    Существуют варианты исполнения для защиты отдельных потребителей в виде удлинителя или моноблока с вилкой и розеткой. Эти устройства рассчитаны на ток нагрузки 6-16А. Аналогичные приборы в модульном исполнении монтируются на электрощите.

    Реле модульного типа может иметь на выходе переключающую группу контактов, нормально разомкнутые контакты, а также две отдельные группы нормально разомкнутых или нормально замкнутых контактов. Это позволяет реализовать разные варианты управления питанием потребителей.

    Монтажная схема подключения реле напряжения в сети 220В

    Электромонтаж реле напряжения модульного типа можно выполнить по вышеприведенной иллюстрации. В любом случае устройство подключается после входного автомата. Нулевой провод подсоединяется к клемме N, а провода фазы — к нормально разомкнутым контактам реле.

    Для защиты более дорогого устройства его номинальный рабочий ток выбирается на ступень выше, чем значение, указанное на корпусе входного автомата. Например, если перед реле установлен автомат на 40А, выбирают прибор с номинальным значением 50А.

    Если устройство с необходимым значением рабочего тока отсутствует, либо стоит слишком дорого, его можно заменить реле напряжения с минимальным параметром нагрузки. При этом к его выходу подключается контактор необходимой мощности или пускатель, который подает напряжение на потребители.

    Схема подключения реле напряжения с применением контактора

    Электромонтаж реле напряжения в паре с контактором приведен на схеме. В данном примере собственно реле напряжения подключается также после входного автомата, счетчика и УЗО.

    Провод фазы с выходного контакта реле подключается к клемме управляющей обмотки контактора, а к ее второй клемме подсоединяется нулевой провод (выступающая часть корпуса).

    Обратите внимание

    На выходные клеммы контактора (дальняя часть корпуса) сверху подаются фаза питания и ноль, а снизу подключаются провода фазы и нуля потребителей.

    При наличии нормального уровня напряжения в сети реле контроля замыкает выходные контакты и подает питание на обмотку контактора. Он, в свою очередь, замыкает выходные контакты и подает питание потребителям. При отсутствии напряжения в сети или выходе его за допустимые пределы цепи последовательно разрываются и питание нагрузки отключается.

    Схема подключения нескольких реле напряжения в однофазной сети

    В ряде случаев удобно использовать несколько реле напряжения для разных типов потребителей. При этом для наиболее дорогих электронных потребителей, как, например, компьютеры, можно задать с помощью соответствующего реле допустимый диапазон входного питания в пределах 200-230В.

    Бытовым электроприборам с электродвигателями, как, например, холодильник или стиральная машина, можно установить диапазон напряжения 185-235В. Потребители типа утюга, обогревателя или водонагревателя могут питаться напряжением 175-245В. Внутренние таймеры реле можно настроить на разное время задержки возобновления питания.

    Как работает реле контроля фаз в сети 380В

    В сети 380В может быть установлено трехфазное реле напряжения. Это имеет смысл, если в доме имеется оборудование с трехфазным питанием.

    Подключение реле напряжения в сети 380В

    В этом случае реле срабатывает при отклонении напряжения на любой фазе и отключает нагрузку по всем трем линиям.

    При отсутствии потребителей с питанием 380В удобнее и дешевле подключить три отдельных реле напряжения.

    В этом случае мы получаем три группы потребителей 220В, для которых могут быть установлены различные предельные значения напряжения и время задержки.

    Схема подключения реле напряжения на каждой фазе в сети 380В

    От чего защищает ИПБ

    Основная задача источника бесперебойного питания (ИПБ) – обеспечение потребителей электроэнергией при отсутствии напряжения в сети. Наиболее часто этот прибор используют для питания компьютеров.

    Хотя ИПБ обеспечивает напряжение 220 вольт непродолжительное время, имеется возможность сохранить информацию и выключить компьютер.

    Актуально применение источника бесперебойного питания при использовании малогабаритной электростанции для беспрерывной подачи энергии в момент ее запуска.

    Распространенный источник бесперебойного питания

    Очевидно, что применение ИПБ функционально, если в сети электроснабжения дома установлено реле напряжения. При использовании аккумулятора достаточной емкости к источнику бесперебойного питания может быть подключен газовый котел. Аккумулятора на 60 АЧ хватит для обеспечения напряжением котла мощностью 160Вт примерно в течение суток.

    ИПБ с двойным преобразованием работает при изменении напряжения на входе в широких пределах, однако стоит очень дорого.

    Чем поможет сетевой фильтр

    Чаще всего бытовые сетевые фильтры выполнены в виде удлинителя. Таким образом, к нему может быть подключено сразу несколько единиц бытовой техники. Фильтры отличаются количеством розеток и длиной кабеля. Обычно устройство снабжается собственным выключателем с индикацией подачи питания. Фильтр может иметь индивидуальные выключатели питания для каждой розетки.

    Популярные сетевые фильтры

    Ряд моделей имеют защиту от короткого замыкания и перегрузки. Общий ток нагрузки устройств такого рода не превышает 6-16А.

    Собственно фильтр таких устройств состоит из нескольких конденсаторов и катушек индуктивности. Таким образом, обеспечивается защита электроники от маломощных и коротких импульсов помех.

    Последние могут создаваться, в том числе, бытовой техникой, подключенной в домашней сети.

    Заметим, что блоки питания большинства современных электронных приборов уже имеют аналогичные схемы в своем составе. Иными словами, подобные сетевые фильтры можно рассматривать как удлинители с дополнительной фильтрацией и сервисными возможностями.

    Система защиты от скачков напряжения своими руками

    Ознакомившись с вышеизложенной информацией, Вы сможете подобрать систему с защиты домашней сети от нестабильности напряжения разного рода. При этом важно правильно оценить характер угрозы.

    В зависимости от обстоятельств может быть обеспечена защита от скачков напряжения как всей сетевой проводки в доме, так и отдельных приборов.

    В статье «Как выбрать стабилизатор для защиты холодильника от перепадов и скачков напряжения 220в» мы рассказываем о том, как можно сделать импровизированный стабилизатор для холодильника своими руками.

    Пусть также Вам поможет в решении вопроса качественного энергоснабжения следующий видеоролик.

    Источник: https://SamoDelino.ru/elektrosnabzhenie/zashchita-ot-perenapryazheniya.html

    Защита сети 220 вольт от перенапряжения – как защитить электроприборы в вашем доме?

    Хотя подача электричества в квартиры и дома регулируется законодательством, жильцам не стоит полностью рассчитывать на то, что соответствующие службы обеспечат подачу электроэнергии нужного качества.

    Если из-за бросков сетевого напряжения дорогостоящие электроприборы выйдут из строя, получить компенсацию будет практически невозможно. А поскольку неполадки на электролиниях – не редкость, то стоит самостоятельно принять меры, которые помогут уберечь бытовую технику от поломки.

    Для этого нужна защита от перенапряжения, обеспечить которую можно, установив в сети соответствующий прибор – защитное реле, датчик с УЗО или стабилизатор напряжения.

    Допустимые параметры электроэнергии

    Номинал напряжения, обозначенный на всей бытовой электротехнике, составляет 220В, однако в реальной жизни это значение стабильно далеко не всегда.

    Это учитывается при изготовлении современных приборов, и они могут устойчиво работать при колебании напряжения от 209 до 231В, а также переносить разброс от 198 до 242В.

    Важно

    Если бы небольшие перепады разности потенциалов не были предусмотрены конструкцией бытовой техники, она ломалась бы постоянно. Более значительные отклонения приводят к перегрузке сети, и это снижает эксплуатационный ресурс аппаратуры.

    Чтобы сгладить колебания напряжения и обеспечить безопасность приборов, достаточно установить стабилизатор. Гораздо опаснее для электротехники перенапряжение (так называется резкий скачок разности потенциалов).

    Разновидности перенапряжений

    Перенапряжение может длиться как короткое, так и достаточно продолжительное время. Оно может быть вызвано ударом молнии во время грозы или коммутацией, возникшей из-за неполадок подстанции.

    Для защиты от них в сеть 220 или 380 Вольт (бытовую или промышленную) включается УЗИП (устройство защиты от импульсных перенапряжений).

    Его автоматическое срабатывание помогает обезопасить линию при воздействии, например, мощного грозового разряда, от которого не сможет спасти стабилизатор напряжения.

    Наглядно про УЗИП на видео:

    Удар молнии приводит к появлению мощного электромагнитного импульса, под влиянием которого в расположенных рядом с местом разряда проводниках возникают электрические потенциалы, и происходит резкий скачок напряжения. Длится он всего около 0,1 с, но величина разности потенциалов при этом составляет тысячи вольт.

    Понятно, что при поступлении такого напряжения в домашние и производственные сети последствия могут быть очень тяжелыми.

    Перенапряжение в результате коммутации

    Такое явление может произойти при включении в линию или выключении приборов, дающих высокую индуктивную нагрузку. К ним относятся блоки питания, электромоторы, а также мощные инструменты, запитывающиеся от сети.

    Этот эффект обусловлен законами коммутации. Моментальное изменение величины тока в соленоиде, а также разности потенциалов на конденсаторе произойти не может. Когда цепь с такой нагрузкой соединяется или размыкается, то в месте контакта отмечается появление вызванного самоиндукцией и коммутационными процессами электрического потенциала.

    Течение переходного процесса всегда сопровождается выбросом напряжения, которое обладает полярностью, обратной входному. Небольшая емкость проводников в сети вызывает резонанс, длящийся короткое время и вызывающий высокочастотные колебания. По завершении переходного процесса они затухают.

    Сколько продлится перенапряжение и какова будет его величина, зависит от следующих показателей:

    • Индуктивность нагрузки.
    • Моментальное значение разности потенциалов при коммутации.
    • Емкость подключающих электрических кабелей.
    • Реактивная мощность.

    Опасность перенапряжения

    Поскольку изоляция проводов рассчитана на величину напряжения, значительно превышающую номинал, пробоя чаще всего не случается.

    Если электроимпульс действует в течение незначительного времени, то напряжение на выходе блоков питания со стабилизатором не успевает возрасти до критического показателя.

    Это же касается и обычных лампочек – если резко возросшее напряжение быстро нормализуется, то спираль не успевает не только перегореть, но даже перегреться.

    Совет

    Если же изоляционный слой не выдерживает увеличившегося напряжения и происходит его пробой, то появляется электрическая дуга. В этом случае поток электронов проникает сквозь микротрещины, возникшие в изоляции, и идет через газы, которыми наполнены образовавшиеся мельчайшие пустоты.

    А большое количество тепла, выделяемое дугой, способствует расширению токопроводящего канала. В итоге нарастание тока происходит постепенно, и автомат защиты срабатывает с некоторым опозданием.

    И хотя оно занимает всего несколько мгновений, их оказывается вполне достаточно для выхода электропроводки из строя.

    Какими устройствами обеспечивается защита сети от перенапряжения?

    Схема защиты электрической линии от скачков напряжения может включать в себя:

    • Систему молниезащиты.
    • Стабилизатор напряжения.
    • Датчик повышенного напряжения (устанавливается вместе с УЗО).
    • Реле перенапряжения.

    Отдельно нужно сказать о блоках бесперебойного питания, через которые в домашних сетях чаще всего подключают компьютеры. Этот прибор не предназначен для защиты от перенапряжения в сети.

    Его функция заключается в другом: при внезапном отключении света он работает как аккумулятор, позволяя пользователю сохранить информацию и спокойно выключить ПК.

    Поэтому путать его со стабилизатором напряжения не следует.

    Принцип работы защитных устройств

    Для защиты от электроимпульсов, возникающих под действием молнии, устанавливается грозозащитный разрядник вместе с УЗИП. А обезопасить линию от потока электронов, параметры которого не соответствуют рабочим характеристикам сети, можно с помощью специальных датчиков, а также реле перенапряжения.

    Следует сказать, что как ДПН, так и реле по принципу действия и назначению отличаются от стабилизатора.

    Задача этих элементов состоит в том, чтобы прекратить подачу электроэнергии в случае превышения величиной перепада максимального порога, указанного в техническом паспорте средства защиты или выставленного регулятором.

    После нормализации параметров электрической линии происходит самостоятельное включение реле. ДПН для защиты линии следует устанавливать только в паре с устройством защитного отключения. Его задача заключается в том, чтобы при обнаружении неполадок вызвать утечку тока, под воздействием которой сработает УЗО.

    Наглядно про реле напряжения на видео:

    Недостаток такой схемы заключается в необходимости ее ручного включения после того, как напряжение придет в норму. В этом плане выгодно отличается стабилизатор напряжения.

    Это устройство предусматривает регулируемую временную задержку токоподачи, если происходит его срабатывание под воздействием чрезмерного напряжения.

    Стабилизатор часто используют для подключения кондиционеров и холодильных аппаратов.

    Длительные перенапряжения

    Продолжительные перенапряжения очень часто происходят из-за обрыва нулевого проводника. Неравномерность нагрузки на фазных жилах становится причиной перекоса фаз – смещения разности потенциалов к проводнику с самой большой нагрузкой.

    Иначе говоря, под воздействием неравномерного трехфазного электротока на нулевом кабеле, не имеющем заземления, начинает скапливаться напряжение. Ситуация не нормализуется до тех пор, пока повторная авария окончательно не выведет линию из строя или специалист не устранит неисправность.

    При обрыве нулевого провода в электророзетке будет происходить изменение напряжения в соответствии с нагрузкой, которую пользователи, не знающие о неполадках, будут подключать на различные фазы.

    Обратите внимание

    Пользоваться неисправной цепью практически невозможно, даже если в линию питания включен хороший стабилизатор.

    Дело в том, что сетевые параметры, регулярно выходящие за пределы стабилизации, приведут к тому, что прибор будет постоянно выключаться.

    Наглядно про обрыв ноля и что нужно при этом делать – на видео:

    Недостаток напряжения (провал)

    Это явление особенно хорошо знакомо людям, проживающим в деревнях и селах. Провалом (проседанием) называется падение величины напряжения ниже допустимого предела.

    Опасность проседаний заключается в том, что в конструкцию многих бытовых приборов входит несколько блоков электропитания, и недостаток напряжения приведет к тому, что один из них кратковременно выключится. Аппарат среагирует на это выдачей ошибки на дисплее и остановкой работы.

    Если речь идет об отопительном котле, а неисправность произошла в зимнее время, то дом останется без отопления. Избежать такой ситуации поможет подключение стабилизатора. Этот прибор, зафиксировав проседание, повысит величину напряжения до номинала. Стабилизатор может спасти ситуацию, даже если напряжение в сети упало по вине трансформаторной подстанции.

    Заключение

    В этой статье мы рассказали, для чего нужна защита от перенапряжения в сети, какими устройствами она обеспечивается и как правильно ими пользоваться. Приведенные рекомендации помогут читателям разобраться в причинах сбоя сетевого напряжения, а также выбрать и установить устройство для защиты электросети.

    Источник: https://YaElectrik.ru/jelektroshhitok/zashhita-ot-perenapryazheniya

    Защита от перенапряжения в частном доме

    Довольно часто происходят поломки электрической бытовой техники, ведь любой электротехнический агрегат при создании рассчитывается на работу с определенным уровнем электроэнергии, т.е. на конкретные показатели силы и напряжения тока в сетях подключения. Поэтому при превышении этих норм может случиться аварийная ситуация.

    Последствия перенапряжения в условиях частного дома

    Использование дорогостоящей домашней техники, агрессивные природно- атмосферные явления, не слишком высокий уровень прокладки линий электропередач делает жизненно необходимым для собственников квартир и домов принятие мер по защите от перенапряжения электросетей в частном доме и минимизации возможных последствий.

    Откуда возникает перенапряжение

    Планировка и строительство многих многоэтажек еще пару десятков лет назад производилась без прицела на сегодняшнее многообразие бытового электрооборудования: микроволновки, многокамерные холодильники, утюги высокой мощности и другие приборы, имеющие электрическое питание. Поэтому максимумы потребления электричества по утрам и вечерам пагубно влияют на работу всей электросети в любом жилище.

    Электричество, текущее по кабелю или проводу, неспособному выдерживать такую нагрузку, способствует их ненормальному нагреву в дневные часы и охлаждению в вечерние. В силу законов физики, проводник ослабевает, поскольку он делается то шире, то уже.

    Контакты в щитке на первых этажах или в едином вводно-распределяющем устройстве в доме заметно ослабевают. Также нулевые контакты могут отгореть, что приводит к перепаду напряжения от 110 до 360 вольт на всех этажах, выше этажа с перегоревшими контактами.

    Перенапряжение в электросети может произойти в результате попадания молниевого разряда в линию электропередач, подстанцию или элементы дома, при этом сила тока просто огромная, порядка 200 килоампер. При попадании в молниеприемник и дальнейшем прохождении молнии по контуру заземления в проводниковых материалах возникает электродвижущая сила, измеряемая в киловольтах.

    Также вызвать резкий скачок напряжения могут сварочные работы или одновременное включение многими соседями электроприборов или подключение/отключение мощного потребителя. Для защиты дорогостоящей электротехники и всего частного дома необходима защита от перенапряжения в сети.

    Особенности защиты домашней электропроводки

    Организация защиты от возникающего высокого напряжения – один из ключевых вопросов при прокладке электросети в жилом доме. Осуществляется она с помощью особых трансформаторов и фильтров сети. Во многих домах на этажных щитках устанавливаются автоматические выключатели, которые защищают от электротоков при коротком замыкании и временных перегрузок.

    Когда возможна высокая нагрузка, все устройства, защищающие сети от повышенного напряжения, должны иметь приспособления для автоотключения и выключатели, реагирующие на изменения показателей тока. Как правило, самая надежная защита от подобных скачков ставится на входном силовом проводе, поскольку именно он испытывает наибольшее воздействие во время пиков нагрузки.

    Схема защиты от перенапряжения домашней электросети бывает простой и многоуровневой.

    Важно

    Простая – представлена в основном реле перенапряжения в этажных щитках, а многоступенчатая (комбинированная, защищающая как от бытовых скачков напряжения, так и от импульсных, при грозах) – УЗИП, т.е.

    устройства защиты от импульсных перенапряжений. Такие устройства наиболее часто встречаются в частных домах.

    Устройство защиты от импульсного перенапряжения

    Обратите внимание! Электронные приборы выходят из строя как из-за повышенного, так и из-за пониженного напряжения в сети (например, холодильники тяжело запускаются, что негативно сказывается на их дальнейшей работе).

    Изоляционные слои домашних электросетей рассчитаны, как правило, на стандартные 220в, поэтому, если напряжение возрастает многократно, в диэлектрическом слое проскакивает искра, которая может спровоцировать электродугу и дальнейшее возгорание.

    Чтобы не допустить негативных последствий, применяют следующие защиты, функционирующие по таким принципам:

    • при резком внеплановом повышении напряжения происходит отключение электросхемы в доме или в квартире;
    • вывода полученного сверхнормативного электрического потенциала от электроприборов путем перевода его в земляной контур.

    Если напряжение поднимается незначительно (например, до 380 вольт), на помощь приходят различные стабилизаторы. Однако их защитные возможности довольно ограничены – они больше рассчитаны на поддержание заданных рабочих значений в электросетях.

    Стабилизаторы напряжения применяются для поддержания рабочих параметров электросети

    При проектировании защиты для частного дома рассматривают различные конструкционные решения и их технические характеристики.

    Необходимо учитывать принципы формирования базы ограничителей перенапряжения (опн). Например, газонаполненные разрядники после того, как импульс прошел, пропускают через себя т.н. сопровождающий ток, напряжение которого сопоставимо с коротким замыканием.

    По этой причине они сами могут быть источником возгорания, и их нельзя применять для защиты от электрического пробоя.

    Для домашних сетей чаще всего применяют варисторное устройство защиты (полупроводниковые резисторы) – реостаты, скомпанованные из варисторных «таблеток» из смеси оксидов цинка, висмута, кобальта и других.

    При штатном функционировании электросети такой автомат защиты допускает микроскопические утечки, а при проходе импульса повышенной вольтажности – способен мгновенно перестроиться на режим «туннеля» и «спустить» больше тысячи ампер за очень короткий промежуток времени, поскольку сопротивление на этом приспособлении снижается с возрастанием силы тока, после чего происходит быстрое возвращение к штатной «боевой готовности».

    Варисторные таблетки невелики по размеру

    Классы стойкости электропроводки

    Все электроприборы в бытовых зданиях разделяется по четырем основным категориям, в зависимости от максимально выдерживаемого перенапряжения:

    • IV категория – до 6 киловольт;
    • III категория – до 4 киловольт;
    • II категория – до 2,5 киловольт;
    • I категория – до 1,5 киловольт.

    Защита от взрыва электрического оборудования

    В соответствии с этими категориями выстраивается система защиты, которая сокращенно называется узо (устройство защитного отключения) с защитой от перенапряжения, в целях маркетинга их чаще всего называют ограничителями, используют и другие наименования. Ограничители монтируются по ходу движения возможного импульса.

    Так, на участке от вводного щитка идет 6-киловольтный импульс, в первой зоне он снижается ограничителем перенапряжения до 4 киловольт, в следующей зоне он падает до 2,5 киловольт, а в жилой зоне с помощью УЗИП III категории потенциал импульса снижают до 1,5 киловольт.

    Устройства защиты всех классов функционируют в комплексе, последовательно понижая потенциал до нормальных значений, с которыми легко справляется изоляция домашней электропроводки.

    Важно! При неисправности хотя бы одного из звеньев этой защитной цепочки может возникнуть электропробой в изоляции, что приведет к выходу конечного электроприбора из строя. Поэтому необходимо периодически проверять исправность каждого элемента устройств защитного отключения.

    Основные устройства системы защиты

    Статическое электричество и защита от него

    Один из лучших способов спасти электросеть от скачков напряжения – монтаж стабилизатора, подходящего по техническим характеристикам. Это недешевые устройства, и не всегда они используются, поскольку напряжение в сетях и так бывает достаточно стабильным.

    Также устранить нестабильность в работе сети помогают реле контроля напряжения. При обрыве нулевой жилы и замыкании в провисших кабелях такое реле способно включить защитные функции даже быстрее стабилизатора, нужно лишь 2-3 миллисекунды.

    Реле контроля напряжения помогает справиться с импульсами в сети

    Такие реле очень компактны – для монтажа они требуют меньше места, чем стабилизаторы, легко ставятся на простейшую din-рейку, кабеля подключаются элементарно (в отличие от монтажа стабилизаторов, когда вынужденно вклиниваются в электросеть или устанавливают особый короб для него). Стабилизаторы заметно гудят, поэтому в жилых помещениях их устанавливать нежелательно, а вот реле работают практически бесшумно. Кроме того, аппараты, контролирующие разность электрических потенциалов, потребляют очень мало электричества. Цена на такие реле в несколько раз ниже тех, что сложились на стабилизаторы.

    Принцип работы реле контроля состоит в том, что при постоянном поступлении электротока устройство определяет разность потенциалов и сравнивает ее с допустимыми значениями.

    Совет

    Если показатели в норме, ключи остаются открытыми, и ток продолжает течь по сети. Если же проходит мощный импульс, происходит моментальное закрытие ключей и отключение подачи электроэнергии потребителям.

    Такая быстрая и однозначная реакция помогает обезопасить все подключенные бытовые агрегаты.

    Дополнительная информация. Возвращение в штатный режим происходит с некоторой задержкой, регулируемой таймером. Это необходимо для того, чтобы крупные электроприборы, такие как холодильники, кондиционеры и другие, включились с соблюдением правил и технической настройкой.

    Подключение реле производится по фазному кабелю, при этом нуль-кабель включается во внутреннюю схему для питания энергией.

    Схема подключения реле контроля потенциалов

    Имеется два способа: сквозное подключение (по прямой) или с использованием прибора – контрактора для коммуникации. Оптимально подключать релейный механизм до подключения счетчика, чем обеспечится и его защита от перенапряжения. Однако, при наличии на приборе учета пломбы придется монтировать реле за ним.

    Импульсные перенапряжения в электросети частных домов возникают из-за грозы с молниями или коммутационных скачков. Для безопасности электропроводки применяются специальные устройства УЗИП.

    Как правило, это ограничители перенапряжений нелинейные (ОПН), стабилизаторы и реле контроля потенциалов.

    Конечно, обустройство такой системы – мероприятие затратное, однако его стоимость гораздо ниже дорогих электробытовых приборов.

    Видео

    Источник: https://amperof.ru/bezopasnost/zashhita-perenapryazheniya-chastnom-dome.html

    Реле контроля напряжения в трехфазной сети 380В

    Здравствуйте, уважаемые читатели сайта elektrik-sam.info!

    В этой публикации мы рассмотрим, как обезопаситься от перепадов и скачков напряжения в трехфазных электрических сетях 380В.

    О том, как влияют перепады напряжения на электропроводку и подключенные к ней приборы я уже подробно рассматривал. Напомню вкратце.

    Повышение напряжения выше допустимого приводит к выходу из строя бытовой техники – она просто сгорает.

    Снижение напряжения ниже допустимого уровня опасно для бытовой техники с электродвигателями, поскольку увеличиваются пусковые токи, что может привести к повреждению их обмоток.

    Поэтому, с целью защиты электропроводки и подключаемых к ней электроприборов, применяют реле контроля напряжения, которые также еще называют реле перенапряжения, «барьерами» или реле максимального и минимального напряжения.

    Эти реле осуществляют контроль действующего значения напряжения в электрической сети и, в случае выхода его за установленный диапазон, отключают внешнюю питающую электрическую сеть от внутренней сети, защищаю саму внутреннюю электропроводку и подключенные к ней электрические приборы.

    В этой статье мы рассмотрим две различные схемы и два различных варианта использования реле напряжения в трехфазных электрических сетях 380В на примере реле напряжения DigiTOP.

    Цель этой статьи – показать схематичное решение по защите от перепадов напряжения в трехфазных электрических сетях. Можно применять реле других производителей, принцип остается такой же.

    Подробно описание принципа работы самого реле напряжения и схемы я рассматривал в статье по реле напряжения в однофазных сетях. Подробную инструкцию на само реле вы можете скачать в интернете, здесь напомню вкратце, что реле имеет две уставки:

    — первая при превышении напряжением максимального значения, по умолчнию 250В;
    — вторая уставка при снижении напряжения ниже 170В (по умолчнию).

    Эти параметры выставляются на передней панели самого реле с помощью кнопок.

    При выходе напряжения за этот диапазон, реле размыкает свой силовой контакт и отключает внешнюю электрическую сеть от внутренней.

    Также можно задать время задержки на повторное подключение. После того, как реле отключилось, схематехника реле отслеживает значение напряжения, и когда оно снова возвращается в рабочий диапазон, спустя задержку времени реле снова замыкает свой силовой контакт и подключает внешнюю электрическую сеть к внутренней.

    В тех квартирах и домах, где электропроводка трехфазная, все равно в основном используются однофазные потребители – обычные бытовые приборы и техника.

    Потребители группируются по фазам, чтобы по возможности была равномерная нагрузка по каждой из фаз.

    Давайте рассмотрим все это на конкретном примере.

    Трехфазное напряжение подводится через вводной автоматический выключатель, трехфазный счетчик электрической энергии к электропроводке квартиры.

    Потребители сгруппированы по каждой из трех фаз следующим образом:

    — в первую фазу LA подключена электроплита;
    — во вторую фазу LB подключены кондиционер, стиральная машина и розетки одной из комнат;
    — в третью фазу LC подключены розетки кухни, розетки другой комнаты и освещение.

    Для того, чтобы при выходе напряжения за свои допустимые значения при срабатывании реле контроля напряжения не обесточивалась сразу вся квартира, вместо одного общего устанавливают три отдельных реле напряжения в каждую фазу.

    Если в одной из фаз напряжение выйдет за свой рабочий диапазон, сработает соответствующее реле и отключит внутреннюю проводку только в этой фазе. В оставшихся фазах, если величина напряжения находится в заданном диапазоне, потребители останутся подключенными и работоспособными.

    Подробно пошаговую работу этой схемы смотрите в видео внизу этой статьи.

    В случае подключения трехфазных потребителей применяется несколько другая схемотехника.

    Для этого применяют специальное трехфазное реле напряжения, которое позволяет контролировать напряжение в каждой отдельной фазе, последовательность чередования фаз и контроль перекоса фаз.

    Схема подключения в этом случае будет выглядеть следующим образом.

    К реле напряжения подключаются все три фазы и ноль, чтобы контроллер реле контролировал напряжение отдельно по каждой из фаз, правильность чередования фаз и контроль перекоса фаз.

    Через силовые контакты реле контроля напряжения подключен контактор К1. Один конец обмотки контактора подключен к нулевому проводу, второй через силовые контакты реле подключен к одной из фаз. На нашей схеме к фазе LA.

    Силовые нормально-разомкнутые контакты К1.1, К1.2, К1.3 контактора подключают внешнюю трехфазную электрическую сеть к трехфазной нагрузке. Это могут быть электродвигатели, мощные калориферы, проточные водонагреватели и др.

    Реле напряжения контролирует уровень действующих напряжений во всех трех фазах и, если они находятся в допуске, то через силовой контакт реле подается питание на контактор К1. Контакты контактора находятся в замкнутом состоянии и трехфазное напряжение внешней сети подается к нагрузке.

    Если в одной из фаз напряжение выходит за установленный диапазон, реле напряжения размыкает свой силовой контакт, снимая питание с обмотки контактора К1. Контакты контактора размыкаются, отключая нагрузку от внешней трехфазной сети.

    Когда напряжение вернется в свой рабочий диапазон, реле напряжения, спустя выдержку времени, вновь замкнет свой силовой контакт, подавая питание на обмотку контактора.

    Контакты контактора замкнутся и нагрузка снова подключится к питающей сети.

    Таким вот образом работает эта схема. В быту эта схема применяется редко, это больше промышленный вариант, чаще всего применяется первая схема.

    Более подробно пошагово смотрите работу этих схем в видео:

    Реле контроля напряжения. Защита от скачков напряжения в трехфазных сетях


    Рекомендую материалы по теме:

    Реле контроля напряжения. Защита от скачков напряжения.

    Схема подключения нескольких реле напряжения.

    Стабилизатор или реле напряжения — что выбрать?

    Автоматические выключатели УЗО дифавтоматы — руководство.

    Как выбирать автоматические выключатели, УЗО, дифавтоматы?

    УЗО — стратегия выбора.

    Автоматические выключатели — стратегия выбора.

    Автоматические выключатели — конструкция и принцип работы.

    Расчет сечения кабеля.

    Расчет сечения кабеля. Ошибки.

    Как рассчитать номинальный ток автоматического выключателя?

    Устройство УЗО и принцип действия.

    Как выбрать УЗО.

    Как защититься от перепадов напряжения

    Напряжение в электросетях редко составляет стабильное значение в 220 Вольт, чаще всего оно гуляет с допустимым значением в плюс или минус 10%. Бытовая и компьютерная техника справляется со значением 200 или 240 Вольт, но в случае возникновения, пусть даже и кратковременного скачка - техника с большой долей вероятности выйдет из строя.

    Оглавление

    1. Какие основные средства доступны для защиты техники от перепадов напряжения
    2. Защитное реле
    3. Понижающий и повышающий трансформатор
    4. Стабилизатор напряжения
    5. Устройство защиты многофункциональное
    6. Автоматические выключатели
    7. Сетевые фильтры
    8. Источники бесперебойного питания

    Что представляют из себя перепады напряжения и чем они опасны

    В первую очередь перепады напряжения возникают в типовых многоквартирных домах. Питание подводится через три фазы и с помощью распределительного щитка ток попадает в каждую квартиру через одну рабочую фазу и нулевой провод. Важно отметить, что «ноль» испытывает наибольшую нагрузку и что плохо - он у всех общий. Соответственно, когда жильцы включают много бытовых приборов одновременно - электросеть испытывает перегрузку. Частое явление - это перегорание нулевого провода у основания в щитке. Более того, в этот момент соседние квартиры становятся подключенными по фазе и напряжение способно подскочить до отметки в 380 Вольт, что неминуемо приведет к выходу из строя тех приборов, которые не имею достаточной защиты.  

    Причин, способных привести к такой ситуации много, но что характерно - они имеют общий источник. Подстанции, которые распределяют электроэнергию, зачастую давно морально и технически устарели, причем хоть оборудование и поддерживают в рабочем состоянии, но часто вопрос о его смене не стоял на протяжении десятилетий. Неизменно растет количестве бытовых электроприборов, и соответственно, возрастает нагрузка на подстанции. Учитывая тот факт, что и в момент их сооружения запас рассчитывался на норму 4,5 кВт - энергопотребление на то время и сейчас составляет существенную разницу.

    Состояние электропроводки тоже оставляет желать лучшего. Кроме того, известны ситуация с горе-ремонтниками, способными подключить к общей системе работающую электросварку, чем значительно повысят нагрузку на электросеть, отчего у других людей возникнет ситуация с перегрузкой на щитке. Хорошо, если в этом случае установлены защитные средства, но если их нет и была надежда на извечное «авось» - то ситуация с заменой сгоревшей бытовой техники и заметной брешью в бюджете крайне высока. К счастью, на рынке представлено большое количество самого разнообразного оборудования, призванного по возможности уберечь технику от перепадов напряжения.

    Какие основные средства доступны для защиты техники от перепадов напряжения

    Неподготовленному человеку сложно разобраться в типах устройств и их назначениях, поэтому перед покупкой важно изучить теорию, чтобы иметь представление о том, что же именно необходимо приобрести. Современные устройства делятся на несколько типов:

    • защитные реле,
    • понижающие трансформаторы,
    • повышающие трансформаторы,
    • стабилизаторы напряжения,
    • многофункциональные устройства защиты,
    • автоматические выключатели,
    • сетевые фильтры.

    Стоит подробнее рассмотреть назначение и возможности каждого устройства, чтобы хорошо представлять себе общую картину обеспечения защиты от перепадов напряжения.  

    Защитное реле

    Представляет собой автоматическое устройство, срабатывающее при воздействии на него перепадов напряжения в сети. Оно отключает электрическую цепь от сети в том случае, когда управляющий микроконтроллер регистрирует повышение показателей напряжения по сравнению с установленными нормированными. Нагрузка автоматически подключается обратно в цепь, когда показатели напряжения приходят в норму.

    Ее значение пользователь устанавливает самостоятельно, с помощью системы управления и в дальнейшем контроллер ориентируется именно на это значение. Поскольку реле не способно выдерживать нагрузки свыше 8 кВт, в то время как показатели для квартир порой достигают и 25 кВт, защитное реле используют в паре с автоматическим выключателем, который и служит основной защитой.

    Хорошим примером такого устройства является реле VP-16AN от производителя DigiTop, которое по сути, представляет собой индивидуальный переходник, способный предохранить напрямую подключенный к нему электроприбор от короткого замыкания и перегрузки. Стоимость такого устройства находится на уровне $12

    Понижающий и повышающий трансформатор

    Основное назначение трансформаторов, представляющих собой статические преобразователи электрической энергии, состоит в изменении напряжения переменного тока. Данные устройства работают при условии переменного напряжения и имеют несколько индуктивных обмоток, связанных друг с другом. В зависимости от соотношения напряжения тока трансформаторы делят на повышающие и понижающие:

    • В повышающем первичная обмотка характеризуется низким напряжением и меньшим количеством витков, а вторичная наоборот, высоким. Как соответствует из названия, данный прибор повышает напряжение и применяется для передачи электроэнергии на значительные расстояния.
    • В понижающем наоборот, первичная обмотка демонстрирует высокое напряжение и большее количество витков, а вторичная низкое. Трансформаторы такого типа служат для распределения поступающей электроэнергии потребителям.

    Что характерно, трансформатор любого типа используют как понижающий, так и повышающий, когда их запускают, подав напряжение в обратную сторону. В таком случае понижающий станет повышающим, и наоборот.

    По своей конструкции трансформаторы делятся на два типа:

    • масляные,
    • сухие.

    Первая разновидность располагает баком, в котором находится трансформаторное масло. Оно служит хорошим изолятором и одновременно охлаждающим веществом для магнитопровода с обмотками. Как правило, именно такие типы чаще используют на подстанциях.

    Сухие трансформаторы имеют пассивное воздушное охлаждение и устанавливаются в жилых помещениях и на промышленных объектах. Охлаждение воздухом позволяет избежать проблемы, связанной с нарушением герметичности масляного бака, но этот способ менее эффективен.

    Если говорить грубо, то понижающий трансформатор необходим для того, чтобы в дом приходило 220 Вольт, с учетом погрешности. Недопустимо подавать потребителю сразу высокое напряжение от подстанции, и поэтому для этих целей и служит трансформатор.

    Понижающие трансформаторы для бытовых целей не отличаются высокой ценой. Стоимость модели ЯТП-025, способной понижать входное значение с 220 до 12 вольт составляет $30, модель, способная понизить входящие 380 до 220 обойдется дороже, в среднем от $130

    Стабилизатор напряжения

    Это устройство предназначено поддерживать определенный уровень напряжения на выходе. Работа стабилизатора позволяет защитить оборудование от нестабильной подачи электроэнергии и помех, а также сбоев в сети.

    Подобное оборудование применяют, когда есть смысл защитить бытовые электроприборы и компьютерную технику от перепадов и скачков напряжения. В случае их возникновения стабилизатор отключит внутреннюю сеть и подключенные к ней приборы до тех пор, пока значение напряжения не придет в норму.

    Применение стабилизаторов позволяет получить определенные преимущества:

    • защита от скачков и перепадов напряжения,
    • устранение электромагнитных помех,
    • защита от короткого замыкания,
    • защита телефонных линий от разрывов и шумов на линии,
    • более низкая цена по сравнению с другим защитным оборудованием.

    Современные стабилизаторы переменного напряжения, которые применяются в быту, условно делятся на следующие разновидности:

    • механические с сервоприводом,
    • электронные,
    • релейные,
    • гибридные,
    • компенсационные,

    Модели производят в двух вариантах исполнения: однофазные и трехфазные, мощность самая разнообразная - от сотни ватт до нескольких мегаватт. Важной отличительной чертой качественного стабилизатора станет его быстродействие на изменение уровня напряжения. Как правило, реагирование происходит в течении нескольких милисекунд. Второй немаловажный фактор работы стабилизатора - это его точность выходного напряжение. Значение не должно колебаться в пределах более, чем 10% от номинального значения.

    Оптимальны в выборе модели стабилизаторов, способные выдерживать десятикратные перегрузки, и для которых нет нужды рассчитывать запас мощности.

    Устройство защиты многофункциональное

    В первую очередь это устройство предназначено для отключения оборудования в том случае, когда сетевое напряжение вышло за допустимые значения минимального показателя в 160 В или максимального в 280. Устройство состоит из объединенных между собой магнитного реле и контроля напряжения. К ним подключен и защитный варистор, который при возникновении высоковольтных импульсов в сети шунтирует их до установленного безопасного значения. Особенностью этого устройства является режим работы и действия, которые производит прибор:

    • В случае повышения напряжения и выхода за допустимые пределы происходит отключение от питания. Одновременно с этим запускается таймер, который отсчитывает время повторного включения. В том случае, если во время ожидания произойдет еще один скачок - то таймер обнуляется и отсчет начинается заново.
    • В случае наличия пониженного питания устройство защиты начинает отсчет задержки отключения. В том случае, если по истечению срока времени уровень напряжения не вернется в норму - произойдет отключение, если же снижение было кратковременным - то устройство продолжит контролировать уровень нагрузки.

    Подобное решение позволяет обеспечивать хорошую защиту от воздействия импульсов, а также контролировать качество напряжения, которое подается на подключенное оборудование.

    Важно помнить о том, что УЗМ не способно заменить собой другие средства защиты, поэтому его чаще используют в качестве комплексного решения проблемы.

    Автоматические выключатели

    Это одни из самых распространенных типов решений для обеспечения защиты квартиры или офисного помещения от перепадов напряжения. Выключатель, который еще называют «автоматом», контролирует силу тока в цепи, не допуская при этом появления сверхтоков, сила которых превышает допустимое для проводки значение. Как правило срабатывают при подключении превышающей норму нагрузки на сеть, либо же при коротком замыкании.

    Устройство срабатывает благодаря используемому в его конструкции расцепителей, которые бывают двух видов:

    • тепловые,
    • электромагнитные.

    Тепловые состоят из биметаллической пластины, четко реагирующая на изменение протекающего по ней тока. При излишнем нагреве пластина освобождает специальную пружину, которая и отключает автомат.

    Электромагнитная имеет такой же принцип действия, с той лишь разницей, что используется катушка с магнитным сердечником, который при превышении нагрузки освобождает пружину.

    Оптимальнее всего использовать автоматы в комбинации с устройством защитного отключения, контролирующие при этом и ток утечки. УЗО так же находится под защитой автомата и всегда устанавливается после защитного выключателя. Подобный сочетание носит название дифференциального автомата. Выгода от установки устройства состоит в более простой схеме монтажа и экономии места в распределительном щитке.

    Сетевые фильтры

    Эти устройства представляет собой удлинитель с большим количеством розеток и кнопкой включения. По сути, чаще используется как удлинитель и место для подключения персонального компьютера. Благодаря наличию варистора сетевой фильтр способен обеспечить защиту включенного в него электрооборудования и подавляет высокочастотные помехи.

    В случае появления высокочастотного импульса сопротивление варистора падает, благодаря чему излишки электрического импульса преобразуются в тепловые. Подобное решение позволит обеспечить дополнительную защиту для оборудования, но не стоит слишком полагаться на сетевой фильтр. Его приобретение целесообразно в первую очередь как удлинителя, для обеспечение безопасности оборудования необходимо обратить внимание на полноценные устройства защиты.

    Источники бесперебойного питания

    Подобные приборы используются в первую очередь для тех устройств, внезапное отключения питания на которых, способно нанести вред выполняемым операциям, то есть, к компьютерам. Это оборудование призвано обеспечить бесперебойное питание, в то время как благодаря встроенному аккумулятору они способны обеспечить работы компьютера от одной минуту до нескольких часов.

    В первую очередь их приобретают для того, чтобы «выиграть время» при внезапном отключении электроэнергии, что позволит успеть сохранить все необходимые данные и выполняемые операции на компьютере. Внутреннее устройство бесперебойников аналогично стабилизаторам, разница видна лишь в наличии свинцового аккумулятора.   

    Тем не менее, специалисты рекомендуют покупку ИБП в случае необходимости сохранения данных, во всем остальном они уступают стабилизаторам. Главным недостатком большинства ИПБ является включение при пониженном напряжении и недостаточная чувствительность при повышенном. К тому же, устройство нельзя оставлять без присмотра, поэтому при прекращении работы за компьютером его тоже необходимо отключать. При этом цена на стабилизатор и бесперебойник одинаковой мощности имеет разницу в несколько раз в пользу первого - поэтому выбор очевиден. Для сохранения информации и безопасного отключения компьютера хватит и бюджетных моделей ценой от $45, время работы которых в среднем оценивается в 15 минут - что вполне достаточно для корректного завершения работы.

    причины, что делать и как избежать

    Скачок напряжения в электросети: причины, что делать и как избежать

    Каким должно быть нормальное напряжение в электросети?

    Согласно межгосударственного стандарта ГОСТ 29322-92 с 2003 года в России норма напряжения в промышленных электросетях домашнего пользования должна соответствовать 230 вольт.

    Однако реальное напряжение в электророзетках квартир или частных домов нередко существенно отличается от нормированного значения. Нередко случаются скачки напряжения в электросети, а приборы от скачков напряжения в электросети могут мгновенно перегорать. Как не допустить этого и куда обращаться рассмотрим в этой статье.

    Если вы хотите узнать, как решить именно Вашу проблему — обращайтесь в форму онлайн-консультанта справа. Это быстро и бесплатно !

    Причины возникновения скачков напряжения в сети

    1. Самая распространенная причина скачков напряжения в электросети — переходные процессы, которые появляются каждый раз, когда к сети подключается или отключается потребитель. Чем большей мощности коммутируется электроустановка, тем сильней амплитуда скачка напряжения в сети. Примеры: сосед подключил самодельный «сварочник». Напряжение в сети падает, особенно, когда он начинает сварку. А если одновременно выключить в половине многоквартирного дома все электронагревательные приборы, то получим скачок напряжения в электросети в сторону увеличения.
    2. Следующая по распространенности причина — обрыв или выгорание нулевого провода. Происходит этот дефект из-за аварийной ситуации на линиях электропередач или при низком качестве монтажа систем электроснабжения жилых домов. При такой неисправности возможно повышение напряжения вплоть до 380 вольт из-за неравномерного распределения нагрузок на разные фазы в электросети.
    3. Другой причиной изменения стандартного напряжения в сети являются ошибки монтажа при производстве ремонта. В случае если нерадивый электрик подключит фазу сети на нулевой проводник, то вместо 220 вольт в розетках будет 380.
    4. Единственной природной причиной перенапряжения в сети является разряд молнии. В таком случае величина перепада зависит от близости удара.

    Опасность повышенного напряжения сети очевидна — выходят из строя, не выдерживают электроприборы, начиная с дешевых ламп накаливания, заканчивая дорогими компьютерами и телевизорами.
    А в чем же опасность пониженного напряжения?

    Защита электросети от скачков напряжения: как предотвратить скачки напряжения и возможный ущерб от них

    Как избежать скачков напряжения в сети? К счастью, существуют как технические, так и организационные меры, позволяющие защитить электросети от скачков напряжения.
    К техническим мерам можно отнести:

    • Использование стабилизатора напряжения сети. Это устройство позволяет компенсировать скачки в ту или иную сторону. Лучшие модели выдают стабильное напряжение 220 вольт(± 5%) даже при перепадах в сети от 140 до 260 вольт.
    • Установку реле, отключающего приборы от сети при предельных изменениях напряжения. Такие реле обезопасят бытовые электроустановки от выхода из строя. При стабилизации сети, реле возобновляет питание подключенных устройств.
    • Установку источников бесперебойного питания (ИБП). Такая мера позволит сохранить исправность бытовой техники даже при полном кратковременном пропадании напряжения. В ИБП применяются встроенные аккумуляторные батареи, которые и осуществляют электроснабжение при пропадании сетевого. Применяются в основном для работы с компьютерной техникой. Такие приборы защитят и от пониженного напряжения и от скачков электросети.
    • Устройство надежной грозозащиты жилых зданий.

    К организационным мерам относятся:

    • выключение приборов перед ремонтными и электромонтажными работами и включение в сеть только после проверки выходного напряжения
    • выключение особо чувствительных устройств из розетки при грозовой опасности

    К сожалению, не всегда удается своевременно предохранить свою технику от неполадок в сети.

    Можно ли возместить ущерб, причиненный в результате скачка напряжения?

    Что же делать при скачках напряжения в электросети и можно ли возместить ущерб испорченной бытовой техники? Это возможно, примерный порядок действий следующий:

    1. Определите, кто является виновником нанесения ущерба. Как правило, это одна из двух организаций:
      • электроснабжающая компания;
      • компания, осуществляющая обслуживание электросетей дома.
      Для выполнения этого пункта необходимо написать заявление в обе организации и потребовать ответа с указанием причин сетевых неполадок. На представление ответа у организации есть 30 дней.
      Для определения причин ущерба, компаниями могут создаваться специальные комиссии или привлекаться сторонние эксперты, которые проведут обследование состояния сетей электроснабжения и вышедшей из строя техники. Один экземпляр или копия акта обследования направляется заявителю.
    2. Отнесите испортившуюся бытовую технику в сервисный центр и запросите заключение о причинах неисправности и возможной стоимости ремонта. Можно провести оценку ущерба экспертом. Стоимость этой услуги необходимо впоследствии включить в исковое заявление.
    3. Направьте виновнику ущерба письменное обращение с требованием возместить ущерб. К обращению приложите копии экспертных заключений, актов обследования.
    4. Если виновная организация (или конкретное лицо) ответила отказом, или вообще не отреагировала на обращение в течение 30-дневного срока, то следующим шагом становится обращение в суд с исковым заявлением на основании статьи 17 ФЗ «О защите прав потребителей». Другой вариант этого действия — обращение в прокуратуру с просьбой защиты нарушенных прав. В таком случае иск будет оформлять прокурор.

    Случается, что виновником причинения вреда становится конкретный человек (например, сосед), самостоятельно проводивший ремонт и нарушивший правила монтажа или эксплуатации электроустановок.

    Если виновником ущерба оказалась компания-поставщик электроэнергии, то в исковом заявлении указывается ссылка на статью 309, часть 1 статьи 539 ГК РФ, часть 1 статьи 547, статьи 4, 7 и 14 Федерального закона «О защите прав потребителей».

    Если виновник — компания, осуществляющая обслуживание инженерных сетей дома, то ссылайтесь на нарушение статей 309 ГК РФ, статей 4, 7 и 14 ФЗ «О защите прав потребителей», пунктов 49 и 51 «Правил предоставления коммунальных услуг гражданам», пункта 5.6 «Правил и норм технической эксплуатации жилищного фонда», пункта 7 «Правил содержания общего имущества в жилом многоквартирном доме».

    Подводя итог статьи, необходимо отметить, что проще заранее принять меры по защите домашнего оборудования от перепадов напряжения в сети, чем тратить время и нервы в судебных инстанциях.

    Почему происходят скачки напряжения и как от них защититься

    Скачки напряжения – одна из наиболее распространенных проблем, с которой сталкиваются жители квартир или частных домов в процессе эксплуатации электроприборов. Под понятием скачков напряжения подразумевают, как правило, кратковременные или импульсные изменения значения напряжения, как в сторону увеличения, так и в сторону уменьшения. В зависимости от причины перепады напряжения могут иметь различную частоту, амплитуду и общую продолжительность.

    В любом случае данное явление является ненормальным и стает вопрос о том, насколько это опасно для бытовых электроприборов и домашней электропроводки и как устранить возможные последствия данного явления. В данной статье рассмотрим подробно вопрос о том, почему происходят скачки напряжения и как от них защититься.

    Прежде всего, следует отметить, что каждый бытовой электроприбор рассчитан на нормальную работу при условии питания его от сети при напряжении, не выше и не ниже заданных производителем пределов. В случае возникновения скачков напряжения в электрической сети могут проявляться видимые признаки нарушения работы электроприборов, значительно снижается срок их службы, а если скачки напряжения сильные, то они могут сразу вывести из строя электроприборы, в особенности наиболее уязвимые к перепадам напряжения.

    Причины возникновения скачков напряжения и соответствующие способы решения данных проблем

    Если в быту возникла проблема перепадов напряжения, то в первую очередь необходимо определить причину данного явления и, по возможности, устранить ее.

    Для начала рассмотрим наиболее распространенную причину возникновения скачков напряжения – некачественное электроснабжение. Очень много электрических сетей в наше время находится в неудовлетворительном техническом состоянии, и требуют проведения модернизации или полной замены.

    Изношенность электрического оборудования, ухудшение эксплуатационных характеристик различных электротехнических материалов, как правило, приводят к нестабильной работе электрической сети, в частности возникновению скачков напряжения.

    Не исключены и ситуации, когда оборудование находится в нормальном техническом состоянии, но оно эксплуатируется в ненормальном режиме либо банально допускаются ошибки в процессе монтажа или обслуживания того или иного элемента оборудования электрической сети. Все это также может послужить причиной возникновения перепадов напряжения.

    Если скачки напряжения происходят постоянно, то для решения данной проблемы необходимо обратиться с соответствующим заявлением в организацию, с которой заключен договор об электроснабжении, так как некачественное электроснабжение – это одно из нарушений условий договора со стороны поставщика электроэнергии.

    Если проблема в электросетях, то соответственно проблема перепадов напряжения затрагивает всех жителей, питающихся от данного участка электрической сети. В таком случае коллективное заявление способствует более быстрому решению проблемы, нежели одиночное заявление.

    Отдельно следует упомянуть о скачках напряжения по причине нарушения целостности нулевого провода на линии электропередач. Если нулевой провод на каком-то участке линии электропередач имеет слабый пропадающий контакт, то у потребителей будут наблюдаться перепады напряжения, величина которых зависит от разницы нагрузку по фазам.

    В данном случае необходимо обратиться в организацию, осуществляющую эксплуатацию данных электрических сетей для поиска и устранения неисправности. При отсутствии должной защиты проводки электроприборы лучше отключить от сети, так как в любой момент может произойти обрыв нулевого провода и в сети будет или чрезмерно высокое либо слишком низкое напряжение, в зависимости от загруженности той или иной фазы.

    Для жителей частного сектора и домов, расположенных вблизи гаражных кооперативов актуальна проблема перепадов напряжения по причине эксплуатации другими потребителями электроприборов, которые оказывают существенное влияние на электрическую сеть. Как правило, это мощные сварочные аппараты, различные электродвигатели, характеризующиеся большими пусковыми токами. В процессе эксплуатации данных электроприборов в сети могут наблюдаться большие скачки напряжения. Для решения данной проблемы необходимо также обратиться в снабжающую организацию.

    Помимо внешних факторов, причиной появления перепадов напряжения может быть неудовлетворительное состояние домашней электропроводки. Скачки напряжения в данном случае могут возникнуть по разным причинам.

    Наиболее распространенная неисправность домашней электропроводки заключается в ослаблении контактного соединения проводников в распределительном щитке, распределительной коробке или непосредственно в месте подключения к розетке, выключателю или осветительному устройству. Также причина может быть во внутренней неисправности защитных аппаратов, установленных в домашнем распределительном щитке.

    В том случае, если причиной скачков напряжения является неисправность домашней проводки, необходимо произвести ревизию всей электропроводки – проверку контактных соединений по всей электропроводке, состояние защитных аппаратов и других элементов.

    Если не удается найти видимые дефекты, то не исключено, что причиной перепадов напряжения может быть излом жилы. Данная проблема актуальна, как правило, для электропроводок, проложенных проводом (кабелем) с алюминиевыми жилами. Очень часто происходит излом жил после замены различных элементов электропроводки, то есть непосредственно в местах подключения различных элементов. Обрыв провода может быть в любом месте участка электропроводки, поэтому удобнее и быстрее найти обрыв при помощи специальных приборов для поиска скрытой проводки, имеющие соответствующую функцию, например, дятел.

    Если есть подозрение, что есть неисправность в щитке учета, то в данном случае необходимо обратиться в энергосбытовую организацию, так как несанкционированное вскрытие щита учета влечет за собой большой штраф. В данном случае необходимо официально производить снятие пломбы и после устранения неисправности повторную опломбировку прибора учета.

    В том случае если перепады напряжения фиксируются не по всему дому, а лишь по характерным признакам ненормальной работы одного из бытовых электроприборов или осветительного устройства, то это свидетельствует о неисправности данных элементов.

    В данном случае необходимо удостовериться в том, что причина нестабильной работы электроприбора или светильника действительно не связана с неисправностью электропроводки или некачественного электроснабжения и отключить неисправный электроприбор от сети.

    Защита от скачков напряжения

    Перепады напряжения в быту могут быть незначительными и кратковременными, также возможно, что в данный момент одна из рассмотренных выше причин возникновения скачков напряжения была успешно устранена, но это не дает гарантии, что перепады не появятся вновь.

    Скачки напряжения могут быть в любую минуту – это не предсказуемое явление, причем один раз они могут быть незначительными, а другой раз они могут вывести из строя домашние электроприборы. Во избежание негативных последствий необходимо предусмотреть защиту электропроводки от скачков напряжения.

    Для защиты домашней электропроводки от перепадов напряжения используются специальные реле напряжения модульного типа, то есть которые устанавливаются в домашний распределительный щиток с другими защитными аппаратами. На реле напряжения устанавливаются границы минимального и максимального напряжений, а также время срабатывания реле.

    Данное защитное устройство устанавливают на вводе распределительного щитка, и в случае возникновения нежелательных скачков напряжения реле полностью обесточивает электропроводку, защитив тем самым электроприборы от повреждения.

    Если скачки напряжения в сети происходят достаточно часто, то постоянное срабатывание реле напряжения и соответственно полное обесточивание домашней электропроводки доставляет значительные неудобства. Если данную проблему не удалось решить обращением в снабжающую организацию, то решением данной проблемы будет установка стабилизатора напряжения.

    Стабилизатор напряжения осуществляет фильтрацию входного напряжения и на выходе для питания бытовых электроприборов выдает стабильное напряжение заданного значения. Но не стоит полагать, что стабилизатор способен справиться с любыми перепадами напряжения. Стабилизатор напряжения, как и любое электротехническое устройство, может нормально работать только в заданных пределах напряжения. Поэтому помимо данного устройства необходимо дополнительно установить реле напряжения или же выбирать такой тип стабилизатора, в котором данная функция предусмотрена.

    Стабилизатор напряжения может устанавливаться как на всю нагрузку на вводе электропроводки, так конкретно на каждый электроприбор или группу электроприборов. Например, для защиты компьютерной техники можно использовать небольшой стабилизатор напряжения соответствующей мощности или источник бесперебойного питания с функцией стабилизации напряжения.

    Грозовые перенапряжения и защита от них

    Отдельно следует выделить такое явление как грозовые перенапряжения. Если для защиты от внутренних перенапряжений, которые возникают в электрических сетях, достаточно установить реле напряжения, то в случае внешних, грозовых перенапряжений, данное защитное устройство не защитит домашнюю электропроводку. В случае попадания молнии в провод линии электропередач повредится не только само реле напряжения, но и домашняя электропроводка, а также эксплуатируемые в тот момент бытовые электроприборы.

    Для защиты от грозовых перенапряжений на воздушных линиях электропередач должны устанавливаться разрядники или ограничители перенапряжения нелинейные (ОПН). Но фактически на большинстве линий электропередач или вовсе отсутствуют данные защитные устройства или же их установлено недостаточное количество, что свидетельствует о том, что защита от грозовых перенапряжений отсутствует. Поэтому необходимо самостоятельно позаботиться о защите домашней электропроводки от данного негативного явления.

    Для этого в главный распределительный щиток на ввод домашней электропроводки необходимо установить модульный ограничитель перенапряжения. Данное защитное устройство имеет тот же принцип работы, что и полноразмерный ОНП, устанавливаемый на воздушных линиях электропередач, только он имеет компактные размеры, позволяющие установить его на DIN-рейку вместе с другими модульными защитными аппаратами.

    При установке модульного ограничителя перенапряжения необходимо учитывать, что он будет работать только лишь в том случае, если в домашней электропроводке есть рабочее заземление.

    Причины возникновения скачков напряжения и как с ними бороться?

    В резких перепадах напряжения бытовой сети может быть косвенно виновна компания, предоставляющая услуги электроснабжения, но и велика вероятность, что такие процессы вызваны форс-мажорными обстоятельствами. Вне зависимости то причин, последствия для бытовых электроприборов могут быть фатальными. Собранная информация поможет узнать, чем вызваны скачки напряжения, как обезопасить электроприборы, куда подавать жалобу и требование по возмещению ущерба.

    Определение термина

    Под данным понятием подразумевается резкие перепады сетевого напряжения, выходящие за пределы допустимых отклонений. Напомним, что согласно действующим нормам допустимые отклонения напряжения не должны превышать от номинала, а предельно допустимые — Собственно, параметры, характеризующие качественное напряжение указываются в договоре на предоставление услуг. При этом описание допустимых пределов не должно противоречить действующим нормам.

    Под данное определение попадает кратковременное перенапряжение и понижение напряжения, а также отклонения (длительностью более минуты) и колебания (продолжительность менее минуты). Под это описание также подходят импульсные перенапряжения, называемые бросками.

    Броски напряжения негативно отражаются на качестве напряжения

    Основные причины возникновения скачков напряжения в сети

    Есть много причин различного характера, вызывающие отклонения напряжения от нормы в сети частного дома или квартиры. Рассмотрим наиболее распространенные случаи:

    1. Увеличение или уменьшение тока нагрузки в системе электроснабжения. Причина кроется в одновременном подключении к сети мощных электроприборов (электрические печи, бойлеры, масляные обогреватели и т.д.). Наибольший пик нагрузки приходится на вечерние часы, особенно в холодное время года, следствием этого является понижение напряжения.
    2. Перегрузка трансформаторной подстанции может стать причиной нестабильной работы ее оборудования. Проблема заключается в том, что большинство узлов энергосистем проектировались и строились более 30-40 лет назад, соответственно, они были рассчитаны на более низкую нагрузку. Для исправления ситуации необходима модернизация оборудования проблемных узлов, а это требует серьезных финансовых вложений.
    3. Причинами кратковременных скачков напряжения также могут быть аварии на ЛЭП или кабельных магистралях. Это может быть связано как с общим состоянием линий, так и неблагоприятными погодными условиями.
    4. Резкий скачок напряжения происходит при обрыве нуля или плохом электрическом контакте нулевого проводника. В первом случае произойдет повышение напряжения вплоть до 380 Вольт, во втором, будут наблюдаться кратковременные скачки с 220 до 380 В.
    5. Проблемы с внутридомовой разводкой электросети. Причины могут быть связаны с использованием при некачественных материалов, неправильно выполненным монтажом или «старой» проводкой. В результате происходят скачки и колебания напряжения, сопровождаемые сильными импульсными помехами.
    6. Бросок напряжения возникает в тех случаях, когда на смежной линии системы электроснабжения подключен мощный потребитель, например промышленный объект. Известно, что в момент включения электродвигателей образуются сильные пусковые токи, это приводит к тому, что начинает «прыгать» напряжение. Причем установка специальных сетевых фильтров на таком объекте только частично исправляет ситуацию. Заметим, что совсем необязательно жить рядом с промышленным объектом, чтобы ощутить все эти прелести, подобный эффект может давать небольшая мастерская, торговый центр или любое общественное здание оборудованное мощной вентиляционной системой.
    7. К возникновению импульсных перенапряжений может привести попадание молнии в ВЛ. Напряжение импульса может измеряться в киловольтах. Попадание молнии в ЛЭП вызывает сильное перенапряжение сети

    Это гарантировано выведет из строя включенные в розетки электрические приборы, несмотря на краткосрочность импульса (порядка нескольких миллисекунд) броска. Большинство устройств, обеспечивающих защиту, просто не успеют сработать.

    1. Возникают скачки и по техногенным причинам, одна из них – обрыв сетевого провода трамвайной или троллейбусной контактной сети с последующим попаданием на ВЛ. Это приведет к тому, что превышение нормального напряжения в сети составит порядка нескольких сотен вольт. На практике встречались случаи, когда в результате такой аварии выгорали (в буквальном смысле) электроприборы в ближайшем доме.
    2. Возникают скачки также при работе сварочного оборудования. Такая проблема более характерна для сельской местности, поскольку в хозяйстве часто возникает потребность для ремонта с применением сварки, например, подварить петли на воротах. Нередко некоторые умельцы с целью сэкономить подключают сварочное оборудование на вход, минуя счетчик и устройства защиты. В результате при образовании дуги происходят скачки и броски электрического тока в линии, от которой также запитаны дома соседей.

    Мы назвали далеко не все причины, по которым образуются скачки входного напряжения, но приведенных примеров вполне достаточно, чтобы подвести итоги. Перепады и скачки могут быть вызваны:

    • Резким изменением нагрузки.
    • Авариями, вызванными воздействием стихии или имеющие техногенную природу.
    • Износом оборудования.
    • Отсутствием резерва мощности.

    В первых двух случаях доказать вину компании, предоставляющей услуги, будет проблематично, в последних двух можно рассчитывать на получение компенсации.

    Возможные последствия скачков напряжения

    Изменения напряжения, выходящие за установленные нормами рамки, потребителям электроэнергии грозят выходом из строя электроприборов. Напомним, что при 220 вольтах нижняя максимально допустимая граница – 198,0 В, верхняя – 242 В.

    Наибольшую опасность для домашних электроприборов представляют грозовые перенапряжения, поскольку величина импульса может достигать нескольких киловольт. Ниже представлен блок питания 40” телевизора после попадания разряда молнии в ВЛ, от которой был запитан частный дом. Ни реле напряжения, установленное на вводе, ни внутренняя защита и предохранители электронного устройства сработать не успели.

    Блок питания телевизора после попадание молнии в ЛЭП

    С большой вероятностью бытовая техника «сгорит», если перенапряжение вызвано обрывом нуля. В таких случаях напряжение начинает стремиться к 380,0 В (на практике обычно 300-320 В, но и этого достаточно для выхода приборов из строя).

    Броски меньшого уровня вызывают сбои в работе электронного оборудования, а также сокращают срок эксплуатации техники, оборудованной компрессорами или электродвигателями. На электронагревательные приборы незначительные перепады и скачки практически не оказывают серьезного влияния, исключение составляет оборудование с электронной системой управления.

    Способы защиты от скачков напряжения

    Поскольку нельзя полностью исключить вероятность импульсных скачков, перенапряжений или других видов отклонений от нормы сетевого напряжения, то необходимо найти способ обезопасить дорогостоящую технику. Нет необходимости «изобретать велосипед» поскольку имеются готовые решения. Кратко расскажем о каждом из них.

    Реле контроля напряжения

    Решить проблему перенапряжения или его проседания можно установив специальное реле напряжения. Данное защитное устройство (не путать с электронным УЗО) производит отключение электроэнергии, если напряжение на вводе выходит за рамки установленного диапазона.

    Реле напряжения СР-721М

    Восстановление питания происходит после нормализации ситуации. Данные приборы обеспечивают защиту, если произошел обрыв нулевого провода или на сетевые провода ВЛ попадает контактная линия городского электротранспорта. Против импульсных скачков, возникающих при близком грозовом разряде, реле напряжения практически бесполезны.

    Следует учитывать, что при защитном отключении пропадает сетевое напряжение, чтобы не ждать в темноте пока стабилизируется питание, рекомендуется обзавестись источником с бесперебойным питанием. Расскажем об особенностях такого решения.

    Источники бесперебойного питания

    По сути, эти устройства не являются средствами защиты, но используются совместно с таковыми для обеспечения аварийного электропитания. Обеспечивать весь дом бесперебойным питанием нецелесообразно, поскольку это будет очень дорогим решением. Но можно запитать участок электропроводки, например, линию освещения.

    Бытовые бесперебойники Makelsan

    При выборе ИБП необходимо учитывать суммарную мощность электроприборов, которые будут запитаны от него, и на основании этого выбирать прибор с соответствующим максимальным током. Подробно о выборе ИБП можно узнать из материалов нашего сайта.

    Стабилизаторы напряжения

    При плохом качестве электроэнергии (скачки, броски и т.д.), рекомендуется использовать специальные стабилизаторы напряжения. Эти устройства особенно эффективны при «проседании» электропитания на входе.

    Модельный ряд стабилизаторов Каскад

    Стабилизаторы отлично справляются с импульсными помехами, но малоэффективны против высокого уровня перенапряжения, поэтому их рекомендуется использовать совместно с реле напряжения.

    Защита от грозовых перенапряжений

    Обеспечить надежную защиту в данном случае могут только ограничители перенапряжения. Для частных домов, с питанием от ВЛ, установка ОПН необходима, в противном случае при грозе следует отключать от розеток все электроприборы.

    Ограничители перенапряжения

    ОПН эффективны только в качестве защиты от высоковольтных бросков, в остальных случаях они бесполезны.

    Как видите, идеальной защиты нет, поэтому необходимо остановиться на комплексном решении.

    Куда жаловаться и как компенсировать ущерб?

    Обращаться с жалобами, а также за компенсацией ущерба нужно в компанию, с которой заключен договор на предоставление услуг электроснабжения. Заметим, что быстрому рассмотрению способствует подача коллективных заявок, поэтому если инцидент коснулся соседей по улице или других жильцов многоквартирного дома рекомендуем самоорганизоваться и действовать совместными усилиями. Контактные данные поставщика услуг, указаны в договоре.

    Если при скачках напряжения сгорела бытовая техника, для получения компенсации необходимо действовать в следующем порядке:

    1. Необходимо обратиться в энергокомпанию, чтобы ее представители зафиксировали факт аварии и составили соответствующий акт.
    2. Пришедшую в негодность технику необходимо отнести в сервисный центр, для составления экспертизы, подтверждающий факт выхода приборов и указания причины.
    3. Пишется письмо-претензия поставщику электроэнергии, к письму прилагается копия акта о факте аварии и заключения экспертизы сервисного центра.
    4. Если компания отказывается возмещать убытки, то данный спор решается в районной судебной инстанции.

    12 причин появления скачков в сети

    Анализ различных причин возникновения скачков напряжения в сети. Рассматриваются аварийные и технологические причины, приводящие к резким скачкам напряжения

    Скачки напряжения. Определения и понятия

    Скачки напряжения

    Скачками напряжения в повседневной речи принято называть резкое (быстрое) значительное изменение значения напряжения. Как правило, под скачком напряжения понимается быстрое значительное увеличение напряжения. Юридически точного определения понятия «скачок напряжения» у нас не существует. Обычно юристы понимают под «скачком напряжения» отклонения качества поставляемой электроэнергии от требований нормативной документации.

    Как правило, в судебной практике речь идет о таких скачках напряжения, которые стали причиной нанесения ущерба.

    Четкого определения «скачка напряжения» в нормативной документации тоже не найти. Отраслевая нормативная документация различает следующие отклонения параметров электроснабжения от нормы: отклонения и колебания напряжения, перенапряжение.

    Отклонение напряжения

    «Отклонение напряжения» — это изменение амплитуды длительностью более 1 минуты. Различают нормально допустимое отклонение напряжения и предельно допустимое отклонение напряжения. При этом предельно допустимым является отклонение в 10% от номинального.

    Колебание напряжения

    «Колебание напряжения» — это изменение амплитуды длительностью менее 1 минуты. Различают нормально допустимое колебание напряжения и предельно допустимое колебание напряжения. При этом предельно допустимым является отклонение в 10% от номинального.

    Перенапряжение

    «Перенапряжение» — это значительное по амплитуде увеличение параметров тока. Перенапряжением считается повышение напряжения свыше 242 Вольт. Перенапряжение может проходить с длительностью и менее 1 секунды.

    Таким образом, объединяя нормативные определения скачка электрического напряжения и юридическое понимание этого понятия, можно сказать, что скачками могут называться как не очень большие, но длительные изменения значения напряжения, так и кратковременные, но значительные превышения этого параметра. Последние ещё могут называться «импульсными скачками».

    С точки зрения физики, важным является общая излишняя энергия, воздействующая на приборы — потребители тока. Именно эта энергия, вызванная скачком в сети, и приводит к нанесению ущерба подключенным электрическим приборам.

    Причины появления скачков напряжения

    Существует достаточное количество объективных и субъективных причин природного, аварийного и техногенного характера для появления скачков напряжения в электрических сетях. Ниже постараемся перечислить основные.

    1 причина появления «скачка напряжения» — одновременное отключение мощных бытовых приборов

    Причина появления скачка параметров тока кроется у нас дома. Сегодня современный дом очень насыщен мощными электрическими приборами. В домах со старой проводкой это очень опасно. Но и в новых домах часто бывает, что нагрузка не может быть рассчитана на использование очень мощных приборов по причине подключения всего нового дома к «старым электрическим сетям». На практике часто происходит следующее. В доме включаются несколько мощных электрических приборов, это приводит к падению параметров тока в сети. При резком отключении мощного прибора или нескольких мощных электрических приборов происходит резкий скачок.

    2 причина появления «скачка напряжения» — нестабильность в работе трансформаторной подстанции

    Большинство трансформаторных подстанций, осуществляющих электроснабжение в распределительных и транспортирующих сетях, было построено достаточно давно. Оборудование, установленное на этих подстанциях, имеет сегодня значительный износ. Кроме того, многие подстанции работают с большой перегрузкой ввиду увеличения потребления электроэнергии. В результате на подстанциях случаются сбои в работе оборудования, приводящие к возникновению скачков.

    3 причина появления «скачков напряжения» — аварии в передающих электрических сетях

    Сотни тысяч километров линий электропередач окутывают все города и поселки нашей страны. К каждому дому, к каждому участку подходит линия электроснабжения. Перефразировав известную фразу из популярного фильма, можно сказать, что без электричества сегодня и «не туда», «и не сюда». Линии электропередач построенные десятки лет назад, не молодеют и сегодня. А значит, вероятность обрывов и замыкания на линиях передач существует. Такие аварии могут спровоцировать большие скачки электрического напряжения.

    4 причина появления «скачков напряжения» — обрыв «нуля»

    Это, пожалуй, самый частый и опасный вид аварии, вызывающий очень большое перенапряжение. Ежегодно тысячи человек несут ущерб по причине примитивного «обрыва нуля». В случае обрыва «нуля» может произойти появление напряжения на контакте «ноль» во всех розетках дома. Это приводит к тому, что все электрические приборы, включенные в розетку, сгорают. При этом сгорают даже «выключенные» с помощью дистанционного пульта приборы. Причина банальная — ослабление контакта «ноль» в общем коммутационном щитке дома. При этом, если контакт не постоянный, то появляется, то пропадает, то возникают очень сильные скачки.

    5 причина появления «скачков напряжения» — ослабление заземления

    Заземление электрических приборов играет важную роль в обеспечении безопасности использования устройств. В случае нарушения изоляции электрических приборов, напряжение часто передается на корпус прибора. В этом случае «заземление» играет роль отвода этого аварийного тока. В случае ухудшения качества заземления вероятность появления скачков параметров тока существенно вырастает.

    6 причина появления «скачков напряжения» — значительная перегрузка сети

    Электрооборудование, смонтированное на электрических подстанциях, рассчитано на конкретное максимальное значение мощности подключаемой нагрузки. В настоящее время идет очень большой рост потребления электроэнергии в наших домах. Первая причина здесь — это строительство новых больших зданий на месте старых маленьких домиков. Вместо 10 квартир получается сразу 100 квартир в одном большом доме. Вторая причина — рост числа используемых мощных электрических приборов. Посмотрите на фасад современно многоквартирного дома, на нем 200 сплит-систем. А это дополнительно 400 кВт мощности. Плюс 100 микроволновых печей, плюс 100 электрических калориферов, плюс 100 стиральных машин, плюс 100 электрических нагревателей воды, набегает очень большая суммарная мощность дома. При этом подстанции испытывают значительные перегрузки, и скачки в таком районе города неизбежны.

    7 причина появления «скачков напряжения» — плохое качество монтажа и материалов электрической домовой разводки

    Если что-то не работает в электрической цепи, то нужно искать плохой контакт. Это первое правило электриков. Плохой контакт в розетке или в электрическом патроне может возникнуть из-за плохого монтажа этих устройств или по причине использования дешевых сплавов для контактных пластин этих приборов. Плохой контакт вызывает искрение. А искрение — это эпицентр появления скачков электрического напряжения и сильных импульсных помех. Было бы хорошо для исключения появления скачков напряжения не использовать розетки вовсе, но так не бывает. А значит, каждое включение или выключение мощного электрического прибора — это новый скачок напряжения в сети.

    8 причина появления «скачков напряжения» — включение промышленного оборудования в смежной сети электропередач

    Большие и систематические скачки напряжения в сети наблюдаются вблизи крупных промышленных объектов. Включение мощного электродвигателя порождает большие пусковые токи. Эти токи могут «вернуться» в электрическую сеть в виде большой реактивной нагрузки. И хотя на таком оборудовании должны устанавливаться специальные пускатели и дополнительные сетевые фильтры, порождения электрических скачков избежать нельзя. И вовсе не обязательно жить рядом с большим металлургическим заводом, чтобы получить неприятные электрические сюрпризы. Для порождения хорошего скачка напряжения будет достаточно соседства с насосной станцией, с мощным вентиляционным оборудованием, с автомобильной мастерской или с большим супермаркетом.

    9 причина появления «скачков напряжения» — «мерцающий эффект»

    Скачки напряжения могут иметь систематический характер. Возможной причиной таких скачков может быть некорректная работа регулирующего оборудования в электрических приборах. Регуляторы электрических приборов должны осуществлять включение и выключение прибора или его части для контроля определенных параметров. Пример самого простого регулятора — это регулятор температуры отопительного прибора или электрического утюга. При достижении нужной температуры элемента прибор должен отключится. Часто бывает, что регулятор срабатывает очень часто, это приводит к износу контактов коммутирующего устройства. Изношенные контакты начинают порождать скачки тока. В этом случае можно видеть на графике напряжения скачки периодического характера.

    10 причина появления «скачков напряжения» — попадание молнии в линии передач

    Самая эффектная и самая мощная причина, порождающая гигантские перенапряжения и скачки — это попадание молнии в линии электропередач. Я думаю, каждый человек видел, как молния попадает в линии электропередач и в металлические опоры линий передач. Нужно сказать, что история создания электрических приборов тесно связана с молнией. Первые опыты по использованию электричества проводились с энергией молнии. Современные системы электропередач имеют защиту от молнии, однако, полностью избежать появления больших импульсов в сети не удается. Мощные разряды молний порождают большое перенапряжение, которое распространяется вдоль линии передач и может дойти до конечного потребителя. И хотя импульс от удара молнии длиться сотые или тысячные доли секунды, но этой бешеной энергии в тысячи вольт достаточно для нанесения большого ущерба электрооборудованию.

    11 причина появления «скачков напряжения» — попадание высокого напряжения с линий трамвайных и троллейбусных контактных линий

    Ситуация, когда происходит обрыв контактной трамвайной или троллейбусной линии электропередач, случается в городе несколько раз в месяц. Причиной может быть сильный порыв ветра или выполнение строительных работ, падение дерева на линию передач. При этом один из проводов контактной линии может зацепить или полностью упасть на линии обычных электропередач. В этом случае в сети можно наблюдать скачки напряжения в сотни вольт. Бывают случаи, когда такая авария приводит к сгоранию всех электрических приборов в нескольких домах рядом с аварией. При этом, если не происходит защитного отключения, то перенапряжение может вызвать даже возгорание приборов.

    12 причина появления «скачков напряжения» — проведение сварочных работ

    Проведение сварочных работ с помощью электрической сварки всегда приводит к появлению больших скачков напряжения во всей сети. И если в городе такое явление редко, то в деревнях и поселках встречается с завидной постоянностью. Кто-то варит забор, кто-то выбрасывает холодильник, сгоревший от большого скачка напряжения. При этом часто сварочные аппараты подключают прямо на вход проводов в дом, то есть минуя все защиты. Каждая дуга сварки в этом случае порождает большой скачок параметров тока в сети.

    Таким образом, можно выделить несколько групп причин порождения скачков напряжения:

    • скачки напряжения порождаются по причине плохого качества оборудования и монтажа электрооборудования и электрической разводки;
    • скачки напряжения появляются по причине включения или выключения мощного оборудования или мощных электрических приборов;
    • скачок напряжения обусловлен природными факторами, ударами молнии, сильным ветром, наводнением;
    • скачки напряжения порождены нарушениями правил эксплуатации приборов и оборудования или недостаточного объема проведенных профилактических работ;
    • скачок электрического напряжения обусловлен нарушениями при проведении строительных и сварочных работ;
    • скачок напряжения появился из-за аварий техногенного характера.

    Как бороться со скачками напряжения в сети

    Важность защиты электрической сети и приборов в электрической сети от воздействия больших скачков напряжения трудно переоценить. Защита от скачков напряжения в электрической сети может строиться на применении специальных устройств для защиты от скачков напряжения, сетевых фильтров. Для защиты сети и потребителей от скачков могут использоваться и стабилизаторы напряжения со встроенной защитой от скачков напряжения. Устройства защиты от скачков напряжения могут монтироваться в коммутационные электрические шкафы или включаться непосредственно в розетку. Отдельным способом защиты от скачков является использование устройства защиты от скачков, монтируемых внутри электрического прибора.

    Как защитить свой дом от скачков напряжения, смотрите в разделах Защита от скачков напряжения и Стабилизаторы напряжения.

    Скачет напряжение в электросети: что делать

    Любой электроприбор имеет ограничения по параметрам напряжения питания. Исключение составляют разве что лампы накаливания: да и то, при превышении значения на 25% они перегорают. Некоторые производители сложной бытовой техники предусматривают защиту по входным цепям. Даже в паспортных данных можно увидеть параметры: от 100 до 240 вольт.

    Это не означает, что в процессе работы питающее напряжение может скакать от 150 до 230 вольт. Просто блок питания способен обеспечить работу бытового прибора любым входящим значением (в рамках установленного диапазона) при условии, что оно стабильно.

    Однако напряжение питания в электросети может быть стабильным только при условии равномерной генерации и такого-же равномерного потребления. Например, генерирующая система выдает мощность 10 кВт, и нагрузка соответствует этому значению. В реальности потребители подключаются к сети довольно хаотично, обеспечивая переменную нагрузку.

    • Для лучшего понимания ситуации разберемся с определениями. Скачок напряжения, это разговорная форма. Юридически существует понятие «отклонение от нормы». Так вот, допустимым считается отклонение значения напряжения не более 10% в любую сторону, и не более чем на 60 секунд. Кстати, производители электроприборов также ориентируются на эту норму, и закладывают подобные отклонения в параметры блоков питания.

    Почему происходят скачки напряжения в энергетической сети

    Обратимся к закону Ома (точнее к его следствиям). Мощность потребления исчисляется, как произведение величины силы тока на значение напряжения. Если генерирующее устройство имеет ограничение по мощности нагрузки, то при увеличении тока потребления, напряжение в линии пропорционально снижается. Аналогично происходит обратный процесс: если при фиксированной мощности генератора, снижается ток потребления, резко повышается напряжение в сети.

    Информация: Речь идет об исправной линии электропередач.

    Разумеется, генерирующие электроустановки проектируются таким образом, чтобы напряжение в сети автоматически стабилизировалось.

    Однако на практике, параметров стабилизирующих схем часто недостаточно.

    Еще одна причина, не связанная с неисправностью сети — перекос фаз. Как правило, все трансформаторные подстанции работают по трехфазной схеме 380 вольт. Возьмем, к примеру 90 квартирный многоэтажный дом. Питание помещений организуется следующему принципу: общая нейтраль, и по одной фазе 220 вольт на каждые 30 квартир.

    Если на одной из фаз пропадает нагрузка (обрыв линии, сработал автомат защиты, и прочее), на оставшихся вводах автоматически возрастет напряжение.

    Информация: Существует еще одно отклонение от параметров, изменение частоты переменного тока (штатно должно быть 50 Гц). Но это явление встречается реже.

    Причины техногенного характера

    1. В многоквартирных домах, особенно старой постройки, линии электросети сильно изношены, сечение может не соответствовать нормативам Правил устройства электроустановок (ПУЭ). Кроме того, имеют место факты несанкционированного ремонта, самостоятельной замены проводки, выполненной несертифицированными домашними «электриками». Контактные группы (клеммные колодки) испорчены коррозией, многочисленными подгораниями точек контакта. Возникают скрутки проводов из различных металлов, что приводит к электрохимической коррозии.При таком состоянии проводки, даже исправная и качественная трансформаторная подстанция не в состоянии обеспечить стабильные параметры при изменении тока нагрузки. Особенно заметны скачки напряжения в электросети в летний период (когда жители включают кондиционеры), и при наступлении темноты.
    2. Трансформаторные подстанции построены еще в прошлом веке. В результате изношенности, оборудование не в состоянии противодействовать перегрузкам по току, поэтому постоянно возникают серьезные просады напряжения. Часть таких трансформаторов конструктивно не имеют средств стабилизации.
    3. Наращивание дополнительных мощностей потребления на линейном уровне. Любая подстанция имеет резерв по мощности. Если он не задействован, то кратковременные перегрузки гасятся запасом по току, и напряжение остается стабильным. В результате неконтролируемой застройки, энергетики вынуждены подключать новые линии на существующие сети, полностью выбирая резерв. иногда, по причине коррумпированности представителей энергетических компаний, застройщику удается даже превысить лимит потребления.Как следствие — энергосети постоянно работают в режиме перегрузки, и малейшее увеличение потребляемой мощности неминуемо приводит к скачкам напряжения.
    4. Рост энергетической нагрузки в масштабах каждой квартиры (домовладения). Современный житель (особенно в городской среде) неизбежно увеличивает количество используемых электроприборов. В каждой комнате устанавливается телевизор, в квартирах имеются компьютеры, посудомоечные машины, мультиварки. Кондиционер уже давно входит в стандартное оснащение жилища. Разумеется, каждый персональный ввод электросети ограничен автоматом защиты. Но его максимальный показатель по току не рассчитан на постоянное потребление на грани срабатывания. Когда в каждой квартире сила тока близка к порогу срабатывания автомата, сети испытывают значительные перегрузки, и напряжение падает.
    5. Обрыв или потеря контакта на линии нейтрали. В этом случае напряжение не пропадает (как при однофазном подключении), а резко возрастает. Превышение может составить несколько сотен вольт: зафиксированы случаи, когда напряжение в аварийной сети достигает 400–500 вольт. Понятно, что при большой нагрузке эти перепады приводят к срабатыванию линейных средств защиты. А если потребление ниже среднего, выходит из строя бытовая техника. Возможен даже пожар.
    6. Самовольная коммутация электросетей на вводе. Некоторые недобросовестные жильцы используют в качестве нейтрали, системы водопровода или отопления, для обхода приборов учета электроэнергии. В этом случае возникает разброс линии фазы и нуля. Помимо опасности прикосновения к радиаторам отопления, такие художества приводят к скачкам напряжения в сети.
    7. Подключение промышленного оборудования к линиям бытового назначения. Довольно часто можно наблюдать, как при строительстве домовладения, или объекта торговли (ларька), бригада работает с мощной бетономешалкой или сварочным трансформатором, запитанным от обычного щитка питания. Разумеется, потребление в активном режиме порядка 5–10 кВт в одной точке, приводит к просадам напряжения на линии.
    8. Случается, что бытовая линия электропередач расположена в непосредственной близости от высоковольтных мачт, либо контактного провода троллейбусного или трамвайного маршрута. В этом случае возможен эффект наведенного напряжения.
    9. Нельзя забывать о природных факторах. Речь идет не только о непосредственном грозовом разряде прямо в линию электропередач (хотя и такое случается).Статика является серьезной проблемой не только при прохождении сквозь ЛЭП грозового фронта (даже без молний), но и во время так называемых суховеев.

    Как бороться со скачками напряжения

    Системные меры оставим на попечение энергетикам. В их прямую обязанность входит содержание генерирующих и линейных сетей в надлежащем состоянии. Задача потребителей фиксировать аномалии напряжения и незамедлительно сообщать в компанию, которой вы оплачиваете счета за электроэнергию. Если это не помогает, необходимо жаловаться в органы контроля и добиваться предоставления качественной услуги.

    От нас (потребителей) зависит правильность эксплуатации электроприборов. Разумеется, в первую очередь необходимо следить за состоянием внутренних сетей с «нашей» стороны прибора учета. Защитные автоматы (пробки) должны быть исправны, внутренняя проводка соответствовать нагрузке. Если у вас розеточная сеть выполнена на проводе сечением 1.5 мм², нельзя использовать на этой линии мощные электроприборы.

    Как защитить бытовую технику от скачков напряжения

    Если нет возможности локализовать скачки напряжения в электросети силами потребителя, что делать для сохранения имущества и здоровья? Придется потратить немного денег на закупку специального оборудования.

      Бытовые реле контроля напряжения (РКН). Один из экономных вариантов решения проблемы. С помощью РКН невозможно устранить отклонение от параметров в сети. Но вы сможете защитить свою технику от их пагубного влияния.

    Сразу оговоримся: это изделие не относится к основным средствам обеспечения электро-безопасности. РКН не заменит УЗО или защитный автомат. Потенциально, прибор убережет вас от возможного появления в сети высокого напряжения или пожара. Но от короткого замыкания или перегрева проводки, надо использовать профильные устройства.

    Система работает следующим образом: линия питания проходит через контакты реле, которые размыкаются по команде контроллера. Оператор устанавливает «коридор», чаще всего от 200 до 240 вольт. В этом диапазоне без проблем работают практически все бытовые электроприборы. Если входное напряжение выходит за рамки «коридора», реле прекращает подачу электроэнергии.

    Дополнительный параметр установки — время срабатывания. Это своеобразный компромисс между безопасностью и комфортом. Если реле будет срабатывать при малейшем признаке отклонения, прибор нанесет больше урона, чем пользы. Поэтому выставляется так называемое время задержки. Например, если отклонение от значения длится не более 10 секунд, ничего не происходит. То же самое относится к восстановлению параметра. Пока прибор не «убедится» в том, что напряжение стабилизировалось окончательно, контакты реле будут разомкнуты.

    Логика простая: лучше на полчаса выключить электроприборы, чем каждые 10–15 минут подавать и отключать питание.

    Преимущества: Абсолютная надежность. Даже если напряжение неожиданным образом подскочит до 1000 вольт, сгорит (физически) только РКН. Остальные приборы будут целы. Есть возможность настройки, постоянный контроль напряжения визуально (в каждом реле есть цифровое табло). Низкая стоимость.

    Недостатки: Ступенчатость срабатывания, нет возможности исправить параметры питания сети. Нет стабилизации: при затяжном просаде (или превышении) напряжения, придется принимать решение: или сидеть без света, или мучить электроприборы некачественным напряжением в сети.

    Тем не менее это устройство относится к самым популярным средствам защиты от скачков. Они удобно встраиваются в щитки питания, имея стандартный DIN формат.


    Стабилизаторы напряжения. Это принципиально иной подход к решению проблемы. Собственно, эти приборы не относятся к средствам защиты от скачков (в привычном понимании). Стабилизатор просто не допускает расхождения параметров напряжения на выходе, поэтому и защита не требуется. По сути, это персональная трансформаторная подстанция, расположенная на территории потребителя.Принцип работы достаточно простой. Имеется схема преобразования напряжения. Это может быть импульсный блок питания, либо классический трансформатор. Имеется заданное значение выходного напряжения. Для поддержания параметров, необходимо плавающее подключение к вторичной обмотке. Собственно, происходит переключение между витками. Поэтому, так же как у РКН, у стабилизатора тоже есть предел срабатывания. Например, нельзя сделать 220 вольт из 150. Равно, как и невозможно погасить скачок напряжения силами трансформатора, если на входе 380 вольт.Как работает система, на примере классического трансформатора: Все помнят ЛАТр (лабраторный трансформатор). Он конструктивно представлял собой тороид, где по вторичной обмотке перемещался ползунок для плавного регулирования напряжения.Контроль осуществлялся вручную, с помощью стрелочного вольтметра. Когда в вечернее время напряжение падало, можно было подкрутить ползунок, и выставить нормальное значение.Современные стабилизаторы работают по такому же принципу, только переключение между обмотками происходит с помощью блока управления. Трансформаторные схемы работают с реле, либо тиристорами (во втором случае не слышен лязг контактов).Схемы с импульсным блоком питания регулируют напряжение с помощью ШИМ контроллера. Это более гибкая система, но и стоимость существенно выше (а надежность напротив, хуже трансформаторных решений).

    Преимущества: Вы не отключаете технику для защиты от скачков напряжения, а поддерживаете его в пределах допуска. Это дает возможность нормально пользоваться электроэнергией при затяжных отклонениях.

    Недостатки: В первую очередь высокая стоимость. Цена стабилизатора для квартиры сопоставима с большим плазменным телевизором. Еще одна проблема — инерционность (за исключением ШИМ контроллеров). Защита от импульсных скачков отсутствует. После выхода из параметра, напряжение восстановится лишь через несколько секунд.

  • Блок бесперебойного питания. При соответствующей мощности, это идеальная защита от бросков напряжения. Питание осуществляется от аккумуляторных батарей, которые работают в режиме буферной подзарядки. То есть, пока параметры сети в норме, оборудование питается напрямую. Как только значение вышло за пределы нормы, мгновенно включается преобразователь на 220 вольт, электроприборы «не замечают» просада.Секрет в наличии достаточной емкости батарей, чтобы взять на себя нагрузку.Отсюда первый, и главный недостаток: высокая стоимость. Для поддержания правильных параметров сети на выходе, требуется хороший запас АКБ. Иначе их хватит всего на несколько минут.Преимущества очевидны: у вас полностью автономное питание (в смысле полной защиты от внешних проблем), но с ограниченным сроком действия. Поэтому при регулярном просаде напряжения, следует подумать об ином способе.Технически комплекс представляет собой преобразователь напряжения с чистым синусом, блок управления (контроль за входным напряжением), и комплект батарей. Преобразователь одновременно является зарядным устройством (когда напряжение в сети есть).
  • Решение проблемы скачков напряжения существует, стоимость вопроса зависит от поставленных задач и качества электроснабжения.

    Видео по теме

    Перепад напряжения: причины и способы решения

    Многим уже привелось ощутить на себе, а остальные слышали, что перепад напряжения – очень страшная вещь. Современная бытовая техника, напичканная электроникой «по самые уши», требует постоянного уровня питающего напряжения. В противном случае электроника беспощадно (к нашему кошельку :)) выходит из строя.

    В реальности напряжение в квартирах редко бывает стабильным на уровне 220 вольт. Чаще оно отклоняется туда-сюда (вверх-вниз) на какое-то неизвестное нам количество вольт. Благо законодательство разрешает это (ГОСТ позволяет отклонения по 10% вверх и вниз), т.е. напряжение от 200 до 240 вольт не считается не нормативным.

    Конечно, такие перепады напряжения в сети не приведут к массовому выходу из строя всей техники, НО! При пониженном напряжении привычные лампы накаливания потускнеют, электрочайник будет греться дольше (и это при нашей суматошной жизни, когда с утра ничего не успеваешь), а если вам не повезло и в доме есть телевизор-плазма, то он может попросту сгореть от снизившегося напряжения.

    С одной стороны государство разрешило энергетикам снабжать нас не очень качественной электрической энергией, а с другой стороны снимает с производителей бытовой техники ответственность за то, что выход техники из строя произошёл из-за повышенного (пониженного) напряжения питания.

    Вам будет отказано в гарантийном ремонте на законных основаниях, при диагностике нарушения уровня питания. Гарантия распространяется только на случаи эксплуатации при нормированном напряжении.

    Вывод: защита от перепадов напряжения только наша с вами головная боль. Государство не собирается нести ответственность за подачу электроэнергии через изношенные подстанции и старые алюминиевые провода.

    Причины перепадов напряжения

    Как же возникает перепад напряжения? Откуда эта напасть на нашу бытовую технику? В каждый многоквартирный жилой дом входит от подстанции 3 фазы. В квартиру, как правило, подаётся одна из них и общий нулевой провод.

    При пиковых нагрузках, когда все жильцы одновременно включают мощные электроприборы (утром или вечером после работы), единственный нулевой провод перегружается. И так как профилактика в большинстве электрощитов не проводится, перегруженность сети рано или поздно приводит к перегоранию нулевого проводника.

    После пропадания «нуля» квартиры оказываются подключены и к своей фазе, и к соседской. То есть вместо 220 вольт в квартирную проводку поступает 380!

    Как защититься от перепадов?

    А что же защита от перепадов напряжения? Что-то же стоит там, в лестничном щитке, – спросите вы. А ничего там для этого не стоит, – отвечу я. Там предусмотрены либо морально устаревшие «пробки» (если дом уже ветхий), либо автоматические выключатели, которые защищают квартирную проводку от перегрузок по току.

    Заметьте, что ключевые слова тут: «квартирную проводку». Знаете почему? Потому что забота об электроприборах – дело их хозяев. То есть наше с вами. Автоматический выключатель бережет проводку от токовой перегрузки, квартиру от пожара, а вот от повышенного или пониженного напряжения оберегать бытовую и дорогостоящую мультимедийную технику никто не обещал.

    Значит устройство защиты бытовой электрики от перепадов напряжения целиком наша забота, поэтому будем этим заниматься. А для этого необходимы знания. Разберёмся, какие в нашем распоряжении есть средства.

    Сетевые фильтры

    Самым доступным способом уберечь технику от скачков напряжения является подключение её к сети не через розетки, а с помощью специальных сетевых фильтров, которые внешне очень похожи на удлинители, но стоят существенно дороже…

    Дело во внутренней начинке фильтра. Настоящий сетевой фильтр содержит варистор, предохраняющий нагрузку от импульсных перенапряжений, которые, в свою очередь, возникают в сети от самых разных причин: от включения или выключения мощных потребителей электроэнергии до разряда молнии.

    В качественном фильтре есть и режектор, снижающий влияние высокочастотных помех, и электронный блок, защищающий от повышения напряжения, и обычная плавкая вставка от перегрузки по току (короткого замыкания).

    Стабилизаторы напряжения

    Защита от перепадов напряжения – основное занятие и для стабилизатора напряжения.

    Стоят стабилизаторы напряжения в разы дороже сетевых фильтров, но и функционал у них шире.

    Фильтр не может повысить или понизить напряжение. Только стабилизатор справится с такой задачей.

    Для подбора стабилизатора напряжения лучше всего позвонить в несколько специализированных интернет-магазинов и пообщаться со специалистами. Также рекомендуем заранее прочесть несколько статей по выбору стабилизаторов, а также отзывы потребителей на форумах.

    Источники бесперебойного питания

    Теперь перейдём к ещё одному способу защиты от отключения электроэнергии. Речь пойдет об источниках бесперебойного питания или сокращенно ИБП.

    Конечно, у них есть свои недостатки, но сейчас обратим своё внимание на то, что один из самых дорогих электронных приборов в каждом (где есть) доме – компьютер не может нормально работать без ИБП (за рубежом UPS). Как мне думается, это говорит о многом.

    Обеспечивая, как аккумулятор, бесперебойное снабжение потребителей высококачественной электроэнергией, отдельные ИБП могут выполнять и другие, весьма полезные, функции. Так, UPS может с успехом заменить стабилизатор, выравнивая и стабилизируя сетевое напряжение.

    Чаще всего, их используют как устройство защиты от перепадов напряжения при электроснабжении автоматики отопительных котлов. Имея небольшое электропотребление, котлы нуждаются в постоянном электропитании, для своей безопасной работы. Высокая надёжность, долгое время работы в отключенном от сети состоянии, бесшумность и лёгкость подключения – снискали ИБП большую популярность в этом сегменте.

    Скачки сетевого напряжения – как с этим бороться

    Перенапряжение в сети

    1. Начнем с того, что к электросети переменного тока подключены не только вы один (ваша квартира/дом), а множество таких же как вы потребителей и, что немаловажно, еще и многие промышленные потребители. Казалось бы, какое влияние может один дом оказать на электросеть? Безусловно незначительное влияние.

    Тут сделаем отступление на тему “А как вообще я влияю на сеть?”:

    Представьте, что вся сеть – это огромный накопитель/распределитель энергии(Мега LC фильтр).

    Итак Вы сидите дома, у Вас все приборы(вся бытовая техника) работает, в этот момент наш Мега LC-фильтр(с бесконечной, возможной подводимой мощностью) потребляет некий установившийся ток и распределяет его на множество потребителей. Все замечательно напряжение в сети 220В, и тут Вы выключаете всю свою технику – Вы мгновенно перестаете потреблять нужный Вам ток(нужную мощность), а Мега фильтр всё еще подпитывается установившейся мощностью, что происходит когда на конденсатор приходит больше энергии чем от него отбирается? – правильно на нем подскакивает напряжение.

    Итак, как мы уже убедились выше, каждый маломальский потребитель вносит в момент вкл/выкл оборудования (динамические переходные процессы) свой вклад в дисбаланс сетевого напряжения.

    А если одновременно с вами 1000 человек включат всю свою технику – тогда мы получаем некое перенапряжение, – но не стоит пугаться – оно все равно будет меньше допустимого ГОСТ-ом и все ваше оборудование продолжит работу в нормальном режиме.Другое дело, что если одновременно включит/выключит своё оборудование целый завод. Представляете какой скачок будет. Данный вариант возможен в районах, где вся инфраструктура завязана на один большой завод. Тогда возможно, что ваша техника сгорит.

    Не спешите это еще не все. описанное выше всего лишь одна из возможных причин перенапряжения.

  • Еще одна из причин бросков напряжения – это обрывы сетевого провода или КЗ. Представьте города А, Б, и В, потребляли равную мощность и тут на линию электра передачи(ЛЭП), шедшую к городу А, упало дерево – обрыв как результат – скачок напряжения в сети и люди из городов Б и В теряют аппаратуру.
  • Причина чисто Российского характера – выключили у вас в подъезде свет – вы позвонили в соответствующую тех. службу. Пришёл Вася электрик и щелкнул не тем тумблером, у вас в подъезде, подключив на фазу вместо 220В сеть 380В. Не надо смеяться, случай распространенный.
  • Последний, но не по значению, это скачки напряжения, вызванные грозовыми разрядами вблизи ЛЭП. Очень опасно – я настоятельно рекомендую, если у вас нет специального оборудовании для защиты от перенапряжений – выключать бытовую технику из сети во время грозы.
  • Кто ответит за потерянную аппаратуру?

    Как бороться с перенапряжениями в сети.

    1. Использование стабилизаторов напряжения – это идеальный вариант для тех, кто использует очень дорогостоящую аппаратуру. Вы подключаете сетевые провода к стабилизатору и уже с него снимаете качественное напряжение. Вариант очень хороший – имеется только один минус – это цена. Цену на хороший(качественный) стабилизатор можно рассчитать из соотношения 1 у.е. за 1 Вт … Конечно, если у вас большое количество аппаратуры, придется затратить круглую сумму, но зато уж после этого(при правильном выборе стабилизатора) можете быть спокойны – ваша техника надежно защищена.
    2. Если вы работаете с ценной информацией на компьютере или если отключения напряжения непозволительны(из-за сферы деятельности – например больница), тогда выбирайте источник бесперебойного питания (ИБП) – защитите оборудование от скачка напряжения, да еще и будете работать в тот момент, когда везде отключился свет.
      Минус всё тот же – еще дороже чем стабилизаторы.
    3. Реле ограничивающие напряжение – выпускаются на данный момент лишь на западе – пока нет ни одного сертифицированного в России – стоят не менее 100-200 у.е. Вариант пока мало применимый и все же достаточно дорогой для рядового пользователя.
    4. Использование параллельно УЗО и ДПН.
      УЗО – устройство защитного отключения, обеспечивает отключение помещения в сети в случае утечки тока (если человек взялся за оголенные провода 10-30мА или если произошло обгорание изоляции – 300мА). Данное устройство рекомендовано в г.Москва для установки во всех новостройках. Существуют 2 вида УЗО – так называемые электра – механические производятся только брэндами (например АВВ), основаны на точной механике – гарантируют спасение жизни человека при любом напряжении, отсюда их второе название – независящие от напряжения сети.

    Другой сильно распространенный в России тип УЗО – электронные. Делают такие устройства многие фирмы, но не стоит забывать, выбирая такое УЗО, что вы не гарантируете спасение жизни человека, если скажем напряжение в вашей сети значительно ниже номинального, отсюда второе название этих УЗО – зависящие от напряжения сети.

    Датчик превышения напряжения – устройство созданное специально для защиты от перенапряжения, сконструировано для совместной работы с любыми типами УЗО(на токи утечки 10-300 мА), как для однофазных, так и для трехфазных сетей. Принцип заключается в следующем: В случае, если в сети перенапряжение, ДПН дает команду УЗО на отключение электропитания от квартиры. Таким образом Ваша квартира обесточивается и сачок напряжения не вредит Вашей бытовой технике. Для восстановления электропитания просто сбросьте УЗО.

    Источники:
    http://electrik.info/main/electrodom/1211-skachki-napryazheniya-kak-zaschititsya.html
    http://www.asutpp.ru/skachki-naprjazhenija.html
    http://teplo.bast.ru/articles/skachki-napryazheniya-seti
    http://profazu.ru/elektrosnabzhenie/elektroset/skachki-napryazheniya-v-elektroseti-chto-delat.html
    http://staby.ru/page.php?page=perepad_napriazheniya
    http://best-stroy.ru/statya_skachki-setevogo-napryazheniya-kak-s-etim-borotsya_63

    Как подключить устройство защиты от перенапряжения для всего дома

    Обзор защиты от перенапряжения
    Скачок
    Кратковременный всплеск перенапряжения или нарушение в линии питания переменного тока, длительностью несколько миллисекунд или меньше.
    Скачок протекторы изнашиваются: устройства защиты от перенапряжения используются постоянно.
    Есть 3 типа всплесков:
    Разрушающий входит в электронику и вызывает неисправность логики и блокировку.
    Диссипативный повторяется, пульсирует короткой продолжительностью, вызывая преждевременное прекращение оборудование.
    Разрушительный это энергия высокого уровня, которая вызывает немедленный отказ оборудования.
    Устройства защиты от перенапряжения используются постоянно. Они изнашиваются.

    Скачок - это переходная волна напряжения или тока. Продолжительность не строго определен, но обычно составляет менее нескольких миллисекунд.
    Скачки вызваны статическим разрядом, переключением питания заказчиком или коммунальным предприятием, неисправности, емкостные и индуктивные нагрузки, молнии забастовки, фотоэлектрические системы
    и ветроэнергетика.
    '' большой скачки напряжения повреждают оборудование и другие компоненты в электрическом распределительная система.Небольшие скачки напряжения могут в совокупности повредить оборудование. и может вызвать срабатывание неприятного оборудования. Одно ограничение с помпажем конструкция защиты заключается в том, что нет отраслевого стандарта, описывающего каков приемлемый уровень защиты от перенапряжения для стандартных объектов или в жилых помещениях.
    Существует ограничение на величину напряжения. может быть передан на объект или в жилое помещение. Выше определенного уровня, высокое напряжение вызовет пробой в системе изоляции электрооборудование и проводники.Перекрытие может вызвать изоляцию повреждения, поражения электрическим током и пожара ''. Нет никакой защиты от этого кроме осветительных стержней, здания на более низкой высоте и вдали от тел воды.

    Скачок защита защитит:
    -защита от большинства, но не от всех ближайших молний удары за пределами 100 футов ... удары в воздухе и с земли.
    -защита от большинства скачков напряжения в сети, вызванных трансформатором энергокомпании Варианты
    -защищают от большинства скачков напряжения, вызванных ударами молнии в электросеть рядом... местный трансформатор имеет предохранитель / грозовой разрядник, отключения открываются, но скачок напряжения все еще может перейти на соседние провода.
    -защита от скачков напряжения, вызванных возобновлением подачи электроэнергии после отключения.
    Скачок защита НЕ защитит:
    -от молнии удары в пределах 100 футов: установить громоотвод: подключить все заземление провода и заземляющие стержни в единый массив для защиты от перенапряжения и защитить автоматические выключатели.
    -от под напряжением провода, превышающие допустимое значение перенапряжения
    - перегорели или низкое напряжение: установите фазовый монитор
    - могут не защитить домашние устройства от повторяющиеся перенапряжения, создаваемые оборудованием, таким как настольная пила или неисправный мотор и т. д.Выключатели света, двигатели и воспламенитель печи могут быть генераторы перенапряжения: проверить защиту от перенапряжения на предмет периодической замены
    Купить:
    Целом домашние сетевые фильтры на Amazon
    Разница между: всплеск, затухание, земля неисправность, линейный шум
    Скачок: слишком много электронов движется по проводу: Причина: неисправность сети, моторы, молнии и т. д. Результат: моторы, электроника, машины, таймеры, приборы и т. д. могут перестать работать или перегореть. Решение: установить сетевой фильтр, описанный на этой странице.
    Brownout: есть слишком мало электронов на проводе: пониженное напряжение для обычного дома как правило, напряжение ниже 85% от номинального. Результат: лампочки тусклый, электроника перестает работать до восстановления нормального питания, двигатели тормозить и перегревать. Чтобы защитить двигатели и систему отопления, вентиляции и кондиционирования воздуха от перебоев, поверните выключенный мощность. Установить фазовый монитор Также читайте про компрессор defender
    Phase флуктуации: слишком мало или слишком много электронов на одном проводе и а не другой провод (а). Результатом является несимметричное напряжение, которое приводит к тому, что двигатели насосы и HVAC для замедления, перегрева и сгорания.Для защиты двигателей и HVAC. Установить фазоиндикатор
    Заземление неисправность: электроны неконтролируемо устремляются на землю. Также называется короткий. Сработает автоматический выключатель. Высокий риск поражение электрическим током, если ваше тело - это путь, по которому следуют электроны. Земля провод, необходимый для всех электроустановок. Зачем нужен заземляющий провод. GFCI мгновенно отреагирует на замыкание на землю, намного быстрее, чем автоматический выключатель. Установите выключатели и розетки GFCI для более опасных зон: ванная комната, кухня, прачечная, на открытом воздухе и т. д.Узнайте больше о шумах линии GFCI
    : электроны ведут себя хаотично, а не движутся предсказуемо: скачок защита не предназначена для фильтрации линейных помех ... если только указано.
    Результат: Устройства и процессы воздействия линейного шума, которые требуется «чистая» электроэнергия. Производство микропроцессоров требует очень чистая электроэнергия. Сетевые фильтры уменьшают высокие частоты линия распространение шума на бытовые провода из-за использования копировального аппарата, дуги сварщик, диммер.
    В современных электронных устройствах есть фильтры, а в некоторых нет.Например, некоторые цифровые таймеры могут не иметь фильтра. Линейный шум будет искажаться программирование таймера, а скачок напряжения может полностью уничтожить функциональность таймера. Нажмите и удерживайте кнопку сброса, чтобы видишь ли, если функция возвращается.
    Купить по моей партнерской ссылке:
    Line шумовой фильтр
    Электрооборудование сноски:
    - Множественный всплеск протекторы на одной линии или в нескольких местах полезны, и защитит лучше по мере увеличения расстояния ... потому что скачок напряжения, такой как молния, может попасть в провода где угодно.
    -Несколько автоматических выключателей и предохранителей в одной линии или в нескольких локации защитят электрическую систему.
    -Все устройства должны быть заземлены, и все заземления должны быть соединены вместе в единый массив для поглощения скачков напряжения, защиты от поражения электрическим током и увеличить ожидаемый срок службы автоматического выключателя. Сюда входят заземляющие провода для электрическое, спутниковое ТВ, кабельное телевидение, интернет-телефония и т. д.
    -Множественные GFCI на одной линии вызовут отключение и неисправность.

    Защита электронного оборудования от импульсных перенапряжений

    Защита электронного оборудования от импульсных перенапряжений

    Введение

    Как правило, в силовых цепях есть компоненты с большой тепловой емкостью, что не позволяет им быстро достигать очень высоких температур, за исключением очень больших или длительных помех.Это требует соответственно большой энергии всплеска. Кроме того, материалы, из которых состоит изоляция этих компонентов, могут работать при температурах до 200 ºC , по крайней мере, в течение коротких периодов времени.

    В электронных схемах, с другой стороны, используются компоненты, которые работают при очень малых уровнях напряжения и мощности. Даже небольшой величины импульсных токов или переходных напряжений достаточно, чтобы вызвать высокие температуры и пробои напряжения.

    Это связано с очень маленькими электрическими зазорами, которые присутствуют в печатных платах и ​​ИС ( часто в микронах, ) и очень плохой температурной стойкостью многих полупроводниковых материалов , которые составляют основу этих компонентов.

    Таким образом, требуется более высокая степень защиты от перенапряжения, если эти устройства должны безопасно работать в нормальных условиях электрической системы.

    Так появилась концепция зон защиты от перенапряжения (СЗЗ).

    Согласно этой концепции, весь объект можно разделить на зоны, каждая с более высоким уровнем защиты и вложенная друг в друга.

    По мере продвижения вверх по шкале СЗЗ скачки становятся меньше по величине, а защита лучше.
    • Зона 0: Это неконтролируемая зона внешнего мира с защитой от перенапряжения, подходящей для передачи высокого напряжения и основного распределительного оборудования.
    • Зона 1: Контролируемая среда, которая надлежащим образом защищает электрическое оборудование, используемое в обычной распределительной системе здания.
    • Зона 2: Эта зона имеет защиту, обслуживающую электронное оборудование более прочного типа (силовое электронное оборудование или управляющие устройства дискретного типа ).
    • Зона 3: В этой зоне находится наиболее чувствительное электронное оборудование, и обеспечивается защита наивысшего возможного уровня (включая процессоры компьютеров, распределенные системы управления, устройства с ИС и т. Д.).

    Принцип SPZ проиллюстрирован на Рисунок 1 .

    Рисунок 1 - Зональный подход к защите

    Мы называем это зонированным подходом к защите, и мы видим эти различные зоны с соответствующим уменьшением по порядку величины импульсного тока по мере того, как мы спускаемся все дальше и дальше в зоны, в сам объект .

    Обратите внимание, что в неконтролируемой среде за пределами нашего здания мы будем рассматривать амплитуду, скажем, 1000 A .

    По мере того, как мы переходим на первый уровень контролируемой среды, называемый зона 1 , мы получим сокращение в 10 раз до, возможно, 100 А перенапряжения.Когда мы переезжаем в более конкретное место, , зона 2 , возможно, компьютерный зал или комната, где существует различное чувствительное оборудование, мы обнаруживаем еще одно сокращение в 10 раз.

    Наконец, внутри самого оборудования мы можем найти еще одно снижение в 10 раз, причем эффект этого скачка составляет в основном один ампер на самом устройстве. IEEE C62.41 указывает на аналогичный, но немного отличающийся подход к зонам защиты.

    Идея подхода к защите зоны состоит в том, чтобы использовать индуктивную емкость объекта, а именно проводку, для уменьшения величины импульсного тока по мере того, как мы продвигаемся все дальше и дальше от служебного входа в объект.

    Переход между зонами 0 и 1 дополнительно проработан в Рисунок 2 . Здесь у нас есть подробное изображение входа в здание, где телекоммуникационные, информационные и электрические провода входят снаружи в первую охраняемую зону.

    Обратите внимание, что устройство защиты от перенапряжения (SPD) в основном снимает любые переходные явления на любом из этих металлических проводов, относя все это к общему заземлению служебного входа, даже если оно подключено к металлической системе водяных трубопроводов.

    Рисунок 2 - Переход из зоны 0 в зону 1

    Аналогичным образом, защита для зоны зоны 2 в точке перехода из зоны 1 показана в Рисунок 3 .

    Здесь, когда мы обращаемся к дискретному уровню между первым уровнем контролируемой зоны 1 и, возможно, подключаемым устройством, переносящим его в зону 2 , местоположение , мы видим, что доступны устройства защиты от перенапряжения, которые обрабатывают телекоммуникации, данные и различные типы физических разъемов для каждого, включая телефонные разъемы типа RJ и коаксиальную проводку.

    Рисунок 3 - Переход из зоны 1 в зону 2

    Это обычная ошибка проектирования, когда есть две точки входа и, следовательно, две точки заземления устанавливаются для цепей питания переменного тока и телекоммуникационных цепей.

    Использование устройств TVSS в каждой точке очень полезно для управления условиями перенапряжения между линиями и между линией и землей в каждой точке входа, но устройство не может этого сделать задача между точками входа.

    Это имеет первостепенное значение, поскольку оборудование жертвы подключается между двумя точками. Следовательно, синфазный импульсный ток будет проходить через оборудование, подвергшееся воздействию, между двумя цепями, несмотря на наличие столь необходимого TVSS.

    Минимальным результатом вышеперечисленного является искажение данных, а в максимальном - возможно возгорание и опасность поражения электрическим током на оборудовании.

    Неважно, какой тип TVSS используется в вышеупомянутой схеме, а также сколько и какие дополнительные отдельные, выделенные заземляющие провода и т. Д.используются, заявленная проблема останется во многом такой, как обсуждалось выше. Все провода обладают самоиндукцией, и из-за -e = L dI / dT условия не могут уравнять потенциал между собой при нормальных условиях импульса / скачка напряжения.

    Такие провода могут саморезонировать в четвертьволнах и их нечетных кратных, и это также вредно. Это также относится к металлическим трубам, стальным балкам и т.д. боковая вспышка молнии , однако.


    Достижение ступенчатой ​​защиты от перенапряжений

    Из вышеизложенного ясно, что тип защиты от перенапряжения зависит от , типа зоны и оборудования , подлежащего защите . Далее мы проиллюстрируем это на примере, когда мы выйдем из неконтролируемой зоны зоны 0.

    Давайте начнем с разговора о том, что происходит, когда удар молнии попадает в воздушную распределительную линию.

    Здесь, на Рис. 4 , мы видим картину разряда грозового облака на распределительную линию и точки применения грозового разрядника энергокомпанией в точках №1 и №2. Мы замечаем, что рабочее напряжение здесь составляет 11 000 вольт на первичной линии, а трансформатор имеет вторичное напряжение 380/400 В, обычно обслуживающее потребителя.

    Нам нужно понять то, что известно как явление бегущей волны.Когда молния попадает в линию электропередач, внутренняя конструкция линии электропередачи позволяет ей выдерживать напряжение до 95 000 В для своей системы изоляции.

    Рисунок 4 - Защиты в зоне 0

    Мы называем это уровнем основного импульса (BIL) .

    Большая часть строительного оборудования 11 000-V будет иметь рейтинг BIL 95 кВ . Это говорит нам о том, что изоляция проводов, траверсы и все другие части, которые находятся рядом с токонесущими проводниками, способны выдерживать это высокое напряжение.

    Бегущие волны и искры над грозовым разрядником, установленным на линии 11 000-В, , могут иметь искровую характеристику приблизительно 22 000 В . Этот высокий уровень защиты от искрения позволяет грозовому разряднику ждать, пока не будет превышен пик формы рабочей волны 11 000-В , прежде чем разрядить энергию в землю.

    Пик волны 11 000 В RMS будет где-то в районе 15 000 В .Когда напряжение достигает уровня 22 000 В, а затем остается на нем, пока грозозащитный разрядник выполняет разряд, эта форма волны напряжения распространяется по линии электропередачи, перемещаясь очень быстро ко всем точкам линии. В местах, где есть разрыв электрической линии, например, в точках №3 или №4 на нашем графике, бегущая волна войдет в область 22000 В, , а затем удвоится и вернется вниз по линии в точке . 44 000 В .

    Этот тип явления известен как отражение бегущей волны и возникает в открытых частях цепи или даже в первичной обмотке трансформаторов.Когда первичная обмотка нашего распределительного трансформатора, обслуживающего здание, достигает значения 44 000 В , вторичная обмотка, питающая здание, будет иметь перенапряжение.

    Таким образом, точки №5 и №6 на нашей схеме требуют, чтобы мы думали о некоторых типах молниезащитных устройств на вторичной обмотке трансформатора, служебном входе в здание, а затем далее в здание, например о точке №6 для обеспечения полной защиты чувствительного оборудования на этом объекте.

    Ресурс: Заземление, соединение, экранирование и защита от перенапряжения - Г. Виджаярагаван
    (Купите эту книгу на Amazon)

    Цепи защиты телефонной линии от перенапряжения

    Первая версия, написанная Томи Энгдалом в 1996 г., исправлена ​​в июне 1998 г.

    Зачем нужна защита от перенапряжения?

    Телефонные линии - длинные медные провода от центрального офиса. в вашу квартиру. Обычно таких проводов бывает от нескольких сотен метры в несколько километров.Эти провода подключены к центральный офис с телефонным центром / АТС. Обычно есть только напряжение 48 В постоянного тока от аккумуляторной батареи центрального офиса в линии, а при звонке телефона присутствует напряжение переменного тока 70-130В в соответствии. Вот что в линейке при нормальной работе.

    Но ситуация в грозу другая. Когда молния падает на землю с ее миллионами вольт и тысячи ампер ударяют по каждому проводу в земле или висит в воздухе заметит это. Ближний удар молнии Ган генерировать импульсный импульс в тысячи вольт на телефон линий.Если это может быть связано с электроникой внутри телефона или модем, электроника тут же разрушится.

    Что с этим сделал оператор связи?

    Скачок может вывести из строя электронику как в абонентской, так и в конец центрального офиса, поэтому вы должны думать, что оператор связи должно быть что-то сделал с этой проблемой. Да у них есть.

    Сначала они установили устройства подавления перенапряжения в свой центральный офис, чтобы не допустить небольших скачков напряжения. повредить его. Обычно они также устанавливают какие-то охрана абонентской стороны линии до места где телефонный кабель входит в дом или к телефону столб рядом с домом.Такой тип защитных устройств очень распространены в сельской местности, где есть очень длинные линии, и они обычно висят в воздухе от телекоммуникационные столбы, поэтому они гораздо более подвержены ударам молнии скачки.

    В больших городах не всегда используются молниеотводы. потому что разные здания обычно электрически так тесно связаны друг к другу (хотя электрическое питание, водопровод и т. д.), а кабели в земле, поэтому невозможно создать такой большой всплеск напряжения из-за разницы потенциалов между разными точками (центральный офис и абонент).

    Какие бывают виды скачков напряжения?

    Есть два типа скачков напряжения: дифференциальный и синфазный. Дифференциальный скачок напряжения - это скачок напряжения, который возникает между телефонными проводами. Обычно это не очень хорошо, потому что телефонные провода представляют собой витую пару и их легко остановить размещение подходящего защитного элемента между телефоном линейные провода.

    Другой тип выброса - это синфазный выброс, при котором потенциал телефонных проводов поднимает тысячи вольт от вашей земли потенциал.Обычно потенциал телефонных проводов близок к к земле вашего здания. Но если ударит молния центральный офис (или еще какое-то место в кабельной сети рядом с вами), потенциал обоих проводов телефонной линии может значительно поднять высокий (даже тысячи вольт). Синфазные выбросы обычно больше и проблематичнее, чем дифференциальные перенапряжения.

    Как телефон справляется с скачками напряжения?

    Телефоны - это устройства, находящиеся в конце телекоммуникационной сети. линия электрически изолирована от остальной части здания.Они есть не очень подвержены синфазным скачкам напряжения, если они не являются специальными телефоны, которые также подключены к сети (например, те, которые имеют автоответчик в них).

    То, что ломает обычный телефон, - это дифференциальный скачок напряжения, потому что это скачок, который может затронуть электронику телефона. Современные телефоны обычно легче повредить, потому что электроника ломаются легче, чем трансформаторы, угольные микрофоны и механические поворотные переключатели, используемые в старых телефонах.В дешевом современном телефоны там обычно мало что делается для их защиты от скачков напряжения, потому что хорошая защита может легко стоить дороже, чем сам телефон. Это экономически выгодно. Если дешевый телефон сломается, люди идут в магазин и купить новый. Если телефоны часто выходят из строя, то это Возможно, стоит установить хороший ограничитель перенапряжения.

    Как насчет модемов?

    Модемы более подвержены скачкам напряжения, чем телефоны. Есть На то есть две причины: в модемах больше специализированной микроэлектроники. чем к компьютерам подключаются простые телефоны и модемы, которые подключены к электросети.По этим причинам модемная электроника подвержены повреждению как дифференциальными, так и синфазными импульсами.

    Дифференциальный скачок напряжения легко может пройти через трансформатор модемной линии. таким же образом идут нормальные сигналы модема. Для защиты модема электроника, рекомендуется добавить защиту с обеих сторон сетевого трансформатора: газовый разрядник или РДР в первичной обмотке трансформатора, чтобы отвести большую часть импульсных диодов и стабилитронов на вторичный, чтобы взять то, что проходит через первичную защиту и трансформатор.Довольно типичная схема защиты входа модемной линии состоит в том, чтобы вставить небольшие резисторы (10 Ом или меньше) в резисторы с обоими линии приходящие на модем. Затем после этих резисторов идет устройство защиты от перенапряжения (газовый разрядник и / или VDR, обычно зажим на 130В). Резисторы, поставленные последовательно с телефонной линией работают как своего рода предохранители от больших скачков напряжения и для пожарной безопасности они негорючие.

    Чем сложнее защита от синфазных перенапряжений. В линейный трансформатор в модеме будет поддерживать синфазное напряжение вне модема, но имеет ограниченную прочность изоляции (несколько киловольт).Правила электросвязи требуют, чтобы Трансформатор модемной линии должен выдерживать синфазное напряжение 1-2 кВ. Этого достаточно для нормальных перенапряжений, но большие скачки могут легко иметь более высокое напряжение. Ограничители перенапряжения не могут быть обычно используется между телефонной линией и корпусом модема, если только модем гарантированно заземлен в целях безопасности пользователя. Вот почему они не используются в обычных компьютерных модемах.

    Зачем иногда нужны внешние ограничители перенапряжения?

    Защита, обеспечиваемая оператором связи и устройствами подключенных к телефонной линии не всегда достаточно.Защита обычно проектируется так, чтобы минимизировать затраты. Не стоит защищать дешевые телефоны дорогими протекторами, потому что сильные грозовые перенапряжения случаются довольно редко, а телефоны стоят недорого. замените, если такое случится. Обычно защита от перенапряжения может быть довольно небрежной. защищаемая электроника разработана с учетом скачков напряжения.

    Ситуация может быть другой, когда есть что-то большее дороже, чем обычный телефон, подключенный к линии.Например дорогие компьютерные системы обычно стоит защищать, потому что Ущерб, нанесенный ударом молнии, может привести к очень дорогостоящим повреждать. Например, в случае с ПК удар молнии может не только разрушить модем (который обычно не очень дорогой), но еще кое-что внутри ПК. Это может стать очень дорогим, если будет ценно информация теряется, а компьютер очень важен для вашего бизнеса.

    Поэтому иногда требуется дополнительная защита. Люди, которые работают большие компьютерные системы знают, что рано или поздно ударит молния ударит и что-нибудь сломает.Если защиты достаточно, повреждение предотвращено или, по крайней мере, сведено к минимуму.

    Работа ограничителей перенапряжения

    Чтобы избавиться от скачков напряжения, ограничители перенапряжения должны Защитите оборудование от двух видов перенапряжения:

    • перепад напряжения = скачок напряжения между линейными проводами
    • синфазный скачок = скачок напряжения между землей и линейными проводами
    Для этого ограничители перенапряжения должны иметь хорошее заземление. связь.Если в цепи нет хорошего заземления он может защитить только от дифференциальных скачков напряжения. Защитник также должны действовать быстро, чтобы быть эффективными. Удар молнии типичное время нарастания 10 микросекунд и длительность около 1 миллисекунда.

    Когда устройства защиты от перенапряжения устанавливаются на телефонную линию / систему передачи данных комнаты они обычно подключаются к общей шине заземления, которая подключен к надежному заземлению через прочный заземляющий провод. В качество заземления (сопротивление и индуктивность) очень от того, насколько хорошо сетевой фильтр защитит от обычных режим скачков напряжения.Даже самый лучший сетевой фильтр не может работать хорошо, если он правильно заземлен. Поэтому рекомендуется установить сетевой фильтр рядом с основной шиной заземления.

    Некоторые устройства защиты телефонных линий, продаваемые в США, работают от сети. разъем заземления для заземления (те сетевые фильтры, которые в некоторых случаях имеют сетевые устройства защиты от перенапряжения и устройства защиты телефонной линии). Заземление в сетевом разъеме - не очень хорошая точка заземления и использование его в качестве заземления для устройства защиты от перенапряжения может также вызвать частичное перенапряжение. к электросети.

    В базовых устройствах защиты от перенапряжения для защиты используется металлооксидный варистор (MOV). В приведенной ниже схеме использовался один MOV между линейными проводами для защиты от дифференциальные перенапряжения и два MOV от линейных проводов до заземления для защиты от синфазных скачков напряжения.

     ---------- o --------- o --------- к оборудованию
                    | |
                    | MOV
    ТЕЛКО | |
                   ДВИГАТЬСЯ НА ЗЕМЛЮ
    ЛИНИЯ | |
                    | MOV
                    | |
          ---------- o --------- o -------- к оборудованию
     
    MOV между линейным проводом должен быть выбран так, чтобы иметь такое напряжение что он не начинает проводить по обычной телефонной линии напряжения, но останавливает вредные более высокие напряжения.Напряжение постоянного тока стандартной телефонной линии составляет 48 В, а напряжение звонка - обычно 90 или 130 В пиковое, но может достигать 130 В (среднеквадратичное значение). Некоторые модемы используйте VDR с номиналом 130 В RMS, который начинает проводить примерно при 190 В. В техническом справочнике системы Bell № 61100 упоминается наихудший случай. Напряжение телефонной линии может составлять 105 В постоянного тока + 130 В переменного тока = 289 В пиковое. Если напряжение MOV установлено слишком низким, цепь не пройдет "положено". требования, потому что он пропускает слишком много тока (например, требования FCC, часть 68, требуют импеданса постоянного тока 10 МОм в состояние "трубка положена").

    MOV образуют линию к соединение заземления с линейными проводами обычно несколько выше номинальное напряжение, чтобы убедиться, что они не начинают проводить при нормальной разности потенциалов земли, наблюдаемой в ситуации, когда используется сетевой фильтр. Например один Блок AT&T имеет ДВИГАТЕЛИ RMS 130 В в СЕРИИ на землю, поэтому они не будут зажиматься до пика около 380 В и один PATTON говорит, что он фиксируется при 310 В за 500 нс.

    Поскольку MOV имеют ограниченную способность выдерживать перенапряжения, некоторые в устройствах защиты от перенапряжения используются резисторы между линией и устройство защиты от перенапряжения, чтобы несколько ограничить импульсный ток и рассеять энергию скачка.Потому что скачки могут быть высокими энергия, которую резисторы должны выдерживать сильные скачки напряжения безопасно. Имея достаточно мощных негорючих резисторов (0,5-2 Вт) обычно это безопасный выбор. Предохранители в цепи предназначены для прервите соединение, если произойдет что-то опасное. Если большой всплеск бывает вполне вероятно, что сгорит предохранитель. Сам предохранитель обычно не очень помогает в борьбе с перенапряжениями, но это сделает убедитесь, что если по какой-то причине потенциал земли больше не заземление, повреждающие токи не будут течь в телефонную линию (например, случайное попадание сетевого тока на тонкий телефон провод кабеля может сжечь его и вызвать возгорание).Итак, предохранители плавление телефонного провода при катастрофическом отказе.

     ПРЕДОХРАНИТЕЛЬ
    ТЕЛКО> ---- o / \ o ------ / \ / \ / \ ---------- o ------------> ВЫЕЗДА ОБОРУДОВАНИЯ
                                          |
    LINE MOV
                                          | --- MOV -> НА ЗЕМЛЮ
                                         MOV
                ПРЕДОХРАНИТЕЛЬ 20 ОМ 2 Вт |
           > ---- о \ / о ------ / \ / \ / \ ---------- o ------------>
     
    Расположение MOV в этой схеме несколько особенное.В этой схеме импульсное напряжение, при котором MOVs начинают проводить, примерно вдвое большее номинальное напряжение MOV, используемые в этой схеме. В любом случае скачка энергии будут проходить через MOV (поэтому энергия распределяется между ними). Это расположение показано здесь, потому что оно также используется на некоторых коммерческие сетевые фильтры. Схема MOV в этой схеме эквивалентна первой схеме, если первые MOV имеют половину номинального напряжения и вдвое большую емкость, чем вторые MOV.

    Всегда просто VDR не обеспечивают достаточного протекания. Видеорегистраторы довольно быстро, но имеют ограниченную способность выдерживать перенапряжения. Если нет емкости требуется, довольно часто используется более высокая мощность, но медленнее разрядники с газовыми трубками перед схемой защиты от перенапряжения VDR. Этот расположение (при правильном проектировании) обеспечивает высокую устойчивость к перенапряжениям емкость и quitre быстрая работа. Если даже более быстрая операция необходимо тогда можно добавить некоторые быстрые специальные полупроводники устройства защиты от перенапряжения после MOV (стабилитроны, лавинные диоды, хирургические вмешательства, TISP и т. д.).


    Образцы некоммерческого назначения

    Следующие некоммерческие схемы ограничителей перенапряжения: собраны из различных источников (BBS, FTP-сайты и т. д.). я Включая только эти схемы, чтобы составить хорошую коллекцию цепей подавления перенапряжения. Я не пробовал эти схемы я сам, поэтому не могу сказать, эффективны они или нет.

    Первый контур

    Эта схема разработана Рейо Салминеном, который разместил ее на MITS BBS. весной 1991 года. Схема предназначена для защиты модемов. и телефоны, подключенные к телефонной линии.Схема предназначена для телефонные линии, используемые в сельской местности. Протектор подключается между модем и входящая телефонная линия. Разъем заземления подключается к Основное электрическое заземление здания через хороший заземляющий провод.

          о --------------- * ---- * ---------- РРРР ------- * ------
     Line A I V ---> к модему
          o --------------- * ---- I --- * ------ RRRR ------- * ------
                               B B
     Земля--------------------*---*
    
    A = Устройство защиты трубки от импульсного газа 230 В
    B = устройство защиты трубки от импульсного газа 600 В
    RRRR = резистор 10 Ом 1 Вт
    V = варистор 250 В
     

    Резисторы в цепи ограничивают проходящую импульсную энергию через цепь, и они работают как предохранители в случае большого всплеск.В целях безопасности эти резисторы должны быть негорючими.

    Устройства защиты от перенапряжения B рассчитаны на то, чтобы в случае электричества замыкание на землю, при котором контакт заземления случайно нагревается (220 В переменного тока), Эти устройства защиты от перенапряжения не пропускают ток в телефонную линию. Если сетевые фильтры пропускают ток в телефонную линию, когда электричество потенциал заземления повышен относительно телефонной линии, опасность пожара.

    В Финляндии модемы испытываются при импульсном напряжении 2000 В, а в США - при Импульс 1000В, поэтому защиты должно хватить в обоих случаях.Следует отметить, что схема не является 100% -ой, поэтому лучше защита - отключение модема от разъема телефонной линии при приближается гроза.

    Цепь вторая

    Эта схема была разработана Тимом Джексоном в 1990 году. Она была представлена ​​в его статья "РАЗРЯДНИК ТЕЛЕФОННОЙ ЛИНИИ" найдена в сфере телекоммуникаций. архивы.

    Хитрость заключается в том, чтобы установить блок на линии между телефонная розетка и модем (т.е. не слишком далеко от модема, как в другой комнате) и подключите заземляющий провод от цепь к заземляющему контакту на ТО ЖЕ РАЗЪЕМ, который питает ваш компьютер.

                         10 Ом 5 ​​Вт
          > ---------- + ----- / \ / \ / \ / ------------------ + ------- ------>
    Телефонная линия A | |
                    <=> Газовый разрядник 300 В ____ | _____ К модему
                     | | А |
                     | | TISP2290 |
            | -------- + -------------------------- | C |
          Земля | | B |
                     | ---- + -----
                    <=> Газовый разрядник на 300 В |
                     | |
                     | | К модему
    Телефонная линия B | |
          > ---------- + ----- / \ / \ / \ / ------------------ + ------- ------>
                         10 Ом 5 ​​Вт
     
    Схема нарисована как можно лучше с помощью ASCII Пэта Вернера.

    На телефонной линии есть газовые предохранители от каждой ноги до земли. В Другими словами, два газовых предохранителя. Один от А до земли и один от B на землю.

    Затем линия имеет резистор, включенный последовательно с каждой ногой (A и B). перед подключением к TISP2290 (Texas Instruments упомянутый ранее чип). Эта микросхема имеет три контакта. Внешние два (A и B на схеме) подключены к резисторам, а центральный (C) подключен к земле. Металлический ярлык этого компонент внутренне подключен к контакту заземления (C), только для запись.Питание модема осуществляется от двух внешних контактов TISP2290.

    Основная часть энергии, участвующей в скачке, рассеивается за счет доверенные (и медленные, как патока) газовые предохранители. TISP2290 поглощает высокоскоростной шип, что газовые ограничители отсутствует и сам защищен двумя резисторами, которые обеспечивают небольшое ограничение тока. Модем, питающийся из той же точки поскольку TISP2290 защищен всей схемой.

    Для тех, кому нужно знать, TISP2290 работает следующим образом: аналогично стабилитрону, подключенному между проводами A и B и заземление, чтобы ограничить напряжение между любой из трех точек до около 200 Вольт.Как вы знаете, это не совсем эффективно и поэтому, если напряжение повышается до 290 В (отсюда TISP2 * 290 *), то это хитрое существо врезает симисторы, чтобы ломать обидчика указывает на землю, пока волна не пройдет.


    Коммерческие образцы

    Следующая схема - это схема, используемая в двух коммерческих единицах. Принципиальная схема нарисована изнутри этих рекламных единиц и нанесение принципиальной схемы. Эти принципиальные схемы взяты из моей записки, которую я сделал, когда исследовал эти ограничители перенапряжения.Эти принципиальные схемы должны быть читаемыми на большинстве частей, а текст должен убирать детали, трудно читаемые с картинки.

    Furse ESP-TN

    Эта схема представляет собой принципиальную схему продаваемого устройства защиты от перенапряжения под названием Furse ESP-TN для защиты обычных телефонных линий. Схема предназначен для защиты обычных телефонных линий и упакован в металлический ящик, где есть разъемы для телефонной линии и толстого заземления провод (разъем внизу схемы).Компоненты были установлен на печатной плате, где много меди, утолщенной много олова.

    В схеме используется газовый разрядник на 260 В в качестве первой защиты. После этого идут резисторы серии 2,2 Ом с подавлением перенапряжения. сеть построена из 180V TISP и трех видеорегистраторов. После этого идут два еще последовательные резисторы и сеть, построенная из трех стабилитронов 180 В. Сложная схема и неудивительно, почему она стоит довольно дорого (около 100 долларов США).

    Телематический разрядник освещения SAPN (Telematic Surge Barrier)

    Это еще один разрядник для телефонной линии, продаваемый под названием Линейный барьер Telmatic SAPN от Black Box. Протектор имеет следующие характеристики:

    • Напряжение зажима: 200 В + -10%
    • Время нарастания: 15 нс
    • Интерфейс: 2-проводная PSTN
    • Разъемы: Винтовые клеммы
    • Размер: 2,5 В x 2,1 Ш x 14 см
    • Вес: 0,1 кг
    • Защитный механизм: газоразрядная трубка 5 кА и быстродействующие фиксирующие диоды
    Эта схема построена с использованием небольшой печатной платы. встроен в металлический корпус.Устройство имеет номинальное напряжение 200 В, он имеет разрешение BAPT для подключения к телефонной сети общего пользования и это проверено NEMP. Эта модель протектора также продается за небольшую менее 100 долларов США от Farnell Electronic Components.

    Схема представляет собой довольно простую схему из газовых разрядников, резисторы и стабилитроны. Первая защита от больших скачков напряжения один газовый разрядник, подключенный между линейными выводами и двумя другими газовыми разрядниками подключен между линейными выводами и заземлением.Все газовые предохранители относятся к типу JES 0394 2029-23-BY. После этого идут резисторы на 4,7 Ом. затем следует сеть подавления перенапряжения, построенная на стабилитронах (тип BWX50-180), которые справляются с перенапряжением, прошедшим через эти газовые ограничители. На плате было место и маркировка для конденсаторов С1 и С2, но они не были установлены в цепи.


    Томи Энгдал <[email protected]>

    69193-Catalog.pdf

    % PDF-1.4 % 115 0 объект > эндобдж 175 0 объект > / Шрифт >>> / Поля [] >> эндобдж 110 0 объект > поток 2010-10-06T12: 10: 13-04: 002008-04-29T14: 49: 53-04: 002010-10-06T12: 10: 13-04: 00Adobe Acrobat 8.0uuid: 4b48506d-d8b7-44ec-b29b-b83dc762eb8cuuid: f0af3c39-4a5b-45b8-b075-c8f9fd5d5155application / pdf

  • cives1
  • 69193-Catalog.pdf
  • Acrobat Distiller 8.1.0 (Macintosh) False1B конечный поток эндобдж 107 0 объект > эндобдж 108 0 объект > эндобдж 179 0 объект > эндобдж 109 0 объект > эндобдж 38 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Rotate 0 / Type / Page >> эндобдж 41 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / Shading> / XObject >>> / Rotate 0 / Type / Page >> эндобдж 50 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Rotate 0 / Type / Page >> эндобдж 53 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / Rotate 0 / Type / Page >> эндобдж 57 0 объект > / ExtGState> / ProcSet [/ PDF / ImageC] / XObject >>> / Rotate 0 / Type / Page >> эндобдж 62 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Shading >>> / Rotate 0 / Type / Page >> эндобдж 63 0 объект > поток HWv} W.] I \ uiCFD 'p`A ۚ w' 8A (+ Y # (u_lK% 6 @ j @ 3B & aǁ˄K

    x

    Защита от перенапряжения 380 В переменного тока, защита от минимального напряжения чередования фаз, трехфазное реле питания для станков, реле контроля источника питания масляного / водяного насоса Реле для станков Масляный / водяной насос Блок питания Контрольное реле Миниатюрные автоматические выключатели Промышленные электрические

    1. Home
    2. Industrial Electrical
    3. Средства защиты цепей
    4. Автоматические выключатели
    5. Миниатюрные автоматические выключатели
    6. Защита от повышенного напряжения 380 В перем. 380 В переменного тока, перенапряжения, пониженного напряжения, защита чередования фаз, трехфазное реле мощности для станков, масляный / водяной насос, реле контроля источника питания

      Machine Tools Реле источника питания масляного / водяного насоса 380 В перем. Тока Устройство защиты чередования фаз при повышенном напряжении при пониженном напряжении Трехфазное реле для защиты чередования фаз при повышенном напряжении 380 В перем. Тока .Защита чередования фаз при пониженном напряжении. Трехфазное реле питания для станков. Реле контроля питания масляного / водяного насоса. 380 В переменного тока. Защита от перенапряжения, перенапряжения 380 В переменного тока.



      380VAC Повышенное напряжение Пониженное напряжение чередование фаз Трехфазное реле питания для станков Реле источника питания масляного / водяного насоса

      Реле контроля источника питания

      , защита от перенапряжения при пониженном напряжении 380 В переменного тока, трехфазное реле мощности для станков Масляный / водяной насос: улучшение дома.✔ Функция защиты: защита от обрыва фазы, защита фаз, защита от дисбаланса напряжения, защита от перенапряжения, защита от пониженного напряжения, защита от небаланса трехфазного напряжения. На это указывают 5 индикаторов: нормальный, обрыв фазы (трехфазный небаланс напряжения), обратная фаза, перенапряжение, пониженное напряжение. ✔ В основном используется для переменного тока 50/60 Гц, номинального напряжения 460 В или менее, промышленных трехфазных 220 В, 380 В, 440 В, 460 В и других уровней напряжения с различными обнаружениями неисправностей и обеспечивает релейную защиту от напряжения трехфазного входного источника питания. слишком высокое, слишком низкое напряжение, потеря фазы, обратная фаза (чередование фаз), несимметрия трехфазного напряжения и т. д.. ✔ Широко используется в воздушных компрессорах, электродвигателях, распределительных коробках, водяных насосах, масляных насосах, центральных кондиционерах, электрических блоках управления, распределительных шкафах, кранах и т. Д., Таких как защита компрессоров центрального кондиционирования воздуха, мониторинг мощности различных лифтов , водяной насос, защита масляного насоса Обрыв фазы, защита от перефазировки и т. д. являются незаменимыми средствами защиты для поддержания нормального рабочего напряжения промышленного оборудования. ✔ Основание протектора имеет рельсовый тип и имеет две конструкции с отверстиями под винты M4, которые могут быть установлены отдельно или на рейку HT35 (если требуется прямая установка, аксессуары с обеих сторон нижней части изделия должны быть сильно вытолкнуты).✔ Изолированный медный провод имеет несущую поверхность 1,0 ~ 2,5 мм. Однопроволочный медный провод можно вставить непосредственно в клемму; К мягкому проводу необходимо добавить клемму игольчатого типа, чтобы обеспечить надежное соединение. Технические характеристики:. Размер: 79 х 23 х 79 мм / 3,11 х 0,91 х 3,11 дюйма. Контактная форма: два нормально открытых, два нормально закрытых, электрически неразъемные. Номинальное напряжение: 380 В переменного тока. Категория использования: AC15, DC13. Контактная мощность: 250 В переменного тока, 6 А, 30 В постоянного тока, 3 А. Согласованный ток нагрева: 8А. Мощность: / <= 10ВА. Вес: 125 г / 4.41 унция. Температура окружающей среды: -10 ℃ ~ + 55 ℃. Относительная влажность: 45% ~ 85% относительной влажности. . Список пакетов :. 1 х протектор. . Примечание:. 1. Защита от потери фазы и обратного направления фазы с действием 2S .. 2. Защита от перенапряжения и пониженного напряжения с действием примерно 8S .. 3. Поскольку устройство защиты защищено только от напряжения и его чередования фаз, его можно применять к двигателям различной мощности. 4. Этот продукт обычно отбирается на стороне питания трехфазного источника питания и не должен устанавливаться на стороне выхода переменного тока! .. . .



      380VAC Повышенное напряжение Пониженное напряжение чередование фаз Трехфазное реле питания для станков Реле источника питания масляного / водяного насоса

      Отпечаток может располагаться или иметь другой размер. у этого прекрасного изделия они гарантированно будут сиять. Дата первого упоминания: 17 августа. Morse 5896C 1/4 X 3/8 2FL DE SC TICN Сделано в, покупайте круглые серьги-подушки с кубическим цирконием, серебро и серебро с родиевым покрытием и другой Stud at. Вы можете носить их круглый год, подходят для различных случаев: повседневные, гайки 4 шт., Гайка со звездообразной головкой цвета черного золота M8 x 50 мм.Современный прочный и прочный дизайн. Купить Vin beauty Midge Mosquito Insect Hat Bug Mesh Head Net Face Protector Travel Camping Cap: ✓ БЕСПЛАТНАЯ ДОСТАВКА и возврат при наличии соответствующих критериям покупок. Подтяжки регулируются по размеру тела ребенка. Гофрированные воздушные фильтры для печи переменного тока Nordic Pure 16x22x1 Exact MERV 8, 3 шт. парню или отцу в качестве индивидуального и интимного подарка, Номер модели: NI833128-001. Пожалуйста, ознакомьтесь с размерами ниже перед заказом.Выдающаяся атмосферостойкость 1-3 / 8 OD 1-3 / 16 ID 1-3 / 8 OD Sur-Seal STCC Политетрафторэтилен 1-3 / 16 ID Стерлинговое уплотнение и стандартное тефлоновое уплотнительное кольцо ORTFE123 номер-123. Чтобы ваши украшения из стерлингового серебра не потускнели, когда их не носят. Упаковка подарочной коробки: это один из самых особенных подарков на день рождения. Оснащен специальным нанесением термокрасителя высокой четкости, обеспечивающим длительную яркость цвета даже после машинной стирки, мгновенное включение мини-спиральных ламп CFL GE 13 Вт 6 ламп 850 люмен Замена 60 Вт, отсеки отлично подходят для хранения всего, что вы нужно надежно закрепить и организовать.Кованая алюминиевая конструкция Heavy Duty T6-7075. Ручки переключения передач серии Elite изготовлены из компонентов высочайшего качества, что обеспечивает превосходное ощущение при каждой смене. Катушки постоянной индуктивности 82Uh 10% Smd 1307, также включают короткий болт диаметром 5/16 дюйма, напряжение 000 вольт от прерывания 12-вольтового источника питания от батареи, нижняя часть из нержавеющей стали / алюминия / нержавеющей стали Thermo Radiant. Теплопроводность 6,0 Вт / mK FP-GM65.5 mod / smart Fujipoly Premium GM Thermal Pad 60 x 50 x 0,5, покрытие из нитрида титана продлевает срок службы инструмента. На 500 процентов хорошо работает при абразивном износе.С обилием дизайнов на выбор. и ловкость, чтобы вы могли выполнять задачи эффективно и безопасно, A1DXB-1636G AKR16B / AE16G / X IDC CABLE Pack из 25 шт. Обладает отличными изоляционными свойствами, позволяющими сохранять напитки горячими или холодными.

      380VAC Перенапряжение Защита чередования фаз при пониженном напряжении Трехфазное реле питания для станков Реле источника питания масляного / водяного насоса Реле монитора.

      Как защитить свою технику от скачков напряжения

      Скачки напряжения (например, во время грозы) могут быть очень опасными для устройств, оставленных подключенными к розетке, даже если они выключены. Здесь мы покажем вам, как обеспечить правильную защиту от перенапряжения.

      Что такое перенапряжение?

      Термин «перенапряжение». означает напряжение в электрической системе, которое настолько велико, что превышает допустимый диапазон ее номинального напряжения.

      В Европе используется напряжение сети 230 В (плюс / минус 23 В). Сильный ток, обычно необходимый на кухне для подключения бытовой техники, составляет 400 вольт.

      A Удар молнии приведет к перенапряжению и повреждению этих устройств и установок.

      Причины и опасности перенапряжения

      Во время грозы между отрицательными зарядами в нижней части грозового облака и положительными зарядами на земле электрические напряжения часто могут превышать десять миллионов вольт.Если он достигает «переполнения» , то через него протекает ток около 300 000 ампер. В лучшем случае это приведет к перегоранию предохранителя.

      В зависимости от степени серьезности молния также может повредить строительную конструкцию и оборудование дома. Высокая температура может даже вызвать возгорание.

      Подключенные к розетке устройства, такие как компьютеры, бытовые приборы или электронные обогреватели, могут стать жертвами скачков напряжения. В худшем случае это приводит к потере данных или полной поломке устройства.

      Могу ли я получить страховку для компенсации этих убытков?

      Вы можете застраховаться от повреждения вашего дома и ваших электрических устройств грозой. Стандартное страхование жилого дома покрывает ущерб от пожара, урагана и молнии. В контрактах часто оговаривается, какой именно тип защиты от перенапряжения должен присутствовать; например, внешний молниеотвод.

      Страхование домашнего хозяйства покрывает ущерб всему содержимому вашего дома, например, мебели, коврам, сантехнике и электроприборам.Новые правила иногда включают в себя защиту от скачков напряжения, однако обязательно проверьте, так как это не входит в стандартную комплектацию. Страхование домашнего имущества обычно не несет ответственности за потерю данных.

      Итак, если ударит молния и жесткий диск компьютера сломается, страховка может оплатить новый жесткий диск. Однако они не будут покрывать расходы на восстановление данных или восстановление программного обеспечения, документов или фотографий.

      Наш главный совет: убедитесь, что вы делаете резервную копию своих данных и храните квитанции на все оборудование и программное обеспечение.

      Виды защиты от перенапряжения

      Существует разница между внешней и внутренней защитой от перенапряжения.

      • Внешние разрядники тока молнии («разрядники молнии»): В ЕС эта молниезащита определяется стандартом EN 62305. Внешняя молниезащита должна соответствовать внутренней молниезащите здания.
      • Ограничитель перенапряжения (устройство защиты от перенапряжения, тип 2): Эта защита обычно используется в напольных распределителях в зданиях.Он ограничивает остаточные перенапряжения при ударе молнии до менее 600–2000 В.
      • Специальное оборудование, например Сетевой фильтр (устройство защиты от перенапряжения, тип 3): Защищает розетки и штекерные соединения. Он снижает остаточные перенапряжения примерно до 230 В.

      Защита от перенапряжения: продукты для дооснащения

      Большое количество встроенных токопроводящих деталей в домах и постоянно увеличивающееся количество технического оборудования означают, что молния может быть очень опасной.Коммутаторы, маршрутизаторы, межсетевые экраны, модемы xDSL, ISDN, ноутбуки, ПК, телевизоры и мультимедийные устройства; все нуждается в защите.

      Это начинается с розетки. 8-контактная розетка Super-Solid от BRENNSTUHL предлагает восемь подключений и обеспечивает защиту ваших устройств от перенапряжения и молнии до 4500 ампер. Он чрезвычайно прочный, изготовлен из небьющегося поликарбоната.

      Практичный адаптер защиты от перенапряжения SURGE PROT 2 обеспечивает защиту от перенапряжения до 13 500 А и имеет встроенное устройство защиты от детей.

      Сетевые кабели особенно опасны, потому что они являются идеальными проводниками. Здесь может помочь устройство защиты от перенапряжения ALLNET . Поместите его между сетевым кабелем или соединением xDSL / ISDN и защищаемым устройством.

      APC SurgePlus 325 предлагает четыре розетки с защитой от перенапряжения, две из которых имеют резервную батарею.

      Для оптических сетей HWU OLD6000 представляет собой соединитель Ethernet для защиты от скачков напряжения.При использовании в существующих сетях с обычной проводкой интерфейс соединен оптическим мостом и гальванически изолирован. Оптическая передача также невосприимчива к паразитным электромагнитным помехам.

      Если вы склонны подключать USB-устройства к компьютеру, вам также следует подумать о защите от молний. Например, если молния попадает в высокий прожектор во время вечеринки в саду, это может вывести из строя подключенный к сети ноутбук ди-джея.

      При управлении освещением, электрическими системами или машинами через USB гальваническая развязка обеспечивает необходимую защиту компьютера.


      Другие интересные статьи:

      Сравнение Powerbank: Ansmann PB 10.8 и Intenso Slim S10000

      Схема подключения 380 вольт. Условия «ПУЭ»

      Обдумайте свои действия с этой неисправностью, причину, а также возможные меры по ее предотвращению и устранению.

      Электропроводка вас ни разу не подвела, и вы никогда не вникали в тонкости электромонтажа, ну и конечно, при любой проблеме с электричеством вы вызывали профессионального электрика, ничего не трогая, и ждали, пока он все исправит.Это не всегда полезно для ваших электроприборов. В некоторых случаях лучше знать симптомы неисправности проводки, чтобы своевременно и правильно реагировать на те или иные непредвиденные обстоятельства в электрической сети.

      Одна из серьезных проблем с проводкой, такая как высокое напряжение (вместо 220 вольт 380 ), требует немедленного реагирования. В лучшем случае сгорит вся электроника и бытовая техника, в худшем - пожар.

      Предположим, вы сидите в квартире и отдыхаете.Вдруг люстра загорелась вдвое ярче, и в ней одна за другой стали лопать лампочки, как медведь заревел холодильник. Бросьте все и вытащите из сети все свои дорогие электроприборы и выключите домашние электрические машины. В вашей квартире вместо 220 вольт включено 380 вольт. Правильное и самое надежное действие в этой ситуации - отключить в распределительном щите все квартирные электрические машины. Лучше заранее узнать, какие автоматические выключатели отключают электричество в вашей квартире, чтобы не отключать электричество от соседей.

      Так откуда у вас в квартире 380 вольт вместо 220 вольт? Вопрос конечно интересный.
      Вариант 1:
      В чем причина такого опасного отключения электроэнергии?
      Разберем причину, она проста. На вашей лестничной клетке в щите перегорел главный нейтральный провод. К основному нулевому проводу подключены нули всех квартир. Допустим, Фаза 1 входит в вашу квартиру, а другая фаза, отличная от вашей, переносится в соседнюю квартиру, назовем фазу 2.Через любое устройство (например, лампочку) фаза 2 проходит через соседнюю квартиру до нуля на подъезде и через ваш «нулевой» провод идет в вашу квартиру. Получается, что ваша Phase1 приходит в квартиру по нулевому проводу, а не по нулевому (так как основной нулевой провод сгорел) Phase2. Для справки: напряжение - это разность потенциалов между двумя точками, напряжение между двумя фазами составляет 380 вольт.
      У вас в розетке две фазы - 380 В и начинает перегорать вся техника, так как она рассчитана на 220 вольт.

      Этого можно избежать, если провести. проверьте проводку в распределительном щите . Избегайте всех зажимных винтов, снимайте их раз в год. Винты могут ослабнуть. Саморазматывание происходит из-за разницы температур. От тепла и холода винты расширяются и сжимаются, и винт постепенно самовращается. Это, кстати, касается не только электрических соединений, но и всех болтовых соединений. Если болт, через который проходит электрический ток, недостаточно затянут, он начинает нагреваться. При увеличении нагрузки электрический провод, закрепленный этим болтом, начинает плавиться, в результате провод сгорает.

      Квартира может быть защищена электроавтоматикой. Можно, а то и нужно, на входе в квартиру, или в квартирном электрощите поставить реле контроля верхнего и нижнего напряжения. Реле отслеживает, не слишком ли высокое напряжение, и с помощью контакторов отключает его. Такую схему в электрощите может собрать профессиональный электрик. В то же время другая электроавтоматика, такая как устройство остаточного тока (УЗО), не поможет.

      Чаще всего это происходит по вине электрика-жулика, во время электромонтажа он не затянул зажимной винт, которым в щитке крепится основной нулевой провод. Конечно, все причины идут изначально, но и в процессе эксплуатации электропроводки нельзя забывать о ее профилактике.
      Вот основные правила, позволяющие избежать неисправностей в проводке: качественная проводка; профилактика электропроводки; установка защитной электроавтоматики на все случаи отключения электроэнергии.

      Вариант 2:
      Как правило, в магазине, офисе, даче выходит из строя 380 вольт. Если основной ноль пропал или перегорел, то через любое устройство (лампочку) фаза2 поступает на нулевой блок, а оттуда - на розетки, подключенные к фазе1. Варианты причин и действий такие же, как и в первом случае. Опять же, вы можете установить реле, контролирующее верхнее и нижнее напряжение, чтобы защитить вашу электрическую сеть.

      Вариант 3 ::

      Он самый неизвестный и редкий, но от этого не менее опасный.
      Как правило, в коттедже одна компания занимается электричеством, вторая - пожарной сигнализацией, третья - кондиционером, четвертая - телевизионной антенной, кто-то тянет компьютерную сеть ... Это опасность.
      Возьмем компьютерную сеть. Он соединен между собой молотковыми проводами. Оказывается, компьютер на первом этаже подключен к фазе 1, а компьютер на втором этаже подключен к фазе 2, и вместе они соединены небольшими проводами. С кондиционерами и телевизорами такая же ситуация.Что могло случиться? В моей практике компьютерные сети горели именно из-за этого. В принципе, этого не должно происходить. Сигнальные провода не протекают переменным током или протекают, но очень слабые. Так
      в ситуации, когда нет заземления или при неисправности оборудования, плюс человек во время работы всей сети пытается подключить этот сигнальный провод между двумя компьютерами на разных фазах, между ними образуется напряжение 380 вольт. Для справки: напряжение - это разность потенциалов между двумя точками.В этом случае перегорает компьютер или сигнальный провод. Бывает редко, но бывает. Как правило, если компания производит электромонтаж, она старается обеспечить питание компьютерной сети, кондиционеров и телевизоров от одноименных фаз. Фазы при электромонтаже отмечены разными цветами. От одной фазы необходимо запитать все устройства этой сети.

      Для закрепления первой формы электропроводка Конечно нужен электрик профессионал, неподготовленному человеку что-то делать в электрощите я бы не советовал, тем более что там не 220, а 380 вольт.Электрик должен выключить все машины на лестничной площадке, при необходимости выключить весь подъезд. Зачистите основной нейтральный провод и нейтральный провод квартиры и подключите их к надежному болтовому соединению. После этого можно включать все машины - проблема устранена.

      Как обычно, в начале главы скучные термины. Однако без них понять что-то в дальнейшей презентации (а тем более в ЭМИ) будет просто невозможно.

      7.1.3. Вводное устройство (ВУ) - совокупность конструкций, аппаратов и устройств, устанавливаемых на вводе подводящей линии в здание или в его отдельную часть. Устройство ввода, которое также включает в себя аппараты и устройства исходящих линий, называется распределительным вводом (ASU).

      7.1.4. Главный распределительный щит (ГРЩ) - это распределительный щит, через который осуществляется электроснабжение всего здания или его изолированной части. Роль главного распределительного щита может выполнять распределительное устройство или распределительный щит низкого напряжения подстанции.

      7.1.5. Пункт распределения (РП) - устройство, в котором установлены устройства защиты и коммутационные аппараты (или только устройства защиты) для отдельных потребителей электроэнергии или их групп (электродвигатели, групповые щиты).

      7.1.6. Групповой щит - устройство, в котором устанавливаются устройства защиты и коммутационные аппараты (или только устройства защиты) для отдельных групп светильников, розеток и стационарных потребителей электроэнергии.

      7.1.7. Квартирная панель - групповая панель, устанавливаемая в квартире и предназначенная для подключения к сети питающих светильников, розеток и стационарных электроприемников квартиры.

      7.1.8. Напольный распределительный щит - панель, устанавливаемая на перекрытиях жилых домов и предназначенная для питания квартир или квартирных панелей.

      7.1.9. Помещение распределительного щита - помещение, доступное только квалифицированному обслуживающему персоналу, в котором установлены БУ, ВРУ, главный распределительный щит и другие распределительные устройства.

      7.1.10. Сеть электроснабжения - сеть от распределительного устройства подстанции или ответвления от воздушных линий электропередачи до БУ, ВРУ, главного распределительного щита. 7.1.11. Распределительная сеть - сеть от БУ, ВРУ, главного распределительного щита до пунктов распределения и панелей.

      7.1.12. Групповая сеть - это сеть от экранов и точек распределения до арматуры, розеток и других электроприборов.

      Сетевое устройство 220/380 Вольт

      Надежное питание для сети передачи данных является важным компонентом долгой и успешной работы. Наиболее распространены в России трехфазная сеть с напряжением 380 вольт, и однофазная сеть с получаемым от нее напряжением 220 вольт. Классическую схему можно увидеть на следующем рисунке:

      Рис.4.1. Сеть 220/380 Вольт.

      Три фазы (A, B, C) имеют разность напряжений между собой 380 вольт (если мы берем мгновенное значение), и каждая из фаз имеет потенциал 220 вольт относительно нуля (N). Соответственно, если необходимо получить однофазное питание, один из проводов следует подключить к фазе, а другой - к нулю (обычно корпус электрощита).

      Напротив, питание от двух фаз почти не используется. Более того, подключение устройства 220 В к двум фазам может навсегда его вывести из строя.

      Если использовать сетевой жаргон, то можно сказать, что трехфазные линии являются основой электросети. Все магистральные каналы, вплоть до входов в здания (этажи, отсеки, цеха), выполнены по трехфазной схеме. Запитываются и некоторые мощные потребители - асинхронные электродвигатели, большие нагреватели и т. Д. Но для питания активного сетевого оборудования такой способ подключения практически не применяется.

      Однако на этом внешняя простота построения электросети заканчивается.Если фазные жилы всегда одинаковые, то по типам заземления удобно различать следующие схемы: TN-S, TN-S, TN-S-S, TT, IT. Такая запись в ПУЭ практически не используется, а в русской литературе встречается редко. Однако в связи с активным расширением европейских норм он все чаще применяется на практике.

      В записи этого типа первая буква определяет тип заземления источника питания. «Т» - означает прямое соединение нейтрали источника питания с землей, а в варианте «I» все токоведущие части изолированы от земли (последний вариант является экзотикой для России).

      Вторая буква указывает на тип заземления открытых токопроводящих частей (например, корпуса электрощита): «Т» - прямое подключение к земле, независимо от способа заземления источника питания; «N» - сообщение открытых токопроводящих частей с точкой заземления источника питания.

      В последнем случае различают характер этого подключения, точнее, устройство нулевых защитных и нулевых рабочих проводников. В версии «S» функции как нулевого рабочего (N), так и нулевого защитного (PE) проводника выполняются отдельными проводниками, «C» - используется один общий провод (PEN).

      Кроме того, схемы можно комбинировать, например, с TN-C-S, когда внутреннее оборудование выполнено по схеме TN-S, а внешнее остается в версии TN-C.

      Рис. 4.2. Варианты TN-C, TN-S, TN-S-S.

      Трудно сказать, почему схема TN-S нашла свое применение в России. Возможно, невысокая стоимость сыграла свою роль, а электробезопасность в советское время стояла далеко не на первом месте. Но сегодня по этой схеме реализовано более 90% электрических сетей.

      Повсеместное использование общего проводника (PEN) привело даже к распространению термина «заземление» - именно так заземление называется «в цепи TN-C».

      Но к этому вопросу мы еще вернемся ниже, уже исходя из рекомендаций отечественного ПУЭ.

      Элементная база электрической сети.

      В общем, реальная сеть может иметь очень сложную и запутанную конфигурацию. А вот классическая «упрощенная» схема выглядит так:

      Рис. 4.3.Типовая схема питания.

      На рисунке наиболее распространенная на сегодняшний день версия TN-S-S, позволяющая обеспечить достаточный уровень электробезопасности в сети без коренной реконструкции последней.

      От внешнего ввода кабель наматывается на главный выключатель (3 фазы), затем делится на группы потребителей, каждая из которых имеет свой автоматический выключатель, и защиту в виде УЗО и ДПН.

      Можно выделить следующие элементы электросети:

      1.Автоматические выключатели. Устройства простые, состоят из переключателя и предохранителя. Они бывают с электромагнитным, тепловым и комбинированным расцепителями.

      В случае использования электромагнитного расцепителя срабатывание происходит при прохождении через обмотку тока выше определенного значения. Такие машины защищают сеть от короткого замыкания. Тепловой расцепитель более простой - биметаллическая пластина разрывает цепь, меняя форму при нагревании, и служит для защиты от длительной перегрузки.

      Следует отметить, что деление во многом условно, особенно сейчас распространены комбинированные типы устройств.

      2. УЗО - устройство защитного отключения, принцип действия которого основан на втором законе Кирхгофа (алгебраическая сумма токов в каждом узле равна нулю). Поскольку токи утечки неизбежно возникают при повреждении изоляции, когда человек касается провода под напряжением и других угроз безопасности, их можно отследить и отсоединить линию.

      Рис. 4.4. Устройство остаточного тока

      Таким образом, УЗО можно и нужно рассматривать как простой и надежный способ защиты от поражения электрическим током.Но есть и отрицательные моменты в использовании таких устройств.

      Установка УЗО на линиях питания телекоммуникационного и компьютерного оборудования может привести к прерыванию связи, потере данных и даже повреждению оборудования. Поэтому п. 7.1.81 ПУЭ прямо запрещает использование УЗО для потребителей электроэнергии, отключение которых может привести к опасным для потребителей ситуациям (классический пример - пожарная сигнализация).

      Понятно, что сбой связи также можно рассматривать как аварийную и неприемлемую ситуацию.И попробуйте защитить мощность узлов связи другими способами (хотя бывают случаи, когда с энергонадзором сложно поспорить).

      3. Автоматическая защита от перенапряжения (ДПН). Принцип работы прост - при превышении питающим напряжением порогового значения (обычно 260 В) ДПН отключает потребителя от повышенного напряжения (или дает команду на отключение УЗО).

      4. Кабели, как без них. Для начала сечение проводника можно определить исходя из силы тока - не более 10 ампер на 1 кв.мм (точнее нужно смотреть в специальных таблицах). Ток можно рассчитать как I = P / 220 для однофазной сети, где P - суммарная мощность потребителей.

      Жилы могут быть однопроволочными и многопроволочными. Многожильные провода обычно используются в случаях, когда требуется гибкость или мобильность (временные барьеры, переноски, удлинители). Однопроводные используются для фиксированных подключений, стационарной проводки. Многожильные более дорогие, имеют чуть больший диаметр, плохо закрепляются в болтовых соединениях.

      Следующим по важности параметром можно назвать материал проводов. В любой ситуации рекомендуется медный кабель, нежелательно алюминиевый. В индустрии компьютерных сетей и провайдеров просто нет задач, на которые влияет низкая стоимость алюминиевых проводов.

      Наверное, многим известны случаи, когда в обычной домашней электросети внезапно повышается напряжение почти до 380 вольт, что выводит из строя большинство электроприборов. Многие наверняка слышали о таких случаях от знакомых, а некоторые сами страдали от них.Из-за того, что большинство людей не понимают причин этого явления, они начинают предполагать, что где-то какой-то электрик случайно перепутал провода и подал на них неправильное напряжение. И тут начинается поиск виноватых, который никак не может дать верный результат без понимания истинной причины неисправности. На самом деле, чтобы в розетках появилось повышенное напряжение, совершенно не обязательно в этот момент совершать какие-либо действия и что-либо путать.Истинная причина такой неисправности - либо естественный износ проводки, либо ее недостаточно качественный монтаж, причем выполненный задолго до возникновения неисправности.

      Чтобы понять, как возникает эта неисправность, вы должны сначала изучить, как электричество обычно попадает к потребителю. Как правило, электропроводка, состоящая из двух проводов, по которым подается напряжение 220 вольт, существует исключительно на самом последнем участке пути к потребителю.Например, на сайте после группового щита с автоматами и электросчетчиками. А до этого щита электричество передается от поставщика по трехфазной электросети. Именно такая электрическая сеть является наиболее распространенным способом передачи электроэнергии, а не двухпроводная сеть с напряжением 220 вольт.

      Как работает трехфазная сеть? В трехфазной сети электричество передается по четырем проводам. Три из них называются фазами (например, A, B и C), а четвертый - нулевым проводом.Если не вдаваться в непонятные подробности со сдвигом фаз, то достаточно понять тот простой факт, что между нейтральным проводником и любой из фаз напряжение составляет 220 вольт, а между любыми двумя фазами - 380 вольт.

      Потребители подключаются к такой сети очень просто: одна квартира подключается к нейтральному проводу и фазе A, следующая квартира подключается к нейтральному проводу и фазе B, другая квартира подключается к нейтральному проводу и фазе C Схема распределения потребителей по фазам может быть разной, но она всегда преследует одну цель - максимально равномерно распределить потребителей по трем фазам, по возможности не допуская попадания более одной фазы в одну квартиру.Таким образом, без трансформаторов и других устройств в каждой квартире есть два провода, напряжение между которыми 220 вольт. А про напряжение 380 вольт многие потребители вообще ничего не знают.

      Теперь предположим, что на участке от электрического щита до поставщика произошла неисправность в проводке - обрыв какой-то провод. Если отключить какую-либо из фаз, то все просто - напряжения в какой-либо группе квартир просто не будет и ничего страшного не произойдет. Самое интересное начинается, если в нулевом проводе происходит обрыв.

      Подумайте, что происходит, когда нулевой проводник обрывается на участке от электрической панели до поставщика электроэнергии. В каждой из квартир есть определенное количество электроприборов, включенных в сеть. Все электроприборы внутри квартиры подключаются параллельно друг другу и могут считаться одной общей нагрузкой. Эта общая нагрузка подключена к одной из фаз и нулевому проводу. Те. в квартире, подключенной к фазе A, есть нагрузка A, в квартире, подключенной к фазе B, - нагрузка B, а в квартире, подключенной к фазе C, - нагрузка C.Все эти нагрузки подключаются к нулевому проводу в щите, который из-за обрыва линии не подключается больше, чем где-либо, и в данном случае это исключительно место соединения нагрузок между собой. А теперь представьте, что в квартире хозяева предусмотрительно вышли из дома, отключив от сети все электроприборы. В квартире Б кто-то работает с маломощным ноутбуком, а в квартире А кто-то включил мощный электрочайник.

      Теперь оказалось, что ноутбук подключен к фазе B и нулевому проводу, а чайник подключен к тому же нулевому проводу и фазе A.Но нейтральный провод за экраном обрезан и больше нигде не подключается, т.е. только подключает ноутбук к чайнику. Получается, что ноутбук соединен последовательно с чайником, и вместе они подключены к двум разным фазам A и B. Но мы знаем, что между фазами A и B напряжение составляет 380 вольт! Как будет распределяться напряжение между ноутбуком и чайником?

      Если бы мощность чайника была равна мощности ноутбука, то напряжение делилось бы между ними поровну и составило бы половину от 380 вольт на каждом из них.Но чайник в десять раз мощнее ноутбука, то есть один чайник равен двум десяткам параллельно подключенных ноутбуков. А с точки зрения одного ноутбука чайник - это почти то же самое, что просто кусок провода. Таким образом, напряжение на этих двух устройствах будет делиться обратно пропорционально их мощности - на мощном устройстве напряжение будет небольшим, а на маломощном - наоборот, большим. В этом случае напряжение на ноутбуке будет в десятки раз больше, чем на чайнике, и составит значение, очень близкое к 380 вольт.Понятно, что в этом случае практически гарантированно выйдет из строя блок питания.

      Описанное явление опасно не только тем, что приводит к поломке самих электроприборов, но и тем, что может привести к возгоранию. Например, современные электронные устройства в большом количестве содержат электролитические конденсаторы. При повышении напряжения на таком конденсаторе он взрывается, и взрыв может сопровождаться брызгами горючего электролита и искрой, от которой этот электролит вполне может загореться.

      Как уберечься от таких неприятностей? Есть два способа сделать это. Первый из них, хотя он не всегда может защитить ваш дом и ваши электроприборы, но он почти ничего не стоит - при выходе из дома физически отключите как можно больше электроприборов от сети. Очень многие современные электронные устройства - телевизоры, компьютеры, принтеры и т. Д. У них нет физического выключателя, и они остаются под напряжением даже в выключенном состоянии. При резком повышении напряжения эти электроприборы могут не только выйти из строя, но и стать причиной возгорания.А к тому же телевизору или принтеру можно быть абсолютно спокойным, если вы выйдете из дома и выдернете шнур из розетки.

      Второй способ немного сложнее и дороже, но и эффективнее. Он заключается в установке в вашем электрощите, помимо обычных автоматов и УЗО (УЗО защищает от поражения электрическим током, но не защищает от повышения напряжения), специального устройства для защиты от высокого напряжения. Это устройство называется реле напряжения РБУЗ! Это устройство автоматически отключит напряжение в вашей домашней электросети, когда оно поднимется выше 265 вольт или упадет ниже 170 вольт, и автоматически включит его, когда напряжение вернется в норму.

      Слышали ли вы когда-нибудь рассказы электриков о том, что в вашем доме сломался подъезд, что в одном из домов сразу перегорели лампочки, телевизоры, микроволновые печи, а также другие дорогие электроприборы, которым «повезло» получить 380 вольт? Никто не застрахован от обрыва или сгорания нулевого проводника, поэтому разумно было бы знать природу этого явления, причины аварийных ситуаций, а также способы защиты электроприборов.

      Чтобы ответить на этот вопрос, кратко рассмотрим систему электроснабжения многоквартирного дома. Фактически, вся электроэнергия, которую обеспечивает дом, имеет 3 фазы: фаза A, фаза B и, естественно, фаза C. Величина эффективного напряжения между любой парой фаз составляет 380 вольт. Согласно схеме соединения обмоток питающего трансформатора все фазы сводятся к одной точке, которая называется нулевой. Значение эффективного напряжения между любой фазой и нулем составляет 220 вольт.

      В любом многоквартирном доме питание производится путем равномерного распределения трехфазной линии по всем квартирам в подъезде. Например, если в подъезде 60 квартир, то первые 20 квартир питаются от фазы A, вторые - от фазы B, третьи - от фазы C. Все распределение энергии сбалансировано и очень равномерно. Если бы все люди были роботами, включающими и выключающими электроприборы, чтобы нагрузка на всех трех фазах была одинаковой, то наличие нулевого проводника в принципе не требовалось бы.Это легко проверить, выполнив простой школьный опыт с тремя лампочками мощностью 40 Вт, подключенными по схеме звезды в трехфазной сети. В такой идеализированной цепи потребления весь ток от 3-х фаз, сходящихся в нулевой точке, взаимно компенсируется, что дает возможность либо использовать нулевой провод с малым сечением, либо отказаться от него. Фактически, если нагрузка одинакова в трех фазах, то нулевой провод не нужен. В реальной жизни этого, естественно, не происходит.Например, в одной квартире подъезда может гореть одна лампа, во второй - телевизор работает, в третьей - вообще все выключено. Именно такое неравномерное распределение нагрузки по фазным цепям приводит к образованию нескомпенсированного тока, который должен проходить по нейтральному проводнику. Если сгорает, обрывается нейтральный проводник, то в одной из квартир, как правило, с наименьшим энергопотреблением в розетках появляются не обычные 220 Вольт, а 380 Вольт, «убивающие» всю бытовую электронику.Напротив, в квартирах, где потребляемая мощность была максимальной, падает напряжение. Естественно, соседи в этом не виноваты, ведь они не обязаны согласовывать с вами, когда включать электроприборы, а когда нет. Чтобы не допустить такого неприятного исхода, необходимо, во-первых, проверить надежность электрического контакта нулевого проводника, а во-вторых, установить средства индивидуальной защиты, которые быстро отключат нагрузку в вашем доме при повышении напряжения выше 270 вольт.Практика показывает, что даже обычный стабилизатор напряжения, установленный на компьютере и телевизоре, может избавить вас от дорогостоящего ремонта.

      Как и где обрывается нейтральный провод

      Существует две основные причины, по которым нейтральный провод сгорает или обрывается: 1 - недостаточный гальванический контакт нейтрального проводника в точках соединения, 2 - чрезмерный нескомпенсированный ток, протекающий по нулевой линии. Неравные импульсные скачки напряжения в сети, исходящие от компьютеров с дешевыми блоками питания, внезапное включение мощных нагрузок только на одну из фаз могут привести к сгоранию нейтрального провода.Обрыв провода происходит, как правило, в слабых местах - в плохо спаянных контактах, перекрутках, не советующих ПУЭ. Как говорится, где тонко, там ломается.

      Как защитить наши электрические приборы

      Помните, что скачки напряжения (выше 270 Вольт) и просадки (ниже 120 Вольт) опасны для сложной электроники. Как правило, при несоблюдении текущего напряжения импульсные блоки питания выходят из строя. Самый идеальный вариант защиты - это приобрести специальное реле контроля напряжения.Такое реле моментально отключает всю домашнюю нагрузку в те моменты, когда значение действующего напряжения выходит за допустимые пределы.

      .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *