Зарядное устройство для литиевых батарей: купить зарядное устройство li ion аккумуляторов по низкой цене

Содержание

Зарядные устройства для Li-ion аккумуляторов

Зарядка для литиевых аккумуляторов обязана соответствовать требованиям, которые обезопасят вашу батарею от поломки и возгорания при неправильной работе с ними:

  • Аккумулятор Li-ion крайне чувствителен к перезаряду выше установленного напряжения. Из-за перезарядки батарея может сломаться или даже загореться. Поэтому зарядное устройство для литий-ионных аккумуляторных батарей обязательно должно иметь отсечку, то есть барьер по максимальному напряжению.
  • Отключение заряда до того, как полный заряд аккумулятора совершится, также способно привести к преждевременному изнашиванию зарядного устройства для литий-ионных аккумуляторов.

Решение – зарядные устройства для аккумуляторов Li-ion для электровелосипедов, работающие по алгоритму CC/CV. Его суть состоит в том, что сначала батарея заряжается постоянным током, а после достижения определенного необходимого значения ток плавно уменьшается. При этом постепенное снижение создает условие, при котором напряжение продолжает быть постоянным.

Ваш аккумулятор заряжается, не переходя обозначенный выше опасный аварийный порог.

Как подобрать зарядное устройство для Li-ion аккумулятора?

Чтобы сделать правильный выбор и купить зарядное устройство для Li-ion аккумулятора, подходящее для вашей АКБ для электроцикла, обращайтесь в интернет-магазин VoltBikes. Наш менеджер бесплатно проконсультирует вас относительно выбора зарядного устройства для литиевых аккумуляторов и самого аккумулятора при необходимости. В нашем ассортименте представлены модели зарядных устройств для литий-ионных аккумуляторов с разным ценовым диапазоном, при этом качество всей нашей продукции неизменно остаётся высоким. В каталоге интернет-магазина Вольтбайкс вы без сомнений сможете подобрать и купить зарядку для литиевых аккумуляторов по доступной цене.

Выбирая зарядное устройство для аккумулятора Li-ion к электрическому велосипеду, обращайте внимание на ток заряда. Обычно берут зарядки с током половинного порядка от ёмкости батареи. Например: если у аккумулятора ёмкость 2000 мА, тогда ток зарядного устройства должен составлять 1 А.

Если ёмкость батареи – 700 мА, то ток заряда не должен превышать 350 мА. Если зарядка батареи слишком слабая по сравнению с ёмкостью литиевого аккумулятора, то на полный заряд понадобится слишком много времени.
Сделать заказ на Li ion аккумуляторы с доставкой в любой регион России Вы можете в каталоге!

Показать полностью

Зарядное устройство для литиевых аккумуляторов своими руками

Многие могут сказать, что за небольшие деньги можно заказать специальную плату из Китая, посредством которой можно заряжать литиевые аккумуляторы через USB. Она будет стоить около 1 доллара.

Но нет смысла покупать то, что легко собирается за несколько минут. Не стоит забывать и о том, что заказанную плату придется ждать около месяца. Да и покупное устройство не приносит столько удовольствия, как сделанное своими руками.
Первоначально планировалось собрать зарядное устройство на базе микросхемы LM317.

Но тогда для питания этой зарядки потребуется более высокое напряжение, чем 5 В.

Микросхема должна иметь разницу в 2 В между входящим и выходящим напряжениями. Заряженный литиевый аккумулятор имеет напряжение 4,2 В. Это не соответствует описанным требованиям (5-4,2=0,8), поэтому необходимо поискать другое решение.

Зарядку, которая будет рассматриваться в этой статье, способен повторить практически каждый. Ее схема довольно проста для повторения.


Идея этой схемы состоит в том, что здесь присутствует и ограничение зарядного тока аккумулятора, и стабилизация напряжения. Последняя построена на основе стабилитрона TL431.
В роли усиливающего элемента выступает транзистор. А резистор R1 регулирует ток заряда, значение которого зависит лишь от параметров аккумулятора. Рекомендуется использовать 1-ваттный резистор. Оставшиеся резисторы могут иметь мощность 250 или 125 мВт.
На выходе зарядника необходимо установить напряжение 4,2 В, поскольку оно соответствует напряжению полностью заряженного литиевого аккумулятора. Оно задается резисторами R2 и R3.
В сети имеется большое количество софта для расчета напряжения стабилизации TL431.

Одну из таких программ можно скачать в конце статьи.
Чтобы осуществить более точную настройку напряжения на выходе, можно поменять резистор R2 на многооборотный. Его сопротивление должно составлять порядка 10 кОм.


Можно применить и такую схему:


В качестве индикатора используется светодиод. Годится любой. Его цвет не имеет значения.
Настройка заключается лишь в установке напряжения 4,2 В на выходе схемы. Микросхема TL431 встречается довольно часто, особенно в БП компьютеров. Транзисторы можно использовать типа КТ819 или КТ805.
Представленная схема предназначается для заряда только одного Li-ion аккумулятора стандарта 18650.

Но, в принципе, можно использовать и для иных видов аккумуляторов. Требуется лишь выставить необходимое для этого значение выходного напряжения зарядки.
Если устройство не работает, то необходимо проверить управляющий вывод TL431 на наличие напряжения. Его значение должно быть не меньше 2,5 В.


Это наименьшее допустимое значение опорного напряжения для этой микросхемы.

Хотя иногда можно встретить и на 3 В.

Рекомендуется перед пайкой изготовить тестовый стенд для проверки работоспособности схемы, а по окончании сборки основательно проверить монтаж.

Прикрепленные файлы: АРХИВ 1:  АРХИВ 2

Автор: Алексей Алексеевич.


 

Зарядное устройство для литиевых аккумуляторов, выбор тока зарядки, LCD дисплей, от USB ЯРКИЙ ЛУЧ LC-15 4606400105480 - цена, отзывы, характеристики, фото

Зарядное устройство для литиевых аккумуляторов, выбор тока зарядки, LCD дисплей, от USB ЯРКИЙ ЛУЧ LC-15 4606400105480 работает от USB-адаптера (5 Вольт). Позволяет выбирать необходимый ток заряда аккумулятора. Предусмотрено наличие индикатора напряжения. Данная модель современного зарядного устройства совместима с широким ассортиментом аккумуляторов. При установке разряженного аккумулятора в базу необходимо строго соблюдать полярность.

  • Количество каналов заряда, шт 1
  • Ток заряда 0.5 А, 1 А
  • Индикатор ЖК дисплей
  • Аккумуляторы в комплекте нет
  • Размер блистера, мм 200х100х100
  • Тип заряжаемых аккумуляторов Li-Ion
  • Питание вход 5 В, выход 4.2 В
  • Типоразмер заряжаемых аккумуляторов 26650, 18650, 18500, 18350, 17670, 16340, 14500, 10440

Этот товар из подборок

18650

Показать еще Скрыть

Комплектация *

  • Устройство;
  • Упаковка.

USB-шнур в комплект не входит.

Параметры упакованного товара

Единица товара: Штука
Вес, кг: 0,08

Длина, мм: 200
Ширина, мм: 100
Высота, мм: 100

Преимущества

  • Размеры зарядного устройства для литиевых аккумуляторов, выбор тока зарядки, LCD дисплей, от USB ЯРКИЙ ЛУЧ LC-15 4606400105480: 170х100х80 мм;
  • Типоразмеры литиевых аккумуляторов, которые можно заряжать: 26650 / 18650 / 18500 / 18350 / 17670 / 16340 / 14500 / 10440;
  • Входные параметры: 5В, 0.5-1А;
  • Выходные параметры: 4.2В, 0.5А; 4.2В, 1А;
  • Цифровой экран базы показывает начало зарядки: процентную величину, ток заряда и напряжение на аккумуляторе.

Произведено

  • Россия — родина бренда
  • Россия — страна производства*
  • Информация о производителе
* Производитель оставляет за собой право без уведомления дилера менять характеристики, внешний вид, комплектацию товара и место его производства.

Указанная информация не является публичной офертой

На данный момент для этого товара нет расходных материалов

Сервис от ВсеИнструменты.ру

Мы предлагаем уникальный сервис по обмену, возврату и ремонту товара!

Вернем вам деньги, если данный товар вышел из строя в течение 6 месяцев с момента покупки.

Обратиться по обмену, возврату или сдать инструмент в ремонт вы можете в любом магазине или ПВЗ ВсеИнструменты.ру.

Гарантия производителя

Гарантия производителя 2 года

Как заряжать литиевый аккумулятор: виды зарядных устройств

Автор: Voltmarket

Время прочтения: 5 мин

На данный момент, в зависимости от сферы применения, наиболее популярными являются два вида аккумуляторных батарей: литиевые и свинцово-кислотные. Свинцовые аккумуляторы постепенно теряют популярность, так как не отличаются высокой плотностью энергии и длительным ресурсом. Если требуется максимально компактный источник питания, всегда выбор падает именно на литиевые АКБ.

Как и в случае со свинцово-кислотными аналогами, литиевые аккумуляторные батареи делятся на множество типов. Наиболее распространенными являются литий-ионные (Li-ion) и литий-полимерные (Li-pol). Именно они используются в мобильных гаджетах и даже в электрокарах. К примеру, в Tesla model S установлено более 7 тысяч литий-ионных аккумуляторов Panasonic Li-ion NCR18650B.

Большая часть техники, где используются литиевые аккумуляторы, имеют встроенные механизмы зарядки, поэтому пользователю требуется лишь подключиться к электросети. В иных случаях заряд требуется осуществлять самостоятельно. Чтобы аккумулятор служил долго, его требуется правильно заряжать.

Как заряжать литиевый аккумулятор, чтобы ему не навредить? Несмотря на очевидность, попробуем разобраться, чем заряжать литиевый аккумулятор можно, а чем - нельзя.

 

Что надо знать об аккумуляторе

Процесс заряда всегда зависим от того, какой аккумулятор заряжается. Нельзя одинаковым режимом пополнять заряд разных по характеристикам и типам моделей.

Если обобщить, то приблизительно подобрать правильный режим заряда можно при наличии данных о типе аккумулятора, его емкости и напряжении.

  • Тип АКБ. Почему важно знать тип? Достаточно сравнить номинальное напряжение литий-титанатного и литий-ионного аккумулятора. 2,4В и 3,7В соответственно. Нетрудно догадаться, к каким последствиям может привести заряд литий-титанатной батареи неким абстрактным зарядным устройством для литиевого аккумулятора, которое предназначено именно для Li-ion.
  • Емкость АКБ. Данный параметр заряжаемого аккумулятора важен из-за того, что ток, как правило, подбирается в процентном соотношении к номинальной емкости. Литий-ионные аккумуляторы, например, не рекомендуется заряжать током выше, чем 0,5С-1С (ток, равный 50% и 100% соответственно по отношению к емкости в ампер-часах). Этот показатель может значительно меняться от модели к модели. Яркий тому пример - литий-титанатные АКБ, некоторые модели которых позволяют зарядку токами, в сотни раз превышающими номинальную емкость.
  • Напряжение АКБ. Тип литиевого аккумулятора говорит лишь о напряжении одной ячейки или отдельного элемента питания, состоящего из одной ячейки. Тем не менее, для выбора зарядного устройства или подходящего режима на уже имеющемся ЗУ, надо знать суммарное напряжение всей цепи, так как оно может быть многократно нарощено путем последовательного соединения ячеек. В уже готовых аккумуляторах на основе множества ячеек напряжение всегда указано в маркировке.

Как зарядить АКБ

Нередко пользователи интересуются в сети, как заряжать литиевый аккумулятор мотоцикла. Учитывая, что литиевый АКБ для мотоцикла - это устройство фабричное, а не самодельное, вся важная информация, в том числе и ток заряда, обычно размещена на бирке. Другое дело - это когда имеется элемент питания, собранный из одной или множества ячеек, в том числе из упомянутых ранее аккумуляторов panasonic.

Важно учитывать наличие в аккумуляторе или в схеме защиты в виде BMS. BMS - это контроллер, который выполняет сразу множество функций. Он может защищать элементы питания от опасных значений напряжения и тока, балансировать элементы на последних стадиях заряда, а также осуществлять регулировку подаваемого напряжения. Зарядка литий-ионных аккумуляторов напрямую может представлять опасность для АКБ, особенно если используется кустарное ЗУ. Применять кустарные приспособления как на основе трансформатора с диодным мостом, так и на основе переделанных компьютерных блоков питания не рекомендуется даже для свинцово-кислотных АКБ.

Если по какой-то причине в литиевом аккумуляторе отсутствует BMS, на ЗУ требуется выставить напряжение, являющееся максимальным для данного типа батарей. К примеру, литий-ионные АКБ при полном заряде выдают 4,2В на одну ячейку, а LiFePO4 - 3,65. Если ток, при этом, превышает 0,5С, рекомендуется его ограничить. Если ЗУ не позволяет регулировать ток, понизить его можно путем снижения выходного напряжения. Как только оно будет достигнуто, его можно поднять до конечного показателя, соответствующего полному заряду аккумулятора.

В случае с литиевыми аккумуляторами, оборудованных BMS (к счастью, таких большинство), все куда проще. Контроллер попросту не допустит подачу опасных номиналов тока и напряжения. Единственное исключение - это когда пользователь самостоятельно припаивает BMS к своей сборке батарей. В таком случае нельзя гарантировать, что контроллер настроен верно в соответствии с требованиями, предъявляемыми конкретным блоком аккумуляторов. В принципе, если пользователь делает сборку АКБ и самостоятельно припаивает контроллер - видимо, он знает, что делает.

Как бы там ни было, лучшим способом безопасно и на 100% зарядить аккумуляторную батарею любого типа - это использовать умное зарядное устройство, работающее в автоматическом режиме. Такое устройство не просто выдает постоянный ток с определенным номиналом напряжения, а изменяет режим заряда в зависимости от стадии. Также важным преимуществом являются многочисленные настраиваемые параметры, позволяющие использовать один и тот же прибор с абсолютно разными сборками аккумуляторов.

К выбору зарядного устройства следует относиться максимально серьезно, так как во многом от качества заряда зависит срок службы аккумулятора. И если аккумулятор состоит из множества ячеек с высокой суммарной стоимостью, то даже небольшое увеличение срока службы экономит заметную сумму.

Зарядное li. Простой зарядник для литиевых аккумуляторов. Усовершенствование зарядного устройства для литиевых li — ion аккумуляторов

Литиевые аккумуляторы представляют гальваническую пару, в которой катодом служат соли лития. Независимо, литий-ионный, литий-полимерный сухой или гибридный аккумулятор, зарядное устройство подходит всем. Изделия могут иметь форму цилиндра, или герметичную мягкую упаковку, способ зарядки для них общий, отвечающий особенностям электрохимической реакции. Как зарядить Li-ion АКБ?

Существует несколько схем зарядки литиевых аккумуляторов. Чаще используется двухэтапная зарядка, разработанная компанией SONY. Не применяются устройства с применением импульсного заряда и ступенчатой зарядки, как для кислотных АКБ.

Зарядка любых разновидностей ионно-литиевых или литий-полимерных аккумуляторов требует строгое соблюдение напряжения. На одном элементе заряженного литиевого аккумулятора должно быть не больше 4,2 В. Номинальным напряжением для них считается 3,7 В.

Литиевые аккумуляторы можно ли заряжать быстро, не полностью? Да. Их всегда можно дозарядить. Работа батареи на 40-80 % емкости удлинняет АКБ срок годности.

Двухступенчатая схема зарядки батареи литиевых аккумуляторов

Принцип схемы CC/CV – постоянная сила зарядного тока/ постоянное напряжение. Как зарядить по этой схеме литиевый аккумулятор?

На схеме до 1 этапа зарядки изображен предэтап, для восстановления глубоко севшего литиевого аккумулятора, с напряжением на клеммах не менее 2,0 В. Первый этап должен восстановить 70-80 % емкости. Ток зарядки выбирают 0,2-0,5 С. Ускоренно заряжать можно, током 0,5-1,0 С. (С – емкость литиевых аккумуляторов, цифровое значение). Каким должно быть напряжение зарядки на первом этапе? Стабильным, 5 В. Когда достигнуто напряжение на клеммах аккумулятора 4,2 – это сигнал перехода на второй этап.

Теперь ЗУ поддерживает стабильное напряжение на клеммах, а зарядный ток по мере поднятия емкости снижается. При уменьшении его значения до 0,05-0,01 С зарядка закончится, устройство отключится, не допуская перезарядки. Общее время восстановления емкости для литиевого аккумулятора не превышает 3 часов.

Если литий-ионная батарея разряжена глубже 3,0 В, потребуется провести «толчок». Это заключается в зарядке малым током до тех пор, пока на клеммах не будет 3,1 В. Потом используется обычная схема.

Как контролируют параметры зарядки

Так как литиевые аккумуляторы работают в узком диапазоне изменения напряжения на клеммах, их нельзя перезаряжать выше 4,2 В и допускать разрядку ниже 3 В. Контроллер заряда установлен в ЗУ. Но каждый аккумулятор или батарея имеют собственные прерыватели, РСВ плату или РСМ модули защиты. В аккумуляторах установлена именно защита от того или иного фактора. В случае нарушения параметра, она должна отключить банку, разорвать цепь.

Контроллер – устройство, которое должно реализовать функции управления – переводить режимы CC/CV, контролировать количество энергии в банках, отключать зарядку. При этом сборка работает, нагревается.

Самодельные схемы зарядки, применяемые для литиевых аккумуляторов

  • LM317 – схема простого зарядного устройства с индикатором заряда. От USB порта не запитывается.
  • MAX1555, MAX1551- специально для Li Аккумуляторов, устанавливаются в адаптер питания от телефона в USB. Есть функция предварительного заряда.
  • LP2951- стабилизатор ограничивает ток, формирует стабильное напряжение 4,08-4,26В.
  • MCP73831- одна из простейших схем, подходит для зарядки ионных и полимерных устройств.

Если батарея состоит из нескольких банок, разряжаются они не всегда равномерно. При зарядке необходим балансир, распределяющий заряд и обеспечивающий равномерный заряд всех банок в батарее. Балансир может быть отдельным или встроенным в схему подключения АКБ. Устройство защиты батареи называется BMS. Зная как заряжать приборы, разбираясь в схемах, можно своими руками собрать схему защитного устройства для литиевого аккумулятора.

Как зарядить литиевый аккумулятор 12 вольт

Каждый литиевый аккумулятор представляет герметичное изделие цилиндрической, призматической формы, для Li-pol в мягкой упаковке. Все они имеют напряжение 3,6- 4,2 В и разную емкость, измеряемую в мА/ч. Если собрать последовательно 3 банки получится батарея с напряжением на клеммах 10,8 — 12,6 В. Емкость при последовательной зарядке, измеряется по самому слабому литиевому аккумулятору в связке.

Как правильно заряжать литиевый аккумулятор 18650 или Pol на 12 вольт, нужно знать. Для возвращения прибору емкости необходимо использовать ЗУ с контроллером. Важно иметь в сборке РСМ для каждой банки, защиту от недо- и перезаряда. Другая схема незащищенных литиево-ионных аккумуляторов – установка РСВ – управляющей платы, лучше с балансирами, для равномерной зарядки банок.

На зарядном устройстве необходимо задать напряжение, под которым работает батарея, 12,6 В. На приборной доске устанавливается количество банок и ток зарядки, равный 0,2- 0,5 С.

Как заряжать, предлагаем посмотреть видео, способ зарядки для 2, 3 литиевых аккумуляторов 18650, соединенных последовательно. Используется бюджетное зарядное устройство.

Варианты зарядки литий-ионных литиево-полимерных аккумуляторов:

  • Зарядное устройство приобретаемое в комплекте с прибором.
  • Использовать разъем USB от электронной техники – компьютера. Здесь можно получить ток 0,5 А, зарядка будет долгой.
  • От прикуривателя, купив переходник с набором портов. Выбрать тот, что соответствует параметрам батареи на 12 В.
  • Универсальное зарядное устройство «лягушка» с доком для установки гаджета. Как заряжать? Есть панель индикации заряда.

Специалисты советуют использовать для зарядки литиевых аккумуляторов штатное зарядное, остальные – только в форс-мажорных обстоятельствах. Однако, как зарядить литиевый аккумулятор без штатного зарядного устройства, нужно знать.

Как заряжать литиевые аккумуляторы шуруповерта

Шуруповерт на литиевых аккумуляторах почти всегда апгрейд. Если с Ni-Cd элементами были одни требования к зарядке, теперь они стали противоположными. В первую очередь нужно приобрести или собрать зарядник, именно для энергоемких литиевых аккумуляторов шуруповерта с форм фактором 18650. Схема зарядки применяется из двух этапов CC/CV.

Зарядка литиевого аккумулятора шуруповерта оптимальна, когда остается 20-50 % емкости – одна палочка на индикаторе. Чем чаще заряжать, тем стабильнее напряжение на клеммах и длиннее жизнь источника энергии. Чем ровнее напряжение на клеммах, тем больше циклов выдержит литиевый аккумулятор шуруповерта.

Если в шуруповерте 2 аккумулятора, один снимите, зарядите на 50-60 % и держите в резерве. Но второй заряжайте всегда по окончании работы, даже на 10 %. Лучшая температура для заряда +15-25 0 С. При минусе батарея шуруповерта не зарядится, но работать до -10 0 может.

Как заряжать литиевый аккумулятор шуруповерта зарядным устройством, зависит от схемы сбора батареи из банок. В любом случае, напряжение на ЗУ должно быть равно заявленному для прибора, а сила тока 0,5 С на первом этапе. На втором, напряжение клеммное стабильно, а сила тока падает, вплоть до окончания процесса.

Сколько заряжать литиевый аккумулятор

Время зарядки аккумуляторов определяется процессом восстановления емкости. Различают полный и частичный заряд.

Емкость измеряется в ампер-часах. Это значит, если подать заряд, численно равный емкости, то за час на клеммах создастся нужное напряжение, а запас энергии будет 70-80 %. Если емкость измеряется в единицах С, при быстрой зарядке следует подавать ток 1С-2С. Время быстрой зарядки около часа.

Для полного цикла зарядки батарей из нескольких элементов, соединенных последовательно, используют 2 этапа – CC/CV. Этап СС длится, пока на клеммах не появится напряжение, равное рабочему, в вольтах. Второй этап: при стабильном напряжении подается в банку ток, но с увеличением емкости, он стремится к нулю. Время заряда занимает около 3 часов, независимо от емкости.

Можно ли заряжать литиевый аккумулятор обычной зарядкой

Две разных системы аккумуляторов – литиевые и свинцовые требуют разного подхода к восстановлению емкости. Свинцовый АКБ не настолько требовательны к параметрам зарядки, как литиевые. Да и критерии заряда другие.

Для зарядки на первом этапе Li-ion, Li-pol требуется постоянный ток, на втором этапе постоянное напряжение. Если не контролировать параметры на первом этапе, возможен перезаряд. Но если в батарее есть встроенная защита – BMS – она справится. Поэтому несколько добавить энергии можно даже зарядником от телефона.

В зарядном устройстве для свинцовых АКБ главный показатель – стабильное напряжение. Для литиевых зарядников на первом этапе важен стабильный ток.

Правда, появились универсальные ЗУ, которые можно перенастроить на тот или иной режим зарядки. Перед вами российская разработка «Кулон».

Собираем простое зарядное для Литий-ионных аккумуляторов, практически из хлама.


Накопилось у меня большое количество аккумуляторов от ноутбучных аккумуляторов, формата 18650. Обдумывая как их заряжать, я решил не заморачиваться с китайскими модулями, да и закончились они у меня к тому времени. Решил собрать воедино две схемы. Датчик тока и плата BMS с аккумулятора мобильного телефона. Проверено на практике. Хоть и схема примитивная, но она работает и успешно, ни одного аккумулятора не пострадало.

Схема зарядного устройства

Материалы и инструменты

  • шнур USB;
  • крокодильчики;
  • плата защиты BMS;
  • пластиковое яйцо от киндера;
  • два светодиода разного цвета;
  • транзистор кт361;
  • резисторы на 470 и 22 ома;
  • двухватный резистор 2.2 ома;
  • один диод IN4148;
  • инструменты.

Изготовление зарядного устройства

Шнур USB разбираем и снимаем разъем. У меня это от какого-то аипада.


К крокодилам припаиваем провода.


Глубокую часть пластикового киндера утяжеляем, я залил гайку М6 термоклеем.


Спаиваем нашу простую схемку. Все сделано навесным монтажом и распаяно на плате BMS. Светодиод я применил сдвоенный, но можно два одноцветных. Транзистор выпаял из старой советской радио-аппаратуры.


Провода продеваем в отверстие второй, мелкой, половинке пластикового киндера. Припаиваем схему.


Все компактно запихиваем в пластиковое яйцо. Для светодиода делаем отверстие.


Подключаем к USB порту пк или китайской зарядке, у них тока все равно мало.
Во время зарядки горит оранжевым цвет. Т.е. горят оба светодиода.

Когда заряд окончен, горит зеленый, тот который подключен через диод IN4148.
Можно проверить схему, отключив от аккумулятора, загорится светодиод зеленого цвета, свидетельствующий об окончании заряда.

Цель этой статьи — научиться использовать обычные лабораторные блоки питания для зарядки литий-ионных аккумуляторных батарей, когда нет специального зарядного устройства. Такие АКБ очень распространены, вот только купить ЗУ для его грамотной зарядки может (или хочет) не каждый, часто заряжая их обычными регулируемыми БП. Давайте рассмотрим как это нужно делать.

Возьмём для примера литий-ионный аккумулятор от Panasonic ncr18650b на 3.6 V 3400 mah. Сразу предупредим, что зарядка этого типа аккумуляторов является довольно опасной, если сделать это неправильно. Некоторые образцы издевательства выдерживают, а некоторые китайские «сверхэкономные» не обладают защитами и могут взорваться.

АКБ с протекцией

Защищенный аккумулятор должен иметь следующие элементы защиты:

  • PTC , защита от перегрева и, косвенно, по току.
  • CID , клапан давления, отключит ячейку, если давление высокое внутри, что может возникнуть из-за слишком мощной зарядки.
  • PCB , плата защиты от чрезмерной разрядки, сброс выполняется автоматически или при помещении в зарядное устройство.

На приведенном выше рисунке показано, как устроена защита банки. Эта конструкция используется для любого типа современных защищённых литий-ионных батарей. PTC и клапан давления не будет видно, так как он является частью оригинальной батареи, но все остальные части защиты можно разглядеть. Ниже показаны варианты исполнения электронных защитных модулей, которые встречаются в стандартных круглых Li-Ion АКБ наиболее часто.

Зарядка лития

Вы можете найти типовую схему и принцип зарядки на ncr18650b батареи в даташите. Согласно документации, ток зарядки 1600 мA и напряжение 4.2 вольт.

Сам процесс состоит из двух этапов, первый — это постоянный ток, где необходимо задать значение в 1600 мA постоянного тока, а когда напряжение батареи достигает 4.20 V, начнется вторая стадия — постоянное напряжение. На этой стадии ток будет немного падать, и от ЗУ будет поступать около 10% от зарядного тока — это около 170 мА. Данное руководство относится ко всем литий-ионным и литий-полимерным аккумуляторам не только 18650 типа.

Вручную трудно выставлять и поддерживать на обычном блоке питания указанные выше режимы, поэтому лучше всё-таки использовать специальные микросхемы, предназначенные для автоматизации процесса заряда (схемы смотрите в этом разделе). Как крайний случай, можно заряжать стабильным током в 30-40% полной (паспортной) ёмкости АКБ, пропустив второй этап, но это несколько уменьшит ресурс элемента.

Схемы зарядных устройств

elwo.ru

Схемы индикаторов разряда li-ion аккумуляторов для определения уровня заряда литиевой батареи (например, 18650)

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить нагрузку либо использовать контроллеры разряда.

Вариант №1

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный — чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом — переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:
Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше — тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко — между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации — 3 мА, при выключенном светодиоде — 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 — разрешено, 0 — запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector’ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E/TT, CAT809TTBI-G;
  • на 2.93V: MCP102T-300E/TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
  • серия MN1380 (или 1381, 1382 — они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы — MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог — КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую «моргалку» на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза — коротка вспышка — опять пауза). Это позволяет снизить потребляемый ток до смешных значений — в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом — всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы — инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 — 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914:

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на «землю», можно перевести ее в режим «точка». В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения , т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339.

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке.

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В - светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Внимание!!! Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2.5В и ниже). Поэтому из всех имеющихся у вас плат необходимо отобрать только те экземпляры, которые срабатывают при правильном напряжении (3.0-3.2V).

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 — это два миллиомных полевика, собранных в одном корпусе.

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Пожалуйста, учитывайте тот факт, что схемы индикаторов разряда сами потребляют энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, предотвращающие глубокий разряд.

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот — в качестве индикатора заряда.

electro-shema.ru

Li-ion и Li-polymer аккумуляторы в наших конструкциях


Прогресс идет вперед, и на смену традиционно используемым NiCd (никель-кадмиевым) и NiMh (никель-металлогидридным) всё чаще приходят литиевые аккумуляторы.
При сравнимом весе одного элемента, литий имеет большую ёмкость, кроме того, напряжение элемента у них в три раза выше - 3,6 V на элемент, вместо 1,2 V.
Стоимость литиевых аккумуляторов стала приближаться к обычным щелочным батареям, вес и размер намного меньше, да к тому же их можно и нужно заряжать. Производитель говорит, 300-600 циклов выдерживают.
Размеры есть разные и подобрать нужный не составляет труда.
Саморазряд настолько низкий, что лежат годами и остаются заряженными, т.е. устройство остается рабочим когда оно нужно.

Основные характеристики литиевых аккумуляторов

Есть два основных типа литиевых аккумуляторов: Li-ion и Li-polymer.
Li-ion - литий-ионная батарея, Li-polymer - литий-полимерная батарея.
Отличие их в технологии изготовления. Li-ion имеют жидкий или гелевый электролит, а Li-polymer - твердый.
Это отличие повлияло на диапазон рабочих температур, немного на напряжение и на форму корпуса, которую можно придать готовому изделию. Ещё - на внутреннее сопротивление, но тут много зависит от качества изготовления.
Li-ion: -20 … +60°C; 3,6 V
LI-polymer: 0 .. +50°С; 3,7 V
Для начала надо разобраться, что это за вольты такие.
Производитель пишет нам 3,6 V, но это среднее напряжение. Обычно в даташитах пишут диапазон рабочих напряжений 2,5 V … 4,2 V.
Когда я первый раз столкнулся с литиевыми аккумуляторами, то долго изучал даташиты.
Ниже представлены их графики разряда при разных условиях.

Рис. 1. При температуре +20°C


Рис. 2. При разных температурах эксплуатации

Из графиков становится понятно, что рабочее напряжение при разряде 0,2С и температуре +20°C составляет 3,7 V … 4,2 V. Безусловно, батареи можно соединить последовательно и получить нужное нам напряжение.
На мой взгляд очень удобный диапазон напряжений, который подходит под многие конструкции, где используется 4,5V - они прекрасно работают. Да и соединив их 2 шт. получим 8,4 V, а это почти 9 V. Я их ставлю во все конструкции, где идёт батарейное питание и уже забыл, когда последний раз покупал батарейки.

Есть у литиевых аккумуляторов нюанс: их нельзя заряжать выше 4,2 V и разряжать ниже 2,5 V. Если разрядить ниже 2,5 V, восстановить не всегда удается, а выкидывать жалко. Значит, нужна защита от сверхразряда. Во многих батареях она уже встроена в виде мелкой платы, и её просто не видно в корпусе.

Схема защиты аккумулятора от сверхразряда

Бывает, попадаются аккумуляторы без защиты, тогда приходится собирать самому. Сложности это не представляет. Во-первых есть ассортимент специализированных микросхем. Во-вторых, кажется есть собранные модули у китайцев.

А в-третьих, мы рассмотрим, что можно собрать по теме из подножных материалов. Ведь не у всех есть в наличии современные чипы или привычка отовариваться на АлиЭкспресс.
Я пользуюсь вот такой суперпростой схемой многие годы и ни разу аккумулятор не вышел из строя!


Рис. 3.
Конденсатор можно не ставить, если нагрузка не импульсная и стабильно потребляющая. Диоды любые маломощные, их количество надо подобрать по напряжению отключения транзистора.
Транзисторы я применяю разные, в зависимости от наличия и тока потребления устройства, главное чтоб напряжение отсечки было ниже 2,5 V, т.е. чтоб он открылся от напряжения аккумулятора.

Настраивать схему лучше на монтажке. Берём транзистор и подавая на затвор напряжение через резистор сопротивлением 100 Ом … 10 К, проверяем напряжение отсечки. Если оно не более 2,5 V, то экземпляр годен, далее подбираем диоды (количество и иногда тип), чтобы транзистор начинал закрываться при напряжении примерно 3 V.
Теперь подаем напряжение от БП и проверяем чтобы схема срабатывала при напряжении примерно 2,8 - 3 V.
Иными словами, если напряжение на аккумуляторе опустится ниже порогового, которые мы установили, то транзистор закроется и отключит нагрузку от питания, предотвратив тем самым вредный глубокий разряд.

Особенности процесса зарядки литиевого аккумулятора

Что ж, наш аккумулятор разрядился, теперь пора его безопасно зарядить.
Как и с разрядкой, с зарядкой тоже не всё так просто. Максимальное напряжение на банке должно быть не более 4,2 V ±0.05 V! При превышении этого значения литий переходит в металлическое состояние и может произойти перегрев, возгорание и даже взрыв аккумулятора.

Заряд аккумуляторов осуществляется по достаточно простому алгоритму: заряд от источника постоянного напряжения 4.20 Вольт на элемент, с ограничением тока в 1С.
Заряд считается завершенным, когда ток упадет до 0.1-0.2С. После перехода в режим стабилизации напряжения при токе в 1С, аккумулятор набирает примерно 70-80% емкости. Для полной зарядки необходимо время около 2-х часов.
К зарядному устройству предъявляются достаточно жесткие требования по точности поддержания напряжения в конце заряда, не хуже ±0.01 Вольт на банку.

Обычно схема ЗУ имеет обратную связь - автоматически подбирается такое напряжение, чтобы ток, проходящий через аккумулятор, был равен необходимому. Как только это напряжение становится равно 4.2 Вольтам (для описываемого аккумулятора), больше поддерживать ток в 1С нельзя - далее напряжение на аккумуляторе возрастёт слишком быстро и сильно.

В этот момент аккумулятор заряжен обычно на 60%-80%, и для зарядки остальных 40%-20% без взрывов ток требуется снизить. Проще всего это сделать, поддерживая постоянное напряжение на аккумуляторе, и он сам возьмет такой ток, который ему необходим.
При снижении этого тока до 30-10 мА аккумулятор считается заряженным.

Для иллюстрации всего вышеописанного привожу график заряда, снятый с подопытного аккумулятора:


Рис. 4.
В левой части графика, подсвеченной синим, мы видим постоянный ток 0. 7 А, в то время как напряжение постепенно поднимается с 3.8 В до 4.2 В.
Также видно, что за первую половину заряда аккумулятор достигает 70% своей емкости, в то время как за оставшееся время - всего 30%.

«С» значит Capacity

Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).
Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 Ч емкость аккумулятора)/h или (0.1 Ч емкость аккумулятора)/h соответственно.

Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 Ч 720mAh/h = 360 мА, это относится и к разряду.

Зарядные устройства для литиевых аккумуляторов

У китайцев можно заказать по почте с бесплатной доставкой модули зарядных устройств. Модули контроллера зарядки TP4056 с гнездом мини-USB и защитой можно взять очень недорого.

А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.

Схема простого зарядного устройства на LM317


Рис. 5.
Схема с применением LM317 обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.

LM317 надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.

Схема простого зарядного устройства на LTC4054


Рис. 6.
Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).

Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»

Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120°).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.

Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле

I=1000/R,
где I - ток заряда в Амперах, R - сопротивление резистора в Омах.

Индикатор разрядки литиевого аккумулятора

Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.

Рис. 8.
Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.

Нюанс долговечности

Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более.

Эксплуатация и меры предосторожности

Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.
1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.

Невыполнение первых трех пунктов приводит к пожару, остальных - к полной или частичной потере ёмкости.

Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и ак

datagor.ru

Плата защиты Li-ion вместо зарядного устройства?

На форумах частенько советуют использовать плату защиты от какого-либо литиевого аккумулятора (или, как ее еще называют, PCB-модуль) в качестве ограничителя заряда. То есть сделать зарядное устройство для литий-ионного аккумулятора из платы защиты.

Логика такова: по мере заряда напряжение на Li-ion аккумуляторе возрастает и как только оно достигнет определенного уровня, плата защиты сработает и прекратит зарядку.

Этот принцип, например, применен в схеме зарядки для фонарика, которая то и дело всплывает в интернетах:

На первый взгляд данное решение выглядит вполне логично, не так ли? Но если копнуть немного глубже, то оказывается минусов гораздо больше, чем плюсов.

Мы не будем заострять внимание на том, что в качестве источника зачем-то выбран 8-вольтовый блок питания. Уверен, это сделано для того, чтобы на R1 рассеивалось целых 10 Вт мощности. Резистор будет греть вашу квартиру долгими зимними вечерами.

Вместо этого присмотримся к значению порогового напряжения, при котором срабатывает защита от перезаряда. Элементом, задающим этот порог, является специализированная микросхема.

Первый минус

В платах защиты применяют микросхемы разных типов (подробнее об этом читайте в этой статье), наиболее распространенные из них представлены в таблице:

Нормальным значением, до которого заряжают литий-ионный аккумулятор является 4.2 Вольта. Однако, как можно видеть из таблицы, большинство микросхем заточены под несколько… эээ… завышенное напряжение.

Это объясняется тем, что платы защиты рассчитаны на срабатывание при возникновении аварийной ситуации для предотвращения закритических режимов работы аккумулятора. Таких ситуаций при нормальной эксплуатации батарей вообще быть не должно.

Редкие перезаряды литиевого аккумулятора до напряжения, например, 4.35В (микросхема SA57608D), наверное, не приведут к каким-либо фатальным последствиям, но это не означает, что так будет всегда. Кто знает, в какой момент это приведет к выделению металлического лития из гелевого электролита, ведущего к неизбежному замыканию электродов и выходу аккумулятора из строя?

Уже одного этого обстоятельства достаточно чтобы отказаться от использования плат защиты в качестве контроллера зарядного устройства. Но если вам этого мало, читайте дальше.

Второй минус

Второй момент, на который обычно мало кто обращает внимание — это кривая заряда Li-ion аккумуляторов. Давайте освежим ее в памяти. На графике ниже показан классический профиль заряда CC/CV, что расшифровывается как Constant Current / Constant Voltage (постоянный ток/постоянное напряжение). Такой способ заряда уже стал стандартом и большинство нормальных зарядных устройств старается его обеспечивать.

Если внимательно посмотреть на график, то можно заметить, что при напряжении на аккумуляторе в 4. 2В, он еще не набрал свою полную емкость.

В нашем примере, максимальная емкость аккумулятора равна 2.1А/ч. В тот момент, когда напряжение на нем станет равным 4.2 Вольта, он оказывается заряжен всего лишь до 1.82 А/ч, что составляет 87% от своей макс. емкости.

И именно в этот момент плата защиты сработает и прекратит зарядку.

Даже если ваша плата сработывает при 4.35V (предположим, она собрана на микросхеме 628-8242BACT), это не изменит ситуацию коренным образом. Из-за того, что ближе к окончанию зарядки напряжение на аккумуляторе начинает возрастать очень быстро, разница в набранной емкости при 4.2В и 4.35В едва ли составит более нескольких процентов. А при использовании такой платы вы еще и сокращаете срок службы аккумулятора.

Выводы

Итак, резюмируя все вышесказанное, можно смело утверждать, что применять платы защиты (PCM-модули) вместо зарядки для литиевых аккумуляторов крайне нежелательно.

Во-первых, это приводит к постоянному превышению пределельно допустимого напряжения на аккумуляторе и, соответственно, снижению срока его службы.

Во-вторых, из-за особенностей процесса зарядки li-ion, применение платы защиты в качестве контроллера заряда не позволит использовать полную емкость литий-ионного аккумулятора. Заплатив за аккумуляторы емкостью 3400 мА/ч, вы сможете использовать не более 2950 мА/ч.

Для полноценной и безопасной зарядки литиевых аккумуляторов лучше всего применять специализированные микросхемы. Наиболее популярной на сегодняшний день является TP4056. Но с этой микросхемой нужно быть осторожным, она не имеет защиты от дурака переполюсовки.

Схема зарядного устройства на микросхеме TP4056, а также другие проверенные схемы зарядников для Li-ion аккумуляторов мы рассматривали в этой статье.

Пользуйтесь литиевыми аккумуляторами правильно, не нарушайте рекомендованные производителем режимы заряда и они выдержат не менее 800 циклов заряд/разряд.

Помните, что даже при самой идеальной эксплуатации, литий-ионные аккумуляторы подвержены деградации (необратимой потери емкости). Также они имеют довольно большой саморазряд, равный примерно 10% в месяц.

electro-shema.ru

Схемы контроллеров заряда-разряда Li-ion аккумуляторов и микросхемы модулей защиты литиевых батарей

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует . Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки — сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде — это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.

Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Сама микросхема DW01 — шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 — это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 — датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А — это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241.

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

Решение от Advanced Analog Technology — AAT8660 Series.

Пороговые напряжения составляют 2.5 и 4.32 Вольта. Потребление в заблокированном состоянии не превышает 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).

FS326 Series

Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора — FS326.

В зависимости от буквенного индекса напряжение включения защиты от переразряда составляет от 2.3 до 2.5 Вольт. А верхнее пороговое напряжение, соответственно, — от 4.3 до 4.35В. Подробности смотрите в даташите.

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T.

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы — вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки — порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608.

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

SA57608 потребляет достаточно большой ток в спящем режиме — порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor — контроллер заряда-разряда на микросхеме LC05111CMT.

Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда — 10А. Максимальное напряжение между выводами S1 и S2 — 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6×4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты — в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда — это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV — постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Схемы правильных зарядок для литиевых аккумуляторов приведены в этой статье.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу — при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.

electro-shema.ru

Литиевые аккумуляторы 18650 — особенности эксплуатации, напряжение и методы зарядки

Сложно найти область, где нет приборов, работающих на электрической энергии. Мобильные источники представляют аккумуляторы и одноразовые батарейки, питающие потребителя за счет превращения химической энергии в электрическую. Литий-ионные аккумуляторы представляют электронные пары с активными компонентами, содержащими соли лития. По форме аккумулятор напоминает одноразовую пальчиковую батарейку, но несколько большего размера, имеет сотни циклов зарядки, относится Li-ion аккумуляторам 18650.

Устройство li-ion аккумулятора 18650

Производство литий-ионных аккумуляторов основано на площадках компаний Sanyo, Sony, Panasonic, LG Chem, Samsung SDI, Skme, Moli, BAK, Lishen, ATL, HYB . Другие фирмы покупают элементы, переупаковывают их, выдавая за собственную продукцию. Они еще и пишут на термоусадочной пленке недостоверную информацию об изделии. В настоящий момент нет литий-ионных аккумуляторов 18650 емкостью выше 3600 мА-ч.

Основное отличие аккумуляторов от батарей в возможности многократной перезарядки. Все батарейки рассчитаны на напряжение 1,5 В, у изделия li-ion на выходе 3,7 В. Форм фактор 18650 означает, литиевый аккумулятор длиной 65 мм, диаметром 18 мм.

Характеристики рабочего режима литиевого аккумулятора 18650:

  • Максимальное напряжение 4,2 В, причем даже незначительная перезарядка значительно сокращает срок службы.
  • Минимальное напряжение 2,75 В. При достижении 2,5 В требуются особые условия восстановления емкости, При напряжении на клеммах2,0 В заряд не восстанавливается.
  • Минимальная рабочая температура -20 0 С. Зарядка при минусовой температуре не возможна.
  • Максимальная температура +60 0 С. При более высокой температуре можно ожидать взрыва или загорания.
  • Емкость измеряется Ампер/часах. Полностью заряженный аккумулятор емкостью 1 А/ч может выдать 1А тока в течение часа, 2 А продолжительностью 30 минут или 15 А на протяжении 4 минут.

Контроллер заряда li-ion аккумулятора 18650

Основные производители выпускают стандартные литиевые аккумуляторы 18650 без защитной платы. Этот контроллер, выполненный в виде электронной схемы, устанавливают сверху на корпус, несколько удлиняя его. Плата располагается перед отрицательной клеммой, защищает АКБ от КЗ, перезаряда, переразряда. Собирается защита в Китае. Есть приборы хорошего качества, встречается откровенное надувательство – недостоверная информация, емкость 9 000А/ч. После установки защиты корпус помещается в термоусадочную пленку с надписями. За счет дополнительной конструкции корпус становится длиннее и толще, может не поместиться в предназначенное гнездо. Типоразмер его может быть 18700, увеличиться за счет дополнительных действий. Если аккумулятор 18650 используется для создания батареи в 12 В, в которой предусмотрен общий контроллер заряда, прерыватели на отдельных Li -ion элементах не нужны.

Целью защиты является обеспечение работы источника энергии в заданных параметрах. При зарядке простым ЗУ защита не допустит перезаряда и вовремя отключит питание, если литиевый аккумулятор 18650 сел до напряжения 2,7 В.

Маркировка литиевых аккумуляторов18650

На поверхности корпуса аккумулятора нанесена маркировка. Здесь можно найти полную информацию о технических свойствах. Кроме даты изготовления, срока годности и бренда производителя, зашифровано устройство литиевых аккумуляторов 18650, и связанные с этим аспектом потребительские качества.

  1. ICR катод литий-кобальтовый. Аккумулятор обладает высокой емкостью, но рассчитан на небольшие токи потребления. Используют в ноутбуках, видеокамерах и подобной длительно работающей технике с небольшим потреблением энергии.
  2. IMR – катод литий-марганцевый. Обладает способностью выдавать большие токи, выдерживает разрядку до 2,5 а/ч.
  3. INR катод из никелатов. Обеспечивает высокие токи, выдерживают разряд до 2,5 В.
  4. NCR специфическая маркировка компании Panasonic. По свойствам аккумулятор идентичен IMR. Используются никелаты, соли кобальта, окись алюминия.

Позиции 2,3,4 называют «высокотоковыми», их используют для фонарей, биноклей, фотоаппаратов.

Литий-феррофосфатные аккумуляторы обладают способностью работать при глубоком минусе, восстанавливаются при глубоком разряде. Недооценены на рынке.

По маркировке можно определить, это литиевый заряжаемый аккумулятор буквы - I R. Если есть буквы C/M/F – известен материал катода. Будет указана емкость, обозначенная mA/h. Дата выпуска и срок годности расположены в разных местах.

Следует знать, нет у производителей литиевых многозарядных батарей изделий емкостью больше 3 600 мА/ч. Для того чтобы отремонтировать батарею ноутбука или собрать новую нужно приобретать аккумуляторы без защиты. Для использования в единичном экземпляре нужно покупать элементы с защитой.

Как проверить литиевый аккумулятор 18650

Если покупая дорогой прибор, вы сомневаетесь в правдивости информации на корпусе, есть способы проверки. Кроме специальных измерителей можно использовать подручные средства.

  • У вас есть зарядное устройство, можно засечь время полной зарядки определенной силой тока. Произведение времени на силу тока выявит приблизительную емкость li-ion аккумулятора.
  • Вам поможет интеллектуальное зарядное устройство. Оно покажет и напряжение, и емкость, но стоит прибор дорого.
  • Подключите фонарик, замерьте силу тока, и ждите, когда светоч потухнет. Произведение времени на силу тока дает емкость тока в А/ч.

Определить мощность аккумулятора можно по весу: литиевый аккумулятор 18650 емкостью 2000мА/ч должен весить 40 г. Чем выше емкость, тем больше вес. Но бракоделы научились подсыпать песок в корпус, для тяжести.

Зарядное устройство для литиевых аккумуляторов 18650

Литиевые аккумуляторы требовательны к параметрам напряжения на клеммах. Предельное напряжение 4,2 В, минимальное – 2,7 В. поэтому зарядное устройство работает как стабилизатор напряжения, создавая на выходе 5 В.

Определяющими показателями является ток зарядки и количество элементов в батарее, выставляемые своими руками. Каждый элемент (банка) должен получить полный заряд. Распределяется энергия с использованием схемы балансира для литиевых аккумуляторов 18650. Балансир может быть встроенным или контроль ведется вручную. Хорошее ЗУ стоит дорого. Сделать зарядку своими руками для li-ion может каждый, кто разбирается в электрических схемах и умеет паять.

Предлагаемая схема зарядного устройства, выполненного своими руками для литиевых аккумуляторов 18650, проста, будет отключать потребителя после зарядки самостоятельно. Стоимость комплектующих около 4 долларов, не дефицит. Приспособление надежное, не перегреется и не загорится.

Схема зарядного устройства для литиевых аккумуляторов 18650

В зарядном, сделанном своими руками, ток в цепи регулируется резистором R4. Сопротивление подбирают таким, чтобы первоначальный ток зависит от емкости литиевого аккумулятора 18650.Каким током заряжать li-ion аккумулятор, если его емкость 2 000 мА/ч? 0,5 – 1,0 С составит 1-2 ампера. Это и есть ток зарядки.

Каким током заряжать li-ion аккумулятор 18650

Есть порядок восстановления работоспособности литиевого аккумулятора 18650 после падения напряжения до рабочего. Мы восстанавливаем емкость, измеряемую в ампер-часах. Поэтому вначале подключаем Li-ion аккумулятор форм-фактор 18650 к ЗУ, потом своими руками устанавливаем ток зарядки. Напряжение изменяется по времени, начальное 0,5 В. Как стабилизатор, ЗУ рассчитан на 5 В. Для сохранения работоспособности, благоприятными считают параметры 40-80 % от емкости.

Схема зарядки li-ion аккумулятора 18650 предполагает 2 этапа. Вначале нужно поднять напряжение на полюсах до 4,2 В, далее постепенным снижением силы тока стабилизировать емкость. Заряд считается полным, если сила тока снизилась до значения 5-7 мА, когда питание отключится. Весь цикл зарядки не должен превышать 3 часа.

Самая простая одногнездная китайская зарядка для li-ion аккумуляторов 18650 рассчитана на зарядный ток в 1 А. Но следить за процессом придется самостоятельно, переключать своими руками. Универсальные зарядные устройства дороги, но имеют дисплей и самостоятельно ведут процесс.

Как правильно зарядить Li-ion аккумулятор 18650 в ноутбуке? Подключение комплекта источников энергии в гаджете через Pover Bank. Батарея может заряжаться от сети, но важно отключать питание, как только блок набрал емкость.

Восстановление li-ion аккумулятора 18650

Если АКБ отказывается работать, это может проявиться так:

  • Источник энергии быстро разряжается.
  • Аккумулятор сел и не заряжается вообще.

Быстро разрядиться может любой источник, если емкость пропала. Именно этим страшен перезаряд и глубокий разряд, от которых ставится защита. Но нет спасения от естественного старения, когда хранение на складе ежегодно снижает емкость банок. Способов регенерации нет, только замена.

Что делать, если аккумулятор не заряжается после глубокого разряда? Как восстановить li-ion 18650? После отключения аккумулятора контроллером, в нем еще есть запас энергии, способный выдать 2. 8-2.4 В напряжения на полюсах. Но зарядное устройство не распознает заряд до 3,0В, ему все, что ниже, то и ноль. Можно ли разбудить аккумулятор, запустить химическую реакцию вновь? Что нужно сделать, чтобы поднять заряд li-ion 18650 до 3,1 -3,3В? Нужно использовать способ «толкнуть» аккумулятор, дать ему необходимый заряд.

Не вдаваясь в расчеты, используйте предложенную схему, смонтировав ее с резистором 62 Ом (0,5Вт). Здесь использован блок питания на 5 В.

Если резистор греется, на литиевом аккумуляторе ноль, значит, есть КЗ или неисправен модуль защиты.

Как восстановить литиевый аккумулятор 18650, используя универсальное ЗУ? Выставить ток заряда 10 мА, и выполнить предзарядку, как написано в инструкции к прибору. После поднятия напряжения до 3,1 В зарядить в 2 этапа по схеме SONY.

Какие литиевые аккумуляторы 18650 лучше на Али Экспресс

Если для вас важна стоимость и качество литиевого аккумулятора 18650, воспользуйтесь ресурсом AliExpress. Здесь много товара, от разных производителей. Искомый аккумулятор пользуется спросом, его любят подделывать. Поэтому необходимо знать основные отличия хорошей модели от реплики.

Критично отнеситесь к указанной емкости. Только лучшие производители добились 3 600 А/ч, средние имеют показатель 3000-3200 А/ч. Защищенный аккумулятор больше на 2-3 мм в длину и чуть толще незащищенного. Но если вы собираете батарею, защита не нужна, не переплачивайте.

Добротные изделия и здесь стоят дороже. Учтите, что Ultrafire обещает 9000 мА/ч, но на деле оказывается в 5-10 раз ниже. Лучше использовать товар от проверенного производителя, стараться покупать всегда одну и ту же марку аккумулятора.

Предлагаем посмотреть порядок восстановления литиевого аккумулятора 18650

batts.pro

Простая зарядка Li-ion аккумуляторов - IT-блог

Привет. Есть у меня замечательный китайский фонарик с линзой. Светит отлично. Работает на одном Li-ion аккумуляторе форм-фактора 18650. Не так давно досталось мне несколько таких же живых аккумуляторов 18650 от сдохшей ноутбучной батареи. Так как аккумов стало много, надо было что-то делать с зарядкой этого хозяйства. Штатная зарядка от фонарика показалась мне очень подозрительной и неудобной. Откидная вилка для включения в сеть 220 короткая и не в каждую розетку подойдет, да еще и постоянно выпадает из настенной розетки. Шлак короче. В связи с тем что в последнее время руки чешутся что-то попаять, то очень захотелось мне намутить зарядку собственную.
Чуть погуглил и нашел дешевенький китайский контроллер заряда Li-ion аккумуляторов с минимумом обвеса.
В общем взят был за основу QX4054 в корпусе SOT-23-5. Даташит на китайском внизу поста. Есть похожие контроллеры от Linear Technology LT4054 , но ценник на них мне показался не гуманным да и где купить их в Украине я не нашел.(

Что умеет. Судя из того что удалось выяснить из даташита, умеет заряжать аккумуляторы током до 800mA и путем гашения подцепленого к нему светодиода отображать окончание зарядки. Заканчивает процесс заряда аккумулятора при достижении напряжения 4. 2Вольт либо есть зарядниый ток опустился до 25mA.

Такая вот букашенция. Привожу примерное описания выводов контроллера:

VCC - Понятно. Питание 4,5 - 6,5 Вольт.
GND - Общий вывод. То есть «земля».
PROG - Вывод для программирования тока заряда.
CHRG - Индикация окончания заряда.
BAT - Поключение плюсового вывода батареи.

Скажу стразу, что в процессе работы QX4054 греется достаточно сильно. Поэтому при расчете тока заряда, я выбрал значение 500mA. Номинал резистора при этом составляет 2кОм.
Формула для расчета очень простая и есть в даташите, но приведу ее и здесь.
I bat = (V prog /R prog )*1000

Где:
I bat - ток заряда в Амперах.
V prog - Берется из даташита и равно 1В
R prog - Сопротивление резистора в Омах.

Подставляем наши 0.5 Ампера: R prog = (V prog /0. 5)*1000.
Итого 2000 Ом. Меня это устраивает.
К сожалению этот контроллер не имеет защиты от неправильного включения аккумулятора, и если в рабочем состоянии перепутать полярность подключаемого аккумулятора, то QX4054 за секунду превращается в дым. Поэтому пришлось чуть доработать типовую схему включения. От идеи защитного диода пришлось отказаться, так как я побоялся что падение напряжения на диоде в 0.5 вольта приведет к перезаряду или же каким-то другим последствиям. Поэтому пошел путем включения защитного диода и самовосстанавливающегося предохранителя.
Не знаю насколько такой вариант технически правилен, но он спасает контроллер от выгорания. Плюс есть индикация ошибки подключения. Собственно схема ниже.

Печатку разводил под свой отсек для батарей 18650. Так что для заряда батарей в других форматах, перерисовывайте для себя. Печатная плата в diptrace без заливки:

С заливкой:

Вид сверху:

Травим платку, любым удобным для вас способом. Я, как обычно, делаю печатки при помощи пленочного фоторезиста.

Собираем.Вид почти готовой зарядки без корпуса. В наладке зарядка не нуждается. Правильно собранное устройство работает сразу. Подключаем источник питания 5В, вставляем разряженый аккумулятор и наблюдаем процесс зарядки.

При ошибочном подключении аккумулятора, загорается красный светодиод ошибки.

Осталось подыскать или склеить корпус для зарядки, и можно спокойно эксплуатировать. В качестве корпуса планирую использовать пластик из сгоревшего ноутбучного блока питания.
Если не полениться и добавить в схему линейный стабилизатор типа LM7805, то получится более универсальная зарядка с возможностью использовать различные блоки питания от 6 до 15 вольт. Если придется делать себе еще одну то пожалуй сделаю с LM7805.

Понравились мне мелкие микросхемы для простых зарядных устройств. покупал я их у нас в местном оффлайн магазине, но как назло они там закончились, их долго везли откуда то. Глядя на эту ситуацию, я решил заказать себе их небольшим оптом, так как микросхемы довольно неплохие, и в работе понравились.
Описание и сравнение под катом.

Я не зря написал в заголовке про сравнение, так как за время пути собачка могла подрасти микрухи появились в магазине, я купил несколько штук и решил их сравнить.
В обзоре будет не очень много текста, но довольно много фотографий.

Но начну как всегда с того, как мне это пришло.
Пришло в комплекте с другими разными детальками, сами микрухи были упакованы в пакетик с защелкой, и наклейкой с названием.

Данная микросхема представляет собой микросхему зарядного устройства для литиевых аккумуляторов с напряжением окончания заряда 4.2 Вольта.
Она умеет заряжать аккумуляторы током до 800мА.
Значение тока устанавливается изменением номинала внешнего резистора.
Так же она поддерживает функцию заряда небольшим током, если аккумулятор сильно разряжен (напряжение ниже чем 2.9 Вольта).
При заряде до напряжения 4.2 Вольта и падении зарядного тока ниже чем 1/10 от установленного, микросхема отключает заряд. Если напряжение упадет до 4. 05 Вольта, то она опять перейдет в режим заряда.
Так же имеется выход для подключения светодиода индикации.
Больше информации можно найти в , у данной микросхемы существует гораздо более дешевый .
Причем он более дешевый у нас, на Али все наоборот.
Собственно для сравнения я и купил аналог.

Но каково же было мое удивление когда микросхемы LTC и STC оказались на вид полностью одинаковыми, по маркировке обе - LTC4054.

Ну может так даже интереснее.
Как все понимают, микросхему так просто не проверить, к ней надо еще обвязку из других радиокомпонетов, желательно плату и т.п.
А тут как раз товарищ попросил починить (хотя в данном контексте скорее переделать) зарядное устройство для 18650 аккумуляторов.
Родное сгорело, да и ток заряда был маловат.

В общем для тестирования надо сначала собрать то, на чем будем тестировать.

Плату я чертил по даташиту, даже без схемы, но схему здесь приведу для удобства.

Ну и собственно печатная плата. На плате нет диодов VD1 и VD2, они были добавлены уже после всего.

Все это было распечатано, перенесено на обрезок текстолита.
Для экономии я сделал на обрезке еще одну плату, обзор с ее участием будет позже.

Ну и собственно изготовлена печатная плата и подобраны необходимые детали.

А переделывать я буду такое зарядное, наверняка оно очень известно читателям.

Внутри него очень сложная схема, состоящая из разъема, светодиода, резистора и специально обученных проводов, которые позволяют выравнивать заряд на аккумуляторах.
Шучу, зарядное находится в блочке, включаемом в розетку, а здесь просто 2 аккумулятора, соединенные параллельно и светодиод, постоянно подключенный к аккумуляторам.
К родному зарядному вернемся позже.

Спаял платку, выковырял родную плату с контактами, сами контакты с пружинами выпаял, они еще пригодятся.

Просверлил пару новых отверстий, в среднем будет светодиод, отображающий включение устройства, в боковых - процесс заряда.

Впаял в новую плату контакты с пружинками, а так же светодиоды.
Светодиоды удобно сначала вставить в плату, потом аккуратно установить плату на родное место, и только после этого запаять, тогда они будут стоять ровно и одинаково.

Плата установлена на место, припаян кабель питания.
Собственно печатная плата разрабатывалась под три варианта запитки.
2 варианта с разъемом MiniUSB, но в вариантах установки с разных сторон платы и под кабель.
В данном случае я сначала не знал, какбель какой длины понадобится, потому запаял короткий.
Так же припаял провода, идущие к плюсовым контактам аккумуляторов.
Теперь они идут по раздельным проводам, для каждого аккумулятора свой.

Вот как получилось сверху.

Ну а теперь перейдем к тестированию

Слева на плате я установил купленную на Али микруху, справа купленную в оффлайне.
Соответственно сверху они будут расположены зеркально.

Сначала микруха с Али.
Ток заряда.

Теперь купленная в оффлайне.

Ток КЗ.
Аналогично, сначала с Али.

Теперь из оффлайна.



Налицо полная идентичность микросхем, что ну никак не может не радовать:)

Было замечено, что при 4.8 Вольта ток заряда 600мА, при 5 Вольт падает до 500, но это проверялось уже после прогрева, может так работает защита от перегрева, я еще не разобрался, но ведут себя микросхемы примерно одинаково.

Ну а теперь немного о процессе зарядки и доработке переделки (да, даже так бывает).
С самого начала я думал просто установить светодиод на индикацию включенного состояния.
Вроде все просто и очевидно.
Но как всегда захотелось большего.
Решил, что будет лучше, если во время процесса заряда он будет погашен.
Допаял пару диодов (vd1 и vd2 на схеме), но получил небольшой облом, светодиод показывающий режим заряда светит и тогда, когда нет аккумулятора.
Вернее не светит, а быстро мерцает, добавил параллельно клеммам аккумулятора конденсатор на 47мкФ, после этого он стал очень коротко вспыхивать, почти незаметно.
Это как раз тот гистерезис включения повторной зарядки, если напряжение упало ниже 4.05 Вольта.
В общем после этой доработки стало все отлично.
Заряд аккумулятора, светит красный, не светит зеленый и не светит светодиод там, где нет аккумулятора.

Аккумулятор полностью заряжен.

В выключенном состоянии микросхема не пропускает напряжение на разъем питания, и не боится закоротки этого разъема, соответственно не разряжает аккумулятор на свой светодиод.

Не обошлось и без измерения температуры.
У меня получилось чуть более 62 градусов после 15 минут заряда.

Ну а вот так выглядит полностью готовое устройство.
Внешние изменения минимальны, в отличие от внутренних. Блок питания на 5 /Вольт 2 Ампера у товарища был, и довольно неплохой.
Устройство обеспечивает тока заряда 600мА на канал, каналы независимые.

Ну а так выглядело родное зарядное. Товарищ хотел попросить меня поднять в нем зарядный ток. Оно и родного то не выдержало, куда еще поднимать, шлак.

Резюме.
На мой взгляд, для микросхемы за 7 центов очень неплохо.
Микросхемы полностью функциональны и ничем не отличаются от купленных в оффлайне.
Я очень доволен, теперь есть запас микрух и не надо ждать, когда они будут в магазине (недавно опять пропали из продажи).

Из минусов - Это не готовое устройство, потому придется травить, паять и т.п., но при этом есть плюс, можно сделать плату под конкретное применение, а не использовать то, что есть.

Ну и в тоге получить рабочее изделие, изготовленное своими руками, дешевле чем готовые платы, да еще и под свои конкретные условия.
Чуть не забыл, даташит, схема и трассировка -

В прошлый раз я рассматривал вопрос о замене никель-кадмиевых NiСd аккумуляторов шуруповерта на литий-ионные. Теперь остался вопрос зарядки этих аккумуляторов. Литий ионные аккумуляторы формата 18650 обычно могут заряжаться до напряжения 4,20 В на ячейку с допустимым отклонением не больше 50 милливольт потому, что увеличение напряжения может привести повреждению структуры батареи. Ток заряда аккумулятора может находится в пределах от 0,1С до 1С(С-емкость аккумулятора). Лучше выбрать это значение согласно даташиту на конкректный аккумулятор. Я применил в переделке шуруповерта аккумуляторы марки Samsung INR18650-30Q 3000mAh 15A. Смотрим даташит-ток зарядки -1,5А.


Наиболее правильным будет провести заряд литиевых аккумуляторов в два этапа по методу CC/CV (constant current, constant voltage-постоянный ток, постоянное напряжение). Первый этап- должен обеспечен постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для аккумулятора с емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА.. Второй этап - зарядка аккумулятора постоянным напряжением, ток постоянно снижается. Поддерживается напряжение на аккумуляторе в пределах 4.15-4.25 В. Процесс заряда будет законченным когда току падет до 0.05-0.01С.
На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.
Принимая во внимание вышесказанное применил готовые электронные модули с Алиэкспресс. Понижающая плата CC/CV с ограничением по току на микросхеме XL4015E1 или на LM2596. Предпочтительней плата на XL4015E1 так, как она более удобна в настройках.



Характеристики платы на XL4015E1.
Максимальный выходной ток до 5 Ампер.
Напряжение на выходе: 0.8 В-30 Вольт.
Напряжение на входе: 5 В-32 Вольт.
Плата на LM2596 имеет аналогичные параметры, только ток чуть меньше - до 3 Ампер.
Плату для управление зарядом литий-ионной батареи выбрана ранее. В качестве источника питания можно применить любой со следующими параметрами-выходное напряжение не ниже 18 Вольт (для схемы 4S), ток не ниже 2-3 Ампер. В качестве первого примера построения зарядного устройства для литий-ионных аккумуляторов шуруповерта я использовал адаптер 220\12 Вольт, 3 Ампера.



Предварительно я проверил какой ток он может выдать пир номинальной нагрузке. Подключил к выходу автолампу и выждал полчаса. Выдает свободно без прегруза 1,9 Ампер. Также измерил температуру на радиаторе транзистора-40 градусов Цельсия. Вполне неплохо-нормальный режим.


Но в этом случае не хватает напряжения. Это легко исправимо, с помощью всего одной копеечной радиодетали-переменного резистора (потенциометр) на 10-20 кОм. Рассмотрим типовую схему адаптера.


На схеме есть управляемый стабилитрон TL431, он находится в цепи обратной связи. Его задача поддерживать стабильное выходное напряжение в соответствие с нагрузкой. Через делитель из двух резисторов он подключен к плюсовому выходу адаптера. Нам нужно припаять к резистору(или выпаять его совсем и на его место припаять, тогда напряжение будет регулироваться и в меньшую сторону) который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор. Вращаем ось потенциометра и выставляем нужное напряжение. В моем случае я задал 18 Вольт(небольшой запас от 16,8 В для падения на плате CCCV). Если у вас напряжение указанное на корпусах электролитических конденсаторах стоящих на выходе схемы будет больше нового напряжения они могут взорваться. Тогда надо заменить их с запасом 30% по напряжению.
Далее подключаем к адаптеру плату для управление зарядом. Выставляем подстроечным резистором на плате напряжение 16,8 Вольт. Другим подстроечным резистором выставляем ток 1,5 Ампера, предварительно подключаем тестер в режиме амперметра к выходу платы. Теперь можно подсоединить литий-ионной сборку шуруповерта. Зарядка прошла нормально, ток к концу заряда упал до минимума, батарея зарядилась. Температура на адаптере была в пределах 40-43 градусов Цельсия, что вполне нормально. В перспективе можно в корпусе адаптера для улучшения вентиляции (особенно в летнее время) насверлить отверстия.
Окончание заряда батареи можно увидеть по включению светодиода на плате на XL4015E1. В данном примере я использовал другую плату на LM2596 так, как случайно в ходе экспериментов сжег XL4015E1. Советую делать зарядку лучше на плате XL4015E1.

У меня есть еще штатное зарядное от другого шуруповерта. Оно рассчитано на зарядку никель-кадмиевых аккумуляторов. Хотелось использовать это штатное зарядное чтобы заряжать и никель-кадмиевых аккумуляторы и литий-ионные.


Это решилось просто- припаял к выходным проводам (красный плюс, черный минус) провода к плате CCCV.
Напряжение холостого хода на выходе штатное зарядного было 27 Вольт, это вполне подходит для нашей зарядной платы. После подключил так же как и варианте с адаптером.


Окончание зарядки здесь мы видим по изменению цвета свечения светодиода(переключился с красного на зеленый).
Саму плату CCCV я поместил в подходящую пластмассовую коробку, выведя провода наружу.



Если у вас штатное зарядное на трансформаторе то можно подключить плату CCCV после диодного мостика выпрямителя.
Способ переделки адаптера под силу начинающим и может пригодиться в других целях, в результате получим бюджетный блок для питания различных устройств.
Всем желаю здоровья и успехов в покупках и жизни.
Подробнее процесс работы с зарядным устройством для переделанного шуруповерта можно посмотреть в видео

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +27 Добавить в избранное Обзор понравился +28 +51

Зарядное устройство для литиевых аккумуляторов

Зарядное устройство для литиевых аккумуляторов лучше приобретать оригинальное. Оно долговечное, практичное, удобное в использовании. При эксплуатации такого изделия необходимо соблюдать меры предосторожности. Нельзя допускать полной разрядки батареи, в противном случае она утратит часть емкости, но зарядка при этом не пострадает.

Так выглядит зарядное устройство для литиевых аккумуляторов.

Оригинальные зарядные устройства

Литий-ионные аккумуляторы устанавливают в смартфоны, видеокамеры, светильники. Чтобы такие АКБ хорошо функционировали, необходимо подбирать к ним качественную зарядку. Современные Li-ion батареи имеют смарт-систему, контролирующую уровень заряда.

Она отслеживает и анализирует функции элементов питания. Зарядка идет с применением специальной технологии, которая постоянно подает электроэнергию. Эта технология нужна для того, чтобы Li-ion не перезаряжался.

Нельзя полностью разряжать литий-ионные АКБ, в противном случае они будут функционировать недолго. Рекомендуется выполнять зарядку, не дожидаясь полной разрядки. Лучше, чтобы элементы питания всегда были заряженными на 25-30%.

Оригинальные зарядные устройства имеют следующие преимущества:

  • удобство в эксплуатации;
  • ценовая доступность;
  • наличие гарантийного талона.

Такие изделия обеспечивают функционирование разных видов аккумуляторов. Покупателю не нужно приобретать несколько зарядок.

Устройства снабжены USB-разъемом, микропроцессором, а также жидкокристаллическим дисплеем, позволяющим наблюдать за процессом подачи электроэнергии: на дисплее видны емкость и уровень тока.

Зарядка литий-ионных аккумуляторов

Прибор, предназначенный для АКБ литий-ионного типа, имеет ряд сходств с зарядным устройством для свинцово-кислотных аккумуляторов. Но у Li-ion более высокое напряжение на «банках» (элементы питания). При значении 4,2 В не осуществляется подача электроэнергии. Качественная Li-ion батарея заряжается 2-3 часа. Время зависит от того, какая у нее емкость.

Чтобы продлить срок службы зарядного устройства, следует приобретать оригинальное. Такой прибор дает АКБ необходимый уровень напряжения.

Качественная зарядка работает правильно и максимально долго, она снабжает электроэнергией все элементы.

Применение некачественного устройства может привести к тому, что компоненты, получающие электрический ток, перезарядятся, в результате пострадает химическая система аккумулятора. Из-за этого будет утрачена емкость.

Для продления срока службы зарядки нужно хранить АКБ, заряженные на 30-50 %. Батареи, которые долго не получают электроэнергию, лучше вынимать. Нельзя хранить слабо заряженный литий-ионный аккумулятор, иначе он перестанет функционировать.

Длительная «спячка» наносит вред, и устройство не удается восстановить. Перезарядка тоже не рекомендована. У Li-ion нет эффекта памяти. Чтобы химическая система была в норме, следует разряжать батарею до 20% и заряжать до 95%.

Непрерывная зарядка тоже может нанести вред. Чтобы элементы питания функционировали долго, надо ставить на зарядку Li-ion, когда у него остается 30% электроэнергии. На литий-ионный аккумулятор плохо воздействует перезарядка и полная разрядка.

Автоматическое зарядное устройство для литий ионных АКБ на 48v 2А.

Литий-полимерные (Li-Po) аккумуляторы заряжают по такому же принципу. Устройства доступны по цене, но не всегда корректно показывают окончание процесса зарядки.

Li-Po нужно эксплуатировать, соблюдая меры предосторожности, иначе они выйдут из строя навсегда.

Уровень заряда не должен быть выше значения 4,2 вольт она одну банку. Не следует допускать того, чтобы АКБ нагревалась до 60°C. Важно хранить Li-Po разряженными.

Простейшее устройство зарядки одного элемента

Для создания прибора требуется установить выходное напряжение 4,2 В, используя резистор R8. Батарея не должна быть подключена. Далее нужно установить зарядный ток, взяв резисторы R4 и R6 (у R1 мощность более 1 Вт).

Аккумулятор заряжен, когда светодиод не горит. Нельзя использовать такое устройство слишком долго, особенно после того, как АКБ разрядится полностью. Для Li-ion можно применять микросхему lm317, стоит она недорого (до 50 руб).

Зарядное устройство для литий-ионного аккумулятора можно сконструировать своими руками. Но следует иметь навыки, в противном случае может получиться нефункционирующее устройство. Перед тем как приступать, надо проверить детали, которые будут использоваться.

Для измерения уровня мощности следует использовать вольтметр. Процедура крайне важна, и без нее можно допустить ошибку. Нужно выявить мощность банок, определить их максимальный заряд.

Для безопасной эксплуатации «самоделки» надо добиться снижения порога. Важно придерживаться этих правил, иначе детали устройства перегреются, начнет выделяться вредный газ. Некачественная самоделка может взорваться.

Для максимально корректной эксплуатации прибора требуется выходное напряжение 4,2 В. АКБ не должна быть подключена. При разрядке батареи светодиодная деталь загорается, а при полной зарядке – гаснет. Необходимо взять корпус, установить на нем блок питания и дополнительные детали. Можно купить элементы ардуино.

Следует сделать полоски из латуни, закрепив их на гнездах. Контакты должны располагаться на расстоянии от батареи.

Нужно будет установить переключатель (с его помощью можно будет регулировать полярность гнезд).

На завершающем этапе необходимо будет проверить работу самодельного аккумулятора. У людей без специального образования вряд ли получится собрать зарядное в домашних условиях.

Усовершенствование зарядного устройства для Li-ion аккумуляторов

Для зарядки литий-ионных батарей, имеющих спаянные элементы, следует использовать контрольную микросхему. Лучше подавать электрический ток в каждую ячейку по отдельности. Схема контролирует уровень заряда, без нее АКБ может прийти в негодность. В некоторых случаях перегревшийся блок воспламеняется.

Зарядное устройство для литиевых аккумуляторов 12 вольт – устройство балансира

Термином «балансировка» обозначают режим подачи электроэнергии, в процессе которого контролируются элементы батареи. Благодаря ему напряжение чрезмерно не возрастает и не снижается до критических значений.

Литий-ионная АКБ устроена так, что отдельные ее элементы заряжаются быстрее, из-за чего могут пострадать остальные детали. Если неправильно заряжать такой аккумулятор, он быстро «износится». Балансир схемы имеет элементы, получающие много энергии. Они контролируют подачу электроэнергии в отдельные ячейки.

Если все элементы аккумулятора Li-Ion разряжаются, в дальнейшем возникают трудности с зарядкой. Если же из строя выходит хотя бы одна ячейка, появляется угроза для АКБ. В этом случае можно применить схему, которая оснащена регулируемым стабилизатором TL431.

Зарядное устройство для литиевых аккумуляторов 12 вольт.

Импульсное зарядное устройство для литиевых аккумуляторов

Быстрозарядные устройства имеют импульсные преобразователи ШИМ и работают следующим образом. Вначале ток 220 В подается на сборку D1 и D4. После этого сглаживается пульсация на конденсаторе с маркировкой C1.

Он получает напряжение 300 В, которое обеспечивает питание аккумулятора импульсного типа с трансформатором T1. Для функционирования микросхемы А1 применяется резистор R1. Затвор полевого транзистора VT1 получает импульсы и раскрывается.

Первичная обмотка импульсного трансформатора Т1 получает электроэнергию от цепи транзистора. Запускается трансформатор, импульсы идут на вторую обмотку.

Импульсы нужны для того, чтобы улучшить функционирование микросхемы A1. Если диоды Д6 становятся неисправными, источник начинает работать в режиме пульсации.

Быстрозарядное устройство g4 1h ryobi one bcl14181h

Ryobi BCL14181H – оригинальное универсальное устройство, используемое для подачи электроэнергии в литий-ионные и NiCd аккумуляторы. Оно имеет светодиодные датчики и опцию поддержания заряда.

Ryobi BCL14181H лучше эксплуатировать при положительных температурах: от +1 до +45°C. С Ryobi BCL14181H АКБ заряжается 40-60 минут. Зарядное устройство предъявляет требования к аккумуляторам: их емкость должна составлять 1. 7/4 Ач. Устройство весит 800 г.

Ремонт зарядной станции

Если устройство выходит из строя, следует обратиться к профессиональному мастеру. В некоторых случаях можно самостоятельно устранить проблему. Если не функционирует индикатор питания, нужно убедиться в том, что не нарушена целостность цепи первичной обмотки трансформатора.

Для защиты обмотки трансформатора от перегрева надо установить специальный предохранитель. Он разорвет цепь питания, когда температура достигнет значения +120°C. Чтобы схема снова начала функционировать, нужно выполнить спаивание концов обмотки. Должен получиться один целостный элемент.

В этом случае трансформатор не будет иметь защиты, и во время работы зарядки случится короткое замыкание. Установка сетевого предохранителя поможет избежать такой проблемы.

Зарядные устройства для Li-ion/Ni-MH аккумуляторов

Зарядные устройства для Li-ion/Ni-MH аккумуляторов нужны для того, чтобы заряжать различные батареи для фонарей и не только. Есть множество различных видов таких изделий, так как и много видов самих аккумуляторов. И чтобы правильно выбрать и купить зарядное устройство для литий-ионных аккумуляторов, нужно разбираться в их видах и типах.

Типы зарядных устройства

Всего существует 3 типа зарядок:

  1. Простые. Самые дешёвые и простые зарядные устройства. При полной зарядке не отключается, что и является её главным минусом. Пользователь должен постоянно следить за процессом зарядки, так как перезаряд не идёт на пользу аккумуляторам. Это очень неудобно, а потому приобретать такую зарядку не стоит. Тем более, что у нас в наличии их и нет.
  2. Автоматические. Отличаются тем, что как только достигается полный заряд, отключаются. Автоматическое зарядное устройство для литий-ионных аккумуляторов сможет намного продлить их жизнь. Кроме того, в некоторых устройствах есть функция разряда. Покупать такие изделия стоит тем пользователям, которые просто хотят получить качественную зарядку батарей, но не нуждаются в широком функционале (измерения ёмкости или напряжения). Автоматические зарядные устройства для Li-ion/MH аккумуляторов помечаются буквой X.
  3. Интеллектуальные. В них есть определённый ряд дополнительных функций, которые позволяют не только зарядить аккумулятор, но и оценить его состояние, тем самым повысить срок его эксплуатации. Часто они также называются профессиональные зарядные устройства для аккумуляторов (литий-ионные и другие). Основной функционал: выбор режима, защита от перезаряда и переразряда, тестирование, разряд, регулировка силы тока, капельная зарядка. Помечаются умные зарядные устройства для Li-Ion аккумуляторов (и не только для этих) у компании Fenix буковкой C.

Другие характеристики зарядных устройств

Выбор нужно делать, основываясь не только на типе зарядки, но и других характеристик:

  1. Число одновременно заряжаемых аккумуляторов. Меняется по числу слотов под батареи. Количество заряжаемых аккумуляторов может быть от 1 до 4. Купить USB зарядное устройство для Ni-MH аккумуляторов (или для Li-Ion) стоит тогда, когда есть много устройств с подобными батареями.
  2. Независимые каналы заряда. Даже если портов несколько, то не все могут работать с аккумуляторами разных типов и с различными характеристиками. Так что если выбираете автоматические зарядные устройства для никель-металлгидридных аккумуляторов и литий-ионных батарей одновременно, то обязательно смотрите на этот параметр.
  3. Ток зарядки и разрядки. Если у этого параметра большая разница между максимальным и минимальным значением, то настройка значения силы тока будет точнее. И чем выше сам ток, тем быстрее будет производиться зарядка и разрядка. Но мощные модели нужны не всегда, так как это может привести к возгоранию и перегреву.

Ещё зарядно-разрядное устройство для Li-Ion аккумуляторов может иметь защиту от неправильного подключения полярности и защиту от перегрева. Это очень важно, если вы не хотите, чтобы по неосторожности с ним случились какие-то проблемы. Кроме того, иногда сама зарядка со вставленным аккумулятором может работать, как Power bank, чтобы заряжать другие устройства.

Покупайте на fenix-russia.ru

Fenix-russia.ru – официальный дилер известной компании Fenix. Поэтому если вам нужно купить USB зарядное устройство для Li-Ion аккумулятора в Москве, Санкт-Петербурге или другом городе, то вам стоит обратиться к нам. Низкая цена, большой выбор и только оригинальные изделия – если потребуется гарантия, то никаких проблем не возникнет. Кроме того, если вы не знаете какое именно купить USB зарядное устройство для никель-металлгидридных аккумуляторов, то обращайтесь в онлайн-чат или по номерам телефона. Наши специалисты легко подберут вам то, что вам точно подойдёт. Звоните или пишите уже сегодня, мы всегда рады клиентам. 

Зарядное li. Простой зарядник для литиевых аккумуляторов. Усовершенствование зарядного устройства для литиевых литий-ионных аккумуляторов

Литиевые аккумуляторы представляют гальваническую пару, в которой катодом леса лития. Независимо, литий-ионный, литий-полимерный сухой или гибридный аккумулятор, зарядное устройство подходит всем. Продукты могут иметь форму цилиндра, или герметичную мягкую упаковку, способ зарядки для них, отвечающий особенности электрохимической реакции.Как зарядить Li-ion АКБ?

Существует несколько схем зарядки литиевых аккумуляторов. Чаще используется двухэтапная зарядка, разработанная компанией SONY. Не применяются устройства с использованием импульсного заряда и ступенчатой ​​зарядки, как для кислотных АКБ.

Зарядка различных типов ионно-литий-полимерных аккумуляторов требует строгое соблюдение напряжения. На одном элементе должно быть заряженного литиевого аккумулятора быть не больше 4,2 В. Номинальным напряжением для них считается 3,7 В.

Литиевые аккумуляторы можно ли заряжать быстро, не полностью? Да. Их всегда можно дозарядить. Работа батареи на 40-80% удлинителя удлинителя АКБ срок годности.

Двухступенчатая схема зарядки батареи литиевых аккумуляторов

Принцип схемы CC / CV - постоянная сила зарядного тока / постоянное напряжение. Как зарядить по этой схеме литиевый аккумулятор?

На схеме до 1 этапа зарядки изображен предэтап, для восстановления севшего литиевого аккумулятора, с напряжением на клеммах не менее 2,0 В.Первый этап должен восстановить 70-80% емкости. Ток зарядки выбирают 0,2-0,5 С. Ускоренно заряжать можно, током 0,5-1,0 С. (С - емкость литиевых аккумуляторов, цифровое значение). Каким должно быть напряжение зарядки на первом этапе? Стабильным, 5 В. Когда достигнуто напряжение на клеммах аккумулятора 4,2 - это сигнал перехода на второй этап.

Теперь ЗУ поддерживает стабильное напряжение на клеммах, а зарядный ток по мере поднятия снижается. При уменьшении его значения до 0,05-0,01 С зарядка закончится, устройство отключится, не допуская перезарядки.Общее время восстановления для литиевого аккумулятора не больше 3 часов.

Если литий-ионная батарея разряжена глубже 3,0, потребуется, провести «толчок». Это заключается в том, что в зарядке малым током до тех пор, пока на клеммах не будет 3,1 В. Потом используется обычная схема.

Как контролируют параметры зарядки

Так как литиевые аккумуляторы работают в узком диапазоне изменения напряжения на клеммах, их нельзя перезаряжать выше 4,2 В и допускать разрядку ниже 3 В.Контроллер заряда установлен в ЗУ. Но каждый аккумулятор или батарея имеют собственные прерыватели, РСВ плату или РСМ модули защиты. В аккумуляторах установлена ​​именно защита от того или иного фактора. В случае изменения, она должна отключить банку, разорвать цепь.

Контроллер - устройство, которое должно реализовать функции управления - переводить режимы CC / CV, контролировать количество энергии в банках, отключить зарядку. При этом сборка работает, нагревается.

Самодельные схемы зарядки, применяемые для литиевых аккумуляторов

  • LM317 - схема простого зарядного устройства с индикатором заряда.От USB порта не запитывается.
  • MAX1555, MAX1551 - специально для Li Аккумуляторов, устанавливаются адаптер питания от телефона в USB. Есть функция предварительного заряда.
  • LP2951- стабилизатор ограничивает ток, формирует стабильное напряжение 4,08-4,26В.
  • MCP73831- одна из простейших схем, подходит для зарядки ионных и полимерных устройств.

Если батарея состоит из нескольких банок, разряжаются они не всегда равномерно. При зарядке необходим балансир, распределяющий заряд и обеспечивающий равномерный заряд всех банок в батарее.Балансир может быть установлен или встроенным в схему подключения АКБ. Устройство защиты батареи называется BMS. Зная как заряжать приборы, разбираясь в схемах, можно своими руками собрать схему защитного устройства для литиевого аккумулятора.

Как зарядить литиевый аккумулятор 12 вольт

Каждый литиевый аккумулятор представляет собой герметичное изделие цилиндрической, призматической формы, для Li-pol в мягкой упаковке. Все имеют напряжение 3,6- 4,2 В и разную емкость, они измеряемую в мА / ч.Если собрать последовательно 3 банки получится батарея с напряжением на клеммах 10,8 - 12,6 В. Емкость при последовательной зарядке, измеряется по самому слабому литиевому аккумулятору в связке.

Как правильно заряжать литиевый аккумулятор 18650 или Pol на 12 вольт, нужно знать. Для возвращения прибору емкости необходимо использовать ЗУ с контроллером. Важно иметь в сборке РСМ для каждой банки, защиту от недо- и перезаряда. Другая схема незащищенных литиево-ионных аккумуляторов - установка РСВ - управляющей платы, лучше с балансирами, для равномерной зарядки банок.

На устройстве необходимо установить напряжение, под которым работает батарея, 12,6 В. На приборной доске устанавливается количество банок и ток зарядки, равный 0,2- 0,5 С.

Как заряжать, предлагаем посмотреть видео, способ зарядки для 2, 3 литиевых аккумуляторов 18650, соединенных последовательно. Используется бюджетное зарядное устройство.

Варианты зарядки литий-ионных литиево-полимерных аккумуляторов:

  • Зарядное устройство приобретаемое в комплекте с прибором.
  • Использовать разъем USB от электронной техники - компьютера. Здесь можно получить ток 0,5 А, зарядка будет долгой.
  • От прикуривателя, купив переходник с набором портов. Выбрать тот, что соответствует параметрам батареи на 12 В.
  • Универсальное зарядное устройство «лягушка» с доком для установки гаджета. Как заряжать? Есть панель индикации заряда.

Специалисты советуют использовать для зарядки литиевых аккумуляторов штатное зарядное, остальные - только в форс-мажорных обстоятельствах.Однако, как зарядить литиевый аккумулятор без штатного зарядного устройства, нужно знать.

Как заряжать литиевые аккумуляторы шуруповерта

Шуруповерт на литиевых аккумуляторах почти всегда апгрейд. Если с Ni-Cd элементами были одни требования к зарядке, теперь они стали противоположными. В первую очередь нужно приобрести или собрать зарядник, именно для энергоемких литиевых аккумуляторов шуруповерта с форм фактора 18650. Схема зарядки из двух этапов CC / CV.

Зарядка литиевого аккумулятора шуруповерта оптимальна, когда остается 20-50% емкости - одна палочка на индикаторе. Чем чаще заряжать, тем стабильнее напряжение на клеммах и длиннее жизнь источника энергии. Чем ровнее напряжение на клеммах, тем больше циклов выдержит литиевый аккумулятор шуруповерта.

Если в шуруповерте 2 аккумулятора, один снимите, зарядите на 50-60% и держите в резерве. Но второй заряжайте всегда по окончании работы, даже на 10%. Лучшая температура для заряда + 15-25 0 С.При минусе батарея шуруповерта не зарядится, но работать до -10 0 может.

Как заряжать литиевый аккумулятор шуруповерта зарядным, зависит от схемы сбора батареи из банок. В любом случае, напряжение на ЗУ должно быть равно заявленному для прибора, а сила тока 0,5 С на первом этапе. На втором, напряжение клеммное стабильно, а сила тока падает, до окончания процесса.

Сколько заряжать литиевый аккумулятор

Время зарядки аккумуляторов определяет процесс восстановления емкости.Различают полный и частичный заряд.

Емкость измеряется в ампер-часах. Это значит, если подать заряд, численно равный емкости, то за час на клеммах создастся нужное напряжение, а запас энергии будет 70-80%. Если емкость измеряется в единицах С, при быстрой зарядке следует подавать ток 1С-2С. Время быстрой зарядки около часа.

Для полного цикла зарядки батарей из нескольких элементов, соединенных друг с другом, используйте 2 этапа - CC / CV. Этап СС длится, пока на клеммах не появится напряжение, равное рабочему, в вольтах.Второй этап: при стабильном напряжении в банку, но с использованием емкости, он стремится к нулю. Время заряда занимает около 3 часов, независимо от емкости.

Можно ли заряжать литиевый аккумулятор обычной зарядкой

Две разные системы аккумуляторов - литиевые и свинцовые требуют разного подхода к восстановлению емкости. Свинцовый АКБ не настолько обязательны к параметрам зарядки, как литиевые. Да и рейтинг другие.

Для зарядки на первом этапе Li-ion, Li-pol требуется постоянный ток, на втором этапе постоянное напряжение.Если не контролировать параметры на первом этапе, возможен перезаряд. Но если в батарее есть встроенная защита - BMS - она ​​справится. Поэтому несколько добавить энергии можно даже зарядником от телефона.

В зарядном устройстве для свинцовых АКБ главный показатель - стабильное напряжение. Для литиевых зарядников на первом этапе важен стабильный ток.

Правда, появились универсальные ЗУ, которые можно перенастроить на тот или иной режим зарядки. Перед вами российская разработка «Кулон».

Собираем простое зарядное для Литий-ионных аккумуляторов, практически из хлама.


Накопилось у меня большое количество аккумуляторов от ноутбучных аккумуляторов, формата 18650. Обдумывая как их заряжать, я решил не заморачиваться с китайскими модулями, да и закончились они у меня к тому времени. Решил собрать воедино две схемы. Датчик тока и плата BMS с аккумулятора мобильного телефона. Проверено на практике. Хоть и схема примитивная, но она работает и успешно, ни одного аккумулятора не пострадало.

Схема зарядного устройства

Материалы и инструменты

  • шнур USB;
  • крокодильчики;
  • плата защиты BMS;
  • пластиковое яйцо от киндера;
  • два светодиода разного цвета;
  • транзистор кт361;
  • резисторы на 470 и 22 ома;
  • двухватный резистор 2. 2 ома;
  • один диод IN4148;
  • инструменты.

Изготовление зарядного устройства

Шнур USB разбираем и снимаем разъем.У меня это от какого-то аипада.


К крокодилам припаиваем провода.


Глубокую часть пластикового киндера утяжеляем, я залил гайку М6 термоклеем.


Спаиваем нашу простую схемку. Все сделано навесным монтажом и распаяно на плате BMS. Светодиод я ​​применил сдвоенный, но можно два одноцветных. Транзистор выпаял из старой советской радио-аппаратуры.


Провода продеваем в отверстие второе, мелкой, половинке пластикового киндера. Припаиваем схему.


Все компактно запихиваем в пластиковое яйцо. Для светодиода делаем отверстие.


Подключаем к USB порту пк или китайской зарядке, у них тока все равно мало.
Во время зарядки горит оранжевым цвет. Т.е. горят оба светодиода.

Когда окончен заряд, горит зеленый, тот, который подключен через диод IN4148.
Можно проверить схему, отключив от аккумулятора, загорится светодиод зеленого цвета, свидетельствующий об окончании заряда.

Цель этой статьи - научиться использовать обычные лабораторные блоки питания для зарядки литий-ионных аккумуляторных батарей, когда нет специального зарядного устройства.Такие АКБ очень распространены, вот только купить ЗУ для его грамотной зарядки может (или хочет) не каждый, часто заряжая их обычными регулируемыми БП. Давайте рассмотрим как это нужно делать.

Возьмём для примера литий-ионный аккумулятор от Panasonic ncr18650b на 3,6 В 3400 mah. Сразу предупредим, что зарядка этого типа аккумуляторов является довольно опасной, если сделать это неправильно. Некоторые образцы издевательства выдерживают, а некоторые китайские «сверхэкономные» не обладают защитами и могут взорваться.

АКБ с протекцией

Защищенный аккумулятор должен иметь следующие элементы защиты:

  • PTC , защита от перегрева и косвенно, по току.
  • CID , клапан давления, отключит ячейку, если давление высокое внутри, что может из-за слишком мощной зарядки.
  • печатной платы , плата защиты от чрезмерной разрядки, сброс выполняется автоматически или при помещении в зарядное устройство.

На приведенном выше рисунке показано, как устроена защита банки.Эта конструкция используется для любого типа современных защищенных литий-ионных батарей. PTC и клапан давления не будет видно, так как он является частью оригинальной батареи, но все остальные части защиты можно разглядеть. Ниже показаны варианты исполнения электронных защитных модулей, которые используются в стандартных круглых Li-Ion АКБ наиболее часто.

Зарядка лития

Вы можете найти типовую схему и принцип зарядки аккумулятора ncr18650b в даташите. Согласно документации, ток зарядки 1600 мА и напряжение 4.2 вольт.

Сам процесс состоит из двух этапов, первый - это постоянный ток, где необходимо установить значение в 1600 мА постоянного тока, когда напряжение батареи достигает 4,20 В, начнется вторая стадия - постоянное напряжение. На этой стадии ток будет немного падать, и от ЗУ будет поступать около 10% от зарядного тока - это около 170 мА. Это руководство относится ко всем литий-ионным и литий-полимерным аккумулятором не только 18650 типа.

Вручную трудно выставлять и поддерживать на обычном блоке питания выше режимы, поэтому лучше всё-таки использовать специальные микросхемы, предназначенные для автоматизации процесса заряда (смотрите схемы в этом разделе).Как крайний случай, можно заряжать стабильным током на 30-40% полной (паспортной) емкости АКБ, пропустив второй этап, но это несколько уменьшит ресурс элемента.

Схемы зарядных устройств

elwo.ru

Схемы индикаторов разряда литий-ионных аккумуляторов для определения уровня заряда литиевой батареи (например, 18650)

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарейки, не дожида грустных последствий.

И вот тут как раз появляется идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существуют вагон и маленькая тележка различных схемотехнических решений - от на одном транзисторе до навороченных устройств на микроконтроллерах.

Внимание! Приведенные в статье схемы только лишь сигнализируют о низком напряжении на аккумуляторе. Для предупреждения глубокого разряда необходимо вручную отключить либо использовать контроллеры разряда.

Вариант №1

Начнем, пожалуй, с простенькой схемки стабилизации и транзистора:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжения на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие напряжения в двухцветных светодиодах составляет 0,25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу.Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3,00 и 3,25V к зеленому начинает подмешиваться красный - чем ближе к 3,00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы стабилизации стабилизации для обеспечения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меня своими цветами.

Кстати, если в этой схеме поставить транзистор другого типа, ее можно заставить работать противоположным - переход от зеленого к красному образом будет происходить наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

Следующая схема микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяет делителем напряжения R2-R3. При указанном в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к ​​тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства используется батарея из последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо регулируемого блока питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки литий-ионного аккумулятора на двух транзисторах:
Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2.Если выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В некотором моменте аккумулятора, по мере разряда, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше - тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления транзисторных каскадов, схема срабатывает очень четко - между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации - 3 мА, при выключенном светодиоде - 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 - разрешено, 0 - запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию.А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого источника образцового напряжения, можно применить ту же TL431, включив ее по такой схеме *:

* катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения.Их еще называют супервизорами и детекторами напряжения (вольтдетекторами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще, некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E / TT, CAT809TTBI-G;
  • на 2,93 В: MCP102T-300E / TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
  • серия MN1380 (или 1381, 1382 - они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, чем дополнительная циферка «1» в обозначении микросхемы - MN13801, MN13811, MN13821.Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог - КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за литий-ионными аккумуляторами, но совсем сбрасывать это микросхему со счетов, думаю , не стоит.

Неоспоримые достоинства схем на мониторах напряжения - очень низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота.Для вывода вся схема умещается прямо на вывод светодиода:

Чтобы сделать индикацию разряда более заметной, выход детектора напряжения можно нагрузить на миг светодиод (например, серии L-314). Или самому собрать простейшую «моргалку» на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза - коротка вспышка - опять пауза). Это позволяет снизить потребляемый ток до смешных значений - в выключенном состоянии потребляет 50 нА (нано!), В режиме моргания светодиодом - всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением.В дальнейшем эта усиливается и включает / отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используется каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы - инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 - 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА.

Вариант №10

Это даже не индикатор разряда, а, скорее, светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора.Весь функционал реализован всего на одной-единственной микросхеме LM3914:

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) напряжение. При указанном на схеме значениях свечению верхнего светодиода соответствует напряжение 4,2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет (нижний) светодиод.

Подключив 9-ый вывод микросхемы на «землю», можно перевести ее в режим «точка». В этом режиме всегда светится только один светодиод, соответствующего напряжению питания.Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения , т.к. они обладают самым малым большим напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2,5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода.Можно задать только начальное и конечное значение, встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Литий-ионный аккумулятор, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным.Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментми включения светодиодов дает схему, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе / батарейке. Реализована на четырех ОУ, входящего в состав микросхемы LM339.

Схема работоспособна до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, например, 5% -25% -50% -100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным опорным напряжением и входом АЦП.Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке.

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В - светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4,2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начинает мигать красный светодиод.Это будет сигналом к ​​тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых мобильных телефонов чуть ли не в промышленных масштабах.Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плату у вас в руках. Все остальное утилизируете как положено.

Внимание !!! Попадаются платы, включающие защиту от переразряда при недопустимо низком напряжении (2. 5В и ниже). Поэтому из всех потенциальных клиентов необходимо отобрать те экземпляры, которые срабатывают при правильном напряжении (3,0–3,2 В).

Чаще всего PCB-плата представляет собой вот такую ​​схемку:

Микросборка 8205 - это два миллиомных полевика, собранных в одном корпусе.

Внеся в схеме некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда литий-ионного аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то есть он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистора, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Пожалуйста, учитывайте факт, что схемы индикаторов разряда сами потребляйте энергию аккумулятора! Во избежание недопустимого разряда, подключайте схемы индикаторов после выключателя питания или используйте схемы защиты, предотвращающие глубокий разряд.

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот - в качестве индикатора заряда.

electro-shema.ru

Литий-ионные и литий-полимерные аккумуляторы в наших конструкциях


Прогресс идет вперед, и на смену традиционно используемым NiCd (никель-кадмиевым) и NiMh (никель-металидридным) все чаще приходят литиевые аккумуляторы.
При сравнимом весе одного элемента, литий имеет большую ёмкость, кроме того, напряжение элемента у них в три раза выше - 3,6 V на элемент, вместо 1,2 V.
Стоимость литиевых аккумуляторов стала ближе к обычным аккумуляторным батареям, вес и размер намного меньше, да к тому же их же можно и нужно заряжать. Производитель говорит, 300-600 циклов выдерживают.
Размеры есть разные и подобрать нужный не составляет труда.
Саморазряд низкий, что лежат годами и заряженными, т.е. устройство остается рабочим когда оно нужно.

Основные характеристики литиевых аккумуляторов

Есть два основных типа литиевых аккумуляторов: литий-ионные и литий-полимерные.
Li-ion - литий-ионная батарея, Li-полимерная литий-полимерная батарея.
Отличие их в технологии изготовления. Li-ion имеют жидкий или гелевый электролит, а Li-полимер - твердый.
Это отличие повлияло на диапазон рабочих температур, немного на напряжение и форму корпуса, которую можно придать готовому изделию. Ещё - на внутреннее сопротивление, но тут много зависит от качества изготовления.
Li-ion: -20… + 60 ° C; 3,6 V
LI-полимер: 0 .. + 50 ° С; 3,7 В
Для начала надо разобраться, что это за вольты такие.
Производитель пишет нам 3,6 В, но это среднее напряжение. Обычно в даташитах пишут диапазон рабочих напряжений 2,5 V… 4,2 V.
Когда я первый раз столкнулся с литиевыми аккумуляторами, то долго изучал даташиты.
Ниже представлена ​​их графики разряда при разных условиях.

Рис. 1. При температуре + 20 ° C


Рис. 2. При разных температурах эксплуатации

Из графиков становится понятно, что рабочее напряжение при разряде 0,2С и температуре + 20 ° C составляет 3,7 В… 4,2 В.Безусловно, батареи можно соединить и получить нужное напряжение.
На мой взгляд очень удобный диапазон напряжений, который подходит под многие конструкции, где используется 4,5V. Да и соединив их 2 шт. получим 8,4 V, а это почти 9 V. Я их ставлю во все конструкции, где идёт батарейное питание и уже забыл, когда последний раз покупал батарейки.

Есть у литиевых аккумуляторов нюанс: их нельзя заряжать выше 4,2 В и разряжать ниже 2,5 В.Если разрядить ниже 2,5 V, восстановить не всегда удается, а выкидывать жалко. Значит, нужна защита от сверхразряда. Во многих батареях она уже встроена в виде мелкой платы, и ее просто не видно в корпусе.

Схема защиты аккумулятора от сверхразряда

Бывает, попадаются аккумуляторы без защиты, тогда приходится собирать самому. Сложности это не представляет. Во-первых есть ассортимент ассортимент микросхем. Во-втором, кажется, есть собранные модули у китайцев.

А третьим, мы рассмотрим, что можно собрать по теме из подножных материалов.Ведь не у всех есть в наличии современные чипы или привычка отовариваться на АлиЭкспресс.
Я пользуюсь вот такой суперпростой схемой многие годы и разу аккумулятор не вышел из строя!


Рис. 3.
Конденсатор можно не ставить, если нагрузка не импульсная и стабильно потребляющая. Диоды любые маломощные, их количество надо подобрать по напряжению отключения транзистора.
Транзисторы применяю разные, в зависимости от наличия и тока потребления устройства, главное чтоб напряжение отсечки было ниже 2,5 В, т. е. чтоб он открылся от напряжения аккумулятора.

Настраивать схему лучше на монтажке. Берём транзистор и подавая на затвор напряжение через резистор сопротивлением 100 Ом… 10 К, проверяем напряжение отсечки. Если оно не более 2,5 В, то экземпляр годен, далее подбираем диоды (количество и иногда тип), чтобы транзистор начинал закрываться при напряжении примерно 3 В.
Теперь подаем напряжение от БП и проверяем, чтобы схема срабатывала при напряжении примерно 2,8 - 3 V.
Иными словами, если напряжение на аккумуляторе опустится ниже порогового, которое мы установили, то транзистор закроется и отключит нагрузку от питания, предотвратив тем самым вредный глубокий разряд.

Особенности процесса зарядки литиевого аккумулятора

Что ж, наш аккумулятор разрядился, теперь пора его безопасно зарядить.
Как и с разрядкой, с зарядкой тоже не всё так просто. Максимальное напряжение на банке должно быть не более 4,2 В ± 0,05 В! При превышении этого значения литий переходит в металлическое состояние и может произойти перегрев, возгорание и даже взрыв аккумулятора.

Заряд аккумуляторов осуществляется по достаточно простому алгоритму: заряд от источника напряжения постоянного 4.20 Вольт на элемент, с ограничением тока в 1С.
Заряд считается завершенным, когда ток упадет до 0.1-0.2С. После перехода в режим стабилизации напряжения при токе в 1С, аккумулятор набирает примерно 70-80% емкости. Для полной зарядки необходимо время около 2-х часов.
К устройству предъявляются жесткие требования по устойчивости напряжения в конце заряда, не хуже ± 0,01 Вольт на банку.

Обычно схема ЗУ имеет обратную связь - автоматически подбирается такое напряжение, чтобы ток, проходящий через аккумулятор, был равен необходимому.Как только это напряжение становится равно 4,2 Вольтам (для описываемого аккумулятора), больше поддерживать ток в 1С нельзя - далее напряжение на аккумуляторе возрастёт слишком быстро и сильно.

В этот момент аккумулятор заряжен обычно на 60% -80%, и для зарядки остальных 40% -20% без взрывов ток требуется снизить. Проще всего это сделать, поддерживая постоянное напряжение на аккумуляторе, и он сам возьмет такой ток, который ему необходим.
При снижении этого тока до 30-10 мА аккумулятор считается заряженным.

Для иллюстрации всего вышеописанного привожу график заряда, снятый с подопытного аккумулятора:


Рис. 4.
В левой части графика, подсвеченной синим, мы видим постоянный ток 0,7 А, в то время напряжение постепенно поднимается с 3,8 В до 4,2 В.
Также видно, что за первую половину заряда аккумулятор достигает 70% своей емкости, в то время как за оставшееся время - всего 30%.

«С» значит Вместимость

Часто встречается обозначение вида «xC».Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Вместимость» (вместимость, ёмкость).
Когда говорят о зарядке током 2С, или 0,1С, обычно имеют в виду, что ток должен составлять (2 × емкость аккумулятора) / ч или (0,1 × емкость аккумулятора) / ч соответственно.

Например, аккумулятор емкостью 720 мАч, для которого ток заряда составляет 0,5С, надо заряжать током 0,5 Ч 720 мАч / ч = 360 мА, это относится и к разряду.

Зарядные устройства для литиевых аккумуляторов

У китайцев можно заказать по почте с бесплатной доставкой модулей зарядных устройств.Модули контроллера зарядки TP4056 с гнездом мини-USB и защитой можно взять очень недорого.

Можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.

Схема простого зарядного устройства на LM317


Рис. 5.
Схема с применением LM317 обеспечивает достаточно точную стабилизацию напряжения, устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx следующему следующему отношению: 0,95 / Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.

LM317 надо снабдить радиатор в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет 7-9 В.

Схема простого зарядного устройства на LTC4054


Рис. 6.
Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).

Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»

Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120 °).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 В.

Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле

I = 1000 / R,
где I - ток заряда в Амперах, R - сопротивление резистора в Омах.

Индикатор разрядки литиевого аккумулятора

Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.

Рис. 8.
Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.

Нюанс долговечности

Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4,10 В, то количество циклов возрастает до 600 и даже более.

Эксплуатация и меры предосторожности

Можно с уверенностью сказать, что литий-полимерные аккумуляторы используют самые «нежные» аккумуляторы, если есть обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения случаются неприятности.
1. Не доспускается заряд до напряжения, превышающего 4,20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающую нагрузочную способность или устанавливающую аккумулятор выше 60 ° С. 4. Вреден разряд напряжения ниже 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60 ° С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.

Невыполнение первых трех пунктов приводит к пожару, остальных - к полной или частичной потере ёмкости.

Из практики многолетнего использования можно сказать, что емкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и ак

datagor.ru

Плата защиты Li-ion вместо зарядного устройства?

На форумах частенько советуют использовать плату защиты от-либо литиевого аккумулятора (или, как ее еще называют, PCB-модуль) в качестве ограничителя заряда. То есть сделать зарядное устройство для литий-ионного аккумулятора из платы защиты.

Логика такова: по мере заряда напряжение на литий-ионном аккумуляторе возрастает и как только оно достигнет определенного уровня, плата защиты сработает и прекратит зарядку.

Этот принцип, например, применен в схеме зарядки для фонарика, которая то и дело всплывает в интернетах:

На первый взгляд данное решение выглядит вполне логично, не так ли? Но если копнуть немного глубже, то оказывается минусов больше, чем плюсов.

Мы не будем заострять внимание на том, что в качестве источника зачем-то выбран 8-вольтовый блок питания.Уверен, это сделано для того, чтобы на R1 рассеивалось целых 10 Вт мощности. Резистор будет греть вашу квартиру долгими зимними вечерами.

Вместо этого присмотримся к значению порогового напряжения, при котором срабатывает защита от перезаряда. Элементом, задающим этот порог, является специализированная микросхема.

Первый минус

Наиболее распространенные из представленных в таблице микросхем разных типов:

Нормальным значением, до которого заряжают литий-ионный аккумулятор, является 4. 2 Вольта. Однако, как можно видеть из таблицы, большинство микросхем заточены под несколько… эээ… завышенное напряжение.

Это объясняется тем, что платы защиты рассчитаны на срабатывание при возникновении аварийной ситуации для предотвращения закритических режимов работы аккумулятора. Таких нормального нормального функционирования батарейки вообще быть не могут.

Редкие перезаряды литиевого аккумулятора до напряжения, например, 4.35В (микросхема SA57608D), наверное, не приведут к каким-либо фатальным последствиям, но это не означает, что так будет всегда.Кто знает, в какой момент это приведет к выделению металлического лития из гелевого электролита, ведущему к неизбежному замыканию электродов и приводиту аккумулятора из строя?

Уже одного этого обстоятельства достаточно для выбора от использования плат защиты в качестве контроллера зарядного устройства. Но если вам этого мало, читайте дальше.

Второй минус

Второй момент, на который обычно мало кто обращает внимание - это кривая заряда Li-ion аккумуляторов. Давайте освежим ее в память. На графике показан классический профиль заряда CC / CV, что расшифровывается как постоянный ток / постоянное напряжение (постоянный ток / постоянное напряжение). Такой способ заряда уже стандартом и большинством нормальных зарядных устройств старается его обеспечивать.

Если внимательно посмотреть на график, то можно заметить, что при напряжении на аккумуляторе в 4.2В, он еще не набрал свою полную емкость.

В нашем примере максимальная емкость аккумулятора равна 2.1А / ч. В тот момент, когда напряжение на нем становится равным 4.2 Вольта, он оказывается заряжен всего лишь до 1.82 А / ч, что составляет 87% от его макс. емкости.

И именно в этот момент плата защиты сработает и прекратит зарядку.

Даже если ваша плата сработает при 4.35V (предположим, она собрана на микросхеме 628-8242BACT), это не изменит ситуацию коренным образом. Из-за того, что ближе к окончанию зарядки на аккумуляторе, начинает возрастать очень быстро, разница в набранной емкости при 4. 2В и 4.35В едва ли составляют более нескольких процентов. А при использовании такой платы вы еще и сокращаете срок службы аккумулятора.

Выводы

Итак, резюмируя все вышесказанное, можно смело утверждать, что применять платы защиты (PCM-модули) вместо зарядки для литиевых аккумуляторов крайне нежелательно.

Во-первых, это приводит к постоянному превышению допустимого напряжения на аккумуляторе и, соответственно, снижению срока его службы.

Во-вторых, из-за процесса зарядки литий-ионного аккумулятора, использование платы защиты в качестве контроллера заряда не позволяет использовать полную емкость литий-ионного аккумулятора. Заплатив за аккумулятор емкостью 3400 мА / ч, вы сможете использовать не более 2950 мА / ч.

Для полноценной и безопасной зарядки литиевых аккумуляторов лучше всего применять специализированные микросхемы. Самой популярной на сегодняшний день является TP4056. С этой микросхемой нужно быть осторожным, она не имеет защиты от дурака переполюсовки.

Схема зарядного устройства на микросхеме TP4056, а также другие проверенные схемы зарядников для Li-ion аккумуляторов мы рассматривали в этой статье.

. Возможность литиевыми аккумуляторами правильно, не нарушайте рекомендованные режимы заряда и они выдержат не менее 800 циклов заряд / разряд.

Помните, что даже при самой идеальной эксплуатации, литий-ионные аккумуляторы подвержены деградации (необратимой потери емкости). Также они имеют довольно большой саморазряд, равный примерно 10% в месяц.

electro-shema.ru

Схемы контроллеров заряда-разряда Литий-ионные аккумуляторы и микросхемы модулей защиты литиевых батарей

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует . Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки - сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде - это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют защиту от глубокого разряда.

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки литий-ионных аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого зарядного устройства для литиевого аккумулятора.

Исходя из своего опыта могу сказать, что под контроллером заряда / разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и наоборот, перезаряда.

Другими словами, когда говорят о контроллере заряда / разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защиты (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что плата защиты представляет в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты литий-ионных аккумуляторов (или, если хотите, контроллеров разряда / заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать.Начнем, пожалуй, с наиболее распространенного варианта микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для литий-ионных аккумуляторов встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которая обклеен аккумулятор.

Сама микросхема DW01 - шестиногая, два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 - это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно.Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 - датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большойрос от изделия к изделию разб.

Вся схема примерно вот так:

Правая микросхема с маркировкой 8205А - это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Серия

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда / перезаряда.Для защиты одной банки применяются интегральные схемы серии S-8241.

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 серии

Решение от Advanced Analog Technology - AAT8660 Series.

Пороговые напряжения составляют 2,5 и 4,32 Вольта. Потребление в заблокированном состоянии не больше 100 нА. Микросхема выпускается в корпусе SOT26 (3х2 мм, 6 выводов).

FS326 серии

Очередная микросхема, используемая в платах защиты одной банки литий-ионного и полимерного аккумулятора - FS326.

В зависимости от буквенного индекса напряжение включения от переразряда составляет от 2,3 до 2,5 Вольт. А верхнее пороговое напряжение, соответственно, - от 4.3 до 4.35В. Подробности смотрите в даташите.

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда.Реализована с применением микросхемы LV51140T.

Пороговые напряжения: 2,5 и 4,25 Вольта. Вторая ножка микросхемы - вход детектора перегрузки по току (предельные значения: 0,2В при разряде и -0,7В при зарядке). Вывод 4 не задействован.

R5421N серии

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки - порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке.Подробности приведены в таблице:

SA57608

Очередной вариант контроллера заряда / разряда, только уже на микросхеме SA57608.

Напряжения, при которых микросхемы отключают банку от внешнего цепей, зависит от буквенного индекса. Подробности см. в таблице:

SA57608 потребляет достаточно большой ток в спящем режиме - порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение одного из мировых лидеров по производству электронных компонентов On Semiconductor - контроллер заряда-разряда на микросхеме LC05111CMT.

Решение интересно тем, что ключевые MOSFET’ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет ~ 11 миллиом (0.011 Ом). Максимальный ток заряда / разряда - 10А. Максимальное напряжение между выводами S1 и S2 - 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2. 6 × 4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда / разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты - в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда - это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль контроллера заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль контроллера любого заряда заключается в реализации правильного профиля заряда (как правило, это CC / CV - постоянный ток / постоянное напряжение).То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество «заливаемой» в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Схемы правильных зарядок для литиевых аккумуляторов в этой статье.

Кроме того, одна плата защиты, называйте как хотите, не способна ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому принципу - при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~ 4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и возникновения снижения зарядного тока.

electro-shema.ru

Литиевые аккумуляторы 18650 - особенности эксплуатации, напряжение и методы зарядки

Сложно найти область, где нет приборов, работающих на электрической энергии. Мобильные источники питания аккумуляторы и одноразовые батарейки, питающие потребителя за счет преобразования энергии в электрическую.Литий-ионные аккумуляторы представляют электронные пары с активными компонентами, содержащие соль лития. По аккумулятор напоминает одноразовую пальчиковую батарейку, имеет сотни циклов зарядки, относится к литий-ионным аккумуляторам 18650.

Устройство литий-ионных аккумуляторов 18650

Производство литий-ионных аккумуляторов на площадках компаний Sanyo, Sony, Panasonic, LG Chem, Samsung SDI, Skme, Moli, BAK, Lishen, ATL, HYB .Другие фирмы покупают элементы, переупаковывают их, выдавая за собственную продукцию. Они еще и пишут на термоусадочной пленке недостоверную информацию об изделии. В настоящий момент нет литий-ионных аккумуляторов 18650 емкостью выше 3600 мА-ч.

Основное отличие аккумуляторов от батарей в возможности многократной перезарядки. Все батарейки рассчитаны на напряжение 1,5 В, литий-ионные на выходе 3,7 В. Форм фактор 18650 означает, литиевый аккумулятор длиной 65 мм, диаметром 18 мм.

Характеристики рабочего режима литиевого аккумулятора 18650:

  • Максимальное напряжение 4,2 В, причем даже незначительная перезарядка значительно сокращает срок службы.
  • Минимальное напряжение 2,75 В. При достижении 2,5 В требуются особые условия восстановления емкости, При напряжении на клеммах2,0 В заряд не восстанавливается.
  • Минимальная рабочая температура -20 0 С. Зарядка при минусовой температура не возможна.
  • Максимальная температура +60 0 С. При более высокой ожидаемой можно ожидать взрыва или загорания.
  • Емкость измеряется Ампер / часах. Полностью заряженный аккумулятор емкостью 1 А / ч может выдать 1А тока в течение часа, 2 А продолжительностью 30 минут или 15 А на протяжении 4 минут.

Контроллер заряда литий-ионный аккумулятор 18650

Основные производители выпускают стандартные литиевые аккумуляторы 18650 без защитной платы. Этот контроллер, выполненный в виде электронной схемы, устанавливаетют сверху на корпус, несколько удлиняя его. Плата перед отрицательной клеммой, защищает АКБ от КЗ, перезаряда, переразряда. Собирается защита в Китае. Есть приборы хорошего качества, недостоверное надувательство - недостоверная информация, емкость 9 000А / ч.После установки защиты корпус помещается в термоусадочную пленку с надписями. За счет дополнительной конструкции корпус становится длиннее и толще, может не поместиться в предназначенное гнездо. Типоразмер его может быть 18700, увеличиться за счет дополнительных действий. Если аккумулятор 18650 используется для батареи в 12, в котором предусмотрен общий контроллер заряда, используются прерыватели на отдельные Li-ионные элементы не нужны.

Целью защиты является обеспечение работы источника энергии в заданных параметрах.При зарядке основного ЗУ защита не допустит перезаряда и вовремя отключит питание, если литиевый аккумулятор 18650 сел до напряжения 2,7 В.

Маркировка литиевых аккумуляторов 18650

На поверхности корпуса аккумулятора нанесена маркировка. Здесь можно найти полную информацию о технических свойствах. Кроме даты изготовления, срока годности и бренда производителя, зашифровано устройство литиевых аккумуляторов 18650, и связано с этим аспектом потребительские качества.

  1. ICR - катод литий-кобальтовый. Аккумулятор обладает высокой емкостью, но рассчитан на небольшие токи потребления. Используют в ноутбуках, видеокамерах и подобной длительно работающей технике с небольшим потреблением энергии.
  2. IMR - катод литий-марганцевый. Обладает способностью выдавать большие токи, выдерживает разрядку до 2,5 а / ч.
  3. INR - катод из никелатов. Обеспечивает высокие токи, выдерживают разряд до 2,5 В.
  4. NCR - специфическая маркировка компании Panasonic. По свойствам аккумулятор идентичен IMR. Используются никелаты, соль кобальта, окись алюминия.

Позиции 2,3,4 называют «высокотоковыми», их используют для фонарей, биноклей, фотоаппаратов.

Литий-феррофосфатные аккумуляторы обладают способностью работать при глубоком минусе, восстанавливаются при глубоком разряде. Недооценены на рынке.

По маркировке можно определить, это литиевый заряжаемый аккумулятор буквы - I R.Если есть буквы C / M / F - известен материал катода. Будет указана емкость, обозначенная мА / ч. Дата выпуска и срок годности размещены в разных местах.

Следует знать, нет у производителей литиевых многозарядных батарейных изделий емкостью больше 3 600 мА / ч. Для того чтобы отремонтировать батарею ноутбука или собрать новую нужно приобретать аккумуляторы без защиты. Для использования в единичном экземпляре нужно покупать элементы с защитой.

Как проверить литиевый аккумулятор 18650

Если покупая дорогой прибор, вы сомневаетесь в правдивости информации на корпусе, есть способы проверки.Кроме специальных измерителей можно использовать подручные средства.

  • У вас есть зарядное устройство, можно засечь время зарядки настоящего тока. Произведение времени на силу тока выявит приблизительную емкость литий-ионного аккумулятора.
  • Вам поможет интеллектуальное зарядное устройство. Оно покажет и напряжение, и емкость, но стоит прибор дорого.
  • Подключите фонарик, замерьте силу тока, и ждите, когда светоч потухнет. Произведение времени на силу тока дает емкость тока в А / ч.

Определить мощность аккумулятора можно по весу: литиевый аккумулятор 18650 емкостью 2000мА / ч должен весить 40 г. Чем выше емкость, тем больше вес. Но бракоделы научились подсыпать песок в корпус, для тяжести.

Зарядное устройство для литиевых аккумуляторов 18650

Литиевые аккумуляторы необходимы к параметрам напряжения на клеммах. Предельное напряжение 4,2 В, минимальное - 2,7 В. поэтому зарядное устройство работает как стабилизатор, создавая на выходе 5 В.

Определяющими показателями является ток зарядки и количество элементов в батарее, выставляемых своими руками. Каждый элемент (банка) должен получить полный заряд. Распределяется энергия использования схемы балансира для литиевых аккумуляторов 18650. Балансир может быть встроенным или ведется вручную. Хорошее ЗУ стоит дорого. Сделать зарядку своими руками для li-ion может каждый, кто разбирается в электрических схемах и умеет паять.

Предлагаемая схема зарядного устройства, выполненного своими руками для литиевых аккумуляторов 18650, проста, будет отключать потребителя после зарядки самостоятельно.Стоимость комплектующих около 4 долларов, не дефицит. Приспособление надежное, не перегреется и не загорится.

Схема зарядного устройства для литиевых аккумуляторов 18650

В зарядном, сделанном своими руками, ток в цепи регулируется резистором R4. Сопротивление подбирают таким, чтобы первоначальный ток зависел от емкости литиевого аккумулятора 18650. Каким током заряжать литий-ионный аккумулятор, если его емкость 2 000 мА / ч? 0,5 - 1,0 С составит 1-2 ампера. Это и есть зарядка.

Каким током заряжать литий-ионный аккумулятор 18650

Есть порядок восстановления работоспособности литиевого аккумулятора 18650 после падения напряжения до рабочего. Мы восстанавливаем емкость, измеряемую в ампер-часах. Поэтому вначале подключаем Li-ion аккумулятор форм-фактор 18650 ЗУ, потом своими руками устанавливаем ток зарядки. Напряжение изменяется по времени, начальное 0,5 В. Как стабилизатор, ЗУ рассчитан на 5 В. Для сохранения работоспособности, благоприятными считают параметры 40-80% от емкости.

Схема зарядки литий-ионного аккумулятора 18650 предполагает 2 этапа. Вначале нужно поднять напряжение на полюсах до 4,2 В, чтобы стабилизировать напряжение тока в емкости. Заряд считается полным, если сила тока снизилась до значений 5-7 мА, когда питание отключится. Весь цикл зарядки не должен включать 3 часа.

Самая простая одногнездная китайская зарядка для литий-ионных аккумуляторов 18650 рассчитана на зарядный ток в 1 А. Но следить за процессом придется самостоятельно, переключать своими руками.Универсальные зарядные устройства дороги, но имеют дисплеи и сами ведут процесс.

Как правильно зарядить Li-ion аккумулятор 18650 в ноутбуке? Подключение комплекта источников энергии в гаджете через Повер Банк. Батарея может заряжаться от сети, но важно отключить питание, как только блок набрал емкость.

Восстановление литий-ионного аккумулятора 18650

Если АКБ отказывается работать, это может проявиться так:

  • Источник энергии быстро разряжается.
  • Аккумулятор сел и не заряжается вообще.

Быстро разрядиться может любой источник, если емкость пропала. Именно этим страшным перезарядом и глубокий разряд, от которого ставится защита. Но нет спасения от естественного старения, когда хранение на складе снижает емкость банок. Способов регенерации нет, только замена.

Что делать, если аккумулятор не заряжается после глубокого разряда? Как восстановить li-ion 18650? После отключения аккумулятора контроллером, в нем еще есть запас энергии, способный выдать 2.8-2,4 В напряжения на полюсах. Но зарядное устройство не распознает заряд до 3,0В, ему все, что ниже, то и ноль. Можно ли разбудить аккумулятор, запустить химическую реакцию реакцию? Что нужно сделать, чтобы поднять заряд li-ion 18650 до 3,1 -3,3В? Нужно использовать способ «толкнуть» аккумулятор, дать ему необходимый заряд.

Не вдаваясь в расчеты, используйте предложенную схему, смонтировав ее с резистором 62 Ом (0,5Вт). Здесь использован блок питания на 5 В.

Если резистор греется, на литиевом аккумуляторе ноль, значит, есть КЗ или неисправен модуль защиты.

Как восстановить литиевый аккумулятор 18650, используя универсальное ЗУ? Выставить ток заряда 10 мА, и выполнить предзарядку, как написано в инструкции прибору. После поднятия напряжения до 3,1 В зарядить в 2 этапа по схеме SONY.

Какие литиевые аккумуляторы 18650 лучше на Али Экспресс

Если для вас важна стоимость и качество литиевого аккумулятора 18650, воспользуйтесь ресурсом AliExpress. Здесь много товара, от разных производителей. Искомый аккумулятор пользуется спросом, его любят подделывать.Поэтому необходимо знать отличия хорошей модели от реплики.

Критично отнеситесь к низким уровням. Только лучшие добились 3 600 А / ч, средние показатели показатель 3000-3200 А / ч производители. Защищенный аккумулятор больше на 2-3 мм в длину и чуть толще незащищенного. Но если вы собираете батарею, защита не нужна, не переплачивайте.

Добротные изделия и здесь стоят дороже. Учтите, что Ultrafire обещает 9000 мА / ч, но на деле оказывается в 5-10 раз ниже. Лучше использовать товар от проверенного производителя, стараться покупать всегда одну и ту же марку аккумулятора.

Предлагаем посмотреть порядок восстановления литиевого аккумулятора 18650

batts.pro

Простая зарядка Li-ion аккумуляторов - IT-блог

Привет. Есть у меня замечательный китайский фонарик с линзой. Светит отлично. Работает на одном Li-ion аккумуляторе форм-фактора 18650. Не так давно досталось мне несколько таких же живых аккумуляторов 18650 от сдохшей ноутбучной батареи. Так как аккумов стало много, надо было что-то делать с зарядкой этого хозяйства.Штатная зарядка от фонарика показалась мне очень подозрительной и неудобной. Откидная вилка для включения в сеть 220 короткая и не в каждой розетку подойдет, да еще и постоянно выпадает из настенной розетки. Шлак короче. В связи с тем что в последнее время руки чешутся что-то попаять, то очень захотелось нам намутить зарядку собственной.
Чуть погуглил и нашел дешевенький китайский контроллер заряда Li-ion аккумуляторов с минимумом обвеса.
В общем взят за основу QX4054 в корпусе СОТ-23-5.Даташит на китайском внизу поста. Есть похожие контроллеры от Linear Technology LT4054

Что умеет. Заканчивает процесс заряда аккумулятора при достижении напряжения 4.2Вольт либо есть зарядниый ток опустился до 25 мА.

Такая вот букашенция.Привожу пример описания выводов контроллера:

VCC - Понятно. Питание 4,5 - 6,5 Вольт.
ЗЕМЛЯ - Общий вывод. То есть «земля».
ПРОГ - Вывод для программирования тока заряда.
CHRG - Индикация окончания заряда.
летучая мышь - Поключение плюсового вывода батареи.

Скажу стразу, что в процессе работы QX4054 греется достаточно сильно. Поэтому при расчете тока заряда, я выбрал значение 500 мА. Номинал резистора при этом составляет 2кОм.
Формула для расчета очень простая и есть в даташите, но приведу ее и здесь.
я летучая мышь = ( В прог / R прог ) * 1000

Где:
I летучая мышь - ток заряда в Амперах.
В прог - Берется из даташита и равно 1В
R прог - Сопротивление резистора в Омах.

Подставляем наши 0.5 Ампера: R прог = ( В прог /0,5) * 1000.
Итого 2000 Ом. Меня это устраивает.
К сожалению, этот контроллер не имеет защиты от неправильного включения аккумулятора, и если в рабочем состоянии перепутать полярность подключаемого аккумулятора, то QX4054 за секунду превращается в дым. Поэтому пришлось чуть доработать типую схему включения. От идеи защитного диода пришлось отказаться, так как я побоялся что падение напряжения на диоде в 0.5 вольта к перезаряду или же каким-то другим последствиям. Поэтому пошел путем включения защитного диода и самовосстанавливающегося предохранителя.
Не знаю такой вариант технических правил, но он спасает контроллер от выгорания. Плюс есть индикация ошибки подключения. Собственно схема ниже.

Печатку разводил под свой отсек для 18650. Так что для заряда батарейки в других форматах, перерисовывайте для себя. Печатная плата в diptrace без заливки:

С заливкой:

Вид сверху:

Травим платку, любой форум для вас способом.Я, как обычно, делаю печатки при помощи пленочного фоторезиста.

Собираем.Вид почти готовой зарядки без корпуса. В наладке зарядка не нуждается. Правильно собранное устройство работает сразу. Подключаем источник питания 5В, вставляем разряженый аккумулятор и наблюдаем процесс зарядки.

Приточном ошиб подключении аккумулятора, загорается красный светодиод ошибки.

Осталось подыскать или склеить корпус для зарядки, и можно эксплуатировать. В качестве корпуса планирую использовать пластик из сгоревшего ноутбучного блока питания.
Если не полениться и добавить в схему линейный стабилизатор типа LM7805, то получится более универсальная зарядка с использованием различных блоков питания от 6 до 15 вольт. Если придется делать себе еще одну то пожалуй сделаю с LM7805.

Понравились мне мелкие микросхемы для простых зарядных устройств. покупал я их у нас в местном оффлайн магазине, но как назло они там закончились, их долго везли откуда то. Чтобы найти эту ситуацию, я решил заказать себе их небольшим оптом, так как микросхемы довольно неплохие, и в работе понравились.
Описание и сравнение под катом.

Я не зря написал в заголовке про сравнение, как за время пути собачка могла подрасти микрухи появились в магазине, я купил несколько штук и решил их сравнить.
В обзоре будет не очень много текста, но довольно много фотографий.

Но начну как всегда с того, как мне это пришло.
Пришло в комплекте с другими разными деталями, сами микрухи были упакованы в пакетик с защелкой, и наклейкой с названием.

Данная микросхема представляет собой микросхему зарядного устройства для литиевых аккумуляторов с напряжением заряда 4.2 Вольта.
Она умеет заряжать аккумуляторы током до 800мА.
Значение тока устанавливается изменением номинала внешнего резистора.
Так же она поддерживает функцию заряда небольшим током, если аккумулятор сильно разряжен (напряжение ниже чем 2.9 Вольта).
При заряде до напряжения 4.2 Вольта и падении зарядного тока ниже 1/10 отного, микросхема отключает заряд. Если напряжение упадет до 4.05 Вольта, то она опять перейдет в режим заряда.
Так же имеется выход для подключения светодиода индикации.
Больше информации можно найти в данной микросхемы существует более дешевый.
Причем он более дешевый у нас, на Али все наоборот.
Собственно для сравнения я и купил аналог.

Но каково же было мое удивление когда микросхемы LTC и STC оказались на вид полностью одинаковыми, по маркировке обеими - LTC4054.

Ну может так даже интереснее.
Как все понимают, микросхему так просто не проверить, к ней надо еще обвязку из других радиокомпонетов, желательно плату и т.п.
А тут как раз товарищил починить (хотя в данном контексте скорее переделать) зарядное устройство для 18650 аккумуляторов.
Родное сгорело, да и ток заряда был маловат.

В общем для тестирования надо сначала собрать то, на чем будем тестировать.

Плату я чертил по даташиту, даже без схемы, но схему здесь приведу для удобства.

Ну и собственно печатная плата. На плате нет диодов VD1 и VD2, они были добавлены уже после всего.

Все это было распечатано, перенесено на обрезок текстолита.
Для экономии я сделал на обрезке еще одну плату, рассмотрите ее участие позже.

Ну и собственно изготовлена ​​печатная плата и подобраны необходимые детали.

А переделывать я буду такое зарядное, наверняка оно очень известно читателям.

Внутри него очень сложная схема, состоящая из разъема, светодиода, резистора и специально обученных проводов, которые выравнивают заряд на аккумуляторах.
Шучу, зарядное устройство находится в блочке, включающее в себя розетку, здесь просто 2 аккумулятора, соединенные параллельно и светодиод, постоянно подключенный к аккумулятору.
К родному зарядному вернемся позже.

Спаял платку, выковырял родную плату с контактами, сами контакты с пружинами выпаял, они еще пригодятся.

Просверлил пару новых отверстий, в среднем будет светодиод, отображающий включение устройства, в боковых - процесс заряда.

Впаял в новую плату контактов с пружинками, а так же светодиоды.
Светодиоды удобно вставить в плату, затем аккуратно установить плату на родное место, и только после этого они будут стоять ровно и одинаково.

Плата установлена ​​на место, припаян кабель питания.
Собственно печатная плата Разработана под три варианта запитки.
2 варианта с разъемом MiniUSB, но в вариантах установки с разных сторон платы и под кабель.
В данном случае я сначала не знал длины, понадобится запаял короткий.
Так же припаял провода, идущие к плюсовым контактам аккумуляторов.
Теперь они идут по раздельным проводам, для каждого аккумулятора свой.

Вот как получилось сверху.

Ну а теперь перейдем к тестированию

Слева на плате я установил купленную на Али микруху, справа купленную в оффлайне.
Соответственно сверху они будут расположены зеркально.

Сначала микруха с Али.
Ток заряда.

Теперь купленная в оффлайне.

Ток КЗ.
Аналогично, сначала с Али.

Теперь из оффлайна.



Налицо полная идентичность микросхем, что ну никак не может не радовать 🙂

Было замечено, что при 4.8 Вольта ток заряда 600 мА, при 5 Вольт падает до 500, но это работает уже после прогрева, но это ведет себя микросхемы примерно одинаково.

Ну а теперь немного о процессе зарядки и доработке переделки (да, даже так бывает).
С самого начала я думал просто установить светодиод на индикацию включенного состояния.
Вроде все просто и очевидно.
Но как всегда захотелось большего.
Решил, что будет лучше, если во время заряда он будет погашен.
Допаял пару диодов (vd1 и vd2 по схеме), но получил небольшой облом, светодиодный показывающий режим заряда светит и тогда, когда нет аккумулятора.
Вернее не светит, а быстро мерцает, добавил клеммам аккумулятора конденсатор на 47мкФ, после этого он стал очень коротко вспыхивать, почти незаметно.
Это как раз тот гистерезис включение повторной зарядки, если напряжение упало ниже 4,05 Вольта.
В общем после этой доработки стало все отлично.
Заряд аккумулятора, светит красный, не светит зеленый и не светит светодиод там, где нет аккумулятора.

Аккумулятор полностью заряжен.

В выключенном состоянии микросхема не пропускает напряжение на разъем питания, и не боится закоротки этого разъема, соответственно не разряжает аккумулятор на свой светодиод.

Не обошлось и без измерения температуры.
У меня получилось чуть более 62 градусов после 15 минут заряда.

Ну а вот так выглядит полностью готовое устройство.
Внешние изменения минимальны, в отличие от внутренних.Блок питания на 5 / Вольт 2 Ампера у товарища был, и довольно неплохой.
Устройство обеспечивает тока заряда 600мА на канал, каналы независимые.

Ну а так выглядело родное зарядное. Товарищ хотел попросить меня поднять в нем зарядный ток. Оно и родного то не выдержало, куда еще поднимать, шлак.

Резюме.
На мой взгляд, для микросхемы за 7 центов очень неплохо.
Микросхемы полностью функциональны и ничем не отличаются от купленных в оффлайне.
Я очень доволен, теперь есть запас микрух и не надо ждать, когда они будут в магазине (недавно опять пропали из продажи).

Из минусов - Это не готовое устройство, потому что придется травить, паять и т.п., но при этом есть плюс, можно сделать плату под конкретное применение, а не использовать то, что есть.

Ну и в тоге получить рабочее изделие, изготовленное своими руками, дешевле чем готовые платы, да еще и под свои твердые условия.
Чуть не забыл, даташит, схема и трассировка -

В прошлый раз я рассматривал вопрос о замене никель-кадмиевых NiСd аккумуляторов шуруповерта на литий-ионные.Теперь остался вопрос зарядки этих аккумуляторов. Литий ионные аккумуляторы формата 18650 обычно заряжаются до напряжения 4,20. Ток заряда аккумулятора может находится в пределах от 0,1С до 1С (С-емкость аккумулятора). Лучше выбрать это значение согласно даташиту на конкректный аккумулятор. Я применил к переделке шуруповерта аккумуляторы марки Samsung INR18650-30Q 3000mAh 15A.Смотрим даташит-ток зарядки -1,5А.


Наиболее правильным будет провести заряд литиевых аккумуляторов в два этапа по методу CC / CV (постоянный ток, постоянное напряжение-постоянный ток, постоянное напряжение). Первый этап- должен обеспечен постоянный ток заряда. Величина тока составляет 0,2-0,5С. Для аккумулятора с емкостью 3000 мА / ч, номинальный ток заряда на первом этапе равен 600-1500 мА . . Второй этап - зарядка аккумулятора постоянным напряжением, ток снижается. Поддерживается напряжение на аккумуляторе в пределах 4.15-4,25 В. Процесс заряда будет законченным когда току падет до 0,05-0.01С.
На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15–4.25 вольта и контролирует значение тока.По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.
Принимая во внимание вышесказанное применил готовые электронные модули с Алиэкспресс. Понижающая плата CC / CV с ограничением по току на микросхеме XL4015E1 или на LM2596.Предпочтительней плата на XL4015E1 так, как она более удобна в настройках.



Характеристики платы на XL4015E1.
Максимальный выходной ток до 5 Ампер.
Напряжение на выходе: 0,8 В-30 Вольт.
Напряжение на входе: 5 В-32 Вольт.
Плата на LM2596 имеет аналогичные параметры, только ток чуть меньше - до 3 Ампер.
Плату для управления зарядом литий-ионной батареи выбрана ранее. В качестве источника питания можно применить любое со встроенным выходным напряжением не ниже 18 Вольт (для схемы 4S), ток не ниже 2-3 Ампер.В качестве первого примера построения зарядного устройства для литий-ионных аккумуляторов шуруповерта я использовал адаптер 220 \ 12 Вольт, 3 Ампера.



Предварительно я проверил какой ток он может выдать пир номинальной нагрузке. Подключил к выходу автолампу и выждал полчаса. Выдает свободно без прегруза 1,9 Ампер. Также измерил температуру на радиатореистора-40 градусов Цельсия. Вполне неплохо-нормальный режим.


Но в этом случае не хватает напряжения.Это легко исправимо, с помощью всего одной копеечной радиодетали-переменного резистора (потенциометр) на 10-20 кОм. Рассмотрим типую схему адаптера.


По схеме есть управляемый стабилитрон TL431, он находится в цепи обратной связи. Его задача стабильное выходное напряжение в соответствие с нагрузкой. Через делитель из двух резисторов он подключен к плюсовому выходу адаптера. Который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор, который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор.Вращаем ось потенциометра и выставляем нужное напряжение. В моем случае я задал 18 Вольт (небольшой запас от 16,8 В для падения на плате CCCV). Если у вас напряжение указанное на корпусах электролитических конденсаторах стоящих на выходе схемы будет больше нового напряжения. Тогда надо заменить их с запасом 30% по напряжению.
Далее подключаем к адаптеру плату для управления зарядом. Выставляем подстроечным резистором на плате напряжение 16,8 Вольт. Другим подстроечным резистором выставляем ток 1,5 Ампера, подключаем тестер в режиме амперметра к выходу платы.Теперь можно подключить литий-ионной сборку шуруповерта. Зарядка прошла нормально, ток к концу заряда упал до минимума, батарея зарядилась. Температура на адаптере была в пределах 40-43 градусов Цельсия, что вполне нормально. В перспективе можно в корпусе адаптера для улучшения вентиляции (особенно в летнее время) насверлить отверстия.
Окончание заряда батареи можно увидеть по включению светодиода на плате на XL4015E1. В данном примере я использовал другую плату на LM2596 так, как случайно в ходе экспериментов сжег XL4015E1.Советую делать зарядку лучше на плате XL4015E1.

У меня есть еще штатное зарядное от другого шуруповерта. Оно рассчитано на зарядку никель-кадмиевых аккумуляторов. Хотелось использовать это штатное зарядное устройство для зарядки и никель-кадмиевых аккумуляторов и литий-ионных.


Это решилось просто- припаял к выходным проводам (красный плюс, черный минус) провода к плате CCCV.
Напряжение холостого хода на выходе штатное зарядное было 27 Вольт, это вполне подходит для нашей зарядной платы.После подключения так же как и вариант с адаптером.


Окончание зарядки здесь мы видим по изменению цвета свечения светодиода (переключился с красного на зеленый).
Саму плату CCCV я поместил в подходящую пластмассовую коробку, выведя провода наружу.



Если у вас штатное зарядное устройство на трансформаторе, то можно подключить плату CCCV после диодного мостика выпрямителя.
Способ переделки адаптера под силу начинающим и может пригодиться в других целях, в результате получим бюджетный блок для различных устройств.
Всем желаю здоровья и успехов в покупках и жизни.
Подробнее процесс работы с зарядным устройством для переделанного шуруповерта можно посмотреть в видео

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +27 Добавить в избранное Обзор понравился +28 +51

Зарядные устройства для Li-ion аккумуляторов

Зарядка для литиевых аккумуляторов соответствует требованиям, которые обезопасят вашу батарею от поломки и возгорания при неправильной работе с ними:

  • Аккумулятор Li-ion крайне чувствителен к перезаряду выше установленного напряжения.Из-за перезарядки батарея может сломаться или даже загореться. Поэтому зарядное устройство для литий-ионных аккумуляторных батарей обязательно должно иметь отсечку, то есть барьер по максимальному напряжению.
  • Отключение заряда до того, как полный заряд аккумулятора совершится, также способно привести к преждевременному изнашиванию зарядного устройства для литий-ионных аккумуляторов.

Решение - зарядные устройства для аккумуляторов Li-ion для электровелосипедов, работающие по алгоритму CC / CV.Его суть состоит в том, что сначала батарея заряжается постоянным током, а после достижения определенного необходимого значения ток плавно уменьшается. При этом настраиваемое напряжение создается условие, при этом напряжение продолжает быть постоянным. Ваш аккумулятор заряжается, не переходя обозначенный выше опасный аварийный порог.

Как подобрать зарядное устройство для литий-ионного аккумулятора?

Чтобы сделать правильный выбор и купить зарядное устройство для Li-ion аккумулятора, подходящее для вашей АКБ для электроцикла, обращайтесь в интернет-магазин VoltBikes.Наш менеджер бесплатно проконсультирует вас относительно выбора зарядного устройства для литиевых аккумуляторов и самого аккумулятора при необходимости. В нашем ассортименте представлены модели зарядных устройств для литий-ионных аккумуляторов с разным ценовым диапазоном продукции, при этом качество неизменно остаётся высоким. В каталоге интернет-магазина Вольтбайкс можно приобрести зарядку для литиевых аккумуляторов по доступной цене.

Выбирая зарядное устройство для аккумулятора Li-ion к электрическому велосипеду, обращайте внимание на ток заряда.Обычно берут зарядки с током половинного порядка от ёмкости батареи. Например: если у аккумулятора ёмкость 2000 мА, тогда ток зарядного устройства должен составлять 1 А. Если ёмкость батареи - 700 мА, то ток заряда не должен превышать 350 мА. Если зарядка батареи слишком слабая по с ёмкостью литиевого аккумулятора, то на полный заряд понадобится слишком много времени.
Сделать заказ на Li ion аккумуляторы с доставкой в ​​любом регионе России Вы можете в каталоге!

Показать полностью

Зарядное устройство для литиевых аккумуляторов своими руками

Многие могут, что за небольшие деньги можно заказать специальную плату из Китая, посредством которой можно заряжать литиевые аккумуляторы через USB. Она будет стоить около 1 доллара.

Но нет смысла покупать то, что легко собирается за несколько минут. Не стоит забывать и о том, что заказанную плату придется ждать около месяца. Да и покупное устройство не приносит удовольствия, как сделанное своими руками.
Первоначально планировалось собрать зарядное устройство на базе микросхемы LM317.

Но тогда для этой зарядки потребуется более высокое напряжение, чем 5 В. Микросхема должна иметь разницу в 2 В между входящим и выходящим напряжением.Заряженный литиевый аккумулятор имеет напряжение 4,2 В. Это не соответствует описанным требованиям (5-4,2 = 0,8), поэтому необходимо поискать другое решение.

Зарядку, которая будет рассматривать эту статью, может быть практически каждый. Ее схема довольно проста для повторения.


Идея этой схемы состоит в том, что здесь присутствует и ограничение зарядного тока аккумулятора, и стабилизация напряжения. Последняя построена на основе стабилитрона TL431.
В роли усиливающего элемента выступает транзистор.А резистор R1 регулирует ток заряда, значение которого зависит лишь от параметров аккумулятора. Рекомендуется использовать 1-ваттный резистор. Оставшиеся резисторы могут иметь мощность 250 или 125 мВт.
На выходе зарядника необходимо установить напряжение 4,2 В, поскольку оно соответствует напряжению полностью заряженного литиевого аккумулятора. Оно задается резисторами R2 и R3.
В сети имеется большое количество софта для расчета напряжения стабилизации TL431.

Одну из таких программ можно скачать в конце статьи.
Чтобы осуществить более точную настройку напряжения на выходе, можно поменять резистор R2 на многооборотный. Его сопротивление должно составлять порядок 10 кОм.


Можно применить и такую ​​схему:


В качестве индикатора используется светодиод. Годится любой. Его цвет не имеет значения.
Настройка заключается лишь в установке напряжения 4,2 В на выходе схемы. Микросхема TL431 встречается довольно часто, особенно в БП компьютеров. Транзисторы можно использовать типа КТ819 или КТ805.
Представляет схему предназначается для заряда только одного литий-ионного аккумулятора стандарта 18650.

В принципе, можно использовать и для используемых видов аккумуляторов. Требуется лишь выставить необходимое для этого значения выходного напряжения зарядки.
Если устройство не работает, то необходимо проверить управляющий вывод TL431 на наличие напряжения. Его значение должно быть не меньше 2,5 В.


Это наименьшее допустимое значение опорного напряжения для этой микросхемы.Хотя иногда можно встретить и на 3 В.

Рекомендуется перед пайкой изготовить тестовый стенд для проверки работоспособности схемы, а монтаж по окончании сборки основательно проверить.

Прикрепленные файлы: АРХИВ 1: АРХИВ 2

Автор: Алексей Алексеевич.


Выбор зарядного устройства для литиевых аккумуляторов

Большинство современных гаджетов получают питание двумя способами: от сети, от батареек. Какой из них выберете вы? Наверное, второй, как наиболее удобный. Но тогда позаботиться об их регулярной зарядке. Для этого имеется специальное оснащение - зарядное устройство для литий-ионных аккумуляторов. Выбирая его, обычно интересуются скоростью заряда и одновременно восстанавливаемых батарей.

Но при этом не стоит забывать о том, что оно должно быть оптимизировано для работы с конкретными аккумуляторами. Большинство зарубежных производителей батареек выпускают и собственные зарядные устройства, что избавляет вас от утомительных поисков подходящей модели.В чем больше их отличие и как ориентироваться в этом море продукции? Сейчас мы расскажем более подробно.

Зарядка для пальчиковых батареек

Этот прибор является необходимым предметом для людей, предпочитающих активный образ жизни, увеличивающий количество используемых гаджетов на работу от аккумуляторов. Одним из самых распространенных среди таких приборов является мобильный телефон.

Все они установлены батареями на литиевой основе. Поэтому для них рекомендуют приобретать зарядное устройство для литиевого аккумулятора 18650.Так как попытка восстановить батарею используя прибор неподходящей модели к ее порче.

Обычно для зарядки аккумуляторов на литиевой основе используют устройство с маркировкой EP. В телефоне батарея считается самым уязвимым. И при использовании неподходящей зарядки срок ее службы может сократиться, она будет быстро разряжаться, что доставим массу неудобных моментов. Чтобы избежать этого необходимо правильно подбирать оборудование для восстановления.Причем не обязательно приобретать готовую модель можно сделать зарядное устройство для литиевых аккумуляторов своими руками. Такой прибор обойдется дешевле, чем промышленное изделие.

Конструктивные особенности ЗУ

Классическая схема аккумулятора зарядного устройства для литиевого 18650 включает в себя две основные детали:

  • Трансформатор;
  • Выпрямитель.

Используется он для выработки постоянного тока с напряжением 14,4В. Такое значение параметра выбрано не случайно. Оно необходимо для того, чтобы ток смог пройти через разряженный аккумулятор. А так как в это время напряжение батареи составляет 12В, то есть зарядить ее около, у которого на выходе такое же значение невозможно. Вот поэтому и была выбрана величина в 14,4В.

Принцип работы ЗУ

Восстановление батареи начинается при включении ЗУ в сеть. При этом внутреннее сопротивление аккумулятора растет, а ток снижается. Как только напряжение на батарее достигнет отметки в 12В, ток приблизится к нулевой отметке.Такие параметры говорят о том, что зарядка аккумулятора выполнена успешно и устройство может быть отключено.

Кроме обычного процесса, занимающего довольно продолжительное время, существует и ускоренный. Стремительная зарядка значительно сокращает сроки, но в то же время негативно влияет на работу батареи, поэтому использовать этим методом специалисты не рекомендуют.

Критерии выбора прибора зарядки

Определить насколько качественным будет покупаемый прибор можно по следующему моменту:

  • Наличию независимых каналов заряда;
  • Току;
  • Функции разряда.

Рассмотрим каждый из них подробно. Начнем с самого значимого - независимых каналов заряда. Наличие их у выбранной модели означает, что ее электронная начинка способна раздельно контролировать процесс зарядки и прекращать его, как емкость аккумулятора будет восстановлена. Но при этом все остальные не успеют восстановить емкость, что при постоянном повторении такой ситуации ведет к быстрому выходу из строя батарейки.

Пополнение энергии аккумулятора возможно способами:

  1. Слабым током;
  2. Средним;
  3. Высоким.

Первый предполагает выбор зарядного устройства для литий-ионных аккумуляторов с учетом номинальной емкости батареи. При этом вырабатываемый им ток не должен быть 10%. Такой способ зарядки самый медленный и щадящий. При его постоянном использовании срок службы аккумуляторов практически не сокращается.

Использование приборов, с током, составляющим меньшей половины номинальной емкости батареи считается золотой серединкой. При нем аккумулятор практически не нагревается и время цикла не очень затянутое, как в первом случае.

Последний способ или зарядка большим током практически равной номинальной емкости - это в своем роде стресс для батареи, приводящий к весомому сокращению срока службы. При нем вентилятор сильный нагрев, требующий активный вентилятор сильного охлаждения. Его используют только в крайних случаях, когда требуется зарядить аккумулятор за пару часов.

Смотрим видеообзор зарядников для литьевых батарей:

Существуют и так называемые интеллектуальные устройства.Они используются для зарядки аккумуляторов фотографами, используют осветительные приборы и другие профессиональные случаи. Стоимость такого зарядного устройства для литий-ионных аккумуляторов достаточно велика, но если вам важна безупречная работа гаджета, то лучше инвестировать в покупку прибора, чем постоянно менять батареи.

У интеллектуальных зарядных устройств имеется функция разряда. Она необходима чтобы полностью разрядить аккумулятор, исключив тем самым эффектом памяти.Это несколько удлиняет цикл зарядки, но тем продлевает срок службы батареи.

В некоторых моделях присутствует и функция тренировки. Ее использовать для возвращения в рабочее состояние частично испорченных аккумуляторов.

Лучшие производители

Каждый продукт имеет свои особенности. Поэтому выбирая конкретную марку необходимо в первую очередь ориентироваться на количество и тип аккумуляторов, которые придется заряжать. Если норм работа с 4-мя батареями, то можно остановиться на модели Rodition Ecocharger.Это небольшое устройство, способное восстанавливать даже одноразовые щелочные батарейки. Включение этой корпуса производится тумблером, расположенным на боковой панели.

Прибор имеет четыре канала и способен контролировать уровень заряда каждого элемента в отдельности. На панели устройства имеется световая индикация, показывающая, какой из аккумуляторов уже восстановился. Купить такое устройство можно за 20 долларов.

Смотрим видео о продукции Rodition Ecocharger:

Одним из наиболее популярных и многофункциональных устройств является зарядное устройство для литиевых аккумуляторов марки La Crosse BC-700.Оно относится к продвинутым и рассчитано на восстановление пальчиковых баьаоеек форматов АА и ААА на основе никеля. Возможности таковы, что он осуществляет зарядку 4 батарей разной емкости.

Устройство работает в нескольких режимах. Имеется регулятор тока, позволяющий выбирать наиболее оптимальную его функцию для каждого случая.

Этапы зарядки

Процесс восстановления батареи специалисты рекомендуют начинать с ее полной разрядки.Если по каким-либо причинам приходится выбирать продвинутую модель устройства, то стоит выбрать продвинутую модель устройства.

После этого устанавливается режим зарядки. Он может быть щадящим или быстрым. Все зависит от конкретной ситуации и выбранного зарядного устройства для литиевых аккумуляторов.

Li Ion Зарядка - Аксессуары и комплектующие

Обычные объявления

Найдено 68 объявлений

Найдено 68 объявлений

Хотите продавать быстрее? Узнать как

Кременчуг 28 янв.

Зарядное устройство для литиевых аккумуляторов, выбор тока зарядки, LCD дисплей, от USB ЯРКИЙ ЛУЧ LC-15 4606400105480 - цена, отзывы, характеристики, фото

Зарядное устройство для литиевых аккумуляторов, выбор тока зарядки, LCD дисплей, от USB ЯРКИЙ ЛУЧ LC-15 4606400105480 работает от USB-адаптера (5 Вольт). Позволяет необходимый ток заряда аккумулятора. Предусмотрено наличие индикатора напряжения. Данная модель современного зарядного устройства совместима с широким ассортиментом аккумуляторов. При установке разряженного аккумулятора в базу необходимо строго соблюдать полярность.

  • Количество каналов заряда, шт 1
  • Ток заряда 0,5 А, 1 А
  • Индикатор ЖК дисплей
  • Аккумуляторы в комплекте нет
  • Размер блистера, мм 200х100х100
  • Тип заряжаемых аккумуляторов Li-Ion
  • Питание вход 5 В, выход 4.2 В
  • Типоразмер заряженных аккумуляторов 26650, 18650, 18500, 18350, 17670, 16340, 14500, 10440

Этот товар из подборок

18650

Показать еще Скрыть

Комплектация *

  • Устройство;
  • Упаковка.

USB-шнур в комплект не входит.

Параметры упакованного товара

Единица товара: Штука
Вес, кг: 0,08

Длина, мм: 200
Ширина, мм: 100
Высота, мм: 100

Преимущества

  • Размеры зарядного устройства для литиевых аккумуляторов, выбор тока зарядки, ЖК-дисплей, от USB ЯРКИЙ ЛУЧ LC-15 4606400105480: 170х100х80 мм;
  • Типоразмеры литиевых аккумуляторов, которые можно заряжать: 26650/18650/18500/18350/17670/16340/14500/10440;
  • Входные параметры: 5В, 0. 5-1А;
  • Выходные параметры: 4,2В, 0,5А; 4,2В, 1А;
  • Цифровой экран базы данных показывает начало зарядки: процентную величину, ток заряда и напряжение на аккумуляторе.

Произведено

  • Россия - родина бренда
  • Россия - страна производства *
  • Информация о производителе
* Производитель оставляет за собой право без уведомления дилера менять характеристики, внешний вид, комплектацию товара и место его производства.

Указанная информация не является публичной офертой

На момент для этого товара нет расходных материалов

Сервис от ВсеИнструменты.ру

Мы предлагаем уникальный сервис по обмену, возврату и ремонту товара!

Вернем вам деньги, если данный товар вышел из строя в течение 6 месяцев с покупки момента.

Обратиться по обмену, возврату или сдать инструмент в ремонт вы можете в любом магазине или ПВЗ ВсеИнструменты.ру.

Гарантия производителя

Гарантия производителя 2 года

Зарядное устройство для литий ионных аккумуляторов 24v (3 типа разъемов) - Зарядные устройства

Зарядное устройство предназначено для зарядки в автоматическом режиме литий-ионных, литий-магниевых и литий-полимерных аккумуляторных тяговых батарей для электротранспорта с номинальным напряжением 24 вольт и емкостью 12 А · ч.

Технические характеристики

  • Литий-ионный 24 В
  • выходное: 29,4V / 2 А (либо модель 29,4V / 1,8 А)
  • Разъем- тюльпан / или "компьютерный" / или "бочонок"

Это зарядное устройство специально разработано для максимального продления ресурса литиевых аккумуляторов.В автоматических устройствах реализован алгоритм оптимальной зарядки литиевых аккумуляторных с целью их полного заряда и батареи работоспособности на максимальное количество циклов. В литиевых батареях правильная зарядка имеет большее значение, чем в свинцово-кислотных аккумуляторных батареях, так как с одной стороны, - необходимо обеспечить полноту заряда, а с другой не допустить перезаряда, потому что в этом случае увеличивается ресурс аккумулятора. В автоматических зарядных устройствах для литий ионных и литий полимерных аккумуляторов с номинальным рабочим напряжением 24 В, подобрано стабилизированное оптимальное напряжение, которое не изменяется в процессе зарядки и ток заряда на всех этапах зарядки, величина которого в процессе зарядки изменяется: от 0.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *