Зарядное устройство для герметичных свинцовых гелевых аккумуляторов – Зарядное устройство для герметичных свинцовых (гелевых) аккумуляторов

Содержание

Зарядное устройство для герметичных свинцовых (гелевых) аккумуляторов

РадиоКот >Схемы >Питание >Зарядные устройства >

Зарядное устройство для герметичных свинцовых (гелевых) аккумуляторов

Здоровеньки булы, громодяне!

Эта история началась когда мы решили отправиться в лес в ночь с субботы на воскресение - у брата был день варенья, и мы его решили отметить на свежем воздухе под шашлычек и водочку. Стали собираться. Для освещения взяли пару фонарей, для наведения музыкального фона небольшую магнитолку-бумбокс. Разумеется, для всего этого купили батарейки, что обошлось нам в кругленькую сумму. С рожами счастливых идиотов мы вломились в лес и бойко приступили к сборке дров, трезво (пока еще) рассудив, что было бы неплохо наломать этих самых дров пока не стемнело. А дров надо было на два костра - для шашлыков и для обогрева - освещения места празднования. Ну что я вам хочу сказать... на следующий день мне с трудом удавалось разогнуться, поскольку для того, чтобы от костра света было достаточно туда надо постоянно подбрасывать дрова, которые надо рубить в лесу, в котором после захода солнца стало темно, как сами знаете где и батареи в фонарях приходилось экономить и освещать место пьянства костром, для которого надо рубить дрова. Я повторяюсь, да? Ну вот той ночью у меня таких повторений было очень много. В связи с чем на следующий день возникло два вопроса - "я отдыхал?" Или "где и как сделать, чтобы такого больше не случалось?"

Прежде всего батареи - ясно, что нужны аккумуляторы, но посмотрев на цены современных никель-кадмиевых аккумуляторов моя жаба категорически отказалась их покупать. Тут я вспомнил про УПС-ы - ну знаете, такие бандуры для того, чтобы ваш комп не вырубился в самый неподходящий момент, когда вы заканчиваете проходить сапера 100х100, а добрый сосед уже подключил самопальный сварочный агрегат в розетку и радостно ухмыльнувшись включил его, обесточивая, таким образом пол-дома.

Так вот, в этих бандурах применяются герметичные свинцовые аккумуляторы - их еще называют гелевыми. По стоимости они не сравнимы с Ni-Cd аккумуляторами - первые стоят значительно меньше последних. Поехал я в магазинчик и прикупил себе вполне даже средненький аккумулятор с напряжением 12 вольт и ёмкостью 7,2 ампер-часа.

Рис.1 Фото аккумулятора.
Как видите, он совсем даже небольшого размера, весит в районе 2,5 кило, так что даже если поехать в лес не на машине, а на свои двоих - руки оттягивает не сильно.

Далее все было просто - берем 10-ти ваттную автомобильную лампочку, вешаем её на длинном проводе на дерево и подключаем к сабжу - свет готов. А для подключение магнитолы ваяем простенький стабилизатор на КРЕН8А или её буржуйском аналоге LM7809, прикручиваем провода к клемам в батарейном отсеке - e voila - имеем свет и музыку. Должен вам сказать, что подобная схема уже испытывалась - хватает на всю ночь непрерывной работы и аккумулятор до конца не разряжается.

Но вы же понимаете, что все хорошо до конца не бывает - должна быть где то капелька отходов чловеческого метаболизма, которая должна отравить всю идиллию. В данном случае засада в том, что эти аккумуляторы нельзя заряжать обычными зарядными устройствами для автомобильных аккумуляторов. Обычные кислотно-свинцовые аккумуляторы заряжаются постоянным по величине током, при этом напряжение на клеммах все время растет и когда оно достигает определенной величины - электролит в аккумуляторе закипает, что свидетельствуе об окончании заряда. Давайте себе представим, что будет, когда закипит герметичный аккумулятор. Я так полагаю, что жертв и разрушений вряд ли удасться избежать. Посему эти ящики заряжают по-другому: ток заряда устанавливают равным 0,1С, где С - это ёмкость аккумулятора, причем, зарядный ток ограничивают, поскольку этот товарищ "неудовлетворенный желудочно" и готов сожрать все, что ему дают, напряжение стабилизируют и устанавливают в пределах 14-15 вольт. В процессе заряда напряжение остается практически неизменным, а ток будет уменьшаться от установленного, до 20-30мА в самом конце заряда. То есть, нужно было собрать зарядное устройство.

Возиться ужасно не хотелось, но тут выручили буржуи - ST Microelectronics - у них, оказывается есть почти готовое решение - микросхема L200C. Эта хреновина представляет собой стабилизатор напряжения с программируемым ограничителем выходного тока. Ессс, сказал я. Мяу, казал Кот - он был со мной полностью согласен.
Документация на эту микросхему лежит тут. www.st.com/stonline/products/literature/ds/1318.pdf Схема зарядного устроства на рисунке 2 - это практически типовая схема включения


Рис.2 Схема принципиальная

Особо описывать в общем то и нечего, остановлюсь только на паре моментов. Прежде всего - токозадающие резисторы R2-R6. Их мощность должна быть не меньше указанной на схеме, а лучше больше. Ну если вы, конечно, не фанат дымовых спецэффектов и не тащитесь от вида почерневших резисторов.

Рис 3.1 Макетка с деталюхами

Микросхему, разумеется, надо установить на радиатор, причем, тоже не жадничать - все это хозяйство расчитано на долговременную работу, поэтому, чем легче будет тепловой режим элементов, тем лучше для них, а значит и для вас. Резистором R7 подстраивается выходное напряжение в пределах 14-15 вольт. Диоды лучше брать наши, отечественные в металлических корпусах, тогда их не надо устанавливать на радиаторы. Напряжение на вторичной обмотке трансформатора 15-16 вольт. Лично я никакой платы не делал, не так уж много тут деталей - собрал все на макетке. Что получилось видно на фотке.

Рис 3.2 Все в сборе, ток без корпуса

Работает все, как и предсказано в теории - ток, по началу, большой, к концу заряда опустился до незначительного и в таком состоянии живет уже несколько дней. Кстати, фирма производитель рекомендует как раз такой, незначительный ток в течении длительного времени для сохранения ёмкости батареи. Документацию на саму батарею можно найти на сайте www.csb-battery.com. Ну удачи, смотрите аккуратнее с паяльником то.


Проверено Котом! Обсудить статью в форуме

Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

www.radiokot.ru

Как и чем заряжать гелевые аккумуляторы: пошаговая инструкция

Любые элементы питания аккумуляторного типа требуют регулярного восстановления заряда. Не каждый знает, как зарядить гелевый аккумулятор. Специфический электролит требует применения особых способов восстановления емкости. Соблюдение некоторых правил поможет избежать выхода элемента из строя.

Схема устройства двух типов гелевого аккумулятораСхема устройства двух типов гелевого аккумулятораСлева — гелевый аккумулятор по технологии AGM, справа — гелевый аккумулятор по технологии GEL.

Что представляют собой гелевые аккумуляторы?

Гелевая АКБ представляет собой продукт преобразования классической батареи. Жидкий наполнитель был заменен гелеобразным. Принцип действия не отличается от такового у привычных кислотно-свинцовых аккумуляторов.

Существует 2 варианта изготовления таких элементов питания:

  1. Технология GEL. В таком случае используется микропористый сепаратор, наполненный силикагелем.
  2. Технология AGM. Корпус содержит стекловолокно, пропитанное кислотным составом. Этот же материал выполняет функции сепаратора.

Произведенные по этим технологиям изделия используются в автомобиле- и судостроении. От них питаются приборы, требующие бесперебойного энергоснабжения. АКБ с гелеобразным наполнителем в автомобили устанавливаются редко.

Однако они пользуются спросом среди владельцев мотоциклов и мопедов. Аккумулятор служит не менее 10 лет. Он исправно работает в любом положении. Герметичность корпуса препятствует подтеканию электролита.

Преимущества

К преимуществам гелевых источников питания относятся такие качества:

Гелевый аккумулятор фирмы VenturaГелевый аккумулятор фирмы Ventura

Гелевый аккумуляторы отличаются безопасностью и длительным сроком службы.

  1. Высокая сила пускового тока. Гелевый наполнитель плотно прилегает к свинцовым электродам. Это выручает пользователя в зимнее время.
  2. Невозможность утечки кислотного состава. При незначительном повреждении корпуса электролит не выводится наружу.
  3. Разнообразие вариантов установки. Батарею можно размещать на горизонтальной, наклонной или вертикальной поверхности. Подобное объясняется отсутствием жидкого наполнителя.
  4. Безопасность. Аккумулятор не выделяет ядовитых или взрывоопасных паров.
  5. Подача тока стабильной силы и напряжения. Параметры не изменяются даже при падении уровня заряда до 30%.
  6. Длительный срок службы. АКБ выдерживает до 700 циклов разряда и заряда. Некоторые модели не утрачивают емкость даже после 1000 зарядок.
  7. Нечувствительность к перепадам температур. При нагревании или охлаждении гелеообразный электролит сохраняет свойства.

Недостатки

К отрицательным качествам GEL-аккумуляторов относятся такие моменты:

  1. Необходимость соблюдения правил эксплуатации. Только так можно продлить срок службы батареи. Элемент питания нужно правильно заряжать и подготавливать к хранению.
  2. Необходимость использования автоматических зарядных устройств, регулирующих напряжение и силу тока.
  3. Увеличенная, по сравнению с классическими АКБ, стоимость.
Зарядное устройство для гелевого аккумулятора
Зарядное устройство для гелевого аккумулятора

Пример специализированных зарядных устройств для свинцово-кислотных и гелевых батарей от фирмы Optima и Universal.

Можно ли заряжать гелевый аккумулятор обычным зарядным устройством?

Использовать обычное ЗУ нежелательно. Подключение такого прибора напрямую способно вывести аккумулятор из строя без возможности ремонта. При подаче тока высокой силы гель начинает плавиться. Сжиженный наполнитель не может вернуться в изначальное состояние. Он продолжает расплавлять оставшийся гель.

При зарядке гелиевой АКБ классическим ЗУ могут возникать и такие проблемы:

  1. Прекращение набора заряда при достижении показателя в 90%.
  2. Невозможность тонкой настройки параметров. Заставить батарею принимать ток неподходящей мощности не получится.
  3. Перегрев АКБ. В таком случае нужно сразу отключать ЗУ.
    При использовании неавтоматического прибора пользователю придется отслеживать процесс зарядки.

Каким зарядным устройством пользоваться?

Зарядное устройство для гелевого аккумулятора должно иметь такие характеристики:

  1. Возможность настройки тока и напряжения заряда. Это позволит избежать повреждения гелевого наполнителя и пластин.
  2. Наличие функции температурной компенсации.
  3. Диапазон рабочих температур в пределах +5…+40°С.
  4. Автоматический контроль процесса. Зарядка протекает в 3-4 этапа, контролируемых блоком управления.

Основные правила безопасной зарядки

При восстановлении мощности аккумулятора с гелеобразным наполнителем нужно соблюдать такие правила:

  1. Степень заряженности требуется проверять каждые 2-4 недели. Сделать это самостоятельно можно, используя мультиметр. Нужно завести двигатель и подсоединить щупы прибора к клеммам АКБ.
  2. Необходимо соблюдать лимит напряжения. Этот показатель не должен превышать 14,5 В. В процессе зарядки параметр изменяется. Чем глубже разряд, тем выше сила тока. По мере восстановления заряда показатели снижаются. Превышение допустимых уровней приводит к расплавлению и закипанию электролита.
  3. Не стоит пытаться вскрыть корпус в случае закипания наполнителя. Это может привести к взрыву батареи и травмированию пользователя.
Уровень заряда по вольтажу у гелевого аккумулятораУровень заряда по вольтажу у гелевого аккумулятора

При полном заряде вольтаж на клеммах гелевого аккумулятора не должен превышать 14.5 В.

Как заряжать гелевый аккумулятор?

Зарядку нужно выполнять с помощью специальных устройств. При этом нужно правильно устанавливать основные параметры.

Важные параметры и особенности

Интервалы между процедурами должны составлять не менее 6 месяцев. Необходимо восстанавливать энергетический потенциал АКБ полностью. В противном случае емкость батареи со временем снизится. Восстановить этот показатель достаточно сложно.

Длительность цикла зарядки зависит от емкости элемента питания и тока заряда. Первый параметр делят на второй. При емкости 60 А/ч и силе тока 0,6 А длительность цикла составляет 10 часов. Специальные зарядные устройства подают сигнал о завершении процедуры.

Порядок зарядки по шагам

Зарядку гелевой аккумуляторной батареи выполняют так:

  1. Включают зарядное устройство и замеряют силу тока. Это поможет выбрать оптимальный режим работы.
  2. АКБ заряжают током той силы, которая была вычислена устройством автоматически.
  3. Через 2-3 часа зарядку прерывают. Это помогает избежать перегрева корпуса.
  4. Дождавшись остывания аккумулятора, процедуру возобновляют, снижая силу тока. Нельзя забывать о необходимости замера параметра в период охлаждения аккумулятора. Если упустить этот момент, ЗУ отключается автоматически, цикл не возобновляется.
  5. При достижении необходимой силы тока устройство отключают. Неавтоматические приборы продолжают функционировать. Специальные ЗУ оснащены регуляторами, предотвращающими расплавление геля при нагреве батареи.

Инструкция по зарядке АКБ для мотоцикла

Гелевый аккумулятор для мотоцикла от фирмы Red EnergyГелевый аккумулятор для мотоцикла от фирмы Red Energy

12,7 В — нормальное напряжение гелевого аккумулятора для мотоцикла.

Аккумулятор снегохода или мотоцикла от источника питания автомобиля отличается меньшей емкостью. Универсальное автомобильное ЗУ не выдает малые токи.

Для зарядки АКБ мотоцикла используют интеллектуальные устройства, например Benton BX. Аккумулятор обследуют с помощью мультиметра.

Прибором замеряют напряжение на клеммах. Нормальным считается показатель в 12,7 В. При более низком значении гелевый аккумулятор требует подзарядки.

Для продления срока службы элемента питания зарядку проводят раз в 2 месяца. После длительного хранения заряд восстанавливают в течение 12-14 часов, подавая ток, равный 10% емкости. Нельзя отключать зарядное устройство до полного восстановления мощности. Нужно следить за температурой корпуса аккумулятора.

Какой уход требуется гелевому аккумулятору?

Нельзя пользоваться транспортным средством до полного разряда батареи. При снижении заряда элемент питания функционировать не прекращает. Однако емкость снижается, из-за чего АКБ не сможет принимать нужное количество энергии. Необходимо приобрести мультиметр и всегда держать его при себе. Это поможет вовремя обнаружить разряд аккумулятора, подключить ЗУ и произвести подзарядку.

Дополнительно рекомендуется выполнять такие действия:

  • регулярно очищать корпус батареи от пыли и грязи;
  • раз в 3 месяца полностью разряжать и заряжать АКБ;
  • контролировать правильность подключения клемм.

Как продлить период работы устройства?

Несмотря на то что гелевая АКБ 12 Вольт является необслуживаемой, продлить срок ее службы можно. Реанимировать вздутый аккумулятор нельзя, его утилизируют. Гель в таком случае отделяется от пластин, выработка энергии становится невозможной. Обнаружить внутренние повреждения сложно. К ним относят износ стекловолокна, электродов или электролита.

При подсыхании наполнителя восстановление возможно. Для этого удаляют пластиковую крышку, снимают резиновые клапаны. С помощью шприца в каждую банку вливают по 2 мл очищенной воды. Жидкость должна незначительно закрывать пластины. После увлажнения геля излишки воды выкачивают шприцем. Колпачки и крышку возвращают на место.

3batareiki.ru

Зарядное устройство для герметичных свинцовых (гелевых) аккумуляторов

Эта история началась когда мы решили отправиться в лес в ночь с субботы на воскресение — у брата был день варенья, и мы его решили отметить на свежем воздухе под шашлычек и водочку. Стали собираться. Для освещения взяли пару фонарей, для наведения музыкального фона небольшую магнитолку-бумбокс. Разумеется, для всего этого купили батарейки, что обошлось нам в кругленькую сумму. С рожами счастливых идиотов мы вломились в лес и бойко приступили к сборке дров, трезво (пока еще) рассудив, что было бы неплохо наломать этих самых дров пока не стемнело. А дров надо было на два костра — для шашлыков и для обогрева — освещения места празднования. Ну что я вам хочу сказать… на следующий день мне с трудом удавалось разогнуться, поскольку для того, чтобы от костра света было достаточно туда надо постоянно подбрасывать дрова, которые надо рубить в лесу, в котором после захода солнца стало темно, как сами знаете где и батареи в фонарях приходилось экономить и освещать место пьянства костром, для которого надо рубить дрова. Я повторяюсь, да? Ну вот той ночью у меня таких повторений было очень много. В связи с чем на следующий день возникло два вопроса — «я отдыхал?» Или «где и как сделать, чтобы такого больше не случалось?»

Прежде всего батареи — ясно, что нужны аккумуляторы, но посмотрев на цены современных никель-кадмиевых аккумуляторов моя жаба категорически отказалась их покупать. Тут я вспомнил про УПС-ы — ну знаете, такие бандуры для того, чтобы ваш комп не вырубился в самый неподходящий момент, когда вы заканчиваете проходить сапера 100х100, а добрый сосед уже подключил самопальный сварочный агрегат в розетку и радостно ухмыльнувшись включил его, обесточивая, таким образом пол-дома.

Так вот, в этих бандурах применяются герметичные свинцовые аккумуляторы — их ещё называют гелевыми. По стоимости они не сравнимы с Ni-Cd аккумуляторами — первые стоят значительно меньше последних. Поехал я в магазинчик и прикупил себе вполне даже средненький аккумулятор с напряжением 12 вольт и ёмкостью 7,2 ампер-часа.


Рис.1 Фото аккумулятора.

Далее все было просто — берем 10-ти ваттную автомобильную лампочку, вешаем её на длинном проводе на дерево и подключаем к сабжу — свет готов. А для подключение магнитолы ваяем простенький стабилизатор на КРЕН8А или её буржуйском аналоге LM7809, прикручиваем провода к клемам в батарейном отсеке — e voila — имеем свет и музыку. Должен вам сказать, что подобная схема уже испытывалась — хватает на всю ночь непрерывной работы и аккумулятор до конца не разряжается.

Но вы же понимаете, что все хорошо до конца не бывает — должна быть где то капелька отходов чловеческого метаболизма, которая должна отравить всю идиллию. В данном случае засада в том, что эти аккумуляторы нельзя заряжать обычными зарядными устройствами для автомобильных аккумуляторов. Обычные кислотно-свинцовые аккумуляторы заряжаются постоянным по величине током, при этом напряжение на клеммах все время растет и когда оно достигает определенной величины — электролит в аккумуляторе закипает, что свидетельствуе об окончании заряда. Давайте себе представим, что будет, когда закипит герметичный аккумулятор. Я так полагаю, что жертв и разрушений вряд ли удасться избежать. Посему эти ящики заряжают по-другому: ток заряда устанавливают равным 0,1С, где С — это ёмкость аккумулятора, причем, зарядный ток ограничивают, поскольку этот товарищ «неудовлетворенный желудочно» и готов сожрать все, что ему дают, напряжение стабилизируют и устанавливают в районе 14-15 вольт. В процессе заряда напряжение остается практически неизменным, а ток будет уменьшаться от установленного, до 20-30мА в самом конце заряда. То есть, нужно было собрать зарядное устройство.

Возиться ужасно не хотелось, но тут выручили буржуи — ST Microelectronics — у них, оказывается есть почти готовое решение — микросхема L200C. Эта микросхема представляет собой стабилизатор напряжения с программируемым ограничителем выходного тока. Документация на эту микросхему лежит тут: www.st.com/stonline/products/literature/ds/1318.pdf Схема зарядного устроства на рисунке 2 — это практически типовая схема включения


Рис.2

Особо описывать в общем то и нечего, остановлюсь лишь на паре моментов. Прежде всего — токозадающие резисторы R2-R6. Их мощность должна быть не меньше указанной на схеме, а лучше больше. Ну если вы, конечно, не фанат дымовых спецэффектов и не тащитесь от вида почерневших резисторов.


Рис 3.1 Устройство на макетной плате

Микросхему, разумеется, надо установить на радиатор, причем, тоже не жадничать — все это хозяйство расчитано на долговременную работу, поэтому, чем легче будет тепловой режим элементов, тем лучше для них, а значит и для вас. Резистором R7 подстраивается выходное напряжение в районе 14-15 вольт. Диоды лучше брать наши, отечественные в металлических корпусах, тогда их не надо устанавливать на радиаторы. Напряжение на вторичной обмотке трансформатора 15-16 вольт. Лично я никакой платы не делал, не так уж много тут деталей — собрал все на макетке. Что получилось видно на фотке.


Рис 3.2 Все в сборе, лишь без корпуса

Работает все, как и предсказано в теории — ток, по началу, большой, к концу заряда опустился до незначительного и в таком состоянии живет уже несколько дней. Кстати, фирма производитель рекомендует как раз такой, незначительный ток в течении длительного времени для сохранения ёмкости батареи.


Рис 4.1 Ещё один вариант сборки


Рис 4.2 Собранное устройство на плате

Скачать печатную плату в форматах LAY и Corel для плоттерной резки на пленке вы можете ниже

Источник: www.radiokot.ru

Список радиоэлементовОбозначение
Тип
Номинал
Количество
ПримечаниеМагазинМой блокнот

DA1
Стабилизатор напряженияL200C1
VD1-VD5
ДиодД2425
1N5400C1
Электролитический конденсатор4700 мкФ 25 В1
C2
Конденсатор1 мкФ1
R1
Резистор820 Ом1
R2
Резистор3 Ом1
0.25 ВтR3
Резистор0.33 Ом1
2 ВтR4
Резистор0.75 Ом1
1 ВтR5
Резистор1.5 Ом1
0.5 ВтR6
Резистор2.2 Ом1
0.5 ВтR7
Подстроечный резистор6.8 кОм1
T1
Трансформатор1

Амперметр1

Вольтметр1
Добавить все

Скачать список элементов (PDF)

Прикрепленные файлы:

bestschemes.ru

Зарядное устройство для гелевых аккумуляторов

Зарядное устройство для гелевых аккумуляторов

Сегодня в среде автолюбителей можно встретить мнение о том, что гелевые аккумуляторы сложно зарядить. Из-за малой распространённости требуемых зарядных устройств (ЗУ) процесс зарядки становится проблематичным. Действительно, гелевые аккумуляторы довольно требовательны к току зарядки и напряжению. Однако ситуация в этом направлении меняется, появляется всё больше необходимых зарядных устройств. Давайте, попытаемся разобраться, какое лучше выбрать вашей АКБ.

 

Содержание статьи

В чём особенность зарядки гелевых аккумуляторов?

На западе гелевые аккумуляторные батареи предлагаются уже несколько десятков лет, и на рынке имеется все необходимое для них оборудование. У нас они пока ещё не так популярны, поскольку автовладельцы просто не знают обо всех преимуществах данных аккумуляторных батарей. При правильной эксплуатации и зарядке гелевые АКБ не приносят никаких проблем и имеют срок эксплуатации больший, чем у обычных свинцово-кислотных аккумуляторов. Но к нему требуется ЗУ с дополнительными возможностями или подзарядка с участием второго аккумулятора, о которой будет рассказано ниже.

Зарядное устройство для аккумулятора


Стандартным зарядным устройством гелевый аккумулятор заряжать нельзя по нескольким причинам.
  • Нагрев. Гелевый аккумулятор ни в коем случае не должен нагреваться. При нагреве гелевый электролит плавится, отслаивается от пластин. Как только батарея достигла полного заряда, питание нужно отключить. Это требование трудно или невозможно выполнить при зарядке обычным устройством;
  • Передача заряда. Даже если есть пусковое устройство с настройкой напряжения и тока, довольно проблематично передать батарее заряд;
  • Специфические особенности. Процесс подзарядки гелевых АКБ имеет особенности, которые учтены только в зарядных устройствах под них;
  • Сила тока. Сила тока в стандартных ЗУ легко может вывести из строя гелевые модели.

Зарядное устройство для гелевых АКБ

Особенно важно то, что гелевый аккумулятор не должен нагреваться. Если он сильно нагреется в процессе подзарядки, то часть геля переходит в жидкое состояние. Даже если вы зарядили АКБ и батарея показывает нормальные параметры, она не будет функционировать нормально. При возвращении её на рабочее место, разрушение гелевого электролита продолжается и в итоге он выйдет из строя.
Вернуться к содержанию

Каким требованиям должно удовлетворять зарядное устройство для гелевых аккумуляторов?

  • Регулировка тока. Зарядное устройство должно иметь возможность регулировки тока заряда. Для гелевого аккумулятора требуется зарядка током 10% от номинальной ёмкости АКБ. Превышение этого значения приводит к поломке или значительному сокращению срока службы аккумулятора;
  • Учет нагрева. ЗУ должно предусматривать температурную компенсацию. Температура в помещении и самой батареи может изменяться и условия зарядки должны меняться так же. Для примера, при нагреве аккумулятора на 10 градусов напряжение нужно снизить примерно на 0,3–0,4 вольта. Зарядное устройство должно иметь опцию температурной компенсации. В идеале оно должно самостоятельно делать перерывы в зарядке при достижении определённой температуры;
  • Стадийность процесса зарядки. ЗУ должно иметь возможность установки нескольких стадий зарядки. Специалисты рекомендуют разделять зарядку гелевого аккумулятора на 3 этапа. На первом этапе проводится зарядка с ростом напряжения. На втором батарея заряжается с постоянным напряжением и уменьшающейся силой тока. Третий этап — это поддержание заряда на минимальных напряжении и токе. Эта стадия требуется, только если АКБ предполагается поставить на хранение;
  • Рабочая температура. Зарядное устройство должно иметь широкий температурный диапазон для работы. Большинство моделей работают в температурном диапазоне от +5 до +40 градусов Цельсия. Но ведь вам может понадобиться зарядка в гараже или на балконе, где температуры будут ниже. Так, что лучше выбирать зарядные устройства с расширенным температурным диапазоном.

Вернуться к содержанию
 

Возможности зарядного устройства для гелевых АКБ

В рамках этой статьи мы не будем рассматривать какие-то конкретные модели ЗУ. В магазинах постепенно появляются все новые модели от разных производителей и их рассмотрению будут посвящены отдельные статьи. Здесь же мы рассмотрим порядок работы среднестатистического устройства для зарядки гелевых батарей. Он включает в себя такие этапы, как:

  • Включение зарядного устройства и замер силы тока АКБ. Затем начинается этап зарядки на основе автоматически определённой силы тока;
  • После прохождения первого этапа зарядное устройство останавливает процесс и даёт батарее остыть. Затем включается с другой силой тока и зарядка возобновляется;
  • В промежутке между зарядками устройство замеряет силу тока от аккумулятора. При достижении необходимого значения зарядка прекращается.

Здесь стоит особенно отметить способность зарядного отключаться после достижения определённых параметров батареи. Если продолжать зарядку дальше, то это приведёт к выходу АКБ из строя. В этом основное отличие от стандартных свинцово-кислотных батарей, для которых в случае продолжения зарядки дольше положенного ничего особо страшного не случится.

Зарядное устройство для АКБ


Вернуться к содержанию
 

Зарядка гелевого аккумулятора обычным ЗУ

В завершение рассмотрим способ подзарядки гелевой АКБ с помощью обычного ЗУ. В этом случае потребуется ещё один аккумулятор. Можно взять новую АКБ или отработавшую, разницы нет. Зарядное устройство и оба аккумулятора подключаются в единую сеть и заряжаются. Давайте, рассмотрим процесс подробнее.

Провода от зарядного устройства с соблюдением полярности подключаются к аккумулятору, взятому в качестве дополнительного. С помощью проводов плюсовая и минусовая клеммы дополнительного аккумулятора подключаются к соответствующим у гелевого. Включаем зарядное устройство и наблюдаем некоторое время, как идёт отдача заряда аккумуляторам.

На ощупь попробуйте корпус гелевого аккумулятора. Если он ощутимо нагрелся, скорее всего, батарея повреждена (или одна из банок) и дальнейшая работа с ней бесполезна.

Если температура немного выше комнатной, то все нормально. Оставляйте аккумулятор заряжаться на 2–3 часа.

После этого проверьте температуру и измерьте силу тока (мультиметром, амперметром). Если требуется продолжайте зарядку до необходимых рабочих параметров аккумуляторной батареи. Преимущество этого способа заключается в том, что вторая АКБ берёт от зарядного устройства нагрузку, смягчает её и потом передаёт гелевой батарее. То есть, дополнительный аккумулятор здесь выступает в роли трансформатора.

Устройство для зарядки гелевого аккумулятора


Вернуться к содержанию
 

Выбор есть

В целом процесс зарядки гелевых аккумуляторов несложный и с ним справится любой. Нужно выбрать соответствующее зарядное устройство и строго соблюдать рекомендации производителя АКБ. Сейчас на рынке появляется всё больше зарядных устройств, предназначенных для гелевых батарей. Есть и недорогие и навороченные устройства, которые ведут процесс зарядки «от и до» в автоматическом режиме.

Если у вас нет средств на покупку зарядного устройства для гелевых АКБ, но есть простая модель, то выход из ситуации есть. Нужно объединить зарядное устройство, гелевый аккумулятор и вспомогательный аккумулятор в одну сеть. Следующее видео вам в помощь по этому вопросу.

Опрос

Примите участие в опросе!

Загрузка ... Загрузка ...

Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Это поможет развитию сайта. Исправления и дополнения к материалу, а также ваши отзывы о зарядных устройствах для гелевых аккумуляторов, оставляйте в комментариях ниже. Голосуйте в опросе и оценивайте статью.
Вернуться к содержанию

akbinfo.ru

КАК ЗАРЯЖАТЬ АККУМУЛЯТОРЫ

   Жизнь современного человека трудно себе представить без различных бытовых помощников. Автомобили, компьютеры, звуковоспроизводящие устройства, телефоны, бытовая медицинская техника, фонари и т.д. — все это стало неотемлемой необходимостью в наше время. Связующим звеном, которым можно связать такие разные предметы как автомобиль и фонарик, являются химические источники тока. В данной статье мы рассмотрим основной класс электрохимических возобновляемых источников тока — аккумуляторные батареи, а так же как заряжать аккумуляторы различных типов. Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима заряки, гарантирует их безотказную работу в течении всего срока службы. Основополагающими факторами при заряде любых батарей являются токи и напряжения приложенные во время процесса зарядки. Установлено, что зарядка чрезмерно большим током приводит к деформации пластин аккумуляторов и даже к их разрушению. Зарядка малым током вызывает сульфатацию пластин и снижению емкости аккумуляторной батареи. Зарядный ток, рекомендуемый в инструкции по эксплуатации батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течении всего срока эксплуатации. Некоторые недобросовесные производители (в частности Китайские) приводят в паспортах на свои изделия совершенно ненормированные показатели токов заряда,и как следствие батарея выходит из эксплуатации раньше времени. Цель таких производителей — экономическая выгода (ведь вышедший из строя аккумулятор придется сменить на новый). Чтобы не попадаться на удочку таких горе-производителей, приведу несколько теоретических выкладок и советов. Зарядку аккумуляторных батарей производят вполне определенным током, значение которого можно вычислить по формуле I=0,1Q для кислотных

кислотные акб

   и I=0,25Q для щелочных аккумуляторных батарей,

фото щелочных аккумуляторных батарей

   где Q-паспортная электрическая емкость батареи (А-ч), а I-средний зарядный ток (А). Для герметичных кислотно-свинцовых аккумуляторов (гелевых)

фото герметичных кислотно-свинцовых аккумуляторов (гелевых)

   значение зарядного тока расчитывают исходя из того, что он должен составлять 0,2-0,3 от емкости батареи. Такое же значение зарядного тока применимо и для NI-MH аккумуляторов. Кислотные батареи чуствительны к недозарядке и перезарядке. Щелочные аккумуляторные батареи менее критичны к режиму эксплуатации. Гелевые элементы питания можно заряжать/разряжать только до значений указанных в паспорте или на самой батарее. NI-MH и NI-CD батареи заряжают до номинального паспортного значения, но из 10 циклов заряда разряда такие батареи желательно хотя бы один раз разрядить полностью (до нижнего номинального значения) а затем зарядить. Связано это с возникновением эффекта памяти у этих батарей — устройства в которых они применяются как правило не позволяют произвести полного разряда батареи (отключаются раньше), и мы производим заряд недоразряженного элемента. Со временем (в очень короткие сроки) это приводит к выходу батареи из строя.

Блок схема зарядного устройства 2

   Блок схема зарядного устройства состоит из понижающего трансформатора и выпрямителя. В качестве регуляторов тока в практических схемах используют: проволочные реостаты; магазины конденсаторов, включаемых последовательно с первичной обмоткой трансформатора; транзисторные и интегральные стабилизаторы тока; тиристорные регуляторы. Далее предлагаю рассмотреть несколько простых практических схем для зарядки аккумуляторных батарей.

простой самодельный зарядник для аккумуляторов 2

   Для зарядки кислотных АКБ на протяжении 15 лет использую простой самодельный зарядник 

простой самодельный зарядник для аккумуляторов

   с перемотанным трансформатором ТС-270 (транс перематывался для достижения токов в 15А,что в конечном счете и не понадобилось).

простой самодельный зарядник для аккумуляторов 3

   Электронную начинку регулятора тока можно собрать по схеме Руслана Старобинского

простой самодельный зарядник для аккумуляторов 3

   или по схеме Германа Рабурахманова (десульфатирующее зарядное устройство, для восстановления аккумуляторной батареи).

простой самодельный зарядник для аккумуляторов 3

   Прибор желательно оснастить амперметром для наблюдений за протекающими процессами (на снимке миллиамперметр от радиостанции с константановым шунтом). Для зарядки герметичных кислотно-свинцовых аккумуляторов (гелевых) можно применить устройство на микросхеме L200C.

зарядное устройство на микросхеме L200C

   Но в силу того, что микросхема эта довольно редкая и дорогая, можно изготовить более простое универсальное зарядное устройство, подходящее для всех типов не слишком емких аккумуляторов. 

универсальное зарядное устройство - схема

   Основа схемы-интегральный стабилизатор К142ЕН12; диодный мост-любой на ток не менее 2А;

диодный мост-любой на ток не менее 2А

   транзистор германиевый из-за малого открывающего напряжения Б-Э; резисторы R1-R4 с мощностью рассеивания от 2Вт (можно намотать из нихрома). Сборка схемы зарядки. Она содержит минимальное количество деталей и может быть произведена навесным монтажем. В качестве переключателя режимов зарядного тока применим галетный.

переключатель режимов зарядного тока

   Подключаем к заряднику полностью разряженный аккумулятор, выбираем зарядный ток по известной формуле и заряжаем в течении 12 часов. В заключении совет по выбору ЗУ при покупке — не поленитесь поискать в сети данные на приглянувшееся вам зарядное устройство. Это сможет вас уберечь от ненужных трат. Если же имеющееся у вас устройство вызывает подозрение (изготовленное неизвестно где ЗУ для малоемкого аккумулятора), не поленитесь открыть его корпус — в некоторых устройствах ничего кроме выпрямителя не имеется, и у вас будет поле для модернизаций и усовершенствований (если вы конечно не хотите потерять свой аккумулятор раньше времени). Конечно тут приведены не все теоретические и практические выкладки и тонкости, а только самые основные. В дальнейших наших публикациях мы познакомимся с более сложными типами ЗУ. Автор: Электродыч.

el-shema.ru

ЗАРЯДНОЕ ДЛЯ ГЕЛЕВЫХ АККУМУЛЯТОРОВ

   Выкладываю интересную и доступную по деталям схемку ЗУ гелевого аккумулятора собранную на распространённой микросхеме ОУ LM358, разработанную по моей просьбе автором Aenigma. Собрано ЗУ на smd деталях для небольших корпусов, тщательно протестировано - работает без нареканий.

Схема зарядного устройства для гелевых АКБ

Схема зарядного устройства для гелевых АКБ

   Светодиод HL1 (индикатор окончания заряда) начинает загораться, когда напряжение на батарее достигает примерно 7 В и загорается на полную яркость, когда напряжение достигает 7,2 В. После этого напряжение на батарее остаётся постоянным, поэтому перезарядить аккумулятор невозможно. Резистор R2 позволяет точнее выставить зарядный ток 0,45 А. Резистор R7 задаёт максимальное напряжение на аккумуляторе 7,2 В. В схему добавлен светодиод, индикатор питания, который постоянно светится. Стабилитрон КС133Г (VD1) можно заменить любым на 3,3...3,9 В, например КС139Г, КС407А, КС407Б, а также из серии BZX55. Чтобы светодиод начинал светиться не при 6,8 В, а при 7 В, для этого нужно сопротивление резистора R8 уменьшить до 0,5 Ом путём параллельного соединения двух резисторов на 1 Ом мощностью по 0,125 Вт, резистор R5 поставить на 22 Ом, резистор R2 - на 4,7 кОм, резистор R3 - на 470 Ом. Так было изначально, так у меня и сделано.

ЗАРЯДНОЕ ДЛЯ ГЕЛЕВЫХ АККУМУЛЯТОРОВ - ПП

   Силовой транзистор может нагреваться, если поставить на заряд сильно разряженный аккумулятор, поэтому небольшой теплоотвод нужен. Стабилитрона на 0,5 Вт достаточно, больше - хуже, так как у них минимальный ток стабилизации может быть больше, а в этой схеме он играет значительную роль. Например, рекомендуемый стабилитрон КС133Г рассчитан на мощность 0,125 Вт. А вообще светодиод - любой, какой больше нравится. В этой схеме ток через него автоматически ограничивается величиной 15 мА. Он должен загораться при подходе к 7 В примерно, чем больше заряд аккумулятора - тем ярче.

ЗАРЯДНОЕ ДЛЯ ГЕЛЕВЫХ АККУМУЛЯТОРОВ на микросхеме

   Печатная плата очень легко доделывается под обычные элементы, если вместо пятачков СМД элементов аккуратно добавить контактные кружки под обычные детали. В архиве прилагаю несколько вариантов плат зарядки. Платка у меня получилась, как всегда, компактная, и отлично вписалась в корпус.

ЗАРЯДНОЕ ДЛЯ ГЕЛЕВЫХ АККУМУЛЯТОРОВ самодельное

ЗАРЯДНОЕ ДЛЯ ГЕЛЕВЫХ АККУМУЛЯТОРОВ - настройка

   Микросхему LM358 в SMD можно поискать на платах от сгоревших материнок и т.д., коих полно в ремонтных компьютерных мастерских. Плюс там есть и полевички, и ещё полезные деталюхи. Я лично так и достаю у знакомых, всё это много и бесплатно.

Зарядное устройство для свинцового гелевого аккумулятора

Зарядное для свинцового гелевого аккумулятора - в корпусе

Готовое устройство

ЗАРЯДНОЕ ДЛЯ ГЕЛЕВЫХ АККУМУЛЯТОРОВ

   А в целом, если всё собрали правильно, то сразу заработает, если нет - проверьте всё досконально, светодиоды разные попробуйте. У меня с первого раза запустилось как надо. Авторы: Igoran и Aenigma.

   Форум по схеме

   Обсудить статью ЗАРЯДНОЕ ДЛЯ ГЕЛЕВЫХ АККУМУЛЯТОРОВ


radioskot.ru

Зарядное устройство для герметичных кислотно-свинцовых аккумуляторов

В. Мосягин, г. Великий Новгород

Сравнительно недавно на рынке источников автономного питания появились герметичные ^кислотно-свинцовые аккумуляторы [1]. По сравнению с другими аккумуляторами (никель-кадмиевыми, нель-марганцевыми) они имеют большую емкость и более низкую цену. Их используют в источниках бесперебойного питания персональных компьютеров, охранных, измерительных системах и других электронных приборах. Чаще всего применяют аккумуляторы емкостью

1,5..                          .17 А’Ч на напряжение б или 12 В. Именно на такие аккумуляторы и рассчитано предлагаемое зарядное устройство.

Принципиальная схема зарядного устройства показана на рис. 4.1.

Своей простоте схема обязана применению микросхемы регулируемого стабилизатора напряжения и тока L200 (2, 3]. Используется микросхема L200CV (L200CH), выполненная в корпусе Pentawatt Структурная схема стабилизатора L200 приведена на рис. 4.2.

В нем имеются цепи ограничения тока, мощности, защита от перегрева и защита от перенапряжения на входе (до 60 В). Выходной ток микросхемы до 2 А, выходное напряжение может быть установлено в диапазоне 2,85…36 В. Микросхема отличается высокой надежностью, нужно очень постараться, чтобы вывести ее из строя.

Микросхема стабилизатора в основном включена по типовой схеме, рекомендованной фирмой-изготовителем [3]. Диод VD5 защищает полностью заряженный аккумулятор от разряда1 через цепи микросхемы. Светодиод HL1 является индикатором включения зарядного устройства в сеть. Ключ VT1, R4, R7, управляющий светодиодом HL2, служит для контроля за процессом зарядки аккумулятора. Учитывая, что величина падения напряжения на резисторах R3 и R6 недостаточна для открывания кремниевого транзистора, в качестве VT1 должен быть использован германиевый. Светодиод HL2 горит во время зарядки аккумулятора и гаснет после ее окончания. Конденсатор СЗ обеспечивает устойчивую работу зарядного устройства, цепочка Rl, С1,

Рис. 4.1. Принципиальная схема зарядного устройства

Рис. 4.2. Структурная схема стабилизатора L200 подключенная параллельно первичной обмотке трансформатора Т1, гасит переходные процессы в момент выключения зарядного устройства из сети, тем самым повышая его надежность.

, ЗаряД аккумулятора ведется током 0,1Q, где Q — емкость аккумулятора в\А-ч. Резистором R3 выставляется необходимый зарядный ток. Разряженный аккумулятор заряжается неизменным током, при этом напряжение на его клеммах растет. Делители R9, R5 (R8,115 для 6-вольтовых аккумуляторов) позволяют установить порог прекращения зарядки аккумулятора. Для 12-вольтовых аккумуляторов рекомендуется выбрать, значения напряжения в пределах 14,5…15 В, а для б-вольтовых — 7,25…7,5 В. При этом на входе опорного напряжения (вывод 4 микросхемы) должно быть напряжение около 2,77 В (2,64…2,86 В). Точное значение напряжения срабатывания выставляется соответствующим подстроечным резистором — R8 или R9.

В процессе зарядки аккумулятора зарядный ток протекает через цепочку низкоомных резисторов R3, R6, одним из которых — переменным R3 — выставляют требуемый ток Величина зарядного тока в амперах определяется выражением:

где U52 = 0,45 В (0,38…0,52 В) — напряжение между выводами 5 и 2 микросхемы DAI; R3, R6 — сопротивления резисторов в омах.

Микросхема DA1 снабжена радиатором с площадью охлаждающей поверхности около 300 см2. Транзистор VT1 — любой германиевый, на напряжение коллектор — эмиттер не менее 20 В. Кроме указанного на схеме, подойдут МП20, МП21, МП25, МП26 с любыми буквенными индексами. В качестве диодов VD1—VD4 можно применить Д231, Д242, Д247 и им подобные; VD5 типа КД208А, КД213. В процессе работы зарядного устройства нагрев диодов незначителен, тем не менее для повышения надежности под-диоды подложены небольшие пластины из дюралюминия толщиной 3 мм. Конденсатор С1 типа К78-2, К73-17 на рабочее напряжение не ниже 600 В; С2 — типа К50-35 или аналогичный импортного производства, СЗ — К10-17, К73-17. Резисторы МЛТ, МОН, С5-16В мощностью, указанной на принципиальной схеме. Подстроечные резисторы R8, R9 типа СПЗ-39А, переменный резистор R3 типа ППБ-2В мощностью не менее 2 Вт. Выключатели SA1., SA2 — МТ-2, МТ-3. Трансформатор питания типа ΤΉ46-220-50. Основная часть деталей зарядного устройства размещена на печатной плате из односторонне фольгированного стеклотекстолита толщиной 2 мм (рис. 4.3,4.4).

Налаживание устройства несложно. Сначала резисторами RB, R9 выставляют необходимые выходные напряжения на клеммах устройства. Отметим, что коммутацию двухпозиционным переключателем SA2 производят до включения устройства в сеть. Затем к/ выходу устройства подключают нагрузку — резистор сопротивлением около

Рис. 4.3. Печатная плата 10 Ом. мощностью 2S…30 Вт. Последовательно с нагрузкой включают амперметр. В режиме заряда 12-вольтовых батарей проверяют необходимый диапазон выходного тока и градуируют ручку переменного

Рис. 4.4. Размещение элементов на печатной плате резистора R3. Убеждаются в точности градуировки в режиме 6-вольвых аккумуляторов, для чего сопротивление нагрузочного резистора уменьшают вдвое.

При работе с зарядным устройством до включения устройства в сеть и подключения аккумулятора переключателем SA2 выбирают тип заряжаемого аккумулятора (6 В или 12 В), а с помощью резистора R3 выставляют зарядный ток по приведенному выше соотношению. Затем с соблюдением полярности подключают аккумулятор и включают устройство в сеть. С целью ускорения зарядки некоторые изготовители аккумуляторов рекомендуют устанавливать зарядный ток исходя из соотношения 0,2…0,25Q.

Здесь резисторы Rl—R6 задают максимальный зарядный ток. Резистор R1, обеспечивающий ток 0,2 А, включен постоянно, а переключателем SA1 параллельно ему подключаются резисторы R2—R6 в зависимости от выбранного диапазона.

В заключение следует отметить, что после окончания зарядки зарядный ток не превышает нескольких миллиампер (практически близок к току саморазряда аккумулятора) и в этом состоянии устройство может находиться неограниченное время.

В том случае, если номенклатура заряжаемых аккумуляторов невелика, можно изготовить зарядное устройство на фиксированные зарядные токи. Вместо резисторов R3 и R6 включают цепь, показанную на рис. 4.5.

Рис. 4.5. Дискретное переключение зарядного тока

Литература

1.       Кислотно-свинцовые аккумуляторные батареи широкого применения. — Радио, 2000, № 12, с. 43; 2001, № 1, с. 45.

2.       Микросхемы для линейных источников питания и их применение. — М.: Додэка-ХХ1, 2001, с. 347-349.

3.       http://www.st.com/stonline/books/pdf/docs/1318.pdf (SGS — Tomphson. Adjustable Voltage and Current Regulator).

Источник: Под редакцией А. Я. Грифа, Оригинальные схемы и конструкции. Творить вместе! — М.: СОЛОН-Пресс, 2004. – 200 с.: ил. – (Серия «СОЛОН – РАДИОЛЮБИТЕЛЯМ», вып. 23)

nauchebe.net

Отправить ответ

avatar
  Подписаться  
Уведомление о