Зарядное устройство для автомобильного аккумулятора из компьютерного блока питания: Зарядное устройство из блока питания компьютера

Содержание

Заметки для мастера - ЗАРЯДНОЕ УСТРОЙСТВО ИЗ КОМПЬЮТЕРНОГО БП


 

Тема, в постройке зарядного устройства для автомобильного аккумулятора, еще многим остается актуальна и на просторах интернета можно найти много информации по ней. Хочу поделится одним из проверенным и простым способом в его постройке, точнее доработки компьютерного блока питания (идея не новая и взята еще из журналов ''Радио''). Что касается некоторой теории, о том как правильно заряжать АКБ, рекомендую очень интересную книжку "Зарядные устройства-1" авторы Ходасевич А.Г., Ходасевич Т.И., стр. 7-9.
Для начала, нам нужен рабочий компьютерный блок питания, модель которого должна соответствовать как на рисунке ниже, мощностью от 250 Ватт и выше.

Почему именно такой БП? Схемные решения во всех моделях компьютерных блоков питания разные и не всегда получается добиться желаемого результата с какой либо другой имеющейся платой, поэтому наша переделка основана на конкретно указанной с минимальными изменениями.
Для начала проверяем аппарат на работоспособность. Делаем перемычку из проволоки и ставим ее на зеленый и черный провод широкого разъема, а затем уже включаем в сеть 220В.

Блок питания должен заработать. Меряем напряжение на жёлтом и черном проводах, оно должно быть 12В.


Для регулировки тока, понадобится переменный резистор номиналом 33 кОм любой мощности, допускается + - пару кОм. Штатный электролитический конденсатор (шина 12В) для надежности, желательно поменять на 25В, так как он, все-таки, рассчитан на 16В. Амперметр используем компактный - готовый или самодельный с рассчитанным шунтом на 10 А.

Два компьютерных силовых кабеля.


Разбираем корпус, вытаскиваем плату. Обращаем внимание на микросхему, она должна быть серии TL494 или ее аналог КА7500.
Следующий этап: выпаиваем все ненужные провода, кроме зеленого, одного красного (5 вольт) и черного (минусовая шина).
Ищем конденсатор 12 Вольтовой шины (желтый провод) и перепаиваем на наш с большим напряжением.


Зеленый провод запаиваем на общую минусовую шину (черные провода).


Запаиваем красный и синий провода большего сечения на + 12В и -12В и оставляем небольшой запас их длинны. В дальнейшем один провод пойдет на амперметр, второй на разъем ''папа''.

На крайние выводы переменного резистора запаиваются черный и красный провод. От среднего вывода, контакт ведет на первую ножку микросхемы.

 


Теперь можно провести первую проверку: для этого ставим резистор в среднее положение, и включаем блок питания. БУДТЕ ВНИМАТЕЛЬНЫ, НА ПЛАТЕ ПРИСУТСТВУЕТ ВЫСОКОЕ НАПРЯЖЕНИЕ!!!

Замеряем напряжение и плавно крутим ползунок по часовой стрелки. В крайнем положении оно, в идеальном варианте, должно быть где-то 15 В, однако может быть и меньше. Если напряжение вместо увеличения уменьшается, то меняем местами контакты чёрного и красного проводов на резисторе. Обращаю внимание на то, что если резистор скрутить в сторону меньшего напряжения, при вольтаже ниже 10В, блок выключится, то есть войдет в защиту. Что бы его повторно запустить нужно выключить питание и подождать несколько секунд.

Если появится желание, выходное напряжение зарядного устройства можно повысить и до 18В, для этого достаточно найти на плате и выпаять стабилитрон Z1. Местонахождение элемента находится около питания вентилятора.


Амперметр подключается в разрыв плюсового или минусового проводника.
Перед окончательным монтажом желательно проверить устройство под нагрузкой. Для эксперимента, подключаем автомобильную лампочку на 12В, можно рабочий аккумулятор от UPS или т.п.
Правильно подключенный амперметр отклонится на какое-то значение силы тока.
Далее идет сборка платы в корпус, его оформление может быть произвольным. В моем варианте 220В идет на разъем ''мама'', а плюс и минус на ''папа''. Для питания блока, использую готовый шнур с вилкой, а кабель для зарядки АКБ, следует доработать с добавлением клеммных зажимов. Обязательно проверьте полярность.
Такой способ постройки не требует каких либо особых серьезных доработок, однако в нем есть свои плюсы и минусы.
Минусы: следует избегать короткого замыкания между клеммами ЗУ, хотя блок с защитой, однако не рекомендую этого делать. Регулировка тока не всегда в широком диапазоне.
Плюсы: компактный, большая отдача тока (особенности данной модели блока питания), автоматический, не боится перепадов напряжения в сети, простейший в постройке, эффективно охлаждается, легкий и компактный. 

Оксема О.

г. Ужгород

Статистика

Онлайн всего: 1

Гостей: 1

Пользователей: 0

Зарядное устройство из компьютерного БП

Зарядное устройство из компьютерного БП

Если у вас лежит старый блок питания от компьютера, ему можно найти легкое применение,особенно если вас интересует зарядное устройство для автомобильного аккумулятора своими руками.

Внешний вид данного устройства представлен на картинке.Переделку легко осуществить, и позволяет заряжать аккумуляторы емкостью 55...65 А*ч

т.е практически любые батареи.

 

 

 

Фрагмент принципиальной схемы  переделок штатного БП изображён на фото:

В качестве DA1 практически во всех блоках питания (БП) персональных компьютеров (ПК) используется

ШИ-контроллер TL494 или его аналог KA7500.

Автомобильные аккумуляторные батареи (АКБ) имеют электрическую ёмкость 55...65 А.ч. Являясь свинцовыми кислотными аккумуляторами, они требуют для своего заряда ток 5,5...6,5 А — 10% от своей ёмкости, а такой ток по цепи "+12В" может обеспечить любой БП мощностью более 150 Вт.

Предварительно необходимо выпаять все ненужные провода цепей "-12 В", "-5 В", "+5 В", "+12 В".

Резистор R1 сопротивлением 4,7 кОм, подающий напряжение +5 В на вывод 1, необходимо выпаять. Вместо него будет использован подстроечный резистор номиналом 27 кОм, на верхний вывод которого будет подаваться напряжение с шины +12 В.

Вывод 16 отключить от от общего провода, а соединение 14-го и 15-го выводов перерезать.

Начало переделки БП в автоматическое зарядное устройство изображено на фотографии:

На задней стенке БП, которая теперь станет передней, на плате из изоляционного материала закрепляем потенциометр-регулятор тока зарядки R10. Также пропускаем и закрепляем сетевой шнур и шнур для подключения к клеммам аккумуляторной батареи.

Для надёжного и удобного подключения и регулировки был изготовлен блок резисторов:

Вместо рекомендованного в первоисточнике токоизмерительного резистора С5-16МВ мощностью 5 Вт и сопротивлением 0,1 Ом я установил два импортных 5WR2J — 5 Вт; 0,2 Ом, соединив их параллельно. В результате суммарная их мощность стала 10 Вт, а сопротивление — необходимые 0,1 Ом.

На этой же плате установлен подстроечный резистор R1 для настройки собранного зарядного устройства.

Для исключения нежелательных связей корпуса устройства с общей цепью зарядки необходимо удалить часть печатной дорожки.

Почему необходимо так заострить внимание на этом? Дело в том, что, во-первых, металлический корпус блока питания в целях техники безопасности не должен иметь гальваническую связь с общим проводом цепи зарядки АКБ, а, во-вторых, этим самым исключается паразитная цепь зарядного тока, минуя токоизмерительный резистор R11.

Установка платы блока резисторов и электрические соединения согласно принципиальной схемы показаны на фотографии:

На фото не видны места паек к выводам 1, 16, 14, 15 микросхемы. Эти выводы предварительно надо облудить, а затем подпаять тонкие многожильные провода с надёжной изоляцией.

До окончательной сборки прибора  переменным резистором R1 необходимо при среднем положении потенциометра R10 выставить напряжение холостого хода в пределах 13,8...14,2 В. Это напряжение будет соответствовать полному заряду аккумуляторной батареи.

Комплектация автоматического зарядного устройства представлена на фотографии:

Выводы для подключения к клеммам АКБ заканчиваются зажимами типа "крокодил" с натянутыми изоляционными трубками разного цвета. Красному цвету соответствует плюсовой вывод, чёрному — минусовой.

Предупреждение: ни в коем случае нельзя перепутать подключение проводов!  Это выведет прибор из строя!

Процесс зарядки АКБ 6СТ-55 иллюстрирует фотография:

Цифровой вольтметр показывает 12,45 В, что соответствует начальному циклу зарядки. Вначале потенциометр устанавливают на отметку "5,5", что соответствует начальному току заряда 5,5 А. По мере зарядки напряжение напряжение на АКБ увеличивается, постепенно достигая максимума, выставленного переменным резистором R1, а ток зарядки уменьшается, спадая практически до 0 в конце зарядки.

При полной зарядке устройство переходит в режим стабилизации напряжения, компенсируя ток саморазряда аккумуляторной батареи. В этом режиме без опасения перезарядки, других нежелательных явлений, устройство может оставаться неограниченное время.

При повторении устройства я пришёл к выводу, что применение вольтметра и амперметра совсем необязательны, если зарядное устройство используется только для зарядки автомобильных аккумуляторных батарей, где полному заряду соответствует напряжение 14,2 В, а для задания начального тока зарядки вполне достаточно отградуированной шкалы потенциометра R10 от 5,5 до 6,5 А.

Получилось лёгкое, надёжное устройство с автоматическим циклом зарядки, не требующее в процессе работы вмешательства человека.

Зарядное устройство из компьютерного блока питания своими руками

Зарядное устройство из компьютерного блока питания для автомобильной аккумуляторной батареи можно собрать самостоятельно. И такой агрегат пользуется популярностью. Ведь на его подготовку требуется минимум средств. При этом получается эффективное ЗУ.

Самодельное зарядное устройство

На состояние автоаккумуляторной батареи обращают внимание в зимний период. Ведь в это время плотность электролитического состава меняется, быстро теряется заряд. В результате, запуск двигателя усложняется. Для решения этой проблемы используют зарядные устройства.

Разработкой и сборкой зу для акб занимаются многие компании. Поэтому подобрать модель с требуемыми параметрами сможет каждый водитель. Такие модели отличаются обширным функционалом: тренировка источника питания, восстановление заряда, прочее. Их стоимость достаточно высока.

Поэтому автолюбителей интересует зарядное устройство для автомобильного аккумулятора, которое сконструировано из подручных агрегатов и элементов.

Преимущества самостоятельной сборки

  1. Использование подручных материалов, элементов. Поэтому расходы на изготовления сокращаются.
  2. Небольшой вес. Он не превышает 1,5–2 кг. Поэтому перемещать самодельный агрегат для восстановления заряда батареи несложно.
  3. Постоянное охлаждение. В состав блока питания включен вентилятор. Поэтому вероятность нагрева минимальна.

Какие сложности?

  1. Сконструированный преобразователь не всегда работает тихо. Периодически он издает звуки, которые похожи на звон, шипение.
  2. Не допускается контакт самодельной зарядки и корпуса автотранспортного средства. Если заряжаем с включением в сеть, то контакт провоцирует поломку преобразователя, КЗ.
  3. Подключение токопроводящих выводов аккумуляторной батареи к проводам выполняется точно. Если на этом этапе допущены ошибки, то вторичные цепи переделанного блока питания в зарядное устройство выходят из строя.
  4. Все контакты и элементы перед подключением проверяются. Только после этого компьютерный блок питания используется для зарядки.

Правила эксплуатации автоаккумулятора

Для поддержания автоаккумулятора в работоспособном состоянии недостаточно подготовить надежное зарядное устройство. Дополнительно выполняются и такие рекомендации:

  • Постоянная поддержка заряда. Аккумуляторный источник постоянно подзаряжается. При перемещении заряд поступает от генератора и других узлов автотранспорта. Если техника не эксплуатируется, то для восстановления заряда применяют ЗУ, как стационарного, так и портативного типа. Если батарея полностью разряжается, то специалисты рекомендуют проводить стремительное восстановление. В противном случае, запуститься процесс сульфатации свинцовых пластин.
  • Пределы напряжения (около 14 В). Напряжение, которое подается генератором, не должно чрезмерно превышать этот параметр. При этом не имеет особого значения тот факт, какой именно режим запущен. Если мотор не функционирует, то напряжение может снижаться до 12,6–13 В. При таких показателях применяют ЗУ с соответствующими параметрами и индикаторами.
  • Отключение потребителей при неработающем моторе. Если зажигание отключено, то и все устройства, фары отключаются. В противном случае, источник питания достаточно быстро потеряет заряд.
  • Подготовка автоаккумулятора. Перед восстановлением заряда с аккумуляторной батареи удаляют подтеки электролитического состава, пыль. Токопроводящие выводы очищаются от окислов, налета. Перед подачей напряжения тщательно проверяются соединения и провода. Ведь даже минимальные смещения провоцируют нарушения, проблемы.
  • В зимний период источник перемещают в теплое помещение. Ведь при отрицательной температуре электролитический состав становится плотным, густым. Это провоцирует ухудшение прохождения заряда.

Основные этапы изготовления ЗУ

Перед тем как сделать из бп компьютера надежный зарядник, изучаются требования техники безопасности, особенности работы с такими агрегатами. Ведь в первичных цепях блока питания пк присутствует напряжение.

Подготавливаем блок питания. Допускается использование отличающихся по мощности моделей. Чаще всего выполняется переделка компьютерного БП, мощность которого составляет 200–250 Вт.

После выбора модели выполняются последующие действия:

  • Из блока питания компьютера откручиваются болтики. Такие действия необходимы для последующего демонтажа крышки.
  • Определение сердечника, который входит в состав импульсного трансформатора. Его измеряют. Полученное значение удваивают. Для каждого элемента этот параметр индивидуален. При проведении тестов удалось выявить, что для получения мощности в 100 Вт требуется 0,95–1 см2. Ведь зарядка источника питания эффективна, если выдает 60–70 Вт.
  • В состав многих моделей БП входит такая схема, как TL494. Подобная схема вводится в состав разнообразных БП, которые представлены на продажу.

Подготовка схемы

Для подготовки зарядного устройства из компьютерного блока питания своими руками требуются определенные компоненты цепи (их отличительная особенность — +12В). Все остальные элементы изымаются. Для этого используют паяльник. Для упрощения процесса изучаются схемы, которые присутствуют на специальных порталах. На них изображены основные элементы, которые потребуются для БП.

Цепи с такими показателями, как -12В, -/+5 В, изымаются. Демонтируется и переключатель, при помощи которого изменяется напряжение. Выпаивается и схема, которая требуется для сигнала запуска.

Сделать зарядное устройство из БП несложно. Но для этого потребуются резисторы (R43 и R44), которые причислены к опорному типу. Показатели резистора R43 изменяются. В случае необходимости напряжение выходное меняется.

Специалисты рекомендуют заменять R43 на 2 резистора (переменный тип — R432, постоянный тип — R431). Внедрение таких резисторов облегчает процесс создания регулируемого элемента. С его помощью проще изменять силу тока, а также выходное напряжение. Это требуется для сохранения работоспособности автоаккумулятора.

Решая, как переделать БП, стоит сосредоточиться на конденсаторе. На выходной части выпрямителя сосредотачивается стандартный конденсатор. Мастера проводят его замену на элемент, который отличается большими показателями напряжения. Так, часто пользуются конденсатором марки С9.

Рядом с вентилятором, который используется для обдува, сосредотачивается резистор. Его заменяют резистором, который выделяется большим сопротивлением.

При подготовке ЗУ для аккумулятора меняется и расположение вентилятора. Ведь воздушная масса должна поступать в подготавливаемый блок питания.

Со схемы ликвидируют дорожки, которые предназначены для соединения массы, фиксации платы непосредственно к шасси.

Сконструированный блок питания с регулировкой подводят к сети с переменным током. Для этих целей используют стандартную лампу накаливания (производительность составляет 40–100 Вт).

Такие действия выполняются для того, чтобы проверить, насколько эффективная схема получилась. Без предварительного тестирования сложно установить, перегорит ли БП с заданной мощностью при резких изменениях напряжения.

Дополнительные рекомендации

Для правильной настройки БП для автомобильной аккумуляторной батареи требуется соблюдение определенных правил.

  • Введение индикаторов. Для отслеживания того, насколько зарядился автомобильный аккумулятор, используются индикаторы. В состав схемы вводят цифровые или же стрелочные индикаторы. Их легко приобрести в специализированных магазинах или же демонтировать со старой техники. Допускается введение нескольких индикаторов, с помощью которых отслеживается степень заряда, напряжение на токопроводящих выводах.
  • Корпус с креплением или ручками. Наличие такой детали способствует упрощению процесса эксплуатации ЗУ из БП.

К сборке ЗУ из БП портативного компьютера допускается при условии, что есть определенный опыт, знания в области электроники. Проводить какие-либо мероприятия, если нет соответствующей подготовки, запрещено. Ведь в процессе нужно контактировать с токопроводящими выводами, элементами, на которые подается напряжение, ток.

Видео про сборку зарядного из БП компьютера для ватомобильного акб

Автомобильное зарядное устройство из компьютерного блока питания

У компьютерного блока питания, наряду с такими преимуществами, как малые габариты и вес при мощности от 250 Вт и выше, есть один существенный недостаток – отключение при перегрузке по току. Этот недостаток не позволяет использовать БП в качестве зарядного устройства для автомобильного аккумулятора, поскольку у последнего в начальный момент времени зарядный ток достигает нескольких десятков ампер. Добавление в БП схемы ограничения тока позволит избежать его отключения даже при коротком замыкании в цепях нагрузки.

Зарядка автомобильного аккумулятора происходит при постоянном напряжении. При этом методе в течение всего времени заряда напряжение зарядного устройства остается постоянным. Заряд аккумулятора таким методом в ряде случаев предпочтителен, так как он обеспечивает более быстрое доведение батареи до состояния, позволяющего обеспечить запуск двигателя. Сообщаемая на первоначальном этапе заряда энергия тратится преимущественно на основной зарядный процесс, то есть на восстановление активной массы электродов. Сила зарядного тока в первоначальный момент может достигать 1,5С, однако для исправных, но разряженных автомобильных аккумуляторов такие токи не принесут вредных последствий, а наиболее распространённые БП ATX мощностью 300 – 350 Вт не в состоянии без последствий для себя отдать ток более 16 – 20А.

Максимальный (начальный) зарядный ток зависит от модели используемого БП, минимальный ток ограничения 0,5А. Напряжение холостого хода регулируется и для заряда стартёрного аккумулятора может составлять 14…14,5В.

Вначале необходимо доработать сам БП, отключив у него защиты по превышению напряжений +3,3В, +5В, +12В, -12В, а также удалив неиспользуемые для зарядного устройства компоненты.

Для изготовления ЗУ выбран БП модели FSP ATX-300PAF. Схема вторичных цепей БП рисовалась по плате, и несмотря на тщательную проверку, незначительные ошибки, к сожалению, не исключены.

На рисунке ниже представлена схема уже доработанного БП.

Для удобной работы с платой БП последняя извлекается из корпуса, из неё выпаиваются все провода цепей питания +3,3V, +5V, +12V, -12V, GND, +5Vsb, провод обратной связи +3,3Vs, сигнальная цепь PG, цепь включения БП PSON, питание вентилятора +12V. Вместо дросселя пассивной коррекции коэффициента мощности (установлен на крышке БП) временно впаивается перемычка, провода питания

220V, идущие от выключателя на задней стенке БП, выпаиваются из платы, напряжение будет подаваться сетевым шнуром.

В первую очередь деактивируем цепь PSON для включения БП сразу после подачи сетевого напряжения. Для этого вместо элементов R49, C28 устанавливаем перемычки. Убираем все элементы ключа, подающего питание на трансформатор гальванической развязки Т2, управляющего силовыми транзисторами Q1, Q2 (на схеме не показаны), а именно R41, R51, R58, R60, Q6, Q7, D18. На плате БП контактные площадки коллектора и эмиттера транзистора Q6 соединяются перемычкой.

После этого подаем

220V на БП, убеждаемся в его включении и нормальной работе.

Далее отключаем контроль цепи питания -12V. Удаляем с платы элементы R22, R23, C50, D12. Диод D12 находится под дросселем групповой стабилизации L1, и его извлечение без демонтажа последнего (о переделке дросселя будет написано ниже) невозможно, но это и не обязательно.

Удаляем элементы R69, R70, C27 сигнальной цепи PG.

Включаем БП, убеждаемся в его работоспособности.

Затем отключается защита по превышению напряжения +5В. Для этого выв.14 FSP3528 (контактная площадка R69) соединяется перемычкой с цепью +5Vsb.

На печатной плате вырезается проводник, соединяющий выв.14 с цепью +5V (элементы L2, C18, R20).

Выпаиваются элементы L2, C17, C18, R20.

Включаем БП, убеждаемся в его работоспособности.

Отключаем защиту по превышению напряжения +3,3В. Для этого на печатной плате вырезаем проводник, соединяющий выв.13 FSP3528 с цепью +3,3V (R29, R33, C24, L5).

Удаляем с платы БП элементы выпрямителя и магнитного стабилизатора L9, L6, L5, BD2, D15, D25, U5, Q5, R27, R31, R28, R29, R33, VR2, C22, C25, C23, C24, а также элементы цепи ООС R35, R77, C26. После этого добавляем делитель из резисторов 910 Ом и 1,8 кОм, формирующий из источника +5Vsb напряжение 3,3В. Средняя точка делителя подключается к выв.13 FSP3528, вывод резистора 931 Ом (подойдёт резистор 910 Ом) — к цепи +5Vsb, а вывод резистора 1,8 кОм — к «земле» (выв. 17 FSP3528).

Далее, не проверяя работоспособность БП, отключаем защиту по цепи +12В. Отпаиваем чип-резистор R12. В контактной площадке R12, соединённой с выв. 15 FSP3528 сверлится отверстие 0,8 мм. Вместо резистора R12 добавляется сопротивление, состоящее из последовательно соединённых резисторов номинала 100 Ом и 1,8 кОм. Один вывод сопротивления подсоединяется к цепи +5Vsb, другой – к цепи R67, выв. 15 FSP3528.

Отпаиваем элементы цепи ООС +5V R36, C47.

После удаления ООС по цепям +3,3V и +5V необходимо пересчитать номинал резистора ООС цепи +12V R34. Опорное напряжение усилителя ошибки FSP3528 равно 1,25В, при среднем положении регулятора переменного резистора VR1 его сопротивление составляет 250 Ом. При напряжении на выходе БП в +14В, получаем: R34 = (Uвых/Uоп — 1)*(VR1+R40) = 17,85 кОм, где Uвых, В – выходное напряжение БП, Uоп, В – опорное напряжение усилителя ошибки FSP3528 (1,25В), VR1 – сопротивление подстроечного резистора, Ом, R40 – сопротивление резистора, Ом. Номинал R34 округляем до 18 кОм. Устанавливаем на плату.

Конденсатор C13 3300х16В желательно заменить на конденсатор 3300х25В и такой же добавить на место, освободившееся от C24, чтобы разделить между ними токи пульсаций. Плюсовой вывод С24 через дроссель (или перемычку) соединяется с цепью +12V1, напряжение +14В снимается с контактных площадок +3,3V.

Включаем БП, подстройкой VR1 устанавливаем на выходе напряжение +14В.

После всех внесённых в БП изменений переходим к ограничителю. Схема ограничителя тока представлена ниже.

Резисторы R1, R2, R4…R6, соединённые параллельно, образуют токоизмерительный шунт сопротивлением 0,01 Ом. Ток, протекающий в нагрузке, вызывает на нём падение напряжения, которое ОУ DA1.1 сравнивает с опорным напряжением, установленным подстроечным резистором R8. В качестве источника опорного напряжения используется стабилизатор DA2 с выходным напряжением 1,25В. Резистор R10 ограничивает максимальное напряжение, подаваемое на усилитель ошибки до уровня 150 мВ, а значит, максимальный ток нагрузки до 15А. Ток ограничения можно рассчитать по формуле I = Ur/0,01, где Ur, В – напряжение на движке R8, 0,01 Ом – сопротивление шунта. Схема ограничения тока работает следующим образом.

Выход усилителя ошибки DA1.1 подсоединён с выводом резистора R40 на плате БП. До тех пор, пока допустимый ток нагрузки меньше установленного резистором R8, напряжение на выходе ОУ DA1. 1 равно нулю. БП работает в штатном режиме, и его выходное напряжение определяется выражением: Uвых=((R34/(VR1+R40))+1)*Uоп. Однако, по мере того, как напряжение на измерительном шунте из-за роста тока нагрузки увеличивается, напряжение на выв.3 DA1.1 стремится к напряжению на выв.2, что приводит к росту напряжения на выходе ОУ. Выходное напряжение БП начинает определяться уже другим выражением: Uвых=((R34/(VR1+R40))+1)*(Uоп-Uош), где Uош, В – напряжение на выходе усилителя ошибки DA1.1. Иными словами, выходное напряжение БП начинает уменьшаться до тех пор, пока ток, протекающий в нагрузке, не станет чуть меньше установленного тока ограничения. Состояние равновесия (ограничения тока) можно записать так: Uш/Rш=(((R34/(VR1+R40))+1)*(Uоп-Uош))/Rн, где Rш, Ом – сопротивление шунта, Uш, В – напряжение падения на шунте, Rн, Ом – сопротивление нагрузки.

ОУ DA1.2 используется в качестве компаратора, сигнализируя с помощью светодиода HL1 о включении режима ограничения тока.

Печатная плата (под "утюг") и схема расположения элементов ограничителя тока изображена на рисунках ниже.

Несколько слов о деталях и их замене. Электролитические конденсаторы, установленные на плате БП FSP, имеет смысл заменить на новые. В первую очередь в цепях выпрямителя дежурного источника питания +5Vsb, это С41 2200х10V и С45 1000х10V. Не забываем о форсирующих конденсаторах в базовых цепях силовых транзисторов Q1 и Q2 – 2,2х50V (на схеме не показаны). Если есть возможность, конденсаторы выпрямителя 220В (560х200V) лучше заменить на новые, большей ёмкости. Конденсаторы выходного выпрямителя 3300х25V должны быть обязательно с низким ЭПС – серии WL или WG, в противном случае они быстро выйдут из строя. В крайнем случае, можно поставить б/у конденсаторы этих серий на меньшее напряжение – 16В.

Прецизионный ОУ DA1 AD823AN «rail-to-rail» как нельзя кстати подходит к данной схеме. Однако его можно заменить на порядок более дешёвым ОУ LM358N. При этом стабильность выходного напряжения БП будет несколько хуже, также придется подбирать номинал резистора R34 в меньшую сторону, поскольку у этого ОУ минимальное выходное напряжение вместо нуля (0,04В, если быть точным) 0,65В.

Максимальная суммарная рассеиваемая мощность токоизмерительных резисторов R1, R2, R4…R6 KNP-100 равна 10 Вт. На практике лучше ограничиться 5 ваттами – даже при 50% от максимальной мощности их нагрев превышает 100 градусов.

Диодные сборки BD4, BD5 U20C20, если их действительно стоит 2шт., менять на что-либо более мощное не имеет смысла, обещанные производителем БП 16А они держат хорошо. Но бывает так, что в действительности установлена только одна, и в этом случае необходимо либо ограничиться максимальным током в 7А, либо добавить вторую сборку.

Испытание БП током 14А показало, что уже спустя 3 минуты температура обмотки дросселя L1 превышает 100 градусов. Долговременная безотказная работа в таком режиме вызывает серьёзное сомнение. Поэтому, если подразумевается нагружать БП током свыше 6-7А, дроссель лучше переделать.

В заводском исполнении обмотка дросселя +12В намотана одножильным проводом диаметром 1,3 мм. Частота ШИМ – 42 кГц, при ней глубина проникновения тока в медь составляет около 0,33 мм. Из-за скин-эффекта на данной частоте эффективное сечение провода составляет уже не 1,32 мм 2 , а только 1 мм 2 , что недостаточно для тока в 16А. Иными словами, простое увеличение диаметра провода для получения большего сечения, а следовательно, уменьшения плотности тока в проводнике неэффективно для этого диапазона частот. К примеру, для провода диаметром 2мм эффективное сечение на частоте 40 кГц только 1,73мм 2 , а не 3,14 мм 2 , как ожидалось. Для эффективного использования меди намотаем обмотку дросселя литцендратом. Литцендрат изготовим из 11 отрезков эмалированного провода длиной 1,2м и диаметром 0,5мм. Диаметр провода может быть и другим, главное, чтобы он был меньше удвоенной глубины проникновения тока в медь – в этом случае сечение провода будет использовано на 100%. Провода складываются в «пучок» и скручиваются с помощью дрели или шуруповёрта, после чего жгут продевается в термоусадочную трубку диаметром 2мм и обжимается с помощью газовой горелки.

Готовый провод целиком наматывается на кольцо, и изготовленный дроссель устанавливается на плату. Наматывать обмотку -12В смысла нет, индикатору HL1 «Питание» какой-либо стабилизации не требуется.

Остаётся установить плату ограничителя тока в корпус БП. Проще всего её прикрутить к торцу радиатора.

Подключим цепь «ООС» регулятора тока к резистору R40 на плате БП. Для этого вырежем часть дорожки на печатной плате БП, которая соединяет вывод резистора R40 с «корпусом», а рядом с контактной площадкой R40 просверлим отверстие 0,8мм, куда будет вставлен провод от регулятора.

Подключим питание регулятора тока +5В, для чего припаяем соответствующий провод к цепи +5Vsb на плате БП.

«Корпус» ограничителя тока присоединяется к контактным площадкам «GND» на плате БП, цепь -14В ограничителя и +14В платы БП выходят на внешние «крокодилы» для подключения к аккумулятору.

Индикаторы HL1 «Питание» и HL2 «Ограничение» закрепляются на месте заглушки, установленной вместо переключателя «110V-230V».

Скорее всего, в вашей розетке отсутствует контакт защитного заземления. Вернее, контакт, может быть, и есть, а вот провод к нему не походит. Про гараж и говорить нечего… Настоятельно рекомендуется хотя бы в гараже (подвале, сарае) организовать защитное заземление. Не стоит игнорировать технику безопасности. Это иногда заканчивается крайне плачевно. Тем, у кого розетка 220В не имеет контакта заземления, оборудуйте БП внешней винтовой клеммой для его подключения.

После всех доработок включаем БП и корректируем подстроечным резистором VR1 требуемое выходное напряжение, а резистором R8 на плате ограничителя тока – максимальный ток в нагрузке.

Подключаем к цепям -14В, +14В зарядного устройства на плате БП вентилятор 12В. Для нормальной работы вентилятора в разрыв провода +12В, либо -12В, включаются два последовательно соединённых диода, которые уменьшат напряжение питания вентилятора на 1,5В.

Подключаем дроссель пассивной коррекции коэффициента мощности, питание 220В от выключателя, прикручиваем плату в корпус. Фиксируем нейлоновой стяжкой выходной кабель зарядного устройства.

Прикручиваем крышку. Зарядное устройство готово к работе.

В заключение стоит отметить, что ограничитель тока будет работать с БП ATX (или AT) любого производителя, использующего ШИМ-контроллеры TL494, КА7500, КА3511, SG6105 или им подобным. Разница между ними будет заключаться лишь в методах обхода защит.

Ниже вы можете скачать печатную плату ограничителя в формате PDF и DWG (Autocad)

Дата: 29.09.2015 // 0 Комментариев

Наверняка каждому автолюбителю приходилось собирать зарядное устройство для автомобиля своими руками. Существует масса разнообразных подходов, начиная от простых трансформаторных схем, заканчивая импульсными схемами с автоматической регулировкой. Зарядное устройство из блока питания компьютера, как раз занимает золотую середину. Оно получается за копеечную цену, а его параметры отлично справляются с зарядкой автомобильных АКБ. Сегодня мы вам расскажем, как за полчаса можно собрать зарядное устройство из компьютерного блока питания ATX. Поехали!

Зарядное устройство из блока питания компьютера

Для начала необходим рабочий блок питания. Можно брать совсем старый на 200 – 250 Вт, этой мощности хватит с запасом. Учитывая что зарядка должна происходить при напряжении в 13,9 – 14,4 В, то самой главной доделкой в блоке станет поднятие напряжение на линии 12 В до 14,4 В. Подобный метод применялся в статьи: Зарядное устройство из блока питания светодиодных лент.

Внимание! В работающем блоке питания элементы находятся под опасным для жизни напряжением. Не стоит хапаться руками за все подряд.

Первым делом отпаиваем все провода, которые выходили с блока питания. Оставляем только зеленый провод, его необходимо запаять к минусовым контактам. (Площадки, от которых выходили черные провода — это минус.) Это делается для автоматического старта блока при включении в сеть. Также сразу рекомендую припаять провода с клеммами к минусу и шине + 12 В (бывшие желтые провода), для удобства и дальнейшей настройки зарядного.

Следующие манипуляции будут производиться с режимом работы ШИМ — у нас это микросхема TL494 (есть еще куча блоков питания с ее абсолютными аналогами). Ищем первую ножку микросхемы (самая нижняя левая ножка), дальше просматриваем дорожку с обратной стороны платы.

С первым выводом микросхемы соединены три резистора, нам нужен тот, который соединяется с выводами блока +12 В. На фото этот резистор отмечен красным лаком.

Этот резистор необходимо отпаять с платы и измерить его сопротивление. В нашем случае это 38,5 кОм.

Вместо него необходимо впаять переменный резистор, который предварительно настраиваем на такое же сопротивление 38,5 кОм.

Плавно увеличивая сопротивление переменного резистора, добиваемся значения напряжения на выходе в 14,4 В.

Внимание! Для каждого блока питания номинал этого резистора будет разный, т. к. схемы и детали в блоках разные, но алгоритм изменения напряжение один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придется перезагружать, предварительно уменьшив сопротивление переменного резистора.

В нашем блоке сразу поднять напряжение до 14 В не получилось, не хватило сопротивление переменного резистора, пришлось последовательно с ним добавить еще один постоянный.

Когда напряжение 14,4 В достигнуто, можно смело выпаять переменный резистор и измерить его сопротивление (оно составило 120,8 кОм).

Поле замера резистора необходимо подобрать постоянный резистор с как можно близким сопротивлением.

Мы его составили из двух 100 кОм и 22 кОм.

На этом этапе можно смело закрывать крышку и пользоваться зарядным устройством. Но если есть желание, можно подключить к этому блоку цифровой вольтамперметр, это даст нам возможность контролировать ход зарядки.

Также можно прикрутить ручку для удобной переноски и вырезать отверстие в крышке под цифровой приборчик.

Финальный тест, убеждаемся, что все правильно собрано и хорошо работает.

Внимание! Данное зарядное устройство сохраняет функцию защиты от короткого замыкания и перегрузки. Но не защищает от переплюсовки! Ни в коем случае не допускается подключать к зарядному устройству аккумулятор неправильной полярностью, зарядное мгновенно выйдет из строя.

При переделке блока питания в зарядное устройство желательно иметь под рукой схему. Что бы упростить жизнь нашим читателями мы сделали небольшую подборку, где размещены схемы компьютерных блоков питания ATX.

Для защиты от переполюсовки существует масса интересных схем. С одной из них можно знакомиться в этой статье.

Понадобилась зарядка для аккумулятора автомобиля. Перебрав несколько вариантов, остановился на переделке блока питания компьютера. Переделывать решил по-простому. Зарядное не будет иметь регулировок, нет у меня такой задачи. В принципе можно все сделать за пару часов.

— блок питания АТХ;
— провода;
— зажимы типа «крокодил»;
— сетевой выключатель;
— фольгированный стеклотекстолит;
— пластик plexiglas;
— радиокомпоненты;
— инструменты.

Переделывать будем блок АТХ. Фирма JNC, модель LC-D300ATX.

Данный блок питания имеет на борту малоизвестную микросхему 2003. По данной микросхеме мало информации. Вроде как это ШИМ контроллер с мультивизором. Будем разбираться по схеме, о схеме далее.

Подключаться к аккумулятору буду при помощи проводов с «крокодилами». У меня уже были распаянные.

В роли сетевого выключателя у меня тумблер ТВ2-1. Выдернул со старого телевизора.

Схема блока питания довольно простая. Блок у нас на 300 Ватт, схема на 250 Ватт. Схема может отличаться номиналами некоторых компонентов.

Нужно удалить все лишние компоненты. Красным отмечено, что нужно выпаять. Желтым отмечен резистор на 13кОм, его заменим на 2.4 кОм. Вместо резистора отмеченного голубым, временно установим переменный резистор на 200 кОм. Переменный резистор, желательно поставить на 100 кОм, но у меня такого не оказалось. Пришлось долго регулировать нужное напряжение.

Главное установить в максимальное сопротивление. Так же имеются зеленые метки, что подключать к ним, расскажу позже.

Выпаиваем лишние компоненты. На схеме все разборчиво. Получается плата вот такая. Временно выпаял силовые диоды. Так же выпаял дроссель групповой стабилизации, его буду перематывать. Коричневой перемычкой замкнуты пятачки от земли и PS-ON, необходимо для запуска.

Нас интересует линия +12 вольт. Ставим на место силовой диод, я взял диод с линии 5 вольт. Диод установил без прокладки. Ножки крепления радиатора не связаны со схемой, что исключает замыкание. Установил дополнительный дроссель, на его месте стояла перемычка. Со старого дросселя групповой стабилизации смотал все обмотки, оставил старую обмотку на 12 вольт. Установил электролитический конденсатор на 1000 мкф, напряжением 35 вольт.

Переменный резистор вынес на проводах за пределы платы.

Теперь нужно изготовить плату — обманку для нашей микросхемы 2003. Обманка состоит из трех стабилизаторов на» 3.3; 5; 12 вольт. Распаял по простой схеме. Два верхних отрезка собраны на TL431, нижний на LM317.

Верхние два отрезка схемы подключаются к нижнему отрезку на 12 В. Платку, сделал по технологии «процарапывания». Делается за минут 30.

На схеме были указаны точки для подключения платы «обманки». Распаиваем согласно со схемой. На схеме отмечено зелеными точками соответственно. Плата «обманка» имеет цвета согласно напряжениям. Получилось что-то подобное.

Переменным резистором устанавливаем на выходе нужное напряжение (забыл сфотографировать). Оставляю стоп кадр. Измеряю, сопротивление резистора получилось около 11.7 кОм. Собираю из двух резисторов на 10 и 1.8 кОм. Напряжение чуть изменилось, но не значительно.

Плату «обманку» прикрутил к радиатору, через втулку и винт М3. Так же на фото слева видно, что я установил обратно нагрузочный резистор R53.

Подключил провода с зажимами «крокодилами». Установил светодиод для индикации включения. Все закрепил термо клеем. Сетевой провод пустил в разрыв через тумблер.

Первоначально не думал ставить пластину на переднюю панель, но прикрутил. Так выглядит приличней. Такое вот гаражное зарядное устройство получилось. Единственное чего нет в данном устройстве, это защиты от КЗ и переполюсовки. Позже возможно добавлю.

Подробная сборка отображена на видео:

Зарядное устройство автомобильного аккумулятора своими руками из компьютерного блока питания. Как сделать зарядное устройство для АКБ своими руками? Зарядное устройство для аккумуляторов 12в своими руками

Проблемы с аккумуляторами — не такое уж редкое явление. Для восстановления работоспособности необходима дозарядка, но нормальная зарядка стоит приличных денег, а сделать ее можно из подручного «хлама». Самое главное — найти трансформатор с нужными характеристиками, а сделать зарядное устройство для автомобильного аккумулятора своими руками — дело буквально пары часов (при наличии всех необходимых деталей).

Процесс заряда аккумуляторов должен проходить по определенным правилам. Причем процесс заряда зависит от вида батареи. Нарушения этих правил приводит к уменьшению емкости и срока эксплуатации. Потому параметры зарядного устройства для автомобильного аккумулятора подбираются для каждого конкретного случая. Такую возможность предоставляет сложное ЗУ с регулируемыми параметрами или купленное специально под эту батарею. Есть и более практичный вариант — сделать зарядное устройство для автомобильного аккумулятора своими руками. Чтобы знать, какие параметры должны быть, немного теории.

Виды зарядных устройств для аккумуляторных батарей

Заряд аккумулятора — процесс восстановления израсходованной емкости. Для этого на клеммы аккумулятора подается напряжение, немного превышающее рабочие показатели АБ. Подаваться может:

  • Постоянный ток. Время заряда — не менее 10 часов, в течении всего этого времени подается фиксированный ток, напряжение изменяется от 13,8-14,4 В в начале процесса до 12,8 В в самом конце. При таком виде заряд накапливается постепенно, держится дольше. Недостаток этого способа — необходимо контролировать процесс, вовремя отключить зарядное устройство, так как при перезаряде электролит может закипеть, что существенно снизит его рабочий ресурс.
  • Постоянное напряжение. При заряде постоянным напряжением, ЗУ выдает все время напряжение 14,4 В, а ток изменяется от больших значений в первые часы заряда, до очень небольших — в последние. Потому перезаряда АБ не будет (разве что вы оставите его на несколько суток). Положительный момент этого способа — время заряда уменьшается (90-95% можно набрать за 7-8 часов) и заряжаемый аккумулятор можно оставить без присмотра. Но такой «экстренный» режим восстановления заряда плохо влияет на срок службы. При частом использовании постоянным напряжением АБ быстрее разряжается.

В общем, если нет необходимости спешить, лучше использовать заряд постоянным током. Если надо за короткое время восстановить работоспособность аккумулятора — подавайте постоянное напряжение. Если говорить о том, какое лучше сделать зарядное устройство для автомобильного аккумулятора своими руками, ответ однозначен — подающее постоянный ток. Схемы будут простые, состоящие из доступных элементов.

Как определить нужные параметры при зарядке постоянным током

Опытным путем установлено, что заряжать автомобильные свинцовые кислотные аккумуляторы (их большинство) необходимо током, который не превышает 10% от емкости батарей . Если емкость заряжаемой АБ 55 А/ч, максимальный ток заряда будет 5,5 А; при емкости 70 А/ч — 7 А и т.д. При этом можно ставить чуть меньший ток. Заряд будет идти, но медленнее. Он будет накапливаться даже если ток заряда будет 0,1 А. Просто для восстановления емкости потребуется очень много времени.

Так как в расчетах принимают, что ток заряда составляет 10%, получаем минимальное время заряда — 10 часов. Но это — при полном разряде аккумулятора, а его допускать нельзя. Потому фактическое время заряда зависит от «глубины» разряда. Определить глубину разряда можно, замерив вольтаж на АБ до начала заряда:


Чтобы рассчитать примерное время заряда АБ , надо узнать разницу между максимальным зарядом батареи (12,8 В) и текущим ее вольтажом. Умножив цифру на 10 получим время в часах. Например, напряжение на аккумуляторе перед зарядом 11,9 В. Находим разницу: 12,8 В — 11,9 В = 0,8 В. Умножив эту цифру на 10, получаем что время заряда будет около 8 часов. Это при условии, что подавать будем ток, который составляет 10% от емкости батареи.

Схемы зарядного устройства для авто АБ

Для заряда аккумуляторов обычно используется бытовая сеть 220 В, которая преобразуется в пониженное напряжение при помощи преобразователя.

Простые схемы

Наиболее простой и эффективный способ — использование понижающего трансформатора. Именно он понижает 220 В до требуемых 13-15 В. Такие трансформаторы можно найти в старых ламповых телевизорах (ТС-180-2), компьютерных блоках питания, найти на «развалах» блошиного рынка.

Но на выходе трансформатора получается переменное напряжение, которое необходимо выпрямить. Делают это при помощи:


В приведенных схемах присутствуют также предохранители (1 А) и измерительные приборы. Они дают возможность контролировать процесс заряда. Их из схемы можно исключить, но придется периодически использовать для контроля мультиметр. С контролем напряжения это еще терпимо (просто приставлять к клеммам щупы), то контролировать ток сложно — в этом режиме измерительный прибор включают в разрыв цепи. То есть, придется каждый раз выключать питание, ставить мультиметр в режиме измерения тока, включать питание. разбирать измерительную цепь в обратном порядке. Потому, использование хотя-бы амперметра на 10 А — очень желательно.

Недостатки этих схем очевидны — нет возможности регулировать параметры заряда. То есть, при выборе элементной базы выбирайте параметры так, чтобы на выходе сила тока была те самые 10% от емкости вашего аккумулятора (или чуть меньше). Напряжение вы знаете — желательно в пределах 13,2-14,4 В. Что делать, если ток получается больше желаемого? Добавить в схему резистор. Его ставят на плюсовом выходе диодного моста перед амперметром. Сопротивление подбираете «по месту», ориентируясь на ток, мощность резистора — побольше, так как на них будет рассеиваться лишний заряд (10-20 ВТ или около того).

И еще один момент: зарядное устройство для автомобильного аккумулятора своими руками, сделанное по этим схемам, скорее всего, будет сильно греться. Потому желательно добавить куллер. Его можно вставить в схему после диодного моста.

Схемы с возможностью регулировки

Как уже говорили, недостаток всех этих схем — в невозможности регулировки тока. Единственная возможность — менять сопротивления. Кстати, можно поставить тут переменный подстроечный резистор. Это будет самый простой выход. Но более надежно реализована ручная регулировка тока в схеме с двумя транзисторами и подстроечным резистором.

Ток заряда изменяется переменным резистором. Он стоит уже после составного транзистора VT1-VT2, так что ток через него протекает небольшой. Потому мощность может быть порядка 0,5-1 Вт. Его номинал зависит от выбранных транзисторов, подбирается опытным путем (1-4,7 кОм).

Трансформатор мощностью 250-500 Вт, вторичная обмотка 15-17 В. Диодный мост собирается на диодах с рабочим током 5А и выше.

Транзистор VT1 — П210, VT2 выбирается из нескольких вариантов: германиевые П13 — П17; кремниевые КТ814, КТ 816. Для отвода тепла устанавливать на металлической пластине или радиаторе (не менее 300 см2).

Предохранители: на входе ПР1 — на 1 А, на выходе ПР2 — на 5 А. Также в схеме есть сигнальные лампы — наличия напряжения 220 В (HI1) и тока заряда (HI2). Тут можно ставить любые лампы на 24 В (в том числе и светодиоды).

Видео по теме

Зарядное устройство для автомобильного аккумулятора своими руками — популярная тема для автолюбителей. Откуда только не извлекают трансформаторы — из блоков питания, микроволновок.. даже мотают сами. Схемы реализуются не самые сложные. Так что даже без навыков в электротехнике можно справиться самостоятельно.

Рано или поздно автомобиль может перестать заводиться из-за низкого заряда аккумулятора. Долгая эксплуатация приводит к тому, что генератор больше не способен заряжать батарею. В таком случае нужно обязательно держать под рукой хотя бы самое простое зарядное устройство для автомобильного аккумулятора.

Сейчас на смену обычным трансформаторным зарядкам приходит новое поколение усовершенствованных моделей. Большой популярностью среди них пользуются импульсные и автоматические ЗУ. Ознакомимся с принципом их работы, а те, кто уже хочет мастерить — переходите

Импульсные зарядки для АКБ

В отличие от трансформаторного, импульсное зарядное устройство для автомобильного аккумулятора обеспечивает полный заряд. Однако, его главные преимущества заключаются в простоте использования, значительно меньшей цене и компактном размере.

Заряд аккумулятора импульсными устройствами осуществляется двумя этапами: сперва при постоянстве напряжения, а затем при постоянстве тока (часто процесс зарядки автоматизируется). В основном современные зарядные устройства состоят из однотипных, но очень сложных схем, поэтому в случае их поломки неопытному владельцу лучше приобрести новое.

Кислотно – свинцовые аккумуляторы очень чувствительны к температуре. При жаркой погоде уровень заряда батареи не должен быть ниже 50%, а в условиях сурового мороза не ниже 75%. В противном случае аккумулятор может перестать работать, поэтому потребуется его подзарядка. Импульсные устройство очень хорошо подходят для этого и не портят аккумулятор.

Автоматические ЗУ для автомобильных аккумуляторов

Неопытным водителям лучше всего подойдет автоматическое зарядное устройство для автомобильного аккумулятора. Оно имеет ряд функций и защит, которые известят Вас о неправильном подключении полюсов и запретят подачу электрического тока.

Некоторые устройства рассчитаны на измерение емкости и уровня заряда аккумулятора, поэтому их применяют для зарядки аккумуляторных батарей любого типа.

Электрические схемы автоматических устройств содержат специальный таймер, благодаря которому можно осуществлять несколько различных циклов: полную зарядку, быструю подзарядку и восстановление аккумулятора. После завершения процесса устройство проинформирует об этом и отключит нагрузку .

Очень часто из-за неправильной эксплуатации аккумулятора на его пластинах образуется сульфитация. Цикл заряда-разряда не только избавляет батарею от появившихся солей, но и продлевает срок ее службы.

Не смотря на низкую цену современных ЗУ, случаются моменты, когда под рукой не оказывается должной зарядки. Поэтому вполне реально сделать зарядное устройство для автомобильного аккумулятора своими руками. Рассмотрим несколько примеров самодельных устройств.

Зарядка для АКБ из блока питания компьютера

У кого-то могут оставаться старые компьютеры с рабочим блоком питания, из которого можно получить отличное зарядное устройство. Оно подойдет практически для любых АКБ. Схема простого зарядного устройства из блока питания компьютера

Практически у каждого блока питания на месте DA1 стоит ШИМ — контроллер на микросхеме TL494 или аналогичной ей KA7500. Для заряда аккумулятора требуется ток в размере 10% от полной емкости батареи (обычно от 55 до 65А*ч), поэтому любой БП мощностью свыше 150 Вт способен выработать его. Изначально нужно выпаять ненужные провода с источников -5 В, -12 В, +5 В, +12 В.

Далее необходимо выпаять резистор R1, который заменяется подстроечным резистором с наивысшим значением 27 кОм. Напряжение с шины +12 В будет передаваться на верхний вывод. Затем от основного провода отключается 16 вывод, а 14 и 15 просто перерезаются на месте соединения.

Примерно таким должен быть БП на начальной стадии переделки.

Теперь на задней стенке блока питания устанавливается потенциометр-регулятор тока R10, и пропускаются 2 шнура: один сетевой, другой для подключения к клеммам АКБ . Рекомендуется заранее приготовить блок резисторов, с помощью которого подключение и регулировка осуществляется намного удобнее.

Для его изготовления параллельно соединяются два токоизмерительных резистора 5W8R2J мощностью 5 Вт. В итоге суммарная мощность достигает 10 Вт, а необходимое сопротивление равно 0,1 Ом . Для настройки зарядного устройства на эту же плату закрепляют подстроечный резистор. Необходимо удалить некоторую часть печатной дорожки. Это поможет исключить возможность появления нежелательных связей между корпусом устройства и основной цепью. Обратить на это внимание следует по 2 причинам:

Электрические соединения и плата с блоком резисторов устанавливаются согласно вышеуказанной схеме.

Выводы 1, 14, 15, 16 на микросхеме сначала следует облудить, а потом подпаять многожилистые тонкие провода.

Полный заряд будет определяться напряжением холостого хода в пределах от 13, 8 до 14,2 В . Его необходимо выставить переменным резистором при среднем положении потенциометра R10. Для подключения выводов к клеммам АКБ на их концы устанавливаются зажимы типа «крокодил». Изоляционные трубки на зажимах должны быть разного цвета. Обычно красный цвет соответствует «плюсу», а черный – «минусу». Не стоит путаться с подключением проводов, иначе это приведет к порче прибора .

В конечном итоге зарядное устройство для автомобильного аккумулятора из бп компьютера должно выглядеть примерно так.

Если зарядное устройство будет применяться исключительно для зарядки аккумуляторной батареи, то можно отказаться от вольт- и амперметра. Чтобы задать начальный ток достаточно использовать отградуированную шкалу потенциометра R10 со значением 5,5-6,5 А. Почти весь процесс зарядки не требует человеческого вмешательства.

Зарядное устройство такого типа исключает возможность перегрева или перезарядки АКБ.

Простейшее ЗУ с использованием адаптера

В роли источника постоянного тока здесь выступает приспособленный 12-вольтовый адаптер . На этот случай схема зарядного устройства для автомобильного аккумулятора не потребуется.

Главное учесть важную особенность – напряжение источника питания должно быть равным напряжению самого аккумулятора , в противном случае батарея не будет заряжаться.

Конец провода адаптера обрезается и оголяется до 5 см. Далее провода с разноименными зарядами отдаляются друг от друга на 40 см. Затем на конец каждого провода одевается «крокодил» (тип зажимов), каждый из которых должен отличаться по цвету, чтобы избежать путаницы с полярностью. Зажимы последовательно подключают к аккумулятору («от плюса к плюсу», «от минуса к минусу») и после этого включают адаптер.

Сложность заключается только в выборе правильного источника питания. Также стоит обратить внимание на то, что в процессе аккумулятор может перегреться. В таком случае нужно прервать зарядку на некоторое время.

Ксеноновая лампа один из лучших источников света для авто. Узнайте, какой штраф за ксенон перед тем, как его устанавливать.

Установить парктроник сможет каждый желающий. Убедиться в этом можно на этой странице . Переходите и узнайте, как установить парктроник самому.

Многими водителями доказано, что полицейский радар «Стрелка» не прощает ошибок. По этой ссылке /tuning/elektronika/radar-detektor-protiv-strelki.html можно узнать, какие радар-детекторы смогут уберечь водителя от штрафа.

Зарядное устройство из бытовой лампочки и диода

Для создания нехитрого ЗУ потребуется несколько простых элементов:

  • бытовая лампочка мощностью до 200 Вт. От ее мощности зависит скорость подзарядки аккумулятора – чем выше, тем быстрее ;
  • полупродниковый диод, проводящий электричество только в одном направлении. В качестве такого диода можно использовать зарядку от ноутбука ;
  • провода с клеммами и штекер.

Схема подключения элементов и процесс зарядки АКБ наглядно продемонстрированы на этом видео.

При правильной настройке схемы лампочка будет гореть в полнакала, а если она совсем не горит, то значит нужно доработать схему. Возможно, лампочка не будет гореть в случае полного заряда АКБ, что является маловероятным (на клеммах напряжение высокое, а значение тока маленькое).

На зарядку уходит примерно 10 часов, по истечению которых обязательно отключите зарядное устройство от сети, иначе перегрев аккумулятора приведет к выходу его из строя.

В экстренных случаях подзарядить аккумулятор можно с помощью достаточно мощного диода и обогревателя методом тока от сети. Последовательность подключения к сети должна быть следующая: диод, обогреватель, аккумулятор. На такой способ уходит большое количество электроэнергии, а КПД значительно мал – 1%. Это самодельное зарядное устройство для автомобильного аккумулятора можно считать самым простым, но крайне ненадежным.

Заключение

На создание самого простого зарядного устройства, которое не будет портить Ваш аккумулятор, потребуется немало технических знаний. Сейчас на рынке представлен широкий выбор зарядок с большим функционалом и простым интерфейсом для работы.

Поэтому при возможности лучше иметь при себе надежное устройство с гарантией того, что аккумуляторная батарея не будет подвергаться риску и продолжит стабильную работу.

Взгляните на это видео. На нем показан еще один способ быстро зарядить АКБ своими руками.

Иногда случается так, что аккумулятор в машине садиться и завести ее уже не получается, так как стартеру не хватает напряжения и соответственно тока, чтобы провернуть вал двигателя. В этом случае можно «прикурить» от другого владельца авто, чтобы двигатель заработал и аккумулятор стал заряжаться от генератора, однако для этого нужны специальные провода и человек, желающий вам помочь. Можно так же зарядить аккумулятор самостоятельно посредством специализированного зарядного устройства, однако они достаточно дорогие, и пользоваться ими приходится не особо часто. Поэтому в данной статье мы подробно рассмотрим устройство самоделки, а также инструкцию о том, как сделать зарядное устройство для автомобильного аккумулятора своими руками.

Устройство самоделки

Нормальное напряжение на аккумуляторе, отключенном от автомобиля, находится в пределах между 12,5 в и 15 в. Поэтому зарядное устройство должно выдавать такое же напряжение. Ток заряда должен быть равен примерно 0,1 от емкости, он может быть и меньше, но это увеличит время зарядки. Для стандартной батареи емкостью 70-80 а/ч ток должен быть равен 5-10 амперам в зависимости от конкретного аккумулятора. Наше самодельное зарядное устройство для АКБ должно соответствовать этим параметрам. Для сборки зарядного устройства для автомобильного аккумулятора нам потребуются следующие элементы:

Трансформатор. Нам подойдет любой из старого электроприбора или купленный на рынке с габаритной мощностью порядка 150 Ватт, можно больше, но не меньше, иначе он будет сильно нагреваться и может выйти из строя. Отлично, если напряжение его выходных обмоток составляет 12,5-15 В, а ток порядка 5-10 ампер. Посмотреть эти параметры можно в документации к вашей детали. Если же нужной вторичной обмотки нет, то необходимо будет перемотать трансформатор под другое выходное напряжение. Для этого:

Таким образом мы нашли или собрали идеальный трансформатор, чтобы сделать зарядное устройство для аккумулятора своими руками.

Нам также понадобятся:


Подготовив все материалы можно переходить к самому процессу сборки автомобильного ЗУ.

Технология сборки

Чтобы сделать зарядное устройство для автомобильного аккумулятора своими руками, необходимо следовать пошаговой инструкции:

  1. Создаем схему самодельной зарядки для АКБ. В нашем случае она будет выглядеть следующим образом:
  2. Используем трансформатор ТС-180-2. Он имеет несколько первичных и вторичных обмоток. Для работы с ним нужно соединить последовательно две первичные и две вторичные обмотки, чтобы получить нужное напряжения и ток на выходе.

  3. С помощью медного провода соединяем между собой выводы 9 и 9’.
  4. На стеклотекстолитовой пластине собираем диодный мост из диодов и радиаторов (как показано на фото).
  5. Выводы 10 и 10’ подключаем к диодному мосту.
  6. Между выводами 1 и 1’ устанавливаем перемычку.
  7. К выводам 2 и 2’ с помощью паяльника крепим сетевой шнур с вилкой.
  8. В первичную цепь подключаем предохранитель на 0,5 А, 10-амперный соответственно во вторичную.
  9. В разрыв между диодным мостом и аккумулятором подключаем амперметр и отрезок нихромовой проволоки. Один конец которой закрепляем, а второй должен обеспечивать подвижный контакт, таким образом будет меняться сопротивление и ограничиваться ток, подаваемый на аккумулятор.
  10. Изолируем все соединения термоусадкой или изолентой и помещаем устройство в корпус. Это необходимо, чтобы избежать поражения электрическим током.
  11. Устанавливаем подвижный контакт на конец проволоки, чтобы ее длинна и соответственно сопротивление были максимальны. И подключаем аккумулятор. Уменьшая и увеличивая длину проволоки, необходимо выставить нужное значение тока для вашего аккумулятора (0,1 от его емкости).
  12. В процессе зарядки сила тока, подаваемая на аккумулятор, будет сама уменьшаться и когда она достигнет 1 ампера можно сказать, что аккумулятор зарядился. Желательно также контролировать непосредственно напряжение на батарее, однако для этого его необходимо отключить от з/у, так как при зарядке оно будет немного выше реальных значений.

Первый запуск собранной схемы любого источника питания или ЗУ всегда производят через лампу накаливания, если она загорелась в полный накал - или где-то ошибка, или первичная обмотка замкнута! Лампу накаливания устанавливают в разрыв фазного или нулевого провода, питающих первичную обмотку.

Данная схема самодельного зарядного устройства для АКБ имеет один большой недостаток – она не умеет самостоятельно отключать аккумулятор от зарядки после достижения нужного напряжения. Поэтому вам придется постоянно следить за показаниями вольтметра и амперметра. Есть конструкция, лишенная этого недостатка, однако для ее сборки потребуется дополнительные детали и больше усилий.

Правила эксплуатации

Недостаток самодельного зарядного устройства для аккумулятора 12В заключается в том, что после полной зарядки АКБ автоматическое отключение прибора не происходит. Именно поэтому Вам придется периодически поглядывать на табло, чтобы вовремя выключить его. Еще один важный нюанс – проверять ЗУ «на искру» категорически запрещается.

Среди дополнительных мер предосторожности следует выделить такие:

  • при подключении клемм следите за тем, чтобы не перепутать «+» и «-», иначе простое самодельное зарядное устройство для АКБ выйдет из строя;
  • подключение к клеммам нужно осуществлять только в выключенном положении;
  • мультиметр должен иметь шкалу измерения свыше 10 А;
  • при зарядке следует выкручивать пробки на аккумуляторе, во избежание его взрыва из-за закипания электролита.

Вот, собственно, и все что хотелось рассказать Вам о том, как правильно сделать зарядное устройство для автомобильного аккумулятора своими руками. Надеемся, что инструкция была для Вас понятной и полезной, т.к. этот вариант является одним из простейших видов самодельной зарядки для АКБ!

Также читают:

Наглядный пример готового изделия

Мастер-класс по созданию более сложной модели

Зарядное устройство (ЗУ) для аккумулятора необходимо каждому автолюбителю, но стоит оно немало, а регулярные профилактические поездки в автосервис не выход. Обслуживание батареи в СТО требует времени и денег. Кроме того, на разряженном аккумуляторе до сервиса ещё нужно доехать. Собрать своими руками работоспособное зарядное устройство для автомобильного аккумулятора своими руками сможет каждый, кто умеет пользоваться паяльником.

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) - накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один - зарядка внешним зарядным устройством.

Как узнать состояние батареи

Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант - «крутит/не крутит» - в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи - измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В - полностью заряжена;
  • 12.3…12.4 В - 75%;
  • 12.0…12.1 В - 50%;
  • 11.8…11.9 В - 25%;
  • 11.6…11.7 В - разряжена;
  • ниже 11.6 В - глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт - критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи - постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

Самодельные зарядки для АКБ

Собрать своими руками зарядное устройство для автомобильного аккумулятора реально и не особо сложно. Для этого нужно иметь начальные знания по электротехнике и уметь держать в руках паяльник.

Простое устройство на 6 и 12 В

Такая схема самая элементарная и бюджетная. При помощи этого ЗУ вы сможете качественно зарядить любой свинцовый аккумулятор с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч.

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4. Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

К примеру, если необходим ток в 5 А, то понадобится включить тумблеры S4 и S2. Замкнутые S5, S3 и S2 дадут в сумме 11 А. Для контроля напряжения на АКБ служит вольтметр PU1, за зарядным током следят при помощи амперметра PА1.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 см. кв.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 - амперметр того же типа с пределом измерения 30 А.

Схема проста, если собрать её из исправных деталей, то в налаживании не нуждается. Это устройство подойдёт и для зарядки шестивольтовых батарей, но «вес» каждого из переключателей S2-S5 будет иным. Поэтому ориентироваться в зарядных токах придётся по амперметру.

С плавной регулировкой тока

По этой схеме собрать зарядник для аккумулятора автомобиля своими руками сложнее, но она возможна в повторении и тоже не содержит дефицитных деталей. С её помощью допустимо заряжать 12-вольтовые аккумуляторы ёмкостью до 120 А/ч, ток заряда плавно регулируется.

Зарядка батареи производится импульсным током, в качестве регулирующего элемента используется тиристор. Помимо ручки плавной регулировки тока, эта конструкция имеет и переключатель режима, при включении которого зарядный ток увеличивается вдвое.

Режим зарядки контролируется визуально по стрелочному прибору RA1. Резистор R1 самодельный, выполненный из нихромовой или медной проволоки диаметром не менее 0.8 мм. Он служит ограничителем тока. Лампа EL1 - индикаторная. На её месте подойдёт любая малогабаритная индикаторная лампа с напряжением 24–36 В.

Понижающий трансформатор можно применить готовый с выходным напряжением по вторичной обмотке 18–24 В при токе до 15 А. Если подходящего прибора под рукой не оказалось, то можно сделать самому из любого сетевого трансформатора мощностью 250–300 Вт. Для этого с трансформатора сматывают все обмотки, кроме сетевой, и наматывают одну вторичную обмотку любым изолированным проводом с сечением 6 мм. кв. Количество витков в обмотке - 42.

Тиристор VD2 может быть любым из серии КУ202 с буквами В-Н. Его устанавливают на радиатор с площадью рассеивания не менее 200 см. кв. Силовой монтаж устройства делают проводами минимальной длины и с сечением не менее 4 мм. кв. На месте VD1 будет работать любой выпрямительный диод с обратным напряжением не ниже 20 В и выдерживающий ток не менее 200 мА.

Налаживание устройства сводится к калибровке амперметра RA1. Сделать это можно, подключив вместо аккумулятора несколько 12-вольтовых ламп общей мощностью до 250 Вт, контролируя ток по заведомо исправному эталонному амперметру.

Из компьютерного блока питания

Чтобы собрать это простое зарядное устройство своими руками, понадобится обычный блок питания от старого компьютера АТХ и знания по радиотехнике. Но зато и характеристики прибора получатся приличными. С его помощью заряжают батареи током до 10 А, регулируя ток и напряжение заряда. Единственное условие - БП желателен на контроллере TL494.

Для создания автомобильной зарядки своими руками из блока питания компьютера придётся собрать схему, приведённую на рисунке.

Пошагово необходимые для доработки операции будут выглядеть следующим образом:

  1. Откусить все провода шин питания, за исключением жёлтых и чёрных.
  2. Соединить между собой жёлтые и отдельно чёрные провода - это будут соответственно «+» и «-» ЗУ (см. схему).
  3. Перерезать все дорожки, ведущие к выводам 1, 14, 15 и 16 контроллера TL494.
  4. Установить на кожух БП переменные резисторы номиналом 10 и 4,4 кОм - это органы регулировки напряжения и тока зарядки соответственно.
  5. Навесным монтажом собрать схему, приведённую на рисунке выше.

Если монтаж выполнен правильно, то доработку закончена. Осталось оснастить новое ЗУ вольтметром, амперметром и проводами с «крокодилами» для подключения к АКБ.

В конструкции возможно использовать любые переменные и постоянные резисторы, кроме токового (нижний по схеме номиналом 0.1 Ом). Его рассеиваемая мощность - не менее 10 Вт. Сделать такой резистор можно самостоятельно из нихромового или медного провода соответствующей длины, но реально найти и готовый, к примеру, шунт от китайского цифрового тестера на 10 А или резистор С5−16МВ. Ещё один вариант - два резистора 5WR2J, включённые параллельно. Такие резисторы есть в импульсных блоках питаниях ПК или телевизоров.

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

Самодельные зарядные устройства для аккумуляторов обычно имеют очень простую конструкцию, а дополнительно к тому и повышенную надежность как раз ввиду простоты схемы. Еще один плюс от изготовления зарядки своими руками – относительная дешевизна комплектующих и как результат – невысокая себестоимость прибора.

Почему сборная конструкция лучше покупного

Основная задача подобной техники – поддерживать на требуемом уровне заряд аккумуляторной батареи автомобиля в случае необходимости. Если разрядка АКБ произошла рядом с домом, где есть нужное устройство, то проблем не возникнет. В противном случае, когда нет подходящей техники для питания аккумулятор, и средств тоже недостаточно, можно собрать прибор своими руками.

Необходимость использования вспомогательных средств для подпитки АКБ автомобиля обусловлена в первую очередь низкими температурами в холодное время года, когда наполовину разряженная аккумуляторная батарея представляет собой главную, а иногда и вовсе не разрешимую проблему, если только вовремя не подзарядить АКБ. Тогда самодельные зарядные устройства для питания автомобильных аккумуляторов станут спасением для пользователей, которые не планируют вкладываться в такую технику, по крайней мере, в данный момент.

Принцип действия

До определенного уровня АКБ авто может получать питание от самого транспортного средства, а если точнее, от электрогенератора. После этого узла обычно устанавливается реле, ответственное за установку напряжения не более 14,1В. Чтобы аккумуляторная батарея зарядилась до предела, необходимо более высокое значение данного параметра – 14,4В. Соответственно, для реализации такой задачи как раз и применяются АКБ.

Основные узлы данного устройства – трансформатор и выпрямитель. В результате на выход подается постоянный ток с напряжением определенной величины (14,4В). Но почему наблюдается разбег с напряжением самой батареи – 12В? Это делается с целью обеспечения возможности зарядить АКБ, разряженной до уровня, когда значение данного параметра аккумулятора приравнивалось 12В. Если зарядка будет характеризоваться таким же по значению параметром, то в результате питание АКБ станет сложно выполнимой задачей.

Смотрим видео, самое простое устройство для заряда АКБ:

Но здесь есть нюанс: небольшое превышение уровня напряжения аккумуляторной батареи не является критичным, тогда как существенно завышенная величина этого параметра очень плохо скажется в дальнейшем на работоспособности АКБ. Принцип функционирования, которым отличается любое, даже самое простое зарядное устройство для питания автомобильного аккумулятора, заключается в повышении уровня сопротивления, что приведет к снижению зарядного тока.

Соответственно, чем больше значение напряжения (стремится к 12В), тем меньше ток. Для нормальной работы АКБ желательно устанавливать определенную величину тока заряда (порядка 10% от емкости). В спешке велик соблазн изменить значение этого параметра на большее, однако, это чревато негативными последствиями для самой аккумуляторной батареи.

Что потребуется для изготовления АКБ?

Основные элементы простой конструкции: диод и обогреватель. Если правильно (последовательно) подключить их к АКБ, можно добиться желаемого – аккумуляторная батарея будет заряжена через 10 часов. Но любителям экономить электроэнергию такое решение может не подойти, потому как расход в этом случае составит порядка 10 кВт. Работа полученного устройства характеризуется невысоким КПД.

Основные элементы простой конструкции

Но для создания подходящей модификации придется несколько видоизменить отдельные элементы, в частности, трансформатор, мощность которого должна быть на уровне 200-300 Вт. При наличии старой техники, подойдет данная деталь из обычного лампового телевизора. Для организации системы вентиляции пригодится кулер, лучше всего, если он будет от компьютера.

Когда создается простое зарядное устройство для питания аккумулятора своими руками, в качестве основных элементов выступает еще транзистор и резистор. Чтобы наладить работу конструкции, понадобится компактный снаружи, но довольно вместительный корпус из металла, хороший вариант – короб от стабилизатора.

В теории такого рода технику сможет собрать даже начинающий радиолюбитель, который ранее не сталкивался со сложными схемами.

Схема простого устройства для заряда аккумулятора

Основная трудность заключается в необходимости видоизменить трансформатор. При таком уровне мощности обмотки характеризуются невысокими показателями напряжения (6-7В), ток будет равен 10А. Обычно же требуется напряжение 12В или 24В, в зависимости от типоисполнения аккумуляторной батареи. Чтобы получить такие значения на выходе устройства, необходимо обеспечить параллельное соединение обмоток.

Поэтапная сборка

Самодельное зарядное устройство для питания аккумулятора автомобиля начинается с подготовки сердечника. Наматывание провода на обмотки выполняется с максимальным уплотнением, важно, чтобы витки плотно прилегали друг к другу, и не оставалось просветов. Нельзя забывать и об изоляции, которая ставится с интервалом в 100 витков. Сечение провода первичной обмотки – 0,5 мм, вторичной – от 1,5 до 3,0 мм. Если учесть, что при частоте 50 Гц 4-5 витков могут обеспечить напряжение 1В, соответственно, для получения 18В требуется порядка 90 витков.

Далее, подбирается диод подходящей мощности, чтобы выдерживать подаваемые на него в будущем нагрузки. Лучший вариант – генераторный диод автомобиля. Чтобы исключить риск перегрева, необходимо обеспечить эффективную циркуляцию воздуха внутри корпуса такого прибора. Если короб не перфорирован, следует позаботиться об этом до начала сборки. Кулер необходимо подключить к выходу зарядного устройства. Основная его задача – охлаждение диода и обмотки трансформатора, что учитывается при выборе участка для установки.

Смотрим видео, подробная инструкция по изготовлению:

Схема простого зарядного устройства для питания автомобильного аккумулятора содержит еще и переменный резистор. Для нормального функционирования зарядки необходимо получить сопротивление на уровне 150 Ом и мощность 5 Вт. Более прочих соответствует этим требованиям модель резистора КУ202Н. Можно подобрать отличный от этого вариант, но его параметры должны быть сходными по значению с указанными. Задача резистора заключается в регулировке напряжения на выходе устройства. Модель транзистора КТ819 также является наилучшим вариантом из ряда аналогов.

Оценка эффективности, себестоимость

Как видно, если необходимо собрать самодельное зарядное устройство для автомобильного аккумулятора, его схема более чем проста для реализации. Единственная трудность – компоновка всех элементов и установка их в корпус с последующим соединением. Но такую работу сложно назвать трудоемкой, а стоимость всех используемых деталей крайне мала.

Некоторые из деталей, а, быть может, и все наверняка найдутся у радиолюбителя дома, например, кулер от старого компьютера, трансформатор от лампового телевизора, старый корпус от стабилизатора. Что касается степени эффективности, то подобные устройства, собранные своими руками, не отличаются очень высоким КПД, однако, в результате все же справляются со своей задачей.

Смотрим видео, полезные советы специалиста:

Таким образом, крупных вложений в создание самодельной зарядки не требуется. Наоборот, все элементы стоят крайне мало, что выгодно оттеняет данное решение в сравнении с устройством, которое можно приобрести в готовом виде. Рассмотренная выше схема не отличается высокой эффективностью, но ее главный плюс – заряженный аккумулятор авто, хоть и спустя 10 часов. Можно усовершенствовать этот вариант или рассмотреть множество других, предлагаемых для реализации.

Зарядное Устройство для аккумулятора из компьютерного блока питания

Сравнительно не так давно на халяву досталось пара компьютерных блоков питания и к моему удивлению кое-какие из них были всецело рабочими. Было решено поделится опытом переделки для того чтобы блока питания в зарядное устройство для авто. Переделка не опытная, так, что ее может сделать кто угодно.

В компьютерных блоках питания силовой (импульсный) трансформатор имеет две замечательные обмотки на 5 и 12 Вольт, нам очевидно нужна лишь обмотка на 12 Вольт. В некоторых блоках питания с данной обмотки возможно снять большой ток (7-20Ампер), в нашем случае блок питания на 350 ватт, 12-Вольтовая обмотка дает 12-14Ампер, что более, чем достаточно для зарядки автомобильного аккумулятора.

Итак, все, что необходимо нам сделать — это отыскать зеленый провод и замкнуть его с тёмным проводом (почвой), это запустит блок питания без подключения к компьютеру. В более ветхих блоках питания употребляется необходимость замыкания и кнопочный выключатель указанных проводов отпадает.

В единичных случаях вместо зеленого провода использован провод серого цвета (как право в недорогих китайских блоках).

Потом необходимо отрезать все лишние провода каковые имеются на блоке питания, оставляем лишь ЖЕЛТЫЕ И ТЁМНЫЕ. Позднее необходимо снять изоляции с кончиков проводов и скрутить их. Так, приобретаем две толстые шины, одна из которых собрана желтыми, вторая тёмными проводами. Тёмный провод у нас минус, а желтый соответственно плюс. Возможно сообщить, что блок питания готов.

Для увеличения надежности отечественного ЗУ, возможно заменить диодные сборки в. Дело в том, что в компьютерных блоках питания используются замечательные диодные сборки Шоттки, их всего две (в некоторых случаях 3).

Дело в том, что на шине 5 Вольт поставлен более замечательный диод, чем на обмотке 12 Вольт, при жажде их возможно поменять местами, но и без этого блок трудится превосходно.

Этот источник достаточно компактный и легкий, выходной ток приличный, исходя из этого возможно заряжать кроме того автомобильные аккумуляторная батареи громадной емкости.
Блок питания имеет встроенный кулер, вся схема находится под интенсивным отдувом, так, что вашему зарядному устройству перегрев также не страшен.

В обязательном порядке к прочтению:

Зарядное устройство из компьютерного блока питания


Статьи как раз той тематики,которой Вы интересуетесь:

Зарядное устройство для АКБ из блока питания — полезный и недорогой девайс за полчаса

Для подзарядки аккумуляторной батареи лучший вариант — готовое зарядное устройство (ЗУ). Но его можно сделать своими руками. Существует множество разных способов сборки самодельного ЗУ: от самых простых схем с использованием трансформатора, до импульсных схем с возможностью регулировки. Средним по сложности исполнения является ЗУ из компьютерного блока питания. В статье описано, как своими руками изготовить зарядное устройство из БП компьютера для автомобильного аккумулятора.

Самодельное ЗУ из блока питания

Содержание

  • 1 Инструкция по изготовлению
    • 1.1 Инструменты и материалы
    • 1.2 Алгоритм действий
  • 2 Заключение
  • 3 Видео «Зарядка для автомобильного аккумулятора»
  • * Комментарии и Отзывы
[ Раскрыть][ Скрыть]

Инструкция по изготовлению

Переделать компьютерный БП в зарядное устройство не сложно, но нужно знать основные требования, предъявляемые к ЗУ, предназначенным заряжать автомобильные аккумуляторы. Для аккумуляторной батареи машины ЗУ должно иметь следующие характеристики: подводимое к батарее максимальное напряжение должно иметь значение 14,4 В, максимальный ток зависит от самого зарядного устройства. Именно такие условия создаются в электрической системе автомобиля при подзарядке аккумулятора от генератора (автор видео Rinat Pak).

Инструменты и материалы

Учитывая, описанные выше требования, для изготовления ЗУ своими руками сначала нужно найти подходящий блок питания. Подойдет б/у АТХ в рабочем состоянии, мощность которого составляет от 200 до 250 ВТ.

За основу мы берем компьютер, который имеет следующие характеристики:

  • выходное напряжение 12В;
  • номинальное напряжение 110/220 В;
  • мощность 230 Вт;
  • значение максимального тока не больше 8 А.

Из инструментов и материалов понадобится:

  • паяльник и припой;
  • отвертка;
  • резистор на 2,7 кОм;
  • резистор на 200 Ом и 2 Вт;
  • резистор на 68 Ом и 0,5 Вт;
  • резистор 0,47 Ом и 1 Вт;
  • резистор 1 кОм и 0,5 Вт;
  • два конденсатора на 25 В;
  • автомобильное реле на 12 В;
  • три диода 1N4007 на 1 А;
  • силиконовый герметик;
  • зеленый светодиод;
  • вольтамперметр;
  • «крокодилы»;
  • гибкие медные провода длиной 1 метр.

Приготовив все необходимые инструменты и запчасти можно приступать к изготовлению ЗУ для АКБ из блока питания компьютера.

Алгоритм действий

Зарядка АКБ должна проходить под напряжением в интервале 13,9-14,4 В. Все компьютеры работают с напряжением 12В. Поэтому основная задача переделки – поднять напряжение, идущее от БП до 14,4 В.
Основная переделка будет проводиться с режимом работы ШИМ. Для этого используется микросхема TL494. Можно использовать БП с абсолютными аналогами этой схемы. Данная схема используется, чтобы генерировать импульсы, а также в качестве драйвера силового транзистора, который выполняет функцию защиты от высоких токов. Для регулирования напряжения на выходе компьютерного блока питания предназначена микросхема TL431, которая установлена на дополнительной плате.

Дополнительная плата с микросхемой TL431

Там же находится резистор для настройки, который дает возможность регулировки выходного напряжения в узком интервале.

Работы по переделке блока питания состоят из следующих этапов:

  1. Для переделок в блоке сначала нужно убрать из него все лишние детали и отпаять провода.Лишним в этом случае является переключатель 220/110 В и провода, идущие к нему. Провода следует отпаять от БП. Для работы блока необходимо напряжение 220 В. Убрав переключатель, мы исключим вероятность сгорания блока при случайном переключении выключателя в положение 110 В.
  2. Далее отпаиваем, откусываем ненужные провода или применяем любой другой способ их удаления. Сначала отыскиваем синий провод 12В, идущий от конденсатора, его выпаиваем. Проводов может быть два, выпаять надо оба. Нам понадобятся только пучок желтых проводов с выводом 12 В, оставляем 4 штуки. Еще нам понадобится масса – это черные провода, их также оставляем 4 штуки. Кроме того, нужно оставить один провод зеленого цвета. Остальные провода полностью удаляются или выпаиваются.
  3. На плате по желтому проводу находим два конденсатора в цепи с напряжением 12В, они обычно имеют напряжение 16В, их надо заменить на конденсаторы на 25В. Со временем конденсаторы приходят в негодность, поэтому даже если старые детали еще в рабочем состоянии, их лучше заменить.
  4. На следующем этапе нам нужно обеспечить работу блока при каждом включении в сеть. Дело в том, что БП в компьютере работает лишь в том случае, если замкнуты соответствующие провода в выходном пучке. Кроме того, нужно исключить защиту от перенапряжения. Эта защита устанавливается для того, чтобы отключать блок питания от электрической сети, если выходное напряжение, которое на него поступает, превышает заданный предел. Исключить защиту необходимо, так как для компьютера допустимо напряжение 12 В, а нам нужно получить на выходе 14,4 В. Для встроенной защиты это будет считаться перенапряжением и она отключит блок.
  5. Сигнал действия от защиты по перенапряжению отключения, а также сигналы включения и отключения проходят по одному и тому же оптрону. Оптронов на плате всего три. С их помощью осуществляется связь между низковольтной (выходной) и высоковольтной (входной) частями БП. Чтобы защита не смогла сработать при перенапряжении, нужно замкнуть контакты соответствующего оптрона перемычкой из припоя. Благодаря этому блок будет все время находиться во включенном состоянии, если он подключен к электрической сети и не будет зависеть от того, какое напряжение будет на выходе.

    Перемычка из припоя в красном кружочке

  6. На следующем этапе нужно достичь исходящего напряжения 14,4 В при работе в холостую, ведь на БП изначально напряжение равно 12 В. Для этого нам понадобится микросхема TL431, которая расположена на дополнительной плате. Найти ее не составит труда. Благодаря микросхеме регулируется напряжение на всех дорожках, которые идут от блока питания. Повысить напряжение позволяет подстроечный резистор, находящийся на этой плате. Но он позволяет повысить значение напряжение до 13 В, а получить значение 14,4 В невозможно.
  7. Необходимо сделать замену резистора, который включен в сеть последовательно с подстроечным резистором. Его мы меняем на аналогичный, но с меньшим сопротивлением — 2,7 кОм. Это дает возможность расширить диапазон настройки напряжения на выходе и получить выходное напряжение 14,4 В.
  8. Далее нужно заняться удалением транзистора, который расположен недалеко от микросхемы TL431. Его наличие может повлиять на правильную работу TL431, то есть он может помешать поддерживать выходное напряжение на необходимом уровне. В красном кружке место, где находился транзистор.

    Место нахождения транзистора

  9. Затем для получения стабильного выходного напряжения на холостом ходу, необходимо увеличить нагрузку на выход БП по каналу, где было напряжение 12 В, а станет 14,4 В, и по каналу 5 В, но его мы не используем. В качестве нагрузки для первого канала на 12 В будет использоваться резистор сопротивлением 200 Ом и мощностью 2 Вт, а канал 5 В будет дополнен для нагрузки резистором сопротивлением 68 Ом и мощностью 0,5 Вт. Как только будут установлены эти резисторы, можно настроить выходное напряжение без нагрузки на холостом ходу до значения 14,4 В.
  10. Далее нужно ограничить силу тока на выходе. Для каждого блока питания она индивидуальна. В нашем случае ее значение не должно превышать 8 А. Чтобы добиться этого, нужно увеличить номинал резистора в первичной цепи обмотки у силового трансформатора, который применяется как датчик, служащий для определения перегрузки. Для увеличения номинала установленный резистор нужно заменить на более мощный сопротивлением 0,47 Ом и мощностью 1 Вт. После этой замены резистор будет функционировать как датчик перегрузки, поэтому выходной ток не будет выше значения 10 А даже, если сомкнуть выходные провода, имитируя короткое замыкание.

    Резистор для замены

  11. На последнем этапе нужно добавить схему защиты блока питания от подключения ЗУ к аккумулятору неправильной полярности. Это та схема, которая действительно будет создана своими руками и отсутствует в блоке питания компьютера. Чтобы собрать схему, понадобится автомобильное реле на 12 В с 4 клеммами и 2 диода, рассчитанные на ток в 1 А, например, диоды 1N4007. Кроме того, нужно подключить светодиод зеленого цвета. Благодаря диоду можно будет определить состояние зарядки. Если он будет светится, значит, аккумуляторная батарея подключена правильно и идет ее зарядка. Кроме этих деталей, нужно еще взять резистор сопротивлением 1 кОм и мощностью 0,5 Вт. На рисунке изображена схема защиты.

    Схема защиты блока питания

  12. Принцип работы схемы следующий. Аккумуляторная батарея с правильной полярностью подключается к выходу ЗУ, то есть блоку питания. Реле срабатывает благодаря оставшейся в батарее энергии. После того как сработает реле, АКБ начинает заряжаться от собранного зарядного устройства через замкнутый контакт релюшки БП. Подтверждением зарядки будет светящийся светодиод.
  13. Чтобы предотвратить перенапряжение, которое возникает во время отключения катушки за счет электродвижущей силы самоиндукции, в схему параллельно реле включается диод 1N4007. Реле лучше приклеивать к радиатору блока питания силиконовым герметиком. Силикон сохраняет эластичность после высыхания, устойчив к термическим нагрузкам, таким как: сжатие и расширение, нагревание и охлаждение. Когда герметик подсохнет, на контакты реле крепятся остальные элементы. Вместо герметика в качестве крепежа можно использовать болты.

    Монтаж оставшихся элементов

  14. Подбирать провода для зарядного устройства лучше разных цветов, например, красного и черного цвета. Они должны иметь сечение 2,5 кв. мм, быть гибкими, медными. Длина должна составлять не менее метра. На концах провода должны быть оборудованы крокодилами, специальными зажимами, с помощью которых ЗУ подключается к клеммам АКБ. Для закрепления проводов в корпусе собранного устройства, нужно просверлить в радиаторе соответствующие отверстия. Через них нужно продеть две нейлоновые стяжки, которые и будут держать провода.

Готовое зарядное устройство

Чтобы контролировать силу тока зарядки, в корпус зарядного устройства можно еще вмонтировать амперметр. Его нужно подключать параллельно к цепи блока питания. В итоге, мы имеем ЗУ, которое мы можем использовать для зарядки аккумуляторной батареи автомобиля и не только.

Заключение

Достоинством данного зарядного устройства является то, что аккумулятор не будет перезаряжаться при использовании прибора и не испортится, как бы долго ни был подключен к ЗУ.

Недостатком данного зарядного устройства является отсутствие каких-либо индикаторов, по которым можно было бы судить о степени заряженности аккумуляторной батареи.

Трудно определить, зарядился аккумулятор или нет. Рассчитать примерное время зарядки можно, воспользовавшись показаниями на амперметре и применив формулу: силу тока в Амперах, помноженную на время в часах. Экспериментально было получено, что на полную зарядку обычного аккумулятора емкостью 55 А/ч необходимо 24 часа, то есть сутки.

В данном зарядном устройстве сохранена функция от перегрузки и короткого замыкания. Но если оно не защищено от неправильной полярности, нельзя подключать зарядник к аккумулятору с неправильной полярностью, прибор выйдет из строя.

Голосование

У вас есть зарядное устройство для аккумулятора автомобиля?

 Загрузка …

Видео «Зарядка для автомобильного аккумулятора»

Блок питания

ATX, преобразованный в автомобильное зарядное устройство - часть 1

Несколько месяцев назад мой друг подарил мне материнскую плату старого неисправного блока питания ATX, чтобы я мог использовать ее в качестве источника запчастей. Все это была только заполненная печатная плата. Без крышек, без вентилятора охлаждения и т. Д.

Ну, несколько дней назад мне позвонил мой младший брат Аристос. Он рассказывал мне о некоторых проблемах, которые у него были с его машиной, в частности, с неисправным переключателем, который недавно оставил его с полностью разряженной батареей рано утром, когда ему нужно было уйти на работу ... Во время обсуждения он начал спрашивать меня о подробности, чтобы он определился с покупкой хорошего автомобильного зарядного устройства.Тогда у меня возникла идея! Чтобы увидеть, что не так с той печатной платой, которую я имел в наличии, и вместо того, чтобы использовать ее в качестве источника запчастей, я мог бы восстановить ее, а затем модифицировать, сделав из нее автомобильное зарядное устройство на 12 В для моего брата.

Вы можете увидеть эту печатную плату ниже:

Я нашел все эти недостающие части из того, что у меня было утилизировано, и мне удалось восстановить их до приемлемого окончательного вида блока питания после ремонта и модификации.

Ниже вы можете увидеть его окончательную форму после завершения всех работ по модификации.

Когда я начал его устранять, я заметил, что предохранитель не поврежден. Это были хорошие новости, так как я понял, что у него проблема «не запускается».

До сих пор мне очень повезло, и теперь все стало намного проще. У меня уже были хорошие новости, что первичные переключатели были целы. Тем не менее я обычно доказывал это, проводя статические измерения на них. Все было в идеальной форме, как я и ожидал.

Я продолжил быструю проверку полупроводников вторичной обмотки, не ожидая снова найти там что-нибудь не так.Просто для подтверждения того, что эта сторона тоже исправна. Кроме того, я «просканировал» все электролитические крышки на предмет плохого СОЭ. Проблем не обнаружено.

Настало время динамических проверок. Я подключил «мягкий предохранитель» (контрольную лампу) последовательно к входу сети и включил его в сеть. Я видел только короткое свечение лампы и ничего. Это тоже хороший знак. Затем я проверил резервный источник питания, эти 5 В на фиолетовом кабеле, и это тоже было нормально.

Следующие тесты напряжения, которые я проводил на выпрямлении и фильтрации сети, были в порядке, мой вспомогательный (резервный) блок питания был уже в норме, и напряжение на ИС ШИМ-модулятора было, но при попытке подать питание на его выходах не было сигнала, чтобы управляют силовыми транзисторами.

В этом блоке питания используется микросхема ШИМ TL494, хорошо известная уже несколько десятилетий. Насколько я помню, впервые я увидел эту микросхему еще в начале восьмидесятых. В то время я присоединился к обслуживающему персоналу Panasonic здесь, в Афинах, Греция. Фактическая ИС была эквивалентной версией того TL494. Это был μPC494 японской компании NEC. В то время я был так поражен тем, как работает этот блок питания после того, как я его отремонтировал, что купил несколько частей этого чипа, чтобы начать с ним экспериментировать ... Первая любовь ... никогда не забыт ... Этот чип познакомил меня с магией мир SMPS ... То были времена ...

Итак, теперь я очень хорошо знал, что мне делать дальше.Я проверил все напряжения на контактах этой ИС, чтобы определить возможное состояние «запрета вывода». По замерам ничего существенного не обнаружено. Частота пилообразного генератора была на месте, но «опорный сигнал 5 В» отсутствовал, и на его выходах не было активности. Так что решение было легким. Эту микросхему необходимо заменить. Действительно, после замены и повторного подключения блока питания к сети (после перемычки свободных клемм зеленого кабеля с черным на конце разъема материнской платы, что соответствует команде запуска) вентилятор, который я уже подключил к нему, начал вращаться.Признак того, что реставрация уже сделана, присутствовало. Я также доказал это, измерив его выходные напряжения, которые были на правильном уровне.

Кроме того, поскольку у меня не было дальнейшего намерения использовать этот блок питания для питания компьютера хотя бы один раз, и чтобы упростить работу в случае его возможного нового ремонта в будущем, я решил снимите его, удалив все ненужное с вторичной стороны печатной платы. Другими словами, я удалил все компоненты, связанные с выходами + 5V и + 3,3V, а также все, что с ними связано, и сохранил эти компоненты в качестве запасных частей для будущего ремонта.Я оставил там только выходную схему + 12В.

Вы можете увидеть почти голую вторичную сторону печатной платы вместе с компонентами, которые я удалил, ниже:

Однако мне нужно было решить две основные проблемы. Первым было выходное напряжение.

Как известно, для зарядки автомобильного аккумулятора на 12 В требуется немного более высокое напряжение, чем это. В остальном зарядки вообще нет. Типичное напряжение, используемое в автомобилях, составляет 14,4 В. Для автономного использования (поддержание постоянного заряда батареи в течение долгого времени в режиме ожидания) типичное напряжение составляет 13,5 В.Итак, мне пришлось увеличить выходное напряжение этого БП…

Мой брат, напротив, был очень требователен! Ему нужна была не только функция ускоренного заряда, но и «поддерживающая» или «плавающая». Поэтому мне пришлось учесть это требование и предоставить ему два переключаемых выходных напряжения. Один для ускоренного заряда, который я решил составлять 14,7 В, а другой, для плавающей функции, на 13,2 В.

Вторая проблема, которую необходимо было решить, заключалась в очевидной необходимости включения в него защиты по ограничению тока, которая защищала бы его от перегрузки, а также от случайного короткого замыкания зажимов выходного кабеля перед их подключением к заряжаемой батарее.Изначально этот БП не имел такой схемы защиты ни на одном из своих выходов. Это объясняет причину мгновенного выхода из строя различных силовых полупроводников, когда эти дешёвые блоки питания либо превышают максимальную выходную мощность, либо, особенно, когда их выходы сталкиваются с коротким замыканием.

Щелкните ЗДЕСЬ , чтобы перейти к Части 2

Эта статья была подготовлена ​​для вас Пэрис Азис из Афин, Греция. Ему 59 лет, и у него более 30 лет опыта в ремонте электроники, как бытовой, так и промышленной электроники.Он начал как любитель в возрасте 12 лет и закончил свою профессиональную карьеру старшим техником-электронщиком. Он был специалистом по всему спектру ремонта бытовой электроники (: вентильные радио и ТВ-приемники, транзисторные цветные ЭЛТ-телевизоры, аудиоусилители, катушечные и кассетные магнитофоны, автоответчики и телефакс, электрические утюги, микроволновые печи и т. Д.) сначала работал в официальных сервисных отделах National-Panasonic, а затем в JVC, в их помещениях в Афинах.

Затем он присоединился к телекоммуникационной отрасли, проработав в течение 20 лет техником по технической поддержке в секторе DMR (: станции передачи цифрового микроволнового радио), закончив свою карьеру в этой сфере. Теперь он снова любитель!

Пожалуйста, поддержите, нажав на кнопки социальных сетей ниже. Ваш отзыв о публикации приветствуется. Пожалуйста, оставьте это в комментариях.

P.S- Если вам понравилось это читать, щелкните здесь , чтобы подписаться на мой блог (бесплатная подписка). Так вы никогда не пропустите сообщение . Вы также можете переслать ссылку на этот сайт своим друзьям и коллегам - спасибо!

Нравится (83) Не нравится (1)

Как зарядить автомобильный аккумулятор в домашних условиях (с помощью блока питания)

Как зарядить автомобильный аккумулятор в домашних условиях (с помощью блока питания)

Как зарядить автомобильный аккумулятор в домашних условиях (с помощью блока питания)? Вместо того, чтобы использовать настоящее зарядное устройство для зарядки автомобильного аккумулятора, вы можете сделать это напрямую, используя блок питания (PSU).Как?

  • Это, конечно, крайняя мера, а не реальный вариант. В конце концов, если у вас есть идеально исправное зарядное устройство, оно более надежно, чем источник питания, и поможет подзарядить автомобильный аккумулятор.
  • Если вы остались с использованием блока питания, убедитесь, что вы сделали все правильные подключения. Возьмите клеммы с блока питания и подключите их к автомобильному аккумулятору, который нуждается в жизни.
  • Вам понадобятся провода, чтобы помочь на этом этапе.Они не должны быть ни слишком тонкими, ни слишком толстыми. Подумайте о среднем проводе интернет-модема, и вы на правильном пути.
  • Положительный - красный, отрицательный - черный. Прикрепите клемму правого цвета к правому узлу.
  • Включите блок питания. Счетчики заряда покажут то, что они показывают, потому что батарея почти полностью заряжена. Не беспокойтесь чрезмерно о мерах и многом другом.
  • Батарея вполне может быть на 12 вольт или около 13 вольт.Вы увидите, что для зарядки аккумулятора используется около 1 А (ампер). Это скорость зарядки, которая медленная, но безопасная, особенно с учетом того, что вы используете блок питания для выполнения этого процесса.
  • Эти действия зависят от типа и технических характеристик автомобильного аккумулятора больше, чем от производителя блока питания. Если вы увеличите значение напряжения до значения, превышающего 14, для зарядки автомобильного аккумулятора потребуется намного больше ампер. Это ставит его под угрозу; пожар, непоправимый ущерб.
  • В то время как некоторые зарядные устройства аккумуляторов способны работать с такими нагрузками, блоки питания - нет.Первые имеют варианты отключения на основе регулирования, а вторые просто качают мощность в зависимости от того, что вы установили.
  • Вы можете изменить напряжение, чтобы оно оставалось на уровне 13,8 или даже 14, но не выше. Для работы требуется примерно 1 ампер. Держите заряд включенным, пока автомобильный аккумулятор не зарядится.
  • Необходимое количество ампер зависит от того, насколько разряжена автомобильная батарея. 1 А достаточно для наполовину заряженных аккумуляторов (или около того), но если ваша полностью разряжена, то показание в амперах покажет 5 А, чтобы предложить пример скорости, с которой необходимо зарядить.Когда значение ампер снова упадет до 0, считайте, что ваша батарея полностью заряжена.

Вот и все, что нужно для зарядки автомобильного аккумулятора от блока питания. Если вы предполагали, что этот процесс предполагает использование прямых электрических розеток, вы ошибались. Это чрезвычайно опасно и никогда не должно быть альтернативой; на ум приходят мультфильмы.

Следите за автомобильным аккумулятором, чтобы он не перегрелся. Блок питания (блок питания) покажет увеличение нагрева, но этого следовало ожидать.У блоков питания обычно есть охлаждающий вентилятор внутри, чтобы поддерживать их ниже порогового уровня.

Зарядное устройство для аккумуляторов электромобилей

- схемы электропитания

Это принципиальная схема зарядного устройства электромобиля. Как показано, схема представляет собой обычный источник питания, за которым следует регулятор LM338, который управляется операционным усилителем, который отвечает за управление состоянием заряда, чтобы определить точный момент, который должен остановиться, и привести в действие светодиодный индикатор.

Резистивный делитель включает три каскада, первый принимает опорное напряжение для операционного усилителя, а второй управляет регулятором LM338 через выход op. Таким образом, сброс нагрузки происходит, когда ток падает ниже среднего значения Amp, когда схема начинает колебаться из-за возбуждения транзистора, ток проходит к светодиоду, заставляя его светиться, указывая на окончание нагрузки.

Обратите внимание, что выпрямительный мост составляет 10 ампер (50 В или более высокое напряжение), поэтому он не предназначен для пайки на печатной плате, а привинчивается к металлическому корпусу компьютера и подключается через зажимные клеммы.Конденсатор первичного фильтра может быть приварен к пластине или заключен в шкаф с помощью двух пластиковых уплотнений и приварен параллельно положительной и отрицательной клеммам диодного моста. Выключатель питания используется в перколяторах, которые находятся внутри неоновой газовой лампы, которая загорается для включения компьютера. Обратите особое внимание на то, как этот переключатель подключен, так как очень часто путают клеммы и закорачивают линию 220. Регулятор LM338 должен быть установлен вне печатной схемы на подходящем радиаторе размером не менее 10 x 10 см.Если вы хотите, вы можете разместить амперметр постоянного тока последовательно с положительной клеммой аккумулятора для вылета, чтобы визуально контролировать состояние тока нагрузки. Этот инструмент может быть аналоговым или цифровым, но сейчас он гораздо более привлекателен. Положительная клемма прибора подключается к цепи и переходит в отрицательную клемму аккумулятора (по направлению к положительной клемме). Резистор 0,1 Ом должен быть установлен на пластине, но приподнят на 2 или 3 см, чтобы предотвратить изменение пертинакса при нагревании. Вы можете включить зуммер, пока светится светодиод.Он должен быть подключен между анодом светодиода и эмиттером транзистора и должен быть электронного типа с включенным в него генератором.

Чтобы использовать это зарядное устройство для аккумулятора электромобиля, просто поместите аккумулятор для зарядки, включите систему и нажмите кнопку, которая начинает заряжаться. По окончании работы светодиод загорится и выключит систему и снимет клеммы аккумулятора.

Теги: автостоп Зарядное устройство автомобильное зарядное устройство

Зарядное устройство

от блока питания ПК Зарядное устройство

от блока питания ПК
Мой мустанг провел зиму в гараже, а этой весной оказался с незаряжаемым аккумулятором.Батареи было всего около 6 месяцев, поэтому я начал исследовать, как батареи умирают и что с этим делать. Этот проект возник в результате этого исследования.

Вроде все сделал не так. Батарею пустил полностью разрядился, поплавковой зарядки нет. Зимой я заводил машину несколько раз, но никогда не позволял полностью подзарядить аккумулятор. Я неправильно зарядил аккумулятор стендовым блоком питания. Результат - аккумулятор с сульфонированием.

Итак, я хотел построить зарядное устройство, которое заряжало бы батарею примерно на 10 ампер, если она сильно разряжена, а затем переключалось бы на плавающий заряд около 100 мА, когда батарея почти заряжена.Я хотел использовать один из старых блоков питания для ПК, который у меня валялся, в качестве источника питания для зарядного устройства. В дополнение к зарядке и поддержанию плавающего режима, я хотел периодически прикладывать нагрузку, чтобы немного разрядить аккумулятор, и после разряда перезарядить.

В середине этого проекта я нашел информацию о десульфаторах и начал исследовать использование десульфонатора вместо зарядного устройства для ПК. После создания этого зарядного устройства я приступил к созданию комбинированного десульфатора-зарядного устройства.Щелкните здесь, чтобы перейти на новую страницу об десульфаторе.

Блок питания ПК был модифицирован для подачи от 10 до 14,1 вольт.

Обмотки трансформатора инвертора + 5В и фильтрующие элементы были отключены, как и выпрямитель +12 В, а также все цепи -12 В и -5 В. Обмотка инвертора на 12 В затем была подключена к тому, что раньше было сильноточным выпрямителем +5 В. При таком расположении инвертор должен выдавать 10 ампер при +14.1 вольт при потребляемой мощности 200 Вт. Обмотка инвертора на 12 В, однако, может быть не рассчитана на постоянную подачу такого большого тока.

Цепь перенапряжения была изменена для отключения инвертора при напряжении> 15 вольт. Цепь перегрузки по току осталась в покое. Управление напряжением представляет собой делитель напряжения, подключенный к выходу источника питания, и был изменен с тремя точками переключения: 10 В, 13,6 В и 14,1 В.

Схема управления зарядным током была построена для установки напряжения источника питания для правильной зарядки аккумулятора.

Ток в батарее контролируется через резистор сопротивлением 0,1 Ом. Операционные усилители сравнивают полученное напряжение с опорными и возвращают сигнал в источник питания. Когда батарея сильно разряжена, напряжение источника питания падает до +10 вольт, чтобы ограничить зарядный ток до 10 ампер и предотвратить срабатывание цепи перегрузки по току источника питания. По мере того, как аккумулятор принимает некоторый заряд, напряжение питания увеличивается, и ток поддерживается на уровне 10 ампер. Когда напряжение питания достигнет 14.1 вольт, напряжение перестает расти, а зарядный ток начинает уменьшаться. При зарядном токе 1 ампер аккумулятор практически заряжен, а напряжение источника питания снижается до 13,6 В для поддержания постоянного тока заряда около 100 мА.

Когда аккумулятор не используется в течение длительного времени, даже с плавающим зарядом, он разрушается из-за расслоения электролита. Чтобы предотвратить эту деградацию, была построена схема, которая периодически немного разряжает аккумулятор, а затем подзаряжает его.Пузырьки и тепло, возникающие при перезарядке, перемешивают электролит.


Блок питания ПК
Большинство блоков питания ПК имеют очень похожие схемы. В разделе «Ссылки» ниже есть несколько ссылок на сайты, на которых описывается модификация компьютерных блоков питания для питания оборудования с напряжением 13,8 В. Я только проследил схему конкретного источника питания, который использовал достаточно, чтобы иметь возможность модифицировать его, чтобы выдавать 14,1 вольт.

После удаления компонентов -5 и -12 В я отключил обмотку трансформатора +5 В и перемыл плату, чтобы подключить обмотку 12 В к сильноточному выпрямителю.Затем я изменил схему защиты от перенапряжения.


Схема перенапряжения сравнивает опорное напряжение 1,7 В с отводом напряжения на цепочке резисторов. Внизу гирлянды был диод на -5 вольт и резистор на -12 вольт. Это поместило соединение этих двух компонентов на -5,6 В при нормальном напряжении питания. Верх строки был подключен через диод к +5 вольт. Общее напряжение на струне было [5,5 В -.Падение напряжения на диоде 6 В + 5,6 В] = 10,5 В. Струна была отпущена для получения входного сигнала в 0,73 раза. Итак (0,73 x 10,5 В) -5,6 = 1,7 вольт. Я подключил соединение двух компонентов отрицательного напряжения к земле, что фактически подняло нижний конец цепочки делителя напряжения на 5,6 вольт. Поскольку верхний конец струны изначально был подключен к линии +5 В, а теперь переходит к линии +14,1 В, я поставил стабилитрон на 12 В последовательно с входом 5 В. Таким образом, выходное напряжение строки становится равным 0,73 x (14.1В - 12В - 0,6В падение диода) = 1,1 вольт. Повышенное напряжение отключает питание при 14,9 В [0,73 x (падение на диоде 14,9–12–0,6 В) = 1,75 В.

Микросхема контроллера ШИМ (TL494) регулирует ширину импульса инвертора, чтобы поддерживать напряжение обратной связи на уровне 2,5 вольт. Для блока питания, который я модифицировал, была цепочка резисторов, подключаемых к +5 В, +12 В и земле. Снять резистор +5 В и пересчитать +12 В для подключения +14,1 В было довольно просто. Эта цепочка резисторов была дополнительно разделена, чтобы обеспечить переключение диапазона для части управления током зарядного устройства.

Контроллер тока
Когда я начал этот проект, я искал в Интернете конструкцию зарядного устройства для аккумулятора. Я выбрал зарядное устройство на сайте Энтони ван Руна от Яна Хамера, но потом начал думать о возможных изменениях. У меня не было под рукой регулятора напряжения или сильноточного трансформатора, поэтому мне пришлось бы проектировать регулятор и покупать или перематывать трансформатор. Я скряга; спроси мою жену. У меня было несколько старых блоков питания для ПК, поэтому я решил изменить схему для управления блоком питания вместо микросхемы последовательного регулятора напряжения.

Операционный усилитель U1B поддерживает зарядный ток на уровне 10 ампер до тех пор, пока напряжение аккумулятора не достигнет 14,1 вольт. Операционный усилитель U1A устанавливает выходное напряжение зарядного устройства на 13,6 вольт после того, как зарядный ток упадет до 1,1 ампера при напряжении заряда 14,1 вольт.

U1A-OUT имеет низкий уровень до тех пор, пока ток через R21 не станет меньше 1,1 A. D1 имеет обратное смещение.

U1B-OUT высокий для разряженной батареи. Резисторы с R4 по D2 подключаются параллельно к цепочке резисторов R22 / R23 / R24 / R25, которые вместе с R26 определяют напряжение обратной связи источника питания.U1B-OUT включается достаточно, чтобы уменьшить ток в цепочке делителя и изменить напряжение обратной связи. Выходное напряжение источника питания варьируется от 10 до 14,1 вольт, пока ток через R21 не даст 1 вольт. Это зарядный ток 10 ампер. Ток поддерживается на уровне 10 ампер, поскольку батарея заряжается за счет включения U1B-OUT и уменьшения большей части тока, идущего на строку делителя. Таким образом, выходное напряжение источника питания увеличивается, чтобы поддерживать напряжение обратной связи источника питания на уровне 2,5 вольт.

U1B выходит за пределы диапазона регулирования, когда напряжение питания достигает 14,1 В. Обратная связь источника питания устанавливается R25 в цепочке резисторов R22 / R23 / R24 / R25 / R26. По мере того, как аккумулятор продолжает заряжаться при фиксированном напряжении 14,1 вольт, ток через R21 и напряжение на нем уменьшаются. Когда напряжение на R21 падает ниже 110 мВ, что соответствует скорости заряда 1,1 А, U1A-OUT становится высоким. Это позволяет подключать R2 и R3 параллельно через смещенный в прямом направлении D1 с цепочкой резисторов R22 / R23 / R24 / R25 и устанавливает напряжение зарядки равным 13.6 вольт для «плавающей» зарядки.

Кондиционер батареи
Приношу свои извинения за запутанное описание следующей строки счетчика. Чтобы оптимизировать пространство на плате, мне пришлось перебросить счетчик пульсаций с U2A на U3A, на U2B, на U3B.

Из цепи управления током зарядный ток проходит через реле в кондиционере батареи к батарее. Реле переключается между подачей зарядного тока и разрядкой аккумулятора через заряжающую лампочку.

U1C - это релаксационный генератор с частотой 0,1 Гц, слегка несимметричный из-за D12, который предназначен для ускорения спада тактового импульса счетчика 74393. Семь с половиной дней спустя выход Q3 четвертого счетчика (второй счетчик в двойном счетчике 74393, U3) становится высоким и подает + 2,4 В на R45. Другой конец R45 зажимается на 0,8 В из-за низкого выхода второго счетчика (выход Q3 первого счетчика в U3). Двадцать одна минута спустя выходной сигнал второго счетчика становится высоким на 42 минуты и отключает зажимы R45 и +2.На U1D подается 4 В. Выходной сигнал U1D имеет высокий уровень, включая Q11 и реле. Аккумулятор разряжается через лампу дальнего света фар автомобиля в течение 42 минут или до тех пор, пока напряжение аккумулятора не упадет ниже 11,6 В. Когда напряжение на R51 падает ниже 11,6 В, D15 понижает напряжение, приложенное к U1D, ниже опорного значения + 1,6 В на стыке R54 и R55.

Q6 был включен, когда U1D включил реле. Это разрядил C12. Теперь, когда на выходе U1D падает низкий уровень, Q6 отключается, и конденсатор подает положительный импульс сброса на счетчики.Цикл кондиционирования начинается снова, когда реле подключает аккумулятор к зарядному току.

При выходе из строя цепи питания аккумулятор может быть подключен к лампе фары и разрядиться, когда не будет источника для подзарядки аккумулятора после разряда. Кроме того, батарея будет продолжать незаметно разряжаться через электронику зарядного устройства, если источник питания действительно идет на юг. Имеется сигнализация низкого потребления тока, чтобы предупредить меня, если возникнет такая ситуация, и отключить разрядную нагрузку.Транзистор Q12 включается сигналом исправности питания от источника питания и отключает Q13 и сигнализацию. Если источник питания выходит из строя, потеря сигнала хорошего питания включает аварийный сигнал, который получает питание от батареи, и подтягивает вход U1D к низкому уровню, чтобы разблокировать реле разряда. Состояние счетчика сохраняется благодаря снятию напряжения + 5В с батареи. Таким образом, если сбой источника питания был просто кратковременным сбоем питания, счет продолжится, как только источник питания перезапустится.


К началу

После того, как компоненты + 5V, -5V и -12V были удалены из источника питания ПК, было место для добавления небольшой печатной платы для добавленной схемы. Лампа фары была установлена ​​в небольшом ящике на передней части корпуса блока питания ПК. Он изготовлен из перфорированного металла и охлаждается воздухом, выходящим из блока питания компьютера. Добавленная коробка также содержит резистор измерения тока, R21, и реле заряда-разряда.

Маленькая печатная плата содержит большинство компонентов, добавляемых к блоку питания ПК. Доска была вытравлена ​​в технике фотобумаги, упомянутой на главной странице моего сайта. Я подумывал об использовании программного обеспечения для создания схем, рисования и автотрассировки на печатной плате, но кривая обучения этим специализированным пакетам высока для тех, кто делает, может быть, две небольшие платы в год. В настоящее время я использую ручной метод, в котором задействованы три программы. Однако я использую эти три программы в других областях, поэтому я уже могу управлять программами.

Я рисую макет с помощью DesignCAD, затем отделяю слой с необходимыми надрезами и зеркально отражаю изображение. Затем я распечатываю вырезанный слой на виртуальном принтере. Виртуальный принтер использует драйвер принтера Postscript и программу Ghostscript. Виртуальный принтер создает файл PNG, который я открываю с помощью Irfan View. Используя Irfan View, я меняю изображение на негатив и распечатываю его на струйной фотобумаге с помощью лазерного принтера. Наконец, я глажу изображение и протравляю доску.Вы можете получить все подробности, перейдя в раздел «Случайные ссылки, которые не подходят ни в какое место» на моей главной странице.

Я сделал резистор 0,1 Ом для R21 из нихромовой проволоки от старого нагревательного элемента сушилки. Нихромовая проволока диаметром 0,052 дюйма имеет сопротивление 0,2595 Ом на фут, поэтому 4 витка проволоки диаметром 3/8 дюйма дают 0,1 Ом.

Чтобы убедиться, что сопротивление паяного соединения не влияет на измеряемое напряжение, я использовал контакты Кельвина. К нихромовому проводу были припаяны четыре провода: два для измерения напряжения и два для прохождения тока от источника питания к батарее.Один из проводов с контактом Кельвина также является источником питания для схемы на дополнительной плате компьютера, поэтому провода измерения напряжения не являются чисто контактами Кельвина.

Я припаял провода к нихромовой проволоке, отшлифуя проволоку и используя флюс для сантехники, содержащий хлорид цинка. Этот кислотный флюс требует тщательной очистки после пайки с использованием растворителя, чтобы избавиться от парафина во флюсе, и длительного замачивания в растворе бикарбоната натрия, моющего средства и теплой воды для нейтрализации кислоты.

К началу

Авторские права Дейл Томпсон.

Последняя редакция: 29 ноября 2006 г.

Зарядные устройства и адаптеры питания для принтеров

> Зарядные устройства для принтеров и адаптеры питания

Адаптеры питания и зарядные устройства Zebra для принтеров обеспечивают надежность и долговечность для мобильных, настольных, промышленных и киосковых принтеров.Выбирайте из множества зарядных устройств, включая адаптеры питания, зарядные устройства, подставки для зарядки, настенные зарядные устройства, автомобильные адаптеры питания и многое другое.


Док-станция серии ZQ300 на 1 слот

Установите и зарядите один принтер ZQ300.Этот аксессуар поставляется с кабелем USB и адаптером переменного тока в USB. Выберите номер детали с соответствующим штекером для адаптера переменного тока к USB.

Регионы: США, ЕС, Великобритания, Австралия, Бразилия, Корея


Автомобильная подставка серии ZQ500

Установите и зарядите один принтер серии ZQ500 на столе / столешнице или закрепите в автомобиле / на вилочном погрузчике.Необходимо заказывать с адаптером для автомобильного прикуривателя с открытым концом или адаптером переменного тока. Соответствует классу IP43 для дополнительной защиты от жидкостей и проливов. Совместимость с принтерами серии ZQ500 с увеличенным аккумулятором или без него, а также с экзоскелетом или без него. Может быть установлен с помощью монтажного кронштейна RAM. Требуется специальный драйвер для подключения через USB.

Мобильный принтер ZQ510, Мобильный принтер ZQ520


Подставка для эвакуатора серии ZQ500

Позволяет подключать принтер только к автомобильному источнику питания.Устраняет необходимость замены батареи в течение всего срока службы принтера. Принтер все еще можно отсоединить от автомобиля.

Мобильный принтер ZQ510, Мобильный принтер ZQ520


QLn420 Автомобильная подставка для зарядки

Установите и зарядите один принтер QLn420 в автомобиле или вилочном погрузчике.Включает источник питания 15-60 В постоянного тока. Опционально может использоваться с креплением RAM Arm.


QLn420 Зарядная станция с одним Ethernet

Установите и зарядите один принтер QLn420 на столе / столешнице.Ethernet позволяет управлять принтерами удаленно. Блок питания поставляется с подставкой для зарядки Single Ethernet.


Зарядная станция Ethernet серии ZQ600 / QLn

Установите и зарядите один принтер ZQ610 / ZQ620 или QLn220 / QLn320 на поверхности стола / столешницы.

QLn220, QLn320, ZQ610, ZQ620


Зарядная станция с одним Ethernet для серии ZQ600 / QLn с адаптером IEC60601

Установите и зарядите один медицинский принтер ZQ610 / ZQ620 или QLn220 / QLn320 на поверхности стола / столешницы.

QLn220 Healthcare, QLn320 Healthcare, ZQ610 Healthcare, ZQ620 Healthcare


ZQ600 Series / QLn Series Зарядная станция Ethernet с 4 отсеками

Подключает и заряжает до четырех мобильных принтеров ZQ610 / ZQ620 или QLn220 / QLn320 одновременно.

ZQ610, ZQ620, ZQ610 Healthcare, ZQ620 Healthcare


Базовая станция для зарядки с одним отсеком серии iMZ

Установите и зарядите один принтер iMZ на столе / столешнице.

Мобильный принтер iMZ220, Мобильный принтер iMZ320


ZQ110 Одиночная подставка для подзарядки

Заряжайте ZQ110, не извлекая аккумулятор, в этой единственной зарядной подставке.


ZQ110 Quad Charging Cradle

Заряжайте ZQ110, не извлекая батареи, в этой подставке для четырехъядерной зарядки.Доступен с вилкой питания для США, ЕС, Великобритании, Австралии или Японии.


Зарядное устройство серии ZQ300 на 1 слот

Устанавливает и заряжает одну литий-ионную батарею PowerPrecision + ZQ300.Встроенный блок питания. Поставляется с сетевым шнуром. Выберите номер детали с соответствующим сетевым шнуром для вашего региона.

Регионы: США, ЕС, Великобритания, Корея, Бразилия, Австралия


Зарядное устройство серии ZQ300 на 3 гнезда

Установите и заряжайте до трех аккумуляторов PowerPrecison + Li-Ion ZQ300 одновременно.Зарядное устройство с 3 гнездами поставляется с блоком питания и сетевым шнуром. Выберите номер детали с соответствующим вариантом сетевого шнура для вашего региона.

Регионы: США, ЕС, Великобритания


Зарядное устройство серии ZQ300 на 5 слотов

Установите и заряжайте до пяти принтеров ZQ300 одновременно.Этот аксессуар поставляется в комплекте с блоком питания и шнуром питания. Выберите номер детали с соответствующим вариантом сетевого шнура для вашего региона.

Регионы: США, ЕС, Великобритания


Автомобильное зарядное устройство серии ZQ500

Заряжает принтер от автомобильного разъема или адаптера прикуривателя.Может использоваться без автомобильной люльки. Доступен как 12-24 В или 15-60 В.

Мобильный принтер ZQ510, Мобильный принтер ZQ520


Устанавливает и заряжает одну литий-ионную батарею PowerPrecision + серии ZQ600, QLn или ZQ500.

ZQ510, ZQ520, QLn220, QLn320, QLn420, QLn220 Healthcare, QLn320 Healthcare, ZQ610, ZQ620, ZQ610 Healthcare, ZQ620 Healthcare


Двойное зарядное устройство на 3 гнезда

Подключает и заряжает до шести литий-ионных аккумуляторов PowerPrecision + серии ZQ600, QLn или ZQ500 одновременно.

ZQ510, ZQ520, QLn220, QLn320, QLn420, QLn220 Healthcare, QLn320 Healthcare, ZQ610, ZQ620, ZQ610 Healthcare, ZQ620 Healthcare


Подключает и заряжает до трех литий-ионных аккумуляторов PowerPrecision + серии ZQ600, QLn или ZQ500 одновременно.

ZQ510, ZQ520, QLn220, QLn320, QLn420, QLn220 Healthcare, QLn320 Healthcare, QL220, QL320, QL420, ZQ610, ZQ620, ZQ610 Healthcare, ZQ620 Healthcare


QLn420 Разъединитель аккумулятора

QLn420 Заглушка для отсоединения аккумулятора Аккумуляторный блок позволяет пользователям подключать принтеры непосредственно к вилочному погрузчику или источнику питания автомобиля, не используя аккумулятор в качестве расходного материала.Должен быть заказан с блоком питания с открытым концом или адаптером для автомобильного прикуривателя.


Зарядное устройство для одной батареи ZQ110

Быстрая и простая зарядка одного аккумулятора мобильного принтера ZQ110.


Зарядное устройство на четыре аккумулятора ZQ110

Быстрая и простая зарядка до четырех аккумуляторов мобильного принтера ZQ110.Доступен с вилкой питания для США, ЕС, Великобритании, Австралии или Японии.


P4T / RP4T 12-15 В постоянного тока в автомобильном мобильном зарядном устройстве

Используйте это удобное и экономичное зарядное устройство, чтобы ваш P4T / RP4T был полностью заряжен в дороге.

Мобильные принтеры P4T, RFID-принтеры RP4T


RW и P4T US Li-Ion Fast Charger

Зарядите литий-ионный аккумулятор полностью заряженным принтером серии QL, RW или P4T / RP4T за два-пять часов.

Мобильный принтер QLn320, QL 220 Plus, QL 320 Plus, QL 420 Plus, Мобильный принтер RW 220, Мобильный принтер RW 420, RFID-принтеры RP4T, Мобильные принтеры P4T, Мобильный принтер QLn220, QLn220 Healthcare, QLn320 Healthcare


RW и P4T Зарядное устройство на четыре литий-ионных аккумулятора (США)

Это зарядное устройство обеспечивает питание до четырех литий-ионных аккумуляторов серий QL, RW или P4T / RP4T за два-пять часов.

Мобильный принтер QLn320, Мобильный принтер QLn220, QL 220 Plus, QL 320 Plus, QL 420 Plus, Мобильный принтер RW 220, Мобильный принтер RW 420, Мобильные принтеры P4T, RFID-принтеры RP4T, QLn220 Healthcare, QLn320 Healthcare


Зарядное устройство для литий-ионных аккумуляторов США серии RW

Убедитесь, что ваши мобильные принтеры серии QL или RW всегда готовы к работе с адаптером питания, который заряжает ваши принтеры от сетевой розетки, когда они находятся в фиксированном положении.

Мобильный принтер QLn320, Мобильный принтер QLn220, QL 220 Plus, QL 320 Plus, QL 420 Plus, Мобильный принтер RW 220, Мобильный принтер RW 420, RFID-принтеры RP4T, QLn220 Healthcare, QLn320 Healthcare


Источник питания 15-60 В постоянного тока с цилиндрическим разъемом.Подключается напрямую к мобильному принтеру серии ZQ500 или QLn. Провода с открытым концом для зарядки принтера на вилочном погрузчике.

Мобильный принтер ZQ510, Мобильный принтер ZQ520, Мобильный принтер QLn220, Мобильный принтер QLn320, Мобильный принтер QLn420


Источник питания

12–24 В постоянного тока заряжает принтер через автомобильный адаптер питания с открытым концом или автомобильный прикуриватель.Подключается к цилиндрическому разъему на принтере серии ZQ500 или QLn или к подставке для зарядки принтера с одним отсеком.

Мобильный принтер ZQ510, Мобильный принтер ZQ520, Мобильный принтер QLn220, Мобильный принтер QLn320, Мобильный принтер QLn420


Блок питания 12 В постоянного тока серии iMZ

Заряжает принтер через адаптер питания от автомобильного прикуривателя.Подключается к цилиндрическому разъему на принтере. Примечание. Принтер продается отдельно.

Мобильный принтер iMZ220, Мобильный принтер iMZ320


Электростанция с 4 отсеками серии ZQ500

Подключает и заряжает до четырех принтеров серии ZQ500 одновременно.Поддерживает принтеры в экзоскелетоне и с увеличенным аккумулятором или без него.

Мобильный принтер ZQ510, Мобильный принтер ZQ520


Электростанция с 4 отсеками серии MZ

Храните и заряжайте до четырех мобильных принтеров одновременно с помощью удобной станции адаптера питания Zebra.Это зарядное устройство предназначено для мобильных принтеров MZ 220 и MZ 320.

Мобильный принтер MZ-220, MZ-320, iMZ220, Мобильный принтер iMZ320


RW 420 Электростанция с 4 отсеками

Эта удобная электростанция хранит и заряжает сразу четыре Route Palettes RW 420 от одной розетки.Ваши принтеры RW 420 всегда будут заряжены и под рукой.



Кабель от источника питания к принтеру для внешнего источника питания


Автомобильный адаптер для двойной зарядки серии ZQ300

Заряжает принтер ZQ300 и мобильный компьютер Zebra TC51 или TC56 одновременно.Включает кабели с открытым концом и переходные кабели прикуривателя.


Адаптер от сигареты к USB серии ZQ300

Заряжает принтер от адаптера питания автомобильного прикуривателя.USB-подключение к принтеру; Кабель USB продается отдельно.


Адаптер переменного тока к USB серии ZQ300

Используйте этот адаптер переменного тока в USB для зарядки принтера ZQ300.Выберите соответствующий номер детали с соответствующей вилкой для вашего региона.


Адаптер переменного тока серии ZQ600 / QLn серии IEC60601 для здравоохранения

Подключите принтер к источнику переменного тока, чтобы зарядить внутреннюю батарею принтера.Соответствует стандарту здравоохранения IEC60601 для использования в палатах пациентов.

QLn220 Healthcare, QLn320 Healthcare, ZQ610 Healthcare, ZQ620 Healthcare


Подключите принтер iMZ к сети переменного тока, чтобы зарядить внутреннюю батарею принтера.

Мобильный принтер iMZ220, Мобильный принтер iMZ320


Съемник аккумулятора серии ZQ500

Подключает принтер напрямую к источнику питания автомобиля, не используя аккумулятор в качестве расходного материала.Доступен как открытый источник питания, так и блок питания от прикуривателя. Пустой аккумуляторный блок подходит к принтеру. Может использоваться с монтажной пластиной автомобиля.

Мобильный принтер ZQ510, Мобильный принтер ZQ520


Подключите принтер (или подставку для зарядки) к источнику переменного тока, чтобы зарядить внутреннюю батарею принтера для серий ZQ600, QLn и ZQ500.

ZQ510, ZQ520, QLn220, QLn320, QLn420, ZQ610, ZQ620


Убедитесь, что ваш P4T / RP4T заряжен и готов к работе с адаптером питания, предназначенным для использования в США.Зарядное устройство обеспечивает быструю зарядку от сетевой розетки за два-три часа.

Мобильные принтеры P4T, RFID-принтеры RP4T


ZQ110 Адаптер прикуривателя

Заряжайте ZQ110 от автомобиля с помощью адаптера прикуривателя.


Заряжайте ZQ110 напрямую с помощью этого адаптера переменного тока. Этот адаптер также используется для зарядного устройства для одной батареи и для одной зарядной подставки.


Убедитесь, что ваш принтер работает независимо от того, где вы находитесь, с этим адаптером питания с разъемом IEC для использования с принтерами P4T / RP4T.

Мобильные принтеры P4T, RFID-принтеры RP4T


P4T / RP4T Литий-ионный пост. / Пост. Ток 15-60 В пост. Тока

Оставайтесь в движении с этим адаптером питания постоянного тока для вашего принтера P4T / RP4T.Подключите к аккумулятору вилочного погрузчика для зарядки при использовании погрузчика.

RFID-принтеры RP4T, мобильные принтеры P4T


Автомобильный зарядный кабель серии MZ (с адаптером прикуривателя)

Зарядный кабель для принтеров Zebra серии MZ.

Мобильный принтер MZ-220, MZ-320, iMZ220, Мобильный принтер iMZ320


RW 420 Съемник аккумулятора

Снижение затрат на замену батарей в течение всего срока службы принтера RW 420 с адаптером питания, обеспечивающим заряд непосредственно от источника питания.



Источники питания и шнуры питания

Источники питания и шнуры питания доступны для промышленных, настольных, киосковых, карточных и мобильных принтеров.


Кабель питания переменного тока принтера киоска - ЕС

Обеспечьте безопасную передачу и работу ваших киоск-принтеров серии TTP или KR с помощью кабеля питания, предназначенного для использования в ЕС.

Принтер для киосков TTP 7030, принтер для киосков TTP 8200, принтер для киосков TTP 8300, принтер для киосков TTP 2110, принтер для киосков TTP 2130, принтеры для киосков серии TTP 2000, принтер для киосков KR203, принтер для киосков KR403


Кабель питания переменного тока принтера киоска - Великобритания

Обеспечьте безопасную передачу и работу ваших киоск-принтеров серии TTP или KR с помощью кабеля питания, предназначенного для использования в Великобритании.

Принтер для киосков KR203, принтер для киосков KR403, принтер для киосков TTP 7030, принтер для киосков TTP 2110, принтер для киосков TTP 2130, принтер для киосков TTP 8200, принтер для киосков TTP 8300, принтеры для киосков серии TTP 2000


Кабель питания переменного тока принтера киоска - US

Киоск-принтеры серии TTP или KR всегда готовы к печати с помощью кабеля питания, предназначенного для безопасной работы в США.

Принтер для киосков TTP 7030, принтер для киосков TTP 8200, принтер для киосков TTP 8300, принтер для киосков TTP 2110, принтер для киосков TTP 2130, принтеры для киосков серии TTP 2000, принтер для киосков KR203, принтер для киосков KR403


Кабель источника питания к принтеру киоска для внешнего источника питания

Для обеспечения непрерывной печати с вашего киоск-принтера этот кабель доступен для подключения к внешним источникам питания.

Принтер для киосков TTP 7030, принтер для киосков TTP 8200, принтер для киосков TTP 8300, принтер для киосков TTP 2110, принтер для киосков TTP 2130, принтеры для киосков серии TTP 2000, принтер для киосков KR203, принтер для киосков KR403

Как долго автомобильный аккумулятор может питать ноутбук? Вот результаты! - Домашний аккумулятор банк

Вы когда-нибудь сталкивались с отключением электричества или путешествуете по дороге и задавались вопросом, сколько времени аккумулятор вашего автомобиля сможет питать ваш ноутбук?

У меня был тот же вопрос, и я решил разбить числа, чтобы узнать!

От автомобильного аккумулятора ноутбук может питаться на 6 человек.5 часов, 45-ватный ноутбук в течение 5,1 часа или 60-ваттный ноутбук в течение 3,8 часа с инвертором и при этом у вас будет возможность запустить двигатель автомобиля.

Это, конечно, сделано при предположении, что ваш автомобильный аккумулятор относительно новый и здоровый.

Сумма, указанная на блоке питания (блочный адаптер на вашем зарядном шнуре), является максимальной потребляемой мощностью ноутбука от источника питания, но это не то, что всегда требуется ноутбуку. Часто будет намного меньше. Я часто видел это в четыре раза меньше, чем на самом деле.

Тем не менее, поскольку существует так много факторов, которые влияют на потребности ноутбука в питании (видеокарта, яркость, громкость, потоковая передача, открытие нескольких приложений и т. Д.), Мы просто собираемся придерживаться стандартных диапазонов по всем направлениям, чтобы дать некоторые оценки.

Два основных способа питания портативного компьютера от автомобильного аккумулятора - это использовать инвертор или кабель постоянного тока и подсоединять его прямо к аккумулятору без инвертора.

Сначала я расскажу об автомобильном аккумуляторе и его емкости, о неэффективности инверторов, о самом кабеле ноутбука и соединениях постоянного и переменного тока.Затем я проанализирую математику каждой категории ноутбуков, а также плюсы и минусы различных методов включения.

Если вы торопитесь, вы всегда можете перейти к этой таблице, которая показывает результаты математики и каждой категории ноутбуков!

Приступим!


Сколько энергии автомобильный аккумулятор может обеспечить моему ноутбуку?

Автомобильные аккумуляторы немного сложны в том смысле, что они являются «стартерными батареями», а не «глубокого разряда».

Внутренний состав автомобильного аккумулятора состоит из тонких свинцовых пластин с большей площадью поверхности, позволяющей проводить электрический ток с большей скоростью, что позволяет аккумулятору проявить себя (2-3%) в течение нескольких секунд и завести автомобиль. Затем он заряжается генератором после того, как вы начнете движение.

Регулярная разрядка автомобильного аккумулятора, даже ниже 90%, приведет к его повреждению, и вы, безусловно, не получите более 10 или около того полных разрядов при питании от него различных устройств или приборов.

С другой стороны, батареи глубокого разряда имеют более толстые пластины, защитные сплавы на пластинах и меньшую площадь поверхности, что позволяет им многократно переходить в сотни полных или частичных разрядов, и они идеально подходят для питания вашего ноутбука, если вы думаете спуститься по маршруту 12-вольтовой батареи.

В любом случае, в этой статье мы будем использовать автомобильные аккумуляторы, но аккумулятор глубокого разряда будет гораздо лучшим вариантом.

Автомобильные аккумуляторы рассчитаны на ток запуска (CA) или ток холодного запуска (CA), а не в ампер-часах (AH), как аккумулятор глубокого разряда.

ампер-часов помогли бы нам оценить потенциал батарей, но, поскольку они не имеют такой оценки, мне пришлось искать ответ.

Все зависит от вашего автомобиля, но средний эквивалент, который, кажется, согласован различными источниками в аккумуляторной и автомобильной промышленности, составляет около 50 Ач.

50AH - это число, которое мы собираемся использовать для наших расчетов.


Неэффективность инвертора при питании моего ноутбука

Самый распространенный способ питания ноутбука - это использовать стандартную розетку, которая идет в комплекте с компьютером. Чтобы продолжать делать то же самое с батареей, вам понадобится инвертор.

Инвертор преобразует питание 12 В постоянного тока (DC) от батареи на питание переменного тока 110 В (AC), чтобы вы могли использовать его с вашими устройствами.

Инвертирование этой мощности связано с неэффективностью и потерями тепла.

Инвертор, в среднем, должен учитывать неэффективность около 15%. Кто-то может быть больше, кто-то меньше.

В наших расчетах мы будем использовать 15% неэффективность инвертора (или 85% эффективность для типов с «наполовину заполненным стеклом»).

Я настоятельно рекомендую покупать чистый синусоидальный инвертор вместо модифицированного синусоидального инвертора при питании компрессоров и микропроцессоров.Энергия более чистая и не приведет к проблемам с перегревом из-за прерывистого тока, как в случае с модифицированным синусоидальным инвертором.


Неэффективность стандартного кабеля питания ноутбука

Да, даже когда вы используете обычное питание от стены, источник питания вашего ноутбука не на 100% эффективен.

Если вы проследите за шнуром от ноутбука, то где-то по пути заметите прямоугольную коробку. Это блок питания (блок питания), который на самом деле преобразует 110 В переменного тока от вашей стены в 19 В постоянного тока (обычно) для вашего ноутбука.

Ваш ноутбук фактически работает от постоянного тока, несмотря на то, что он подключен к переменному току от вашей стены.

Внутри блока питания будут такие недостатки, как инвертор, и обычно это 10%.

В наших расчетах мы будем использовать 10% неэффективность (эффективность 90%) для кабеля питания, который идет в комплекте с вашим ноутбуком.


Неэффективность подключения батареи постоянного тока к ноутбуку

Наконец, даже если вы пропустите инвертор и подключите постоянный ток к батарее, вам все равно придется повозиться с током, чтобы поднять его до 19 В с 12 вольт.В этом процессе также будет 10% неэффективность.

Независимо от того, как вы это разрезаете, вы столкнетесь с неэффективностью.

Мы будем использовать 10% неэффективность (эффективность 90%) для силовых кабелей постоянного тока в наших расчетах, которые вы можете приобрести для прямого подключения к автомобильному аккумулятору.


Наконец, математика!

Чтобы узнать свою номинальную мощность, не считайте цифры на блоке питания. Это максимальные диапазоны, и вы обнаружите, что на самом деле они часто составляют 1/4 от этого значения.Используйте Kill a Watt Meter, подобный тому, который можно увидеть на Amazon, чтобы определить фактическое энергопотребление.

Формула, которую мы будем использовать, будет следующей: Автомобильный аккумулятор 50 Ач / Ампер, требуемый ноутбуку после неэффективности = Общее время в часах до 100% разряда

Питание от автомобильного аккумулятора 3 Ноутбук 5 Вт, инвертор и заводской шнур питания:

35 Вт ⇒ 35 Вт / 12 В = 3,75 ампера ⇒ 2,91 / (0,85 * 0,9) = 3,81 ампера, необходимого от батареи, чтобы преодолеть неэффективность инвертора и блока питания и доставить 2.91 ампер на компьютер.

50 Ач / (3,81) = 13,12 часов до 100% разряда ⇒ при 50%, и у нас есть 6,56 часов, так что у вас еще есть шанс запустить аккумулятор вашего автомобиля.


Питание от автомобильного аккумулятора 3 Ноутбук 5 Вт и соединение постоянного тока (без инвертора)

35 Вт ⇒ 35 Вт / 12 В = 2,91 А ⇒ 2,91 / (0,9) = 3,24 А

50 Ач / 3,24 А = 15,43 часа до полной разрядки аккумулятора ⇒ или при 50% = 7.7 часов использования, чтобы еще завести машину.


Автомобильный аккумулятор с 4 5 Вт для ноутбука, инвертора и заводского шнура питания:

45 Вт ⇒ 45 Вт / 12 В = 3,75 ампера ⇒ 3,75 / (0,85 * 0,9) = 4,9 ампера, необходимого от батареи, чтобы преодолеть неэффективность инвертора и блока питания и передать 3,75 ампера на компьютер.

50 Ач / 4,9 = 10,2 часа до 100% разряда ⇒ при 50%, и у нас есть 5,1 часа, так что у вас еще есть шанс запустить автомобильный аккумулятор.


Автомобильный аккумулятор с 4 5 Вт ноутбуком и соединением постоянного тока (без инвертора)

45 Вт ⇒ 45 Вт / 12 В = 3,75 ампера ⇒ 3,75 / (0,9) = 4,17

50 Ач / 4,17 = 12 часов до 100% разрядки аккумулятора ⇒ или при 50% = 6 часов использования для запуска автомобиля.


Автомобильный аккумулятор с 6 0W Ноутбук, инвертор и заводской шнур питания:

60 Вт ⇒ 60 Вт / 12 В = 5 ампер ⇒ 5 / (0.85 * 0,9) = 6,53 ампера, необходимого от батареи, чтобы преодолеть неэффективность инвертора и блока питания и передать 3,75 ампера на компьютер.

50 Ач / 6,53 = 7,66 часов до 100% разряда ⇒ при 50%, и у нас есть 3,82 часа, так что у вас еще есть шанс запустить аккумулятор вашего автомобиля.


Автомобильный аккумулятор с 6 0 Вт ноутбуком и соединением постоянного тока (без инвертора)

60 Вт ⇒ 60 Вт / 12 В = 5 ампер ⇒ 5 / (0.9) = 5,55

50 Ач / 5,55 = 9 часов до 100% разрядки аккумулятора ⇒ или при 50% = 4,5 часа использования для запуска автомобиля.


Результаты


Как лучше всего питать ноутбук от автомобильного аккумулятора?

В любом случае вы столкнетесь с неэффективностью, но , очевидно, подключение постоянного тока к батарее будет наиболее эффективным.

Каждую марку и модель необходимо проверить перед покупкой шнуров постоянного тока, чтобы убедиться, что они совместимы.

Вот короткое видео (не мое) о покупке запасных зарядных шнуров для вашего ноутбука.

Убедитесь, что соединительный элемент подходит к вашему ноутбуку. Опять же, убедитесь, что вы перед покупкой убедитесь, что эта модель подойдет вашему ноутбуку.

Если вы не знаете, как выглядит установка постоянного тока, это пример на Amazon.

Вы можете максимизировать энергосбережение на своем компьютере, уменьшив яркость экрана и проверяя только электронную почту, или вы можете включить громкую музыку во время игры.У вас может быть длинный удлинитель (потребляет больше энергии из-за сопротивления) или более короткий.

Итак, ваш пробег наверняка будет отличаться. Вы можете получить больше или меньше времени. Используйте расчеты в этой статье только в качестве основы и действуйте с осторожностью.

Наконец, помните, что питание портативного компьютера от автомобильного аккумулятора сокращает срок его службы. Этого нельзя избежать, ЕСЛИ вы не питаете свой ноутбук от автомобильного аккумулятора во время движения автомобиля.

Значит, вы, по сути, используете генератор, и вы будете ограничены только количеством бензина в вашем баке.


Плюсы и минусы инвертора и преобразователя постоянного тока

Инвертор

  • Pro: Вы по-прежнему можете использовать кабель питания заводского изготовления.
  • Pro: с инвертором проще быть мобильным - просто подключите удлинитель (подходящей длины) и двигайтесь.
  • Con: Менее эффективен.
  • Против: модифицированный синусоидальный инвертор может привести к перегреву или другим неисправностям.

переход от постоянного тока к постоянному току

  • Pro: Более эффективный.
  • Pro: если у вас есть шнур, вы можете просто подключить его к автомобильному прикуривателю для мобильных путешествий, не таща с собой инвертор.
  • Минус: шнуры обычно короткие, и вам придется находиться рядом с автомобильным аккумулятором.

Мои статьи по теме:

Как долго автомобильный аккумулятор может питать вентилятор?

Как долго автомобильный аккумулятор может питать холодильник?

Выбор зарядного устройства и источника питания

Узнайте, что вам действительно нужно
Этот шаг может немного сбить с толку, поскольку необходимо учитывать несколько переменных.Начнем с упомянутого выше зарядного устройства. В руководстве указано, что для этого зарядного устройства требуется минимум 12 В 10 А PS, но для полной мощности оно должно быть в паре с 15 В 350 Вт PS. Что это на самом деле означает? Это означает, что в зависимости от того, что вы заряжаете, вы можете использовать различные типы и размеры PS. Для небольших пакетов вы можете обойтись относительно небольшим PS, но для больших пакетов вам понадобится серьезная мощность.

Это подводит меня к моему первому пункту. Вы можете выбрать PS двумя способами.

  1. Выберите PS, который может обеспечить полную мощность зарядного устройства.Обычно это легко сделать, поскольку в большинстве руководств указаны требования. Могут быть и другие соображения, но по большей части предоставление того, что они заявляют в руководстве, является безопасным способом.
  2. Другой вариант - выбрать PS специально для ваших нужд. Допустим, вы выбрали большое мощное зарядное устройство с двумя портами для удобства одновременной зарядки 2 аккумуляторов, но вы используете его только для зарядки небольших аккумуляторов. В этом случае нет необходимости тратить деньги на 15V 350W + PS, когда модели 12V 150W будет более чем достаточно.
Следует отметить, что при использовании источника питания с более низким напряжением, чем требуется зарядному устройству для полной выходной мощности, зарядное устройство просто ограничивает выходную мощность. Например, возьмем зарядное устройство на 250 Вт, которому требуется 15 В для обеспечения этой полной мощности. Если вместо этого вы поставите на него 12 В, он ограничит мощность примерно до 200 Вт. Это никоим образом не повредит зарядному устройству.

Выполнение математических расчетов, помогающих решить, какое напряжение и силу тока должен обеспечивать блок питания.
Здесь я расскажу о математических расчетах, которые помогут вам определить размер блока питания для ваших нужд.Даже если вы просто планируете купить самый большой из доступных PS, все равно есть что подумать.

Возьмите упомянутое выше зарядное устройство. Он может выдавать максимум 360 Вт, но он не на 100% эффективен, а это означает, что ему потребуется больше мощности, чем выдает, поэтому нам нужно будет рассчитать дополнительную мощность, чтобы узнать, сколько будет потреблять зарядное устройство. Большинство зарядных устройств имеют КПД около 80%.

Входная мощность = 360 Вт / 0,8 = 450 Вт

Теперь давайте возьмем это число и вычислим некоторые возможные значения PS.Мы будем использовать следующее уравнение в сочетании с некоторой информацией, которую мы узнали выше, чтобы найти эти числа.

Вт = Вольт * Ампер

Мы знаем, что нам нужно не менее 14,5 В, для простоты назовем это 15 В, чтобы обеспечить полную мощность зарядного устройства. Итак, сколько усилителей необходимо для обеспечения 432 Вт от источника питания 15 В?

Ампер = Вт / Вольт = (450 Вт) / (15 В) = 30 А

Одна хорошая вещь в том, чтобы основывать все эти расчеты на мощности, заключается в том, что мы можем регулировать входное напряжение и смотреть, как оно влияет на необходимую силу тока.Оказывается, зарядное устройство, которое мы использовали в качестве примера, принимает любое напряжение от 11 до 28 В, поэтому давайте попробуем другие напряжения и посмотрим, как это повлияет на требуемую силу тока.

А = (450 Вт) / (20 В) = 22,5 А
А = (450 Вт) / (24 В) = 18,8 А

Как вы можете видеть, чем выше напряжение, тем ниже сила тока, необходимая для обеспечения такой же мощности. Это подводит меня к другому вопросу. Зарядные устройства более эффективны, когда входное и выходное напряжения одинаковы. Например при зарядке 3 с (12.6 В), наилучшее входное напряжение - 12 В. При зарядке аккумуляторов по 6 с (25,2 В) наилучшее входное напряжение составляет 24 В. Это следует учитывать при выборе наилучшего PS для ваших нужд.

Теперь поговорим о выборе PS специально для того, что вы заряжаете. В этом случае зарядное устройство не играет никакой роли, кроме своих ограничений по мощности. Давайте возьмем типичный аккумулятор емкостью 2200 мАч 3 с и рассчитаем мощность, необходимую для питания зарядного устройства, чтобы зарядить этот аккумулятор при 1С.

Мощность зарядного устройства
Вт = 12.6 В * 2,2 А = 27,7 Вт

С учетом потерь эффективности зарядного устройства
Вт (входная) = 27,7 Вт / 0,8 = 34,6 Вт

Таким образом, независимо от зарядного устройства, мощность вашего источника питания должна быть не менее 34,6 Вт. для того, чтобы зарядить батарею 2200mAh 3s на 1С. Теперь давайте посчитаем, сколько ампер требуется от источника питания 12 В для зарядки нашей 3-х аккумуляторной батареи.

Ампер = 34,6 Вт / 12 В = 2,9 А

Теперь давайте посмотрим на это с более реалистичной точки зрения. Допустим, у вас есть 3 вертолета разных размеров: 250, 450 и 500.Вы планируете купить новое зарядное устройство, которое будет заряжать аккумуляторы для этих вертолетов. В частности, он должен быть достаточно большим, чтобы заряжать самые большие пакеты, 500 пакетов, в любом поместье, которое вы выберете. Итак, давайте предположим, что вы захотите зарядить свои аккумуляторы емкостью 2500 мАч при температуре 2 ° C. Следуя той же математике, что и выше, позволяет рассчитать, какой размер PS вам нужен. В качестве примечания предполагается использование источника питания 15 В по нескольким причинам. Оно находится между 3 и 6 с. напряжения, соответствует минимальным требованиям к напряжению большинства зарядных устройств для полной вывод и его легко найти.

Выход зарядного устройства для блока 6s 2500 мАч, заряженного при 2C
Вт = 25,2 В * 2 (2,5 А) = 126 Вт

Учет потерь эффективности зарядного устройства
Скорректированная мощность = 126 Вт / 0,8 = 157,5 Вт

Сейчас мы найдем необходимые усилители, используя источник питания 15 В.
А = 157,5 Вт / 15 В = 10,5 А

Итак, для этих вертолетов, этих аккумуляторов и этих зарядных привычек блок питания 15 В 11 А удовлетворит все потребности вашего зарядного устройства, даже если оно способно выдавать 1000 Вт выходной мощности.

Выбор источника питания для нескольких зарядных устройств
Некоторым людям нравится подключать несколько зарядных устройств к одному более мощному источнику питания, и это нормально.Это можно сделать с помощью источника питания с несколькими выходами или с помощью простого параллельного кабеля, который позволяет подключать несколько зарядных устройств к одному выходу. Процесс выбора источника питания для этих нужд такой же, за исключением того, что вам нужно рассчитать требования к каждому зарядному устройству индивидуально, а затем сложить их все вместе, чтобы найти общие требования. Просто помните, что разные зарядные устройства требуют разного напряжения, поэтому вам нужно будет найти общее напряжение, которое будет работать для всех из них.

Последнее соображение по поводу больших PS, APFC
В мире RC до недавнего времени коэффициент мощности никогда не был проблемой.Оказывается, есть много сложностей, связанных с питанием самых больших зарядных устройств на сегодняшний день. Конечно, вам нужен совместимый блок питания, чтобы эти мощные зарядные устройства работали на полную мощность, но как насчет питания блока питания? Оказывается, это может быть проблемой. Возьмем, к примеру, блок питания мощностью 1200 Вт, необходимый для питания зарядного устройства мощностью 1000 Вт. Если мы сделаем простую математику ...

Вт (вход) = 1200 Вт (выход) / 0,8 (потери в PS) = 1500 Вт
А (вход) = 1500 Вт / 115 В = 13 А

В современном мире дома 15 А схем, большинство должно быть в состоянии справиться с одним из них, глядя только на приведенные выше числа, но на самом деле это не так.Это из скрытой электрической концепции, называемой коэффициентом мощности или PF. Этот PF зависит от конструкции PS, но часто остается примерно таким же, если его не исправить. Если вы хотите узнать всю историю, выполните поиск в Интернете по запросу Power Factor и много читайте, но для тех, кто хочет просто получить некоторую базовую информацию, вот ее суть. Коммутационные блоки питания не являются чисто резистивными, поэтому фазы переменного тока, питающего их, не совпадают идеально. Это приводит к тому, что часть мощности возвращается к источнику, и это увеличивает фактическую мощность, необходимую для PS.Аддитивный эффект увеличивает ток, протекающий к PS, и, как таковой, ток, наблюдаемый всеми компонентами. Это включает в себя розетку переменного тока, проводку к розетке и, самое главное, автоматический выключатель. Хорошо, теперь давайте посмотрим, что это делает с математикой ...

У среднего PS будет PF около 0,6. Это означает, что он может использовать только около 60% тока, передаваемого на PS. Поэтому, если для PS требуется 12,5 А или 115 В на входе, вам нужно добавить на 40% больше тока, чтобы получить фактическую величину, которую видит PS.

Ампер (вход) = Ампер (расчетный) / 0,6 (потери .6 PF)
А (вход) = 12,6 А / 0,6 = 21 А

На данный момент многие люди просто не верят в это. Они проводят начальные вычисления и придерживаются их, игнорируя любые эффекты так называемого PF. Обычно примерно в то время, когда эти люди запускают свой новый генератор и начинают заряжать большие батареи, они очень быстро обнаруживают, что это настоящая проблема, и им следовало бы подумать, прежде чем покупать то, что они купили.

Спаситель в этих случаях - покупка PS с APFC или активной коррекцией коэффициента мощности.Эти PS имеют встроенные компоненты, которые непрерывно отслеживают разность фаз и при необходимости регулируют ее, чтобы добиться коэффициента мощности более 0,98. В этих случаях PF можно просто игнорировать. Недостаток в том, что эти агрегаты немногочисленные и дорогие. Единственные известные мне большие модели сделаны Meanwell и используют нумерацию моделей RSP. Многие блоки питания для ПК также имеют APFC, но они всего 12 В и не так полезны, как другие модели.

Сравните варианты
Теперь давайте рассмотрим некоторые варианты питания зарядного устройства.

Ваш автомобильный аккумулятор
Ваш автомобиль - это первый и зачастую самый удобный источник питания. Он имеет прилично прочную систему питания 12 В и с легкостью может питать большинство зарядных устройств. Есть некоторые вещи, которые следует учитывать, но для базовой зарядки это подойдет практически для любого зарядного устройства. Что следует учитывать / понимать:

  • Напряжение автомобильного аккумулятора зависит от нагрузки. Если вы заряжаете небольшие аккумуляторы, это не проблема, но когда вы начинаете заряжать большие аккумуляторы, напряжение может резко упасть.Это ограничит ставки, по которым вы можете заряжать большие пакеты.
  • При включении, разрядке и повторной зарядке обычный автомобильный аккумулятор повредит его. Так что будьте очень осторожны, сколько вы извлекаете из них. Для больших аккумуляторов или для большого количества зарядки обязательно некоторое время или все время простаивайте.
  • Ач автомобильных аккумуляторов намного ниже, чем думает большинство людей. Некоторые люди думают, что 800CCA или усилитель холодного пуска означает, что у них есть батарея на 800 Ач, но на самом деле большинство автомобильных аккумуляторов меньше 50 Ач.Если вы посчитаете, то обнаружите, что 50 Ач едва хватает для зарядки 2 аккумуляторов емкостью 12 емкостью 5000 мАч.
  • Если вы заедете слишком далеко, вам придется идти домой пешком 🙂
Независимо от того, от чего у вас дома есть зарядка, ваша машина будет нормально заряжаться, когда вы находитесь вдали от дома. Просто поймите, что у него есть свои ограничения.

Настольные источники питания
Это обычный способ питания зарядного устройства. Их можно купить где угодно, от Radio Shack до eBay, и они имеют широкий диапазон выходов.Некоторые из них имеют регулируемое напряжение, и это может быть удобно для согласования напряжения с потребностями вашего зарядного устройства. Какими бы хорошими они ни были, все же есть недостатки, такие как стоимость и размер. Некоторые более крупные настольные модели могут стоить 500 долларов и более. Большинство из них будет стоить больше, чем зарядное устройство, которое они питают. Обязательно найдите и прочитайте как можно больше моделей, чтобы узнать, что там есть. Некоторые из более крупных настольных моделей могут отличаться большими физическими размерами и очень тяжелыми. Это не то, что вы обычно берете с собой.

Итак, если вам нужен красивый блок питания, который предлагает простоту банановых разъемов на передней панели, простой шнур питания на 120 В переменного тока, свисающий сзади, и полный набор датчиков, чтобы узнать, что происходит, тогда посмотрите вокруг на настольные модели, но будьте готовы потратить большие деньги.

Восстановленное или новое оборудование, импульсные блоки питания
Этот тип блоков питания становится все более популярным из-за более низкой стоимости и возможной высокой производительности. Их можно найти везде, от компьютерных серверов до медицинского оборудования и жилых домов.Вы можете купить новые модели или подержанные системные тяги. Так или иначе, здесь есть недостатки. Поскольку эти устройства предназначены для установки в оборудование, они обычно представляют собой не что иное, как квадратные металлические коробки с винтовыми клеммами или странными заглушками. Таким образом, вам, скорее всего, придется сделать входные и выходные кабели, а иногда вам придется сделать специальную проводку, чтобы они работали. В некоторых из них используются большие и громкие вентиляторы, чтобы они охлаждались. Многие из них созданы для коммерческого использования, и им абсолютно все равно, тихие они или красивые, им просто нужно то, что работает.

Преобразованные блоки питания для компьютеров
По той же идее, что и блоки питания для оборудования выше, для питания зарядного устройства можно использовать обычный стандартный компьютерный блок питания. Это могут быть системы или новые модели. Они будут ограничены до 12 В, но могут быть представлены в моделях, способных выдавать до 50 А или даже больше.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *