Замер изоляции сопротивления проводов: Для чего нужен замер сопротивления изоляции? • Energy-Systems

Содержание

Для чего нужен замер сопротивления изоляции? • Energy-Systems

Цели проведения замеров сопротивления изоляции

Замеры сопротивления изоляции проводят с целью определения фактических характеристик электроустановок и электросетей, а также для своевременного упреждения нештатных (аварийных) ситуаций, электротравматизма и пожаров. Логика проста: если изоляция не обеспечивает должных диэлектрических качеств, в электроустановке (или в сети) возникают токовые явления, следствием которых рано или поздно станут короткие замыкания со сверхтоками, чрезмерный нагрев, выход из строя или даже пожар.

Проверка изоляции наряду с замером сопротивления заземления относится к наиболее распространённым профилактическим мерам: данные работы проводят за малым исключением проводят практически во всех электроустановках и электросетях.

Помимо профилактической меры, результаты замеров сопротивления изоляции являются косвенным основанием для суждений о качестве монтажа и правильности схемы. Именно поэтому данный вид замеров производится при первичном подключении электричества, после реконструкции сетей и проведения капитальных ремонтов электроустановках.

Пример проекта технического отчета

Назад

1из27

Вперед

Периодичность и нормы

Периодичность и граничные показатели сопротивления регламентируются правилами безопасной эксплуатации электроустановок потребителей (ПБЭЭП, прил. Э-1), а также правилами устройства электроустановок (ПУЭ, гл.1.8) Для большинства электролиний и оборудования до 1000В минимальный порог сопротивления составляет 0,5 МОм.

Правом устанавливать периодичность проведения замеров сопротивления изоляции наделены лица, составляющие (или утверждающие) график планово-предупредительных ремонтов, но не реже интервалов, указанных в ПБЭЭП.

Методики проведения замеров сопротивления изоляции

Каждая электролаборатория обязана разработать и утвердить программы и методики проведения замеров сопротивления изоляции в определённых видах электроустановок.

Данные программы – это своего рода организационно-технические алгоритмы, придерживаться которых должен персонал ЭТЛ. Например, в рамках выполнения замеров сопротивления изоляции специалисты ЭТЛ оформляют наряд или распоряжение, обесточивают цепи, проводят внешний осмотр, подключают контрольно-измерительную аппаратуру (мегомметры) и фиксируют показания.

Оформление результатов

После проведения замеров сопротивления изоляции персонал электролаборатории оформляет результаты документально, в виде протокола, содержащего выводы о соответствии либо несоответствии фактических параметров нормируемым. Если вы заинтересованы в оперативности и в достоверных выводах, обращайтесь – Energy Systems располагает всем необходимым для выполнения контрольно-испытательных работ.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

Онлайн расчет стоимости проектирования

Как проверить сопротивление изоляции - советы электрика

Замер сопротивления изоляции электропроводки

Источник: https://electric-220.ru/news/zamer_soprotivlenija_izoljacii_ehlektroprovodki/2017-06-09-1290

Методика проверки состояния электропроводки

Вы здесь:В этой статье мы рассмотрим очень важную и интересную тему – как проверить проводку в квартире либо доме своими руками. Необходимость проверки электрики возникает в нескольких случаях: при покупке нового жилья, во время ремонта перед финишной отделкой стен, при неполадках, а также иногда после затопления квартиры.

Если вы сомневаетесь в своих силах и совсем не имеете опыта в электромонтажных работах, рекомендуем вызывать мастера, который быстро, а главное – правильно сможет сделать ревизию электрической проводки.

Однако, если вы знаете, как пользоваться тестером и в то же время являетесь постоянным читателям нашего сайта для электриков, рекомендуем ознакомиться с методикой проверки, описанной ниже.

Первичный осмотр после покупки

Если вы только купили дом либо квартиру, первым делом нужно проверить состояние проводки, т. к. даже малейшие неисправности могут в последующем привести к поражению электрическим током или возникновению пожара.

В новом и старом доме технология ревизии будет отличаться, поэтому отдельно посмотрим оба способа. Сразу же обращаем ваше внимание на то, что перед проверкой электропроводки необходимо обязательно отключить электроэнергию в щитке.

Работать под напряжением, особенно неопытным электрикам, категорически запрещается!

Новостройка

Проверить электропроводку в новостройке после монтажа чаще всего приходится после покупки, перед капитальным ремонтом – отделкой стен и расстановкой мебели. Важность этого мероприятия заключается в том, что если вы с самого начала не осмотрите кабельную линию, в будущем делать проверку проводки под натяжным потолком либо за гипсокартонными листами будет гораздо сложнее.

Первым делом вы должны рассчитать суммарную мощность электроприборов, которыми будете пользоваться, на основании чего рассчитать сечение кабеля по мощности и сравнить это значение с сечением уже проложенного в стенах проводника. Если сечение недостаточное, обязательно замените электрику, однако как показывает опыт, в новостройках таких проблем не возникает.

Следующий шаг – проверка состояния скрытой электропроводки. Изоляция не должна иметь повреждений, а все соединения проводов обязательно должны быть выполнены с помощью клеммников либо других соединителей (к примеру, колпачков СИЗ), но никак не посредством скруток.

Совет

Скрутки делать запрещено, смотрите перечень разрешенных способов соединений в главе 2.1. ПУЭ п. 2.1.21. Также важно определить сечение кабеля и проверить номиналы розеток.

На розеточную группу должны идти медные проводники, сечением не менее 2,5 мм2, номинал автоматического выключателя розеточных групп не должен быть больше номинального тока розеток, обычно это 16А.

Если все перечисленные выше требования удовлетворены, последнее что останется сделать – проверить проводку в квартире на нагрузку. Другими словами вам необходимо самому выполнить проверку правильность сборки распределительного щитка.

При подключении всей техники и включении всех светильников в комнатах автоматы не должны срабатывать.

Если выбивает автоматический выключатель, значит электропроводка не способна выдержать нагрузку от подключенных электроприборов, в результате чего придется выполнять замену автоматов, разделение электропроводки на группы и т.д.

Если же автоматы в щитке не выключились после включения нагрузки, значит домашняя проводка правильная. Не помешает дополнительно проверить надежность подключения автоматов в щитке, а также сверку номиналов с нагрузкой, которая на них приходит.

Старое жилье

Сложнее проверить состояние электропроводки в старом доме либо квартире, особенно если вы только купили жилье и понятие не имеете о том, как выполнена разводка электрики по комнатам. Итак, ревизию электросети нужно выполнить по следующей методике:

  1. Найти все распределительные коробки по комнатам. Открыв крышку, вы сможете понять, каким кабелем выполнена скрытая разводка электрики: алюминиевым или медным, а также какое сечение проводов. Еще вы должны сразу проверить состояние изоляции – если проводка старая, даже малейший перегиб кабеля приведет к тому, что изолирующий слой начнет сыпаться либо трескаться. Такую электропроводку требуется безоговорочно менять. Правильной будет проверка сопротивления изоляции мегомметром (так сказать на пробой и утечку тока). Её сопротивление должно быть не меньше 0,5 МОм. Но такой прибор есть не у каждого, поэтому можете «для приличия» измерить сопротивление хотя бы мультиметром, хотя это сложно назвать нормальной проверкой. Если сопротивление изоляции плохое – будут происходить утечки, и может срабатывать УЗО, если вы будете модернизировать электрощит. Не менее важно сразу же осмотреть все соединения проводов – не должно быть повреждений и скруток, особенно алюминия с медью. При необходимости нужно сразу же вместо скруток соединить провода клеммными колодками. О том, как найти распределительную коробку в стене многоквартирного дома, мы подробно рассказывали в соответствующей статье.
  2. Проверить розетки и выключатели света. В розетках необходимо осмотреть целостность проводов, изоляции, а также определить номинал, на который они рассчитаны. Если к розеткам подведена трехжильная проводка, обязательно нужно определить, где фаза, где ноль и где заземление. Для этого понадобится мультиметр либо индикаторная отвертка, а саму технологию определения фазы и нуля мы предоставили в соответствующей статье. После того как вы определите, где заземляющий проводник, необходимо проверить заземление в розетке. Об этом мы тоже подробно рассказали. Еще очень важный момент – если розетка установлена в металлический подрозетник, лучше заменить его на более современный, пластиковый. Что касается выключателей света, их нужно самому разобрать и убедиться, что на разрыв идет фазный провод, а не нулевой. Если до этого горе-электрик подвел на разрыв ноль, придется переделать подключение, т.к. такой вариант небезопасный – даже при замене лампочки в люстре вас может ударить током.
  3. Осмотрите вводной щиток. В нем должны быть установлены современные автоматы, а не пробки, которые использовались в далеком прошлом. Обязательно проверьте, чтобы на электропроводку в ванной комнате было установлено УЗО, которое защитит от поражения электричеством при пробое изоляции и утечке тока. При этом учтите, что установка УЗО в двухпроводной проводке (система TN-C) запрещена согласно ПУЭ п. 1.7.80 (см. Главу 1.7). Также проверьте качество всех подключений и сечение вводного кабеля. Если сечение недостаточное, замените кабель на более подходящий. 
  4. Когда все самые важные узлы будут проанализированы, останется проверить старую проводку на нагрузку, как мы описывали выше. Как показывает опыт, в старых частных домах и квартирах без замены электрики не обойтись, но какое-то время можно и подождать (к примеру, до ремонта), просто не включать сразу много мощных электроприборов.

Следует еще рассказать о специальном приборе, с помощью которого можно проверить правильность электромонтажа — мегаомметре:

Видео: методика профессиональной диагностики электрической сети

Вот и вся технология проверки старой и новой домашней проводки.

Как вы видите, сделать ревизию не очень сложно, однако время на это уйдет достаточно! Обращаем ваше внимание на то, что в своем доме или квартире нужно проверять состояние электропроводки примерно раз в год.

Все, что от вас требуется — подтягивать винтики на зажимах проводов, а также визуально смотреть, нет ли подгоревшей изоляции.

Что еще важно знать

Иногда недостаточно просто проверить электрику и самому заменить все несоответствующие элементы проводки. Иногда, к примеру, после затопления квартиры, нужно выполнить проверку сети на наличие короткого замыкания. Для этого лучше всего использовать специальный тестер – мультиметр. О том, как найти короткое замыкание, мы достаточно подробно рассказали в соответствующей статье.

Также хотелось бы отдельно отметить, что во время ревизии электропроводки нужно обращать внимание на удобство расположения розеток и выключателей, потому что после ремонта переставлять их будет не совсем логично. Вроде бы простой момент, но многие его упускают.

Вот и все, что хотелось рассказать вам о том, как проверить проводку в квартире и доме своими руками. Надеемся, что предоставленная методика была для вас понятной и полезной. Не забываем ставить оценку статьи и делиться информацией с друзьями!

Будет полезно прочитать:

Видео: методика профессиональной диагностики электрической сети

  • Инструкция по сборке трехфазного электрощита
  • Как провести кабель через гофрированную трубу
  • Какой должна быть электропроводка в новой квартире?

  • Источник: https://samelectrik.ru/metodika-proverki-sostoyaniya-elektroprovodki.html

    Как проверить изоляцию проводов

    Вам понадобится

    • – мегаомметр;
    • – электрик с группой безопасности III или IV.

    Инструкция

    Для того чтобы проверить изоляцию проводов, найдите опытных специалистов-электриков с группой по электробезопасности не ниже III или IV. При проведении всех работ руководствуйтесь Правилами устройства электроустановок (ПУЭ) и Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

    Подберите подходящий прибор. Для измерения сопротивления изоляции кабеля сечением менее 16 кв. мм возьмите мегаомметр на 1000 В, для более толстого или бронированного кабеля – на 2500 В. Изоляцию любого провода можно измерить мегаомметром на 1000 В.

    Чтобы проверить изоляцию электропроводки с сопротивлением изоляции менее 1 МОм, испытайте их переменным током напряжением 1 кВ промышленной частоты.

    Для того чтобы результаты измерений носили официальный характер, приборы должны пройти ежегодную поверку в органах Госстандарта РФ.

    Обратите внимание

    Обратите внимание, измерения должны проводится при температуре изоляции выше +5⁰С и при низкой степени увлажненности.

    Чтобы узнать степень увлажненности, рассчитайте коэффициент абсорбции, разделив измеренное сопротивление изоляции через минуту после приложения напряжения прибора на сопротивление изоляции через 15 секунд. Этот коэффициент не должен отличаться от заводских данных более, чем на 20%.

    Подсоединяйте мегаомметр к проводу при помощи гибких проводов с ограничительными кольцами перед щупами контакта и рукоятками на концах для изоляции. Чем меньше будут соединительные провода, тем точнее будут измерения, сопротивление их изоляции не должно быть менее 10 МОм.

    Перед началом измерений проверьте испытываемый объект, на нем должно отсутствовать напряжение. Если есть необходимость, проведите заземление (после подключения прибора).

    В месте подсоединения прибора очистите изоляцию от грязи и пыли. Подсоедините провод к гнездам мегаомметра. Выберите выходное напряжение, которое будет соответствовать испытываемому проводу или кабелю.

    Если вы измеряете сопротивление изоляции при помощи прибора генераторного типа, вращайте рукоятку генератора со скоростью 120-140 оборотов в минуту. Для начала работы цифрового измерителя достаточно нажать кнопку.

    Снимите показания прибора и запишите. Если измерений несколько, после каждого снимайте емкостной заряд, заземляя те части объекта, на которые подавалось напряжение.

    Источники:

    • как проверить сопротивление изоляции в 2019

    Источник: https://www.kakprosto.ru/kak-115631-kak-proverit-izolyaciyu-provodov

    Измерение сопротивления изоляции электропроводки: мегаомметром 1000В

    По токоведущим жилам проводов и кабелей ток течет в нужном направлении. А изолирующее покрытие этих жил препятствует прохождению тока в места, где ему нельзя появляться. Это исключает случайное прикосновение людей к токоведущим частям, предотвращает короткие замыкания в распределительных сетях.

    Измерение сопротивления изоляции

    Но оболочки проводников – вещь непрочная. Уже в процессе прокладки кабеля их можно передавить или содрать об острые кромки предметов, попадающихся на трассе.

    При разделке концов кабеля можно случайно порезать ножом изоляцию токоведущих жил.

    При пайке поливинилхлорид плавится и теряет изоляционные свойства, а резина со временем высыхает и трескается, обнажая покрытые ею проводники.

    Причины ухудшения изоляции

    Способствует ухудшению изоляционных свойств кабелей и локальные нагревы контактных соединений. Тепло, распространяясь по металлической жиле, нагревает материал покрытия, снижая его изоляционные свойства. Это относится и к соединительным коробкам, и к местам подключения проводников к автоматическим выключателям, нулевым шинам, розеткам.

    Повреждение изоляции из-за перегрева

    Корпуса коммутационных аппаратов: выключателей, автоматов, рубильников – выполняются из изоляционных материалов. Снижение изоляции происходит, если на них оседает пыль, грязь, металлические опилки. Уменьшению изоляционных свойств содействует перегрев корпусов, обугливание их после коротких замыканий.

    Бич электрощитовых – влажность.

    Повреждения трубопроводов, образование конденсата, подтопление подвальных помещений с распределительными устройствами – все это приводит к появлению капелек воды между выводами электрооборудования, находящихся под разными электрическими потенциалами.

    Вода в чистом виде электрический ток не проводит. Но, попадая на грязь и пыль, покрывающую корпуса электроприборов, она растворяет находящиеся в ней вещества, становясь проводником электрического тока. Происходит короткое замыкание.

    Повреждение изоляции кабеля в процессе монтажа

    Наибольший риск встретить поврежденную изоляцию возникает после монтажных работ.

    Важно

    Второй пик проблем встречается уже в эксплуатации, через некоторое количество лет после монтажа.

    Отдельным видом выделяются повреждения, связанные с неправильной эксплуатацией электроприборов и электропроводки, затопления квартиры соседями и вбитые в трассу гвозди при попытке повесить картину на стену.

    Отличие мегаомметра от мультиметра

    Отключился автомат, квартира погрузилась во мрак. Причина – короткое замыкание. Нужно найти место повреждения, иначе света не будет. Если в результате перегрева замкнулись между собой две жилы в соединительной коробке или в кабеле, найти его можно и мультиметром в режиме измерения сопротивления. На неисправной паре жил он покажет ноль. Но это – простой случай.

    Обугленный участок изоляции имеет сопротивление, далекое от нуля. Через него протекает небольшой ток, подогревая оболочку, постепенно ухудшая изоляцию. В какой-то момент происходит пробой, ток резко возрастает, срабатывает защита.

    Поврежденный участок мгновенно остывает, его сопротивление увеличивается. Мультиметр покажет, что оно равно бесконечно большой величине.

    Чтобы нейти такое повреждение, нужен прибор, выдающий при измерениях в тестируемую цепь напряжение, соизмеримое или большее, чем напряжение в сети. Таким прибором является мегаомметр.

    Устройство мегаомметра

    Для измерений этот прибор выдает в проверяемую цепь постоянный ток. Переменный для этой цели не годится, поскольку все кабельные линии обладают емкостным сопротивлением. А конденсаторы переменный ток проводят. Это приведет к искажению результатов измерений.

    В зависимости от рабочего напряжения сети и тестируемой аппаратуры, выпускаются мегаомметры с напряжением 100, 500, 1000 и 2500 В.

    Стовольтовые используются для проверки изоляции низковольтных кабелей и полупроводниковой техники, на 500 В – обмоток электрических машин небольшой мощности. Приборы с напряжением 2500 В предназначены для измерений на высоковольтных аппаратах, кабельных и воздушных линиях.

    Совет

    Какой прибор выбрать для проведения измерений – указано в нормативно-технической документации по наладке или эксплуатации, ПУЭ, паспортах на электрооборудование.

    В устаревших конструкциях мегаомметров для выработки измерительного напряжения использовался генератор, ротор которого приводился во вращение рукояткой. Ее раскручивали до скорости 120 оборотов в минуту, иначе напряжение на выходе оказывалось ниже номинального.

    Измерительный механизм у таких устройств – аналоговый, со шкалой и стрелкой. Шкала делилась на две части – верхнюю и нижнюю, соответствующие двум диапазонам измерения сопротивлений. Отметки на шкале располагались неравномерно, что усложняло отсчет показаний.

    Да и снимать эти показания, одновременно вращая ручку мегаомметра, было не очень-то удобно – корпус прибора дергался, стрелка прыгала. К тому же у пользователя были заняты обе руки: одной он удерживал прибор на месте, другой – крутил ручку.

    Измерительные щупы на контактах удерживал его помощник, либо к ним припаивали зажимы типа «крокодил».

    Мегаомметр М4100

    Для каждого измерительного напряжения выпускался свой мегаомметр. Лишь модель типа ЭСО 202 содержала переключатель на 500, 1000 или 2500 В. Для выполнения измерений в электролабораториях содержали целый парк мегаомметров.

    Мегаомметр ЭСО 202/2

    Современные приборы стали полупроводниковыми.

    Выбор пределов измерений у них происходит автоматически, а испытательное напряжение выбирается перед измерениями в меню или с помощью переключателя.

    Габариты прибора позволяют его удерживать в руке совместно с одним из щупов, что позволяет проводить измерения единолично. Некоторые модели снабжаются кнопкой запуска на одном из щупов.

    Мегаомметр Fluke

    Но многие современные мегаомметры имеют один существенный недостаток, переводящий их в режим обычного пробника.

    По правилам, измеренным сопротивлением изоляции является величина, показанная прибором через 60 секунд после начала испытания.

    Большинство же моделей выдают испытательное напряжение на несколько секунд и не имеют режима длительной генерации напряжения. Не все дефекты можно выявить за столь короткое время.

    Правила проведения измерений мегаомметром

    Мегаомметр относится к приборам, измеряющим характеристики электрооборудования, связанные с определением возможности его безопасной эксплуатации. А на его выводах при измерениях присутствует опасное для жизни напряжение. Поэтому его применение возможно в случаях:

    1. Прибор должен проходить метрологическую поверку один раз в год.
    2. Пользоваться мегаомметром дозволяется обученному персоналу.
    3. Правом выдачи протокола с заключением о пригодности электропроводки к дальнейшей эксплуатации обладает только лицензированная электротехническая лаборатория. Измерения, проведенные другими лицами, юридической силы не имеют.

    Если в вашем распоряжении оказался мегаомметр, то измерять сопротивление изоляции вы можете только по личной инициативе. Закончили монтаж электропроводки соседу, измерили — убедились в отсутствии дефектов.

    Но если при подключении соседского домика к сети энергоснабжающая организация потребует протокол измерений – ваши труды не зачтутся.

    Соседу придется вызывать специалистов и платить им деньги за ту же самую работу.

    В детских садах, школах, учреждениях и на предприятиях сопротивление изоляции электропроводок измеряется регулярно. Результаты оформляются протоколами, которые требуют представители пожарной охраны и энергонадзора. К протоколам прикладываются регистрационные документы лаборатории, выполнившей измерения. Без них они – никому не нужная бумажка.

    Протокол измерения сопротивления изоляции

    Если в помещении организации произойдет пожар, первым делом от ее руководителей требуют протоколы измерений изоляции. Если их нет – виновные определяются автоматически.

    То же происходит и при поражении сотрудника электрическим током. Даже, если он сам засунул в розетку отвертку, держась за ее стержень.

    Если при расследовании несчастного случая не обнаружится протокол измерений изоляции – проблемы руководству обеспечены.

    Обратите внимание

    Тем не менее, мегаомметр – прибор, полезный для людей, занимающихся монтажом электропроводки. Лучше найти дефект сразу, до приезда специально обученных персон.

    Иначе они приедут еще раз, после устранения дефекта. Искать его самостоятельно персонал лаборатории не обязан. Вернувшись, они заставят владельца выложить дополнительную сумму за труды.

    Скорее всего, он вычтет ее из вашего гонорара.

    После замены электропроводки в квартире измерения изоляции официально не требуются. Поэтому их не помешает выполнить для самоуспокоения, а в глазах клиента ваш рейтинг в итоге только возрастет.

    Правила измерения изоляции мегаомметром

    Перед каждым использованием у любого мегаомметра проверяют целостность изоляции измерительных проводов. Это важно, так как повреждения приводят к электротравмам.

    На мегаомметре устанавливают необходимое испытательное напряжение , затем проверяют исправность измерительной цепи и прибора. Для этого щупы соединяют накоротко, производят измерение.

    Прибор покажет ноль. Щупы рассоединяют и снова проводят измерение. Прибор покажет бесконечность.

    Эти манипуляции производят регулярно, чтобы своевременно обнаружить сбитые настройки, оборвавшийся провод, ослабевший контакт или неисправность мегаомметра.

    Правила измерений сопротивления изоляции требуют, чтобы для кабельной линии была измерена изоляция между жилами во всех возможных комбинациях.

    Для трехжильного кабеля – три измерения, для четырехжильного – шесть, пятижильного – десять. В реальности реализовать эту проверку можно, имея в наличии кабель с отключенными жилами.

    Отключать их для проверки после монтажа – операция сложная.

    Измерение сопротивления изоляции кабельной линии

    Поскольку в системах с глухозаземленной нейтралью нулевой рабочий и защитный проводники соединены между собой, то и прибор между ними покажет ноль.

    Но, даже если отключить от объекта питающий кабель, все нулевые рабочие и защитные проводники, объединенные на шинах, покажут одно и то же сопротивление между собой. Если оно укладывается в норму, то все хорошо.

    Важно

    А если нет – придется их отсоединять от шин по очереди, следя за изменениями изоляции.

    Упрощенный способ измерения для розеточных групп – измерить сопротивление фазного проводника от автоматического выключателя питания относительно нулевой и РЕ шины.

    Для осветительной сети все сложнее. Под фазным потенциалом при работе светильников оказывается участок от автомата питания до осветительного прибора, проходящий через выключатель.

    Если не вывернуть лампу из светильника, прибор покажет его сопротивление. Поэтому при измерениях сопротивления изоляции осветительных сетей лампы выворачивают, а выключатели переводят во включенное положение.

    Так тестируется участок, реально находящийся под напряжением в эксплуатации.

    И не забываем про полупроводниковые ПРА. У них на входе выпрямитель. Чтобы его не повредить, провода от светильника отключают. Хотя современные мегаомметры, почуяв неладное, резко снижают испытательное напряжение до минимальной величины. Полупроводниковые элементы редко выходят из строя, но испытывать судьбу лишний раз не стоит.

    Результаты измерений для бытовой электропроводки должны уложиться в предел 0,5 МОм. Все, что ниже этой планки, подлежит устранению. На самом деле, новые кабельные линии имеют сопротивление изоляции сотни и тысячи мегаом. Значения ниже сотни характерны для старой электропроводки, да еще и порядком изношенной.

    Источник: http://electric-tolk.ru/izmerenie-soprotivleniya-izolyacii-elektroprovodki/

    Как правильно проверять проводку

    Проверка электропроводки осуществляется с целью выявления ее неисправностей, принятия решения о дальнейшей эксплуатации при проведении ремонтных работ в здании, а также для получения информации о состоянии проводки после нештатных ситуаций.

    К таким ситуациям можно отнести подтопление помещения или срабатывание защитных устройств при отсутствии проблем у потребителей.

    В квартирах и частных домах необходимо проверять проводку сразу после приобретения помещения, если до этого оно эксплуатировалось другими лицами.

    Сроки замены

    После выработки электропроводкой сроков эксплуатации, необходима полная ее замена без проверки и обследований. Сроки проверки, замены или интервала между капитальными ремонтами устанавливаются ВСН 58-88(р) (ведомственными строительными нормами) и составляют:

    • для внутриквартирных сетей скрытой прокладки 40 лет;
    • то же, но для открытой 25 лет;
    • для магистральной проводки между квартирами и вводно-распределительными устройствами 20 лет;
    • для производственно-технических помещений и освещения мест коллективного пользования 10 лет.

    Проверку электропроводки в квартире или частном доме, несмотря на кажущуюся сложность, при наличии необходимых знаний и минимального набора инструментов можно выполнить самостоятельно, без приглашения квалифицированного электрика.

    Виды неисправностей

    Неисправная электропроводка может являться причиной пожаров и поражений электрическим током. Основные неисправности электропроводки могут быть двух видов:

    • обрыв провода, и, как следствие, отсутствие электрического тока на каких-либо участках цепи;
    • короткое замыкание фазного провода с нулевым или заземляющим проводом, что приводит к отключению цепи защитными устройствами.

    Проверка и поиск неисправностей скрытой проводки значительно облегчается, если существует подробная схема проводки в помещении. Эта схема является обязательной при составлении технического паспорта помещения.

    Если схема отсутствует, необходимо определить расположение трасс проводки в стенах. При соблюдении требований ПУЭ, провода и кабели должны проходить по прямой линии, соединяющей распределительные коробки с розетками и выключателями. При этом трассы должны быть строго вертикальными или горизонтальными.

    Как определить неполадки

    Проверить, есть ли обрыв цепи, можно тестером или мультиметром в режиме прозвона.

    Чтобы ускорить поиск, необходимо четко представлять, что ток течет от вводного устройства через распределительные коробки к розеткам и осветительным приборам.

    Например, если в розетке отсутствует напряжение, а в остальных розетках, подключенных к этой же коробке, оно имеется, проблема на участке между коробкой и неисправной розеткой.

    Если напряжение отсутствует во всех розетках, подключенных к коробке, обрыв следует искать на участке от этой коробки до предыдущей распределительной коробки.

    Совет

    При отсутствии напряжения на светильнике, необходима проверка участка проводки до выключателя, для чего проверяется наличие напряжение между фазой и нулем.

    Для соединения с нулем можно использовать вспомогательный отрезок провода, так как, в выключателе нуль, скорее всего, отсутствует.

    Если напряжение на выключателе присутствует, производится проверка наличия напряжения на контактах светильника при включенном выключателе.

    Проверить, есть ли замыкание, можно тестером или мультиметром, измеряя сопротивление между фазным проводом и нулевым или между фазным и заземляющим проводами, отдельно по участкам цепи.

    Для этого необходимо физически отключить все приборы, то есть извлечь питающие шнуры из розеток, выкрутить лампы из осветительных приборов. И, конечно, обязательно обесточить всю сеть. Это самая простая методика проверки.

    Можно применить для поиска неисправностей детектор скрытой проводки, но точность определения места неисправности в этом случае невысока.

    Возможны такие неисправности, как выход из строя электроустановочных изделий – розеток, выключателей. Эти изделия находятся, как правило, на виду и поиск проблемных мест не очень затруднен. Проверка таких изделий заключается в осмотре контактов, корпусов. Неисправность выявляется по наличию обгоревших контактов, оплавленных корпусов.

    Обследование проводов

    В процессе капитального ремонта помещения, электропроводка, как правило, заменяется целиком.

    При производстве косметического ремонта проводится обследование проводки с целью принятия решения о том, можно ли ее использовать в дальнейшем, и в течение какого срока возможна ее беспроблемная эксплуатация. При малейших признаках, свидетельствующих о том, что электропроводка не отвечает требованиям нормативов, ее лучше заменить до начала отделочных работ.

    Обследование заключается в осмотре и проверке проводов, розеток, выключателей, измерении сопротивления изоляции электропроводки.

    Обратите внимание

    Решение о замене проводки в помещениях принимается в случае выявления проводов и кабелей с алюминиевыми жилами. Такие кабели в настоящее время используются только для устройства наружной проводки.

    Замена проводки необходима также в случае, когда сечение проводов не соответствует возросшей суммарной нагрузке электроприборов.

    Участки цепей необходимо заменить, если по результатам осмотра выявлены повреждения кабеля механическим путем или из-за перегрева в результате перегрузки.

    Замена провода или кабеля должна производиться по всей длине участка между распределительными коробками и электроустановочными приборами.

    Замена участков цепи необходима, если при проверке обнаружены соединения проводов вне распределительных коробок.

    Проверка изоляции

    Изоляция осматривается на предмет ее целостности. При изгибах провода она не должна ломаться, трескаться, крошиться. Если по результатам осмотра не выявлены предпосылки к замене кабелей, необходимо измерить сопротивление изоляции. Для этого применяется мегомметр.

    В сетях исправной электропроводки, сопротивление изоляции, согласно требованиям ПУЭ (правил устройства электроустановок) должно быть не менее 0,5 МОм при проведении испытаний напряжением 1000 В. Это требование распространяется и на сети освещения.

    Мегомметр это достаточно дорогой прибор, и если нет возможности взять его в аренду, в этом случае, для проверки можно обратиться к профессиональному электрику.

    Важно

    Кроме вышеописанных случаев, электропроводка обследуется по истечении установленных сроков проверки. Например, сопротивление изоляции должно проверяться с периодичностью не реже одного раза в три года.

    Это – требования ПТЭЭП (правил технической эксплуатации электроустановок потребителей). В особо опасных помещениях и наружных установках проверка проводится не реже одного раза в год.

    Работа УЗО (устройств защитного отключения) проверяется ежеквартально.

    Своевременная проверка электропроводки и оперативные действия по устранению выявленных неисправностей, обеспечат безопасную эксплуатацию электроприборов и всего здания в течение всего срока службы.

    Источник: https://EvoSnab.ru/ustanovka/zamena-i-remont/proverka-provodki

    Как проверить изоляцию кабеля мегаомметром

    Сопротивление изоляционного слоя кабеля один из самых главных параметров его работоспособности.

    Если вы купили кабель, и он у вас хранился некоторое время на складе, не думайте что изоляция его будет такой же, как и при покупке.

    Изоляция может ухудшаться как при неудовлетворительных условиях хранения, так и в процессе работы и монтажа. Для того, чтобы выявить все возможные проблемы и осуществляется проверка изоляции кабеля мегаомметром.

    Причины плохой изоляции кабеля

    Есть несколько факторов влияющих на изоляционные свойства кабелей:

    • атмосферные условияЗимой изоляция может внезапно улучшиться, т.к. имеющаяся внутри влага попросту превратится в лед.
    • процесс укладки кабеляНеосторожные движения при монтаже могут вызвать излом или повредить оболочку.
    • физический износ с течением времени
    • воздействие агрессивной среды
    • завышенное напряжение при эксплуатации

    Для того чтобы вовремя выявить проблему с изоляцией, потребуется специальный прибор – мегаомметр. Данные приборы бывают старого образца (механические, где нужно вращать ручку):

    и нового образца – электронные:

    Рассмотрим работу этих устройств.

    Правила безопасности

    Мегаомметр способен выдать высокое напряжение (отдельные виды до 5000 Вольт), поэтому при работе с ним строго соблюдайте следующие правила:

    • работать с прибором имеет право персонал с 3-й группой по электробезопасности
    • при испытании удалите всех посторонних от испытуемого кабеля
    • перед работой прибора внимательно осмотрите его корпус, провода и измерительные щупы. Они не должны иметь сколы, повреждения;
    • проводить замеры изоляции кабеля рекомендуется при положительных температурах
    • не прикасайтесь к проводам прибора при измерениях

    Подготовительные работы

    Испытуемый кабель перед проверкой необходимо подготовить.

    Для этого:

    • проверяете отсутствие напряжения на жилах кабеля
    • на длинных кабелях может быть наведенное или остаточное напряжениеПоэтому перед каждым замером, с помощью отдельного кусочка провода или переносного заземления, в диэлектрических перчатках необходимо коснуться жилы и заземленного корпуса или контура заземления, чтобы снять этот заряд;
    • отсоединяете кабель от подключенного оборудования. Это необходимо сделать, чтобы при проверке изоляции кабеля мегаомметром, в испытании участвовал только сам кабель, без того оборудования или автоматов к которым он подключен. Отключение необходимо выполнить с двух сторон кабеля. Иногда для ускорения работы этого не делают. Сначала проводят замер, и если он показал отрицательный результат, то только после этого откидывают жилы.

    Проверка мегаомметра

    Перед проверкой изоляции кабеля мегаомметром, необходимо испытать на работоспособность сам аппарат.
    Вот как это делается на мегаомметре М4100. Прибор имеет 2 шкалы: верхнюю для измерения в мегаомах и нижнюю для замеров в килоомах.

    Для работы в мегаомах:

    • подключаете концы провода щупов к двум левым клеммам. Щупы должны быть разомкнуты;
    • вращаете ручку и смотрите показания стрелки. При исправности прибора она будет стремиться в левую сторону — к бесконечности;
    • замыкаете щупы между собой. При вращении ручки стрелка должна отклониться вправо до нуля.

    Для работы в килоомах:

    • на 2 левые клеммы ставите между собой перемычку и один из концов подключаете туда. Второй конец подключается на правую крайнюю клемму. Щупы разомкнуты;
    • Вращаете ручку и смотрите показания. При исправности прибора стрелка отклоняется максимально вправо;
    • После замыкания щупов и вращении ручки, стрелка будет стремиться к нулю по нижней шкале (т.е. в левую сторону).

    Работа с мегаомметром М4100

    1. первым делом проверяете отсутствие напряжения на кабеле
    2. заземляете все жилы
    3. прибор размещаете на ровную поверхность
    4. при замере изоляции жилы на “землю” один из щупов присоединяется к проводу, другой к броне или заземляющему устройству.

      После чего снимаете заземление только с измеряемой жилы;

    5. равномерно вращаете ручку в течение 60 секунд. Скорость вращения – два оборота в секунду. На 60 секунде отмечайте показания прибора;
    6. после каждого замера снимайте остаточный заряд с жилы и с проводов мегаомметра, путем их прикосновения к заземлению.

    В промышленных эл.

    сетях кабели испытываются мегаомметрами на 2500 Вольт. Сопротивление изоляции при этом должно быть не меньше 10 мОм.

    Работа с электронным мегаомметром

    Как часто проводится проверка изоляции кабеля мегаометром?

    1. Первый замер делается на заводе изготовителе
    2. Перед монтажом на объекте
    3. После монтажа перед подачей напряжения
    4. В течение эксплуатации при выявлении дефектов или при техобслуживании один раз в три года.

    Советы по работе с мегаомметром:

    • некоторые путаются со шкалами прибора М4100. Где расположена шкала измерения в мегаомах, а где в килоомах? Чтобы не запамятовать воспользуйтесь подсказкой: мегаом (мОм) как единица измерения выше, чем килоом (кОм), соответственно и ее шкала находится выше!
    • перед измерением очищайте концы жил кабеля от грязи. Грязная изоляция может дать плохие результаты, хотя сам кабель будет исправным;
    • измерительные провода самого мегаомметра должны иметь изоляцию минимум 10мОм. Не используйте непонятные обрезки или куски старых проводов. Вы только ухудшите показания измерений и не узнаете точных результатов;
    • когда проверяете кабель, в цепи которого присутствует счетчик, обязательно отсоединяйте все фазные жилы и нулевую жилу от корпуса или шинки. Иначе из-за прибора учета, у вас будут показания мегаомметра, как будто жилы кабеля дают короткое замыкание между собой;
    • если вы последовательно проводите измерения отдельных участков проводки, всегда отключайте нулевые жилы от общей шины. В противном случае получите одинаковые замеры на всех кабелях. И эти результаты будут равны худшему сопротивлению одного из подключенных кабелей;
    • если кабель протяженный (более 1 км), с большой емкостью, то снимать остаточный заряд необходимо с помощью специальной штанги. А то можно создать большой ”бум” прямо перед глазами;
    • при измерениях в сетях освещения выкручивайте лампочки накаливания со светильников, сами выключатели оставляйте включенными. Для газоразрядных ламп замеры можно проводить не вытаскивая лампочек из корпусов, но с обязательным выкручиванием стартера.

    Источник: https://domikelectrica.ru/kak-proverit-izolyaciyu-kabelya-megaommetrom/

    Как проводить измерения мегаомметром

    Для оценки работоспособности кабеля, проводки необходимо измерить сопротивление изоляции. Для этого существует специальный прибор — мегаомметр. Он подает в измеряемую цепь высокое напряжение, измеряет протекающий по ней ток, и выдает результаты на экран или шкалу. Как пользоваться мегаомметром и рассмотрим в этой статье. 

    Устройство и принцип действия

    Мегаомметр — устройство для проверки сопротивления изоляции. Есть два типа приборов — электронные и стрелочные. Независимо от типа, любой мегаомметр состоит из:

    В стрелочных приборах напряжение вырабатывается встроенной в корпус динамомашиной. Она приводится в действие измерителем — он крутит ручку прибора с определенной частотой (2 оборота в секунду). Электронные модели берут питание от сети, но могут работать и от батареек.

    Работа мегаомметра основана на законе Ома: I=U/R. Прибор измеряет ток, который протекает между двумя подключенными объектами (две жилы кабеля, жила-земля и т.д.). Измерения производятся калиброванным напряжением, значение которого известно, зная ток и напряжение, можно найти сопротивление: R=U/I, что и делает прибор.

    Примерная схема магаомметра

    Перед проверкой щупы устанавливаются в соответствующие гнезда на приборе, после чего подключаются к объекту измерения. При тестировании в приборе генерируется высокое напряжение, которое при помощи щупов передается на проверяемый объект. Результаты измерений отображаются в мега омах (МОм) на шкале или экране.

    Работа с мегаомметром

    При испытаниях мегаомметр вырабатывает очень высокое напряжение — 500 В, 1000 В, 2500 В. В связи с этим проводить измерения необходимо очень осторожно. На предприятиях к работе в прибором допускаются лица, имеющие группу электробезопасности не ниже 3-й.

    Перед тем как провести измерения мегаомметром, в тестируемые цепи отключают от электропитания. Если вы собираетесь проверить состояние проводки в доме или квартире, надо отключить рубильники на щитке или выкрутить пробки. После выключают все полупроводниковые приборы.

    Один из вариантов современных мегаомметров

    Если проверять будете розеточные группы, вынимаете вилки всех приборов, которые включены в них. Если проверяются осветительные цепи, выкручиваются лампочки. Они тестового напряжения не выдержат. При проверке изоляции двигателей они также полностью отключаются от питания. После этого к тестируемым цепям подключается заземление.

    Для этого к «земляной» шине крепится многожильный провод в оболочке сечением не менее 1,5 мм2. Это так называемое переносное заземление. Для более безопасной работы свободный конец с оголенным проводником крепят к сухому деревянному держаку.

    Но оголенный конец провода должен быть доступен — чтобы можно было им прикасаться к проводам и кабелям.

    Требования по обеспечению безопасных условий работы

    Даже если вы хотите в домашних условиях измерить сопротивление изоляции кабеля, перед тем как пользоваться мегаомметром стоит ознакомиться с требованиями по технике безопасности. Основных правил несколько:

    1. Держать щупы только за изолированную и ограниченную упорами часть.
    2. Перед подключением прибора отключить напряжение, убедиться в том, что поблизости нет людей (на протяжении всей измеряемой трассы, если речь идет о кабелях).

      Как пользоваться мегаомметром: правила электробезопасности

    3.  Перед подключением щупов снять остаточное напряжение при помощи подсоединения переносного заземления. И отключать его после того как щупы установлены.
    4. После каждого измерения снимать со щупов остаточное напряжение соединив их оголенные части вместе.
    5. После измерения к измеренной жиле подключать переносное заземление, снимая остаточный заряд.
    6. Работать в перчатках.

    Правила не очень сложные, но от их выполнения зависит ваша безопасность.

    Как подключать щупы

    На приборе обычно есть три гнезда для подключения щупов. Они располагаются в верхней части приборов и подписаны:

    • Э — экран;
    • Л- линия;
    • З — земля;

    Также имеется три щупа, один из которых имеет с одной стороны два наконечника. Он используется когда необходимо исключить токи утечки и цепляется к экрану кабеля (если такой есть).

    На двойном отводе этого щупа есть буква «Э». Тот штекер, который идет от этого отвода и устанавливается в соответствующее гнездо. Второй его штекер устанавливается в гнездо «Л» — линия.

     В гнездо «земля» всегда подключается одинарный щуп.

    Щупы для мегаомметра

    Совет

    На щупах есть упоры. При проведении измерений руками браться за них так, чтобы пальцы были до этих упоров. Это обязательное условие безопасной работы (про высокое напряжение помним).

    Если проверить надо только сопротивление изоляции без экрана, ставится два одинарных щупа — один в клемму «З», другой в клемму «Л». При помощи зажимов-крокодилов на концах подключаем щупы:

    Других комбинаций нет. Проверяется чаще изоляция и ее пробой, работа с экраном встречается довольно редко, так как сами экранированные кабели в квартирах и частных домах используются редко. Собственно, пользоваться мегаомметром не особо сложно.

    Важно только не забывать о наличии высокого напряжения и необходимости снимать остаточный заряд после каждого измерения. Это делают прикасаясь проводом заземления к только что измеренному проводу.

    Для безопасности этот провод можно закрепить на сухом деревянном держаке.

    Процесс измерения

    Выставляем напряжение, которое будет выдавать мегаомметр. Оно выбирается не произвольно, а из таблицы. Есть мегаомметры, которые работают только с одним напряжением, есть работающие с несколькими.

    Вторые, понятное дело, удобнее, так как их можно использовать для тестирования различных устройств и цепей.  Переключение тестового напряжения производится ручкой или кнопкой на лицевой панели прибора.

    Содержание:

    Перед вводом объекта в эксплуатацию в обязательном порядке проводятся приемо-сдаточные работы, в ходе которых осуществляются все необходимые проверки.

    Одной из таких проверок является замер сопротивления изоляции электропроводки.

    Данное мероприятие должно проводиться через определенные промежутки времени, в соответствии с установленными нормами и правилами, а также после того как был выполнен ремонт электросетей системы освещения. В этих случаях замеряется сопротивление изоляции между фазными и нулевыми проводниками.

    Обратите внимание

    Отдельно выполняется проверка между фазой, нулем и заземляющим проводом. Проведение подобных замеров позволяет установить, в каком состоянии находится изоляция.

    Пониженное сопротивление может привести к пожару и электротравмам обслуживающего персонала. Именно поэтому и требуется периодический контроль, чтобы своевременно предупредить возникновение аварийных ситуаций.

    Необходимость проведения замеров

    Проведение регулярных замеров сопротивления изоляции электропроводки, позволяет установить степень износа защитного покрытия проводов, предотвратить потери тока в электрической сети.

    Кроме того, обеспечиваются безопасные условия труда для специалистов-электриков, устойчивая и надежная работа оборудования.

    С течением времени в процессе эксплуатации качество изоляции проводов постепенно снижается и в конце концов она становится непригодной для дальнейшего использования. Основная причина заключается в том, что в изоляционных оболочках кабелей и проводов используются различные типы диэлектриков, отличающихся составом, характеристиками и возможностью работы в том или ином режиме эксплуатации.

    Если кабельно-проводниковая продукция используется неправильно, подвергается незапланированным нагрузкам, в таких случаях наступает интенсивное снижение изоляционных свойств. В результате, нормативные сроки службы также сокращаются. Даже при правильном выборе эксплуатационного режима изоляция все равно постепенно изнашивается в течение определенного периода времени.

    Факторы, влияющие на состояние изоляции:

    • Рабочие режимы, определяемые токовой нагрузкой на сеть и проводники.
    • Значение напряжений приемников электроэнергии.
    • Всевозможные механические повреждения.
    • Работа симметричной системы напряжения.
    • Негативное воздействие окружающей среды – перепады температур, влажность и другие.

    Снижение сопротивления изоляции до отметки 0,5 Мом и менее, вызывает утечку тока в электрической сети. В свою очередь, это приводит к нагреву проводников, последующему замыканию и возгоранию. Для того чтобы предотвратить возможные негативные последствия, необходимо регулярное проведение замеров сопротивления изоляции кабелей и проводов.

    Во время проведения замеров помимо сопротивления учитывается степень внутренних и внешних повреждений, а также загрязнение и увлажненность, снижающие рабочие свойства изоляции. Поэтому измерения должны выполняться только специализированной организацией, имеющей квалифицированный персонал.

    Чем измеряется сопротивление изоляции

    Измерение сопротивления изоляционного слоя осуществляется с помощью мегаомметра. Принцип работы этого устройства заключается в замерах токов утечки, которые могут иметь место между какими-либо двумя точками, расположенными в электрической цепи.

    Показания замеров напрямую связаны с состоянием изоляционного слоя: если токи утечки повышаются, то сопротивление изоляции, соответственно, понижается.

    Отсюда следует, что такие электроустановки требуют принятия дополнительных мер по устранению обнаруженных недостатков.

    В современных условиях для проведения замеров используются два типа мегаомметров. Существуют магаомметры со встроенным генератором, а также устройства, работающие от аккумулятора. По номинальному напряжению мегаомметры разделяются на приборы в 100, 500, 1000 и 2500 вольт.

    Приборами с минимальным номиналом проводятся измерения электроустановок, напряжением до 50В. То или иное устройство применяется в зависимости номинальной нагрузки электрической цепи.

    К самостоятельной работе с мегаомметром допускаются специалисты, имеющие третью группу допуска по электробезопасности и выше.

    Как проводятся измерения

    Перед началом измерительных работ мегаомметр обязательно проверяется на работоспособность. С этой целью выводы устройства нужно коротко замкнуть между собой. Далее путем вращения ручки генератора устанавливается наличие электрической цепи в соответствии с показаниями прибора.

    Затем выводы разделяются друг с другом и изолируются, после чего с прибора нужно снять данные о максимально возможных показаниях. Основная суть данного метода заключается в измерениях соотношения между приложенным постоянным напряжением изоляции и током, протекающим сквозь нее.

    В начале измерений проводится визуальный осмотр целостности электропроводки и распределителей, в которых соединяются провода. Далее исследуются места непосредственного подключения проводов к оборудованию.

    Важно

    Проведение замеров начинается только после обесточивания всей линии и отключения потребителей. В устройствах с напряжением не более 400 вольт, сопротивление изоляции должно быть не менее 0,5 мОм. Все данные измерений фиксируются в протоколе.

    Для замеров должны использоваться только проверенные, лицензированные приборы.

    В однофазной сети замеры выполняются между проводниками фазы и нуля, а затем между ними же и защитным проводом. Количество измерений должно соответствовать количеству проводов, имеющихся в данной цепи. Минимально допустимое значение сопротивления составляет не менее 0,5 мОм.

    Если измерения указывают на более низкие параметры, в этом случае вся электрическая цепь разбивается на отдельные участки. После этого проводятся замеры изоляции на каждом из них, начиная от распределительного щита.

    Обнаруженный провод с неисправной изоляцией подлежит обязательной замене.

    Перед началом замеров нужно обязательно проверить температуру окружающей среды. При наличии отрицательных температур наступает превращение в лед водяных частичек, содержащихся в электропроводке. В результате, свойства проводника изменяются и показания прибора становятся неточными.

    По итогам измерений составляется протокол, в котором фиксируются полученные результаты. В трехфазных сетях выполняется не менее 10 замеров, в однофазных вполне достаточно и трех. В самом конце протокола указывается соответствие проведенных измерений требованиям ПУЭ.

    Периодичность замеров сопротивления изоляции электропроводки

    В электроустановках, установленных снаружи и во взрывоопасных помещениях измерения должны проводиться 1 раз в год, а во всех остальных случаях – 1 раз в течение 3 лет. Сопротивление изоляции кабелей, установленных в кранах и лифтах, измеряется ежегодно. Такой же срок установлен и для электрических плит.

    Измерения сопротивления в трехфазных сетях проводятся в той же последовательности, что и в однофазных. Единственным отличием является количество фаз, участвующих в замерах.

    Наименование элементаНапряжение мегаомметраМинимально допустимое сопротивление изоляцииПримечания
    Электроизделия и аппараты с напряжением до 50 В 100 В Должно соответствовать паспортным, но не менее 0,5 МОм Во время измерений полупроводниковые приборы должны быть зашунтированы
    тоже, но напряжением от 50 В до 100 В 250 В
    тоже, но напряжением от 100 В до 380 В 500-1000 В
    свыше 380 В, но не больше 1000 В 1000-2500 В
    Распределительные устройства, щиты, токопроводы 1000-2500 В Не менее 1 МОм Измерять каждую секцию распределительного устройства
    Электропроводка, в том числе осветительная сеть 1000 В Не менее 0,5 МОм В опасных помещениях измерения проводятся раз в год, в друих – раз в 3 года
    Стационарные электроплиты 1000 В Не менее 1 МОм Измерение проводят на нагретой отключенной плите не реже 1 раза в год

    Перед тем как пользоваться мегаомметром, убеждаемся в отсутствии напряжения на линии — тестером или индикаторной отверткой. Затем, подготовив прибор (выставить напряжение и на стрелочных выставить шкалу измерения) и подключив щупы, снимаем заземление с проверяемого кабеля (если помните, оно подключается перед началом работ).

    Следующий этап — включаем в работу мегаомметр: на электронных нажимаем на кнопку Test, в стрелочных крутим ручку динамо-машины.

    В стрелочных крутим до тех пор, пока не зажжется на корпусе лампа — это значит необходимое напряжение в цепи создано. В цифровых в какой-то момент значение не экране стабилизируется. Цифры на экране — сопротивление изоляции.

    Если оно не меньше нормы (средние указаны в таблице, а точные есть в паспорте к изделию), значит все в норме.

    Как проводить измерения мегаомметром

    После того, как измерение окончено, перестаем крутить ручку мегаомметра или нажимаем на кнопку окончания измерения на электронной модели. После этого можно отсоединять щуп, снимать остаточное напряжение.

    Вкратце — это все правила пользования мегаомметром. Некоторые варианты измерений рассмотрим подробнее.

    Измерение сопротивления изоляции кабеля

    Часто требуется измерить сопротивление изоляции кабеля или провода. Если вы умеете пользоваться мегаомметром, при проверке одножильного кабеля это займет не более минуты, с многожильными придется возиться дольше. Точное время зависит от количества жил — придется проверять каждую.

    Тестовое напряжение выбираете в зависимости от того, в сети с каким напряжением будет работать провод. Если вы планируете его использовать для проводки на 250 или 380 В, можно выставить 1000 В (смотрите таблицу).

    Проверка трехжильного кабеля — можно не скручивать, а перемерять все пары

    Для проверки сопротивления изоляции одножильного кабеля, один щуп цепляем на жилу, второй — на броню, подаем напряжение. Если брони нет, второй щуп крепим к «земляной» клемме и тоже подаем тестовое напряжение. Смотрим на показания. Если стрелка показывает больше 0,5 МОм, все в норме, провод можно использовать. Если меньше — изоляция пробита и его применять нельзя.

    Обратите внимание

    Можно проверить многожильный кабель. Тестирование проводится для каждой жилы отдельно. При этом все остальные проводники скручиваются в один жгут. Если при этом надо проверить еще и пробой на «землю», в общий жгут добавляется еще и провод, подключенный к соответствующей шине.

    Если у кабеля имеется экран, металлическая оболочка или броня, они тоже добавляется в жгут. При образовании жгута важно обеспечит хороший контакт.

    Примерно так же происходит измерение сопротивления изоляции розеточных групп. Из розеток выключают все приборы, отключают питание на щитке. Один щуп устанавливают на клемму заземления, второй — в одну из фаз. Тестовое напряжение — 1000 В (по таблице). Включаем, проверяем. Если измеренное сопротивление больше 0,5 МОм, проводка в норме. Повторяем со второй жилой.

    Если электропроводка старого образца — есть только фаза и ноль, тестирование проводят между двумя проводниками. Параметры аналогичны.

    Проверить сопротивление изоляции электродвигателя

    Для проведения измерений двигатель отключается от питания. Необходимо добраться до выводов обмотки. Асинхронные двигатели, работающие на напряжении до 1000 В тестируются напряжением 500 В.

    Для проверки их изоляции один щуп подключаем к корпусу двигателя, второй поочередно прикладываем к каждому из выводов. Также можно проверить целостность соединения обмоток между собой. Для этой проверки надо щупы устанавливать на пары обмоток.

    Источник: https://stroychik.ru/elektrika/kak-polzovatsya-megaommetrom

    Как измерить сопротивление изоляции кабеля - советы электрика

    Измерение сопротивления изоляции электропроводки: мегаомметром 1000В

    По токоведущим жилам проводов и кабелей ток течет в нужном направлении. А изолирующее покрытие этих жил препятствует прохождению тока в места, где ему нельзя появляться. Это исключает случайное прикосновение людей к токоведущим частям, предотвращает короткие замыкания в распределительных сетях.

    Измерение сопротивления изоляции

    Но оболочки проводников – вещь непрочная. Уже в процессе прокладки кабеля их можно передавить или содрать об острые кромки предметов, попадающихся на трассе.

    При разделке концов кабеля можно случайно порезать ножом изоляцию токоведущих жил.

    При пайке поливинилхлорид плавится и теряет изоляционные свойства, а резина со временем высыхает и трескается, обнажая покрытые ею проводники.

    Причины ухудшения изоляции

    Способствует ухудшению изоляционных свойств кабелей и локальные нагревы контактных соединений. Тепло, распространяясь по металлической жиле, нагревает материал покрытия, снижая его изоляционные свойства. Это относится и к соединительным коробкам, и к местам подключения проводников к автоматическим выключателям, нулевым шинам, розеткам.

    Повреждение изоляции из-за перегрева

    Корпуса коммутационных аппаратов: выключателей, автоматов, рубильников – выполняются из изоляционных материалов. Снижение изоляции происходит, если на них оседает пыль, грязь, металлические опилки. Уменьшению изоляционных свойств содействует перегрев корпусов, обугливание их после коротких замыканий.

    Бич электрощитовых – влажность.

    Повреждения трубопроводов, образование конденсата, подтопление подвальных помещений с распределительными устройствами – все это приводит к появлению капелек воды между выводами электрооборудования, находящихся под разными электрическими потенциалами.

    Вода в чистом виде электрический ток не проводит. Но, попадая на грязь и пыль, покрывающую корпуса электроприборов, она растворяет находящиеся в ней вещества, становясь проводником электрического тока. Происходит короткое замыкание.

    Повреждение изоляции кабеля в процессе монтажа

    Наибольший риск встретить поврежденную изоляцию возникает после монтажных работ.

    Обратите внимание

    Второй пик проблем встречается уже в эксплуатации, через некоторое количество лет после монтажа.

    Отдельным видом выделяются повреждения, связанные с неправильной эксплуатацией электроприборов и электропроводки, затопления квартиры соседями и вбитые в трассу гвозди при попытке повесить картину на стену.

    Отличие мегаомметра от мультиметра

    Отключился автомат, квартира погрузилась во мрак. Причина – короткое замыкание. Нужно найти место повреждения, иначе света не будет. Если в результате перегрева замкнулись между собой две жилы в соединительной коробке или в кабеле, найти его можно и мультиметром в режиме измерения сопротивления. На неисправной паре жил он покажет ноль. Но это – простой случай.

    Обугленный участок изоляции имеет сопротивление, далекое от нуля. Через него протекает небольшой ток, подогревая оболочку, постепенно ухудшая изоляцию. В какой-то момент происходит пробой, ток резко возрастает, срабатывает защита.

    Поврежденный участок мгновенно остывает, его сопротивление увеличивается. Мультиметр покажет, что оно равно бесконечно большой величине.

    Чтобы нейти такое повреждение, нужен прибор, выдающий при измерениях в тестируемую цепь напряжение, соизмеримое или большее, чем напряжение в сети. Таким прибором является мегаомметр.

    Устройство мегаомметра

    Для измерений этот прибор выдает в проверяемую цепь постоянный ток. Переменный для этой цели не годится, поскольку все кабельные линии обладают емкостным сопротивлением. А конденсаторы переменный ток проводят. Это приведет к искажению результатов измерений.

    В зависимости от рабочего напряжения сети и тестируемой аппаратуры, выпускаются мегаомметры с напряжением 100, 500, 1000 и 2500 В.

    Стовольтовые используются для проверки изоляции низковольтных кабелей и полупроводниковой техники, на 500 В – обмоток электрических машин небольшой мощности. Приборы с напряжением 2500 В предназначены для измерений на высоковольтных аппаратах, кабельных и воздушных линиях.

    Важно

    Какой прибор выбрать для проведения измерений – указано в нормативно-технической документации по наладке или эксплуатации, ПУЭ, паспортах на электрооборудование.

    В устаревших конструкциях мегаомметров для выработки измерительного напряжения использовался генератор, ротор которого приводился во вращение рукояткой. Ее раскручивали до скорости 120 оборотов в минуту, иначе напряжение на выходе оказывалось ниже номинального.

    Измерительный механизм у таких устройств – аналоговый, со шкалой и стрелкой. Шкала делилась на две части – верхнюю и нижнюю, соответствующие двум диапазонам измерения сопротивлений. Отметки на шкале располагались неравномерно, что усложняло отсчет показаний.

    Да и снимать эти показания, одновременно вращая ручку мегаомметра, было не очень-то удобно – корпус прибора дергался, стрелка прыгала. К тому же у пользователя были заняты обе руки: одной он удерживал прибор на месте, другой – крутил ручку.

    Измерительные щупы на контактах удерживал его помощник, либо к ним припаивали зажимы типа «крокодил».

    Мегаомметр М4100

    Для каждого измерительного напряжения выпускался свой мегаомметр. Лишь модель типа ЭСО 202 содержала переключатель на 500, 1000 или 2500 В. Для выполнения измерений в электролабораториях содержали целый парк мегаомметров.

    Мегаомметр ЭСО 202/2

    Современные приборы стали полупроводниковыми.

    Выбор пределов измерений у них происходит автоматически, а испытательное напряжение выбирается перед измерениями в меню или с помощью переключателя.

    Габариты прибора позволяют его удерживать в руке совместно с одним из щупов, что позволяет проводить измерения единолично. Некоторые модели снабжаются кнопкой запуска на одном из щупов.

    Мегаомметр Fluke

    Но многие современные мегаомметры имеют один существенный недостаток, переводящий их в режим обычного пробника.

    По правилам, измеренным сопротивлением изоляции является величина, показанная прибором через 60 секунд после начала испытания.

    Большинство же моделей выдают испытательное напряжение на несколько секунд и не имеют режима длительной генерации напряжения. Не все дефекты можно выявить за столь короткое время.

    Правила проведения измерений мегаомметром

    Мегаомметр относится к приборам, измеряющим характеристики электрооборудования, связанные с определением возможности его безопасной эксплуатации. А на его выводах при измерениях присутствует опасное для жизни напряжение. Поэтому его применение возможно в случаях:

    1. Прибор должен проходить метрологическую поверку один раз в год.
    2. Пользоваться мегаомметром дозволяется обученному персоналу.
    3. Правом выдачи протокола с заключением о пригодности электропроводки к дальнейшей эксплуатации обладает только лицензированная электротехническая лаборатория. Измерения, проведенные другими лицами, юридической силы не имеют.

    Если в вашем распоряжении оказался мегаомметр, то измерять сопротивление изоляции вы можете только по личной инициативе. Закончили монтаж электропроводки соседу, измерили — убедились в отсутствии дефектов.

    Но если при подключении соседского домика к сети энергоснабжающая организация потребует протокол измерений – ваши труды не зачтутся.

    Соседу придется вызывать специалистов и платить им деньги за ту же самую работу.

    В детских садах, школах, учреждениях и на предприятиях сопротивление изоляции электропроводок измеряется регулярно. Результаты оформляются протоколами, которые требуют представители пожарной охраны и энергонадзора. К протоколам прикладываются регистрационные документы лаборатории, выполнившей измерения. Без них они – никому не нужная бумажка.

    Протокол измерения сопротивления изоляции

    Если в помещении организации произойдет пожар, первым делом от ее руководителей требуют протоколы измерений изоляции. Если их нет – виновные определяются автоматически.

    Совет

    То же происходит и при поражении сотрудника электрическим током. Даже, если он сам засунул в розетку отвертку, держась за ее стержень.

    Если при расследовании несчастного случая не обнаружится протокол измерений изоляции – проблемы руководству обеспечены.

    Тем не менее, мегаомметр – прибор, полезный для людей, занимающихся монтажом электропроводки. Лучше найти дефект сразу, до приезда специально обученных персон.

    Иначе они приедут еще раз, после устранения дефекта. Искать его самостоятельно персонал лаборатории не обязан. Вернувшись, они заставят владельца выложить дополнительную сумму за труды.

    Скорее всего, он вычтет ее из вашего гонорара.

    После замены электропроводки в квартире измерения изоляции официально не требуются. Поэтому их не помешает выполнить для самоуспокоения, а в глазах клиента ваш рейтинг в итоге только возрастет.

    Правила измерения изоляции мегаомметром

    Перед каждым использованием у любого мегаомметра проверяют целостность изоляции измерительных проводов. Это важно, так как повреждения приводят к электротравмам.

    На мегаомметре устанавливают необходимое испытательное напряжение , затем проверяют исправность измерительной цепи и прибора. Для этого щупы соединяют накоротко, производят измерение.

    Прибор покажет ноль. Щупы рассоединяют и снова проводят измерение. Прибор покажет бесконечность.

    Эти манипуляции производят регулярно, чтобы своевременно обнаружить сбитые настройки, оборвавшийся провод, ослабевший контакт или неисправность мегаомметра.

    Правила измерений сопротивления изоляции требуют, чтобы для кабельной линии была измерена изоляция между жилами во всех возможных комбинациях.

    Для трехжильного кабеля – три измерения, для четырехжильного – шесть, пятижильного – десять. В реальности реализовать эту проверку можно, имея в наличии кабель с отключенными жилами.

    Отключать их для проверки после монтажа – операция сложная.

    Измерение сопротивления изоляции кабельной линии

    Поскольку в системах с глухозаземленной нейтралью нулевой рабочий и защитный проводники соединены между собой, то и прибор между ними покажет ноль.

    Обратите внимание

    Но, даже если отключить от объекта питающий кабель, все нулевые рабочие и защитные проводники, объединенные на шинах, покажут одно и то же сопротивление между собой. Если оно укладывается в норму, то все хорошо.

    А если нет – придется их отсоединять от шин по очереди, следя за изменениями изоляции.

    Упрощенный способ измерения для розеточных групп – измерить сопротивление фазного проводника от автоматического выключателя питания относительно нулевой и РЕ шины.

    Для осветительной сети все сложнее. Под фазным потенциалом при работе светильников оказывается участок от автомата питания до осветительного прибора, проходящий через выключатель.

    Если не вывернуть лампу из светильника, прибор покажет его сопротивление. Поэтому при измерениях сопротивления изоляции осветительных сетей лампы выворачивают, а выключатели переводят во включенное положение.

    Так тестируется участок, реально находящийся под напряжением в эксплуатации.

    И не забываем про полупроводниковые ПРА. У них на входе выпрямитель. Чтобы его не повредить, провода от светильника отключают. Хотя современные мегаомметры, почуяв неладное, резко снижают испытательное напряжение до минимальной величины. Полупроводниковые элементы редко выходят из строя, но испытывать судьбу лишний раз не стоит.

    Результаты измерений для бытовой электропроводки должны уложиться в предел 0,5 МОм. Все, что ниже этой планки, подлежит устранению. На самом деле, новые кабельные линии имеют сопротивление изоляции сотни и тысячи мегаом. Значения ниже сотни характерны для старой электропроводки, да еще и порядком изношенной.

    Источник: http://electric-tolk.ru/izmerenie-soprotivleniya-izolyacii-elektroprovodki/

    Как измерить сопротивление изоляции кабеля

    Чтобы оценить техническое состояние, работоспособность и целостность покрытий электропровода необходимо измерить сопротивление изоляции. Для этого понадобиться специальное оборудование и приборы, так как придется иметь дело с электричеством.

    Замер сопротивления изоляции в казахстане могут помочь вам провести опытные специалисты.

    Когда нужно устраивать изоляцию

    Как часто следует проводить процедуру изоляции, зависит от того, в каких условиях эксплуатируется электрическое оборудование. Специалисты рекомендуют проводить эти процедуры на производстве один раз в год.

    Если помещение несет высокую опасность, то замеры сопротивления проводят дважды, а то и трижды раз за год. Планирование такой процедуры предотвратит внезапное отключение, перебои в питании и остановки оборудования.

    В случае, если эти действия заранее организованы, то есть шансы
    избегания:

    • коротких замыканий проводки;
    • поломки электро-механизмов;
    • травм из-за оголенных проводов;
    • появление аварийной ситуации.

    Разновидности процедур измерения

    Когда проводится оценка провода, персонал определяет, насколько его механическое состояние в норме и производит проверку электрических характеристик.

    Во время внешнего обязательного осмотра можно увидеть только концы кабеля, которые выделены для подключения. Такие проверки помогут определить тип дефекта изоляции и сделать вывод о том насколько пригодный кабель для дальнейшей эксплуатации.

    Проверочное оборудование

    Для осуществления проверки изоляции кабеля используют специальное оборудование, которое называется мегаомметры. Перед тем использовать любое оборудования его нужно проверить на исправности:

    • провести внешний осмотр;
    • проверить клеймо на корпусе;
    • делать контрольный замер.

    Как осуществить проверку изоляции

    Чтобы произвести проверочные работы необходимо придерживаться подготовленному плану:

    1. Первым делом нужно проверить напряжение на проводе.
    2. Установить проверочное заземление при помощи зажимов, которые крепят на жилы провода.
    3. Другую сторону кабеля нужно оставить свободной и развести жилы на приличное расстояние.
    4. Замеры сопротивлений изоляции проводятся при помощи мегаомметра на 2550 Вольт.
    5. В итоге все показания требуется зафиксировать.

    Способы измерения изоляции низковольтных и высоковольтных не отличаются. Чтобы все прошло успешно, следует придерживаться составленного плана и соблюдать технику безопасности.

    Источник: http://euroelectrica.ru/kak-izmerit-soprotivlenie-izolyatsii-kabelya/

    Методика измерения сопротивления изоляции проводов, кабелей, силового электрооборудования и аппаратов

    Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам

    Данная методика предназначена для производства измерений сопротивлений изоляции электропроводок, электрооборудования (комплектных низковольтных устройств: ВРУ, щитков этажных и квартирных, и др.

    ), а также изолирующих полов и стен при сертификационных испытаниях электроустановок зданий с целью оценки качества изоляции элементов электроустановок и сравнения с нормами табл. 43 приложения 1 ПЭЭП и табл. 61 А стандарта МЭК 364-6-61.

    В соответствии с этими нормативными документами норма сопротивления изоляции цепей электроустановки должны быть не менее 0, 5 мОм

    Важно

    Измерения сопротивления изоляции должны производиться согласно п. 612. 3 стандарта МЭК 364-6-61:

    а) между токоведущими проводниками, взятыми по очереди «два к двум»,

    б) между каждым токоведущим проводником и «землей».

    Измерения должны проводиться при отсоединенных электроприборах, при снятых предохранителях, вывернутых лампах и т. д.

    Если цепь имеет электронные приборы, то должно быть сделано только измерение сопротивления изоляции между фазными и нейтральными проводниками, соединенными вместе, и «землей».

    Примечание: эта мера предосторожности необходима, т. к. выполнение испытаний без соединения токоведущих проводников может вызвать повреждение электронных приборов.

    При измерении параметров изоляции электрооборудования следует учитывать требования п. 1. 20 приложения 1 ПЭЭП.

    В соответствии с п.413.3 ГОСТ Р 50571.3-94 изолирующие (непроводящие) помещения, зоны, площадки имеют целью предотвратить одновременное прикосновение к частям, оказавшимся под разными потенциалами в случае повреждения изоляции токоведущих частей.

    Требования считаются выполненными, если пол и стены помещения являются изолирующими и выполняется одно или несколько условий приведенных ниже:

    а) открытые проводящие части и сторонние проводящие части, а также открытые проводящие части друг от друга удалены не менее 2м, а за пределами зоны досягаемости — 1,25 м;

    б) установлены эффективные приборы между открытыми проводящими частями и сторонними проводящими частями;

    Совет

    в) сторонние проводящие части изолированы. Сопротивление изолирующего пола и стен, измеренное в каждой точке должно быть не ниже:

    —       50 кОм при номинальном напряжении электроустановок не выше 500. В;

    —       100 кОм при номинальном напряжении электроустановок выше 500 В.

    В каждом помещении и для каждой поверхности в соответствии с п. 612.5 стандарта                МЭК 364-6-61 должны быть сделаны три измерения. Одно измерение должно быть выполнено примерно в 1 м от сторонних проводящих частей, находящихся в помещении. Другие измерения должны быть сделаны на большем удалении.

    Сопротивление изоляции практически во всех случаях измеряется мегаомметром — прибором, состоящим из источника напряжения — генератора постоянного (или переменного с выпрямителем) тока, измерительного механизма (магнитоэлектрического логометра) и добавочных резисторов.

    В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5).

    Ф4101, Ф4102 — на номинальное рабочее напряжение 100, 500, 1000. В. и Ф. 4101, Ф4102 на напряжение 2500В. Мегаомметры серии Ф. 4100 — электронного типа с питанием от электросети (или 12В).

    Мегаомметры выпуска последних лет; ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) сняты с производства, но допускаются к эксплуатации мегаомметры типа M l101 М, МС-05, МС-06.

    Класс точности приборов должен быть не более 4.

    Мегаомметры к схеме присоединяют гибкими одножильными проводами с сопротивлением изоляции не менее 100 Мом длиной 2-3 м, концы которых маркируются.

    Концы присоединяемые к мегаомметру должны иметь оконцеватели, а противоположные — зажимы типа «крокодил» с изолированными ручками или специальными щупами.

    При измерениях специальные провода не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей.

    Обратите внимание

    При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) -к проводнику тока (см. рис. 1.1. а, б, в). Схема замещения при измерении сопротивления изоляции фазы относительно земли и других заземленных фаз представлена на рис. 1.2.

    1.1. Измерение сопротивления изоляции силовых кабелей и электропроводок

    Перед началом измерения необходимо:

    —               убедиться, что на испытуемом кабеле нет напряжения;

    —               на 2-3 минуты заземлить токоведущие жилы для снятия с них возможных остаточных зарядов;

    —               тщательно очистить изоляцию от пыли и грязи.

    Выбрать соответствующий предел измерений (в соответствии с ожидаемой величиной сопротивления изоляции) и подвергнуть мегаомметры контрольной проверке, которая заключается в проверке показаний на шкале при разомкнутых и замкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы «Бесконечность» , во втором — у нуля.

    Как правило, измеряется сопротивление изоляции каждой фазы кабеля относительно заземленных фаз (см. рис. 1.1 а, 1.2).

    Если измерения по этой схеме (сокращенный вариант — 3 замера) дадут неудовлетворительный результат, то необходимо измерить сопротивление изоляции каждой фазы относительно земли (остальные фазы не заземляются) — см. рис.1.

    З-х и между каждыми двумя фазами (см. рис. 1.36). Всего выполняется 6 замеров для 3-х жильных кабелей и соответственно 4 и 8 для 4-х жильных.

    Значениями сопротивлений изоляции, измеренные по схемам рис. 1.3, ближе к действительным и должны удовлетворять требованиям норм

    Вместе с записью результатов в отчетных документах необходимо указывать схему, с помощью которых они получены.

    Важно

    Измерения (снятие показаний), следует производить при устойчивом положении стрелки прибора. Для этого нужно вращать ручку прибора со скоростью 120 об/мин.

    Сопротивление изоляции определяется показанием стрелки прибора через 15 и 60 с. после начала вращения.

    Если определение коэффициента абсорбции К абс не требуется, отсчет показаний производится после успокоения стрелки, но не ранее 60 с. от начала вращения.

    При неправильно выбранном пределе измерения, необходимо снять заряд с испытуемой фазы, наложив заземление, переключить предел и повторить измерение на новом пределе. При наложении и снятии заземления пользоваться диэлектрическими перчатками.

    При измерениях сопротивления изоляции кабелей на напряжение до 100. В. с нулевыми жилами необходимо помнить следующее:

    Источник: https://www. etlpro.ru/metodiki-ispitanii/metodika-izmereniya-soprotivleniya-izolyatsii-provodov-kabeley-silovogo-elektrooborudovaniya-i-apparatov.html

    Измерение сопротивления изоляции. Методика и приборы. Порядок

    Качественные изолирующие материалы определяют функциональность и надежность снабжения объектов электрической энергией. Каждый специалист на предприятии должен понимать важность свойств изоляции оборудования. Периодически необходимо контролировать работу электрических устройств, проводить измерение сопротивления изоляции.

    Материал изоляции кабелей имеет свой срок службы. На качество диэлектрического материала изоляции влияют следующие факторы:

    • Высокое напряжение.
    • Солнечный свет.
    • Механические повреждения.
    • Температурный режим.
    • Среда использования.

    Измерение сопротивления изоляции рекомендуется для более точного выяснения причин повреждений в кабельной цепи, или цепи электрических устройств, а также для проверки возможности дальнейшей эксплуатации изоляции.

    Если дефект изоляции обнаружен визуально, то выполнять измерения сопротивления уже нет необходимости. При обнаружении нарушения изоляции с помощью мегомметра, можно предотвратить:

    • Неисправности устройств.
    • Возникновение пожара.
    • Аварийные ситуации.
    • Чрезмерный износ устройства.
    • Короткие замыкания.
    • Удары электрическим током персонала, обслуживающего устройства.

    Методика

    Главной характеристикой состояния изоляции электрооборудования принято считать сопротивление постоянному току, поэтому обязательной частью проверки цепей является контроль сопротивления изоляции.

    Приборы

    Значение сопротивления изоляции контролируется при помощи мегомметрами. Сегодня популярными являются мегомметры марок: М — 4100, ЭСО 202 / 2Г, MIC – 30, MIC — 1000, MIC-2500. Прогресс технологий в электротехнике не стоит на месте, поэтому виды измерительных приборов постоянно обновляются.

    Мегомметр состоит из источника питания постоянного тока и механизма измерения. В качестве источника тока может использоваться генератор переменного тока с выпрямительным мостом.

    Мегомметры можно разделить по величине напряжения:

    • До 1000 вольт.
    • До 2500 вольт.

    В комплекте к прибору приложены гибкие медные проводники. Их длина может достигать до 3 метров.

    Сопротивление изоляции измерительных проводов должно быть более 100 мегом. Концы проводов мегомметра должны быть оснащены наконечниками со стороны подключения к прибору.

    Другие концы проводов должны оснащаться зажимами вида «крокодил» с рукоятками из диэлектрического материала.

    Порядок измерений

    Перед началом контрольных измерений необходимо выполнить:

    • Перед непосредственным измерением необходимо выполнить контрольную проверку прибора. Такая проверка производится путем определения показаний прибора во время разомкнутых и замкнутых проводников. При разомкнутых проводниках стрелка или индикатор должны показывать бесконечное сопротивление. При замкнутых проводах показания должны быть близки к нулю.
    • Обесточить измеряемый кабель. Для проверки отсутствия напряжения необходимо пользоваться указателем напряжения, который испытан на заведомо подключенном к напряжению участке цепи электроустановки, согласно требованиям правил охраны труда.
    • Произвести заземление токоведущих жил испытуемого кабеля.

    Во время измерения сопротивления на участках цепи свыше 1000 вольт, необходимо применять диэлектрические резиновые перчатки. Запрещается касаться токоведущих элементов, присоединенных к мегомметру.

    Сопротивление проверяется для отдельной фазы по отношению к другим фазам. При отрицательном результате необходимо проверить сопротивление изоляции между отдельной фазой и землей.

    Схема проверки сопротивления

    Измерение сопротивления изоляции на кабеле, рассчитанном на напряжение более 1000 вольт, на изоляцию накладывают экранное кольцо, которое соединено с экраном.

    При работах с кабелями до 1000 вольт, имеющих нулевые жилы, необходимо знать:

    • Изоляция нулевых проводов должна быть не хуже, чем у фазных проводников.
    • Нулевые проводники должны быть отключены от заземления со стороны приемника и источника питания.

    При вращении ручки привода генератора мегомметра необходимо добиться устойчивого состояния стрелки прибора. Только после этого можно измерять сопротивление.

    Для устойчивого положения стрелки ручку вращают со скоростью около 120 об / мин.

    После начала вращения ручки до момента измерения должно пройти не менее 1 минуты. Далее после подключения проводов к кабелю необходимо выждать 15 секунд. После этого зафиксировать величину сопротивления.

    При ошибочно выбранном интервале измерений, необходимо выполнить следующие мероприятия:

    • Снять напряжение с измеряемого проводника, подключить к нему заземление.
    • Установить правильное положение переключателя и возобновить измерение на новом диапазоне.

    При подключении и снятии заземления применение диэлектрических перчаток является обязательным. После проведения измерений на кабеле накапливается заряд энергии, который необходимо снять перед отключением прибора.

    Заряд снимается при помощи наложения заземления.

    Проверка изоляции осветительной цепи

    Измерение сопротивления изоляции осветительной цепи выполняется мегомметром, рассчитанным на напряжение до 1000 вольт. Работы по измерению включают в себя следующие этапы:

    • Измерение сопротивления изоляции магистрали: от щитов 0,4 кВ до электрических автоматов распредщитов.
    • Сопротивления изоляции от этажных распредщитов до квартирных щитков.
    • Измерение сопротивления изоляции цепи освещения от автоматов выключения и групповых щитков до арматур освещения. В светильниках перед измерением отключается напряжение, выключатели света должны находиться во включенном состоянии, нулевые рабочие и защитные провода должны быть отключены, лампы освещения вывернуты. Если применяются газоразрядные лампы, то их допускается не выкручивать, однако необходимо снять стартеры.
    • Значение сопротивления на участках освещения и осветительной арматуры должно быть выше 0,5 мегома.

    Информация по применению в измерениях приборов, и итоги замеров оформляются протоколами.

    Требования безопасности

    Работники измерительной лаборатории, направленные для исполнения работ в различных электроустановках, и не находящиеся в штате предприятия, владеющего электроустановкой, считаются командированными работниками.

    Специалисты должны иметь в наличии определенной формы удостоверения. При этом должна быть отметка комиссии командирующей фирмы о присвоении группы электробезопасности. Фирма, отправляющая специалистов, несет ответственность за исполнение нормативов по технике безопасности и соответствию групп по электробезопасности.

    Организация работ сотрудников предполагает выполнение мероприятий перед началом работ:

    • Извещение владельца проверяемой электроустановки о целях работы.
    • Предоставление специалистам права производства работ в виде выдачи наряда, назначения ответственных лиц.
    • Проведение вводного инструктажа.
    • Ознакомление с электросхемой и особенностями установки.
    • Подготовка рабочего места.

    Организация (владелец) несет ответственность за соблюдением требований охраны труда.

    Работы осуществляются по наряду-допуску.

    При выполнении измерений необходимо:

    • Соблюдать указания инструкций, применяемых приборов, разработанных на предприятии. Также необходимо выполнять вспомогательные требования согласно нарядам-допускам.
    • Запрещается начинать работы по измерениям, не убедившись в отсутствии напряжения на измеряемом участке. Контролировать отсутствие напряжения питания при выполнении измерений. Это требование выполняется с помощью испытанного указателя, который должен быть протестирован на подключенных к напряжению элементах электроустановки, согласно правилам ТБ. Напряжения контролировать между фазами, землей и фазами. Эта операция требует особой тщательности и ответственности.
    • Коммутацию приборов осуществлять при обесточенных токоведущих частях.
    • Обеспечить использование средств защиты и специального инструмента с диэлектрическими ручками, которые заранее испытаны.

    Бригада специалистов должна иметь в составе не менее 2-х человек, включая производителя работ с 4 группой электробезопасности, и работника с 3 группой электробезопасности.

    При выполнении измерений запрещается подходить к токоведущим элементам ближе безопасного расстояния, которое определено в таблице.

     

    Интервалы проведения проверок

    Временные нормативы проведения плановых измерений величин сопротивлений, значение напряжения для измерения изоляции описываются в правилах технической эксплуатации. Ежегодно производится измерение сопротивления изоляции осветительной аппаратуры, лифтовой проводки, а также электропроводки подъемно-транспортных механизмов.

    В остальных случаях такие проверки осуществляются один раз в несколько лет. Каждые 6 месяцев производится проверка переносного электрооборудования и инструмента, а также сварочных аппаратов.

    При невыполнении установленных интервалов проверок повышается вероятность появления различных нежелательных неисправностей электроустановок. Нарушители этих правил могут подвергаться определенным санкциям и штрафам.

    В организациях должны быть разработаны планы проведения проверок изоляции. При этом делается упор на особенности и технические запросы, которым должны соответствовать электроустановки, а также кабельные сети.

    Изоляция проверяется во время эксплуатационных испытаний.

    Похожие темы:

    Источник: https://electrosam.ru/glavnaja/jelektrotehnika/jelektrobezopasnost/izmerenie-soprotivleniia-izoliatsii/

    Измерение сопротивления изоляции кабелей и проводов

    Доброе время суток, друзья!

    Я заметил, что есть много вопросов по измерениям изоляции кабеля. Поэтому сегодняшняя статья будет посвящена этой теме. 

    Следует разделять кабели, провода и шнуры на напряжение до 1000В и кабели на напряжение выше 1000В.

    Первые в свою очередь делятся на силовые и контрольные.

    В соответствии с ГОСТ 15845-80

    Силовой кабель: кабель для передачи электрической энергии токами промышленных частот.

    Кабель управления: кабель для цепей дистанционного управления, релейной защиты и автоматики.

    Контрольный кабель: кабель для цепей контроля и измерения на расстоянии электрических и физических параметров.

    Сопротивление изоляции – отношение напряжения приложенного к диэлектрику к протекающему сквозь него току (току утечки).

    Ненормированная измеряемая величина – величина, абсолютное значение которой не регламентировано нормами.

    Состояния изоляции, считают удовлетворительным, если каждая цепь с соединенными электроприемниками имеет сопротивление изоляции не менее соответствующего нормативного значения, приведенных ниже:

    Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм.

    Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. (Возможность ввода кабеля на напряжение выше 1000В в работу определяется по величине тока утечки при испытании изоляции повышенным выпрямленным напряжением и отсутствием пробоев изоляции).

    Измерение следует проводить до и после испытания кабеля повышенным напряжением (ПУЭ изд.6 пп. 1.8.37(2)).

    Совет

    В необходимых случаях перед измерением концы испытуемого изделия должны быть разделаны.

    Для повышения точности измерения допускается на концевых разделках устанавливать охранные кольца, которые должны быть при измерении заземлены или присоединены к экрану измерительной схемы.

    Время выдержки образцов перед проведением испытаний при температуре окружающей среды должно быть не менее 1 ч, если в стандартах или технических условиях на конкретные кабельные изделия не указано другое время выдержки.

    Выполнение измерений мегаомметром ЭС0202/2г (М4100/3(4,5)).

    При выполнении измерений выполняют следующие операции:

    Установить переключатель измерительных напряжений в нужное положение в соответствие с величиной требуемого испытательного напряжения, а переключатель диапазонов в положение «1».

    При вращении рукоятки генератора начинает светиться индикатор ВН, что свидетельствует о наличии выходного напряжения на клеммах прибора.

    Убедившись в отсутствии напряжения на объекте, подключить объект к гнездам «rх». При необходимости экранировки, для уменьшения влияния токов утечки, экран объекта подсоединить к гнезду «Э».

    Для проведения измерений вращать рукоятку генератора со скоростью (120 ¸140) оборотов в минуту. После установления стрелочного указателя, сделать отсчет значения измеренного сопротивления. При необходимости переходить на другой диапазон.

    Порядок измерения сопротивления изоляции для кабелей приведен ниже:

    В условиях действующих электроустановок отключать силовые кабели от коммутационных аппаратов не обязательно, исключение составляют случаи когда отключение связано с обеспечением безопасных условий работ – технические мероприятия при подготовке рабочего места.

    Принцип измерения сопротивления изоляции состоит в том, чтобы произвести измерение между каждыми парными проводниками кабеля и (в случае если кабель бронированный) между каждым проводником и бронёй.

    Иными словами необходимо измерить сопротивление изоляции между фазными проводниками, между каждым фазным проводником и нулевой жилой, между каждым проводником кабеля и РЕ- проводником (бронёй). Если в кабеле существует и РЕ-проводник и броня одновременно, то их можно считать одним проводником при измерении сопротивления изоляции.

    В случае, если в кабеле нет пятой жилы и нет брони, за РЕ-проводник можно принимать металлические конструкции РУ, заземление и заземлённых частей электрооборудования. Таким образом, можно выявить нарушение изоляции нулевой жилы и общей изоляции или оболочек кабеля.

    Измерение сопротивления изоляции контрольных кабелей проводят аналогично. При измерении разрешается объединять все проводники вместе и измерять затем сопротивление изоляции всего пучка относительно одного, затем отсоединять следующий и т.д .

    Проводник, у которого изоляцию уже измерили, необходимо подключить к общему пучку проводников. Второй конец контрольного кабеля также должен быть «разделан» и все жилы разведены в воздухе.

    Обратите внимание

    Таким образом, постепенно измеряется сопротивление изоляции каждой жилы кабеля относительно земли и других жил.

    Если контрольный кабели уже установлен и все жилы его подключены к оборудованию, то сопротивление изоляции этого кабеля измеряют вместе с сопротивлением изоляции самого оборудования. Иными словами отключение кабеля от цепей оборудования не производится.

    На этом сегодня все… Если у Вас возникли вопросы, задавайте. Отвечу в новых статьях.

    Источник: http://elektrolaboratoriy.ru/2014/06/21/izmerenie-soprotivleniya-izolyacii-kabelej-i-provodov/

    Измерение сопротивления изоляции

    Сопротивление проводников мы измерять умеем и знаем, для чего это надо. Но разве сопротивление есть и у изоляции? Как-то не думаешь, что все изоляторы, которые являются обязательной частью всех электросетей, имеют какое-то сопротивление. Имеют, и очень даже внушительное

    Знать сопротивление изоляции бывает очень важно. Но если сопротивление проводников играет роль для прохождения токов, следовательно, на конкретных значениях сопротивления в конкретных элементах цепей строится большая часть работы схем, то сопротивление изоляции нужно нам совсем по другому поводу.

    Есть, конечно, некие конкретные изделия, называемые изоляторы, которые употребляются в высоковольтных сетях передачи энергии. Но у них обычно важны чисто пространственные параметры, длина, на которую один проводник они отдаляют от другого. И уж если пробьет высокое напряжение, то не через них, а мимо через окружающий воздух.

    Вся изоляция окружает проводники с током как некая среда, как воздух нас, и важно не то, сколько ом, килоом или мегом в каком-то кусочке диэлектрика, а уверенность, что при действующем напряжении кусочек этот электрическим разрядом пробит не будет.

    ЗапчастьИзоляция на ЛЭП

    Как проверить изоляцию   

    Когда делают проводку, говорят о сечении проводника. Когда создают электрический контакт, думают о площади соприкосновения проводников, достаточной ли будет она для надежного контакта.

    А вот площадь соприкосновения изоляции с проводником в проводах, кабелях или изоляционных подложках никак и никогда не рассматривается.

    Как же тогда говорить об этом, и вообще, как измерить сопротивление изоляции?

    Иллюстрация 1

    Для измерения сопротивления различных материалов можно взять образец материала определенной формы и размера и, при приложении некоторого напряжения к двум торцам, получить некоторый ток. Измерить его и по закону Ома получить сопротивление

    Формула

    Удельное сопротивление будет равно

    Формула 2

    Оно, в отличие от R, не зависит ни от длины (толщины) материала, ни от контактной площади.

    По такому принципу для различных материалов удельные сопротивления измерены, и их можно найти в справочных таблицах. И для изоляторов тоже.

    То есть для работы можно было бы просто выбирать изолятор, который получше, и использовать. Да это и не нужно бывает, потому что обычно слово «изолятор» говорит само за себя.

    Электрические материалы выпускаются промышленностью с учетом всех нормативов.

    Задача изолятора — не пропускать ток, оказывая сопротивление (как видим из таблицы — сопротивление огромное), а просто изолировать одни проводники от других.

    Но эталонные значения сопротивления изоляторов с течением времени могут меняться. Все материалы стареют, разрушаются, разлагаются под действием изменений температуры, от света, вибраций, их структура нарушается.

    Появляются микротрещины, шелушения, отслоения. Они истончаются, в поры проникает вода, могут разлагаться химически. Происходит запыление, а не всякая пыль является изолятором.

    То есть изолирующие свойства диэлектриков со временем ухудшаются.

    Важно

    Поэтому хотелось бы быть уверенным, что именно данный изолятор на данном проводе или электрической шине будет хорошо играть свою роль.

    Тогда и проверяют сопротивление изоляции кабеля (или проводов и кабелей, шнуров и так далее). А вместе с этим и проверяют на электрическую прочность при определенном измерительном напряжении. Все это делается в силовых электрических цепях, где такие характеристики жизненно важны.

    Норма сопротивления изоляции кабеля

    Существуют Правила эксплуатации электроустановок потребителей (ПЭЭП, изд. 5, 1997 г.

    , МинТопЭнерго РФ, Москва), в которых прописаны нормативы, касающиеся безопасной эксплуатации электрических установок, а также линий электропередач и помещений, где работает электрическая техника.

      В таблице 43 приложения 1 описано, какими напряжениями следует проводить испытание изоляции на различных электроустановках до 1000 вольт. Конкретно, в каких местах мерить и какое нормативное сопротивление должно быть у изоляции.

    Часть таблицы привожу здесь (без пространных указаний, где именно измеряется сопротивление изоляции по многим из приведенных в ней видов установок).

    Как видим, сопротивление изоляции должно быть, в основном, не выше 0,5 МОм*м.

    А измерения (испытания) проводятся напряжением до 1000 вольт, и это опасное для жизни напряжение. Методика такова, что испытание проводится в установках на местах их расположения. Чтобы испытание не повредило элементы схем, они предварительно шунтируются.

    Кабели испытываются подачей напряжения на один из их проводов, а измеряют сопротивление изоляции между ним и другими проводами кабеля.

    Приборы для измерения сопротивления изоляции

    Любой прибор для измерения электрического сопротивления в своей конструкции использует эталонный источник напряжения. Некоторые мультиметры позволяют для измерения больших сопротивлений подключать еще внешний источник высокого напряжения.

    Только есть приборы, специально предназначенные, чтобы проводить измерение сопротивления изоляции кабеля. Называются они мегомметры.

    Ими проводятся: измерение сопротивления изоляции электропроводки, проверка сопротивления изоляции на пробой высоким напряжением, замеры сопротивления изоляции в различных устройствах, проведение замеров сопротивления изоляции силового электрооборудования и так далее.

    МегомметрПрибор для измеренияКабели

    Для проведения работы мегомметр должен отвечать следующим характеристикам:

    • быть исправен — с точки зрения внешнего осмотра;
    • официально поверен в метрологической лаборатории, срок очередной поверки должен быть не закончен;
    • на нем должна быть ненарушенная пломба метрологов;
    • высоковольтная часть должна быть испытана в электротехнической лаборатории на исправность изоляции, в комплекте должны быть высоковольтные провода с измеренным и достаточным для работ с высоким напряжением сопротивлением изоляции; 
    • на нем должен быть проведен контрольный замер изоляции образца с известным сопротивлением.

    Необходимо иметь в виду, что:

    Любая работа с мегомметром относится к категории опасных. Опасность касается как людей, непосредственно проводящих измерение, так и всех, кто может оказаться в месте проведения испытаний. Опасности подвергается также и оборудование, которое может быть повреждено испытательным напряжением.

    Опасность исходит от высокого напряжения, под которое во время испытания ставятся проводники установок, кабели, шины заземления.

    Подготовка к проведению испытания сопротивления изоляции

    Большая часть подготовки к проведению измерений касается безопасности работ. Все действия необходимо проводить тщательно во избежание несчастных случаев. Особое внимание нужно уделить оповещению людей, которые не участвуют в измерениях, но могут оказаться по каким-либо причинам вблизи мест проведения работ.

    • Измерение сопротивления изоляции мегомметром должно проводиться на проводниках, отключенных от напряжения питания. Окружающее оборудование также должно быть обесточено, чтобы избежать влияния на результаты измерения электрических полей.

    Несмотря на то, что испытательное напряжение, когда делается замер сопротивления изоляции электропроводки, высокое, само измерение является тонким и подверженным влиянию совсем небольших помех.

    Это объясняется тем, что сквозь изоляцию даже при высоком напряжении проникают токи микроамперных величин ввиду чрезвычайно высоких удельных сопротивлений изоляторов.

    Измерение этих токов и дает, в конечном счете, величину сопротивленияпорядка единиц мегомов.

    • Проверяемый кабель, являющийся частью рабочей проводки оборудования, до проведения измерений должен быть отсоединен полностью от остальной проводки. 

    Схема подготовки к измерению сопротивления изоляции

    Схема подготовки к измерению сопротивления изоляции:

    • Необходимо учитывать конфигурацию и протяженность испытываемого кабеля, так как он весь окажется под высоким испытательным напряжением. Надо исключить воздействие этого напряжения на людей по всей длине его нахождения. Это достигается вывешиванием предупреждающих табличек, контролем зоны проведения испытаний.
    • Длинные кабели, обычно находящиеся под воздействием высоких напряжений, после отключения могут нести в себе значительные остаточные заряды или заряды наводок от окружающего высоковольтного оборудования. Это опасно для людей и может повредить оборудование в случае разряда. Это может повлиять на результаты измерений. По всем этим причинам испытываемый кабель, а также все проводящие электричество детали схем должны быть разряжены через заземление.

    Как пользоваться мегаомметром

    • Использовать защитные средства, перед началом работы на конкретном месте проведения замеров устанавливать переносное заземление.

    Защитные атрибутыЗащищенный инструментПриспособление

    Методика измерения сопротивления изоляции

    Испытаний на кабельных линиях  предусмотрено несколько, они охватывают все возможные варианты пробоев линии в разных направлениях. Подобные же измерения изоляции кабеля мегомметром периодически проводятся и в местах установки электрооборудования.

    Проводится замер сопротивления изоляции проводов относительно земли.

    Последовательность такова:

    • Сначала устанавливается переносное заземление.
    • Одним концом оно подключается к проводу заземления.
    • Другим концом по очереди подключаются все провода кабельной линии, чтобы разрядить их от остаточных зарядов. Все жилы кабеля закорачиваются между собой.
    • Не снимая заземления с них, провод заземления подключается к прибору.
    • Проводится отключение жил проводов кабельных линий от заземления.
    • К жилам подключается второй провод мегомметра.
    • Производится включение испытательного напряжения — порядка 1000 В. Оно должно быть подано на кабель в течение примерно минуты, чтобы все переходные процессы в проводах линии завершились.
    • Делается замер по прибору, и результаты заносятся в испытательную таблицу.

    Далее приводятся схемы измерений сопротивления изоляции в разных режимах проверки. Способы снятия показаний нормированы стандартами.

    Измерение сопротивления изоляции проводов в кабельной линии относительно друг друга

    Отличие от предыдущего испытания в том, что замер делается последовательно в проводниках кабеля относительно проводника заземления.

    Подготовка к замеру изоляции жилПродолжение замера

    Точно так же можно измерить сопротивление изоляторов жил относительно нулевого провода и относительно друг друга.

    Между проведением разных испытаний испытательное напряжение выключается, а участвовавшие в испытании жилы кабельных линий разряжаются через заземление.

    Измерения изоляционных свойств диэлектриков силового оборудования относительно земли.

    Измерение изоляции оборудования проводится относительно заземления. Работы подобного рода должны выполняться только после тщательного изучения схем оборудования. Сначала все оборудование отключается от внешних сетей, после этого разряжается через заземление, после чего проводится испытание его изоляции на клеммах основных питающих оборудование шин.

    Измерение изоляции оборудования

    Проверка полов и стен на сопротивление изоляции мегомметром.

    Схема прозвонки стен и полов

    Полы и стены проверяются несколько раз на разных расстояниях от оборудования. Сначала в непосредственной близости, потом через несколько метров.

    Совет

    Один провод мегомметра подключается к заземлению, другой — к электроду из куска плоского металла размером не менее 250х250 мм. Электрод, под который подкладывается мокрая бумага или ткань, прижимается к стене (полу) на время измерения.

    Для прижатия используется минимальное усилие: 750 Н — к полу, 250 Н — к стене.

    Все работы проводятся в резиновых защитных перчатках и защитных ботах. 

    После выполнения всех мероприятий результаты оформляются протоколом.

    Источник: https://domelectrik.ru/baza/teoriya/izmerenie-soprotivleniya-izolyacii

    Как проводится измерение сопротивления изоляции кабельных линий мегаомметром

    Кабельные линии перед началом работ, а также с определенной периодичностью, проверяются на эксплуатационные характеристики, одна из которых сопротивление изоляции.

    Именно данная характеристика определяет, сможет ли кабель выдерживать токовые нагрузки, не перегреется ли он и не прогорит ли. Проверка сопротивления изоляции производится мегаомметром.

    Прибор этот не самый сложный в плане использования, но некоторые моменты применения требуют знаний. Итак, как провести измерение сопротивления изоляции кабельных линий мегаомметром.

    Существуют определенные нормативы, которые распределены по классификации самих кабельных линий, представленные в основном тремя позициями:

    • силовые высоковольтные, где напряжение в системе превышает 1000 вольт;
    • силовые низковольтные – это ниже 1000 вольт;
    • контрольные системы и управления.

    Кабели двух первых позиций измеряются мегаомметром при напряжении 2500 вольт. Контрольные при напряжении от 500 до 2500 вольт. При этом у каждой позиции свои нормы.

    • У первой позиции (высоковольтных) сопротивление изоляции находится в пределах не меньше 10 МОм.
    • У низковольтных не ниже 0,5 МОм.
    • У контрольных не ниже 1,0 МОм.

    Необходимо учитывать тот факт, что измерение сопротивления изоляции должно проводиться с учетом температурного режима, при котором кабельные системы эксплуатируются и тестируются.

    Все дело в том, что в линии иногда находятся капли влажности, которые при низких отрицательных температурах превращаются в льдинки.

    А всем известен тот факт, что лед является диэлектриком, то есть, при проведении измерения он (лед) выявляться не будет.

    Как измеряется сопротивление мегаомметром

    Измерение сопротивление изоляции мегаомметром любых видов кабельных линий производится практически одинаково с некоторыми специфичными различиями. Чтобы понять, какие отличия есть в каждом случае, разберем их все три по отдельности.

    Измерение высоковольтных линий

    Итак, в первую очередь кабель проверяется на отсутствие на нем напряжения. Для этого используются специальные указатели высокого напряжения. После чего сам измерительный прибор подключается к жилам со стороны, где проверяется изоляция.

    С другой стороны жилы разводятся на определенное расстояние, узаконенное ПУЭ. Кстати, именно с этой стороны необходимо поставить человека, который будет выполнять функции сторожа, чтобы любопытные не решили потрогать торчащие провода голыми руками.

    Обязательно везде вывешиваются плакаты о том, что проводятся испытания.

    Теперь можно проводить тестирование. Для этого проверяется каждая жила. То есть, две свободные заземляются, а к проверяемой подключается один вывод мегаомметра, а его второй вывод подключается к земле (заземлению). Далее, измеряют сопротивление мегаомметром на 2500 вольт. Длительность испытания – одна минута. Точно также проверяются и другие.

    Испытание низковольтных кабелей

    Предварительные этапы здесь точно такие же. А вот схема самого измерения сильно отличается от вышеописанной. В низковольтных линиях несколько схем подключения и испытания. Вот они с учетом маркировки жил (А; В и С).

    • Сначала испытываются жилы между собой. То есть, А-С, А-В и С-В.
    • Далее, производится проверка между каждой жилой и нулем. То есть, N-А, N-В и N-С.
    • Затем между жилами и заземляющим контуром. То есть, PE-А, PE-В, PE-С.
    • И обязательно проверяется сопротивление нулевого контура. При этом подключение мегаомметра производится по схеме N-PE. Не забывайте, что в этом случае ноль необходимо отключить от заземления.

    Испытание контрольных кабельных систем

    Измерение сопротивления изоляции контрольных систем кабелей производится по той же технологии с единственным отличием. То есть, сначала производится определение отсутствия напряжения на жилах, выставляется мегаомметр на проверку 500-2500 вольт.

    Один конец (выход) прибора подключается к концу испытуемого кабеля, второй к заземлению. Остальные жилы соединяются между собой и подключаются к заземляющему контуру. Можно второй выход мегаомметра подключить к одной из свободных жил. Проверка проводится в течение одной минуты. Точно также проверяются все жилы кабеля.

    Полученные результаты обязательно записываются, а в последствии сравниваются с табличными. Таблицы можно найти в ПУЭ и ПТЭЭП. Если фактическое значение не ниже табличного, то проверяемый кабель можно дальше эксплуатировать. Кстати, на основе проводимых испытаний должно быть сделано заключение и обязательно составлен протокол, где указаны фактические показатели тестирования.

    Другие позиции

    Кроме силовых и контрольных линий мегаомметром можно измерять и другие, работающие от электрического тока. К примеру:

    • Машины постоянного тока, а точнее, их обмотки и бандажи со всеми присоединенными к ним кабелями и проводами. При этом настройка мегомметра производится: при номинале напряжения до 500 В устанавливается предел 500 вольт, при номинале выше 500 на предел 1000 вольт. Сопротивление изолирующего слоя не должно быть ниже 0,5 МОм.
    • Варочные бытовые электрические плиты проверяются испытательным прибором при 1000 вольт. Норма – 1 МОм.
    • Проверка электрооборудования лифтов и различных подъемных кранов также производится мегомметром, который выставляется на 1000 В. 0,5 МОм – это норма сопротивления.

    Источник: http://OnlineElektrik.ru/elaboratoriya/eizmereniya/izmerenie-soprotivleniya-izolyacii-kabelnyx-linij-megaommetrom.html

    Измерение сопротивления изоляции кабелей и проводов

    Доброе время суток, друзья!

    Я заметил, что есть много вопросов по измерениям изоляции кабеля. Поэтому сегодняшняя статья будет посвящена этой теме. 

    Следует разделять кабели, провода и шнуры на напряжение до 1000В и кабели на напряжение выше 1000В.

    Первые в свою очередь делятся на силовые и контрольные.

    В соответствии с ГОСТ 15845-80

    Силовой кабель: кабель для передачи электрической энергии токами промышленных частот.

    Кабель управления: кабель для цепей дистанционного управления, релейной защиты и автоматики.

    Контрольный кабель: кабель для цепей контроля и измерения на расстоянии электрических и физических параметров.

    Сопротивление изоляции – отношение напряжения приложенного к диэлектрику к протекающему сквозь него току (току утечки).

    Ненормированная измеряемая величина – величина, абсолютное значение которой не регламентировано нормами.

    Состояния изоляции, считают удовлетворительным, если каждая цепь с соединенными электроприемниками имеет сопротивление изоляции не менее соответствующего нормативного значения, приведенных ниже:

    Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм.

    Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. (Возможность ввода кабеля на напряжение выше 1000В в работу определяется по величине тока утечки при испытании изоляции повышенным выпрямленным напряжением и отсутствием пробоев изоляции).

    Измерение следует проводить до и после испытания кабеля повышенным напряжением (ПУЭ изд.6 пп. 1.8.37(2)).

    В необходимых случаях перед измерением концы испытуемого изделия должны быть разделаны.

    Для повышения точности измерения допускается на концевых разделках устанавливать охранные кольца, которые должны быть при измерении заземлены или присоединены к экрану измерительной схемы.

    Время выдержки образцов перед проведением испытаний при температуре окружающей среды должно быть не менее 1 ч, если в стандартах или технических условиях на конкретные кабельные изделия не указано другое время выдержки.

    Выполнение измерений мегаомметром ЭС0202/2г (М4100/3(4,5)).

    При выполнении измерений выполняют следующие операции:

    Установить переключатель измерительных напряжений в нужное положение в соответствие с величиной требуемого испытательного напряжения, а переключатель диапазонов в положение «1».

    При вращении рукоятки генератора начинает светиться индикатор ВН, что свидетельствует о наличии выходного напряжения на клеммах прибора.

    Убедившись в отсутствии напряжения на объекте, подключить объект к гнездам «rх». При необходимости экранировки, для уменьшения влияния токов утечки, экран объекта подсоединить к гнезду «Э».

    Для проведения измерений вращать рукоятку генератора со скоростью (120 ¸140) оборотов в минуту. После установления стрелочного указателя, сделать отсчет значения измеренного сопротивления. При необходимости переходить на другой диапазон.

    Порядок измерения сопротивления изоляции для кабелей приведен ниже:

     

     

     

    В условиях действующих электроустановок отключать силовые кабели от коммутационных аппаратов не обязательно, исключение составляют случаи когда отключение связано с обеспечением безопасных условий работ – технические мероприятия при подготовке рабочего места. Принцип измерения сопротивления изоляции состоит в том, чтобы произвести измерение между каждыми парными проводниками кабеля и (в случае если кабель бронированный) между каждым проводником и бронёй. Иными словами необходимо измерить сопротивление изоляции между фазными проводниками, между каждым фазным проводником и нулевой жилой, между каждым проводником кабеля и РЕ- проводником (бронёй). Если в кабеле существует и РЕ-проводник и броня одновременно, то их можно считать одним проводником при измерении сопротивления изоляции. В случае, если в кабеле нет пятой жилы и нет брони, за РЕ-проводник можно принимать металлические конструкции РУ, заземление и заземлённых частей электрооборудования. Таким образом, можно выявить нарушение изоляции нулевой жилы и общей изоляции или оболочек кабеля.

    Измерение сопротивления изоляции контрольных кабелей проводят аналогично. При измерении разрешается объединять все проводники вместе и измерять затем сопротивление изоляции всего пучка относительно одного, затем отсоединять следующий и т.д . Проводник, у которого изоляцию уже измерили, необходимо подключить к общему пучку проводников. Второй конец контрольного кабеля также должен быть «разделан» и все жилы разведены в воздухе. Таким образом, постепенно измеряется сопротивление изоляции каждой жилы кабеля относительно земли и других жил.

    Если контрольный кабели уже установлен и все жилы его подключены к оборудованию, то сопротивление изоляции этого кабеля измеряют вместе с сопротивлением изоляции самого оборудования. Иными словами отключение кабеля от цепей оборудования не производится.

     

    На этом сегодня все… Если у Вас возникли вопросы, задавайте. Отвечу в новых статьях.

    Как проходят измерения сопротивления изоляции проводки

    Проверка состояния изоляции кабелей является важной составляющей мер безопасности. Для замеров созданы специальные лаборатории, оснащенные необходимым оборудованием. В каких случаях, и как именно происходят замеры сопротивления?

    В каких случаях проводятся измерения

    Согласно действующим нормативам измерение сопротивления изоляции электропроводки осуществляется в следующих случаях:

    • при проведении технического обслуживания (ТО) любой категории сложности;
    • по окончании пусковых испытаний электротехнических объектов;
    • в случаях обнаружения неисправностей, проявляющихся в процессе текущей эксплуатации в виде токовых утечек;
    • по окончании ремонта электросетей и оборудования.

    При техобслуживании замер сопротивления изоляции электропроводки составляет основу используемых при испытаниях методик, согласно которым электрические цепи проверяются на отсутствие утечек. Аналогичным образом проводятся замеры и во всех остальных случаях, отличающихся от техобслуживания только особенностями организации предстоящих испытаний.

    В соответствии с действующими стандартами при проведении ТО параметры изоляции электропроводки, в том числе сопротивление, проверяются между всеми её жилами (фазной, нулевой и заземляющей). Особую важность приобретает это требование в случае проверки питающих цепей электродвигателей самых различных классов.

    Теми же нормативами (ПТТЭП, в частности) оговаривается и периодичность измерения параметров изоляции в рамках техобслуживания электропроводки.

    Измерительные средства

    Для проведения испытаний электрического провода или кабеля на целостность изоляции используются специальные приборы, называемые мегомметрами (делают замер высокого сопротивления).

    Они работают по принципу воздействия на измеряемую цепь высоковольтным напряжением, формируемым встроенной в устройство схемой.

    Современные образцы этих приборов работают от аккумулятора с формирователем высокого напряжения.

    Известные модели мегомметров различаются по величине испытательного напряжения, подаваемого на изоляцию проверяемой цепи. Согласно этому показателю они делятся на устройства с номинальными контрольными напряжениями из следующего ряда: 100, 500, 1000 и 2500 Вольт.

    Сразу оговоримся, что померить сопротивление изоляционной оболочки с помощью обычного цифрового прибора не представляется возможным. Указанное ограничение объяснятся тем, что изоляция электропроводки обладает высоким сопротивлением и напряжение, выдаваемое прибором в соответствующем режиме, очень мало для оценки защитных свойств оболочки провода.

    Мультиметром удаётся проверить лишь целостность оболочки силовых проводов, для чего сначала следует внимательно осмотреть их изоляцию, а затем зачистить места вывода контактных групп.

    И только после этого можно будет подсоединять к ним щупы мультиметра, переведённого в режим замера «Ω» (на пределе десятки кОм). При исправной изоляции прибор будет показывать сопротивление в пределах 3,5-10 кОм.

    Нормируемые показатели

    Для современных кабельных изделий действующие нормативы по сопротивлению изоляции в режиме проверки постоянным током выглядят следующим образом:

    1. для силового кабеля, эксплуатируемого в сетях с напряжениями более 1000 Вольт, величина сопротивления строго не нормируется; при этом её рекомендуемое значение должно превышать 10 МОм;
    2. для образцов кабельной продукции, работающих в сетях с максимумом напряжения до 1000 Вольт, нормируемое сопротивление не должно быть меньше, чем 0,5 МОм;
    3. для проводных изделий контрольного назначения сопротивление не должна быть менее 1 МОм.

    При изучении вопроса о том, какова периодичность проведения испытаний изоляции, необходимо отметить, что этот показатель определяется нормативами, приводимыми в ПТЭЭП.

    Так для осветительных установок и сетей, например, сопротивление изоляции измеряется один раз в три года. Аналогичные требования предъявляются и к электропроводке большинства категорий промышленных сетей.

    Дополнительная информация! В наружных электрических сетях, а также в особо опасных помещениях проверка изоляции проводки организуется ежегодно.

    Такие же сроки должны соблюдаться и в случаях, когда испытывают проводку промышленного оборудования специального назначения (краны, лифты и тому подобное).

    Правила работы с мегомметром

    Для проведения специальных испытаний, организуемых с учётом требований к периодичности замеров сопротивления у изоляции электропроводки, применяются мегомметры с пределами замеров до нескольких Мегом.

    При работе с этими приборами должны соблюдаться определённые правила, позволяющие избегать опасных ситуаций в обращении с высоковольтным оборудованием.

    Последнее означает, что непосредственно перед началом замеров сопротивления следует проверить мегомметр на работоспособность. Для этого необходимо закоротить контрольные выводы прибора, а затем, вращая ручку встроенного в него генератора, убедиться в наличии короткого замыкания по отклонению стрелки прибора.

    Вслед за тем следует разомкнуть концы измерительных шин и тем же способом проверить отсутствие отклонения, свидетельствующего об обрыве цепи.

    При выполнении контрольных замеров должны быть приняты необходимые меры защиты от высоковольтного напряжения, позволяющие организовать проверку без повышенной опасности для испытателя.

    С этой целью перед обследованием промышленных установок с помощью мегомметра со всех цепей, на которых должно замеряться сопротивление изоляции, в первую очередь необходимо снять рабочее напряжение.

    И лишь после этого можно приступать к проверке изоляции между фазным, нулевым и заземляющим проводниками электрической цепи. Во всех указанных случаях показания прибора должны превышать 0,5 МОм.

    После того, как испытание изоляции завершено, все замеры выполнены – фазный провод исследуемой цепи следует разрядить, прикоснувшись к нему хорошо заземлённым проводом.

    Внимательное ознакомление с приведённым материалом позволит пользователю иметь представление о сроках и методах проведения испытаний. При этом всегда следует помнить о том, что подобными замерами занимаются специальные лаборатории, оснащённые высоковольтным оборудованием и располагающие штатом классных специалистов.

    Как часто проводятся измерения сопротивления изоляции? | ЭлектроАС

    Дата: 28 октября, 2010 | Рубрика: Вопросы и Ответы, Электроизмерения
    Метки: Замер сопротивления изоляции, Комплекс электроизмерений, ПТЭЭП, Электроизмерения

    Этот материал подготовлен специалистами компании "ЭлектроАС".
    Нужен электромонтаж или электроизмерения? Звоните нам!

    Станислав
    Как часто проводится измерения сопротивления изоляции, и каким документом регулируется?

    Ответ:
    В соответствии с правилами технической эксплуатации электроустановок потребителей (ПТЭЭП), измерения сопротивления изоляции проводов и кабелей проводятся не реже чем 1 раз в 3 года. Конкретный срок электроизмерений устанавливается системой планово-предупредительного ремонта (ППР), утвержденного техническим руководителем Потребителя.

    ПТЭЭП
    2.12.17
    Проверка состояния стационарного оборудования и электропроводки аварийного и рабочего освещения, испытание и измерение сопротивления изоляции проводов, кабелей и заземляющих устройств должны проводиться при вводе сети электрического освещения в эксплуатацию, а в дальнейшем по графику, утвержденному ответственным за электрохозяйство Потребителя, но не реже одного раза в три года. Результаты замеров оформляются актом (протоколом) в соответствии с нормами испытания электрооборудования (Приложение 3).

    3.6.2
    Конкретные сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте (далее – К), при текущем ремонте (далее – Т) и при межремонтных испытаниях и измерениях, т.е. при профилактических испытаниях, выполняемых для оценки состояния электрооборудования и не связанных с выводом электрооборудования в ремонт (далее – М), определяет технический руководитель Потребителя на основе Приложения 3 настоящих Правил с учетом рекомендаций заводских инструкций, состояния электроустановок и местных условий.
    Указанная для отдельных видов электрооборудования периодичность испытаний в разделах 1-28 является рекомендуемой и может быть изменена решением технического руководителя Потребителя.
    Приложение 3

    Приложение 3.1
    Таблица 37
    - Электропроводки, в том числе осветительные сети:
    Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения производятся 1 раз в 3 года. При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов.
    В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены.
    - Стационарные электроплиты:
    Измерения сопротивления изоляции производится при нагретом состоянии плиты не реже 1 раза в год.

    Более подробную информацию о сроках проведения электроизмерений можно прочитать, пройдя по ссылке «Какова периодичность профилактического электроизмерения электрооборудования и электросетей?«.

    Прочая и полезная информация

    Прочая и полезная информация

    Проверка сопротивления изоляции

    - проверка сопротивления изоляции производится мегомметром

    Тест на сопротивление изоляции - второй тест, требуемый стандартами тестирования электробезопасности.

    Тест сопротивления изоляции заключается в измерении сопротивления изоляции тестируемого устройства, при этом фаза и нейтраль замыкаются накоротко. Измеренное сопротивление должно быть выше указанного в международных стандартах предела.

    Мегаомметр (также называемый измеритель сопротивления изоляции , тераомметр) затем используется для измерения омического значения изолятора при постоянном напряжении с большой стабильностью.

    Для измерения сопротивления высокого значения используются методы измерения тока низкого значения. Источник постоянного напряжения подается на измеряемое сопротивление, и результирующий ток считывается на высокочувствительной цепи амперметра, которая может отображать значение сопротивления.

    В нашем ассортименте тестеров сопротивления изоляции используются два типа цепей амперметра, каждая из которых выбирается в зависимости от измеряемых значений сопротивления.

    ИСПЫТАНИЕ ИЗОЛЯЦИИ

    Его цель - измерить сопротивление изоляции под постоянным напряжением высокой стабильности, обычно 50, 100, 250, 500 или 1000 В постоянного тока. Оммическое значение сопротивления изоляции выражается в МОм (МОм). В соответствии с конкретными стандартами испытание сопротивления изоляции может проводиться при напряжении до 1500 В постоянного тока. Благодаря стабильности источника напряжения можно регулировать испытательное напряжение с шагом в 1 вольт.

    Критична стабильность напряжения; нерегулируемое напряжение резко упадет при плохой изоляции, что приведет к ошибочным измерениям.

    ЦЕПЬ АККУМУЛЯТОРА

    Вход вольтметра, связанный с сопротивлением, образует цепь шунтирующего амперметра. Эта настройка позволяет измерять любое значение I, множество комбинаций чувствительности и значений RI.

    Эта схема используется для измерения тока высоких значений, которые соответствуют измерению сопротивления низких значений (от l x l04 Ом до 2,106 Ом).

    ЦЕПЬ АМПЕРМЕТРА ОБРАТНОЙ СВЯЗИ

    Эта схема чаще всего используется в наших приборах.Он охватывает измерение сопротивления высоких значений, превышающих 2,106 Ом. Принцип показан на диаграмме ниже.

    Входной ток проходит через обратную связь Rc.

    Низкий уровень тока смещения усилителя незначительно влияет на

    нынешний л.

    ИЗМЕРЕНИЕ ВЫСОКОГО ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ
    Использование источника постоянного напряжения дает преимущество, заключающееся в точном определении значения напряжения, используемого для измерения.Выбор этого напряжения - важный параметр.

    Действительно, значение высокого сопротивления зависит от приложенного к нему напряжения. Другие факторы влияют на измерение сопротивления высокого значения. Температура и относительная влажность - два важных параметра, которые влияют на значение сопротивления изолятора. Мы предлагаем на последней модели Sefelec измерение этих двух физических параметров (M1501P). В следующей таблице можно найти приблизительное значение сопротивления изоляционных материалов.

    ЗАЩИТНАЯ ЦЕПЬ
    Чтобы минимизировать токи утечки, мы предлагаем защитное соединение. Схема защиты позволяет снизить помехи на тестовом образце. Клемма, доступная на передней панели наших приборов, позволяет измерять одно из сопротивлений конфигурации Delta (т. Е. Кабеля с двумя проводниками и его внешним экраном), так что на результат не влияет наличие двух других шунтов. сопротивления.

    * Для этого клемма защиты приближена к потенциалу измерительного входа прибора.

    * Значение Rx будет определено с большой точностью, если ток lx, измеренный на входе мегомметра, действительно является током, протекающим через Rx.

    * Rp1: обозначает утечку между цепями высокого напряжения (ВН) и землей.

    * Rp3 - Rp4: представляют параллельную утечку Rx. Если средняя точка Rp2-Rp4 подключена к ограждению, эти утечки не повлияют на измерение Rx.

    * Rp2: не влияет, если ограждение заземлено.

    Сопротивление изоляции кабеля

    Последние новости
    • Выше 93% - открытие официального магазина электротехники - Купить сейчас!
    • Скидка 25% на рубашки для электротехники. Limited Edition ... Забронируйте сейчас
    • Получите бесплатное приложение для Android | Загрузите приложение «Электрические технологии» прямо сейчас!
    • ОФИЦИАЛЬНЫЙ МАГАЗИН
    • НАПИСАТЬ ДЛЯ ET
    • РЕКЛАМА
    • ПОЛИТИКА КОНФИДЕНЦИАЛЬНОСТИ
    • СВЯЗАТЬСЯ С НАМИ
    • Главная
    • РУКОВОДСТВО
    • ЭЛЕКТРИЧЕСКАЯ ПРОВОДКА
      • Домашняя электрическая схема
      • Новинка Электропроводка
      • Электропроводка и установка панели солнечных батарей
      • Схемы подключения батарей
      • 1-фазная и 3-фазная проводка
      • Электропроводка и управление Trending
    • EE ESSENTIALS
      • EE How To Exclusive
      • EE Calculators 2 Trending
      • EE Projects
      • EE Q & A Hot
      • EE MCQs Новый
      • EE Примечания и статьи
      • Анализ электрических цепей
      • EE Symbols New
    • BASIC
      • Основные понятия
      • Основные принципы электрооборудования Основы
      • Базовая электроника
      • Электрические формулы и уравнения
      • Монтаж электропроводки
      • Основы переменного тока
      • Переменный ток
      • MCQs с пояснительными ответами
      • Вопросы / ответы EE
    • МАШИНЫ
      • Все
      • Генератор
      • Батареи
      • Двигатели
      • Трансформатор
    • POWER
      • Энергетическая система
      • Коэффициент мощности
      • Воздушные линии
      • Защита
      • Возобновляемая и зеленая энергия
      • Система солнечных панелей
    • CONTROL
      • Устранение неисправностей
      • Как сделать
      • Защита
      • Ремонт
      • Электропитание и управление двигателем
      • EE-Tools, инструменты, устройства, компоненты и измерения
    • ЭЛЕКТРОНИКА
      • Все
      • Базовая электроника
      • Семейства булевой алгебры и логики
      • Combinational Di gital Circuits
      • Цифровая электроника
      • Logic Gates
      • Последовательные логические схемы
      • Сигналы
    • Подробнее
      • АНАЛИЗ ЦЕПИ
        • Цепи постоянного тока
        • Однофазные цепи переменного тока
        • Трехфазные электронные схемы переменного тока
        • Электрические / Программное обеспечение
        • Электрические / электронные символы
        • EE Calculators
      • Резисторы
        • Конденсаторы
        • Индуктивность и магнетизм
        • Электрические / электронные символы
        • Электрическое проектирование
      • Светоизлучающий диод
        • Развлечения со светодиодами
        • Возобновляемая и Зеленая энергия
        • Электроэнергия
        • Освещение
    • Искать
    • Переключить скин
    • Меню

    ЭЛЕКТРИЧЕСКИЕ ТЕХНОЛОГИИ

    • Искать
    • Кожа переключателя
    Home > EE Вопросы / ответы > Сопротивление изоляции кабеля | Почему кабели изолированы? Вопросы и ответы по EEЭлектрическая и электронная промышленность Примечания и статьиЗащита систем питанияРезисторыЭлектрическая технология

    8 Прочитать 3 минуты

    СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ КАБЕЛЯ

    Восемь советов по проверке сопротивления изоляции

    Проверка изоляции напряжением выше 1 кВ может быть быстрым и удобным способом собрать много полезной информации о состоянии электрооборудования.Однако для обеспечения безопасности и получения наилучших результатов важно, чтобы тестирование проводилось правильно. Эти советы должны помочь, но помните, что всегда важно следовать инструкциям производителя в отношении используемого набора для испытаний, соблюдать соответствующие стандарты и соблюдать передовые методы работы.

    1. Используйте правильные измерительные провода.

    Производители тестеров сопротивления изоляции прилагают большие усилия для создания наборов испытательных проводов, которые сделают их инструменты безопасными и удобными в использовании.Всегда используйте набор выводов, предназначенный для прибора, соответствующий испытательному напряжению, которое вы планируете использовать, и подходящий для испытуемого объекта. Если соединения не могут быть надежно выполнены, измерительный провод может случайно отсоединиться, и тестовый объект останется заряженным до опасно высокого напряжения. Никогда не используйте испытательные провода с признаками повреждения и никогда не пытайтесь ремонтировать поврежденные или изношенные провода - их замена - единственный безопасный вариант.

    2. Выберите наилучшее испытательное напряжение.
    Теперь доступны испытательные комплекты

    , которые позволят проводить испытания при напряжении до 15 кВ. Испытания при более высоких напряжениях могут дать дополнительную и более полезную информацию о состоянии изоляции испытуемого объекта, но использование напряжения, которое слишком высокое для того, чтобы выдержать конкретный испытательный объект, может серьезно повредить его. Всегда обращайтесь к данным поставщика для тестируемого объекта и следуйте содержащимся в нем указаниям по тестированию. Если это невозможно, обратитесь за помощью к производителю вашего тестера изоляции.

    3. Выберите правильный тест.

    Быстрое однократное измерение сопротивления изоляции иногда может предоставить полезные данные, но современные комплекты для измерения сопротивления изоляции могут предложить гораздо больше. Как правило, они предлагают оборудование для измерения индекса поляризации (PI), коэффициента диэлектрического поглощения (DAR), диэлектрического смещения (DD), ступенчатого напряжения (SV) и линейных испытаний. Полная информация об этих тестах и ​​о том, как их проводить, должна быть в руководстве к вашему прибору - если его нет, проконсультируйтесь с производителем.Некоторые из этих более сложных тестов занимают немного больше времени, но дают гораздо более надежную информацию о состоянии изоляции.

    4. Убедитесь, что вы знаете, что входит в тест

    Тщательный осмотр установки важен, чтобы определить, какое оборудование подключено, поскольку оно будет включено в испытание, особенно если отсоединить объект испытания и цепи сложно или дорого. Также необходимо обращать особое внимание на проводники, отходящие от установки.Поскольку чем больше оборудования будет включено в тест, тем ниже будет показание. В этом случае фактическое сопротивление изоляции испытуемого объекта может быть замаскировано соединительным оборудованием.

    5. Используйте инструмент с большим диапазоном измерения.

    Если ваш прибор показывает все вышеупомянутые результаты, скажем, 1 ТОм как бесконечность, вы не можете знать, что сопротивление изоляции вашего тестового объекта упало с 30 ТОм до 2 ТОм с момента последнего тестирования. Этот последний результат может по-прежнему попадать в диапазон, который считается приемлемым для тестируемого объекта, но такое сильное падение значения сопротивления часто является ценным ранним предупреждением о развитии проблемы.Прибор с большим диапазоном измерения предупредит вас об этой ситуации.

    6. Завершите тест перед отключением испытательного комплекта.

    Тестовые объекты могут содержать большой заряд, и, особенно когда они испытываются при высоком напряжении, накопленный заряд может быть смертельным. Современные тестировщики защищают от этой проблемы, безопасно выгружая тестовый объект, когда тест завершен или когда он завершен пользователем. Однако, если измерительные провода отключены преждевременно, функция разряда не сработает, и тестовый объект останется заряженным, что опасно.

    7. Используйте защитный зажим.

    Поверхностная утечка через объекты испытаний, такие как вводы, может значительно снизить их кажущееся сопротивление изоляции, и, как следствие, было много случаев утилизации изоляторов, когда все, что было действительно необходимо, - это их очистить. Использование защитного зажима тестового набора, который обычно подключается к оголенному проводу, намотанному вокруг поверхности тестируемого объекта, устраняет или, по крайней мере, значительно снижает влияние поверхностной утечки на результаты теста.И не забывайте, что выполнение двух измерений, одно с подключенным защитным зажимом, а второе без него, может дать очень хорошее представление о том, нуждается ли изолятор в очистке.

    8. Записывайте и отслеживайте результаты.

    Единичное измерение сопротивления изоляции может дать вам быстрое представление о состоянии изоляции, но серия измерений в течение определенного периода времени с записью и отображением результатов расскажет гораздо больше. Например, если сопротивление изоляции вашего тестового объекта со временем снижается, вероятно, неплохо выяснить причину, задолго до того, как оно снизится до точки отказа.Точные записи также быстро обнаружат любое внезапное отклонение от обычных значений сопротивления изоляции, что всегда является убедительным указанием на необходимость дальнейшего исследования.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *