Характеристика автомата: Что такое время токовые характеристики автоматических выключателей

Содержание

Что такое время токовые характеристики автоматических выключателей

При нормальной работе электросети и всех приборов через автоматический выключатель протекает электрический ток. Однако если сила тока по каким-либо причинам превысила номинальные значения, происходит размыкание цепи из-за срабатывания расцепителей автоматического выключателя.

Характеристика срабатывания автоматического выключателя является очень важной характеристикой, которая описывает то, насколько время срабатывания автомата зависит от отношения силы тока, протекающего через автомат, к номинальному току автомата.

Данная характеристика сложна тем, что для ее выражения необходимо использование графиков. Автоматы с одним и тем же номиналом будут при разных превышениях тока по-разному отключаться в зависимости от типа кривой автомата (так иногда называется токовая характеристика), благодаря чему имеется возможность применять автоматы с разной характеристикой для разных типов нагрузки.

Тем самым, с одной стороны, осуществляется защитная токовая функция, а с другой стороны, обеспечивается минимальное количество ложных срабатываний – в этом и заключается важность данной характеристики.

В энергетических отраслях бывают ситуации, когда кратковременное увеличение тока не связано с появлением аварийного режима и защита не должно реагировать на такие изменения. Это же относится и к автоматам.

При включении какого-нибудь мотора, к примеру, дачного насоса или пылесоса, в линии происходит достаточно большой бросок тока, который в несколько раз превышает нормальный.

По логике работы, автомат, конечно же, должен отключиться. К примеру, мотор потребляет в пусковом режиме 12 А, а в рабочем – 5. Автомат стоит на 10 А, и от 12 его вырубит. Что в таком случае делать? Если например поставить на 16 А, тогда непонятно отключится он или нет если заклинит мотор или замкнет кабель.

Можно было бы решить эту проблему, если его поставить на меньший ток, но тогда он будет срабатывать от любого движения. Вот для этого и было придумано такое понятие для автомата, как его «время токовая характеристика».

Какие существуют время токовые характеристики автоматических выключателей и их отличие между собой

Как известно основными органами срабатывания автоматического выключателя являются тепловой и электромагнитный расцепитель.

Тепловой расцепитель представляет собой пластину из биметалла, изгибающуюся при нагреве протекающим током. Тем самым в действие приводится механизм расцепления, при длительной перегрузке срабатывая, с обратнозависимой выдержкой времени. Нагрев биметаллической пластинки и время срабатывание расцепителя напрямую зависят от уровня перегрузки.

Электромагнитный расцепитель является соленоидом с сердечником, магнитное поле соленоида при определенном токе втягивает сердечник, приводящий в действие механизм расцепления – происходит мгновенное срабатывание при КЗ, благодаря чему пострадавший участок сети не будет дожидаться прогревания теплового расцепителя (биметаллической пластины) в автомате.

Зависимость времени срабатывания автомата от силы тока, протекающего через автомат, как раз и определяется время токовой характеристикой автоматического выключателя.

Наверное, каждый замечал изображение латинских букв B, C, D на корпусах модульных автоматов. Так вот они характеризуют кратность уставки электромагнитного расцепителя к номиналу автомата, обозначая его время токовую характеристику.

Эти буквы указывают ток мгновенного срабатывания электромагнитного расцепителя автомата. Проще говоря, характеристика срабатывания автоматического выключателя показывает чувствительность автомата – наименьший ток при котором автомат отключится мгновенно.

Автоматы имеют несколько характеристик, самыми распространенными из которых являются:

  • - B — от 3 до 5 ×In;
  • - C — от 5 до 10 ×In;
  • - D — от 10 до 20 ×In.

Что означают цифры указанные выше?

Приведу небольшой пример. Допустим, есть два автомата одинаковой мощности (равные по номинальному току) но характеристики срабатывания (латинские буквы на автомате) разные: автоматы В16 и С16.

Диапазоны срабатывания электромагнитного расцепителя для В16 составляет 16*(3...5)=48...80А. Для С16 диапазон токов мгновенного срабатывания 16*(5...10)=80...160А.

При токе 100 А автомат В16 отключится практически мгновенно, в то время как С16 отключится не сразу а через несколько секунд от тепловой защиты (после того как нагреется его биметаллическая пластина).

В жилых зданиях и квартирах, где нагрузки чисто активные (без больших пусковых токов), а какие-нибудь мощные моторы включаются нечасто, самыми чувствительными и предпочтительными к применению являются автоматы с характеристикой B. На сегодняшний день очень распространена характеристика С, которую также можно использовать для жилых и административных зданий.

Что касается характеристики D, то она как раз годится для питания каких-либо электромоторов, больших двигателей и других устройств, где могут быть при их включении большие пусковые токи. Также через пониженную чувствительность при КЗ автоматы с характеристикой D могут быть рекомендованы для использования как вводные для повышения шансов селективности со стоящими ниже групповыми АВ при КЗ.

Согласитесь логично, что время срабатывания зависит от температуры автомата. Автомат отключится быстрее, если его тепловой орган (биметаллическая пластина) разогретый. И наоборот при первом включении когда биметалл автомата холодный время отключения будет больше.

Поэтому на графике верхняя кривая характеризует холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата.

Пунктирной линией обозначен предельный ток срабатывания для автоматов до 32 А.

Что показано на графике время токовой характеристики

На примере 16-Амперного автомата, имеющего время токовую характеристику C, попробуем рассмотреть характеристики срабатывания автоматических выключателей.

На графике можно увидеть, как протекающий через автоматический выключатель ток влияет на зависимость времени его отключения. Кратность тока протекающего в цепи к номинальному току автомата (I/In) изображает ось Х, а время срабатывания, в секундах – ось У.

Выше говорилось, что в состав автомата входит электромагнитный и тепловой расцепитель. Поэтому график можно разделить на два участка. Крутая часть графика показывает защиту от перегрузки (работа теплового расцепителя), а более пологая часть защиту от КЗ (работа электромагнитного расцепителя).

Как видно на графике если к автомату С16 подключить нагрузку 23 А то он должен отключится за 40 сек. То есть при возникновении перегрузки на 45 % автомат отключится через 40 сек.

На токи большой величины, которые могут привести к повреждению изоляции электропроводки автомат способен реагировать мгновенно благодаря наличию электромагнитного расцепителя.

При прохождении через автомат С16 тока 5×In (80 А) он должен сработать через 0.02 сек (это если автомат горячий). В холодном состоянии, при такой нагрузке, он отключится в пределах 11 сек. и 25 сек. (для автоматов до 32 А и выше 32 А соответственно).

Если через автомат будет протекать ток равный 10×In, то он отключается за 0,03 секунды в холодном состоянии или меньше чем за 0,01 секунду в горячем.

К примеру, при коротком замыкании в цепи, которая защищена автоматом С16, и возникновении тока в 320 Ампер, диапазон времени отключения автомата будет составлять от 0,008 до 0,015 секунды. Это позволит снять питание с аварийной цепи и защитить от возгорания и полного разрушения сам автомат, закоротивший электроприбор и электропроводку.

Автоматы с какими характеристиками предпочтительнее использовать дома

В квартирах по возможности необходимо обязательно применять автоматы категории B, которые являются более чувствительными. Данный автомат отработает от перегрузки так же, как и автомат категории С. А вот о случае короткого замыкания?.

Если дом новый, имеет хорошее состояние электросети, подстанция находится рядом, а все соединения качественные, то ток при коротком замыкании может достигать таких величин, что его должно хватить на срабатывание даже вводного автомата.

Ток может оказаться малым при коротком замыкании, если дом является старым, а к нему идут плохие провода с огромным сопротивлением линии (особенно в сельских сетях, где большое сопротивление петли фаза-нуль) – в таком случае автомат категории C может не сработать вообще. Поэтому единственным выходом из этой ситуации является установка автоматов с характеристикой типа В.

Следовательно, время токовая характеристика типа В является определенно более предпочтительной, в особенности в дачной или сельской местности или в старом фонде.

В быту на вводной автомат вполне целесообразно ставить именно тип С, а на автоматы групповых линий для розеток и освещения – тип В. Таким образом будет соблюдена селективность, и где-нибудь в линии при коротком замыкании вводной автомат не будет отключаться и «гасить» всю квартиру.

Похожие материалы на сайте:

Понравилась статья - поделись с друзьями!

 

Время-токовая характеристика С автоматических выключателей

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В прошлой статье я Вам очень подробно рассказывал про время-токовую характеристику типа В на примере автоматических выключателей ВМ63-1 от КЭАЗ с номинальными токами 10 (А) и 16 (А). Я продолжу начатую тему и сегодня на очереди время-токовая характеристика типа С.

Это, наверное, одна из самых распространенных и применяемых характеристик в жилом секторе, хотя порой ее применение не всегда оправдано, но об этом еще поговорим в самое ближайшее время. Кому интересно, то подписывайтесь на рассылку новостей сайта.

Как раз мне в электролабораторию пришли на испытания пару десятков модульных автоматов серии Z406 (Effica) от компании Elvert (Китай).

Впервые сталкиваюсь с этим производителем, поэтому прогрузить эти автоматы будет вдвойне интереснее.

По внешнему виду никаких особенных отличий у автоматов Elvert от автоматов других производителей я не нашел.

Единственное, что сразу бросилось в глаза, так это наличие и исполнение заглушек для пломбировки клемм автоматов.  Заглушкам модульных автоматов я посвятил отдельную статью, где рассмотрел различные виды заглушек у основных производителей (IEK, Legrand, Schneider Electric, КЭАЗ), но такого варианта я еще не встречал.

Заглушки автоматов Elvert всегда идут в комплекте, а значит не нужно заботиться о том, чтобы приобретать их отдельно.

Заглушка легко перемещается по направляющим, тем самым открывая и закрывая доступ к зажимному винту.

Если в заглушке нет необходимости или она Вам мешает, то ее можно снять с автомата, переместив до упора и слегка сжав.

Проволока для пломбы продергивается через специальные отверстия, сделанные, как в самой заглушке, так и в корпусе автомата.

Вот на примере прогрузки автоматов Elvert я Вас подробно и познакомлю с время-токовой характеристикой типа С. А в качестве примера возьму два автомата: однополюсный автомат с номинальным током 16 (А) и трехполюсный автомат с номинальным током 63 (А).

Напомню, что тип время-токовой характеристики всегда указывается на корпусе автомата в виде латинской буквы, и в нашем случае, это С16 и С63. Цифры после буквы обозначают величину номинального тока автомата.

Согласно ГОСТ Р 50345-2010, п.5.3.5, существует 3 стандартных типа время-токовой характеристики (или диапазонов токов мгновенного расцепления): B, C и D. Так вот автомат с характеристикой С должен срабатывать в пределах от 5-кратного до 10-кратного тока от номинального (5·In до 10·In).

Помимо стандартных характеристик типа В, С и D, существуют еще и не стандартные характеристики типа А, К и Z, но о них я расскажу Вам как-нибудь в другой раз.

Согласно ГОСТ Р 50345-2010, п.3.5.17, ток мгновенного расцепления — это наименьшая величина тока, при котором автоматический выключатель сработает (отключится) без выдержки времени, т.е. это и есть его электромагнитный расцепитель (ЭР).

А теперь проверим заявленные характеристики представленных выше автоматов. Для этого я воспользуюсь, уже известным Вам, многофункциональным устройством РЕТОМ-21.

Вот график время-токовой характеристики (сокращенно, ВТХ) типа С, взятый из паспорта автомата Elvert:

Помимо характеристики С, на графике показаны характеристики В и D, но на них в рамках данной статьи не обращайте внимания.

На графике показана зависимость времени отключения автоматического выключателя от протекающего через него тока. Ось Х — это кратность тока в цепи к номинальному току автомата (I/In). Ось У — время срабатывания (t), в секундах (минутах).

Запомните, что время-токовые характеристики практически всех автоматов изображают при температуре окружающей среды +30°С и данная характеристика не исключение.

График разделен двумя линиями, которые и определяют разброс времени срабатывания зон теплового (зеленого цвета на графике) и электромагнитного (коричневого цвета на графике) расцепителей автомата.

Верхняя линия теплового расцепителя (зеленого цвета на графике) — это холодное состояние, т.е. без предварительного пропускания тока через автомат, а нижняя линия теплового расцепителя — это горячее состояние автомата, т.е. который только что был в работе или сразу же после его срабатывания.

1. Токи условного нерасцепления (1,13·In)

У каждого автомата есть такое понятие, как «условный ток нерасцепления» и он всегда равен 1,13·In. При таком токе автомат не отключится в течение 1 часа (для автоматов с номинальным током ≤ 63А) и в течение 2 часов (для автоматов с номинальным током > 63А).

Точку условного нерасцепления автомата (1,13·In) всегда отображают на графике. Если провести прямую, то видно, что она уходит как бы в бесконечность и с нижней линией теплового расцепителя пересекается в диапазоне от 60 до 120 минут, в зависимости от номинала автомата.

Таким образом, при прохождении через наш рассматриваемый автомат Elvert С16 тока 1,13·In = 18,08 (А) его тепловой расцепитель не должен сработать в течение 1 часа. А при прохождении через автомат С63 тока 1,13·In = 71,19 (А) его тепловой расцепитель не должен сработать в течение 1 часа.

Вот значения «токов условного нерасцепления» для различных номиналов автоматов:

  • 10 (А) — 11,3 (А)
  • 16 (А) — 18,08 (А)
  • 20 (А) — 22,6 (А)
  • 25 (А) — 28,25 (А)
  • 32 (А) — 36,16 (А)
  • 40 (А) — 45,2 (А)
  • 50 (А) — 56,5 (А)
  • 63 (А) — 71,19 (А)

Проверку рассматриваемых автоматов на токи «условного нерасцепления» я проводить не буду, т. к. это занимает достаточно длительное время, да и согласно нашей утвержденной методики на автоматы, такую проверку мы не проводим.

2. Токи условного расцепления (1,45·In)

Есть еще понятие, как «условный ток расцепления» автомата и он всегда равен 1,45·In. При таком токе автомат отключится за время не более 1 часа (для автоматов с номинальным током ≤ 63А) и за время не более 2 часов (для автоматов с номинальным током > 63А).

Кстати, точку условного расцепления автомата (1,45·In) практически всегда отображают на графике. Если провести прямую, то видно, что она пересекает график в двух точках зоны теплового расцепителя: нижнюю линию в точке 60-70 секунд, а верхнюю — в точке от 60 до 120 минут, в зависимости от номинала автомата.

Таким образом, автомат с номинальным током 16 (А) в течение часа, не отключаясь, может держать нагрузку порядка 23,2 (А), а автомат с номинальным током 63 (А) — порядка 91,35 (А). Но это при условии, что автоматы изначально были в холодном состоянии, в ином случае время их отключения будет значительно меньше.

Вот значения «токов условного расцепления» автоматов различных номиналов для их холодного состояния:

  • 10 (А) — 14,5 (А)
  • 16 (А) — 23,2 (А)
  • 20 (А) — 29 (А)
  • 25 (А) — 36,25 (А)
  • 32 (А) — 46,4 (А)
  • 40 (А) — 58(А)
  • 50 (А) — 72,5 (А)
  • 63 (А) — 91,35 (А)

Вот об этом не стоит забывать при выборе сечения проводов и кабелей для электропроводки (вот Вам таблица в помощь).

Вот представьте себе, что кабель сечением 2,5 кв.мм Вы защищаете автоматом на 25 (А). Вдруг по некоторым причинам Вы перегрузили линию до 36 (А). Такое зачастую бывает, особенно в зимнее время, когда включены нагреватели и множество различных бытовых приборов.

Автомат номиналом 25 (А) при токе 36 (А) может не отключаться в течение целого часа (из холодного состояния), а по кабелю будет идти ток, который превышает его длительно-допустимый ток (25 А).

За это время кабель конечно же не расплавится, но нагреться может достаточно сильно. Более точнее скажу, когда проведу данный эксперимент и измерю температуру нагрева с помощью тепловизора. Так что кому интересно, то подписывайтесь на рассылку сайта «Заметки Электрика», чтобы не пропустить выход новых статей.

А Вы все знаете, что повышенная температура всегда подвергает изоляцию ускоренному старению, т.е. сегодня нагрели, завтра и послезавтра перегрели, происходит ее старение и растрескивание, изоляция ухудшается, что в итоге может привести к короткому замыканию и прочим разным последствиям.

А если еще учесть то, что в последнее время производители кабельной продукции преднамеренно занижают сечения жил, то ситуация тем более усугубляется.

Некоторые мои коллеги в Интернете, ссылаясь на мое мнение, утверждают, что я не прав и сильно перестраховываюсь. Да, возможно это и так, и температура нагрева кабеля не выйдет за предельные нормы, но еще раз повторю про ситуацию с занижением сечения жил. Вы думаете, что приобрели кабель сечением 2,5 кв. мм, но по факту это может оказаться кабель с сечением жил 2,0 кв.мм. И про прочей равной нагрузке он может нагреться уже гораздо сильнее. Поэтому я считаю, что данный факт мы, как специалисты, должны учитывать в том числе.

В принципе, выбор номиналов автоматических выключателей это отдельная тема для статьи. Я лишь привел здесь одну из наиболее распространенных ошибок.

Лично я рекомендую защищать кабели следующим образом:

  • 1,5 кв.мм — защищаем автоматом на 10 (А)
  • 2,5 кв.мм —  защищаем автоматом на 16 (А)
  • 4 кв.мм —  защищаем автоматом на 20 (А) и 25 (А)
  • 6 кв.мм —  защищаем автоматом на 25 (А) и 32 (А)
  • 10 кв.мм — защищаем автоматом 40 (А)
  • 16 кв.мм — защищаем автоматом 50 (А)
  • 25 кв.мм — защищаем автоматом 63 (А)

Для удобства все данные я свел в одну таблицу:

А теперь проверим рассмотренные автоматы на токи условного расцепления.

Чтобы мне не терять время, я буду сразу проверять 4 автомата с номинальным током 16 (А), подключив их последовательно.

В общем наводим ток 23,2 (А) и засекаем время.

Первым отключился четвертый автомат, время срабатывания которого составило 108,4 (сек.).

Сейчас я исключу отключившийся автомат из схемы и продолжу испытания остальных. Более подробнее про это Вы можете посмотреть в видеоролике в конце статьи, а сейчас я укажу получившееся время срабатывания всех четырех автоматов:

  • автомат №1 — 376,32 (сек.)
  • автомат №2 — 130,48 (сек.)
  • автомат №3 — 220,92 (сек.)
  • автомат №4 — 108,4  (сек.)

Все наши автоматы сработали в пределах заявленных время-токовых характеристик.

Теперь у нас на очереди трехполюсный автоматический выключатель Elvert с номинальным током 63 (А). Проверять его тепловой расцепитель я буду, пропуская одновременно через все три полюса ток 91,35 (А).

Автомат сработал за время 267,2 сек., что также соответствует ВТХ.

3. Проверка теплового расцепителя при токе 2,55·In

Согласно ГОСТ Р 50345-2010, п. 9.10.1.2 и таблицы №7, если через автоматический выключатель будет проходить ток, равный 2,55·In, то его тепловой расцепитель должен сработать за время не менее 1 секунды и не более 60 секунд для автоматов с номинальным током ≤ 32 (А), или не менее 1 секунды и не более 120 секунд для автоматов с номинальным током > 32 (А).

На графике видно, что нижний предел по отключению взят с некоторым запасом, т.е. не 1 секунду, а целых 8 секунд. Верхний предел тоже взят с небольшим запасом — не 60 секунд, а 40 секунд. На то есть право у производителей автоматов. Вот поэтому они всегда к каждому автомату прикладывают, непосредственно, свою ВТХ, которая, естественно, что удовлетворяет всем требованиям ГОСТ Р 50345-2010.

Проверим!

Автомат Z406 от Elvert с номинальным током 16 (А) при токе 40,8 (А), согласно ГОСТ Р 50345-2010, должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния. Но, согласно ВТХ завода-производителя, время отключения должно находиться в пределах от 8 до 40 секунд.

Первый раз автомат отключился за время 5,35 (сек.), а второй раз — за время 5,26 (сек).

Как видите, время срабатывания автомата лежит вне предела ВТХ завода-производителя, но вполне соответствует ГОСТ Р 50345-2010.

И для какой цели производитель отобразил график ВТХ в таком виде, если автоматы срабатывают вне этого графика?! Это несоответствие необходимо исправить!

Автомат Z406 от Elvert с номинальным током 63 (А) при токе 160,65 (А) должен отключиться за время не менее 1 секунды из горячего состояния и не более 120 секунд из холодного состояния. Каждый полюс автомата я буду прогружать в отдельности.

Автомат отключился за время:

  • первый полюс - 15,37 (сек.)
  • второй полюс - 31,89 (сек.)
  • третий полюс - 30,52 (сек.)

4. Проверка электромагнитного расцепителя при токе 5·In

Согласно ГОСТ Р 50345-2010, п. 9.10.2.1 и таблицы №7, если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время не менее 0,1 секунды. Верхний предел по времени ГОСТом Р 50345-2010 не определен, и у автоматов разных производителей здесь может наблюдаться не большой разброс в пределах от 1 до 10 секунд.

Странно, конечно, ведь речь идет об электромагнитном расцепителе и он должен срабатывать без выдержки времени. Но тем не менее, при токе 3·In электромагнитный расцепитель еще не срабатывает и по факту автомат отключается все таки от теплового расцепителя. Вот именно поэтому измеренное значение петли фаза-ноль сравнивают не с 5-кратным током, а с 10-кратным, учитывая коэффициент 1,1.

Итак, автомат Z406 от Elvert с номинальным током 16 (А) при токе 80 (А) должен отключиться за время не менее 0,1 секунды.

Первый раз автомат отключился за время 0,942 (сек.), а второй раз — за время 0,95 (сек.), что вполне удовлетворяет вышеперечисленным требованиям.

Автомат Z406 от Elvert с номинальным током 63 (А) при токе 315 (А) должен отключиться за время не менее 0,1 секунды. Здесь аналогично, каждый полюс автомата я буду прогружать в отдельности.

Автомат отключился за время:

  • первый полюс - 4,97 (сек.)
  • второй полюс - 3,36 (сек.)
  • третий полюс - 5,2 (сек.)

5. Проверка электромагнитного расцепителя при токе 10·In

Согласно ГОСТ Р 50345-2010, п.9.10.2.1 и таблицы №7, если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время менее 0,1 секунды.

Автомат Z406 от Elvert с номинальным током 16 (А) при токе 160 (А) должен отключиться за время менее 0,1 секунды.

Первый раз автомат отключился за время 6,5 (мсек.), а второй раз — за время 6,5 (мсек.).

Автомат Z406 от Elvert с номинальным током 63 (А) при токе 630 (А) должен отключиться за время менее 0,1 секунды. Здесь аналогично, каждый полюс автомата я буду прогружать в отдельности.

Автомат отключился за время:

  • первый полюс - 7,6 (мсек.)
  • второй полюс - 7,8 (мсек.)
  • третий полюс - 7,6 (мсек.)

Как видите, оба автомата полностью соответствуют требованиям ГОСТ Р 50345-2010 и заявленным характеристикам завода-изготовителя Elvert.

Всю информацию по пределам срабатывания время-токовых характеристик различных типов (B, C и D) я представил в виде общей таблицы:

Как видите, разницей между время-токовыми характеристиками типа В, С и D являются только значения срабатывания электромагнитного расцепителя (ЭР). По тепловой защите они работают в одних пределах по времени.

Кому интересно, то смотрите весь процесс прогрузки автоматов в моем видеоролике:

P.S. Это все, что я хотел рассказать Вам про время-токовую характеристику типа С на примере модульных автоматических выключателей Elvert серии Z406. Надеюсь, что теперь Вы сможете самостоятельно определять пределы времени срабатывания модульных автоматов с характеристикой С, а также правильно рассчитывать сечения проводов в зависимости от номиналов автоматов. Все интересующие вопросы пишите в комментариях. Спасибо за внимание. До новых встреч.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Характеристики срабатывания автоматов. Принцип выбора

Автоматические выключатели: характеристики срабатывания и ситуации применения

Автоматический выключатель (автомат)  - коммутационное устройство, проводящее ток в нормальном режиме и блокирующее подачу электроэнергии в случаи аварии: перегрузки или короткого замыкания. 

Для размыкания электрической цепи автоматические выключатели оборудованы специальными устройствами – расцепителями. 

В современных модульных автоматах используется два типа расцепителей: 

1) Тепловой – служит для защиты от перегрузки

Биметаллическая пластина, которая изгибается при нагреве, проходящим через нее током, тем самым размыкая контакт. Чем больше перегрузка, тем быстрее нагревается биметаллическая пластинка и быстрее срабатывает расцепитель.

Нормируемые параметры – следующие:

  • 1,13 (In) –  тепловой расцепитель не срабатывает в течение 1 ч.
  • 1,45 (In) – расцепитель срабатывает в течение < 1 ч.
2) Электромагнитный (отсечка) – предназначен для защиты от короткого замыкания

Соленоид с подвижным сердечником, который втягивается при превышении заданного порога тока, мгновенно размыкая электрическую цепь. Отсечка срабатывает при существенном превышении номинального тока (2÷10 In) в зависимости от характеристики срабатывания. Рассмотрим наиболее распространенные автоматы с характеристиками: (B, C, D, K, Z).

1) Характеристика В (3-5 In)

Электромагнитный расцепитель срабатывает при токе, превышающем номинальный в 5 раз. Время отключения <1с. При токе, превышающим номинальный в 3 раза, в течение 4-5 с. сработает тепловой расцепитель. (Обращаем ваше внимание, что для постоянного тока (DC) граница срабатывания будет немного сдвинута (х1,5). 

Автоматические выключатели «В» применяются в осветительных сетях с небольшими пусковыми токами (или полным их отсутствием). 

2) Характеристика С (5-10 In)

Наиболее распространённые автоматические выключатели. Минимальный ток срабатывания составляет 5 In. При этом значении через 1,5 с сработает тепловой расцепитель, а при 10 кратном превышении номинала, электромагнитный разомкнет цепь меньше, чем за 0,1 с.

Автоматические выключатели «С» подходят для сетей со смешанной нагрузкой (освещение, бытовые электроприборы)

3) Характеристика D (10-20 In)

Характеризуются большой устойчивостью к перегрузке. Тепловой расцепитель разомкнет цепь за 0,4 при превышении порога в 10 In. Срабатывание соленоида произойдет при двадцатикратном превышении номинального тока.

Автоматические выключатели «D» используются для подключения электродвигателей с кратковременными большими токами (пусковые токи)

4) Характеристика K (8-15 In)

Для автоматов этой категории характерна большая разница в показателях для постоянного и переменного токов. Например, электромагнитный расцепитель гарантировано разомкнет цепь за 0,02 с. при достижении значения в 12 In в цепи переменного тока, а для постоянного это значения увеличивается до 18 In. При превышении номинального тока в 1,5 раза в течение 2 мин. сработает тепловой расцепитель.

Автоматы с характеристикой «K» применяются для подключения преимущественно индуктивной нагрузки.

5) Характеристика Z (2-3 In)

Автоматы этой категории также имеют различия в параметрах срабатывания для переменного и постоянного токов.

Электромагнитный расцепитель разомкнет цепь при трёхкратном превышении номинальных параметров в цепи переменного тока и 4,5 In в цепях постоянного тока. Тепловой расцепитель сработает при токе в 1,2 от номинального в течение часа.

Вследствие небольших значений по превышению номинальных параметров, Автоматы «Z» применяются только для защиты высокочувствительной электронной аппаратуры.

Подытоживая вышесказанное отметим, что для бытового использования подходят автоматы с характеристиками: «В» и «С», при возможном подключении электродвигателей с высокими пусковыми токами имеет смысл использовать автоматы категории «Е» (во избежание ложного срабатывания). Категория «К» подходит при работе с индуктивными нагрузками, а «Z» для электронного оборудования, чувствительного к небольшим перегрузкам. 

И последнее: если вы сомневаетесь в правильности выбора - обратитесь к профессиональному электрику, не гадайте!

В нашем магазине представлены автоматы всех перечисленных серий, при отсутствии того или иного оборудования его можно легко заказать.

Чтобы узнать подробности и заказать электротехническую продукцию звоните по телефону 
(495) 777-05-30 
Или оставьте сообщение через форму обратной связи в разделе "Контакты". 

A, B, C, D, K и Z

На сегодняшний день автоматические выключатели стали незаменимым частью электрической цепи как на производстве, так и в быту. Все автоматические выключатели обладают множеством параметров, один из которых – время токовая характеристика. В данной статьи мы рассмотрим, чем отличаются автоматы с время токовой характеристиками категории A, B, C, D и где данные выключатели применяются.


Работа автоматического выключателя

Независимо от того к какому классу относится автоматический выключатель, его основная задача — это срабатывание в случае появления чрезмерного тока в сети, и прежде, чем произойдет повреждение защитного оборудования и кабеля автомат должен обесточить сеть.

 В сети бывают 2 вида опасных для сети токов:

Сверхтоки вызванный КЗ. Причиной возникновения короткого замыкания является замыкание нейтрального и фазного проводника между собой. В обычном состоянии фазный и нейтральный провод подключены к нагрузке отдельно друг от друга.

Токи перегрузки. Появление таких токов зачастую происходит в том случае, если суммарная мощность подключенных устройств к линии превышает предельно допустимую норму.

 Токи перегрузки

Токи перегрузки зачастую бывают немного больше номинального значения тока автомата, поэтому токи перегрузки как правило не вызывают повреждение цепи в случае недолговременной продолжительности действия. Следовательно, нам не нужно мгновенно отключать сеть в данном случае (зачастую величина тока быстро приходит в норму). В каждом автоматическом выключателе предусмотрено определенное превышение силы тока, которое приводит к срабатыванию автомата.

Время срабатывания автоматического выключателя связано с величиной перегрузки. При значительном превышении номинала выключение автомата происходит за считанные секунды, а при небольшом превышении нормы, срабатывание автомата может произойти в течении часа и больше. Данная особенность обусловлена использованием в автомате биметаллической пластины, которая изгибается при нагреве током превышающего норму и тем самым приводит к срабатыванию автомата. Чем большее значение тока, тем быстрее изгибается пластина и тем раньше срабатывает автомат.

Токи КЗ

При правильном выборе автомата, ток КЗ должен приводить к его мгновенному срабатыванию. За обнаружение и немедленную реакцию автомата отвечает электромагнитный расцепитель. Конструктивно расцепитель представляет собой соленоид с сердечником. Под воздействием сверхтока сердечник вызывает мгновенное срабатывание автомата и данное отключение должно происходить в течении доли секунд.

Здесь мы плавно переходим к основному вопросу, которому посвящен наш материал. Существует, как мы уже говорили, несколько классов АВ, различающихся по времятоковой характеристике. Наиболее распространенными из них, которые применяются в бытовых электросетях, являются устройства классов B, C и D. Автоматические выключатели, относящиеся к категории A, встречаются значительно реже. Они наиболее чувствительны и используются для защиты высокоточных аппаратов.

Теперь мы плавно переходим к главному вопросу связанному с срабатыванием автоматических выключателей в зависимости от его времятоковой характеристики. Между собой эти устройства различаются по току мгновенного расцепления. Его величина определяется кратностью тока, проходящего по цепи, к номиналу автомата.

 Автоматы типа МА

Главная особенность подобных устройств – отсутствие в них теплового расцепителя. Обычно подобные устройства ставят для защиты электрических моторов и прочих мощных устройств.

Устройства класса А

Автоматы класса А имеют самый высокий порог чувствительности. В устройствах с времятоковой характеристикой А, тепловой расцепитель, как правило срабатывает в случае превышении воздействующей силы тока на 30% больше номинала выключателя.

Стоит учесть, что подобные автоматы устанавливаются в линии, в которой не допустимы даже кратковременные перегрузки. К примеру, это может быть цепь с полупроводниковыми элементами.

Защитные устройства класса B

Все устройства категории В имеют меньшую чувствительность, в сравнении с устройствами категории А. Срабатывание электромагнитного расцепителя в них происходит при превышении номинала автомата на 200%. При этом время срабатывания данных устройств составляет 0,015 сек.

Устройства категории В используются для установки в линиях, в которые включены приборы освещения, розетки и также в других цепях, в которых отсутствует пусковые токи или они имеют минимальное значение.

Устройства категории С

Устройства типа С весьма распространены в бытовых сетях. Устойчивость к перегрузкам у данных устройств выше, нежели у всех вышеперечисленных. Чтобы произошло срабатывание соленоида электромагнитного расцепителя, требуется превышение проходящего через расцепитель тока в 5 раз выше номинального значения. Тепловой расцепитель срабатывает в случае превышения номинала в 5 раз через 1,5 сек.

Как упоминалось ранее выключатели с времятоковой характеристикой С обычно устанавливаются в бытовых сетях. Данные устройства отлично работают в роли вводных устройств для защиты общей сети.

Вы можете купить автоматические выключатели категории С от лучших производителей:

Автоматы CHINT

Автоматы IEK

Автоматические выключатели категории D

Выключатели категории D имеют наиболее высокую перегрузочную способность. Электромагнитная катушка в устройстве срабатывает при превышении номинала автомата, как минимум в 10 раз.

Тепловой расцепитель срабатывает через 0,4 сек.

Зачастую устройства категории D применяются в общих сетях зданий и сооружений в роли страховки. Данные устройства срабатывают в том случае, если не произошло своевременное срабатывание автоматов защиты цепи в отдельных помещениях. Также автоматы категории D могут устанавливаться в цепях с большими пусковыми токами.

Вы можете купить автоматические выключатели категории D здесь:

Автоматы CHINT

Автоматы IEK

 Защитные устройства категории K и Z

Автоматы категории K и Z встречаются довольно редко. Устройства категории К имеют большой разброс в значениях тока, требуемых для электромагнитного расцепителя. К примеру, для цепи переменного тока данный показатель должен превышать номинал в 12 раз, а в случае применения в цепи постоянного тока, в 18 раз. Электромагнитный соленоид срабатывает через 0,02 сек. Тепловой расцепитель может сработать при превышении номинала всего на 5%.

Из-за своих свойств устройства категории К применяются в цепях с исключительно индуктивной нагрузкой.

Устройства категории Z также имеют различные токи срабатывания соленоида электромагнитного расцепителя, но разброс для данного варианта, не настолько большой, как в выключателях с категорией К. В цепи постоянного тока величина тока должна быть в 4,5 раза выше номинала, а в сетях переменного тока для срабатывания автомата, ток должен превысить автомат в 3 раза. Устройства категории Z обычно используют для защиты электроники.

Какую характеристику автоматического выключателя правильно устанавливать в жилых помещениях

← Новые распределительные щиты New VEGA HAGER - ваш хаб инноваций   ||   Видеообзор шкафы Hager Volta →

Какую характеристику автоматического выключателя правильно устанавливать в жилых помещениях

Для тех, кто не хочет вникать в технические тонкости, какую характеристику автоматического выключателя или дифавтомата (поскольку автоматический выключатель в нем, как часть) применить в защите вашей электросети, предлагаем вниманию рекомендации немецкого производителя HAGER – прочесть и принять:

  1. Характеристика срабатывания В (3-5 In):

    Применяется преимущественно для защиты кабелей и цепей в жилых домах (цепи освещения, розетки)

  2. Характеристика срабатывания С (5-10 In):

    Применяется для защиты кабелей и цепей преимущественно в приборах с повышенным пусковым током (группы ламп, электродвигатели, и т. д.)

  3. Характеристика срабатывания D (10-20 In):

    Применяется для защиты кабелей и цепей, особенно в приборах с очень большим пусковым током (сварочные трансформаторы, электродвигатели и т.д.)

Т.е. компания HAGER для жилых помещений рекомендует устанавливать характеристику «В». И ей следуют немецкие электрики. В принципе, подобной рекомендации придерживаются другие европейские производители. Почему же в нашей стране электромонтажники характеристику «В» в жилом фонде не принимают за стандарт, а часто применяют «С» характеристику?

Попробуем разобраться.

Рассмотрим таблицу отключения автоматического выключателя в зависимости от характеристики отключения:

Рис.1 Характеристика «В»

Выпуск автоматических выключателей с разными характеристиками отключения и отсутствие универсальной характеристики обусловлены различными требованиями к защите электрической линии от перегрузок, пусковых токов, короткого замыкания. Из таблицы мы видим, что самый быстрый и чувствительный автомат с «В» характеристикой, самый медленный и не чувствительный к пиковым нагрузкам – автомат с характеристикой «D».

Рис.2 характеристика «C»

Характеристика «С» кажется оптимальной, поскольку находится посередине графика (см. выше). Так ли это? Тот факт, что автоматы типа C сейчас активно применяются, не означает, что тип C «лучше» или «более продвинутый». Это просто два разных типа для разных условий, но технологический уровень их исполнения одинаков. И цена, практически, тоже одинакова.

Рис.3 характеристика «D»

Следует отметить, что в современной высококачественной бытовой технике, благодаря применению специальных технологий, пусковые токи значительно меньше, чем были раньше, даже если используется импульсный блок питания. Поэтому, если вы оснастили квартиру или коттедж современной техникой, можно сделать выбор в пользу защитных автоматов типа «B». При этом можно повысить надежность энергоснабжения, реализовав принцип селективного отключения. Он заключается в том, что из-за задержки по времени в срабатывании вышестоящего защитного автомата относительно нижестоящего предотвращается отключение питания по всему коттеджу или по всей квартире. Самый экономичный способ реализации селективной защиты — поставить вводной автомат типа С, а в качестве нижестоящих использовать автоматы типа B.

Еще одно хорошее преимущество характеристики «В» в квартире. Автоматы с такой характеристикой лучше щадят вашу сеть при коротком замыкании, т.к. раньше отключаются и не настолько требовательны к сечению проводников, как характеристика «С».

Выбор характеристики автоматических выключателей остается за вами. Можно полностью установить с характеристикой «С».

характеристики срабатывания автоматов

Чувствительность электромагнитных расцепителей регламентируется параметром, называемым характеристикой срабатывания. Это важный параметр, и на нем стоит немного задержаться. Характеристика, иногда ее называют группой, обозначается одной латинской буквой, на корпусе автомата ее пишут прямо перед его номиналом, например надпись C16 означает, что номинальный ток автомата 16А, характеристика С (наиболее, кстати, распространенная). Менее популярны автоматы с характеристиками B и D, в основном на этих трех группах и строится токовая защита бытовых сетей. Но есть автоматы и с другими характеристиками.

Согласно википедии, автоматические выключатели делятся на следующие типы (классы) по току мгновенного расцепления:

  • тип B: свыше 3·In до 5·In включительно (где In — номинальный ток)
  • тип C: свыше 5·In до 10·In включительно
  • тип D: свыше 10·In до 20·In включительно
  • тип L: свыше 8·In
  • тип Z: свыше 4·In
  • тип K: свыше 12·In

При этом википедия ссылается на ГОСТ Р 50345-2010. Я специально перечитал весь этот стандарт, но ни о каких типах L, Z, K в нем ни разу не упоминается. В другом месте ссылались на уже не действующий ГОСТ Р 50030.2-94 - но я и в нем упоминания о них не нашел. Да и в продаже я что-то не наблюдаю таких автоматов. У европейских производителей классификация может несколько отличаться. В частности, имеется дополнительный тип A (свыше 2·In до 3·In). У отдельных производителей существуют дополнительные кривые отключения. Например, у АВВ имеются автоматические выключатели с кривыми K (8 — 14·In) и Z (2 — 4·In), соответствующие стандарту МЭК 60947-2. В общем, будем иметь в виду, что, кроме B, C и D существуют и иные кривые, но в данной статье будем рассматривать только эти. Сами по себе кривые отключения одинаковы - они вообще показывают зависимость времени срабатывания теплового расцепителя от тока. Разница лишь в том, до какой отметки доходит кривая, после чего она резко обрывается до значения, близкого к нулю. Посмотрите на следующую картинку, обратите внимание на разброс параметров тепловой защиты автоматических выключателей. Видите два числа сверху графика? Это очень важные числа. 1.13 - это та кратность, ниже которой никакой исправный автомат никогда не сработает. 1.45 - это та кратность, при которой любой исправный автомат гарантированно сработает. Что они означают на деле? Рассмотрим на примере. Возьмем автомат на 10А. Если мы пропустим через него ток 11.3А или меньше, он не отключится никогда. Если мы увеличим ток до 12, 13 или 14 А - наш автомат может через какое-то время отключиться, а может и не отключиться вовсе. И только когда ток превысит значение 14.5А, мы можем гарантировать, что автомат отключится. Насколько быстро - зависит от конкретного экземпляра. Например, при токе 15А время срабатывания может составлять от 40 секунд до 5 минут. Поэтому, когда кто-то жалуется, что у него 16-амперный автомат не срабатывает на 20 амперах, он это делает напрасно - автомат совершенно не обязан срабатывать при такой кратности. Более того - эти графики и цифры нормированы для температуры окружающей среды, равной 30°C, при более низкой температуре график смещается вправо, при более высокой - влево.

Для характеристик k, l, z кривые несколько другие: кратность гарантированного несрабатывания 1.05, а срабатывания 1.3. Извините, более красивого графика не нашел:

Что нам следует иметь в виду, выбирая характеристику отключения? Здесь на первый план выходят пусковые токи того оборудования, которое мы собираемся включать через данный автомат. Нам важно, чтобы пусковой ток в сумме с другими токами в этой цепи не оказался выше тока срабатывания электромагнитного расцепителя (тока отсечки). Проще тогда, когда мы точно знаем, что будет подключаться к нашему автомату, но когда автомат защищает группу розеток, тогда мы только можем предполагать, что и когда туда будет включено. Конечно, мы можем взять с запасом - поставить автоматы группы D. Но далеко не факт, что ток короткого замыкания в нашей цепи где-нибудь на дальней розетке будет достаточен для срабатывания отсечки. Конечно, через десяток секунд тепловой расцепитель нагреется и отключит цепь, но для проводки это окажется серьезным испытанием, да и возгорание в месте замыкания может произойти. Поэтому нужно искать компромисс. Как показала практика, для защиты розеток в жилых помещениях, офисах - там, где не предполагается использование мощного электроинструмента, промышленного оборудования, - лучше всего устанавливать автоматы группы B. Для кухни и хозблока, для гаражей и мастерских обычно ставятся автоматы с характеристикой C - там, где есть достаточно мощные трансформаторы, электродвигатели, там есть и пусковые токи. Автоматы группы D следует ставить там, где есть оборудование с тяжелыми условиями пуска - транспортеры, лифты, подъемники, станки и т.д.

Существует разница в токе срабатывания электромагнитного расцепителя (отсечки) в зависимости от того, переменный или постоянный ток проходит через автомат. Если мы знаем значение переменного тока, при котором срабатывает отсечка, то при постоянном токе срабатывание произойдет при значении, равном амплитудному значению переменного тока. То есть ток нужно умножить примерно на 1.4. Часто приводят вот такие графики (по-моему, не очень верные, но подтверждающие то, что разница между пременным и постоянным током есть):

Все написанное выше относится к обычным модульным автоматическим выключателям. У автоматов других типов характеристики несколько другие. Например, кривые срабатывания для автоматов АП-50 - в частности, можно заметить одно существенное отличие: кратности токов гарантийного срабатывания и несрабатывания у них другие.

Характеристики срабатывания селективных автоматов

Другие кратности и у селективных автоматов (специальные автоматы, применяемые в качестве групповых). Главное отличие селективных автоматов - их срабатывание происходит с небольшой задержкой, для того, чтобы не отключать всю группу, если авария произошла на одной из линий, защищенной нижестоящим автоматом. Ниже приведены характеристики E и K для селективных автоматических выключателей серии S750DR фирмы ABB:

Усенко К.А., инженер-электрик,

[email protected]

Технические характеристики автоматических выключателей

Рассмотрим технические характеристики автоматических выключателей, установленные требованиями стандартов МЭК 60898‑1 и МЭК 60898‑2, ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011.

Вся информация, которую вы прочитаете ниже основана на материалах из книги Ю.В. Харечко [3], а также соответствующих ГОСТов.

Коммутационная износостойкость.

Коммутационная износостойкость представляет собой способность автоматического выключателя выполнять определенное число циклов оперирования, когда в его главной цепи протекает электрический ток, оставаясь после этого в предусмотренном состоянии.

При номинальном напряжении и токовой нагрузке в своей главной цепи, равной номинальному току, любой автоматический выключатель должен выдерживать не менее 4000 циклов электрического оперирования.

Под циклом оперирования понимают последовательность оперирований автоматического выключателя из одного положения в другое с возвратом в начальное положение. Каждый цикл оперирования состоит из замыкания главных контактов автоматического выключателя с последующим их размыканием.

После выполнения 4000 циклов включения номинальной электрической нагрузки с ее последующим отключением автоматический выключатель не должен быть чрезмерно изношенным, не должен иметь повреждений подвижных контактов главной цепи, а также ослабления электрических и механических соединений. Кроме того, не должна ухудшаться электрическая прочность изоляции автоматического выключателя, которую проверяют соответствующими испытаниями.

Номинальное рабочее напряжение (номинальное напряжение).

Под номинальным рабочим напряжением (номинальным напряжением) Uе понимают установленное изготовителем значение напряжения, при котором обеспечена работоспособность автоматического выключателя, особенно при коротком замыкании. Для одного автоматического выключателя может быть установлено несколько значений номинального напряжения, каждому из которых соответствует собственное значение номинальной коммутационной способности при коротком замыкании.

В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 установлены следующие предпочтительные значения номинального напряжения для различных видов автоматических выключателей:

  • для однополюсных – 120, 230, 230/400 В;
  • для двухполюсных – 120/240, 230, 400 В;
  • для трехполюсных и четырехполюсных – 240, 400 В.

Предпочтительные значения номинального напряжения, равные 120, 120/240 и 240 В, установлены стандартами для автоматических выключателей, предназначенных для использования в однофазных трехпроводных электрических системах переменного тока с номинальным напряжением 120/240 В.

Автоматические выключатели, имеющие значения номинального напряжения 230, 230/400 и 400 В, применяют в широко распространенных однофазных двухпроводных, трехфазных трехпроводных и четырехпроводных электрических системах переменного тока с номинальным напряжением 230 В, 400 и 230/400 В.

Помимо указанных выше в стандарте МЭК 60898-2 и ГОСТ IEC 60898-2-2011 установлены следующие предпочтительные значения номинального напряжения постоянного тока для универсальных автоматических выключателей:

для однополюсных – 125, 220 В;
для двухполюсных – 125/250, 220/440 В.

В обоих стандартах также сказано, что производитель должен указать в своей документации значение минимального напряжения, на которое рассчитан данный автоматический выключатель.

Номинальное напряжение изоляции Ui.

Номинальное напряжение изоляции Ui представляет собой установленное изготовителем напряжение, к которому отнесены напряжения испытания изоляции и расстояния утечки. Номинальное напряжение изоляции применяют для определения значений напряжения, используемых при испытании изоляции автоматического выключателя. Его также учитывают при установлении расстояний утечки автоматического выключателя. Когда отсутствуют другие указания, номинальное напряжение изоляции соответствует наибольшему номинальному напряжению автоматического выключателя. При этом значение наибольшего номинального напряжения автоматического выключателя не должно превышать значения его номинального напряжения изоляции.

Номинальный ток In.

Номинальный ток In – установленный изготовителем электрический ток, который автоматический выключатель способен проводить в продолжительном режиме при определенной контрольной температуре окружающего воздуха.

Под продолжительным режимом в стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 понимают такой режим, при котором главные контакты автоматического выключателя остаются замкнутыми, проводя установившийся электрический ток без прерывания в течение продолжительного времени (неделями, месяцами и даже годами).

Контрольной температурой окружающего воздуха называют такую температуру окружающего воздуха, при которой устанавливают время-токовую характеристику автоматического выключателя. Стандартная контрольная температура окружающего воздуха принята равной 30 °С.

В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 установлены следующие предпочтительные значения номинального тока: 6, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 А.

Номинальная частота.

Характеристика «номинальная частота» определяет промышленную частоту, для которой разработан автоматический выключатель и с которой согласованы другие его характеристики. Автоматический выключатель может иметь несколько значений номинальной частоты. Автоматические выключатели, соответствующие требованиям стандарта МЭК 60898-2 и ГОСТ IEC 60898-2-2011, могут также функционировать при постоянном токе. Стандартные значения номинальной частоты автоматических выключателей равны 50 и 60 Гц.

Характеристика расцепления.

Характеристика расцепления каждого автоматического выключателя, с одной стороны, должна обеспечивать надежную защиту проводников электрических цепей от сверхтока. С другой стороны, она не должна допускать в стандартных условиях эксплуатации расцепления автоматического выключателя при протекании в его главной цепи электрического тока, равного номинальному току. Характеристика расцепления автоматического выключателя должна быть стабильной во время его эксплуатации и находиться в пределах соответствующей стандартной время-токовой зоны1.

Примечание 1: Эта характеристика автоматического выключателя в п. 8.6.1 ГОСТ IEC 60898-1-2020 названа нормальной время-токовой характеристикой, а п. 8.6.1 ГОСТ IEC 60898-2-2011 – стандартной время-токовой характеристикой. Однако время-токовая характеристика любого автоматического выключателя имеет вид кривой. В стандартах установлены граничные значения, в пределах которых должны находиться характеристики расцепления всех автоматических выключателей, т. е. в них заданы время-токовые зоны, которые находятся между граничными время-токовыми кривыми. Поэтому рассматриваемую характеристику логичнее поименовать стандартной время-токовой зоной. В п. 8.6.1 стандартов МЭК 60898‑1 и МЭК 60898-2 она названа именно так – «standard time-current zone».

Примечание 1 от Харечко Ю.В. из книги [3]

Основные параметры стандартных время-токовых зон представлены в таблицах 7 стандартов МЭК 60898‑1 и МЭК 60898‑2. Время-токовая характеристика любого качественного автоматического выключателя должна находиться в пределах его стандартной время-токовой зоны.

Ток мгновенного расцепления.

Под током мгновенного расцепления понимают минимальный электрический ток, вызывающий автоматическое срабатывание автоматического выключателя без выдержки времени.

В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 для каждого типа мгновенного расцепления установлены следующие стандартные диапазоны токов мгновенного расцепления1:

тип В – свыше 3 In до 5 In;
тип С – свыше 5 In до 10 In;
тип D – свыше 10 In до 20 In2.

Примечание 1: В стандарте МЭК 60898‑1 эта характеристика имеет наименование «стандартный диапазон мгновенного расцепления» («standard range of instantaneous tripping»). Однако это название нельзя признать удачным. Мгновенное расцепление не может иметь какой-либо диапазон. Оно либо происходит, либо нет. В требованиях стандарта МЭК 60898‑1 и ГОСТ Р 50345 речь идет о диапазонах, в которых находятся минимальные электрические токи, вызывающие мгновенное расцепление автоматических выключателей, т. е. стандарты устанавливают диапазоны, в которых должны находиться токи мгновенного расцепления. Поэтому рассматриваемую характеристику автоматического выключателя в международном стандарте более правильно назвать стандартным диапазоном токов мгновенного расцепления, как она названа в п. 5.3.5 ГОСТ IEC 60898-1-2020.

Примечание 1 от Харечко Ю.В. из книги [3]

Примечание 2: В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 указано, что для специальных автоматических выключателей, имеющих тип мгновенного расцепления D, верхняя граница может быть увеличена до 50 In.

Примечание 1 от Харечко Ю.В. из книги [3]

Для универсальных автоматических выключателей требованиями стандарта МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 предусмотрены только два типа мгновенного расцепления – B и C. При этом для постоянного тока даны иные, чем для переменного тока, стандартные диапазоны токов мгновенного расцепления.

тип В – свыше 4 In до 7 In;
тип С – свыше 7 In до 15 In.

Если в главной цепи автоматического выключателя протекает электрический ток, величина которого равна нижней границе стандартного диапазона токов мгновенного расцепления (3 In, 5 In, 10 In переменного тока, а для универсальных автоматических выключателей также 4 In и 7 In постоянного тока), то автоматический выключатель должен расцепиться за промежуток времени более 0,1 с, но менее 45 с или 90 с (тип мгновенного расцепления B), 15 с или 30 с (тип мгновенного расцепления C) и 4 с или 8 с (тип мгновенного расцепления D) соответственно при номинальном токе до 32 А включительно и более 32 А, т. е. нижняя граница стандартного диапазона токов мгновенного расцепления не является током мгновенного расцепления.

При протекании в главной цепи автоматического выключателя электрического тока, равного верхней границе стандартного диапазона токов мгновенного расцепления (5 In, 10 In, 20 In переменного тока или 7 In, 15 In постоянного тока), он должен расцепиться за промежуток времени менее 0,1 с, т. е. верхняя граница стандартного диапазона токов мгновенного расцепления представляет собой максимально допустимое значение тока мгновенного расцепления. Любой сверхток, превышающий верхнюю границу стандартного диапазона токов мгновенного расцепления, тем более
должен вызывать мгновенное расцепление автоматического выключателя.

В том случае, если значение электрического тока, протекающего в главной цепи автоматического выключателя, находится между нижней и верхней границами стандартного диапазона токов мгновенного расцепления, он может расцепиться либо с незначительной выдержкой времени (несколько секунд), либо без выдержки времени (менее 0,1 с). Фактическое время срабатывания конкретного автоматического выключателя определяется его индивидуальной время-токовой характеристикой. Ток мгновенного расцепления автоматического выключателя также определяется его индивидуальной время-токовой характеристикой.

Стандарт МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 классифицируют автоматические выключатели согласно их токам мгновенного расцепления по типам B, С и D, т. е. все автоматические выключатели подразделяют на три типа мгновенного расцепления: тип B, тип С и тип D. Конкретному типу мгновенного расцепления соответствует собственный стандартный диапазон токов мгновенного расцепления, а также собственная стандартная время-токовая зона. Для универсальных автоматических выключателей стандартом МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 предусмотрены два типа мгновенного расцепления B и С.

Импульсное выдерживаемае напряжение.

Под импульсным выдерживаемым напряжением понимают наибольшее пиковое значение импульсного напряжения предписанной формы и полярности, которое не вызывает пробоя изоляции при установленных условиях. Номинальное импульсное выдерживаемое напряжение Uimp автоматического выключателя должно быть равным или превышать стандартные значения номинального импульсного выдерживаемого напряжения, которые установлены в таблицах 3 стандарта МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 в зависимости от номинального напряжения электроустановки (см. табл. 1).

Таблица 1. Стандартные значения номинального импульсного выдерживаемого напряжения
Номинальное импульсное выдерживаемое напряжение (Uimp), кВ Номинальное напряжение электроустановки, В
Трехфазные системы Однофазная система с заземленной средней точкой
2,5 120/240
4 230/400, 250/440 120/240, 240

Предельная отключающая способность при коротком замыкании Icu.

Под предельной отключающей способностью при коротком замыкании Icu1 понимают отключающую способность, для которой предписанные условия соответственно установленной последовательности испытаний не предусматривают способности автоматического выключателя проводить в течение условного времени электрический ток, равный 0,85 его тока нерасцепления.

Примечание 1: В ГОСТ IEC 60898-1-2020 рассматриваемая характеристика автоматического выключателя имеет наименование «предельная наибольшая отключающая способность». В стандарте МЭК 60898‑1 эта характеристика названа иначе – «предельная отключающая способность при коротком замыкании» («ultimate short-circuit breaking capacity»). В национальных стандартах, распространяющихся на автоматические выключатели, вместо термина «предельная наибольшая отключающая способность» следует использовать термин «предельная отключающая способность при коротком замыкании». В требованиях стандарта МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 не используют рассматриваемый термин.

Примечание 1 от Харечко Ю.В. из книги [3]

Номинальная коммутационная способность при коротком замыкании Icn.

Номинальная коммутационная способность при коротком замыкании Icn1 представляет собой значение предельной отключающей способности при коротком замыкании, установленное изготовителем для автоматического выключателя.

Примечание 1: В ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011 рассматриваемая характеристика автоматического выключателя имеет наименование «номинальная наибольшая отключающая способность». В стандартах МЭК 60898‑1 и МЭК 60898‑2 эта характеристика названа иначе – «номинальная способность при коротком замыкании» («rated short-circuit capacity»). При этом под способностью при коротком замыкании (short-circuit capacity) в международных стандартах понимают (включающую и отключающую) способность при коротком замыкании (short-circuit (making and breaking) capacity), т. е. коммутационную способность автоматического выключателя при коротком замыкании. Для устранения расхождений в наименованиях одной и той же характеристики автоматического выключателя в международных и национальных нормативных документах целесообразно использовать термин «номинальная коммутационная способность при коротком замыкании».

Примечание 1 от Харечко Ю.В. из книги [3]

Характеристика «номинальная коммутационная способность при коротком замыкании» определяет максимальный ток короткого замыкания, который автоматический выключатель должен гарантированно включить, проводить определенное время и отключить при заданных стандартом условиях, например, при установленном в стандарте диапазоне коэффициентов мощности (см. таблицу 17 ГОСТ IEC 60898-1-2020). Автоматический выключатель тем более должен отключить любой ток короткого замыкания, значение которого не превышает его номинальной коммутационной способности при коротком замыкании.

Для понимания характера поведения автоматического выключателя после отключения им максимального тока короткого замыкания обратимся к требованиям, изложенным в п. 9.12.11.4.3 стандартов1. Каждый автоматический выключатель должен обеспечить одно отключение испытательной электрической цепи с ожидаемым током короткого замыкания, равным номинальной коммутационной способности при коротком замыкании, а также одно включение с последующим автоматическим отключением электрической цепи, в которой протекает указанный испытательный ток.

Примечание 1: В стандартах МЭК 60898‑1 и МЭК 60898‑2 этот пункт назван «Испытание при номинальной способности при коротком замыкании (Icn)», в ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011 − «Испытание при номинальной наибольшей отключающей способности (Icn)». Этот пункт в международных и национальных стандартах целесообразно назвать иначе: «Испытание при номинальной коммутационной способности при коротком замыкании (Icn)».

Примечание 1 от Харечко Ю.В. из книги [3]

После проведения этого испытания качественный автоматический выключатель не должен иметь повреждений, ухудшающих его эксплуатационные свойства, а также должен выдержать установленные стандартом испытания на электрическую прочность и проверку характеристики расцепления.

Рассматриваемую характеристику автоматического выключателя используют для согласования ее численного значения с токами короткого замыкания в электроустановке здания. Значение номинальной коммутационной способности при коротком замыкании должно превышать или быть равным максимальному току короткого замыкания в месте установки автоматического выключателя.

Для автоматических выключателей бытового назначения в стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 установлены следующие значения номинальной коммутационной способности при коротком замыкании:

  • в диапазоне сверхтока до 10 000 А включительно – стандартные значения номинальной коммутационной способности при коротком замыкании, равные 1500, 3000, 4500, 6000, 10 000 А;
  • в диапазоне сверхтока свыше 10 000 А до 25 000 А включительно – предпочтительное значение номинальной коммутационной способности при коротком замыкании, равное 20 000 А.

Указанные значения номинальной коммутационной способности при коротком замыкании имеют и универсальные автоматические выключатели.

Включающая и отключающая способность при коротком замыкании.

Включающую и отключающую способность при коротком замыкании2 автоматического выключателя оценивают в стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 по действующему значению переменной составляющей ожидаемого тока3, который он предназначен включать, проводить в течение его времени размыкания и отключать при определенных условиях.

Примечание 2: В ГОСТ IEC 60898-1-2020 рассматриваемая характеристика автоматического выключателя имеет наименование «наибольшая включающая и отключающая способность». В стандарте МЭК 60898‑1 эта характеристика названа иначе – «(включающая и отключающая) способность при коротком замыкании» («short-circuit (making and breaking) capacity»). В национальных стандартах, распространяющихся на автоматические выключатели, вместо термина «наибольшая включающая и отключающая способность» следует использовать термин «включающая и отключающая способность при коротком замыкании». В стандарте МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 не используют рассматриваемый термин.

Примечание 2 от Харечко Ю.В. из книги [3]

Примечание 3: Ожидаемый ток – электрический ток, который будет протекать в электрической цепи, если каждый полюс коммутационного устройства заменить проводником с пренебрежимо малым полным сопротивлением.

Примечание 3 от Харечко Ю.В. из книги [3]

Время отключения и время дуги.

Для отключения сверхтока автоматическому выключателю требуется определенное время – время отключения, которое представляет собой интервал времени между началом времени размыкания и концом времени дуги. Началом времени размыкания считают момент, когда электрический ток в главной цепи автоматического выключателя достигнет уровня срабатывания его расцепителя сверхтока. Концом времени дуги является момент гашения электрических дуг во всех полюсах автоматического выключателя. Поэтому время отключения однополюсного автоматического выключателя приблизительно равно сумме времени размыкания и времени дуги в полюсе, а многополюсного автоматического выключателя – сумме времени размыкания и времени дуги в многополюсном автоматическом выключателе.

Рабочая отключающая способность при коротком замыкании Ics.

Номинальной коммутационной способности при коротком замыкании автоматического выключателя соответствует определенная рабочая отключающая способность при коротком замыкании Ics1 – отключающая способность, для которой предписанные условия соответственно установленной последовательности испытаний предусматривают способность автоматического выключателя проводить в течение условного времени электрический ток, равный 0,85 его тока нерасцепления.

Примечание 1: В ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011 рассматриваемая характеристика автоматического выключателя имеет наименование «рабочая наибольшая отключающая способность». В стандартах МЭК 60898‑1 и МЭК 60898‑2 эта характеристика названа иначе – «рабочая отключающая способность при коротком замыкании» («service short-circuit breaking capacity»). Для устранения расхождений в наименованиях одной и той же характеристики автоматического выключателя в национальных нормативных документах вместо термина «рабочая наибольшая отключающая способность» следует использовать термин «рабочая отключающая способность при коротком замыкании».

Примечание 1 от Харечко Ю.В. из книги [3]

В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 между номинальной коммутационной способностью при коротком замыкании автоматического выключателя и его рабочей отключающей способностью при коротком замыкании установлены соотношения, представленные в табл. 2. Указанная информация приведена в таблицах 18 стандартов, в которых соотношение между рабочей отключающей способностью и номинальной коммутационной способностью задано посредством коэффициента, равного К = Ics/Icn.

Таблица 2. Соотношения между номинальной коммутационной способностью при коротком замыкании и рабочей отключающей способностью при коротком замыкании

Номинальная коммутационная способность при коротком замыкании IcnРабочая отключающая способность при коротком замыкании Ics
Icn ≤ 6000 АIcs = Icn
6000 А < Icn ≤ 10 000 АIcs = 0,75 Icn, но не менее 6000 А
Icn > 10 000 АIcs = 0,5 Icn, но не менее 7500 А

Рабочая отключающая способность при коротком замыкании значительно меньше номинальной коммутационной способности при коротком замыкании (при Icn > 6000 А). Поэтому каждый автоматический выключатель способен отключить электрический ток, равный рабочей отключающей способности при коротком замыкании, бóльшее число раз, чем электрический ток, равный номинальной коммутационной способности при коротком замыкании.

Однополюсный и двухполюсный автоматические выключатели должны обеспечить два отключения испытательной электрической цепи с ожидаемым током короткого замыкания в ней, равным рабочей отключающей способности при коротком замыкании, и одно включение указанной электрической цепи с последующим ее автоматическим отключением. Трехполюсный и четырехполюсный автоматические выключатели должны обеспечить одно отключение электрической цепи, в которой протекает указанный испытательный ток, а также два ее включения с последующим автоматическим отключением.

Однополюсный и двухполюсный универсальные автоматические выключатели должны обеспечить одно отключение электрической цепи с ожидаемым постоянным током короткого замыкания в ней, равным рабочей отключающей способности при коротком замыкании, а также два ее включения с последующим автоматическим отключением.

После проведения указанного испытания качественный автоматический выключатель не должен иметь повреждений, ухудшающих его эксплуатационные свойства. Автоматический выключатель также должен выдержать предписанные стандартами испытания на электрическую прочность и проверку его характеристики расцепления.

В требованиях подраздела 533.3 «Выбор устройств для защиты электропроводок от коротких замыканий» стандарта МЭК 60364‑5‑53 сказано, что, когда стандарт на защитное устройство определяет и рабочую отключающую способность при коротком замыкании, и номинальную предельную отключающую способность при коротком замыкании, допустимо выбирать защитное устройство на основе предельной отключающей способности при коротком замыкании для максимальных характеристик короткого замыкания.

Однако условия эксплуатации могут сделать желательным выбор защитного устройства по рабочей отключающей способности при коротком замыкании, например, когда защитное устройство устанавливают на вводе низковольтной электроустановки. Аналогичное требование, сформулированное с терминологическими ошибками, имеется в ГОСТ Р 50571.5.53-2013, который разработан на основе стандарта МЭК 60364‑5‑53:2002. Поэтому при согласовании характеристик автоматических выключателей с характеристиками электрических цепей в электроустановке здания значения их рабочих отключающих способностей при коротком замыкании целесообразно выбирать так, чтобы они превышали или были равными максимальным токам короткого замыкания в местах их установки.

Характеристика I2t.

Характеристика I2t представляет собой кривую, отражающую максимальные значения I2t автоматического выключателя как функцию ожидаемого тока в указанных условиях эксплуатации. Эта характеристика позволяет оценить способность автоматического выключателя ограничивать ожидаемый сверхток в защищаемых им электрических цепях. Некоторые виды электрооборудования, например устройства дифференциального тока без встроенной защиты от сверхтока, имеют ограничения по значению характеристики I2t. Поэтому при проектировании электроустановок зданий с помощью рассматриваемой характеристики проводят проверку возможности использования автоматических выключателей для обеспечения защиты подобного электрооборудования от токов короткого замыкания.

Значения характеристики I2t для конкретных электрических токов – так называемый «интеграл Джоуля» – интеграл квадрата силы тока по данному интервалу времени (t0, t1) – определяют по следующей формуле:

В стандарте EN 60898‑1 рассматриваемая характеристика положена в основу классификации автоматических выключателей, устанавливающей способность автоматических выключателей ограничивать ожидаемые сверхтоки в защищаемых ими электрических цепях. Автоматические выключатели подразделяют на три класса ограничения энергии.

Класс ограничения электроэнергии.

Характеристика «класс ограничения электроэнергии» и значения характеристики I2t, по которым автоматические выключатели могут быть отнесены к определенному классу, не предусмотрены ни в стандарте МЭК 60898‑1, ни в ГОСТ IEC 60898-1-2020. Однако в обоих стандартах отмечается, что в дополнение к характеристике I2t, обеспеченной производителем, автоматические выключатели могут быть классифицированы согласно их характеристике I2t. По требованию производитель должен сделать доступным характеристику I2t. Он может указать классификацию I2t и соответственно маркировать автоматические выключатели.

В табл. 3 представлены максимальные значения характеристики I2t автоматических выключателей по классам ограничения электроэнергии, значения которых заимствованы из изменения А11, внесенного в стандарт EN 60898 в 1994 г.

Таблица 3. Предельные значения характеристики I2t для автоматических выключателей, А2с
Номинальная коммутационная способность при коротком замыкании, А Класс ограничения электроэнергии
1 2 3
Тип мгновенного расцепления автоматического выключателя
B и C В С В С
Номинальный ток до 16 А включительно
3000 Предельные значения не установлены 31000 37000 15000 18000
4500 60000 75000 25000 30000
6000 100000 120000 35000 42000
10000 240000 290000 70000 84000
Номинальный ток свыше 16 А до 32 А включительно*
3000 Предельные значения не установлены 40000 50000 18000 22000
4500 80000 100000 32000 39000
6000 130000 160000 45000 55000
10000 310000 370000 90000 110000
* Для автоматических выключателей с номинальным током 40 А могут быть применены максимальные значения, равные 120 % от указанных в таблице. Такие автоматические выключатели могут быть маркированы символом соответствующего класса ограничения электроэнергии.

Автоматические выключатели, имеющие класс ограничения электроэнергии 2 и 3, представляют собой токоограничивающие автоматические выключатели, характеризующиеся малым временем отключения, в течение которого ток короткого замыкания не успевает достичь своего пикового значения. Применение токоограничивающих автоматических выключателей в электроустановках зданий позволяет уменьшить негативное воздействие токов короткого замыкания на низковольтное электрооборудование и, прежде всего, на проводники электрических цепей.

Современные автоматические выключатели бытового назначения, имеющие номинальный ток до 40 А и типы мгновенного расцепления B и C, как правило, представляют собой токоограничивающие автоматические выключатели и соответствуют третьему классу ограничения электроэнергии.

В стандарте МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 дополнительно установлена следующая классификация универсальных автоматических выключателей по постоянной времени:

  • автоматические выключатели, пригодные для электрических цепей постоянного тока с постоянной времени T ≤ 4 мс;
  • автоматические выключатели, пригодные для электрических цепей постоянного тока с постоянной времени T ≤ 15 мс.

В ГОСТ IEC 60898-2-2011 приведено следующее пояснение: «Очевидно, что токи короткого замыкания не превышают значения 1500 А в тех установках, где в силу присоединенных нагрузок постоянная времени при нормальной эксплуатации может быть не более 15 мс. В электроустановках со значениями токов короткого замыкания свыше 1500 А постоянная времени T = 4 мс считается достаточной».

Список использованной литературы

  1. ГОСТ IEC 60898-1-2020
  2. ГОСТ IEC 60898-2-2011
  3. Харечко Ю.В. Краткий терминологический словарь по низковольтным электроустановкам. Часть 5// Приложение к журналу «Библиотека инженера по охране труда». – 2017. – № 2. – 160 c

7 Характеристики машинного обучения | by Magnimind

В последние годы машинное обучение стало чрезвычайно популярной темой в области технологий. Значительное количество предприятий - от малых до средних и крупных - стремятся внедрить эту технологию. Машинное обучение начало преобразовывать способы ведения бизнеса компаниями, и будущее кажется еще более светлым.

Тем не менее, многие компании все еще колеблются, когда дело доходит до внедрения этой технологии, в основном из-за неуверенности в том, что такое машинное обучение , каковы его ключевые характеристики, которые делают его одним из самых полезных достижений в технологическом ландшафте. .

В этом посте мы более подробно рассмотрим машинного обучения и обсудим его семь ключевых характеристик, которые сделали его чрезвычайно популярным.

Проще говоря, машинное обучение является подмножеством ИИ (искусственного интеллекта) и позволяет машинам переходить в режим самообучения без явного программирования. Машинное обучение Программы с поддержкой могут учиться, расти и изменяться сами по себе при обращении к новым данным.С помощью этой технологии компьютеры могут находить ценную информацию, не запрограммированные на то, где искать конкретную информацию. Вместо этого они достигают этого, используя алгоритмы, которые итеративно учатся на данных.

Машинное обучение уникально в области искусственного интеллекта, потому что оно оказало наибольшее влияние на бизнес в реальной жизни.

В связи с этим машинное обучение часто считается отдельным от ИИ, который больше ориентирован на разработку систем для выполнения интеллектуальных задач.

1. AI для CFD: Введение (часть 1)

2. Использование искусственного интеллекта для обнаружения COVID-19

3. Обнаружение реальных и поддельных твитов с использованием модели трансформатора BERT в нескольких строках кода

4. Машина Проектирование системы обучения

Хотя основная концепция машинного обучения не нова, возможность автоматически применять сложные математические вычисления к большим данным - быстро и итеративно - появилась недавно.

В , чтобы понять реальную мощь машинного обучения , вы должны рассмотреть характеристики этой технологии.Есть много примеров, которые перекликаются с характеристиками машинного обучения в сегодняшнем мире, насыщенном данными. Вот семь ключевых характеристик машинного обучения , по которым компаниям следует предпочесть его другим технологиям.

2.1- Возможность выполнять автоматизированную визуализацию данных

Большой объем данных генерируется предприятиями и обычными людьми на регулярной основе. Визуализируя заметные взаимосвязи в данных, компании могут не только принимать более обоснованные решения, но и укреплять доверие. Машинное обучение предлагает ряд инструментов, которые предоставляют расширенные фрагменты данных, которые можно применять как к неструктурированным, так и к структурированным данным. С помощью удобных для пользователя платформ автоматизированной визуализации данных в машинном обучении предприятия могут получить множество новых идей, чтобы повысить продуктивность своих процессов.

2.2- Автоматизация в лучшем виде

Одна из важнейших характеристик машинного обучения - это его способность автоматизировать повторяющиеся задачи и, таким образом, повышать производительность.Огромное количество организаций уже используют машинное обучение на основе документооборота и автоматизацию электронной почты.

AI Jobs

В финансовом секторе, например, необходимо выполнять огромное количество повторяющихся, объемных и предсказуемых задач. Из-за этого в этом секторе в значительной степени используются различные типы решений машинного обучения . Они делают бухгалтерские задачи более быстрыми, информативными и точными. Некоторые аспекты, которые уже были учтены в машинном обучении , включают решение финансовых запросов с помощью чат-ботов, прогнозирование, управление расходами, упрощение выставления счетов и автоматизацию выверки банковских счетов.

2.3- Вовлеченность клиентов, как никогда раньше

Для любого бизнеса одним из наиболее важных способов стимулирования взаимодействия, повышения лояльности к бренду и установления долгосрочных отношений с клиентами является начало конструктивных разговоров с целевой клиентской базой. Машинное обучение играет решающую роль в том, что позволяет компаниям и брендам заводить более ценные разговоры с точки зрения взаимодействия с клиентами. Технология анализирует определенные фразы, слова, предложения, идиомы и форматы контента, которые находят отклик у определенных членов аудитории.Вы можете подумать о Pinterest, который успешно использует машинное обучение , чтобы персонализировать предложения для своих пользователей. Он использует эту технологию для поиска контента, который может заинтересовать пользователей, на основе уже закрепленных ими объектов.

2.4 - Возможность поднять эффективность на новый уровень при объединении с IoT

Благодаря огромной шумихе вокруг Интернета вещей, машинное обучение стало популярным. Многие компании считают Интернет вещей стратегически важным направлением.И многие другие запустили пилотные проекты, чтобы оценить потенциал Интернета вещей в контексте бизнес-операций. Но получить финансовую выгоду с помощью Интернета вещей непросто. Для достижения успеха компаниям, предлагающим консалтинговые услуги и платформы для Интернета вещей, необходимо четко определить области, которые изменятся с внедрением стратегий Интернета вещей. Многие из этих предприятий не смогли решить эту проблему. В этом сценарии машинное обучение , вероятно, лучшая технология, которую можно использовать для достижения более высокого уровня эффективности.Объединив машинного обучения с Интернетом вещей, компании могут повысить эффективность всех своих производственных процессов.

2.5- Возможность изменить ипотечный рынок

Это факт, что для получения положительного кредитного рейтинга обычно требуются дисциплина, время и тщательное финансовое планирование для многих потребителей. Когда дело доходит до кредиторов, потребительский кредитный рейтинг является одним из важнейших показателей кредитоспособности, который включает в себя ряд факторов, включая историю платежей, общую задолженность, длину кредитной истории и т. Д.Но разве не было бы замечательно, если бы была более упрощенная и лучшая мера? С помощью машинного обучения кредиторы теперь могут получить более полное представление о потребителях. Теперь они могут предсказать, тратит ли клиент мало или много, и понять, насколько он / она тратит. Помимо ипотечного кредитования, финансовые учреждения используют те же методы для других типов потребительских кредитов.

2.6- Точный анализ данных

Традиционно, , анализ данных всегда включал метод проб и ошибок, подход, который становится невозможным, когда мы работаем с большими и разнородными наборами данных. Машинное обучение - лучшее решение всех этих проблем, предлагая эффективные альтернативы анализу огромных объемов данных. Разрабатывая эффективные и быстрые алгоритмы, а также модели на основе данных для обработки данных в реальном времени, машинное обучение может генерировать точный анализ и результаты.

2.7- Бизнес-аналитика в лучшем виде

Машинное обучение характеристики в сочетании с аналитической работой по большим данным могут обеспечить экстремальный уровень бизнес-аналитики, с помощью которого несколько различных отраслей реализуют стратегические инициативы.От розничной торговли до финансовых услуг, здравоохранения и многого другого - машинное обучение уже стало одной из самых эффективных технологий для стимулирования бизнес-операций.

Независимо от того, убеждены вы или нет, вышеуказанные характеристики машинного обучения во многом способствовали тому, что оно стало одной из самых важных технологических тенденций - оно лежит в основе огромного количества вещей, которые мы используем в наши дни, даже не задумываясь о них.

Это невозможно предсказать, заменят ли системы с машинным обучением людей или нет.Но можно сказать, что самым большим фактором, замедляющим развитие передовых технологий, таких как машинное обучение , является отсутствие человеческих навыков. Новое исследование, проведенное Cloudera, показывает, что для 51% бизнес-лидеров по всей Европе нехватка навыков удерживает их от внедрения.

Машинное обучение , как и наука о данных, развивается совершенно иначе. Поскольку эта технологическая тенденция включает сбор, сопоставление и интерпретацию данных, необходимо эффективное профессиональное обучение в области машинного обучения , владеющее огромным количеством дисциплин - от математики и статистики до программирования.Как вы уже можете себе представить, машинное обучение - довольно сложная штука, и поэтому бизнес-лидерам стало действительно сложно найти подходящих кандидатов, которые могут помочь им в достижении их целей цифровой трансформации.

Тем, кто хочет стать профессионалом в области машинного обучения , следует с умом выбирать направление обучения. Хотя существуют различные способы, включая самообучение, традиционный подход, учебные курсы и т. Д., Большинство из них имеют свои недостатки.Учитывая широкий спектр предметной области машинного обучения и ее быстрое развитие, соискателям необходимо понимать, что ни один курс на самом деле не является достаточно всеобъемлющим. Если вы тоже заинтересованы в том, чтобы вступить в эту сферу с реальными знаниями и в какой-то степени обладаете основными навыками, неплохо было бы присоединиться к учебному лагерю, подобному тем, которые предлагает Академия Magnimind.

T hese days , Машинное обучение набирает обороты во всем мире, и это стало одной из ключевых обязанностей руководителей высшего звена - направлять свой бизнес в правильном направлении, используя его истинные характеристики.

Мы находимся на пороге входа в мир, где машины и люди будут работать в гармонии, сотрудничать, проводить кампании и продвигать свои продукты / услуги инновационным способом, который будет более личным, эффективным и информированным, чем когда-либо прежде.

Чтобы достичь этого, владельцам бизнеса пора подумать о том, как они могут использовать характеристики машинного обучения , как они хотят, чтобы технология работала и вела себя для развития бизнеса.Также важно разработать эффективную и прозрачную стратегию, включающую машинного обучения . Это поможет командам понять, как они могут выполнять свои задачи более эффективно, используя возможности машинного обучения .

Станок | Британника

Полная статья

Машина , устройство, имеющее уникальное назначение, которое увеличивает или заменяет усилия человека или животных для выполнения физических задач.В эту широкую категорию входят такие простые устройства, как наклонная плоскость, рычаг, клин, колесо и ось, шкив и винт (так называемые простые машины), а также такие сложные механические системы, как современный автомобиль.

Работа машины может включать преобразование химической, тепловой, электрической или ядерной энергии в механическую или наоборот, или ее функция может заключаться просто в изменении и передаче сил и движений. Все машины имеют вход, выход и устройство преобразования или модификации и передачи.

Британская викторина

Машины и производство

От сверления отверстий и перевозки грузов до автомобильных двигателей и их производства - ответьте на эти вопросы и проверьте свои знания в области машиностроения и производства в этой викторине.

Машины, которые получают энергию от естественного источника, такого как потоки воздуха, движущуюся воду, уголь, нефть или уран, и преобразуют ее в механическую энергию, называются первичными двигателями.Ветряные мельницы, водяные колеса, турбины, паровые двигатели и двигатели внутреннего сгорания являются основными двигателями. В этих машинах входные параметры меняются; Выходы обычно представляют собой вращающиеся валы, которые можно использовать в качестве входов для других машин, таких как электрические генераторы, гидравлические насосы или воздушные компрессоры. Все три последних устройства можно отнести к генераторам; их выходная электрическая, гидравлическая и пневматическая энергия может использоваться в качестве входов для электрических, гидравлических или пневматических двигателей. Эти двигатели могут использоваться для привода машин с различными выходами, таких как оборудование для обработки материалов, упаковки или транспортировки, или такое оборудование, как швейные машины и стиральные машины.Все машины последнего типа и все другие машины, не являющиеся ни первичными двигателями, ни генераторами, ни двигателями, могут быть классифицированы как операторы. В эту категорию также входят инструменты с ручным управлением всех видов, такие как счетные машины и пишущие машинки.

В некоторых случаях машины всех категорий объединены в одно устройство. Например, в дизель-электрическом локомотиве дизельный двигатель является первичным двигателем, который приводит в действие электрогенератор, который, в свою очередь, подает электрический ток на двигатели, приводящие в движение колеса.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Детали машин в автомобиле

В рамках ознакомления с компонентами машин некоторые образцы, поставляемые с автомобилями, представляют ценность. В автомобиле основная проблема состоит в том, чтобы использовать взрывной эффект бензина, чтобы обеспечить вращение задних колес. Взрыв бензина в цилиндрах толкает поршни вниз, и передача и преобразование этого поступательного (линейного) движения во вращательное движение коленчатого вала осуществляется шатунами, которые соединяют каждый поршень с кривошипами, которые являются частью коленчатого вала. .Комбинация поршня, цилиндра, кривошипа и шатуна известна как кривошипно-ползунковый механизм; это широко используемый метод преобразования поступательного движения во вращение (как в двигателе) или вращения в поступательное движение (как в насосе).

Для впуска бензиновоздушной смеси в цилиндры и отвода сгоревших газов используются клапаны; они открываются и закрываются за счет заклинивания кулачков (выступов) на вращающемся распределительном валу, который приводится в движение от коленчатого вала шестернями или цепью.

В четырехтактном двигателе с восемью цилиндрами коленчатый вал получает импульс в некоторой точке по своей длине каждые четверть оборота.Чтобы сгладить влияние этих прерывистых импульсов на частоту вращения коленчатого вала, используется маховик. Это тяжелое колесо, прикрепленное к коленчатому валу, которое своей инерцией противодействует любым колебаниям скорости и смягчает их.

Поскольку крутящий момент (сила поворота), который он передает, зависит от его скорости, двигатель внутреннего сгорания не может быть запущен под нагрузкой. Чтобы автомобильный двигатель можно было запустить в ненагруженном состоянии, а затем подключить к колесам без остановки, необходимы сцепление и трансмиссия.Первый устанавливает и разрывает соединение между коленчатым валом и трансмиссией, тогда как последний изменяет конечными шагами соотношение между входной и выходной скоростями и крутящие моменты трансмиссии. На низкой передаче выходная скорость низкая, а выходной крутящий момент выше крутящего момента двигателя, так что автомобиль может начать движение; на высокой передаче автомобиль движется со значительной скоростью, а крутящий момент и скорость равны.

Оси, к которым прикреплены колеса, содержатся в картере заднего моста, который закреплен на задних пружинах и приводится в движение от трансмиссии приводным валом.Когда автомобиль движется и пружины изгибаются в ответ на неровности дороги, корпус перемещается относительно трансмиссии; Чтобы разрешить это движение, не мешая передаче крутящего момента, к каждому концу приводного вала прикреплен универсальный шарнир.

Приводной вал перпендикулярен задним мостам. Прямоугольное соединение обычно выполняется с коническими зубчатыми колесами, имеющими такое передаточное отношение, при котором оси вращаются со скоростью от одной трети до одной четвертой скорости приводного вала. В картере заднего моста также находятся дифференциалы, которые позволяют обоим задним колесам приводиться в движение от одного источника и вращаться с разной скоростью при повороте.

Как и все движущиеся механические устройства, автомобили не могут избежать воздействия трения. В двигателе, трансмиссии, картере заднего моста и всех подшипниках трение нежелательно, так как оно увеличивает мощность, требуемую от двигателя; смазка уменьшает, но не устраняет это трение. С другой стороны, трение между шинами и дорогой, а также в тормозных колодках делает возможным сцепление и торможение. Ремни, приводящие в движение вентилятор, генератор и другие аксессуары, являются устройствами, зависящими от трения.Трение также полезно при работе сцепления.

Некоторые из перечисленных выше устройств присутствуют в машинах всех категорий, собранных множеством способов для выполнения всех видов физических задач. Функция большинства этих основных механических устройств заключается в передаче и изменении силы и движения. Другие устройства, такие как пружины, маховики, валы и крепежные детали, выполняют дополнительные функции.

Машина может быть дополнительно определена как устройство, состоящее из двух или более устойчивых, относительно ограниченных частей, которые могут служить для передачи и изменения силы и движения для выполнения работы.Требование, чтобы части машины были стойкими, подразумевает, что они способны выдерживать приложенные нагрузки без сбоев или потери функции. Хотя большинство деталей машин представляет собой твердые металлические тела подходящих размеров, также используются неметаллические материалы, пружины, органы давления жидкости и органы натяжения, такие как ремни.

Ограниченное движение

Наиболее отличительной особенностью машины является то, что части соединены между собой и направляются таким образом, что их движения относительно друг друга ограничены.По сравнению с блоком, например, поршень поршневого двигателя вынужден цилиндром двигаться по прямой траектории; точки на коленчатом валу ограничены движением коренных подшипников по круговой траектории; никакие другие формы относительного движения невозможны.

На некоторых машинах детали ограничены только частично. Если части соединены между собой пружинами или фрикционными элементами, траектории частей относительно друг друга могут быть фиксированными, но на движения частей могут влиять жесткость пружин, трение и массы частей.

Если все части машины представляют собой сравнительно жесткие элементы, прогибы которых под нагрузкой незначительны, то ограничение можно считать полным, и относительные движения частей могут быть изучены без учета сил, которые их создают. Например, для заданной частоты вращения коленчатого вала поршневого двигателя можно рассчитать соответствующие частоты вращения точек на шатуне и поршне. Определение перемещений, скоростей и ускорений частей машины для заданного входного движения является предметом кинематики машин.Такие расчеты можно производить без учета задействованных сил, поскольку движения ограничены.

Гордость: отличительная черта | Машиностроение

Интересно наблюдать, почему и как одни инженеры поднимаются над массой, в то время как другие делают именно то, что нужно, а некоторые создают проекты с таким количеством недостатков, что ставят инженерные школы в дурную славу. Для объяснения различий часто используются типичные факторы, такие как базовый интеллект, образование, подготовка и опыт.

Часто еще одна черта объясняет превосходную производительность, и это pride . Эта основная характеристика - часто называемая желанием, амбициями, отношением, складом ума и т. Д. - может описывать групповое поведение и достижения, а также индивидуальный вклад.

Это недавно обсуждалось во время телешоу, которое возвышалось над огромной пустошью. В нем рассказывается, как две школьные системы за относительно короткое время полностью изменили свои операции и образы. Обе школы устранили граффити на стенах и шкафчиках, повысили результаты тестов и создали среду, которая позволила учащимся получать больше удовольствия от обучения.

Отправной точкой в ​​каждом случае было назначение нового директора школы. Каждый придерживался жесткого подхода и отделял немногих людей, которым не хватало гордости, от большинства. Тех, кому было все равно, удаляли из обычных классов и помещали в специальные классы или исключали. Таким образом, смутьяны не могли нарушить уроки и снизить уровень образования. Это позволило учителям учить и прививать каждому ученику важность образования. Система работала. Суперинтенданты гордились школьной системой, учителя гордились своими учениями и учениками, а ученики гордились своим образованием и способностями.

Эти школы показывают, что там, где поощряется гордость, она может побудить людей подняться над массами.

Отсутствие гордости дает разрушительные результаты. Например, проезжая по одной из главных улиц города, я увидел, как взрослый выбросил мусорный ящик из окна квартиры на третьем этаже. Судя по площади вокруг здания, это была лишь одна из многих подобных акций, каждая из которых кричала: «У меня нет гордости».

Работа инженеров также кричит сообщения, которые показывают гордость или ее отсутствие.Это относится ко всем размерам организаций и ко всем видам деятельности - проектированию больших автоматических транспортных машин, расчету необходимого сервопривода для баллистической ракеты или проектированию системы движения для новой упаковочной машины. Часто, но не всегда, менеджер вызывает чувство гордости. Менеджеры обычно хорошо служат своей компании, если они гордятся своими инженерами, стремятся получить наилучшие условия труда и оборудование и требуют передового опыта в инженерии. Кроме того, инженеры будут с удовольствием ходить на работу каждое утро.В противном случае работа будет рутиной, дизайн покажет это, и компании будет трудно конкурировать.

Точно так же, если инженер любого уровня предпочел бы красить дома или управлять рыболовным лагерем, чем работать инженером или инженером, то у него или нее мало шансов гордиться своей работой, получать от нее удовольствие и разработка качественной продукции. Гордость и удовольствие от работы идут рука об руку. Без того и другого страдает качество.

- Фил Кингсли
Пкинсли @ aol.com

Станьте специалистом по данным всего за 6 недель с учебными курсами в Кремниевой долине

7 Характеристики машинного обучения

В последние годы машинное обучение стало чрезвычайно популярной темой в области технологий. Значительное количество предприятий - от малых до средних и крупных - стремятся внедрить эту технологию. Машинное обучение начало преобразовывать способы ведения бизнеса компаниями, и будущее кажется еще более светлым. Тем не менее, многие компании по-прежнему не решаются внедрять эту технологию, в основном из-за неуверенности в том, что такое машинное обучение , каковы его ключевые характеристики, которые делают его одним из самых полезных достижений в технологическом ландшафте. В этом посте мы более подробно рассмотрим машинного обучения и обсудим его семь ключевых характеристик, которые сделали его чрезвычайно популярным.

1- Что такое машинное обучение?

Проще говоря, машинное обучение является подмножеством ИИ (искусственного интеллекта) и позволяет машинам переходить в режим самообучения без явного программирования. Машинное обучение Программы с поддержкой могут учиться, расти и изменяться сами по себе при обращении к новым данным. С помощью этой технологии компьютеры могут находить ценную информацию, не запрограммированные на то, где искать конкретную информацию.Вместо этого они достигают этого, используя алгоритмы, которые итеративно учатся на данных. Машинное обучение уникально в области искусственного интеллекта, потому что оно оказало наибольшее влияние на бизнес в реальной жизни. Из-за этого машинное обучение часто считается отдельным от ИИ, который больше ориентирован на разработку систем для выполнения интеллектуальных задач. Хотя основная концепция машинного обучения не нова, возможность применять сложные математические вычисления к большим данным автоматически - быстро и итеративно - появилась недавно.

2- Ключевые характеристики машинного обучения

В , чтобы понять реальную мощь машинного обучения , вы должны рассмотреть характеристики этой технологии. Есть много примеров, которые перекликаются с характеристиками машинного обучения в сегодняшнем мире, насыщенном данными. Вот семь ключевых характеристик машинного обучения , по которым компаниям следует предпочесть его другим технологиям.

2.1- Возможность выполнения автоматизированной визуализации данных

A На регулярной основе предприятиями и обычными людьми генерируется огромный объем данных. Визуализируя заметные взаимосвязи в данных, компании могут не только принимать более обоснованные решения, но и укреплять доверие. Машинное обучение предлагает ряд инструментов, которые предоставляют расширенные фрагменты данных, которые можно применять как к неструктурированным, так и к структурированным данным.С помощью удобных платформ автоматизированной визуализации данных в машинном обучении предприятия могут получить множество новых идей, чтобы повысить производительность своих процессов.

2.2- Автоматизация в лучшем виде

Одна из важнейших характеристик машинного обучения - это его способность автоматизировать повторяющиеся задачи и, таким образом, повышать производительность. Огромное количество организаций уже используют машинное обучение на основе документооборота и автоматизацию электронной почты.В финансовом секторе, например, необходимо выполнить огромное количество повторяющихся, объемных и предсказуемых задач. Из-за этого в этом секторе в значительной степени используются различные типы решений машинного обучения . Они делают бухгалтерские задачи более быстрыми, информативными и точными. Некоторые аспекты, которые уже были рассмотрены в машинном обучении , включают решение финансовых запросов с помощью чат-ботов, прогнозирование, управление расходами, упрощение выставления счетов и автоматизацию выверки банковских счетов.

2.3- Взаимодействие с клиентами, как никогда раньше

Для любого бизнеса одним из наиболее важных способов стимулирования взаимодействия, повышения лояльности к бренду и установления долгосрочных отношений с клиентами является инициирование конструктивных разговоров с целевой клиентской базой. Машинное обучение играет решающую роль в том, что позволяет компаниям и брендам заводить более ценные разговоры с точки зрения взаимодействия с клиентами. Технология анализирует определенные фразы, слова, предложения, идиомы и форматы контента, которые находят отклик у определенных членов аудитории.Вы можете подумать о Pinterest, который успешно использует машинное обучение , чтобы персонализировать предложения для своих пользователей. Он использует эту технологию для поиска контента, который может заинтересовать пользователей, на основе уже закрепленных ими объектов.

2.4- Возможность поднять эффективность на новый уровень при объединении с IoT

Благодаря на огромной шумихе вокруг Интернета вещей, машинное обучение стало очень популярным.Многие компании считают Интернет вещей стратегически важным направлением. И многие другие запустили пилотные проекты, чтобы оценить потенциал Интернета вещей в контексте бизнес-операций. Но получить финансовую выгоду с помощью Интернета вещей непросто. Для достижения успеха компаниям, предлагающим консалтинговые услуги и платформы для Интернета вещей, необходимо четко определить области, которые изменятся с внедрением стратегий Интернета вещей. Многие из этих предприятий не смогли решить эту проблему. В этом сценарии машинное обучение , вероятно, лучшая технология, которую можно использовать для достижения более высокого уровня эффективности.Объединив машинного обучения с Интернетом вещей, компании могут повысить эффективность всех своих производственных процессов.

2.5- Возможность изменения ипотечного рынка

Это факт, что для получения положительного кредитного рейтинга для многих потребителей обычно требуются дисциплина, время и тщательное финансовое планирование. Когда дело доходит до кредиторов, потребительский кредитный рейтинг является одним из важнейших показателей кредитоспособности, который включает в себя ряд факторов, включая историю платежей, общую задолженность, длину кредитной истории и т. Д.Но разве не было бы замечательно, если бы была более упрощенная и лучшая мера? С помощью машинного обучения кредиторы теперь могут получить более полное представление о потребителях. Теперь они могут предсказать, тратит ли клиент мало или много, и понять, насколько он / она тратит. Помимо ипотечного кредитования, финансовые учреждения используют те же методы для других типов потребительских кредитов.

2.6- Точный анализ данных

Традиционно анализ данных всегда включает метод проб и ошибок, подход, который становится невозможным, когда мы работаем с большими и разнородными наборами данных. Машинное обучение - лучшее решение всех этих проблем, предлагая эффективные альтернативы анализу огромных объемов данных. Разрабатывая эффективные и быстрые алгоритмы, а также модели на основе данных для обработки данных в реальном времени, машинное обучение может генерировать точный анализ и результаты.

2.7- Бизнес-аналитика в лучшем виде

Машинное обучение характеристик, в сочетании с аналитической работой по большим данным, могут генерировать экстремальные уровни бизнес-аналитики, с помощью которых несколько различных отраслей реализуют стратегические инициативы.От розничной торговли до финансовых услуг, здравоохранения и многого другого - машинное обучение уже стало одной из самых эффективных технологий для стимулирования бизнес-операций.

Независимо от того, убеждены вы или нет, вышеуказанные характеристики машинного обучения во многом способствовали тому, что оно стало одной из самых важных технологических тенденций - оно лежит в основе огромного количества вещей, которые мы используем в наши дни, даже не задумываясь о них.

3- Почему мешают внедрению машинного обучения?

Это невозможно предсказать, заменят ли системы с машинным обучением людей или нет.Но можно сказать, что самым большим фактором, замедляющим развитие передовых технологий, таких как машинное обучение , является отсутствие человеческих навыков. Новое исследование, проведенное Cloudera, показывает, что для 51% бизнес-лидеров по всей Европе нехватка навыков удерживает их от внедрения.

Машинное обучение , как и наука о данных, развивается совершенно иначе. Поскольку эта технологическая тенденция включает в себя сбор, сопоставление и интерпретацию данных, требуется эффективное профессиональное обучение в области машинного обучения , владеющее огромным количеством дисциплин - от математики и статистики до программирования - все это необходимо.Как вы уже можете себе представить, машинное обучение - довольно сложная штука, и поэтому бизнес-лидерам стало действительно сложно найти подходящих кандидатов, которые могут помочь им достичь своих целей цифровой трансформации.

Тем, кто хочет стать профессионалом в области машинного обучения , следует с умом выбирать направление обучения. Хотя существуют различные способы, включая самообучение, традиционный подход, учебные курсы и т. Д., Большинство из них имеют свои недостатки.Учитывая широкий спектр предметной области машинного обучения и ее быстрое развитие, соискателям необходимо понимать, что ни один курс на самом деле не является достаточно всеобъемлющим. Если вы тоже заинтересованы в том, чтобы вступить в эту сферу с реальными знаниями и в какой-то степени обладаете основными навыками, присоединиться к учебному лагерю, подобному тем, которые предлагает Академия Magnimind, было бы хорошей идеей.

Итог

В наши дни машинное обучение , набирает обороты во всем мире, и это стало одной из ключевых обязанностей руководителей высшего звена - направлять свой бизнес в правильном направлении, используя его истинные характеристики.Мы находимся на пороге входа в мир, в котором машины и люди будут работать в гармонии, сотрудничать, проводить кампании и продвигать свои продукты / услуги инновационным способом, который будет более личным, эффективным и информированным, чем когда-либо прежде. Чтобы достичь этого, владельцам бизнеса пора подумать о том, как они могут использовать характеристики машинного обучения , как они хотят, чтобы технология работала и вела себя для развития бизнеса. Также важно разработать эффективную и прозрачную стратегию, включающую машинного обучения .Это поможет командам понять, как они могут выполнять свои задачи более эффективно, используя возможности машинного обучения .

. . .

Чтобы узнать больше о машинном обучении , щелкните здесь и прочтите нашу другую статью.

Определение искусственного интеллекта (AI)

Что такое искусственный интеллект (ИИ)?

Искусственный интеллект (ИИ) относится к моделированию человеческого интеллекта в машинах, которые запрограммированы думать, как люди, и имитировать их действия.Этот термин также может применяться к любой машине, которая проявляет черты человеческого разума, такие как обучение и решение проблем.

Идеальной характеристикой искусственного интеллекта является его способность рационализировать и предпринимать действия, которые имеют наибольшие шансы на достижение конкретной цели. Подмножеством искусственного интеллекта является машинное обучение, которое относится к концепции, согласно которой компьютерные программы могут автоматически учиться и адаптироваться к новым данным без помощи человека. Методы глубокого обучения обеспечивают автоматическое обучение за счет поглощения огромных объемов неструктурированных данных, таких как текст, изображения или видео.

Ключевые выводы

  • Искусственный интеллект относится к моделированию человеческого интеллекта в машинах.
  • Цели искусственного интеллекта включают обучение, рассуждение и восприятие.
  • AI используется в различных отраслях, включая финансы и здравоохранение.
  • Слабый ИИ, как правило, прост и ориентирован на выполнение одной задачи, в то время как сильный ИИ выполняет более сложные и похожие на человека задачи.

Понимание искусственного интеллекта (AI)

Когда большинство людей слышат термин «искусственный интеллект», первое, о чем они обычно думают, - это роботы.Это потому, что в высокобюджетных фильмах и романах сплетаются истории о человекоподобных машинах, сеющих хаос на Земле. Но ничто не могло быть дальше от истины.

Искусственный интеллект основан на том принципе, что человеческий интеллект можно определить таким образом, чтобы машина могла легко имитировать его и выполнять задачи, от самых простых до еще более сложных. Цели искусственного интеллекта включают имитацию когнитивной деятельности человека. Исследователи и разработчики в этой области делают удивительно быстрые успехи в имитации таких действий, как обучение, рассуждение и восприятие, в той степени, в которой они могут быть конкретно определены.Некоторые полагают, что новаторы вскоре смогут разработать системы, которые превзойдут возможности людей в изучении или рассуждении любого предмета. Но другие остаются скептически настроенными, потому что вся познавательная деятельность пронизана оценочными суждениями, которые зависят от человеческого опыта.

По мере развития технологий предыдущие тесты, которые определяли искусственный интеллект, устаревают. Например, машины, которые вычисляют базовые функции или распознают текст посредством оптического распознавания символов, больше не считаются воплощением искусственного интеллекта, поскольку эта функция теперь воспринимается как должное как неотъемлемая функция компьютера.

ИИ постоянно развивается, принося пользу во многих отраслях. Машины подключены с использованием междисциплинарного подхода, основанного на математике, информатике, лингвистике, психологии и многом другом.

Алгоритмы часто играют очень важную роль в структуре искусственного интеллекта, где простые алгоритмы используются в простых приложениях, а более сложные помогают сформировать сильный искусственный интеллект.

Приложения искусственного интеллекта

Приложения для искусственного интеллекта безграничны.Технология может применяться во многих различных секторах и отраслях. ИИ тестируется и используется в отрасли здравоохранения для дозирования лекарств и различного лечения пациентов, а также для хирургических процедур в операционной.

Другие примеры машин с искусственным интеллектом включают компьютеры, которые играют в шахматы, и беспилотные автомобили. Каждая из этих машин должна взвесить последствия любого своего действия, поскольку каждое действие повлияет на конечный результат. В шахматах конечный результат - победа.Для беспилотных автомобилей компьютерная система должна учитывать все внешние данные и вычислять их, чтобы действовать таким образом, чтобы предотвратить столкновение.

Искусственный интеллект также имеет приложения в финансовой индустрии, где он используется для обнаружения и маркировки деятельности в банковской и финансовой сфере, такой как необычное использование дебетовых карт и крупные депозиты на счетах, - все это помогает отделу по борьбе с мошенничеством в банке. Приложения для ИИ также используются, чтобы упростить и упростить торговлю. Это достигается за счет упрощения оценки предложения, спроса и цен на ценные бумаги.

Категоризация искусственного интеллекта

Искусственный интеллект можно разделить на две разные категории: слабый и сильный. Слабый искусственный интеллект представляет собой систему, предназначенную для выполнения одной конкретной работы. Слабые системы искусственного интеллекта включают видеоигры, такие как пример шахмат сверху, и личных помощников, таких как Amazon Alexa и Apple Siri. Вы задаете помощнику вопрос, он отвечает на него за вас.

Сильные системы искусственного интеллекта - это системы, которые выполняют задачи, которые считаются человеческими.Это, как правило, более сложные и сложные системы. Они запрограммированы так, чтобы справляться с ситуациями, в которых от них может потребоваться решение проблемы без вмешательства человека. Такие системы можно найти в таких приложениях, как беспилотные автомобили или в больничных операционных.

Особые соображения

С самого начала искусственный интеллект стал объектом пристального внимания как ученых, так и общественности. Одна из распространенных тем - идея, что машины станут настолько высокоразвитыми, что люди не смогут за ними поспевать, и они будут взлетать сами, модернизируя себя с экспоненциальной скоростью.

Во-вторых, машины могут взламывать частную жизнь людей и даже использоваться в качестве оружия. Другие аргументы спорят об этичности искусственного интеллекта и о том, следует ли относиться к интеллектуальным системам, таким как роботы, наравне с людьми.

Беспилотные автомобили вызывают довольно много споров, поскольку их машины, как правило, рассчитаны на наименьший возможный риск и наименьшие потери. Если бы им представился сценарий одновременного столкновения с одним человеком или другим, эти автомобили рассчитали бы вариант, который нанесет наименьший ущерб.

Еще одна спорная проблема, с которой сталкиваются многие люди с искусственным интеллектом, - это то, как он может повлиять на занятость людей. Поскольку многие отрасли стремятся автоматизировать определенные рабочие места с помощью интеллектуального оборудования, есть опасения, что люди будут вытеснены из рабочей силы. Беспилотные автомобили могут устранить необходимость в такси и программах обмена автомобилями, в то время как производители могут легко заменить человеческий труд машинами, сделав навыки людей более устаревшими.

Промышленные швейные машины | Основные характеристики типовой швейной машины

Если вы не знаете, для чего нужна промышленная швейная машина, вам необходимо прочитать этот пост.Здесь вы найдете список основных характеристик швейной машины 'Typical', которая выполняет только прямые стежки.
Это стандартная модель промышленных швейных машин, которая используется не только в швейном ателье, но и в домашних условиях.

Старая модель промышленной швейной машины

Смотреть! На этой фотографии показана еще одна старая модель промышленной швейной машины, которая очень похожа на современные модели, такие как Typical, Yamata и т. Д.
Смотрите также: Промышленная швейная машина Textima 8332.

Автономная система смазки

Каждая модель промышленных швейных машин имеет автономную систему смазки, стол, стол освещения и отдельный серводвигатель.
Если вы перевернете опорную плиту швейной машины, как показано, вы увидите около 1 литра масла и механический масляный насос.

Эти внутренние метки на металлическом корпусе указывают допустимые уровни масла (высокий и низкий). Главная особенность любой промышленной швейной машины - это возможность работать на высокой скорости в течение 24 часов.Поэтому необходима постоянная смазка механизмов машины.

В верхней части корпуса машины находится специальное окошко для контроля давления масла. Когда швейная машина работает на высокой скорости, в этом окне должна быть видна струя масла.

Эта швейная машина имеет вертикальный поворотный челнок.

Промышленная швейная машина имеет вертикальную поворотную челночную систему.

Промышленные швейные машины имеют вращающуюся систему челнока, которая вращается по полной окружности.Чтобы образовался стежок, он должен сделать два полных круга.

Здесь вы видите два узла челнока промышленных швейных машин. Легко снимается с вала. Эта функция позволяет настроить взаимодействие иглы и наконечника челнока и установить зазор между ними.

Шпульный колпачок промышленной швейной машины

Шпульный колпачок похож на шпульный колпачок домашних модельных швейных машин.

Игольная пластина и транспортер

Игольные пластины и транспортер нужно выбирать в зависимости от толщины ткани.Каждая промышленная швейная машина может иметь три типа игольной пластины и транспортера.

Регулятор натяжения нити

Регулятор натяжения нити промышленной швейной машины выглядит как натяжитель старой швейной машины Singer и других моделей.

Если вы удалите лицевую панель, вы обнаружите много стыков, которые необходимо постоянно смазывать.

Это рычаг прижимной лапки.

Устройство для намотки нити на шпульку

На этом фото вы видите приспособление для намотки нити на шпульку, прикрепленную к столу.

Серводвигатель промышленной швейной машины

Каждая промышленная швейная машина имеет отдельный серводвигатель.

Этот коленный рычаг работает как рычаг прижимной лапки. Коленоподъемник приводится в действие коленом, что освобождает обе руки швеи во время шитья.

Этот мощный ремень соединяет двигатель сцепления промышленной швейной машины с маховиком.

Здесь вы видите две кнопки включения питания.
Примечание: Чаще всего для промышленного оборудования используется повышенное напряжение (380 вольт).

Прижимные лапки и принадлежности

Для промышленных швейных машин можно использовать множество прижимных лапок и принадлежностей.

Шпульки для промышленных швейных машин отличаются от шпуль, предназначенных для домашних моделей швейных машин. Смотреть! Они имеют разную ширину, поэтому не взаимозаменяемы.

По краю стола нанесена измерительная шкала. Это делает использование промышленной швейной машины более комфортным.

Стол промышленной швейной машины имеет удобный ящик для хранения швейных принадлежностей.

Если вам нужно сшить натуральную кожу или искусственную кожу, в этом видео вы увидите, как сшить эти материалы на промышленной швейной машине.

Английский - не мой родной язык, поэтому, пожалуйста, извините за любые ошибки и помогите их исправить.
Электронная почта для отправки находится на странице контактов.


Советы по выбору швейной машины

Здесь вы узнаете, как выбрать первую швейную машину.Несколько ключевых особенностей швейных машин, которые нужно знать обязательно.


Как установить невидимую молнию

Узнайте, как сшить невидимую молнию. Вот шаги по установке молнии с 30 фотографиями и комментариями портного.


Как заправить нить в швейную машину

Это универсальный учебник для заправки нити в любые швейные машины и намотки шпульки.


Как исправить застежку-молнию и заменить бегунок

Основная причина ремонта молнии - сломанный бегунок.Изучите советы, как закрепить молнию и заменить бегунок молнии.


Как сделать круглую юбку

Вот шаги, как сделать юбку полного круга для дочери 4-5 лет. Юбка имеет эластичную талию, без подкладки.


Женская футболка с короткими рукавами и косой тесьмой

У этой женской футболки есть несколько особенностей. В этом уроке 20 фотографий.


Учебное пособие по летней шапке для девочек

Эта летняя детская шапка отлично смотрится и будет хорошо защищать головку малыша от солнца.Попробуйте сшить его, используя эти фото и комментарии.

Координатно-измерительные машины | Типы и характеристики измерительных систем | Основы измерения

Обычно измерения проводились визуально с использованием ручных инструментов или оптического компаратора. Однако эти инструменты требуют значительного времени и имеют ограниченную точность.
С другой стороны, координатно-измерительная машина (КИМ) измеряет высоту, ширину и глубину детали, используя технологию обработки координат.Кроме того, такие машины могут автоматически измерять цель, записывать измеренные данные и получать измерения GD&T.
Координатно-измерительная машина (КИМ) - это либо контактная модель, в которой используются контактные щупы, сферический объект, используемый для выполнения измерений, либо бесконтактная модель, в которой используются другие методы, такие как камеры и лазеры. Некоторые модели, разработанные для автомобильной промышленности, могут даже измерять цели размером более 10 м (30 футов).

Преимущество координатно-измерительной машины (КИМ) состоит в том, что она может измерять предметы, которые трудно измерить с помощью других измерительных машин, с высокой точностью.
Например, трудно измерить трехмерные координаты определенной точки (отверстия и т. Д.) От виртуального начала координат с помощью ручного инструмента, такого как штангенциркуль или микрометр. Кроме того, измерения с использованием виртуальных точек и виртуальных линий и геометрических допусков затруднены с помощью других измерительных машин, но могут быть измерены с помощью 3D-КИМ.

А
Подвижный мост

B
Датчик срабатывания

С
Этап

D
Контроллер

Как правило, большинство КИМ мостового или портального типа, как показано на схеме.Сферическая точка контакта, прикрепленная к наконечнику зонда, прикладывается к объекту на сцене, и значения координат в трех измерениях (X, Y, Z) задаются и измеряются.
Он в основном используется для трехмерного измерения штампов, таких как автомобильные детали и различные механические детали, трехмерных объектов, таких как прототипы, и измерения отличий от чертежей.

Щуп контактного типа КИМ обычно имеет сферический диаметр. На наконечнике зонда часто используются твердые материалы, из которых наиболее распространены рубин и диоксид циркония.
Помимо сферической формы, можно использовать иглы с острым концом.

Для проведения высокоточных измерений поверхность координатно-измерительной машины часто представляет собой пластину из камня. Пластина с каменной поверхностью имеет очень незначительное изменение формы с течением времени и ее нелегко поцарапать, поэтому ее преимущество состоит в том, что ее можно стабильно использовать в течение длительного времени.

Одним из наиболее важных инструментов для использования координатно-измерительной машины являются приспособления для фиксации объекта измерения на месте.
Причина, по которой объект измерения зафиксирован, он не перемещается во время работы КИМ, поскольку перемещение детали приведет к ошибкам. Обычно используются такие инструменты, как крепежные пластины, зажимы и магниты

Для координатно-измерительных машин с механическим приводом требуется воздушный компрессор с осушителем. Это могут быть стандартные КИМ мостового или портального типа.

Существует примерно два типа программного обеспечения для координатно-измерительных машин.
Первый - это программное обеспечение для наших собственных измерительных машин, которое мы самостоятельно разработали для каждого производителя измерительных машин.
Второй - это программное обеспечение, разработанное третьей стороной, которое может использоваться измерительными приборами различных производителей.

Поместите объект измерения в метрологическую лабораторию не менее чем на 5 часов перед измерением, чтобы позволить цели приспособиться к комнатной температуре (обычно 68 ° F). Это предотвратит ошибки измерения и расхождения из-за теплового расширения.
Выполняйте измерения, направляя зонд в желаемое место измерения вручную или с помощью управляющего ПК.КИМ запишет координаты X, Y, Z местоположения зонда. По мере продолжения сбора точек системное программное обеспечение будет вычислять указанные размеры, такие как диаметры, длины, углы и другие критические размеры.

Калибровка щупа (наконечника зонда), который соприкасается с объектом, должна выполняться для точного начала измерения по двум причинам. Первый - это распознать сферические координаты центра стилуса. Второй - установить диаметр сферы стилуса.Установив диаметр, можно рассчитать, смещая радиус от точки, которая действительно касается (вне сферы), до координат центра сферы.
Для калибровки обычно используется сфера с известной сферичностью, известная как эталонная сфера.

Хотя некоторые модели могут выполнять измерения порядка 0,1 мкм, правильное использование и управление жизненно важны для точности измерений.
Убедитесь, что движущиеся части перемещаются по горизонтали и вертикали во время использования.Также используйте эталон или аналогичный предмет для проверки ошибок индикации.
Для выполнения точных измерений критически важно, чтобы температура объекта соответствовала комнатной температуре в метрологической лаборатории. В качестве альтернативы, параметры измерения должны быть настроены так, чтобы корректировать любую разницу температур.
Для контактных щупов важно обеспечить контакт щупа с целью с постоянной скоростью во время измерения.

Обычные КИМ

требуют регулярного технического обслуживания и осмотра для непрерывного выполнения высокоточных измерений.В частности, в случае КИМ мостового типа с механическим приводом со скользящими частями, необходимо регулярно заменять изношенные части, смазывать и очищать систему для оптимальной производительности.

Бережное обращение с координатно-измерительными машинами обычно требует высоких навыков оператора. Обычно программисты КИМ являются высококвалифицированными специалистами в области метрологии. Программаторы КИМ
требуются не только для надлежащей проверки, но КИМ может быть поврежден, что приведет к высоким затратам на ремонт при неправильном использовании.По этой причине необходимы штатные инспекторы, а серьезная подготовка является предпосылкой для работы.

КИМ

обычно имеют систему координат устройства, которая задается в объекте.
Система координат устройства определяется устройством, например, направление оси, которая перемещается в поперечном направлении, - это ось X, а направление, перпендикулярное поверхности предметного столика, - это ось Z. Следовательно, в зависимости от ориентации измеряемого объекта она может отличаться от базовой плоскости или базовой линии самого объекта.Поскольку физически разместить это в координатах станка сложно и неточно, система координат заготовки устанавливается в соответствии с базовой плоскостью или базовой линией объекта.
Таким образом, выравнивание ориентации заготовки с ориентацией исходных координат называется выравниванием.

Для установки системы координат заготовки требуется три части информации.
Первая - это плоскость, которая является базовой плоскостью, а направление, перпендикулярное этой плоскости, - это ось Z.
Вторая линия - это контрольная линия, которая обычно является осью X, а вертикальное направление - осью Y. Прямая линия может быть измерена непосредственно от объекта, или это может быть прямая линия, соединяющая две разные точки (например, два отверстия) виртуальной линией.
Третья точка - это начало координат. Это начало координат является точкой 0 каждого значения координат X, Y и Z. Также можно указать конкретную точку (например, центральную точку определенного отверстия) в качестве начала координат или виртуальную точку (точку пересечения). где пересекаются две прямые.

Обычно пользователь выбирает цель измерения, называемую «элементом», например самолет, через меню программного обеспечения и начинает измерение. В случае координатно-измерительной машины контактного типа кончик щупа приводится в контакт с измеряемым объектом, и берется точка измерения. Элемент измеряется путем измерения минимального количества точек измерения, указанных для каждого элемента. Если количество точек измерения еще больше увеличивается, это часто вычисляется методом наименьших квадратов.
Помимо плоскостей, элементы измерения включают линии, точки, окружности, цилиндры, конусы и сферы.
Размеры и трехмерные формы измеряются путем вычисления расстояний и углов между измеряемыми элементами.

Некоторые элементы имеют трехмерные формы, такие как цилиндры и конусы, но некоторые элементы не имеют трехмерных форм, таких как линии и круги. Эти элементы обычно проецируются на плоскость (перемещаются перпендикулярно направлению плоскости), чтобы их можно было правильно измерить.Проецируемая плоскость называется базовой плоскостью или плоскостью проекции.

Координатно-измерительные машины

также могут выполнять измерения с использованием виртуальных линий и точек.
Используются различные примеры виртуальных элементов, такие как пересечения между прямыми линиями, допуски между плоскостями, пересечения между плоскостями и окружности между конусами и плоскостями.
Можно сказать, что измерение с использованием этих виртуальных элементов, которые трудно измерить с помощью ручных инструментов, таких как штангенциркуль, является уникальным для трехмерных измерений.

Измерения геометрического допуска измеряются так же, как и обычные измерительные элементы.
Более подробную информацию см. На странице геометрических допусков.

Для правильной установки и измерения требуются специальные знания и навыки.
Требуется поддерживать соответствующую температуру в измерительной комнате и стабилизировать температуру объекта.

Поскольку калибровку необходимо выполнять каждый раз при изменении различных настроек и углов датчика, нелегко поддерживать частую смену продукта.
Поскольку требуется измерительная комната, трудно проводить частые измерения при обработке объекта.

Для установки требуется большое пространство и строительство лаборатории качества с соблюдением экологических требований, что является чрезвычайно дорогостоящим.
Расходы на техническое обслуживание измерительной среды и измерительного оборудования могут стать обузой.
Для программирования КИМ требуется значительное время по нескольким причинам. Требуемое время для доставки детали в лабораторию качества, получения соответствующей температуры детали, фиксации, калибровки для каждого наконечника зонда и времени, необходимого для завершения измерения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *