Вольтметр как подключается в цепь: «Как включается в цепь вольтметр?» – Яндекс.Кью

Содержание

Влияние вольтметра на измеренную схему - измерительные цепи постоянного тока

Влияние вольтметра на измеряемую цепь

Глава 8 - Цепи измерения постоянного тока

Каждый измерительный прибор влияет на контур, который он измеряет до некоторой степени, точно так же, как любой манометр давления в шинах слегка изменяет измеренное давление в шинах, когда воздух подается на работу с датчиком. Хотя какое-то влияние неизбежно, его можно свести к минимуму благодаря хорошему дизайну счетчика.

Поскольку вольтметры всегда подключаются параллельно с тестируемым компонентом или компонентами, любой ток через вольтметр будет способствовать общему току в тестируемой цепи, потенциально влияя на измеряемое напряжение. Идеальный вольтметр имеет бесконечное сопротивление, так что он не потребляет ток от тестируемой цепи. Однако идеальные вольтметры существуют только на страницах учебников, а не в реальной жизни! Возьмите следующую схему делителя напряжения как крайний пример того, как реалистичный вольтметр может повлиять на схему измерения:

При отсутствии вольтметра, подключенного к цепи, должно быть ровно 12 вольт на каждом резисторе 250 МОм в последовательной цепи, причем два равных резистора делят полное напряжение (24 вольта) ровно наполовину.

Однако, если вольтметр имеет сопротивление от свинца до свинца 10 МОм (общее количество для современного цифрового вольтметра), его сопротивление создаст параллельную подсхему с нижним резистором делителя при подключении:

Это эффективно снижает низкое сопротивление от 250 МОм до 9, 615 МОм (параллельно 250 МОм и 10 МОм), резко изменяя падение напряжения в цепи. У нижнего резистора теперь будет гораздо меньше напряжения на нем, чем раньше, а верхнее сопротивление намного больше.

Разделитель напряжения с сопротивлением 250 МОм и 9, 615 МОм разделит 24 вольта на части 23, 11111 вольт и 0, 8889 вольт соответственно. Поскольку вольтметр является частью сопротивления 9, 615 МОм, это то, что он укажет: 0, 8889 вольт.

Теперь вольтметр может указывать только напряжение, на которое он подключен. У него нет никакого способа «знать», что потенциал 12 вольт упал на более низкий резистор 250 МОм, прежде чем он был подключен через него. Сам акт подключения вольтметра к цепи делает его частью схемы, а собственное сопротивление вольтметра изменяет отношение сопротивления цепи делителя напряжения, что влияет на измеряемое напряжение.

Представьте себе, используя манометр для шин, который потреблял такой большой объем воздуха для работы, что он будет сдувать любую шину, к которой он был подключен. Количество воздуха, потребляемого манометром при измерении, аналогично потребляемому вольтметром времени для перемещения иглы. Чем меньше воздуха требует манометр, тем меньше он будет дефлировать испытываемую шину. Чем меньше ток, потребляемый вольтметром для приведения в действие иглы, тем меньше он будет обременять тестируемую цепь.

Этот эффект называется загрузкой, и он присутствует в некоторой степени во всех случаях использования вольтметра. Сценарий, показанный здесь, является наихудшим, с сопротивлением вольтметра, существенно меньшим сопротивлений резисторов разделителя. Но всегда будет какая-то степень загрузки, в результате чего счетчик будет показывать меньше истинного напряжения без подключения измерительного прибора. Очевидно, что чем выше сопротивление вольтметра, тем меньше нагрузок исследуемой цепи, и поэтому идеальный вольтметр имеет бесконечное внутреннее сопротивление.

Вольтметрам с электромеханическими движениями обычно присваиваются номиналы в диапазоне «Ом на вольт» для обозначения количества ударов по окружности, создаваемых текущей тягой движения. Поскольку такие счетчики полагаются на разные значения множительных резисторов для получения разных диапазонов измерений, их сопротивление свинцу и свинцу будет меняться в зависимости от того, в каком диапазоне они установлены. Цифровые вольтметры, с другой стороны, часто демонстрируют постоянное сопротивление на своих измерительных проводах независимо от настройки диапазона (но не всегда!), И как таковые обычно оцениваются просто в омах входного сопротивления, а не в зависимости от «Ом на вольт».

То, что означает «Ом на вольт», - это количество сопротивлений свинца и свинца для каждого напряжения диапазона на селекторном переключателе. Рассмотрим пример вольтметра из последнего раздела в качестве примера:

На шкале 1000 вольт общее сопротивление составляет 1 МОм (999, 5 кОм + 500 Ом), давая 1000 000 Ом на 1000 вольт диапазона или 1000 Ом на вольт (1 кОм / В).

Этот показатель «чувствительности» на омах в вольт остается постоянным для любого диапазона этого счетчика:

Проницательный наблюдатель заметит, что номинал ом на вольт любого метра определяется одним фактором: полномасштабным током движения, в данном случае 1 мА. «Ом на вольт» - это математический ответ «вольт на Ом», который определяется законом Ома как ток (I = E / R). Следовательно, полномасштабный ток движения диктует чувствительность Ω / вольт измерителя, независимо от того, какие диапазоны он оснащает с помощью множительных резисторов. В этом случае полномасштабный номинальный ток движения измерителя 1 мА дает ему вольтметр с чувствительностью 1000 Ом / В, независимо от того, как мы располагаем его с помощью множительных резисторов.

Чтобы свести к минимуму нагрузку вольтметра на любую цепь, разработчик должен стремиться минимизировать текущую тягу своего движения. Это может быть достигнуто путем перепроектирования самого движения для максимальной чувствительности (меньше тока, необходимого для полномасштабного отклонения), но компромисс здесь, как правило, является прочной: более чувствительное движение имеет тенденцию быть более хрупким.

Другой подход заключается в том, чтобы электронным образом увеличить ток, отправленный в движение, так что очень мало тока необходимо извлечь из тестируемой схемы. Эта специальная электронная схема известна как усилитель, а вольтметр, сконструированный таким образом, является усиленным вольтметром .

Внутренние работы усилителя слишком сложны, чтобы их можно было обсуждать на данный момент, но достаточно сказать, что схема позволяет измеренному напряжению контролировать, сколько тока аккумулятора отправляется на движение счетчика. Таким образом, текущие потребности движения обеспечиваются внутренней батареей вольтметра, а не тестируемой схемой. Усилитель все еще нагружает тестируемую цепь до некоторой степени, но в целом в сотни или тысячи раз меньше, чем движение счетчика само по себе.

До появления полупроводников, известных как «полевые транзисторы», вакуумные трубки использовались в качестве усилительных устройств для осуществления этого повышения. Такие вольтметры с вакуумной трубкой или (VTVM) были когда-то очень популярными приборами для электронных испытаний и измерений.

Вот фотография очень старого VTVM, с открытой вакуумной трубкой!

Теперь твердотельные транзисторные усилители выполняют ту же задачу в цифровых конструкциях счетчиков. Хотя этот подход (с использованием усилителя для увеличения тока измеряемого сигнала) работает хорошо, он значительно усложняет конструкцию измерителя, что делает почти невозможным для начинающего студента-электроники понять его внутренние работы.

Конечным и изобретательным решением проблемы вольтметра является загрузка потенциометрического или нулевого баланса . Он не требует передовых (электронных) схем или чувствительных устройств, таких как транзисторы или вакуумные трубки, но для этого требуется более активное вовлечение техников и умение. В потенциометрическом приборе прецизионный регулируемый источник напряжения сравнивается с измеренным напряжением, а чувствительное устройство, называемое нулевым детектором, используется для обозначения того, когда два напряжения равны. В некоторых схемах прецизионный потенциометр используется для обеспечения регулируемого напряжения, следовательно, этикеточная потенциометрия .

Когда напряжения равны, то будет испытываться нулевой ток от тестируемой цепи, и, таким образом, измеряемое напряжение не должно подвергаться воздействию. Легко показать, как это работает с нашим последним примером - высоковольтной цепью делителя напряжения:

«Нулевой детектор» является чувствительным устройством, способным указывать на наличие очень малых напряжений. Если в качестве нулевого детектора используется электромеханическое измерительное устройство, оно будет иметь иглу с пружинным центром, которая может отклоняться в любом направлении, чтобы быть полезной для индикации напряжения любой полярности. Поскольку цель нулевого детектора состоит в том, чтобы точно указать условие нулевого напряжения, а не указывать какую-либо конкретную (отличную от нуля) величину в качестве нормального вольтметра, масштаб используемого инструмента не имеет значения. Нулевые детекторы, как правило, разработаны настолько, насколько это возможно, чтобы более точно указать условие «нулевой» или «баланс» (нулевое напряжение).

Чрезвычайно простой тип нулевого детектора представляет собой набор аудио наушников, а динамики в качестве своего рода движения счетчика. Когда напряжение постоянного тока первоначально подается на динамик, результирующий ток через него будет перемещать конус динамика и выдавать слышимый «щелчок». Еще один звук «щелчка» будет слышен, когда источник постоянного тока отключен. Основываясь на этом принципе, чувствительный нулевой детектор может быть сделан из ничего, кроме наушников и мгновенного контактного переключателя:

Если для этой цели используется набор наушников «8 Ом», его чувствительность может быть значительно увеличена путем подключения к устройству, называемому трансформатором . Трансформатор использует принципы электромагнетизма для «преобразования» уровней напряжения и тока импульсов электрической энергии. В этом случае используемым типом трансформатора является понижающий трансформатор, который преобразует низковольтные импульсы (созданные путем закрытия и открывания кнопочного выключателя при подключении к источнику малого напряжения) в импульсы с более высоким током для более эффективного управления Колонки динамиков внутри наушников.

Для этой цели идеально подходит трансформатор «аудиовыход» с импедансом 1000: 8. Трансформатор также увеличивает чувствительность детектора, накапливая энергию низковольтного сигнала в магнитном поле для внезапного высвобождения в громкоговорители для наушников при открытии переключателя. Таким образом, он будет производить более громкие «щелчки» для обнаружения меньших сигналов:

При подключении к потенциометрической схеме в качестве нулевого детектора, устройство переключателя / трансформатора / наушников используется как таковое:

Цель любого нулевого детектора - действовать как шкала лабораторного баланса, указывая, когда два напряжения равны (отсутствие напряжения между точками 1 и 2) и ничего более. Баланс весов лабораторного масштаба фактически ничего не весит; скорее, это просто указывает на равенство между неизвестной массой и кучей стандартных (калиброванных) масс.

Аналогично, нулевой детектор просто указывает, когда напряжение между точками 1 и 2 одинаково, что (согласно закону напряжения Кирхгофа) будет, когда регулируемый источник напряжения (символ батареи с проходящей через него диагональной стрелкой) точно равен напряжению к падению через R 2 .

Чтобы управлять этим инструментом, техник вручную отрегулировал выход источника прецизионного напряжения, пока нулевой детектор не указал точно нулевое значение (если использовать звуковые наушники в качестве нулевого детектора, техник несколько раз нажимает и отпускает кнопочный переключатель, слушая молчание, указывающее что схема была «сбалансирована»), а затем обратите внимание на напряжение источника, как указано вольтметром, подключенным через источник прецизионного напряжения, причем эта характеристика является показателем напряжения на нижнем резисторе 250 МОм:

Вольтметр, используемый для непосредственного измерения прецизионного источника, не должен обладать чрезвычайно высокой чувствительностью к Ω / V, поскольку источник будет обеспечивать все токи, которые он должен использовать. Пока на нулевом детекторе имеется нулевое напряжение, между точками 1 и 2 будет нулевой ток, приравнивая отсутствие нагрузки тестируемой цепи делителя.

Достаточно повторить тот факт, что этот метод, правильно выполненный, накладывает почти нулевую нагрузку на измеренную схему. В идеале, он абсолютно не нагружает тестируемую цепь, но для достижения этой идеальной цели нулевой детектор должен будет иметь абсолютно нулевое напряжение на нем, что потребует бесконечно чувствительного нулевого измерителя и идеального баланса напряжения от регулируемого источника напряжения, Однако, несмотря на его практическую неспособность достичь абсолютной нулевой нагрузки, потенциометрическая схема по-прежнему является отличным методом измерения напряжения в высокоомных цепях. И в отличие от решения электронного усилителя, которое решает проблему с использованием передовых технологий, потенциометрический метод достигает гипотетически идеального решения, используя фундаментальный закон электричества (KVL).

  • ОБЗОР:
  • Идеальный вольтметр имеет бесконечное сопротивление.
  • Слишком низкое внутреннее сопротивление вольтметра будет отрицательно влиять на измеряемую цепь.
  • Вольтметры вакуумной трубки (VTVM), транзисторные вольтметры и потенциометрические схемы - все это средство минимизации нагрузки, помещенной на измеряемую цепь. Из этих методов потенциометрический («нулевой баланс») метод является единственным, способным устанавливать нулевую нагрузку на схему.
  • Нулевой детектор - это устройство, созданное для максимальной чувствительности к малым напряжениям или токам. Он используется в цепях потенциометрического вольтметра, чтобы указать отсутствие напряжения между двумя точками, что указывает на состояние баланса между регулируемым источником напряжения и измеряемым напряжением.

схема включения прибора в цепь, виды устройств

Электрические цепи присутствуют во всех сферах и отраслях жизни современного человека. Стоит прекратить подачу тока и ее качество значительно ухудшится, с разных сторон возникнет масса серьезных опасностей. Чтобы постоянно регулировать исправную работу электросети, необходимо знать, как подключается амперметр. Этим прибором измеряется сила тока.

Общие сведения о приборе

Законы электрической цепи преподаются в учебных заведениях. Каждому подростку известны нюансы про направленное движение заряженных частиц. Оно представлено перемещением электронов по проводнику и называется электричеством. Если рассматривать практическую сторону, любое перемещение чего-либо в природе (воздушные массы, заряды, вода в реке) может приносить пользу человечеству.

Нужно только определиться с продолжительностью действия силы, ее направлением, мощностью.

На основании этого создаются различные устройства, просчитывающие и измеряющие всевозможные величины. Например, чтобы иметь подробное представление про ток, стоит воспользоваться амперметром. Прибор без труда определяет численность заряженных частиц, которые пересекают установленное в проводнике сечение за определенный период (единицу) времени, что и является силой тока.

Понятие и виды амперметра

Приспособление подходит для определения силы тока в любой действующей электросети. Предмет легко узнаваем по имеющейся латинской литере «А». Схема подключения амперметра предельно проста. Нужно только определиться с величиной тока, начинающейся миллиамперами.

Также приборы подразделены на те, что рассчитаны на определенную мощность, и универсальные с изменяющимся пределом измерения. Стоит отметить, что для работы с переменным и постоянным током задействуются разные виды амперметров. Они также различны по принципу устройства:

  • магнитоэлектрические;
  • индукционные;
  • в электромагнитном исполнении;
  • тепловые;
  • в виде электродинамической системы;
  • детекторного типа;
  • термоэлектрические;
  • фотоэлектрические.

Схема включения амперметра магнитоэлектрического типа предельно проста. Она дает возможность узнать силу тока в сети, запитанной постоянным напряжением. С переменными показателями уместнее работать при помощи индукционных, детекторных устройств.

Иные приспособления обычно являются универсальными в применении. Особенность агрегатов в магнитоэлектрическом и электродинамическом исполнении заключается в максимальной их точности и высокой чувствительности.

Подключение к цепи

Чтобы понять, как подключить амперметр любой сложности, нужно знать, что он включается последовательно нагрузке. В таком случае через прибор пройдет ток, аналогичный электричеству в измеряемой сети.

Устройства специально изготавливаются с незначительным входным сопротивлением. Так предотвращается сильное влияние на ток, ему оказывается минимальное препятствие. Следует помнить, что при неверном подключении, когда амперметр соединяется параллельно нагрузке, ток будет направлен через описываемый агрегат, а именно сработает правило наименьшего сопротивления. В таких ситуациях на практике измерители тока попросту выходят из строя.

Перед покупкой амперметра нужно знать, с какой силой он будет работать, — постоянной или переменной. Определившись по маркировке на шкале с выбором прибора, на нем рекомендуется выставить максимальную мощность, продумать правильное подсоединение к сети.

Далее с измерителя снимаются показатели. Когда они являются меньшими в сравнении с выставленным пределом, а стрелка располагается в первой части градиента, ее следует переместить в другую сторону шкалы с обозначением максимально точных значений.

Определение постоянного тока

Подобный вид электричества проходит через различные электронные схемы. Ярким примером станут всевозможные зарядные устройства, блоки питания. Для ремонта таких приспособлений мастер должен знать и понимать, как подключается амперметр в цепь.

В бытовых условиях подобные знания не будут лишними. Они помогут человеку, не сильно увлекающемуся радиоэлектроникой, самостоятельно определить, к примеру, время, на которое хватит зарядки аккумулятора от фотоаппарата.

Для проведения эксперимента понадобится полностью заряженная батарея с номинальным напряжением, например, в 3,5 вольта. Также стоит запастись лампочкой аналогичного номинала для создания последовательной схемы:

  • батарея;
  • амперметр;
  • лампа.

Запись, обозначенная на измерительном приборе, фиксируется. Например, осветительное изделие потребляет электричество мощностью в 150 миллиампер, а аккумулятор имеет емкость в 1500 миллиампер-часов. Значит, последний должен функционировать на протяжении 10 часов, выдавая ток в 150 mA.

Измерение переменного электричества

Любые бытовые приборы, питающиеся от сети, показывают нагрузку, с которой они потребляют ток переменного типа. При рассмотрении вопросов использования энергии стоит помнить про понятие мощности, за которую и производится окончательная оплата в киловаттах. В таком случае амперметр выступает устройством для выполнения косвенных замеров. Таким способом определяется сила тока через стандартную формулу по закону Ома:

P=I*U, где:

  • U является напряжением;
  • I представляет силу тока;
  • Р указывает на рассчитанную мощность.

Бывают случаи, когда утрачивается информация, фиксируемая электрощитком. Для восстановления необходимых параметров и понадобится амперметр. Иногда при обслуживании масштабного здания отсутствует возможность контроля всех приборов, фиксирующих электричество. Проблема решается путем подсоединения усиленного амперметра на выход от щитка, снятия интересуемых замеров. Такие задачи разрешено выполнять только специально обученным людям.

Бесконтактный вариант замеров

Бывает так, что разрыв электроцепи без включения измерительного агрегата невозможен по техническим причинам. Узнать же значения тока необходимо, это касается работы с высоковольтными и обычными сетями. Схема подключения вольтметра, амперметра в таких случаях предполагает использование специальных токовых клещей, которые позволяют бесконтактно произвести интересуемые замеры.

Принцип действия такого приспособления базируется на том, что ток поступает на проводник, создавая тем самым определенное магнитное поле. Величины этих значений взаимозависимы. Замеряется напряженность в имеющемся поле, преобразуется по формуле, а на выходе получается реальный показатель силы, выражающейся в амперах.

Такой способ часто используется на практике из-за простоты, удобства и безопасности, отсутствия необходимости применять амперметр, думая, как ввести его в цепь. Например, клещи фиксируются на изолированном проводе любой цепи и зарядного устройства, после чего просто снимаются нужные показатели. Существенный недостаток — их высокая стоимость.

Амперметр является востребованным прибором при работе с электросетями. В домашних условиях он приносит не меньше пользы. Применение же такого агрегата предельно просто и незамысловато.

Вольтметр. Измерение напряжения

Для измерения напряжения используют вольтметр. Вольтметр внешне похож на амперметр, но, в цепь он включается иначе.

Поскольку напряжение может существовать только между какими-то точками, для включения вольтметра в цепь используют параллельное подключение. Как и у амперметра, у вольтметра есть две клеммы, одна из которых помечена знаком «+». Эту клемму следует соединять с положительным полюсом, чтобы прибор работал правильно.

Напряжение, как таковое не может существовать в одной точке, поскольку теряется смысл самого понятия «напряжение». Поэтому когда мы говорим о напряжении на участке цепи, мы имеем ввиду, напряжение между двумя конкретными точками. Чтобы измерить напряжение между полюсами источника, клеммы подключают непосредственно к источнику. Так, если подключить вольтметр к полюсам стандартной пальчиковой батарейки, мы увидим, что напряжение составляет от одного до полутора вольт.

Упражнения.

Задача 1. На рисунке показана цепь, в которой ток в лампочке измеряется с помощью амперметра. В цепь включается вольтметр так, как показано на рисунке. Амперметр показывает 500 мА, а вольтметр — 5 В. Что покажут приборы при нажатии на включатель?

При нажатии на выключатель, лампочка будет выключена из цепи, т.е. по ней перестанет проходить ток. Поэтому амперметр покажет 0 А. Вольтметр же измеряет напряжение между полюсами источника, а выключение лампочки на это напряжение никак не влияет. Поэтому вольтметр по-прежнему будет показывать 5 В.

Задача 2.  Одна клемма вольтметра подключена к выключателю. Вольтметр показывает 12 В. Что будет показывать вольтметр при нажатии на выключатель?

Конечно, он будет показывать 0 В, потому что при нажатии на выключатель, подключенная к нему клемма тоже выключится из цепи, и фактически, вольтметр не будет подключен.

Задача 3.  У вас есть рубильник, с помощью которого вы можете контролировать силу тока в цепи. У рубильника есть 5 положений: 0, 1, 2, 3 и 4 А. К цепи подключена лампочка и вольтметр. На данный момент напряжение составляет 4 В, а ток — 2 А. Сможете ли вы поддерживать постоянную яркость лампочки, если напряжение может увеличиться вдвое, уменьшиться в полтора раза или уменьшиться на 2 В?

Нужно подумать, от чего зависит яркость лампочки. Мы уже говорили, что яркость лампочки менялась при скачках напряжения из-за того, что ток совершал различную работу. Но, в данной ситуации у нас есть возможность изменять силу тока. Значит, надо попытаться изменениями силы тока компенсировать изменения напряжения, чтобы работа тока была постоянной. Именно в этом и состоит вопрос в нашей задаче: сможем ли мы удерживать работу постоянной.

Вольтметры и амперметры

Физика > Вольтметры и амперметры

 

Изучите показания, схемы и сопротивление вольтметра и амперметра в цепи – устройства измерения напряжения и тока: рисунки, цифровой вольтметр и амперметр.

Вольтметры и амперметры в цепи используют для вычисления напряжения и тока.

Задача обучения

  • Сравнить подключение цепей амперметра и вольтметра.

Основные пункты

  • Вольтметр – устройство, с чьей помощью удается вычислить разность электрических потенциалов между двумя точками в электрической цепи.
  • Амперметр – устройство для вычисления тока в цепи.
  • Вольтметр связывается с устройством параллельно, а амперметр – последовательно.
  • В основе большинства аналоговых счетчиков лежит гальванометр – измеряет ток при помощи движения или отклонения иглы. На прогиб влияет магнитная сила, воздействующая на токопроводящую проволоку.

Термины

  • Шунтирующее сопротивление – небольшое сопротивление (R), расположенное параллельно гальванометру (G) для изготовления амперметра.
  • Гальванометр – аналоговый измерительный прибор (G), который для вычисления тока использует отклонение иглы.
  • Вольтметры и амперметры вычисляют напряжение и ток в цепи.

Вольтметры

Вольтметр – устройство для вычисления разницы в электрическом потенциале между двумя точками в электрической цепи. Аналоговый вольтметр смещает указатель по шкале пропорционально напряжению в цепи, в цифровом присутствует цифровой дисплей. Любое измерение вольтметра, которое можно трансформировать в напряжение, будет отображаться на счетчике. Здесь зафиксируется давление, температура и поток.

Демонстрационный прибор, используемый на уроках по физике

Чтобы вольтметр смог вычислить напряжение, он должен подключаться параллельно. Это важно, так как параллельные объекты ощущают единое различие потенциалов. Ниже представлена схема вольтметра и показания.

(а) – Чтобы вычислить отличие потенциалов в этом потоке, вольтметр (V) расположен параллельно по отношению к источнику напряжения или любому из резисторов. Отметьте, что напряжение клеммы вычисляется между точками а и b. Нельзя подключить вольтметр через ЭДС без добавления внутреннего сопротивления. (b) – Применение цифрового вольтметра

Амперметры

Амперметр измеряет электрический ток, а его наименование происходит из единицы измерения – Ампер. Чтобы прибор смог определить ток, его нужно присоединить последовательно. Это важно, так как объекты в последовательной цепи ощущают единый ток. Они не должны подключаться к источнику напряжения – амперметры функционируют при минимальной нагрузке. Можете рассмотреть схему амперметра.

Амперметр установлен в последовательной связи для определения тока. Весь ток в цепи проходит сквозь счетчик. Если амперметр находится между точками d и e или f и a, то приобретет такое же значение

Гальванометры (аналоговые счетчики)

Аналоговые счетчики располагают иглами, которые поворачиваются, чтобы отмечать на шкале цифры. Это и отличает их от цифровых приборов, выводящих цифровые символы прямо на экран. В центре большинства аналоговых приборов находится гальванометр (G). Ток проходит сквозь него и приводит к пропорциональному перемещению (отклонение иглы).

Гальванометр характеризуется сопротивлением и текущей чувствительностью. Последнее – ток, осуществляющий значительное отклонение иглы гальванометра (максимальный ток). К примеру, гальванометр, чья токовая чувствительность составляет 50 мкА достигает максимального прогиба в 50 мкА.

Если подобный прибор обладает сопротивлением в 20 Ом, то только напряжение V = IR = (50 мкА) (25 Ом) = 1.25 мВ создает полномасштабное считывание. Объединив с ним резисторы, можно рассматривать его в качестве вольтметра или амперметра.

Гальванометры в качестве вольтметров

Катушка гальванометра способена функционировать как вольтметр, когда расположена в последовательной связи с серьезным сопротивлением (R). Это значение вычисляется максимальным напряжением. Допустим, вам нужно, чтобы 10В создавало полномасштабное отклонение вольтметра, вмещающего гальванометр с 25 Ом и чувствительностью 50 мкА. Полное сопротивление:

Rполное = R + r = V/I = 10В/50мкA = 200кОм,

или

R = Rполное - R = 200кОм – 25 ОМ ≈ 200кОм (R настолько велико, что сопротивление гальванометра почти незначительное).

Заметьте, что приложенные 5В создают отклонение в половину шкалы, отправляя ток всего в 25 мкА сквозь счетчик, так как показание вольтметра располагается пропорционально. В случае с другими диапазонами, напряжение устанавливают последовательно с гальванометром.

Гальванометр в качестве амперметра

Гальванометр можно использовать как амперметр, если прибор установлен в параллельной связи с небольшим сопротивлением, именующимся шунтирующим. Дело в том, что сопротивления шунта маленькое, из-за чего амперметр может вычислять ток намного четче.

Допустим, нам нужен амперметр, фиксирующий полномасштабное отклонение для 1 А и содержит тот же гальванометр на 25 Ом с чувствительностью 50 мкА. Так как R и r параллельны, напряжение на них одинаково.

IR = IGr

Так что: IR = IG/I = R/r.

Решая для R и отмечая, что IG составляет 50 мкА, а I – 0.999950 А, получим:


Вольтметры. Виды и работа. Устройство и маркировка. Особенности

Вольтметры являются измерительными приборами, которые предназначены для измерения электродвижущей силы в электрической цепи на некотором ее участке, то есть, для измерения разности электрических потенциалов, которое называется напряжением. Единицей измерения этого параметра является Вольт. Такой измерительный прибор должен подключаться параллельно измеряемому участку или нагрузке. Если вольтметр подключить к выводам батарейки или блока питания, то прибор покажет не напряжение, а электродвижущую силу, так как при подключении в цепь с нагрузкой напряжение меняется.

Вольтметры в идеале должны иметь большое внутреннее сопротивление, для обеспечения точных показаний, и не воздействовать на измеряемую цепь. Поэтому в высокоточных приборах стремятся к наибольшему внутреннему сопротивлению.

Классификация
По принципу действия:
  • Электромеханические.
  • Электронные.
По назначению:
  • Для постоянного тока.
  • Для переменного тока.
  • Импульсные.
  • Фазочувствительные.
  • Селективные.
  • Универсальные.
По способу исполнения:
  • Переносные.
  • Стационарные.
  • Щитовые.
Устройство и работа

Рассмотрим основные виды вольтметров.

Электромеханические

Процесс измерения основан на прямой линейной зависимости движения механического вида от напряжения. Стрелка прибора находится на рамке с обмоткой, расположенной на вращающейся оси внутри постоянного магнита.

При возникновении в рамке напряжения, вокруг нее появляется электромагнитное поле. В результате рамка со стрелкой поворачивается в магнитном поле на определенный угол, величина которого зависит от измеряемой величины. Чувствительностью прибора называется коэффициент пропорциональности между значением угла поворота рамки и напряжением. Чтобы не было колебаний вращающейся рамки со стрелкой, используют магнитно-индукционный демпфер.

Он выполнен в виде алюминиевой пластины, закрепленной на оси, и движется совместно со стрелкой в магнитном поле. Вихревые токи при этом препятствуют колебаниям рамки, поэтому возникающие колебания стрелки затухают. Воздушные демпферы вольтметров состоят из цилиндров с поршнями, которые связаны механическим путем со стрелкой. При возникающих колебаниях стрелки поршень сглаживает их путем затормаживания в цилиндре. Чтобы точность измерений была высокой, прибор не должен зависеть от силы тяжести, стрелка должна отклоняться только от действия катушки в поле магнита, а не от силы тяжести. Поэтому подвижные элементы оснащают специальными грузиками, играющими роль противовесов.

Для уменьшения трения металлические наконечники изготавливают из прочной стали, затем полируют их. Подпятники выполняют из твердых камней. Зазор между подпятником и полированным наконечником регулируется винтом. Направление поворота стрелки зависит от полярности тока, протекающего через катушку. Поэтому для правильных измерений необходимо соблюдать полярность.

Электронные вольтметры

Приборы с электронной начинкой делятся в свою очередь на аналоговые и цифровые. Они отличаются тем, что в аналоговых приборах имеется стрелка и шкала, а в цифровых приборах значение напряжения выводится на цифровой экран. Аналоговые приборы работают по принципу преобразования переменного входного напряжения в постоянное. Затем оно усиливается и поступает на детектор, сигнал от которого отклоняет стрелку. Чем выше напряжение входа, тем больше отклонится стрелка.

Цифровые

Такие приборы работают с большей точностью, в отличие от аналоговых моделей. Принцип их работы заключается в изменении аналогового входного сигнала в цифровой вид. При этом кодированный цифровой сигнал приходит на устройство, преобразующее двоичный код в цифры, отображаемые на экране. Точность измерений цифровых вольтметров зависит от дискретности аналого-цифрового устройства, преобразующего сигнал.

Вольтметры в сети переменного тока

Работа таких устройств заключается в преобразовании переменного значения напряжения в постоянное. После этого сигнал усиливается и поступает на измерительный механизм магнитоэлектрического действия.

Импульсный вольтметр

Такой прибор способен измерить короткие импульсы напряжений в сети. Разберем устройство и работу импульсного вольтметра на примере устройства для поиска неисправностей в электрической сети автомобиля. Он служит для поиска импульсных помех.

Около 5% неисправностей автомобиля возникают из-за неисправностей электрической проводки в виде помех и исчезающего контакта. У старого автомобиля таких неисправностей больше. Простыми вольтметрами и тестерами такие неисправности невозможно, так как они не реагируют на одиночные импульсы, приводящие к сбою и выходу из строя оборудования.

Бортовой компьютер автомобиля при неисправностях выдает сигнал. При проверке выясняется, что это коды – ошибки. Ремонтники меняют свечи, сам компьютер, выполняют другие работы. Но по-прежнему выдается «ошибка двигателя», а кодов неисправностей нет, так как импульсы, вызванные неисправностями, не улавливаются.

Для решения этих проблем существует прибор, измеряющий импульсные сигналы напряжения. Он срабатывает при появлении одиночного импульса. На корпусе устройства имеется переключатель чувствительности.

Порядок работы
  • Большие «крокодилы» подключить на аккумуляторные клеммы.
  • Провод с небольшим «крокодилом» подключить на положительную клемму батареи.
  • Чувствительность установить на «0».
  • Двигатель запустить.
  • При нормальном аккумуляторе при запуске двигателя красный индикатор на приборе не должен светиться. В противном случае необходимо искать неисправность на клеммах батареи или в ее внутреннем состоянии.
  • При запущенном двигателе чувствительность установить на «1», покачать кузов машины, легко постучать по аккумулятору деревянной палкой. Если импульсный вольтметр не сработал, то в аккумуляторе нет проблем.
  • Подобным образом проверяют электропроводку, лампочки, электронные узлы и потребители энергии.

На этом примере становится понятно, для чего нужны и как работают импульсные вольтметры.

Фазочувствительные

Такие приборы называют векторметрами. Они предназначены для замеров квадратурных составляющих напряжений первой гармоники. Они оснащаются двумя индикаторами для показаний мнимой и действительной составляющей комплексного напряжения.

Фазочувствительный вольтметр определяет общее напряжение в комплексе. При этом начальная фаза опорного напряжения принимается за ноль. Такие типы приборов нашли применение в лабораторных исследованиях фазоамплитудных характеристик четырехполюсных усилителей и т.п.

Селективные

Вольтметры, способные избирательно выделить гармонические составляющие сложного сигнала и среднеквадратичную величину напряжения, называют селективными. По конструктивным особенностям и принципу работы такие приборы подобны устройству супергетеродинного радиоприемника, без регулятора усиления.

Универсальные

Название прибора говорит само за себя. С помощью такого вольтметра можно измерить ЭДС в любых цепях и при любых условиях. Чаще всего они имеют в комплекте набор различных шунтов в виде гасящих резисторов.

Универсальные измерители напряжения обладают множеством функций и возможностей, имеют незначительный расход энергии, и могут определить напряжение, как в аналоговом, так и в цифровом виде. Они применяются в различных сферах производства, науки, техники, лабораторных исследованиях.

Переносные вольтметры

Такие приборы являются автономными, так как не требуют для своей работы внешнего питания. Они имеют небольшие габаритные размеры и заключены в удобный эргономичный корпус. Одним из видов переносных вольтметров можно назвать мультиметр, или тестер. Он также имеет компактные размеры, однако его точность работы достаточно высокая, и позволяет получить точные результаты при выполнении ответственных заданий.

Стационарные вольтметры

Приборы стационарного типа обычно размещают в большом металлическом корпусе с большой шкалой измерений. Их можно устанавливать и подключать в различных положениях, для этого на корпусе имеются соответствующие крепления. Стоят такие приборы значительно дороже переносных моделей. Однако высокая точность работы позволяет применять их в различных сферах: лабораториях, крупных производственных объектах, научных центрах и т.д.

Щитовые

Внешний вид щитовых вольтметров аналогичен переносным приборам, с отличием в том, что устанавливаются они в специальные шкафы для контрольных приборов.

Маркировка вольтметров
Для определения типа прибора можно посмотреть его обозначение маркировки. Если первая буква в названии:
  • «Д» — это вольтметр электродинамического действия.
  • «М» — прибор магнитоэлектрический.
  • «Т» — термоэлектрический.
  • «С» — электростатический.
  • «Ц» — приборы выпрямители.
  • «Э» — электромагнитные.
  • «Щ», «Ф» — электронные.

Радиоизмерительные вольтметры маркируются по-другому. Вначале стоит буква «В», а далее цифра обозначает тип. Затем идут символы модели прибора.

Похожие темы:

Стрелочный вольтметр. Параметры и особенности.

Параметры и особенности стрелочных вольтметров

И хоть мы уже давно привыкли к цифровым вольтметрам, в природе всё ещё встречаются и стрелочные.

В некоторых случаях их применение может быть более удобным и практичным, чем использование современных цифровых.

Если в ваши руки попал стрелочный вольтметр, то желательно узнать его основные характеристики. Их легко определить по шкале и надписях на ней. В мои руки попал встраиваемый вольтметр М42300.

Внизу, под шкалой, как правило, есть несколько значков и указана модель прибора. Так, значок в виде подковы (или изогнутого магнита) означает, что это прибор магнитоэлектрической системы с подвижной рамкой.

На следующем снимке можно разглядеть такую подковку.

Горизонтальная чёрточка указывает на то, что данный измерительный прибор рассчитан на работу с постоянным током (напряжением).

Тут же стоит уточнить, почему речь идёт о постоянном токе. Не секрет, что стрелочными бывают не только вольтметры, но и огромное количество других измерительных приборов, например, тот же аналоговый амперметр или омметр.

Действие любого стрелочного прибора основано на отклонении катушки в поле магнита при прохождении постоянного тока по этой самой катушке. Чтобы отобразить с помощью стрелки показания на шкале прибора, ток должен быть постоянным.

Если он будет переменным, то стрелка будет отклоняться вправо-влево с частотой переменного тока, который протекает через обмотку катушки. Чтобы измерить величину переменного тока или напряжения в измерительный прибор встраивают выпрямитель.

Именно поэтому, под шкалой прибора указывается тип тока, с которым он способен работать: постоянным или переменным.

Далее на шкале прибора можно обнаружить целое или дробное число, вроде 1,5; 1,0 и подобное. Это класс точности прибора, выраженный в процентах %. Понятно, чем меньше число, тем лучше – показания будут точнее.

Также можно увидеть такой знак – две пересекающиеся черты под прямым углом. Этот знак указывает на то, что рабочее положение прибора вертикальное.

При горизонтальном положении показания могут быть менее точные. Иными словами прибор может "врать". Стрелочный вольтметр с таким значком лучше устанавливать в прибор вертикально и исключить существенный наклон.

А вот такой знак говорит о том, что рабочее положение прибора - горизонтальное.

Ещё один интересный знак – пятиконечная звезда с цифрой внутри.

Данный знак предупреждает о том, что между корпусом прибора и его магнитоэлектрической системой напряжение не должно превышать 2кВ (2000 вольт). На это стоит обращать внимание при эксплуатации вольтметра в высоковольтных установках. Если вы планируете использовать его в блоке питания на 12 – 50 вольт, то беспокоиться не стоит.

Как считывать показания со шкалы стрелочного вольтметра?

Для тех, кто впервые видит шкалу прибора, возникает вполне резонный вопрос: "А как же считывать показания?" На первый взгляд ничего непонятно .

На самом деле всё просто. Чтобы определить минимальное деление шкалы нужно определить ближайшее число (цифру) на шкале. Как видим на шкале нашего М42300 – это 2.

Далее считаем количество промежутков между чёрточками до первого числа или цифры – в нашем случае до 2. Их оказывается 10. Далее делим 2 на 10, получаем 0,2. То есть, расстояние от одной маленькой чёрточки до соседней, равно - 0,2 вольта.

Вот мы и нашли минимальное деление шкалы. Таким образом, если стрелка прибора отклонится на 2 маленьких деления, то это будет означать, что напряжение равно 0,4V (2 * 0,2V = 0,4V).

Практический пример.

В наличии уже знакомый нам встраиваемый вольтметр модели М42300. Прибор предназначен для измерения постоянного напряжения до 10 вольт. Шаг измерения - 0,2 вольта.

Прикручиваем к клеммам вольтметра два провода (соблюдаем полярность!), и подключаем севшую батарейку на 1,5 вольта или любую попавшуюся.

Вот такие показания я увидел на шкале прибора. Как видим, напряжение батарейки равно 1 вольту (5 делений * 0,2V = 1V). Пока фотографировал, стрелка вольтметра упорно двигалась к началу шкалы - батарейка отдавала последние "соки".

Кроме этого мне стало интересно, какой ток потребляет сам стрелочный вольтметр. Поэтому вместо батарейки я подключил блок питания и выставил на выходе 10 вольт - чтобы стрелка прибора отклонилась на всю шкалу. Далее я подключил в разрыв цепи цифровой мультиметр и измерил ток.

Оказалось, ток, потребляемый стрелочным вольтметром, составил всего 1 миллиампер (1 мА). Его достаточно, чтобы стрелка отклонилась на всю шкалу. Это очень мало. Поясню свой намёк.

Получается, что стрелочный вольтметр экономичнее цифрового. Посудите сами, любой цифровой измерительный прибор имеет дисплей (ЖК или светодиодный), контроллер, а также буферные элементы для управления дисплеем. И это только часть его схемы. Всё это потребляет ток, садит батарею или аккумулятор. И если в случае вольтметра с жидкокристаллическим дисплеем потребляемый ток невелик, то при наличии активного светодиодного индикатора, потребляемый ток будет уже существенный.

Вот и получается, что для портативных приборов с автономным питанием иногда разумнее использовать классический стрелочный вольтметр.

При подключении вольтметра к цепи следует помнить о нескольких простых правилах.

  • Во-первых, вольтметр (любой, хоть цифровой, хоть стрелочный) необходимо подключать параллельно той цепи или элементу, напряжение на котором планируется измерять или контролировать.

  • Во-вторых, следует учитывать рабочий диапазон измерений. Узнать его легко – достаточно взглянуть на шкалу и определить последнее число на шкале. Это и будет граничное напряжение для измерения данным вольтметром. Естественно, есть и универсальные вольтметры, с выбором предела измерения, но сейчас речь идёт о встраиваемом стрелочном вольтметре с одним пределом измерения.

    Если подключить вольтметр, например, со шкалой измерения до 100 вольт, в цепь, где напряжение превышает эти 100 вольт, то стрелка прибора будет уходить за пределы шкалы, "зашкаливать". Такое положение дел рано или поздно приведёт к порче магнитоэлектрической системы.

  • В-третьих, при подключении стоит соблюдать полярность, если вольтметр рассчитан на измерение постоянного напряжения. Как правило, на клеммах (или хотя бы у одной) указывается полярность – плюс "+" или минус "-" . При подключении вольтметров, рассчитанных на измерение переменного напряжения, полярность подключения не имеет значения.

Надеюсь, теперь вам будет проще определить основные характеристики стрелочного вольтметра, а самое главное, применить его в своих самоделках, например, встроив его в блок питания с регулируемым выходным напряжением . А если сделать светодиодную подсветку его шкалы, то он будет выглядеть вообще шикарно! Согласитесь, такой стрелочный вольтметр будет смотреться стильно и эффектно.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как надо подключать вольтметр при измерении напряжения

Для измерения переменного или постоянного напряжения в цепях переменного и постоянного тока используют прибор, называемый вольтметром. Поскольку напряжение присутствует между разными точками цепи или на полюсах источника напряжения, вольтметр подключается всегда параллельно исследуемому участку цепи или параллельно клеммам источника напряжения.

Можно, конечно, включить вольтметр и последовательно, в разрыв цепи, но тогда будет измерено напряжение источника, а не на участке цепи, так как цепь будет разомкнута, а сам вольтметр имеет при этом очень большое внутреннее сопротивление.

Вольтметры выпускаются как в виде отдельных электроизмерительных приборов, так и в формате одной из функций мультиметров. Во входной цепи современного вольтметра обычно находится резистор номиналом порядка мегаома, последовательно подключенный к электронной измерительной схеме.

Вольтметр, как отдельный измерительный прибор или как одна из функций мультиметра, имеет несколько диапазонов измерения напряжения. Выбор диапазона осуществляется при помощи переключателя, расположенного на лицевой панели прибора.

Обычно на мультиметре можно выбрать одно из следующих значений (максимальное значение для диапазона): 200мВ, 2000мВ (2В), 20В, 200В, 600В и т.д. Как правило у мультиметров есть возможность измерения постоянного и переменного напряжения. Вид напряжения также выбирается на шкале переключателя.

Для измерения тока и напряжения у мультиметров имеются два отдельных гнезда для подключения щупов: одно гнездо — для измерения напряжения, второе гнездо — для измерения тока. Третье — общий провод, который остается на своем месте независимо от того, что измеряется, ток или напряжение.

Подключите щупы к соответствующим гнездам мультиметра или вольтметра. Включите прибор и переведите его в режим измерения напряжения, выбрав вид напряжения и диапазон с помощью переключателя. Если диапазон неизвестен, то стоит начать с самого большого значения из доступных на шкале переключателя, потом можно будет уменьшить.

Схема подключения вольтметра для измерения падения напряжения на лампочке:

Присоедините щупы (соблюдая осторожность!) так, чтобы прибор оказался подключен к нужным точкам цепи, между которыми требуется измерить напряжение. Спустя пару секунд прибор отобразит на своем дисплее действующее значение измеренного напряжения.

Если диапазон 600В или более, то значение измеренного напряжения будет отображено в вольтах. Если диапазон например 2000мВ или 200мВ (порядок величин напряжений, но в принципе значения на шкале могут отличаться от этих), то на дисплее будут показания в милливольтах.

Если измеряется постоянное напряжение, то, в зависимости от его полярности и от правильности расположения щупов, на дисплее может отобразиться цифра со знаком минус перед ним.

Это значит, что красный и черный щупы стоит поменять местами, поскольку красный щуп предназначен для установки на положительный полюс, а черный — на отрицательный полюс по отношению к источнику постоянного напряжения, который установлен в исследуемой цепи.

Вольтметр (или мультиметр), не предназначенный для измерения высокочастотных напряжений или более высоких напряжений, чем максимальное на его шкале, легко выйдет из строя, если с помощью него попытаться измерить высокочастотное или более высокое напряжение. В документации к прибору всегда указан род тока и максимально допустимые параметры напряжения, которое можно им мерить.

Напряжение – с этим термином мы довольно часто сталкиваемся в повседневной жизни. Иногда нам нужно измерить напряжение в сети, чтобы понять, почему какое-либо устройство работает неудовлетворительно или лампа накаливания горит довольно тускло. Для данного рода измерений используют вольтметры. Вольтметр подключается к измеряемому устройству только параллельно, почему это так?

Как известно электрическое напряжение – это отношение работы, совершенной электрическим полем по перемещению заряда А, к величине заряда q, U=A/q. Также оно характеризует электрическое поле, которое возникает при прохождении электрического тока.

В системе международных обозначений СИ обозначается как U и измеряют в вольтах (1 В = 1 Дж/Кл). Для того чтобы измерять напряжение на устройстве необходимо параллельно к нему подключить вольтметр.

Для того, чтоб при параллельном включении снизить ток, потребляемый вольтметром и соответственно потери электрической энергии внутри устройства, внутреннее измерительное сопротивление выбирается как можно больше . Если включить вольтметр в цепь последовательно, то в связи с большим внутренним сопротивлением получим фактически разрыв цепи. То есть потери при измерении напряжения будет слишком большими, что неприемлемо, а также измерения будут некорректными. Поэтому вольтметр подключают только параллельно:

Если измеряется постоянное напряжение от 1 до 1000 мкВ могут использовать компенсаторами постоянного тока, но чаше пользуются цифровыми вольтметрами . Значения от десятков милливольт до сотен вольт измеряют приборами таких систем как: электромагнитной, электродинамической, магнитоэлектрической. Также не брезгуют и электронными аналоговыми и цифровыми вольтметрами. Также при измерении могут использовать добавочные сопротивления:

Где Rv – это внутреннее сопротивление вольтметра, Rдоб1…3 – добавочные сопротивления, UmV – максимальное которое может измерять сам вольтметр, а U1…3 – которые он может измерять с добавочными сопротивлениями.

Сопротивления добавочных резисторов определяется по формуле:

Где m – масштабный коэффициент.

Если проводят измерения постоянных напряжений в несколько киловольт, то в большинстве случаев используют вольтметры электростатические, реже используют измерительные устройства других систем подключаемых через делитель:

Где резисторы R1, R2 — резисторы выполняющие роль делителя, Rизм. – измерительное сопротивление, с которого снимается напряжение.

Если измеряют переменные напряжения до единиц вольт, то используют аналоговыми, выпрямительными и цифровыми устройствами. От единиц до сотен вольт и частотном диапазоне до нескольких десятков килогерц применяют выпрямительные системы, электромагнитные, электродинамические приборы. Если частота достигает нескольких десятков мегагерц, то в таком случае напряжение измеряют термоэлектрическими и электростатическими приборами.

В действующих значениях, как правило градуируют шкалы приборов для измерения величин переменного тока. Поэтому при измерении необходимо это учитывать (если необходимо измерять амплитудные и средние значения, то их как правило пересчитывают по соответствующим формулам).

При проведении измерении в сетях переменного тока напряжением выше 1000 В могут использоваться как делители, так и трансформаторы напряжения или измерительные трансформаторы. Чаще используют трансформаторы, так как трансформатор не только понижает значение напряжения, но потенциально разделяет измерительную цепь от силовой. Измерения могут проводится теми же приборами, что и в выше описанных случаях. Схема включения приведена ниже:

Где FU1, FU2 – предохранители, защищающие измерительную цепь от короткого замыкания.

Внешний вид трансформатора однофазного:

Как видим, при проведении измерение различного рода напряжений могут использоваться как различного рода приборы (цифровые, аналоговые и т.д.), так и устройства (делители, трансформаторы). При проведении измерений важно учитывать каждый способ проведения измерений, для получения как можно более точного результата, а также корректного проведения измерительных работ.

Работа с электрическими сетями может оказаться необходимой в различных жизненных ситуациях: ремонт автомобиля, прокладка проводки в доме или на производстве. Одной из величин, которые часто требуется измерить при проведении работ подобного характера, является напряжение. Его можно определить при помощи специального прибора под названием вольтметр. О принципе его работы, устройстве, а также способах подключения и пойдет речь ниже.

Устройство и принцип действия

Если говорить о принципе действия, то все устройства такого типа, что позволяют осуществлять различные замеры в электрических сетях, бывают 2 видов:

  • электромеханического типа;
  • электронные.

Первая категория представляет собой стрелочные устройства. В них стрелка крепится к специальной раме, куда намотан кабель. Такая катушка будет располагаться рядом с магнитом в тех устройствах, что обычно применяются для сетей с постоянным током. Или рядом с другой катушкой – если прибор предназначается для тока переменного типа.

Тут следует уточнить, что модель, рассчитанная для сетей с переменным характером тока, в сети постоянного работать не будет.

Но если для подключения использовать диодный мост, то осуществить необходимые измерения в сети переменного тока он сможет, но с небольшой потерей точности.

Когда электрический ток проходит через обмотку, то в ней появляется электромагнитное поле, которое осуществляет взаимодействие с магнитом либо иной обмоткой, и происходит поворот рамки. Вращаться катушке, где расположена стрелка, не дает пружина. По этой причине угол поворота рамки будет соответствовать току, который через нее идет, и потенциалу на клеммах.

Для снижения стрелочных колебаний в устройстве присутствует электромагнитный демпфер.

Он может быть поршневым, выполненным из цилиндра и поршня, или сделанным из алюминиевой пластины. Чтобы увеличить точность показаний, стрелка имеет специальные противовесы, что сводят к нулю влияние силы тяжести. Да и сама система делается из такого типа стали, как легированная, чтобы уменьшает ее износ.

Чувствительный элемент в электронных аналогах – электронная плата, что осуществляет трансформацию входящего сигнала в приборные показания. Работать это устройство может либо от напряжения, которое измеряется, либо от батареек или внешнего питания. Сами по себе электронные вольтметры делятся на 2 категории:

В устройствах, относящихся к первой категории, присутствует преобразователь входящего сигнала в угол стрелочного поворота, который показывает величину исследуемого напряжения, что отображается на шкале. Минусом таких устройств будет необходимость пересчета показаний шкалы в случае смены измерительного предела.

Цифровой вольтметр оснащен соответствующим дисплеем, а также преобразователем, благодаря которым сигнал приобретает цифровой вид. Если устройство подключается в сеть, где присутствует постоянный ток, на табло можно увидеть полярность подключения. Отличительными чертами такого прибора будет компактность, а также точность. Правда, последний момент будет зависеть от модели встроенного контроллера.

Общие рекомендации по подключению

Теперь приведем небольшие рекомендации, как правильно подключить вольтметр, чтобы он показал максимально точные данные. Первый момент состоит в том, что подключение прибора в электроцепь нельзя осуществлять последовательно, иначе он поломается из-за снижения тока. Подключение должно осуществляться лишь параллельно, ведь это не влияет на течение тока. И сопротивление должно быть большим.

Многие очень часто путают вольтметр с амперметром, в котором все будет наоборот.

Схема подключения прибора будет выглядеть так, что для замера напряжения, которое присутствует в цепи между 2 точками, он подсоединяется так, чтобы включение было расположено напротив источника питания. Устройство влияния на ток не оказывает по причине того, что пропускает его через себя. Поэтому его сопротивление так велико.

Для расширения диапазона замеров можно подсоединить к обмотке устройства дополнительный резистор.

Тогда на измеритель пойдет лишь часть тока, что будет пропорциональна сопротивлению прибора. Если нам известно сопротивление резистора у вольтметра, то можно будет определить показатель напряжения.

Сам резистор устанавливается внутрь вольтметра и одновременно используется с целью снижения влияния различных факторов на результаты измерений. Поэтому он делается из материала, который имеет максимально низкий температурный коэффициент. Его сопротивление будет меньше, чем в катушке, из-за чего общее сопротивление не будет зависеть от температурного режима.

Постоянное напряжение

Если говорить о напряжении постоянного типа, то для замера показателей электрической цепи следует иметь так называемый постоянный тококомпенсатор. Хотя более простым решением будет использование обычного цифрового устройства. Чтобы измерить значения, начинающиеся от десятков милливольт и заканчивающиеся сотнями вольт, применяют такие устройства:

  • электродинамические;
  • электромагнитные;
  • магнитоэлектрические.

При таком типе измерений можно использовать и добавочные сопротивления.

Если осуществляется измерение такого типа напряжения в несколько киловольт, то обычно используются вольтметры электростатического типа. Реже – другие типы устройств, что подключаются через делитель.

Переменный ток

Чтобы правильно замерить характеристики переменного тока рассматриваемым устройством, нужно иметь так называемый измерительный трансформатор. Он используется для осуществления подобных замеров и повышения безопасности людей за счет того, что позволяет получить гальваническую развязку от цепи высокого напряжения. Кстати, этот способ будет единственно правильным вообще, ведь по технике безопасности запрещено проводить измерения без таких трансформаторов.

Использование подобных трансформаторов даст возможность увеличить пределы измерения устройств, то есть можно замерять большие напряжения и токи посредством низковольтных и слаботочных приборов. Если измеряется переменный ток до значений в единицы вольт, то применяют:

  • цифровые вольтметры;
  • выпрямительные;
  • аналоговые.

Если до сотен вольт – электродинамические, выпрямительные и электромагнитные. Если же до нескольких десятков мегагерц, то измерения нужно проводить электростатическими и термоэлектрическими вольтметрами.

Установка на усилитель

Установка вольтметра на усилитель в машине осуществляется сравнительно легко. Для ее осуществления потребуются следующие элементы:

Сначала в корпусе, где располагается кармашек над магнитолой, необходимо просверлить отверстие с диаметром где-то 1,6 миллиметра, куда следует установить соответствующий разъем с подключенным к нему проводом.

Теперь необходимо пропустить провод до самого багажника, попутно прикрепляя его при помощи изоленты к кабелю питания самого усилителя, и закрепить на усилительных клеммах. REM-кабель, что осуществляет управление магнитолой, а также усилитель подключаются к вольтметру, чтобы он включался одновременно с ними. Именно благодаря этому можно будет видеть точное напряжение на усилительных клеммах, когда в этом есть необходимость.

Данная система очень проста в эксплуатации, а затраты, которые необходимы для ее создания, очень малы.

Как подключается к аккумулятору?

Для успешного контроля состояния заряда аккумулятора автомобиля необходимо знать, как можно подключить вольтметр и осуществить правильную расшифровку его измерений. Со времени появления автомобилей, где за контроль над системами отвечает бортовой компьютер, необходимость в отдельном устройстве отпала. Но такие машины может позволить себе не каждый. Да и не везде в таких машинах реализована функция наблюдения за состоянием заряда аккумулятора. А в зимнее время — это будет крайне важно.

Максимально соответствующие реальности показания будут давать устройства, которые подключены непосредственно в приборную панель. И хоть установить их бывает сложновато, это окупит себя с лихвой, когда вы будете знать все о зарядке аккумулятора вашего автомобиля.

Большинство устройств, которые сегодня можно найти на рынке, для подключения в автомобиль имеют 2 или 3 провода для подключения к сети. В последнее время появились и 4-контактные модели. Но, как правило, большинство имеет три провода, так что остановимся на рассмотрении маркировки именно 3-проводных моделей:

  • провод красного цвета будет означать плюс;
  • черный – минус;
  • белый будет отвечать за отключение и включение прибора, а также за управление яркостью подсветки.

Иногда случается так, что прибор светит очень тускло или вообще не работает. Причиной этого является чуть другая маркировка кабелей. В таком случае белый провод будет минусом, а черный – управлять прибором. Датчик напряжения ставится на место, где обычно располагаются часы, но в ряде случаев бывает так, что свободного места нет на приборной панели, поэтому приходится делать специальное отверстие.

Говоря непосредственно о подключении, скажем, что схем существует большое количество.

Но мы рассмотрим, как это осуществить на примере вольтметра, что оснащен импульсным стабилизатором. Корпус устройства может иметь поверхность рельефного типа. То есть речь о том, что рамка вокруг дисплея будет выступать над поверхностью автомобильной панели. Из-за этого вольтметр не будет проваливаться внутрь и станет скрывать неровности краев самодельного отверстия.

Обычно подключение вольтметра производится посредством трех контактов, что располагаются на корпусе датчика. Тогда для этого еще понадобится четырехжильный кабель от обычного компьютерного дисковода. Широкий разъем IDE-формата отрезается, а остальные провода прикрепляются при помощи пайки к контактам проводки автомобиля. Четырехпиновый контакт обеспечивает отличное соединение и, если в этом есть необходимость, позволяет быстро и без каких-либо серьезных усилий и временных затрат осуществить замену вольтметра, если он вышел из строя.

Вне зависимости от того, какое вольтметр имеет строение, перед его установкой в автомобиль, следует детально изучить схему проводки, а также внимательно прочитать инструкцию, что идет в комплекте с устройством.

В следующем видео вы узнаете, как установить вольтметр в автомобиль.

«>

Проблемы с подключением вольтметра серии

Вы не хотите менять то, что вы пытаетесь измерить

Когда вы проводите измерение, вы не хотите, чтобы ваш измерительный прибор изменил то, что вы на самом деле пытаетесь измерить. Нет смысла привязывать к спринтеру большое тяжелое колесо, чтобы узнать, с какой скоростью он бежит.

Вольтметры подключаются параллельно, потому что они должны измерять разницу в напряжении между двумя точками.

Анимация, показывающая, как подключить вольтметр параллельно.

Итак, мы хотим, чтобы наш вольтметр имел очень высокое сопротивление или очень низкое сопротивление? Ответ может вас удивить.

Вольтметры имеют очень высокое сопротивление

Комбинация высокого сопротивления (например, вольтметра), подключенного параллельно, с меньшим сопротивлением (например, лампочка), имеет эффективное сопротивление, немного меньшее, чем небольшое сопротивление (лампочка). Другими словами, эффект почти такой же, как и при использовании одной только лампочки, чего мы и хотим.

График, иллюстрирующий некоторые практические правила для эффективного сопротивления параллельных цепей.

Если бы вольтметр имел очень низкое сопротивление, то эффективное сопротивление было бы немного меньше, чем у самого вольтметра. Это будет намного меньше, чем просто лампа сама по себе, поэтому, добавив вольтметр, вы измените схему, которую вы пытаетесь измерить.

Проблема с подключением вольтметра последовательно

Если вы разомкните цепь и вставите вольтметр, вы создадите в цепи большое сопротивление, и ток повсюду будет небольшим.Это означает, что лампочка не горит, а это значит, что вы не измеряете напряжение на лампочке, когда она горит.

Использование вольтметра при обрыве

Как ни странно, вольтметр будет показывать 6 вольт, потому что почти все напряжение падает на вольтметре, а не на лампочке.

Если вы удалили вольтметр, чтобы цепь больше не была замкнута, то напряжение все еще есть, даже если ток не течет. Таким образом, подключение такого вольтметра на самом деле похоже на измерение напряжения между двумя точками «разомкнутой цепи».

Анимация, показывающая, как вольтметр можно использовать для измерения напряжений, когда цепь не замкнута.

назад к уроку 5: Напряжение и ток

Как в цепь подключается вольтметр для измерения 12 класса физики CBSE

Подсказка : Вольтметр - это устройство, которое измеряет разность потенциалов в двух точках цепи. Подумайте, если мы хотим измерить разность потенциалов на компоненте или любых двух точках в цепи, то следует ли подключать вольтметр последовательно и параллельно через эти две точки.

Полный пошаговый ответ:
Вольтметр - это устройство, которое измеряет разность потенциалов в двух точках цепи. Он подключается параллельно к двум точкам цепи. Он должен быть подключен параллельно, а не последовательно, потому что мы хотим измерить разность потенциалов между двумя точками разности. Если мы подключим последовательно вольтметр, он будет измерять разность потенциалов в 0 вольт. Другими словами замыкаем клемму вольтметра.

Дополнительная информация: Разберемся с механизмом или настройкой вольтметра.
Вольтметр состоит из гальванометра. Гальванометр - это устройство, определяющее ток. Однако гальванометр имеет меньшую устойчивость к току. Максимальный ток, который может пропускать гальванометр, обозначается как $ {{i} _ {g}} $.
К гальванометру последовательно подключено большое сопротивление.

Это потому, что ток обратно пропорционален сопротивлению.Поскольку гальванометр может принимать небольшой ток, большое последовательное сопротивление увеличивает общее сопротивление устройства, и, таким образом, очень небольшое количество тока будет проходить через устройство при параллельном подключении в цепи.

Примечание : Когда мы подключаем вольтметр к цепи, его работа заключается в измерении напряжения на компоненте без изменения или участия в цепи. Это означает, что через вольтметр не должен проходить ток.
Следовательно, большое сопротивление, подключенное последовательно с гальванометром, должно быть бесконечным.
Однако это идеальный случай. Во-первых, у нас не может быть бесконечно большого сопротивления. Во-вторых, для любого измерения напряжения устройству требуется некоторое количество тока.
Следовательно, в реальной жизни показания вольтметра неточны. Но мы стараемся сделать это точным.

Открытые учебники | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 7A

        • Марка 7Б

        • Оценка 7 (вместе A и B)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • класс 8A

        • класс 8Б

        • Оценка 8 (вместе A и B)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 9А

        • Марка 9Б

        • 9 класс (A и B вместе)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 4A

        • Класс 4Б

        • Класс 4 (вместе A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 5А

        • Марка 5Б

        • Оценка 5 (вместе A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 6A

        • класс 6Б

        • 6 класс (A и B вместе)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственное ограничение заключается в том, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки каким-либо образом, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (безымянные версии)

Эти небрендированные версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, трансформировать, модифицировать или дополнять их любым способом, с единственным требованием - дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

21.4 вольтметра и амперметра постоянного тока - College Physics

Сводка

  • Объясните, почему вольтметр нужно подключать параллельно цепи.
  • Нарисуйте схему, показывающую правильно подключенный амперметр в цепь.
  • Опишите, как гальванометр можно использовать как вольтметр или амперметр.
  • Найдите сопротивление, которое необходимо подключить последовательно с гальванометром, чтобы его можно было использовать в качестве вольтметра с заданными показаниями.
  • Объясните, почему измерение напряжения или тока в цепи никогда не может быть точным.

Вольтметры измеряют напряжение, а амперметры измеряют ток. Некоторые измерители в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях являются вольтметрами или амперметрами. (См. Рис. 1.) Внутренняя конструкция простейшего из этих счетчиков и то, как они подключены к системе, которую они контролируют, дает более полное представление о применениях последовательного и параллельного подключения.

Рисунок 1. Датчики топлива и температуры (крайний правый и крайний левый, соответственно) в этом Volkswagen 1996 года представляют собой вольтметры, которые регистрируют выходное напряжение «передающих» устройств, которое, как мы надеемся, пропорционально количеству бензина в баке и температура двигателя.(Фото: Кристиан Гирсинг)

вольтметра подключаются параллельно к любому устройству, которое необходимо измерить. Параллельное соединение используется, потому что объекты, находящиеся параллельно, испытывают одинаковую разность потенциалов. (См. Рисунок 2, где вольтметр обозначен символом V.)

Амперметры подключаются последовательно к любому измеряемому току устройства. Последовательное соединение используется потому, что последовательно соединенные объекты имеют одинаковый ток, проходящий через них. (См. Рисунок 3, где амперметр обозначен символом A.)

Рис. 2. (a) Для измерения разности потенциалов в этой последовательной цепи вольтметр (V) помещают параллельно источнику напряжения или одному из резисторов. Обратите внимание, что напряжение на клеммах измеряется между точками a и b. Невозможно подключить вольтметр напрямую к ЭДС без учета его внутреннего сопротивления, r . (b) Используемый цифровой вольтметр. (предоставлено Messtechniker, Wikimedia Commons) Рис. 3. Амперметр (A) включен последовательно для измерения тока.Весь ток в этой цепи протекает через счетчик. Амперметр будет иметь такие же показания, если он расположен между точками d и e или между точками f и a, как и в показанном положении. (Обратите внимание, что заглавная буква E обозначает ЭДС, а r обозначает внутреннее сопротивление источника разности потенциалов.)

Аналоговые счетчики имеют стрелку, которая поворачивается, чтобы указывать на числа на шкале, в отличие от цифровых счетчиков , которые имеют числовые показания, подобные портативному калькулятору.Сердцем большинства аналоговых счетчиков является устройство, называемое гальванометром , обозначенное буквой G. Ток, протекающий через гальванометр, [латекс] \ boldsymbol {I _ {\ textbf {G}}} [/ latex], производит пропорциональное отклонение стрелки. . (Это отклонение происходит из-за силы магнитного поля на провод с током.)

Двумя важнейшими характеристиками данного гальванометра являются его сопротивление и чувствительность по току. Чувствительность по току - это ток, который дает полное отклонение стрелки гальванометра, максимальный ток, который может измерить прибор.Например, гальванометр с текущей чувствительностью [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] имеет максимальное отклонение стрелки, когда [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] проходит через него, считывает половину шкалы, когда [latex] \ boldsymbol {25 \; \ mu \ textbf {A}} [/ latex] проходит через него, и так далее.

Если такой гальванометр имеет сопротивление [латекс] \ boldsymbol {25 - \; \ Omega} [/ latex], то напряжение только [латекс] \ boldsymbol {V = IR = (50 \; \ mu \ textbf { A}) (25 \; \ Omega) = 1.25 \; \ textbf {mV}} [/ latex] производит показание полной шкалы. Подключив резисторы к этому гальванометру различными способами, вы можете использовать его как вольтметр или амперметр, который может измерять широкий диапазон напряжений или токов.

Гальванометр как вольтметр

На рисунке 4 показано, как гальванометр можно использовать в качестве вольтметра, подключив его последовательно с большим сопротивлением, [латекс] \ boldsymbol {R} [/ латекс]. Значение сопротивления [латекс] \ boldsymbol {R} [/ латекс] определяется максимальным измеряемым напряжением.Предположим, вам нужно 10 В для полного отклонения вольтметра, содержащего [латексный] \ boldsymbol {25 - \; \ Omega} [/ latex] гальванометр с [латексным] \ boldsymbol {50 - \; \ mu \ textbf {A}} [/ latex] чувствительность. Затем 10 В, приложенное к измерителю, должно производить ток [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex]. Общее сопротивление должно быть

[латекс] \ boldsymbol {R _ {\ textbf {tot}} = R + r =} [/ latex] [latex] \ boldsymbol {\ frac {V} {I}} [/ latex] [latex] \ boldsymbol { =} [/ latex] [латекс] \ boldsymbol {\ frac {10 \; \ textbf {V}} {50 \; \ mu \ textbf {A}}} [/ latex] [латекс] \ boldsymbol {= 200 \ ; \ textbf {k} \ Omega \; \ textbf {или}} [/ latex]

[латекс] \ boldsymbol {R = R _ {\ textbf {tot}} - r = 200 \; \ textbf {k} \ Omega - 25 \; \ Omega \ приблизительно 200 \; \ textbf {k} \ Omega} [ / латекс]

([латекс] \ boldsymbol {R} [/ latex] настолько велик, что сопротивлением гальванометра [латекс] \ boldsymbol {r} [/ latex] можно пренебречь.) Обратите внимание, что 5 В, приложенное к этому вольтметру, вызывает отклонение в половину шкалы, создавая ток [латекс] \ boldsymbol {25 - \; \ mu \ textbf {A}} [/ latex] через измеритель, и поэтому показания вольтметра пропорционально напряжению по желанию.

Этот вольтметр не годится для напряжений менее примерно половины вольта, потому что отклонение измерителя будет небольшим и его трудно будет точно прочитать. Для других диапазонов напряжения другие сопротивления подключаются последовательно с гальванометром. У многих метров есть выбор шкалы.Этот выбор включает последовательное включение соответствующего сопротивления с гальванометром.

Рисунок 4. Большое сопротивление R , подключенное последовательно с гальванометром G, дает вольтметр, отклонение которого на всю шкалу зависит от выбора R . Чем больше измеряемое напряжение, тем больше должно быть R . (Обратите внимание, что r представляет внутреннее сопротивление гальванометра.)

Гальванометр как амперметр

Тот же гальванометр можно превратить в амперметр, разместив его параллельно небольшому сопротивлению [латекс] \ boldsymbol {R} [/ latex], часто называемому шунтирующим сопротивлением , как показано на рисунке 5. Поскольку шунт сопротивление невелико, большая часть тока проходит через него, что позволяет амперметру измерять токи, намного превышающие те, которые вызывают полное отклонение гальванометра.

Предположим, например, что необходим амперметр, который дает полное отклонение на 1.0 A, и содержит такой же гальванометр [latex] \ boldsymbol {25 - \; \ Omega} [/ latex] с его чувствительностью [latex] \ boldsymbol {50 - \; \ mu \ textbf {A}} [/ latex] . Поскольку [latex] \ boldsymbol {R} [/ latex] и [latex] \ boldsymbol {r} [/ latex] параллельны, напряжение на них одинаковое.

Эти [латекс] \ boldsymbol {IR} [/ latex] капли представляют собой [latex] \ boldsymbol {IR = I_Gr} [/ latex], так что [latex] \ boldsymbol {IR = \ frac {I_G} {I} = \ frac {R} {r}} [/ latex]. Решая для [latex] \ boldsymbol {R} [/ latex] и отмечая, что [latex] \ boldsymbol {I_G} [/ latex] - это [latex] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] и [latex] \ boldsymbol {I} [/ latex] равно 0.{-3} \; \ Omega}. [/ Латекс]

Рисунок 5. Небольшое шунтирующее сопротивление R , размещенное параллельно гальванометру G, дает амперметр, полное отклонение которого зависит от выбора R . Чем больше измеряемый ток, тем меньше должно быть R . Большая часть тока ( I ), протекающего через счетчик, шунтируется через R для защиты гальванометра.(Обратите внимание, что r представляет внутреннее сопротивление гальванометра.) Амперметры также могут иметь несколько шкал для большей гибкости в применении. Различные масштабы достигаются путем переключения различных шунтирующих сопротивлений параллельно гальванометру - чем больше максимальный измеряемый ток, тем меньше должно быть шунтирующее сопротивление.

Когда вы используете вольтметр или амперметр, вы подключаете другой резистор к существующей цепи и, таким образом, изменяете схему.В идеале вольтметры и амперметры не оказывают заметного влияния на схему, но полезно изучить обстоятельства, при которых они влияют или не влияют.

Сначала рассмотрим вольтметр, который всегда размещается параллельно с измеряемым устройством. Через вольтметр протекает очень небольшой ток, если его сопротивление на несколько порядков больше, чем сопротивление устройства, и поэтому на цепь это не оказывает заметного влияния. (См. Рисунок 6 (a).) (Большое сопротивление, параллельное малому, имеет суммарное сопротивление, по существу равное малому.) Если, однако, сопротивление вольтметра сопоставимо с сопротивлением измеряемого устройства, то два параллельно подключенных устройства имеют меньшее сопротивление, что существенно влияет на цепь. (См. Рисунок 6 (b).) Напряжение на устройстве не такое, как при отключении вольтметра от цепи.

Рис. 6. (a) Вольтметр, имеющий сопротивление намного больше, чем устройство ( R Voltmeter >> R ), с которым он подключен параллельно, создает параллельное сопротивление, по существу такое же, как у устройства, и не оказывает заметного влияния измеряемая цепь.(b) Здесь вольтметр имеет такое же сопротивление, как и устройство ( R, Voltmeter, ≅ R ), так что параллельное сопротивление составляет половину от того, которое есть, когда вольтметр не подключен. Это пример значительного изменения схемы, которого следует избегать.

Амперметр подключается последовательно к ветви измеряемой цепи, так что его сопротивление добавляется к этой ветви. Обычно сопротивление амперметра очень мало по сравнению с сопротивлениями устройств в цепи, поэтому дополнительное сопротивление незначительно.(См. Рисунок 7 (a).) Однако, если задействованы очень маленькие сопротивления нагрузки или если сопротивление амперметра не такое низкое, как должно быть, то общее последовательное сопротивление значительно больше, а ток в ветви измеряется уменьшается. (См. Рисунок 7 (b).)

Практическая проблема может возникнуть, если амперметр подключен неправильно. Если его подключить параллельно с резистором для измерения тока в нем, вы можете повредить счетчик; низкое сопротивление амперметра позволит большей части тока в цепи проходить через гальванометр, и этот ток будет больше, поскольку эффективное сопротивление меньше.

Рис. 7. (a) Амперметр обычно имеет такое маленькое сопротивление, что общее последовательное сопротивление в измеряемой ветви существенно не увеличивается. Схема практически не изменилась по сравнению с отсутствием амперметра. (b) Здесь сопротивление амперметра такое же, как сопротивление ветви, так что общее сопротивление удваивается, а ток вдвое меньше, чем без амперметра. Этого существенного изменения схемы следует избегать.

Одним из решений проблемы вольтметров и амперметров, мешающих измеряемым цепям, является использование гальванометров с большей чувствительностью.Это позволяет создавать вольтметры с большим сопротивлением и амперметры с меньшим сопротивлением, чем при использовании менее чувствительных гальванометров.

Существуют практические пределы чувствительности гальванометра, но можно получить аналоговые измерители, которые делают измерения с точностью до нескольких процентов. Обратите внимание, что неточность возникает из-за изменения схемы, а не из-за неисправности измерителя.

Подключения: границы знаний

Выполнение измерения изменяет измеряемую систему таким образом, что приводит к погрешности измерения.Для макроскопических систем, таких как схемы, обсуждаемые в этом модуле, изменение обычно можно сделать пренебрежимо малым, но полностью исключить его нельзя. Для субмикроскопических систем, таких как атомы, ядра и более мелкие частицы, измерение изменяет систему таким образом, что невозможно сделать сколь угодно малым. Это фактически ограничивает знания о системе - даже ограничивает то, что природа может знать о самой себе. Мы увидим глубокие последствия этого, когда принцип неопределенности Гейзенберга будет обсуждаться в модулях по квантовой механике.6} [/ латекс].

Проверьте свое понимание

1: Цифровые измерители способны обнаруживать меньшие токи, чем аналоговые измерители, использующие гальванометры. Как это объясняет их способность измерять напряжение и ток более точно, чем аналоговые измерители?

Исследования PhET: комплект для конструирования цепей (только для постоянного тока), виртуальная лаборатория

Стимулируйте нейрон и следите за тем, что происходит. Сделайте паузу, перемотайте назад и двигайтесь вперед во времени, чтобы наблюдать за перемещением ионов через мембрану нейрона.

Рис. 8. Комплект для конструирования цепей (только для постоянного тока), виртуальная лаборатория
  • Вольтметры измеряют напряжение, а амперметры измеряют ток.
  • Вольтметр помещается параллельно источнику напряжения для получения полного напряжения и должен иметь большое сопротивление, чтобы ограничить его влияние на цепь.
  • Амперметр подключается последовательно, чтобы через ответвление протекал полный ток, и должен иметь небольшое сопротивление, чтобы ограничить его влияние на цепь.
  • Оба могут быть основаны на комбинации резистора и гальванометра, устройства, которое дает аналоговые показания тока.
  • Стандартные вольтметры и амперметры изменяют измеряемую цепь и, таким образом, имеют ограниченную точность.

Концептуальные вопросы

1: Почему не следует подключать амперметр непосредственно к источнику напряжения, как показано на рисунке 9? (Обратите внимание, что скрипт E на рисунке означает ЭДС.)

Рис. 9.

2: Предположим, вы используете мультиметр (предназначенный для измерения диапазона напряжений, токов и сопротивлений) для измерения тока в цепи и случайно оставляете его в режиме вольтметра.Как измеритель повлияет на схему? Что бы произошло, если бы вы измеряли напряжение, но случайно перевели измеритель в режим амперметра?

3: Укажите точки, к которым можно подключить вольтметр для измерения следующих разностей потенциалов на Рисунке 10: (a) разность потенциалов источника напряжения; (b) разность потенциалов на [латексе] \ boldsymbol {R_1} [/ latex]; (c) через [латекс] \ boldsymbol {R_2} [/ latex]; (г) поперек [латекса] \ boldsymbol {R_3} [/ latex]; (e) через [латекс] \ boldsymbol {R_2} [/ latex] и [латекс] \ boldsymbol {R_3} [/ latex].Обратите внимание, что на каждую часть может быть несколько ответов.

Рис. 10.

4: Чтобы измерить токи на Рис. 10, вы замените провод между двумя точками на амперметр. Укажите точки, между которыми вы разместите амперметр, чтобы измерить следующее: (a) общий ток; (б) ток, протекающий через [латекс] \ boldsymbol {R_1} [/ latex]; (c) через [латекс] \ boldsymbol {R_2} [/ латекс]; (г) через [латекс] \ boldsymbol {R_3} [/ латекс]. Обратите внимание, что на каждую часть может быть несколько ответов.

Проблемные упражнения

1: Какова чувствительность гальванометра (то есть, какой ток дает полное отклонение) внутри вольтметра, имеющего [латексный] \ boldsymbol {1,00 - \; \ textbf {M} \ Omega} [ / латекс] по шкале 30,0 В?

2: Какова чувствительность гальванометра (то есть, какой ток дает полное отклонение) внутри вольтметра, имеющего [латексный] \ boldsymbol {25.0 - \; \ textbf {k} \ Omega} [ / латекс] по шкале 100 В?

3: Найдите сопротивление, которое необходимо подключить последовательно с \ boldsymbol [латексом] {25.0 - \; \ Omega} [/ latex] гальванометр с чувствительностью [latex] \ boldsymbol {50.0 - \; \ mu \ textbf {A}} [/ latex] (такой же, как тот, который обсуждается в тексте), чтобы позволить его следует использовать как вольтметр с показаниями полной шкалы 0,100 В.

4: Найдите сопротивление, которое необходимо подключить последовательно с [латексным] \ boldsymbol {25.0 - \; \ Omega} [/ latex] гальванометром с [латексным] \ boldsymbol {50.0 - \; \ mu \ textbf {A}} [/ latex] чувствительность (такая же, как та, что обсуждается в тексте), позволяющая использовать его в качестве вольтметра с показаниями полной шкалы 3000 В.Включите принципиальную схему в свое решение.

5: Найдите сопротивление, которое необходимо разместить параллельно [латексному] \ boldsymbol {25.0 - \; \ Omega} [/ latex] гальванометру с [латексным] \ boldsymbol {50.0 - \; \ textbf {A }} [/ latex] чувствительность (такая же, как та, что обсуждается в тексте), позволяющая использовать его в качестве амперметра с показаниями полной шкалы 10,0 A. Включите принципиальную схему в свое решение.

6: Найдите сопротивление, которое необходимо разместить параллельно символу [латекса] \ bold {25.0 - \; \ Omega} [/ latex] гальванометр с чувствительностью [latex] \ boldsymbol {50.0 - \; \ mu \ textbf {A}} [/ latex] (такой же, как тот, который обсуждается в тексте), чтобы позволить его следует использовать как амперметр с показаниями полной шкалы 300 мА.

7: Найдите сопротивление, которое необходимо подключить последовательно с [латексным] \ boldsymbol {10.0 - \; \ Omega} [/ latex] гальванометром с [латексным] \ boldsymbol {100 - \; \ mu \ textbf {A}} [/ latex] чувствительность, позволяющая использовать его в качестве вольтметра при: (а) полномасштабном показании 300 В и (б) 0.Полномасштабное показание 300 В.

8: Найдите сопротивление, которое необходимо разместить параллельно [латексному] \ boldsymbol {10.0 - \; \ Omega} [/ latex] гальванометру с [латексным] \ boldsymbol {100 - \; \ mu \ textbf {A}} [/ latex] чувствительность, позволяющая использовать его в качестве амперметра с: (a) показанием полной шкалы 20,0 A и b) показанием полной шкалы 100 мА.

9: Предположим, вы измеряете напряжение на клеммах щелочного элемента на 1,585 В, имеющего внутреннее сопротивление [латекс] \ boldsymbol {0.100 \; \ Omega} [/ latex], поместив вольтметр [latex] \ boldsymbol {1.00 - \; \ textbf {k} \ Omega} [/ latex] на его клеммы. (См. Рис. 11.) (а) Какой ток течет? (b) Найдите напряжение на клеммах. (c) Чтобы увидеть, насколько близко измеренное напряжение на клеммах к ЭДС, рассчитайте их отношение.

Рисунок 11.

10: Предположим, вы измеряете напряжение на клеммах литиевого элемента на 3.200 В, имеющего внутреннее сопротивление [латекс] \ boldsymbol {5.00 \; \ Omega} [/ латекс], помещая [латекс] \ boldsymbol {1.{-5} \; \ Omega} [/ latex] по шкале 3,00 A и содержит гальванометр [латекс] \ boldsymbol {10.0 - \; \ Omega} [/ latex]. Какая чувствительность у гальванометра?

12: Вольтметр [латекс] \ boldsymbol {1.00 - \; \ textbf {M} \ Omega} [/ latex] устанавливается параллельно [латексному] \ boldsymbol {75.0 - \; \ textbf {k} \ Omega} [/ latex] резистор в цепи. (а) Нарисуйте принципиальную схему подключения. б) Каково сопротивление комбинации? (c) Если напряжение на комбинации остается таким же, как на [латексе] \ boldsymbol {75.0 - \; \ textbf {k} \ Omega} [/ latex] только резистор, каков процент увеличения тока? (d) Если ток через комбинацию остается таким же, как через резистор [latex] \ boldsymbol {75.0 - \; \ textbf {k} \ Omega} [/ latex], каково процентное снижение напряжения ? (e) Являются ли изменения, обнаруженные в частях (c) и (d), значительными? Обсуждать.

13: Амперметр [latex] \ boldsymbol {0,0200 - \; \ Omega} [/ latex] последовательно с резистором [latex] \ boldsymbol {10.00 - \; \ Omega} [/ latex] в цепи схема.(а) Нарисуйте принципиальную схему подключения. (b) Рассчитайте сопротивление комбинации. (c) Если напряжение в комбинации остается таким же, каким оно было через резистор [latex] \ boldsymbol {10.00 - \; \ Omega} [/ latex], каков процент уменьшения тока? (d) Если ток остается таким же, как через резистор [latex] \ boldsymbol {10.00 - \; \ Omega} [/ latex], то каков процент увеличения напряжения? (e) Являются ли изменения, обнаруженные в частях (c) и (d), значительными? Обсуждать.

14: Необоснованные результаты

Предположим, у вас есть гальванометр [latex] \ boldsymbol {40.0 - \; \ Omega} [/ latex] с чувствительностью [latex] \ boldsymbol {25.0 - \; \ mu \ textbf {A}} [/ latex]. (a) Какое сопротивление вы бы включили последовательно, чтобы его можно было использовать в качестве вольтметра с полным отклонением на 0,500 мВ? б) Что неразумного в этом результате? (c) Какие допущения ответственны?

15: Необоснованные результаты

(a) Какое сопротивление вы бы поставили параллельно с символом [латекс] \ bold {40.0 - \; \ Omega} [/ latex] гальванометр с чувствительностью
[латекс] \ boldsymbol {25.0 - \; \ mu \ textbf {A}} [/ latex], позволяющий использовать его в качестве амперметра с полное отклонение для [латекса] \ boldsymbol {10.0 - \; \ mu \ textbf {A}} [/ latex]? б) Что неразумного в этом результате? (c) Какие допущения ответственны?

Глоссарий

вольтметр
прибор для измерения напряжения
амперметр
прибор для измерения силы тока
аналоговый счетчик
измерительный прибор, дающий показания в виде движения стрелки над отмеченным датчиком
цифровой счетчик
Измерительный прибор, выдающий показания в цифровом виде
гальванометр
аналоговое измерительное устройство, обозначенное буквой G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на токопроводящий провод
чувствительность по току
максимальный ток, который может прочитать гальванометр
полное отклонение
максимальное отклонение стрелки гальванометра, также известное как чувствительность по току; гальванометр с полным отклонением [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] имеет максимальное отклонение стрелки, когда [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] проходит через него
шунтирующее сопротивление
небольшое сопротивление [латекс] \ boldsymbol {R} [/ latex], помещенное параллельно гальванометру G для получения амперметра; чем больше измеряемый ток, тем меньше должен быть [латекс] \ boldsymbol {R} [/ latex]; большая часть тока, протекающего через счетчик, шунтируется через [латекс] \ boldsymbol {R} [/ latex] для защиты гальванометра

Решения

Проверьте свое понимание

1: Поскольку цифровые счетчики требуют меньшего тока, чем аналоговые, они изменяют схему меньше, чем аналоговые счетчики.{-4} \; \ Omega} [/ латекс]

7: (a) [латекс] \ boldsymbol {3.00 \; \ textbf {M} \ Omega} [/ latex]

(b) [латекс] \ boldsymbol {2.99 \; \ textbf {k} \ Omega} [/ latex]

9: (a) 1,58 мА
(b) 1,5848 В (необходимо четыре цифры, чтобы увидеть разницу)

(c) 0,99990 (нужно пять цифр, чтобы увидеть разницу от единицы)

11: [латекс] \ boldsymbol {15.0 \; \ mu \ textbf {A}} [/ латекс]

13: (а)

Рисунок 12.{-1}} [/ latex] процент увеличения

(e) Не имеет значения.

15: (a) [латекс] \ boldsymbol {-66.7 \; \ Omega} [/ латекс]

(б) У вас не может быть отрицательного сопротивления.

(c) Неразумно, что [latex] \ boldsymbol {I_G} [/ latex] больше, чем [latex] \ boldsymbol {I _ {\ textbf {tot}}} [/ latex] (см. Рисунок 5). Вы не можете добиться полного отклонения, используя ток, меньший, чем чувствительность гальванометра.

Глава 16 Концепции

Глава 16 Концепции

Глава 18

Концептуальные вопросы: 4, 6, 9, 10, 13, 17, 21, 22, 23

| НАЗАД НА ДОМУ |

4.Джеффу нужен резистор на 100 Ом для схемы, но у него есть только набор резисторов на 300 Ом. Что он может сделать?

У Джеффа есть несколько вариантов. Во-первых, он мог пойти в магазин резисторов и купить другую коробку, на этот раз резисторы на 100 Ом, как в первый раз. Но это не совсем то, к чему мы подошли с этим вопросом.

Джефф должен уменьшить общее сопротивление. Если он соединит резисторы последовательно, они только увеличат общее сопротивление.Однако, если он соединит их параллельно друг с другом, они уменьшат общее сопротивление. Три резистора на 300 Ом, включенные параллельно, в сумме будут иметь сопротивление 100 Ом, поскольку 1/100 = 1/300 + 1/300 + 1/300. (Попробуйте сами.)

6. Сравните сопротивление идеального амперметра с сопротивлением идеального вольтметра. У кого большее сопротивление? Почему?

Амперметр должен измерять ток без изменения величины тока, который обычно проходит через определенную марку цепи.В результате у него должно быть очень низкое сопротивление. С другой стороны, вольтметр измеряет разность напряжений между двумя разными точками (скажем, на разных сторонах резистора), но он не должен изменять количество тока, проходящего через элемент между этими двумя точками. Таким образом, он должен иметь очень высокое сопротивление, чтобы не «протягивать» через него ток. Вопрос 10 (ниже) предлагает более подробную информацию по этому поводу, и на него действительно следует ответить одновременно с этим вопросом, поэтому давайте перейдем к этому:

10.Почему амперметры соединены последовательно с элементом схемы, в котором должен измеряться ток, и вольтметры, подключенными параллельно к элементу, для которого должна быть измерена разность потенциалов?

Амперметры измеряют ток, поэтому им нужно «войти» в цепь, фактически перехватить и подсчитать все проходящие заряды. Вы разрываете ветвь цепи, в которой измеряете ток, а затем вставляете этот измеритель, повторно соединяя цепь с ним, «видя» все эти заряды, проходящие через него.(В этом случае он должен иметь очень очень низкое сопротивление, чтобы не изменять условия цепи и не изменять ток.) ​​

Вольтметрам

необходимо сравнить две разные точки и их напряжения. Сравнивая две точки, вы должны подключиться к ним одновременно, что требует параллельного подключения. (Вольтметр должен иметь очень высокое сопротивление, чтобы не пропускать ток через него и, таким образом, изменять токи в остальной цепи.)

Что произойдет, если вы подключите амперметр в конфигурации, предназначенной для вольтметра (т. Е. Параллельно)? Это действительно хороший экзаменационный вопрос.

9. Почему электрические плиты и сушилки для одежды питаются напряжением 240 В, а светильники, радио и часы - напряжением 120 В?

Поскольку мощность (уровень энергии) является произведением I и V, вы можете получить больше энергии от этих печей и сушилок, просто увеличив ток (уменьшив сопротивление элементов внутри них).Однако не всегда рекомендуется просто увеличивать ток, потому что это требует физических усилий: большее количество зарядов, движущихся по проводу, означает, что вам нужен более толстый провод с меньшим сопротивлением, иначе провод может слишком сильно нагреться и расплавить изоляция. Итак, другой способ увеличить мощность, не увеличивая слишком сильно ток, - это увеличить напряжение. Это не обязательно для большинства электрических устройств, но хорошо подходит для мощных устройств.

13.Некоторые батареи можно «перезарядить». Означает ли это, что батарея имеет запас заряда, который истощается по мере использования батареи? Если «подзарядка» не означает буквально вернуть заряд аккумулятора, что означает , ?

Мы не создаем и не уничтожаем заряд. И батарея всегда заряжена нейтрально. Он перемещает заряд, но всегда с тем же током, идущим на одном конце батареи, что и на противоположном конце.

С батареей повышается ее потенциальная энергия по мере "перезарядки"."В батареях это означает, что происходят какие-то химические изменения, и энергия, хранящаяся в них, позже собирается в виде электрической энергии.

17. Электрик, работающий в цепях под напряжением, носит изолированную обувь и держит одну руку за спиной. Почему?

Изолированная обувь удерживает электрика изолированным от земли, и мы надеемся, что повысит сопротивление в цепи, которая соединит его с землей. Это более высокое сопротивление приведет к низкому (надеюсь, близкому к нулю) току.Тот же человек держит одну руку за спиной, чтобы покрасоваться. Нет, на самом деле, вторая рука была бы отличным способом соединить полную цепь, проходящую прямо через сердце, и если держать ее за спиной, это гарантирует, что вы не делаете этого соединения. (Позже в семестре я создам схему с рассолом, по причинам, которые вы тогда поймете, и вы увидите похожую технику. Надеюсь.)

21. а. Если сопротивление R1 уменьшается, что происходит с падением напряжения на R3? Выключатель S по-прежнему открыт, как на рисунке.

Ток будет больше в R3, увеличивая падение напряжения.

21. б. Если сопротивление R1 уменьшается, что происходит с падением напряжения на R2? Выключатель S по-прежнему открыт, как на рисунке.

Он уменьшается в результате большего тока, проходящего через R1 (а R2 должен делиться с R1).

21. с. В показанных схемах, если переключатель S замкнут, что происходит с током через R1?

Увеличивается.В этом случае ток не пройдет через R3 - мы говорим, что он «закорочен». Это означает, что в цепи меньше общего сопротивления, поэтому больший ток будет делиться с R1 и R2.

22. Четыре одинаковые лампочки помещены в две разные цепи с одинаковыми батареями. Лампочки A и B подключены последовательно с аккумулятором. Лампочки C и D подключены параллельно к батарее.

а. Оцените яркость лампочек.

C и D будут одинаково яркими и ярче, чем A и B; А и В одинаково яркие.

г. Что произойдет с яркостью лампы B, если лампочку A заменить на провод?

B увеличивается в яркости.

г. Что произойдет с яркостью лампочки C, если лампочку D вынуть из цепи?

Его яркость остается прежней.

23. Три одинаковые лампочки соединены в цепь, как показано на схеме.

а. Что произойдет с яркостью остальных лампочек, если лампу А вынуть из цепи и заменить на провод?

Лампы B и C становятся ярче.

г. Что произойдет с яркостью лампы накаливания, если лампу B вынуть из цепи?

Лампа A становится светлее, а лампа C становится ярче. При всех трех сопротивлениях в цепи токи равны
I A = 2 В / (3 R ), I B = I C = В / (3 R ).Когда B удален, ток в A и C составляет В / (2 R ). (Вы все это поняли?)

г. Что произойдет с яркостью лампы накаливания, если лампочку B заменить на провод?

Лампа A становится ярче, лампа C полностью перестает светиться. (Лампа C закорочена проводом с нулевым сопротивлением, поэтому ток не идет на C.)

| НАЗАД НА ДОМУ |

Факты о вольтметре

для детей

Вольтметр, подключенный к печатной плате

Вольтметр - прибор для измерения напряжения.Например, вольтметр можно использовать, чтобы узнать, осталось ли в батарее больше электричества. Создание вольтметров стало возможным, когда Ганс Эрстед изобрел самый простой вольтметр в 1819 году.

Подключение вольтметра

Вольтметр можно подключить, соединив два провода туда, где есть напряжение. Один провод - положительный, а другой - отрицательный. С некоторыми вольтметрами, один должен убедиться, что провода подключены к правильным точкам: положительное соединение на вольтметре с более положительной «частью» источника напряжения, а отрицательное - с более отрицательной «частью».Таким образом, вольтметр параллелен электрической цепи.

Также следует быть осторожным при обращении с соединением: при высоком напряжении (много вольт) можно получить травму или даже убить, если непосредственно прикоснуться к металлическим соединениям под напряжением.

Как вольтметры показывают напряжение

Когда подключения сделаны, вольтметр покажет напряжение. Поскольку нет прямого доступа к напряжению, вольтметры разработаны как особый вид амперметра, который может рассчитывать напряжение, оценивая электрический ток и применяя закон Ома.

Есть два вида вольтметров. У одного из них есть стрелка или «указатель», указывающая на число, указывающее количество вольт. Это тот вид вольтметра, в котором нужно быть осторожным при правильном подключении положительного и отрицательного полюсов - если будут выполнены неправильные подключения, вольтметр может быть поврежден.

Второй вид вольтметров показывает числа в «цифровом» виде, как и цифровые часы и калькуляторы. Такой вольтметр не повреждается из-за «неправильного» подключения; вместо этого они показывают отрицательное число.

Кроме того, существует два типа вольтметров в зависимости от типа тока: одни вольтметры предназначены для использования с постоянным током (DC), а другие - с переменным током (AC). Современные вольтметры могут работать на обоих токах.

Использование подходящего вольтметра

Все вольтметры имеют верхний предел или «максимальное количество» вольт, с которым они могут «работать». Если вольтметр используется для более высоких напряжений, чем он был предназначен для «обработки», он может повредить или разрушить его.

Вольтметры с настройками и мультиметры

Поскольку важно использовать правильный тип вольтметра, их чаще всего делают так, чтобы их можно было настроить для измерения всех видов напряжений.Такие вольтметры обычно имеют «ручку» или переключатель, который можно настроить по-разному. Если вольтметр настроен на одно направление, вольтметр работает с напряжениями, например, до 10 вольт. Если переключатель установлен по-другому, вольтметр может выдержать 100 вольт и так далее. Внутри вольтметра переключатель обычно работает путем замены резисторов в делителе напряжения.

Таким образом, один вольтметр можно использовать для множества различных напряжений, больших и малых. Некоторые современные вольтметры могут делать эту настройку сами по себе, нужно просто выполнить подключение и не беспокоиться о том, сможет ли вольтметр справиться с напряжением.Он автоматически найдет настройку, которая сможет с этим справиться.

Сегодня вольтметр обычно является частью мультиметра, прибора, который может работать одновременно как вольтметр, амперметр и, как правило, еще несколько измерительных приборов. У них также есть переключатели, которые используются, чтобы «сказать» мультиметру, что он «является вольтметром».

Мультиметры

часто имеют более двух подключений, и часть «указания» мультиметру, что измерять (то есть, вольтметр или амперметр), осуществляется путем выбора правильных двух подключений.Это объясняется в руководстве к мультиметру и часто указывается рядом с точками подключения.

Использование усилителей для чувствительного измерения напряжения

Первый тип вольтметров показывает напряжение с помощью стрелки или «указателя», указывающего на количество вольт. Эти вольтметры берут энергию от объекта измерения для перемещения стрелки. Некоторым источникам очень слабого напряжения может не хватить энергии, чтобы переместить стрелку на нужное напряжение. В таком случае такой вольтметр показывает слишком мало вольт.Вольтметр недостаточно чувствителен.

Одно из решений вышеупомянутой проблемы - заставить иглу использовать как можно меньше энергии для движения. Однако есть предел чувствительности такого вольтметра. Когда были изобретены электронные лампы и транзисторы, стало возможным создавать электронные усилители. Используя усилитель, вольтметр может измерять очень малых напряжений от очень слабых источников. Современные вольтметры и мультиметры обычно имеют такой усилитель.

Картинки для детей

Быстрый ответ: Когда через клеммы подключается вольтметр?

При подключении к клеммам ячейки вольтметр?

При подключении к клеммам ячейки вольтметр измеряет 5 В, а подключенный амперметр измеряет ток 10 А. К выводам ячейки подключено сопротивление 2 Ом · с.

Что измеряет вольтметр, подключенный к ячейке?

Вольтметр - это прибор, используемый для измерения разности электрических потенциалов между двумя точками в электрической цепи.Амперметр - это измерительное устройство, используемое для измерения электрического тока в цепи.

Как подключить вольтметр к сопротивлению?

Вольтметр подключается параллельно в двух точках, между которыми должна быть измерена разность потенциалов. Следовательно, вольтметр должен иметь большое сопротивление, чтобы через него проходил очень небольшой ток.

Что происходит при параллельном подключении вольтметра?

Вольтметр измеряет разность потенциалов цепи и имеет высокое внутреннее сопротивление.Когда вольтметр подключен параллельно компоненту схемы, количество тока, проходящего через вольтметр, очень мало. Следовательно, ток в цепи не изменяется.

Когда вольтметр подключен к сопротивлению 400 Ом?

Ответ. Правильный ответ на вопрос - 22,5 вольта. РАСЧЕТ: Согласно вопросу, сначала вольтметр подключается через сопротивление 400 Ом.

Как в электрическую цепь включаются амперметр и вольтметр?

Вольтметр подключается параллельно измеряемой цепи.Следовательно, идеальный вольтметр будет иметь бесконечное сопротивление. Амперметр подключается последовательно к измеряемой цепи. Идеальный амперметр будет иметь нулевое сопротивление, чтобы не нарушать цепь.

Как читать вольтметр?

Следовательно, показание вольтметра будет V = IR = 0.

Что такое вольтметр со схемой?

Вольтметр - это прибор, используемый для измерения разности электрических потенциалов между двумя точками в электрической цепи. Аналоговые вольтметры перемещают указатель по шкале пропорционально измеренному напряжению; цифровые вольтметры отображают напряжение в цифровом виде с помощью аналого-цифрового преобразователя.

Как работает вольтметр?

Вольтметр

работает по принципу закона Ома, который гласит, что напряжение на сопротивлении прямо пропорционально току, проходящему через него. Чтобы реализовать это в реальном времени, мы создали конструкцию гальванометра, в которой катушка подвешена в магнитном поле.

Когда подключен вольтметр с высоким сопротивлением?

Когда вольтметр высокого сопротивления подключен непосредственно к резистору.Электрический элемент посылает ток в цепь, к которой также подключен реостат. Закон Ома определяется как: ток, протекающий по проводнику, прямо пропорционален разности напряжений.

Как подключить вольтметр к резистору, чтобы определить разность потенциалов на нем?

Ответ: Пояснение: вольтметр всегда должен подключаться параллельно цепи, а амперметр всегда должен подключаться последовательно.

Когда вольтметр с высоким сопротивлением подключен непосредственно к резистору, его показание составляет 2 В?

Когда вольтметр с высоким сопротивлением подключен к сопротивлению R и его показание составляет 2 В.Электрический элемент посылает ток 0,4 А в электрическую цепь, к которой подключен реостат для изменения тока.

Что произойдет, если по ошибке вольтметр будет включен последовательно, а амперметр - параллельно?

По ошибке вольтметр включен последовательно, а амперметр - параллельно, с сопротивлением в электрической цепи. Из-за этого ток в цепи становится очень низким. Поскольку вольтметр измеряет разность потенциалов между двумя точками, он покажет показания, но не будет поврежден.

Почему вольтметр подключен параллельно и у него высокое сопротивление?

Вольтметр

используется для измерения разности потенциалов. Он всегда подключается параллельно в точках, где должна измеряться разность потенциалов, поэтому один конец вольтметра подключается к точке A сопротивления AB, а другой конец - к точке B, а также имеет высокое сопротивление, так что требуется пренебрежимо мало

Почему амперметр нельзя подключать параллельно?

Амперметр - это устройство, которое измеряет величину тока, протекающего в цепи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *