Вихревой нагрев воды: устройство, принцип работы, назначение, критерии выбора

Содержание

Теплогенератор — как сделать своими руками расскажет эксперт. Жми!

В связи с высокими ценами на промышленное отопительное оборудование многие умельцы собираются делать своими руками экономичный нагреватель вихревой теплогенератор.

Такой теплогенератор представляет собой всего лишь немного видоизмененный центробежный насос. Однако, чтобы собрать самостоятельно подобное устройство, даже имея все схемы и чертежи, нужно иметь хотя бы минимальные знания в данной сфере.

Принцип работы

 

Процесс кавитации. (Для увеличения нажмите)

Теплоноситель (чаще всего используют воду) попадает в кавитатор, где установленный электродвигатель производит его раскручивание и рассечение винтом, в результате образуются пузырьки с парами (это же происходит, когда плывет подводная лодка и корабль, оставляя за собой специфический след).

Двигаясь по теплогенератору, они схлопываются, за счет чего выделяется тепловая энергия. Такой процесс и называется кавитацией.

Исходя из слов Потапова, создателя кавитационного теплогенератора, принцип работы данного типа устройства основан на возобновляемой энергии.

За счет отсутствия дополнительного излучения, согласно теории, КПД такого агрегата может составлять около 100%, так как практически вся используемая энергия уходит на нагрев воды (теплоносителя).

Создание каркаса и выбор элементов

Чтобы сделать самодельный вихревой теплогенератор, для подключения его к отопительной системе, потребуется двигатель.

И, чем больше будет его мощность, тем больше он сможет нагреть теплоноситель (то есть быстрее и больше будет производить тепла). Однако здесь необходимо ориентироваться на рабочее и максимальное напряжение в сети, которое к нему будет подаваться после установки.

Производя выбор водяного насоса, необходимо рассматривать только те варианты, которые двигатель сможет раскрутить. При этом, он должен быть центробежного типа, в остальном ограничений по его выбору нет.

Также нужно приготовить под двигатель станину. Чаще всего она представляет собой обычный железный каркас, куда крепятся железные уголки. Размеры такой станины будут зависеть, прежде всего, от габаритов самого двигателя.

После его выбора необходимо нарезать уголки соответствующей длины и осуществить сварку самой конструкции, которая должна позволить разместить все элементы будущего теплогенератора.

Далее нужно для крепления электродвигателя вырезать еще один уголок и приварить к каркасу, но уже поперек. Последний штрих, в подготовке каркаса – это покраска, после которой уже можно крепить силовую установку и насос.

Конструкция корпуса теплогенератора

Такое устройство (рассматривается гидродинамический вариант) имеет корпус в виде цилиндра.

Соединяется с отопительной системой он через сквозные отверстия, которые у него находятся по бокам.

Но основным элементом этого устройства является именно жиклер, находящийся внутри этого цилиндра, непосредственно рядом с входным отверстием.

[warning]Обратите внимание: важно, чтобы размер входного отверстия жиклера имел размеры соответствующие 1/8 от диаметра самого цилиндра. Если его размер будет меньше этого значения, то вода физически не сможет в нужном количестве через него проходить. При этом насос будет сильно нагреваться, из-за повышенного давления, что также будет оказывать негативное влияние и на стенки деталей.[/warning]

Как изготовить

Для создания самодельного генератора тепла понадобится шлифовальная машинка, электродрель, а также сварочный аппарат.

Процесс будет происходить следующим образом:

  1. Сначала нужно отрезать кусок достаточно толстой трубы, общим диаметром 10 см, а длиной не более 65 см. После этого на ней нужно сделать внешнюю проточку в 2 см и нарезать резьбу.
  2. Теперь из точно такой же трубы необходимо сделать несколько колец, длиной по 5 см, после чего нарезается внутренняя резьба, но только с одной её стороны (то есть полукольца) на каждой.
  3. Далее нужно взять лист металла толщиной, аналогичной с толщиной трубы. Сделайте из него крышки. Их нужно приварить к кольцам с той стороны, где у них нет резьбы.
  4. Теперь нужно сделать в них центральные отверстия. В первой оно должно соответствовать диаметру жиклера, а во второй диаметру патрубка. При этом, с внутренней стороны той крышки, которая будет использоваться с жиклером, нужно сделать, используя сверло, фаску. В итоге должна выйти форсунка.
  5. Теперь подключаем ко всей этой системе теплогенератор. Отверстие насоса, откуда вода подается под давлением, нужно присоединить к патрубку, находящемуся возле форсунки. Второй патрубок соедините со входом уже в саму отопительную систему. А вот выход из последней подключите ко входу насоса.

Таким образом, под давлением, создаваемым насосом, теплоноситель в виде воды начнет проходить через форсунку. За счет постоянного движения теплоносителя внутри этой камеры он и будет нагреваться. После этого она попадает уже непосредственно в систему отопления. А чтобы была возможность регулировать получаемую температуру, нужно за патрубком установить шаровой кран.

Изменение температуры будет происходить при изменении его положения, если он будет меньше пропускать воды (будет находиться в полузакрытом положении). Вода будет дольше находиться и двигаться внутри корпуса, за счет чего её температура увеличится. Именно таким образом и работает подобный водонагреватель.

Смотрите видео, в котором даются практические советы по изготовлению вихревого теплогенератора своими руками:

Оцените статью: Поделитесь с друзьями!

вихревой своими руками, чертежи и устройство, схемы Потапова, система отопления

Кавитационный теплогенератор отличается хорошей эффективностью и компактностьюРедко какой хозяин не пытается сэкономить на отоплении или потреблении еще каких-либо благ, которые с каждым годом становятся все дороже и дороже. Чтобы сделать экономной отопительную систему жилого или производственного помещения, многие люди прибегают к помощи различных схем и методам получения тепловой энергии. Один из аппаратов, подходящий под эти цели – кавитационный теплогенератор.

Что такое вихревой теплогенератор

Кавитационный вихревой генератор тепла – это простое устройство, способное эффективно обогреть помещение, затрачивая при этом минимум средств. Это происходит благодаря нагреву воды при кавитации – образовании небольших паровых пузырьков в местах снижения давления жидкости, которое возникает либо при работе насоса, либо при звуковых колебаниях.

Кавитационный нагреватель способен преобразовать механическую энергию в тепловую, что активно применяется в промышленности, где нагревающие элементы могут выйти из строя, работая с жидкостью, имеющей большую температурную разность. Такой кавитатор является альтернативой для систем, работающих на твердом топливе.

Преимущества вихревых кавитационных нагревателей:

  • Экономичность системы отопления;
  • Высокая эффективность обогрева;
  • Доступность;
  • Возможность собрать своими руками.

Вихревой теплогенератор не следует располагать рядом с жилым помещением в связи с его высоким уровнем шума

Недостатки аппарата:

  • При самостоятельной сборке довольно сложно найти материалы для создания аппарата;
  • Слишком большая мощность для небольшого помещения;
  • Шумная работа;
  • Немалые габариты.

Стандартное устройство теплогенератора и принцип его работы

Процесс кавитации выражается в образовании пузырьков пара в жидкости, впоследствии чего давление медленно понижается при большой скорости потока.

Из-за чего может происходить парообразование:

  • Возникновением акустики, вызванной звуком;
  • Излучением лазерного импульса.

Закрытые воздушные области перемешиваются с водой и уходят в место с большим давлением, где хлопаются с излучением ударной волны.

Принцип работы кавитационного аппарата:

  • Струя воды движется через кавитатор, где насос создает водяное давление, попадающее в рабочую камеру;
  • В камерах жидкость увеличивает скорость и давление с помощью различных трубочек разных размеров;
  • В центре камеры потоки смешиваются, и появляется кавитация;
  • При этом полости пара остаются маленькими и не взаимодействуют с электродами;
  • Жидкость движется к противоположному концу камеры, откуда возвращается назад для следующего использования;
  • Нагрев происходит благодаря движению и расширению воды на выходе из сопла.

Так работает вихревой кавитационный нагреватель. Его устройство простое, но позволяет быстро и эффективно обогреть помещение.

Кавитационный нагреватель и его типы

Нагреватель, работающий с кавитацией, может быть нескольких типов. Чтобы понять, какой генератор вам нужен, следует разобраться в его типажах.

Кавитационный нагреватель следует время от времени осматривать на наличие изношенных деталей

Виды кавитационного нагревателя:

  1. Роторный – самый популярный из них это аппарат Григгса, работающий с помощью центробежного насоса ротационного действия. Внешне он выглядит как диск с отверстиями без выхода. Одно такое отверстие носит название: ячейка Григгса. Параметры этих ячеек и их число зависят от типа генератора и частоты вращения привода. Нагрев воды происходит между статором и ротором посредством быстрого ее движения по поверхности диска.
  2. Статический – он не имеет никаких вращающихся элементов, а кавитацию создают специальные сопла (элементы Лаваля). Насос нагнетает давление воды, что проводит к ее быстрому движению и нагреву. Выходные отверстия сопел более узкие, чем предыдущие и жидкость начинает двигаться еще быстрее. Из-за быстрого расширения воды и получается кавитация, дающая в итоге тепло.

Если выбирать между этими двумя видами, то следует учитывать, что производительность роторного кавитатора более высокая и он не такой габаритный, как статический.

Правда, статический нагреватель меньше изнашивается из-за отсутствия вращающихся элементов. Использовать аппарат можно до 5 лет, а если выйдет из строя сопло – его с легкостью можно заменить, затрачивая на это куда меньше средств, чем на теплогенератор в роторном кавитаторе.

Экономный кавитационный теплогенератор своими руками

Создать самодельный вихревой генератор с кавитацией вполне реально, если внимательно изучить чертежи и схемы устройства, а также понимать его принцип работы. Самым простым для самостоятельного создания считается ВТГ Потапова с КПД 93%, схема которого подойдет как для домашнего, так и для промышленного использования.

Перед тем, как приступить к сборке прибора, следует правильно выбрать насос, ориентируясь по его типу, мощности, нужной тепловой энергии и величине напора.

В основном все кавитационные генераторы имеют формы сопла, которая считается самой простой и удобной для таких устройств.

Что нужно для создания кавитатора:

  • Манометры для измерения давления;
  • Термометр для замера температуры;
  • Выходные и входные патрубки с краниками;
  • Вентили для удаления воздушных пробок из отопительной системы;
  • Гильзы для термометров.

Также нужно проследить за размером сечения отверстия между диффузором и конфузором. Оно должно быть примерно 8 – 15 см, не уже и не шире.

Схема создания кавитационного генератора:

  1. Выбор насоса – здесь следует определиться с нужными параметрами. Насос обязательно должен иметь возможность работать с жидкостями высоких температур, иначе он быстро сломается. Также он должен уметь создавать рабочее давление в минимум 4 атмосферы.
  2. Создание камеры кавитации – тут главное правильно выбрать размер сечения проходного канала. Оптимальным вариантом считается 8-15 мм.
  3. Выбор конфигурации сопла – оно может быть в виде конуса, цилиндра или просто быть закругленным. Впрочем, не так важна форма, как то, чтобы вихревой процесс начинался уже при входе воды в сопло.
  4. Изготовление водного контура – внешне это такая изогнутая трубка, ведущая от камеры кавитации. К ней присоединяются две гильзы с термометром, два манометра, воздушный вентиль, который ставится между входом и выходом.

Корпус кавитационного теплогенератора можно покрасить в любой цвет

После создания корпуса следует провести испытание теплогенератора. Для этого насос следует подключить к электроэнергии, а радиаторы к отопительной системе. Далее происходит включение в сеть.

Особенно стоит смотреть на показания манометров и выставить нужную разницу между входом и выходом жидкости в пределах 8-12 атмосфер.

Далее в систему пускается вода. Если она нагревается за 10 минут на 3-5 градусов в минуту – это хорошо. За непродолжительное время жидкость прогреется до 60 градусов. Этого вполне достаточно для работы.

Теплогенератор своими руками (видео)

Кавитационный нагреватель достаточно интересный и экономный способ обогреть помещение. Он легко доступен и при желании может создаваться самостоятельно. Для этого нужно докупить необходимые материалы и сделать все в соответствии со схемами. И эффективность аппарата не заставит себя долго ждать.


Добавить комментарий

Вихревой теплогенератор

Вихревой нагреватель сред

На фиг.1 схематично показан предложенный теплогенератор, общий вид в разрезе; на фиг.2 - разрез А-А на фиг.1.

Справа - вихревой нагреватель сред, чертёж.

Предложеный вихревой теплогенератор состоит из цилиндрической рабочей камеры 1, на стенке 2 которой жестко соосно установлеа труба 3 с утолщением 4 ее стенки и имеющая толщину ее стенки 2-20 мм по основной ее длине и которая отстоит на расстояние 10-150 мм от противоположной стенки 5 камеры 1. На трубе 3 на расстоянии 10-150 мм от стенки 2 жестко установлен шнек 6, имеющий последовательно изменяющиеся по его длине участки с разным направлением навивки их винтовых линий. На сенке 2 имеются входной и выходной соответственно патрубки 7 и 8 для рабочей жидкости (на чертеже не показана), которая может быть водой, глицерином или глицерином с водой. На рабочей камере 1 находится теплообменник 9 с входным и выходным соответственно патрубками 10 и 11.

Предложенный теплогенератор работает за счет движения рабочей жидкости через патрубки 7 и 8 под напором, создаваемым насосом, который на чертеже не показан. При этом жидкость вначале попадает на шнек 6.

При этом за счет гидравлических ударов в потоке жидкости, возникающих в местах перехода одного участка шнека 6 в другой, где происходит изменение направления закрутки потока согласно изменяющемуся направлению винтовой линии навивки, возникают пузырьки пара и газа, выделяющегося из жидкости. Эти пузырьки всхлапываются с выделением тепла на осевой линии трубы 3, где фокусируется энергия от вибраций, отраженная от внутренней поверхности трубы 3. Это тепло через теплообменник 9 передается потребителю.

Слева и справа - вихревой теплогенератор, чертёж.

Вихревой теплогенератор предназначен для экономии электроэнергии при получении тепла, имеет КПД до 700% и содержит в качестве завихрителя шнек, выполненный с неравномерным по длине шагом винтовой линии его навивки, не имеет аналогов в мире. Разрабатываемые в мире вихревые теплогенераторы имеют завихрители пластинчатые и дырчатые, в которых закрученный поток жидкости ударяется от твердые поверхности преград и происходит разрыв при давлении до 2000 атм и температуре до 1000 С пузырьков пара и воздуха, которые образуются в зонах пониженного давления, которые находятся за этими преградами по ходу движения потока, на этих поверхностях образуются кавитационные разрушения и возникают вредные шумы, в моем же устройстве всего этого нет, так как ударные явления и зоны пониженного давления образуются гидравлическими ударами в глубинах потока из-за неравномерности шага навивки винтовой линии шнека.

Описание рынка продукта

Большие потребительские свойства этого устройства позволят ему первенствовать на мировом рынке.

На какой стадии находится проект в настоящее время

Из-за отсутствия денежных средств проект находится на стадии патентования, поданы заявки с положительным решением по формальной экспертизе, на уплату пошлины "за экспертизу по существу" нет денег: №№ 2002010257, 2002010258, 2002010259, 2002010260, 2002010261, 2002010645, 200508021, 200604689, 200606501 в Укрпатент и № 2007133769 в Роспатент.

Описание организации выполнения проекта и вывода продукта на рынок

Будет выполнен опытный образец, проведены испытания опытного образца и результаты этих испытаний будут предъявлены заинтересованным заводом, с которыми будут заключены взаимовыгодные соглашения.

Главные препятствия реализации проекта

Не найдены инвесторы и спонсоры для получения денежных средств.

Вихревой теплогенератор - описание

Вихревой теплогенератор, содержащий замкнутый циркуляционный контур, закручивающее устройство, теплообменник, отличающийся тем, что закручивающее устройство выполнено в виде шнека с участками с разным направлением винтовой линии их навивки, жестко установленного на расстоянии 10-150 мм от конца ее на трубе, которым она жестко соосно установлена на бокой стенке цилиндрической рабочей камеры и имеющей по основной ее длине толщину стенки 2-20 мм, а свободный конец этой трубы отстоит от противоположной боковой стенки рабочей камеры на расстояние 10-150 мм, входной патрубок находится между этой трубой и цилиндрической поверхностью рабочей камеры на боковой стенке рабочей камеры, на которой установлена эта труба, а выходной патрубок находится в этой же боковой стенке в пределах этой трубы. На фиг.1 схематично показан предложенный теплогенератор, общий вид в разрезе; на фиг.2 - разрез А-А на фиг.1.

Предложеный вихревой теплогенератор состоит из цилиндрической рабочей камеры 1, на стенке 2 которой жестко соосно установлеа труба 3 с утолщением 4 ее стенки и имеющая толщину ее стенки 2-20 мм по основной ее длине и которая отстоит на расстояние 10-150 мм от противоположной стенки 5 камеры 1. На трубе 3 на расстоянии 10-150 мм от стенки 2 жестко установлен шнек 6, имеющий последовательно изменяющиеся по его длине участки с разным направлением навивки их винтовых линий. На сенке 2 имеются входной и выходной соответственно патрубки 7 и 8 для рабочей жидкости (на чертеже не показана), которая может быть водой, глицерином или глицерином с водой. На рабочей камере 1 находится теплообменник 9 с входным и выходным соответственно патрубками 10 и 11. Предложенный теплогенератор работает за счет движения рабочей жидкости через патрубки 7 и 8 под напором, создаваемым насосом, который на чертеже не показан. При этом жидкость вначале попадает на шнек 6. При этом за счет гидравлических ударов в потоке жидкости, возникающих в местах перехода одного участка шнека 6 в другой, где происходит изменение направления закрутки потока согласно изменяющемуся направлению винтовой линии навивки, возникают пузырьки пара и газа, выделяющегося из жидкости. Эти пузырьки всхлапываются с выделением тепла на осевой линии трубы 3, где фокусируется энергия от вибраций, отраженная от внутренней поверхности трубы 3. Это тепло через теплообменник 9 передается потребителю.

Вихревой нагреватель сред На фиг.1 схематично показан предложенный нагреватель, общий вид; на фиг.2 - разрез А-А на фиг.1; на фиг.3 - шнек на трубе в развертке; на фиг.4 - разрез Б-Б на фиг.3. Предложенный нагреватель сосотоит из корпуса 1, в котором находится с возможностью вращения вал 2 привода 3. На валу 2 жестко установлен шнек 4 с шагом винтовой линии его навивки изменяющимся в сторону и больше, и меньше по ходу навивки. На шнеке 4 жестко установлена упругая труба 5, на которой в ее конце имеется коническая часть 6, а также жестко установлен шнек 7, с таким же направлением винтовой линии его навивки, как и у шнека 4, и также изменяющимся шагом винтовой линии его навивки. Шнек 7 выполнен из камертонов 8, имеющих пары пластин повернутые навстречу друг другу, как показано на фиг. 3 и 4, где стрелкой показано направление потока среды в корпусе 1 по отношению к этому углу между пластинами 9. Корус 1 имеет входное и выходое отверстия 10 и 11 соответственно.

При работе привода 3 жидкая или газообразная поступает через отверстие 10 и выходит - через отвертие 11. Этот напор создается шнеками 4 и 7 и вибрациями пластин 9 камертонов 8, как в вибрационном насосе. Неравномерность шага навивки шнеков 4 и 7, и упругость трубы 5, а также вибрации пластин 9 создают высокочастотные колебания, которые сопровождаются выделением тепа, и через отверстие 11 среда выходит нагретой. В случае газообразной среды среда вблизи отверстия 11 имеет достаточно большое давление за счет ее разогрева и своим воздействием на шнеки 4 и 7 создает крутящий момент, который будет достаточным, чтобы вал 2 вращался и при отключеном приводе 3 или крутил, например, генератор электрического тока.

Движение среды на фиг.1 показано стрелкой. Вихревой нагреватель сред имеет корпус, в котором на валу электродвигателя-генератора тока находится завихритель, выполненный в виде шнека, имеющего переменный по длине шаг его винтовой линии и набранный из камертонов, работает на воде, как вихревой теплогенератор, и на воздухе, как нагреватель воздуха (при достижении вращения этого шнека 2000 оборотов в минуту он вместе с нагревом воздуха начинает работать в режиме молекулярного бестопливного двигателя без получения энергии извне, электродвигатель обращается в генератор тока и начитает отдавать ток в сеть. Ударные вибрации в потоке от неравномерности шага винтовой линии шнека и набранности его из камертонов создают условия, при которых потоком происходит получение тепловой энергии за счет взаимодействий на уровне элементарных частиц материи потока с полями (торсионным и другими) мирового пространства. КПД достигает 700%.

Относительно вихревого теплогенератора, то тут дела обстоят следующим образом. Мной изобретен очень выгодный завихритель к ВТГ, который может давать очень качественную кавитацию ( от нее на 99% звисит выделение тепла), но нужен и другой насос. Те насосы, которые повсеместно применяются на ВТГ в мире при больших нагрузках очень сильно теряют свою производителдьность и о достойном КПД из-за этого не стоит и мечтать. Я уже давно прелагаю очень выгодные роторные насосы вытенснения (2 устаревших патента и 15 заявок), но никто эту выгоду поиметь не хочет. Мои эти насосы все по изобретениям под названиям "Роторная машина" и они абсолютно не теряют свою производительность от возникшего большого сопротивления в трубопроводе. Смотрите ниже материал, который я на днях послал в Германию, откуда мне написали, что они заплатили миллион евро на Краматорский (его адрес они не указали) и этот завод сделал оптные образцы ВТГ, которые имели 300% КПД и демонстрировались на многих выставках, а вот теперь, когда этот завод присылает эти ВТГ для продажи, они еле тянут на 100% КПД и они никак не могут их настроить. Кавитация там происходит не так, как у Потапова на тормозных устройствах, а пред соплом Ловаля. Зародыши пузырьков произсходят в суженном месте сопла Ловаля, где скорость потока максимальна и поэтому пониженное давление в потоке. Мой завихритель работал бы эффективнее. Не нужно было бы капризной настройки на резонанс, как в радиосхеме, так как ультроколебания потока отражались бы от внутренней поверхности трубы - смотрите статью "Рабочий пульс рукотоворной звезды" в журнале №Техника молодежи" №2 за 2006 год, где описано изобретение по патенту РФ № 2258268 и резултаты лабраторных исследований по этому устройству.

Меня очень удивляет то малое разнообразие конструкций ВТГ в мире, патентоспособных очень много, но их патентоспособность заключается в очень небольших изменениях в одном и том же: у ПЛАСТИНЧАТЫХ тормозных устройств (возглавляют русские) - это изменения в пластинах и у ПЕРЕГОРОДОЧНЫХ тормозных устройств (возглавляют американцы) формы отверстий в этих перегородках. Но никто не хочет провести анализ круто и изменить саму сущность явлений. Во-первых, КПД на прямую связан с мощностью кавитации (99% выделения тепла от кавитации), а кавитация на прямую зависит от мощности удара о тормозное устройство. И в то же время все применяют очень неперспективные в этом плане центробежные и вихревые насосы, которые, именно, в этих условиях прохождения потока через тормозные устройства теряют свою высокую производительность и "месят жидкость по кругу", так как их центробежный принцип предполагает при достижении центробежной силой силы сопротивления в трубопроводе иметь производительность равную нулю, то есть в трубопроводе можно закрывать задвижку, а эти насосы будут благополучно работать и "месить жидкость по кругу".

Тут нужны насосы вытеснения - они не терпят закрытой задвижки: ламаются или приводят в действие предохранительные устройства. Помповые насосы вытеснения не годятся, так как они не роторные и поэтому тихоходные, плунжерные с косой шайбой тоже не годятся, так как у них мал суммарный рабочий объем, роторные вытеснительные имеют малый рабочий объем и неуравновешенность, которая не позволяет иметь большие обороты, за счет большой величины которых можно иметь большую производительность. Роторные насосы вытеснения (уравновешенные) и с большим рабочим объемом нужно везде, по ним "плачет" мировой рынок, а ВТГ он нужен в первую очередь, чтобы кардинально повысить его КПД. Я ПРЕДЛАГАЮ ТАКИЕ НАСОСЫ. Почитайте, пожалуйста, мое следующее письмо по моему изобретению "Роторная машина", по которому мной заявлено (имеются и старые патенты) много очень выгодных для самых различных условий применения и изготовления РОТОРНЫХ НАСОСОВ ВЫТЕСНЕНИЯ. Мной предложен ВТГ с совершенно новым шнековым завихрителем, который позволяет через гидрои пневмоудары очень выгодно избавиться от тормозных устройств. Все беды в этих причинах и "ЛЕЧИТЬ" их крайне не перспективно. В сороковый-шестедесятые годы пытались получать тепло при помощи тепловых насосов. Брали зимой из пруда воду, закручивали ее поток и прогоняли через прямолинейный участок трубы (этот способ был запатентован во Франции и носит название "труба Ранке"), центробежная сила вращения сортировала по весу молекулы воды (они имеют разную температуру и поэтому удельный вес их соответствует их температуре) и по центру трубы шел холодный поток (это явление противоречит логике - , ведь, теплая вода легче), который отделялся и возвращался в пруд, а теплая вода шла на отопление помещений.

В наши дни под "тепловым насосом" понимают перевернутый по своему назначению холодильник: в морозильник помещают мощный теплопереносчик, а от компрессора получают тепло. Углерод из атмосферы можно получать через эту "трубу Ранке", закручивая предварительно поток воздуха перед проходом его через "трубе Ранке". Эффект будет тем больше, чем будет больше центробежная сила: больше радиус трубы и больше угловая скорость вращения. Проект "Вихревой теплогенератор" мало эффективен без проекта "Роторная машина", так как в вихревом теплогенераторе выделение энергии происходит большей частью (99%) за счет кавитационных процессов, происходящих за счет удара о тормозные устройства (сейчас в мировой практике - это пластины на пути потока, или дырчатая перегородка, или многочастотные электрические заряды по эффекту Юткина, мной предложен найболее эффективный способ торможения потока - через шнеки с неравномерным шагом навивки, который постоянно меняет своим изменением шага проходное сечение потока и инициирует гидроудары, которые обеспечивают кавитацию с большим количеством очагов этих выделений в самом потоке, а не так, как у всех, у поверхности твердого тела, это обеспечивает большее выделение энергии и кавитационные явления в потоке, а не у твердой поверхности не разрушают этой поверхность, а звуковые явления проходя через поток уже не являются вредными для человека) и это торможение потока предъявляет повышенные требования к насосу вихревого теплогенератора.

Он должен быть высокопроизводительным и не терял эту высокую производительность при большом сопротивлении в трубопроводе, а в вихревом теплогенераторе это сопротивление присутствует в виде тормозных устройств. В настоящее время высокопроизводительными являются центробежных насосы с различными их модефикациями, но они теряют свою производительность при увеличении сопротивления в трубопроводе, но их применяют в современных вихревых теплогенераторах, потому что насосы вытеснения (поршневые и роторные), которые не теряют свою производительность при увеличении сопротивления в трубопроводе, малопроизводительные и по этой причине не применяются в современных вихревых теплогенераторах. Насос же по моему этому проекту "Роторная машина" является насосом вытеснения с очень большой производительностью, потому что имеет большой рабочий и объем и большие обороты ротора, так как все детали в нем хорошо уравновешены и позволяют иметь большие обороты ротора. Так что, если оба эти проекта будут выполнены совместно, то этот новый в мировой практике вихревой теплогенератор будет иметь очень высокие показатели. Вихревые теплогенераторы кое-где и пошли, но очень вяло и очень разноречивые отклики о них. Но я понял в чем там дело. Во-первых, насосы центробежные, которые на них стоят, (другие не имеют такой производительности) не дают нужной скорости потока, так как их производительность резко падает при увеличении сопротивления в трубопроводе. Рушится у них сама идея получения тепла от кавитации, которая происходит от удара (происходит большое сопротивление в трубопроводе) струи об тормозные устройства (у одних авторов - это пластины, а у других - дырчатая перегородка) и имеется вредный шум и разъедание металла.

Во-вторых, сами завихрители неэффективны. Удивительно, но я решил все эти проблемы. Но нужно начинать не с вихревых теплогенераторов.Их тоже нужно оставить на потом. В первую очередь нужно начинать с моих многочисленных изобретений "Роторная машина" и то не по всему их комплексу, а только, как насосы. Схем у меня много, но принципиально разных - 5, а все остальные - это варианты, за которые могут уцепиться конкуренты. Ведь, как только насос попадет на рынок, конкуренты тут же будут искать эти варианты, чтобы подать на них заявки и получить уже свои патенты. А я их заранее опередил и кроме того эти варианты увеличат шанс правильного выбора насоса на максимум положительных свойств и избавления от недостатков. Относительно финансового вопроса, то тут все обстоит следующим образом. Нужно иметь хоть какие-то деньги, чтобы сделать опытный образец и испытать его, а гонорар я согласен получать в виде 10% (это считается минимум) от будущей прибыли. Если будет опытный образец, то его нужно хорошо испытать, добраться до всех неполадок, которые могут возникать при эксплуатации.

Я бы мог у себя в Запорожье это прекрасно сделать еще и деньги не этом заработать. Я бы стал подавать объявления, что продаю насосы по принципу вытеснения (такие есть, но производительность у них низкая и еще много разных проблем) и очень большой мощности. Покупателю бы демонстрировал опытный образец и предлагал бы купить этот насос по моему изготовлению той мощности, какая нужна покупателю, но за предоплату 50%. Я знаю, что в странах СНГ мне вообще могут не уплатить никакой гонорар, у наших людей еще с советских времен на изобретателей "дедовщина" и традиция не платить как людям - единаличникам капиталистически настроеным и менталитет в настоящее время вообще такой. В развитых странах захотят на своей территории быть патентообладателями и должны обратиться ко мне за хорошие деньги с просьбой по их заявкам (авторство мое, так как у меня приоритетная дата, которую во всем мире обойти нельзя) в их Патентное ведомство подписаться, как автор. Они будут в заявке заявителями, а в патенте патентообладателями.

Это патентообладание им многое дает: государство 3 года не берет налоги и конкуренты должны им идти на всевозможные уступки при покупке у них лицензий на изготовление на территории их страны этих изделий. Следующим письмом я высылаю Вам много материала по этому насосу. Могу таким же образом выслать материал и еще по 14 заявкам. Вполне возможно, что это окажется кому-то их самой ближней темой. Во-первых, на опытный образец у меня нет денег, на Украине теперь все писанные и неписанные законы направлены, чтобы не было малого бизнеса, чтобы все за копейки работали на "дядю". Во-вторых, моя интеллектуальная собственность защищена заявками. Через 18 месяцев после подачи заявка публикуется и вторично подать нереально - не пройдет по новизне, еще через 18 месяцев заявка теряет возможность получить патент, хотя за плату можно продлить этот срок на 6 месяцев. Мне легко подавать заявки, потому что имею большой опыт. Многие свои заявки я "огородил" частоколом заявок по вариантам выполнения - это на случай, если кто-то захочет получит патент в обход моему патенту и по уже готовой логически по всем законам теории доказанной изобретенной схеме подаст заявку по патентоспособному варианту - знает патентные тонкости подачи заявки и специалист по этой тематике. То все эти варианты я уже "застолбил". В-третьих, создать комфортные юридические условия инвестор может через юридически грамотные согласительные документы в наших взаимоотношениях. Но и эти бумаги успех не гарантируют, если инвестор не сможет найти изобретателя, а это происходит практически всегда, потому что изобретатель не может инвестору представить готовую команду, которая у изобретателя "не водится", потому что он, как правило, не зацикливается на готовом производстве, потому что там он и не нужен.

Теперь поясню, в чем я вижу отличия моего "Вихревого теплогенератора" от всех существующих и от "Вихревого теплогенератора" Мустафаева в том числе. В наше время нет эффективного насоса вытеснения больший производительности, а у всех "Вихревых теплогенераторов" требуется не только большое давление рабочей жидкости, но и большая скорость ее потока, так как чем больше скорость потока, тем эффективнее выделяется тепловая энергия при взаимодействии этого быстрого потока с тормозными устройствами, которые у одних "Вихревых теплогенераторов" выполнены в виде пластин, а у других - в виде перегородки с отверстиями. Мой "Вихревой теплогенератор" тоже имеет выделение тепла при взаимодействии быстрого потока с тормозным устройством, только это устройство выполнено иной конструкции - в виде шнека, который выполняет роль закручивающего устройства. Шнек получает дополнительную функцию - функцию тормозного устройства введением мной в его конструкцию такого фактора: винтовая линии шнека имеет неравномерный шаг по его величине и по направлению навивки.

Кроме соединения двух функций в одной детали-шнеке, имеется увеличение на большой порядок потребительских свойств "Вихревого топлогенератора":

1. Образование тепла происходит по всему сечению потока рабочей жидкости, а не у поверхностей пластин или перегородки с отверстиями.

2. Так как дающая тепло кавитация происходит не у твердых поверхностей, то эти поверхности не страдают от разрушающих действий кавитации и срок службы "Вихревого теплогенератора" значительно увеличивается, и кроме того, кавитация сопровождается большим шумом, но этот шум не может выйти за пределы устройства во вредных для человека количествах, так как в моем "Вихревом теплогенераторе" рабочая жидкость поглощает значительную его часть.

Если подытожить все сказанное выше, то мы имеем: 1. Без насоса вытеснения по моему изобретению "Роторная машина" свою эффективность по получению тепла любой "Вихревой теплогенератор", и мой в том числе, теряют как минимум в 2 раза.

2. Мой "Вихревой теплогенератор" выделение тепла имеет по всему сечению потока рабочей жидкости, поэтому КПД его выше.

3. Мой "Вихревой теплогенератор" имеет больший срок службы и не имеет вредного воздействия шумов на человека Сельское хозяйство нуждается в дешевой энергетике, мной изобретен очень эффективная ветроэлектростанция, в конструкции которой играет большую роль мое изобретение "Роторная машина" (насосы, компрессоры, гидрои пневмоприводы), которое также очень важную роль играет и в моих изобретениях: "Вихревой теплобур" (очень эффективная буровая устанвка), "Вихревой теплогенератор" (отопление, нагрев жидкостей), "Установка для опреснения воды", "Веломобиль" (это был бы прекрасный вид транспорта для сельской местности, если в нем применить и мое изобретение "Электродвигатель-генератор тока"), а так же, если по этому изобретению "Роторная машина" выполнить насос по принципу вытеснения (4 патента и 25 заявок), то этот насос мог бы "отменить" все широко применяемые насосы, так как у применяемых насосов множество недостатков, а в моем их практически нет, а преимущества очень значительные.

Если кого-то заинтересовали эти изобретения, то пишите мне (АДРЕС В КОНТАКТАХ САЙТА), вышлю по этим моим изобретениям описания с чертежами заявок на изобретения, а так же чертежи и пояснения к опытным образцам. Из-за безденежья не выполнен ни один опытный образец ни по одному из этих изобретений. По этим моим изобретениям можно было бы иметь громадный бизнес, так как рынок воспринял бы изделия по этим моим изобретениям с большим удовольствием из-за высоких у них потребительских свойств. Толстосумам мое авторство не нужно, достаточно им того что они будут патентообладателями и практически всю прибыль забирать себе. В развитых странах я, как автор, мог бы быть востребованным (приоритетные даты у меня есть и на территории их стран других авторов быть не может, а заявку на территории свой станы им подать нужно, чтобы иметь патент на территории своей страны), так как там государство поощряет выпуск продукции по изобретениям трехгодичными каникулами от налогов и конкуренты находятся в зависимости от них из-за необходимости покупать у них лицензии на выпуск этой продукции.

Заявки дают приоритетную дату, через 18 месяцев их публикуют и поданая после этого кем-то другим заявка не должна при экспертизе по существу проходить по критерию новизны, формальную (первичную) экспертизу она может пройти, так как там ведется экспертиза только по правильности подачи заявки. Вы говорите "бизнес не любит многословия", но он очень любит шоу в свой адрес и за этим пустозвонством не может и не хочет решать такие патовые ситуации, как у меня: за моим насосом вытеснения мировой рынок ПЛАЧЕТ, а им "по барабану", что у них очень большая прибыль остается не востребованной. А всего-то для них незначительная мелочь - дать деньги на изготовление опытного образца и капитально с ним познакомит специалистов. Тогда у них будут "железные" факты, что будущая прибыль от них никуда не уйдет. Животным нужна не меньше, чем людям, хорошая вода, тогда и прибыль от животноводства будет. Очень часто в колодцах плохая вода, а в глубоких скважинах отличнейшая (есть пласты воды, образованные в ходе становления планеты, которые не были ни чем связаны с теми нечистотами, что в верхних слоях, и эти пласты воды целебные), но современная техника малоэффективна для выполнения скважин. Я изобрел очень эффективную буровую установку "Вихревой теплобур", но она не может быть достаточно эффективна без моего насоса вытеснения "Роторная машина". Но внедрить без поддержки "сильных мира сего" я не могу. Говорят "бизнес не любит многословия", но он очень любит шоу в свой адрес и за этим пустозвонством не может и не хочет решать такие патовые ситуации, как у меня: за моим насосом вытеснения мировой рынок ПЛАЧЕТ, а им "по барабану", что у них очень большая прибыль остается не востребованной. А всего-то для них незначительная мелочь - дать деньги на изготовление опытного образца и капитально с ним познакомит специалистов. Тогда у них будут "железные" факты, что будущая прибыль от них никуда не уйдет.

Нужно работать по тем темам, от которых им не отвертеться. Энергетика сейчас у всех на устах, но в ней много провалов. Зайдите в интернет по словам: новая энергетика, Потапов Юрий, нетрадиционная энергетике и Вы много узнаете об этом. Были большие надежды на вихревые теплогенераторы (Вы по моим материалам видите, что на этом принципе у меня: "Вихревой тепологенератор", "Вихревой нагреватель сред", "Молекулярный двигатель", "Вихревой теплобур", "Установка для опреснения воды" и "Ветродвигатель"), но сейчас к ним отношение очень разное: одни заверяют, что они у них отлично работают, хотя КПД ниже задекларированного, а другие считают, что толку никакого. Тепло там выделяется на молекулярном уровне из полей, которые в отличие от электричества, магнетизма и гравитации замерить ничем нельзя. Эти поля, отдав энергию, возвращают на прежнюю высоту свой понизившийся энергетический уровень уже за счет энергии мирового пространства. Утверждают, что вакуум - это плюс и минус две большие энергии, компенсировавшие друг друга в мировом пространстве. Это выделение происходит при особых условиях, в данном случае при кавитации: образовании и всхлапывании пузырьков пара и газов, которое происходит за счет удара закрученного потока о тормозные устройства в виде пластин или перегородки с отверстиями.

От того, что это происходит у твердой поверхности, эта поверхность от этого разрушается и по твердому телу проводится наружу шум на недопустимо высоком уровне для человека. Мной предложено очень эффективное закручивающее устройство - шнек (это типа винт), в котором тормозных устройств нет, но эти годрои пневмоудары есть и кавитация от них, но в самом потоке из-за того, что шаг винтовой линии шнека все время меняется и меняется площадь сечения для прохождения потока и соответственно сопротивление движению потока, от этого кавитация находится в больших количествах, так как по всему сечению потока, и кавитация мало взаимодействует с твердой поверхностью и поэтому не может ее разрушить и шум от нее не передается через твердую поверхность и теряет силу в потоке. Но все это Вам не нужно никому доказывать, это они захотят услышать или прочесть по интернету от автора. Ваша задача найти заинтересованных людей и сообщить мне, что именно они хотят со мной связаться, а все остальное - это моя задача, те деньги я Вам плачу за сам факт Вашего нахождения Вами этого этого клиента. Возможно по обстоятельствам Вы захотите и сможете участвовать и в дальнейшей судьбе этого бизнеса, всех обстоятельств предугадать трудно, то тут уже будут другие обстоятельства и свои договорные и со мной, и с ними денежные условия.

Должен Вам пояснить такой факт, что в большенство этих устройств есть насос и роль его очень большая, так как торможение потока увеличивают нагрузку на насос и центробежные насосы, применяемые сегодня в этих устройствах, ведут себя плохо, так как из-за их центробежного устройства их производительность падает с повышением сопротивления в трубопроводе, КПД сильно падает, мной изобретено много очень эффективных насосов ВЫТЕСНЕНИЯ (у них не центробежный принцип, а вытеснительный. Если применить именно мои эти насосы (в заявке они "Роторная машина": насосы, компрессоры, приводы и двигатели), то эффект от этих всех устройств резко возрастет. Да и сам этот насос может применяться везде во все машинах и устройствах вытеснить все применяемые сегодня в мире насосы. Есть еще очень перспективные: газовые пистолеты, веломобили и так далее, если найдутся на них желающие, то тоже не теряйтесь – представляйте их им.

1. Упоминаемых расчетов нет, потому что нет опытного образца, но есть некоторые данные, которые могут пригодиться в этих расчетах. В журнале "Техника-молодежи" №2 за 2006 год есть статья "Рабочий пульс рукотворной звезды", там даны результаты лабораторных исследований, которые подтверждают тот факт, что в жидкости высокочастотные колебания отражаются от внутренней цилиндрической поверхности трубы и камулятируются по ее осевой линии и по этой линии имеется плазменный шнур с большой разностью электрических потенциалов.

2. Поверхность шнека должна быть гладкой и выполняться он должен из нержавеющей стали, кроме того по материалам заявки предусмотрено, что режим работы установки такой, что небольшая часть воды не превращается в пар и этот остаток воды уносит с собой всю соль. Даже, если какие-то слои на поверхности шнека будут образовываться, то они не будут иметь с этой поверхностью достаточную силу сцепления, чтобы не оборваться за счет вибраций, к тому же, сухими они не будут.

3. Шнековая конструкция завихрителя тем хороша, что несет в себе возможности трубы Ранке. В трубе Ранке за счет вращения потока в поосевой его части температура всегда ниже ( на этом принципе в 40-50-х годах строили тепловые насосы - это теперь их пытаются реанимировать на основе обратной работы обычного холодильнике) и поэтому пар всегда будет у цилиндрической поверхности объема, в котором находится шнек, и остаток воды из корпуса будет выходить в поосевой части.

4. Большое давление на входе в установку (это обеспечивает большую скорость потока в шнеке) будет создаваться за счет применения моего роторного насоса вытеснения, материалы по которому я Вам высылал. 5. Конусность корпуса не нужна, а поток не вращаться не может, так как проходит через шнек.

6. Соплом Лаваля можно считать каждое уменьшение шага винтовой линии шнека. Ламинарности потока в шнеке не получится из-за того, что перед каждым уменьшенным шагом навивки всегда будет очень большое давление с замедлением потока, об зону этого большого давления будет ударяться сзади идущий поток и в этих пробках всегда будут знакопеременные нагрузки вибрации. Все источники вибраций не могут не влиять друг на друга, поэтому суммарные волновые графики вибраций будут далеки от синусоидальной кривой и каждый зубец этой кривой будет носителем своих вибраций и эта колебательная система будет высокочастотной и будет создавать условия для выделения энергии на молекулярном уровне в счет этих энергоотдающих полей, которые в отличие от электричества, магнетизма и гравитации не поддаются измерениям и являются передовой на фронте науки.

7. Шнековая конструкция, действительно, несет в себе очень много преимуществ.

8. Тот вариант роторного насоса вытеснения, который я Вам выслал, имеет много заявленных вариантов, среди которых есть вариант, в котором нет дублирующей зубчатой передачи (или как это в присланном Вам чертеже опытного образца - внешняя зубчатая передача с передаточным отношением, равным единице, заменена простой передачей, которая заявлена мной и чертеж по заявке смотрите в ПРИКРЕПЛЕНИИ, в котором коромысло посредине шарнирно установлено на корпусе и своими концами через продольные прорези связано с его установкой накрест, а не параллельно, как у паровоза, с эксцентриками обоих валов насоса), а выполнен так, что барабаны не катятся друг по другу с небольшим проскальзыванием, а находятся в мелкозубом зубчатом зацеплении (это обеспечивает надежно замыкание рабочего объема на его коротком участке между входным и выходным отверстиями в корпусе насоса, а большие зубья, которые играют роль поршней, коррегированы так, что их начальная окружность совпадает с начальной окружностью этой мелкозубой зубчатой передачи, с целью, чтобы сохранялось передаточное отношение мелкозубой зубчатой передачи и для этой крупнозубой передачи, чтобы эти очень разные по высоте зуба передачи могли без проблем работать по одной и той же начальной окружности и между барабанами не было проскальзывания. Можно большие зубья не коррегировать, а просто большой зуб выполнять (без его ножки)на барабане, выполненном его цилиндрической поверхностью по начальной окружности мелкозубого зубчатого венца, находящего на этом же барабане, начиная от его этой же начальной окружности и зубчатую впадину на другом барабане к нему соответственно.

9. Современные вихревые теплогенераторы чаще всего выполняются с теплообменниками (рабочая жидкость имеет короткий контур и поэтому в насосе большое давление присутствует и на его входе, что выручает современные центробежные насосы, применяемые чаще всего у них, чтобы иметь высокое давление и на выходе из насоса) и уже с этими теплообменниками связан водяной контур отопления или контур с какой-либо жидкостью, в производственном цикле обработки которой присутствует нагрев. Рабочей жидкостью современных вихревых теплогенераторов с теплообменником является: глицирин, глицирин с водой или же всевозможные нефтепродукты. Рабочая жидкость у них в начальный момент запуска имеет вязкость гораздо больше вязкости воды, зато после нагрева их вязкость резко падает и становится на много меньше вязкости воды.

10. Уплотнения имеются только у насоса, а он работает в нормальных условиях, единственно, что его нужно выполнять с коррозиестойким покрытием или из соответствующего сплава, а уплотнения - не под простую воду, а под морскую.

С уважением Измалков Герман Иванович

Vortex Water Enhancement - Дизайн и намерение природы пересмотрены сегодня

В природе вода в своем путешествии в горном потоке изгибается и переворачивает камни, всегда возвращаясь к круговому или орбитальному движению. Постоянно восстанавливая свою силу и жизненную силу, чтобы вдохнуть новую жизнь в нас и природу.

В современном мире мы проталкиваем воду по прямым трубам с жесткими изгибами после того, как прогоняем ее центробежным насосом; оставляя его безжизненным. Затем мы добавляем химические вещества, чтобы сделать воду безопасной для питья.

Затем мы решаем хранить нашу питьевую воду в прозрачных пластиковых бутылках, чтобы она еще больше разрушалась солнечным светом и теплом. Путешествие разрушено до того, как началось.

Природа знает лучше миллиардов лет эволюции.

Вихревое движение (или Имплозия) всегда будет обладать большой естественной силой.

Просто подержите руку над выпускным отверстием ванны на несколько секунд, чтобы напомнить себе... не требуется мощность или насос.

Движение вовнутрь - это имплозия. Поразительная мощность и бесшумность; пока вы не засунете палец в отверстие для пробки и не попытаетесь заглушить его ....


К счастью, есть люди, которые следовали философии Виктора Шаубергера «Постигать и копировать природу». Люди, которые читали, исследовали и следовали его мечте.

Мы выбрали некоторые продукты, основанные на теории Виктора.

Компания World Living Water Systems Ltd разработала линейку ревитализаторов Vortex Water Revitalizer .Вдохновленный Виктором Шаубергером и другими, которые продолжали его дальновидные исследования в области реструктуризации воды.

Центр исследования имплозии в Плимуте, Великобритания, разработал Vortex Water Energiser , тысячи проданных по всему миру.





Формы потока живой воды Австралии переносят нас на столетия назад, когда почитали питьевую воду, и мастера-мастера по отдельности создавали каждый из Amphora Magnum для воды um и Amphora Magnum для винного ассортимента.14 литров воды, сотканная из шелка, благодаря природному взаимодействию с кварцевой керамикой и сакральной геометрией. Мастер Фил Седжман.


Технология имплозии и проверенный природой дизайн снова вернут себе место с нашей поддержкой и верой! Go Виктор Шаубергер.

Мы в Южном полушарии вместе с Австралией и нашими соседями объединяемся в состоянии Сознания Единства, чтобы восстановить структуру наших Порталов, Планетарных Решеток, Вихревых Точек и Человечества с помощью Оживленной и реструктурированной воды.С чистым намерением. Присоединение к Аргентине, Чили, Перу, Южной Африке ... и всем, кто хочет присоединиться к нам.

Vortec | Вихревые трубки

Обзор продукта

Вихревые трубки производят до 6000 БТЕ / час (1757 Вт) холода при низких температурах до -40 градусов, что позволяет удовлетворить различные потребности промышленного точечного и технологического охлаждения. Отсутствие движущихся частей делает вихревую трубку очень надежной и недорогой; и не требует электрического подключения к месту охлаждения.Вихревые трубки мгновенно охлаждают, полагаясь на сжатый воздух, вращающийся в трубке, для разделения воздуха на потоки холодного и горячего воздуха.

Вихревые трубки представляют собой компактный источник холода и охлаждения с моделями длиной от 6 до 13 дюймов (150–330 мм) и мощностью охлаждения от 100 до 6000 БТЕ / час (29–1757 Вт). Рабочие характеристики вихревой трубы легко регулируются путем изменения давления воздуха на входе, соотношения холодного и выпускаемого воздуха или замены генератора в самой трубе. И хотя обычно вихревые трубы используются для охлаждения, они также могут использоваться для обогрева, просто направляя отработанный горячий воздух в систему.

Технология вихревых трубок была изобретена французским физиком Жоржем Ранком в 1930 году и впервые была разработана для промышленного использования компанией Vortec в 1960-х годах. Увидеть как это работает. С тех пор вихревые трубы нашли применение в широком спектре систем охлаждения на машинах, сборочных линиях, в технологических процессах, а также для испытаний и измерений.

Преимущества

  • Мгновенно остывает
  • Самая низкая стоимость единицы холода среди всех методов охлаждения
  • Полностью регулируемое охлаждение, легко перемещается с места на место при необходимости
  • Предназначен для охлаждения в самых ограниченных помещениях
  • Самые низкие требования к техническому обслуживанию среди любого холодильного оборудования
  • Экологически чистый, без хладагентов или химикатов
  • Простота установки, просто подключите сжатый воздух и вперед

Характеристики

  • Не требует обслуживания, без движущихся частей
  • Повторяемость цикла в пределах +/- 1 град.
  • Понижает температуру сжатого воздуха на входе до 100 ° F (55 ° C)
  • Электроэнергия на холодильной площадке не требуется
  • Охлаждает без хладагента до -40 градусов
  • Компактный и легкий, легко переносимый
  • Регулируется для различных потребностей в охлаждении
  • Доступная теплопроизводительность при использовании той же трубки, до 93 ° C (200 ° F)
  • Доступны модели из алюминия (208 и 308) и нержавеющей стали (208SS)
  • Сменные генераторы для модификации охлаждения или при загрязнении

Технические характеристики


Модель № 106-2-Н 106-4-H 106-8-H 208-11-H
Материал конструкции Латунь / нержавеющая сталь Латунь / нержавеющая сталь Латунь / нержавеющая сталь Алюминий
Вход, дюйм, NPT 1/8 1/8 1/8 1/4
Холодопроизводительность (БТЕ / ч) 100 200 400 640
Расход воздуха при 100 фунт / кв. Дюйм (фут. / Мин) 2 4 8 11
Вход, внутренний или мужской F F F F
Модель # 208-15-H 208-25-Н 208-11-HSS 208-15-HSS
Материал конструкции Алюминий Алюминий Нержавеющая сталь Нержавеющая сталь
Вход, дюйм, NPT 1/4 1/4 1/4 1/4
Холодопроизводительность (БТЕ / ч) 900 1500 640 900
Расход воздуха при 100 фунт / кв. Дюйм (фут. / Мин) 15 25 11 15
Вход, внутренний или мужской F F M M
Модель # 208-25-HSS 308-35-H 328-100-Н
Материал конструкции Нержавеющая сталь Алюминий Алюминий
Вход, дюйм, NPT 1/4 1/4 1/2
Холодопроизводительность (БТЕ / ч) 1500 2650 6000
Расход воздуха при 100 фунт / кв. Дюйм (фут. / Мин) 25 35 100
Вход, внутренний или мужской M F M

Литература

Инструкция по установке и эксплуатации

Размеры и характеристики

Ручной охладитель переменного тока переменной мощности и системы мощности

Обзор продукта

Охладители

Vortex A / C включают самые современные функции линейки высоконадежных и экономичных охладителей для корпусов Vortec.

  • Элегантный современный дизайн
  • Снижение шума на 78% по сравнению с другими охладителями серии Vortex
  • Снижение потребления энергии за счет встроенного механического термостата
  • Быстрая и простая установка примерно за 5 минут
  • Гибкая установка: установка сверху, сбоку или спереди (дверь)

Vortex A / C доступен с четырьмя различными холодопроизводительностью и номиналами NEMA 12, NEMA 4 / 4X.

Все охладители корпусов Vortec обеспечивают охлаждение, чистоту и защиту электрических и электронных шкафов и являются недорогой альтернативой дорогим кондиционерам, требующим больших затрат на обслуживание; и избегайте загрязнения грязным влажным воздухом вентиляторами.

Современные компактные многофункциональные электронные устройства управления, приводы с регулируемой скоростью, сервоприводы и программируемые логические контроллеры чрезвычайно чувствительны к нагреву и загрязнению. Меньшие размеры шкафа затрудняют контроль температуры и повышают вероятность преждевременных отказов. Избыточный нагрев приведет к неправильному считыванию цифровых дисплеев, смещению элементов управления и отключению выключателей при нагрузках ниже номинальных. В результате снижается производительность из-за останова оборудования или линии.

Охладители корпуса Vortex

поддерживают небольшое давление в шкафу, чтобы электрические и электронные компоненты оставались чистыми и сухими; и большинство из них контролируются термостатом для поддержания температуры корпуса в заданном температурном диапазоне.

Таблица спецификаций

Рейтинг

Термостат

Только система или охладитель?

Холодопроизводительность

БТЕ / ч

Расход воздуха

кубических футов в минуту

Уровень звука

Товар №

.

Характеристики

NEMA 12

Механический

Система

900

15

60 дБ

1500

25

66 дБ (A)

2500

35

72 дБ (A)

5000

70

75 дБ (A)

NEMA 12

Механический

Только охладитель

900

15

60 дБ (A)

1500

25

66 дБ (A)

2500

35

72 дБ (A)

5000

70

75 дБ (A)

NEMA 4

Механический

Система

900

15

60 дБ

1500

25

66 дБ (A)

2500

35

72 дБ (A)

5000

70

75 дБ (A)

NEMA 4

Механический

Только охладитель

900

15

60 дБ

1500

25

66 дБ (A)

2500

35

72 дБ (A)

5000

70

75 дБ (A)

NEMA 4X

Механический

Система

900

15

60 дБ

1500

25

66 дБ (A)

2500

35

72 дБ (A)

5000

70

75 дБ (A)

NEMA 4X

Механический

Только охладитель

900

15

60 дБ

1500

25

66 дБ (A)

2500

35

72 дБ (A)

5000

70

75 дБ (A)

Рейтинг

Термостат

Только система или охладитель?

Холодопроизводительность

Вт

Расход воздуха

Slpm

Уровень звука

Товар №

.

Характеристики

NEMA 12

Механический

Система

264

425

60 дБ (A)

440

708

66 дБ (A)

733

992

72 дБ (A)

1465

1983

75 дБ (A)

NEMA 12

Механический

Только охладитель

264

425

60 дБ

440

708

66 дБ (A)

733

992

72 дБ (A)

1465

1983

75 дБ (A)

NEMA 4

Механический

Система

264

425

60 дБ (A)

440

708

66 дБ (A)

733

992

72 дБ (A)

1465

1983

75 дБ (А)

NEMA 4

Механический

Только охладитель

264

425

60 дБ

440

708

66 дБ (A)

733

992

72 дБ (A)

1465

1983

75 дБ (A)

NEMA 4X

Механический

Система

264

425

60 дБ

440

708

66 дБ (A)

733

992

72 дБ (A)

1465

1983

75 дБ (A)

NEMA 4X

Механический

Только охладитель

264

425

60 дБ

440

708

66 дБ (A)

733

992

72 дБ (A)

1465

1983

75 дБ (A)

Преимущества

  • Термостатическое управление для поддержания температуры корпуса в идеальном диапазоне
  • Высокая надежность, с полной 10-летней гарантией
  • В шкаф не проникает грязный или влажный воздух из окружающей среды
  • Может использоваться во всех шкафах, даже в ограниченном пространстве
  • Простота установки, занимает около 5 минут
  • Для установки не требуется электропроводка
  • Работает в окружающей среде до 175 ° F 80 ° C
  • Низкая стоимость по сравнению с фреоновыми кондиционерами
  • Снижение эксплуатационных расходов с помощью механического термостата, включающего агрегат только при необходимости
  • Очень тихий, работа 62 дБА, на 78% тише, чем у обычных охладителей Vortex
  • Доступны несколько мощностей охлаждения для оптимизации производительности и эксплуатационных расходов

Характеристики

  • Компактность, подходит для всех шкафов и в ограниченном пространстве
  • Доступны модели с верхним, боковым или передним (дверным) креплением
  • Поддерживать температуру в диапазоне 75 - 90 градусов F27 - 32 градуса C
  • Поставляется с воздушным фильтром и комплектом воздуховодов
  • Поддерживает небольшое давление в корпусе
  • Зарегистрировано в UL
  • Гарантия 10 лет

Литература

Инструкция по установке и эксплуатации

Размеры и характеристики

ПРИНАДЛЕЖНОСТИ

Масляный фильтр 701S-54

Модели: 7535, 7570, 7635, 7670, 7735, 7770, 770-35H, 785, 7870, 787-35H, 7875, 7875SS, 787SS-35H, 795, 7970, 797-35H , 7975, 7975SS, 797SS-35H

Масляный фильтр 701S-48

Модели: 737, 747, 7515, 7525, 7615, 7625, 7715, 7725, 730, 737SS, 740, 747SS, 750, 760, 770, 770-15H, 780, 787, 787SS , 790, 797, 797SS

208R Регулятор давления Макс.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *