Ветровая мельница для электричества: Ветряные мельницы для электричества, ветряк и как он работает

Содержание

виды, как выбрать, обзор лучших вариантов

Ветряки давно перестали быть экзотической новинкой, сейчас их рассматривают как один из возможных вариантов экономии. Потоки воздуха над земной поверхностью несут в себе огромное количество энергии, которую в настоящее время успешно применяют в промышленных ветротурбинах и малых ветряных установках для частного использования.

Мы расскажем, как правильно выбрать и технически грамотно установить ветрогенератор для частного дома. В предложенной нами статье описаны правила сборки и эксплуатации мини электростанций. Заинтересованным покупателям даны рекомендации по выбору, приведен рейтинг популярных моделей.

Содержание статьи:

Конструкция и принцип работы ветротурбин

Ветровые генераторы представляют собой спецустройства, которые трансформируют кинетическую энергию ветра в электрическую. Это независимые источники электроэнергии, которые отлично подходят для установки в частных жилых домах, на небольших и средних фермерских хозяйствах, производственных базах.

Конструкция стандартной мини-электростанции для бытового использования включает такие функциональные элементы:

  1. Лопасти аэродинамической формы для улавливания ветра.
  2. Генератор для продуцирования переменного тока.
  3. Контроллер для автоматического управления ветряной станцией. Позволяет регулировать подзарядку аккумуляторов, распределяет потоки энергии между устройствами.
  4. Накопитель. Специальные аккумуляторные батареи для накопления сгенерированного электричества.
  5. Инвертор для приведения параметров вырабатываемой энергии к сетевым стандартам.
  6. Мачта, приподнимающая лопасти на определённую высоту над уровнем земли.

Мачты бывают разными: свободностоящие без растяжек, жёстко зафиксированные и поворотные на растяжках. Последние могут опускаться и подниматься для обслуживания, а также проведения ремонтно-восстановительных работ.

Под воздействием ветра лопасти, насаженные на генераторный вал, начинают вращаться, способствуя запуску ротора. В результате происходит преобразование кинетической энергии воздушных потоков в механическую, а потом и в электрическую энергию. Так выглядит сильно упрощённая схема работы ветряка

В действительности энергия от ветряной электростанции напрямую к потребителю не поступает. В системе обязательно должны быть подключены специальные приборы для преобразования электротока.

В цепи после генератора размещается контроллер. Он конвертирует переменный ток в постоянный. В таком виде электричество аккумулируется и сохраняется в батареях, а потом от них через инвертор, который трансформирует постоянный ток в переменный, энергия подаётся в частную электросеть.

Такая схема даёт возможность сгладить нестабильность напряжения, а также накапливать энергию в периоды полного отсутствия потребления. А это, в свою очередь, позволяет задействовать ветряные генераторы меньшей мощности, чем суммарная мощность бытовых электроприборов.

В ходе конвертации электротока по схеме переменный-постоянный-переменный происходят определённые потери энергии, которые составляют примерно 20%

Вместе с автономной ветряной станцией можно устанавливать и солнечные модули, и топливные генераторы.

Если задействовано сразу несколько устройств для получения электричества, схему дополняют ещё одним элементом – автоматическим выключателем (ABP). Он необходим, чтобы при отключении одного источника альтернативной энергии запускался другой – резервный.

В составе современных ветряных станций используются различные конструкции роторов – вращающихся частей. Они имеют свои преимущества и недостатки, разную эффективность и функциональные возможности. В настоящее время существует много разработок автономных систем, способных взаимодействовать с ветрами разной скорости и силы.

Виды ветряных электростанций

По типу потребителей различают автономные ветрогенераторы и установки сетевого назначения. Первые осуществляют энергоснабжение удалённых от центральных электрических сетей потребителей.

Вторые – могут насчитывать несколько десятков/сотен ветряков, которые образуют единую систему и отдают энергию в общую сеть. Мощность автономных агрегатов редко превышает 75 кВт, в то время как мощность сетевых установок стартует с отметки 100 кВт.

В зависимости от типа конструкции различают ветряные генераторы:

  • с вертикальной осью вращения;
  • с горизонтальной осью вращения.

Эти устройства используются для разных условий эксплуатации, но чаще всего встречаются модели с горизонтальной осью. Они работают как обычные флюгеры и имеют схожее строение. Ось ротора вращается параллельно земной поверхности.

Такие агрегаты отличаются высокими показателями КПД (около 40%), простой регулировкой мощности и более доступной ценой, но также характеризуются высоким уровнем создаваемого шума и вибраций. Помимо этого, их необходимо ориентировать на направление ветра.

Для монтажа ветряка с горизонтальным расположением ротора нужно примерно 120 м свободного пространства и мачта высотой не меньше 8 м

Ветряные генераторы с вертикальной осью вращения имеют более компактную конструкцию, они менее восприимчивы к воздействию факторов окружающей среды.

В устройствах этого типа турбина расположена перпендикулярно по отношению к плоскости Земли. Подобные конструкции запускаются даже от слабого ветра и не зависят от направления движения воздушных потоков.

Низкий уровень создаваемого шума (до 30 дБ) даёт возможность устанавливать вертикальные ветротурбины на крышах зданий

Однако есть и существенный минус – КПД таких генераторов составляет всего 15%. Кроме того, они стоят дороже, чем модели с горизонтальной осью вращения.

Модели ветрогенераторов различаются между собой не только расположением вращательной оси, но и:

  • количеством лопастей – бывают ветряки с двумя и тремя лопастями, встречаются и многолопастные модификации;
  • материалами изготовления функциональных деталей – с парусными и жёсткими лопастями;
  • шагом винта – регулируемый или фиксированный.

Вращение многолопастных стационарных ветряков начинается даже при слабом ветре, а вот для работы двух- и трёхлопастных устройств нужен более сильный ветер. В то же время каждая дополнительная лопасть в конструкции создаёт большее сопротивление колеса, в результате чего становится сложнее достигнуть стандартных рабочих оборотов генератора.

В зависимости от материала изготовления , могут возникнуть определённые сложности в работе. Парусные элементы проще в изготовлении, поэтому и стоят дешевле.

Но если необходимо обеспечить надёжное функционирование ветротурбины для автономного электроснабжения, стоит отдавать предпочтение конструкциям с жёсткими лопастями, изготовленными из металла или армированного стеклопластика.

Что касается шага винта, то здесь также не всё так просто. Изменяемый шаг позволяет заметно расширить диапазон эффективных скоростей для работы ветряной станции и это большой плюс. Но в то же время такой механизм снижает общую надёжность стационарной установки и значительно утяжеляет ветроколесо, усложняя эксплуатацию агрегата.

Целесообразность установки ветрогенератора

Малые ветряные электростанции сегодня широко применяются в качестве альтернативных источников электроэнергии, которые позволяют добиться реальной экономии.

Подобные устройства, как правило, устанавливают на дачных участках, в зонах, удалённых от основных электросетей. Но это не единственная причина, почему люди всё чаще отдают предпочтение конструкциям такого типа.

Владельцы земельных участков успешно используют ветряные генераторы, чтобы добиться полной автономности и существенной экономии электроэнергии

Однако не каждая зона подходит для установки ветротурбины. Чтобы мини-электростанция полноценно функционировала в течение заявленного производителем срока эксплуатации, климатические условия местности должны соответствовать требованиям спецоборудования.

Средняя скорость ветра не должна быть меньше отметки 4,5-5 м/с. Лишь в этом случае монтаж конструкции с ветряком будет экономически оправдан.

Чтобы узнать приблизительные данные о среднегодовой скорости ветра по регионам, необходимо просмотреть специальную карту ветров. Более точную информацию можно получить, используя анемометр и устройство для считывания сигналов.

Измерительную систему нужно установить на большой высоте, чтобы близко расположенные постройки и деревья не искажали результатов.

Если вы решили установить ветряную мини-электростанцию для дома, также следует подумать о наличии свободного пространства. При этом нужно учесть, что ветер должен абсолютно свободно «гулять» по лопастям, ну и без препятствий на своём пути достигать их с разных сторон.

Именно поэтому идеальным местом для установки ветротурбины считаются вершины холмов, где воздушные массы уплотняются с соответствующим увеличением давления и скорости ветра. Также подходящими считаются морские регионы и степная зона.

Чтобы получить полную отдачу от ветряка, его нужно установить в месте, где нет деревьев и высоких зданий

Любые препятствия в радиусе 250 м будут оказывать влияние на . Для получения максимальных показателей КПД необходимо установить ось турбины выше уровня препятствий как минимум на 4-5 м.

Правила выбора оборудования

К подбору ветряного генератора для дома следует подойти ответственно.

Заранее нужно собрать базовую информацию:

  1. Рассчитать номинальное и максимальное количество электроэнергии для обеспечения потребностей дома.
  2. Просмотреть данные о среднегодовой скорости ветра в зоне проживания, чтобы определить периоды, когда ветряк будет бездействовать.
  3. Учесть климатические особенности местности. Если в зимнее время года отмечаются сильные морозы, установка ветряной станции себя не оправдает.
  4. Выяснить интенсивность создаваемого шума при работе ветрогенераторов.
  5. Провести сравнение технических характеристик устройств от разных производителей.

Подбор комплектующих функциональных элементов для ветроэнергетической установки производят по номинальному значению мощности. При этом играет роль и номинальная скорость ветра – значения, при которых ветрогенератор вырабатывает расчётное количество электрической энергии.

Если максимальную мощность установка выдаёт при скорости ветра 11 м/с, а в вашей местности средний показатель достигает отметки 4,5 м/с, ветряк не будет вырабатывать заявленное производителем количество энергии

Акцентировать внимание нужно и на том, что мощность ветряного генератора зависит от диаметра колеса, сформированного лопастями. При увеличении размеров в 2 раза ветряк при той же скорости ветра будет производить в 4 раза больше электричества.

Также важна ёмкость аккумуляторных батарей. На случай безветрия в них должно быть достаточно энергии, чтобы обеспечить дом.

Монтаж частной ветряной мини-электростанции лучше доверить компании, которая специализируется на выполнении такого рода работ. Главная цель – обеспечить максимальную безопасность. Габаритная конструкция ветряка должна гарантировано сохранять устойчивость даже в случае экстремальных погодных условий

Маломощные модели ветрогенераторов с лёгкими невысокими мачтами можно установить самостоятельно. Центральную опору обязательно монтируют на укреплённом железобетонном фундаменте. Для боковой устойчивости конструкции используют 3-4 растяжки.

Примерные цены и окупаемость ветрогенераторов

Популярность ветряных агрегатов растёт с каждым днём. Ими выгодно оборудовать большие и дорогие коттеджи, на содержание которых требуется много электрической энергии.

Целесообразно устанавливать ветряки и в населённых пунктах, где отсутствует централизованное электроснабжение или подача электроэнергии производится с постоянными перебоями.

Именно в таких случаях на помощь придут ветрогенераторы, использование которых имеет ряд преимуществ:

  • трансформация энергии воздушных потоков в бесплатное электричество;
  • экологическая безопасность ветротурбин;
  • отсутствие сырья и отходов при производстве электроэнергии;
  • минимальный износ функциональных деталей;
  • длительный срок эксплуатации – 25-30 лет;
  • нет необходимости постоянно контролировать работу ветростанции.

К недостаткам относят переменчивость и непредсказуемость силы ветра. Чтобы минимизировать потери, нужно дублирование источника или же монтаж дополнительного буфера для накопления энергии. Также вращающееся ветроколесо представляет потенциальную угрозу для летящих птиц.

Ветряные электростанции создают шум, сравнимый с шумом автотранспорта при движении со скоростью около 70 км/час. Повышенный уровень шума не только отпугивает животных, но и доставляет дискомфорт людям

Ещё один существенный минус ветроустановок для бытового использования – высокая стоимость. Эти громоздкие конструкции изготовляются из дорогостоящих материалов, в комплекте имеют контроллер, аккумуляторы, инверторную установку и мачту.

Следует отметить, что бытовые ветрогенераторы от российских производителей, а также качественные ветряные установки, выпускаемые в Китае, стоят намного дешевле, чем европейские аналоги. Стоимость отечественных ветряков с вертикальной осью номинальной мощностью до 2 кВт варьируется в диапазоне 1300-2500$.

Но при такой цене комплектация включает лишь генератор с лопастями. Остальное оборудование придётся приобрести отдельно или . Полнокомплектные установки стоят дороже примерно на 40-50%.

Цена ветряных станций для домашнего использования мощностью от 3 кВт до 7 кВт намного выше. Такие генераторы с сопутствующим оборудованием обойдутся покупателю в 5000-12000$.

В настоящее время применение ветряных установок в качестве альтернативы централизованному электроснабжению нерентабельно из-за высокой стоимости оборудования

И даже когда присутствуют перебои в подаче сетевого электричества, ветрогенератор устанавливать целесообразно не всегда. Проще и дешевле обойдётся смонтировать систему бесперебойного питания на базе промышленных аккумуляторов в сочетании с ИБП.

Есть смысл монтировать ветроэнергетическую установку в местах, где доступ к централизованной энергоподаче полностью отсутствует. Период окупаемости в этом случае составляет 25 лет.

Перед приобретением компонентов для сборки и установки ветряного генератора энергии желательно провести , приведенным в рекомендуемой нами статье. Здесь же вы найдете порядок и правила выполнения вычислений.

Обзор лучших брендов и установок

На российском рынке ветряных генераторов представлены как надёжные относительно недорогие устройства отечественных брендов, так и различные по функциональности модели ветряков от зарубежных производителей. Чтобы определиться с выбором установки для дома, нужно сравнить характеристики разных агрегатов.

№1 — ветрогенераторы Condor Home (Россия)

Серия ветряков для домашнего использования включает устройства мощностью 0,5-5 кВт. Они могут служить основным источником электричества или дополнительным. Станции Condor Home адаптированы для эксплуатации в условиях низких температур, способны продуцировать энергию даже при слабом ветре.

В зависимости от модели, корпус генератора изготовлен из пластика или литого алюминия, лопасти – из стеклопластика. Присутствует эффективная двойная система торможения. Мачта составная, на растяжках, имеет высоту 8-12 м. Для установки этих агрегатов нужен свайный или бетонный фундамент.

Домашние ветряные генераторы Condor Home – полностью готовые продукты, для работы с которыми не нужны специальные знания или технические навыки. Устройства предназначены для электрификации как отдельно стоящих построек, так и маленьких населённых пунктов в составе ветряных электростанций

Базовая комплектация включает мачту и растяжки, генератор, ротор и лопасти, контроллер заряда, крепёжные элементы.

№2 — мини-электростанции Falcon Euro (Россия)

Представляют собой высокотехнологичные вертикально-осевые ветряные генераторы мощностью 1-15 кВт. Применяются для основного/резервного питания потребителей, удалённых от линий электропередач. Могут быть использованы в составе комплекса с солнечными панелями и топливным генератором.

Ветряки оснащены мощными неодимовыми магнитами. Стартовая скорость ветра для запуска установки составляет 1,5 м/с, номинальная скорость – 11 м/с. Установленный аэродинамический тормоз способствует ограничению оборотов колеса. Заявленный срок эксплуатации от производителя – 20 лет, заводская гарантия на мини-электростанции – 36 месяцев.

Ветрогенераторы Falcon Euro отличаются надёжностью в эксплуатации и неприхотливостью в обслуживании. С помощью устройств этой серии легко решить проблемы электроснабжения локальных, а также островных объектов

В базовый комплект установки Falcon Euro включены несколько функциональных элементов: ветроколесо, генератор и контроллер, мачта, закладные детали. Инверторная установка и аккумуляторные батареи подбираются отдельно.

№3 — ветряные агрегаты Sokol Air Vertical (Россия)

Малые ветроэнергетические установки данного бренда могут обеспечить электричеством и небольшие коттеджи, и средние предприятия. Для бытового использования выпускаются устройства SAV мощностью 0,5-15 кВт.

Они характеризуются высокой эффективностью при слабых ветрах, бесперебойно функционируют при низких и высоких температурах в диапазоне от -50 °C до +50 °C, отличаются низким уровнем создаваемого шума и стойкостью к внешним воздействиям.

Генерация электроэнергии агрегатами Sokol Air Vertical не зависит от направления ветра. Вертикально-осевые установки работают в автоматическом режиме без обслуживающего персонала. В конструкции предусмотрена электромагнитная и аэродинамическая система торможения для ограничения оборотов ветроколеса.

Лопасти изготовлены из армированного полиэфира или авиационного алюминия (в зависимости от модели), имеют самораскручивающийся профиль. Генератор – многополюсный трёхфазный с возбуждением от постоянных магнитов.

Ветряки Sokol Air Vertical выдают номинальную мощность при показателях 7-8 м/c, что позволяет использовать их в регионах с низкой среднегодовой скоростью ветра

В базовую комплектацию ветряной электростанции входят: ветроустановка с контроллером заряда аккумуляторов, мачта с растяжками, монтажный набор. Инвертор и аккумуляторы подбираются по техническому заданию отдельно.

№4 — ветрогенераторы Energy Wind (Россия)

Покупателям доступны одно- и трёхлопастные модели продуктов универсального применения мощностью 1-10 кВт. Эти ветряки прекрасно подходят для создания проектов обеспечения электричеством частных жилых домов и коттеджей.

Основу установок Energy Wind составляют прочные лопасти из армированного стекловолокна, окрашенные автоэмалью, и надёжная система вывода из воздушного потока. Эти агрегаты с горизонтальной осью вращения стабильно работают при температурах от -40 до +40 градусов по шкале Цельсия.

Минимальная рабочая скорость ветра – 2 м/с, при некоторых положениях лопасти – 3 м/с, рекомендуемая высота мачты – 8-20 м. Средний срок эксплуатации установок российского бренда составляет 25 лет, официальная гарантия от производителя – 3 года.

Ветрогенераторы Energy Wind не требуют постоянного ухода или техобслуживания, что способствует быстрому реинвестированию вложенных финансовых средств

Базовая комплектация установок включает электрогенератор на постоянных магнитах с узлом крепления к мачте и поворотным механизмом, лопасти, комплект крепёжных элементов для сборки ветроустановки. Мачту, а также контроллер, инвертор и батареи для накопления электроэнергии нужно приобрести отдельно.

№5 — ветряки Altek EW (Китай)

Вид ветротурбин – с горизонтальной осью вращения. Устройства номинальной мощностью от 1 кВт до 10 кВт отлично подходят для решения задач электрообеспечения загородных жилых домов и дач.

Защитный кожух ветряков Altek EW изготовлен из алюминиевого сплава, что существенно облегчает конструкцию. Функциональные металлические части генератора покрыты кремнием для термостойкости.

Лопасти изготовлены из фиброармированного пластика. Стартовая скорость ветра для запуска бытовых агрегатов китайского бренда составляет 2,5 м/с, номинальная скорость – 12 м/с.

Ветрогенераторы Altek EW – одни из самых доступных устройств для выработки электричества, которые представлены на современном рынке альтернативной энергетики

В состав базовой комплектации включены лопасти, генератор и контроллер. Остальные функциональные элементы для ветряка необходимо докупить.

Если стоимость комплекта заводского производства покажется вам излишне высокой, есть смысл соорудить . В рекомендуемой нами статье описано изготовление полезного в хозяйстве агрегата из стиральной машинки.

Выводы и полезное видео по теме

Перспективы использования ветроэнергетических установок:

Принцип функционирования современных ветровых турбин. Как энергия ветра преобразуется в электричество:

Даже сегодня использование ветрогенераторов требует постоянного развития. Возможности и долгосрочные перспективы этого альтернативного способа выработки электроэнергии многообещающие. Однако нужны определённые меры как со стороны производителей оборудования, так и от администраций населённых пунктов.

Установка малых ветряных генераторов для частных домохозяйств проблему энергоснабжения в регионах полностью не решит. Но для отдельных владельцев участков данный вариант может стать выходом из положения.

Расскажите о собственном опыте в выборе или установке ветряка на загородном участке. Пишите, пожалуйста, комментарии, размещайте фото и задавайте вопросы в расположенном ниже блоке. Делитесь технологическими тонкостями и полезными сведениями, которые пригодятся посетителям сайта.

Принцип действия и устройство ветрогенератора (общие понятия)

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

Энергия ветра. - Мастерок.жж.рф — LiveJournal

Давайте посмотрим на нетрадиционые варианты выработки энергии, а именно ветровые электростанции. Пока еще вопрос спорный в возможности существования этого вида энергодобычи без серьезных дотаций, возможность широкого и повсеместного применения этих устройств (а не только для специфических случаев). Однако не оспорим вопрос экологичности. Ну и это еще к тому же красиво 🙂

Давайте посмотрим . ..

В Европе и США огромные ветряки — привычный элемент загородного пейзажа. Эти красивые гиганты устанавливаются не только на земле, но и на водных просторах.


Идея использовать силу ветра для получения электрической энергии не нова. Она родилась ещё в конце 19 века, а именно зимой 1887-88 годов, когда один из основателей американской электрической индустрии, Чарльз Ф. Браш построил прототип автоматически управляемой ветровой турбины для производства электроэнергии. На тот момент она была гигантской — диаметр ротора равнялся 17 метрам, и состоял из 144 лопастей, изготовленных... из кедра.

В Европе первая ветряная электрическая станция была пущена в 1900 году, а к началу ІІ-ой мировой войны на планете работало несколько миллионов ветряков.



Современный ветряк — это стальная башня высотой от 70 до 125 м, на вершине которой установлены генератор и ротор с лопастями из композиционных материалов. Сегодня используют 56-метровые лопасти.

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры. Климатические условия позволяют развивать ветроэнергетику на огромной территории.

На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может "работать” зимой и летом, днем и ночью, на севере и на юге. Но ветер - это очень рассеянный энергоресурс.

Ветровая энергия практически всегда "размазана” по огромным территориям. Основные параметры ветра - скорость и направление - меняются подчас очень быстро и непредсказуемо, что делает его менее "надежным”, чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность "ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом.

К решению первой проблемы привлекли специалистов самолета строения умеющих выбрать наиболее целесообразный профиль лопасти, для получения максимальной энергии ветра. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

Это многолопастные «ромашки» и винты вроде самолетных пропеллеров с тремя, двумя и даже одной лопастью. Вертикальные конструкции хороши тем, что улавливают ветер любого направления; остальным приходится разворачиваться по ветру. Такой вертикальный ротор напоминает разрезанную вдоль и насаженную на ось бочку. Встречаются и оригинальные решения. Например, тележка с парусом ездит по кольцу из рельс, а ее колеса приводят в действие электрогенератор.


Кликабельно 1700 рх

Среди десятков тысяч ветряков есть огромные, а есть и маленькие, на один домик. А это как раз гигантские ветряки. Один из самых больших ветряков на сегодня построен в сентябре 2002 под Магдебургом в Германии. Его мощность — 4.5 мегаватт, каждая из трех лопастей достигает 52 метров в длину и 6 в ширину, и весит по 20 тонн. Крепится ротор на 120-метровой башне.

Последнее достижение ветроэнергетики — ветряки, диаметр ротора которых превышает размах крыла самолетов-гигантов, даже нашего «Руслана». Такая установка имеет мощность 1–2 мегаватта и способна обеспечивать электроэнергией 800 современных жилых домов.

Наиболее распространенным типом ветровых энергоустановок (ВЭУ) является турбина с горизонтальным валом и числом лопастей от 1 до 3. По оценкам различных авторов, ветроэнергетический потенциал Земли равен 1200 ТВт, однако использования этого вида энергии в различных районах Земли неодинаковы. В России валовой потенциал ветровой энергии - 80 трлн. кВт/ч в год, а на Северном Кавказе - 200 млрд. кВт/ч (62 млн. т усл. топлива). Эти величины существенно больше соответствующих величин технического потенциала органического топлива. Среднегодовая скорость ветра на высоте 20–30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования.

Ветровые электростанции выгодны, как правило, в регионах, где среднегодовая скорость ветра составляет 6 метров в секунду и выше и которые бедны другими источниками энергии, а также в зонах, куда доставка топлива очень дорога.


Норвегия объявила о планах построить самый большой в мире ветряк в 2011 году. Работы уже ведутся. Высота ветряной турбины будет составлять 533 фута, а диаметр ротора — 475 футов. Как ожидается, турбина будет обеспечивать электроэнергией 2 000 домов. Рекордный опытный образец стоит $67,5 миллионов.

Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2. следует также учитывать те изменения, которые вносятся ветровыми установками в ландшафт местности, их размещение должно соответствовать не только стандартам безопасности и эффективности, но и правильного размещения на местности (мельницы ВЭУ, расположенные хаотично менее эффективны, чем те, которые расположены в определенной геометрической последовательности).

Малые ВЭУ обычно предназначаются для автономной работы. Системы, которым они выдают энергию, привередливы, требуют подачи энергии более высокого качества и не допускают перерывов в питании, например, в периоды безветрия. Поэтому им необходим дублер, то есть резервные источники энергии, например, дизельные двигатели той же, как у ветроустановок, или меньшей мощности.

Что касается более мощных ветроустановок (свыше 100кВт), то они применяются как электростанции и включаются обычно в энергосистемы. Обычно на одной площадке устанавливаются достаточно большое количество ВЭУ, образующих так называемую ветровую ферму. На одном краю (фермы) может дуть ветер, на другом в это время тихо. Ветряки нельзя ставить слишком тесно, чтобы они не загораживали друг друга. Поэтому (ферма) занимает много место.


Ветроэнергетика сильно зависит от капризов природы. Скорость ветра бывает настолько низкой, что ветра агрегат совсем не может работать, или настолько высокой, что ветра агрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора. Для эффективной работы ВЭУ их размещают на открытых пространствах, реже на территориях сельскохозяйственных угодий, что повышает их продуктивность. В горных районах ветра установки работают эффективно из-за природных особенностей данных местностей, там преобладает движение воздушных масс с большой силой и скоростью, к тому же это дает энергию в труднодоступные районы.

Правильная установка влияет на КПД ветра агрегатов поэтому удельная выработка электрической энергии в течение года составляет 15 – 30% энергии ветра или даже меньше в зависимости от место положения и параметров установки.

В настоящее время рекорд по размеру и мощности (141 метр и 7 мегаватт) принадлежит ветрогенератору Enercon E-126, расположенному около немецкого городка Эмден.

Установка ветряка Enercon E-126:


Ветряные двигатели не загрязняют окружающую среду, отсутствие влияния на тепловой баланс атмосферы Земли, отсутствие потребления кислорода, выбросов углекислого газа и других загрязнителей. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.

В проектировании установки самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто rкакую-то электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 50 - 60 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет попорота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.

Одна из возникших проблем ветра агрегатов это избыток энергии в ветреную погоду и не достаток ее период без ветрея. Способов хранения ветреной энергии очень много рассмотрим наиболее простые один из способов: состоит в том, что ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы, и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветра агрегата разлагает воду на кислород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Ветряки ставят не только на суше, но и на водных просторах:

Самый высокий ветряк в мире находится в провинции Сан-Хуан на высоте 4 110 метров над уровням моря. Его установила самая крупная золотодобывающая компания в мире — Баррик. Ветряк занесен в книгу рекордов Гиннеса.

Ветроустановка — дорогая техника, но расходы на ее приобретение окупятся в течение первых 7 лет эксплуатации. Расчетный срок службы — 25 лет.

Европейский лидер по использованию энергии ветра — Дания. В этой стране их обычно размещают на скалистых рифах и мелководье, на расстоянии до 2 км от берега.


Кликабельно

Самым ветреным местом в Европе считают шотландские Внешние Гибриды. Северная часть этих островов продувается постоянно. Ветер там практически никогда не утихает.

В конце прошлого года компания Deepwater Wind объявила о планах создания крупнейшей в мире глубоководной ветровой электростанции.

Предполагается, что она будет возведена на протяжении от 29 до 43 км от побережья штата Род-Айленд и Массачусетс и будет производить до 1 000 мегаватт, что сопоставимо с ядерным энергоблоком. Ветряки будут установлены в океане с глубиной дна 52 м — это значительно глубже, чем любая другая современная ветроэлектростанция.

Cамый большой ветрогенератор в мире

После того, как вы посмотрели КАК ГОРЯТ ВЕТРЯКИ давайте выясним, какой же ветряк самый большой в мире.


Энеркон Е-126 (Enercon E-126) на сегодняшний день является самым большим ветрогенератором в мире. Он удерживает абсолютное лидерство по количеству производимой энергии и один из самых больших по габаритным размерам. Можно сказать, что это детище немецкого концерна Энеркон (специализирующегося на производстве ветрогенераторов), стало воплощением мечты человека делать энергию, а соответственно и деньги, прямо из воздуха.

Процесс возведения двухсотметровой башни ветрогенератора в Германии сняли на видео.

Фото 2.

Одна такая машина может снабжать электроэнергией небольшой город.

Фото 4.

Высота башни — 135 метров, диаметр ротора — 126 метров, общая высота — почти 200 метров. При хорошем ветре он вырабатывает до 7,58 мегаватт электроэнергии. Чтобы башня с ротором крепко стояла на земле, основание довели до массы в 2500 тонн (сама башня весит 2800 тонн, турбина — 128 тонн, генератор — 220 т, а ротор с лопастями — 364 тонны.), а все сооружение весит шесть тысяч тонн. Первый ветрогенератор Enercon E-126 установили в 2007 году в Германии. Стоит одно такое сооружение 14 миллионов долларов (без установки).

Фото 3.

Мощность ветряка составляла 6 Мвт, что на тот момент являлось максимумом, но уже в 2009 году была произведена частичная реконструкция, в результате которой мощность возросла до 7, 58 Мвт, что вывело турбину в мировые лидеры.

Это достижение было весьма значимым и поставило ветровую энергетику в ряд полноценных лидеров в мире. Отношение к ней изменилось, из разряда довольно робких попыток получить серьезные результаты отрасль перешла в категорию крупных производителей энергии, заставляя подсчитывать экономический эффект и перспективы ветроэнергетики в ближайшее время.

Пальму первенства перехватила MHI Vestas Offshore Wind, чьи турбины имеют заявленную мощность 9 Мвт. Установка первой такой турбины была закончена в конце 2016 года с рабочей мощностью 8 Мвт, но уже в 2017 году был зафиксирован 24-часовой режим работы на мощности в 9 Мвт, полученной на турбине Vestas V-164.

Фото 6.

Такие ветряки имеют поистине колоссальные размеры и устанавливаются, чаще всего, на шельфе западного побережья Европы и в Великобритании, хотя отдельные экземпляры имеются и на Балтике. Объединенные в систему, такие ветрогенераторы создают суммарную мощность в 400-500 Мвт, составляя значительную конкуренцию гидроэлектростанциям.

Установка подобных турбин производится в местах с преобладанием достаточно сильных и ровных ветров, и таким условиям в максимальной степени соответствует морское побережье. Отсутствие естественных преград для ветра, постоянный и стабильный поток позволяют организовать наиболее благоприятный режим функционирования генераторов, повышая их эффективность до наиболее высоких значений.

Фото 7.

Фото 8.

Фото 9.

Фото 10.

Фото 11.

Фото 12.

Фото 13.

Фото 14.

Фото 15.

Фото 16.

Фото 17.

Фото 18.

Фото 19.

Фото 20.

Фото 21.

Фото 22.

Фото 23.

Фото 24.

Фото 25.

А вот так бы такой ветрогенератор выглядел в каком нибудь городе России.

Фото 26.

Малые ветрогенераторы / Статьи и обзоры / Элек.ру

Выработка электрической энергии с использованием возобновляемых источников — актуальная тенденция в развитии энергетики. Хорошо известны гигантские поля ветряков, где вырабатывается электроэнергия для крупных городов. Тем не менее, в последнее время все большую популярность завоевывают ветряки, с помощью которых вырабатывается электроэнергия для индивидуальных потребителей, будь то отдельный дом, ферма или даже уличный светильник. Особенно актуальны такие ветрогенераторы для России, на большей части территории использование солнечных батарей для выработки электроэнергии весьма затруднительно из-за короткого светового дня.

Применение энергии ветра исторически было одним из первых попыток человечества обуздать силы природы в своих интересах. Вспомним хотя бы знаменитые ветряные мельницы, известные с древности. Мало того, Голландия во многом обязана самим своим существованием тем, что ее жители научились использовать энергию ветра для откачки воды из низин. Собственно, подавляющее большинство знаменитых голландских «ветряных мельниц», которые являются одним из символов страны, на самом деле не мелят муку, а представляют собой гигантские насосы.

Ветряки с горизонтальной осью

Ветряная мельница, а также получившие большое распространение ветрогенераторы с тремя лопастями, относятся к классу ветряков с горизонтальной осью. В этих ветряках ветровое колесо (устройство, предназначенное для преобразования кинетической энергии поступательного движения ветра в механическую энергию вращения) имеет ось, располагающуюся в горизонтальной плоскости. Преимуществом таких ветряков является возможность их запуска без какого-либо дополнительного воздействия, только от дуновения ветра. Недостатком является необходимость ориентировать ветряк по направлению воздушного потока. Эта проблема в индивидуальных генераторах решается за счет свободного вращения основания ветряка в горизонтальной плоскостью и добавления «хвоста» к устройству. В результате ветряк сам ориентируется в нужном направлении.


Пример ветряка с горизонтальной осью

Ветряки с горизонтальной осью весьма громоздки, к тому же, вращающиеся лопасти способны создать помехи средствам связи и приему аналогового телевидения. Внешний вид подобных ветряков, что называется, «на любителя». Мало того, известны случаи фобий у людей по отношению к таким ветрякам. Тем не менее, именно ветряки с горизонтальной осью получили наибольшее распространение в силу высокой эффективности и простоты конструкции. К тому же, малые ветрогенераторы с горизонтальной стоят недорого. Стоимость ветрогенератора такого типа приблизительно равна численному значению мощности, выраженной в кВт, умноженной на 1200 долл. США. Это в 3-5 раз дешевле, чем стоимость солнечных батарей в пересчете на единицу мощности.

Мощность идеального ветрогенератора с горизонтальной осью в установившемся режиме вычисляется по формуле:

P=0,5QSоV3СpNgNb [1] , где
Q — плотность воздуха, равная 1,23 кг/м3,
Sо — площадь, ометаемая лопастями ветряка,
V — скорость ветра, м/с
Сp — коэффициент использования энергии ветра (зависит от конструкции ветряка, у идеального ветряка он равен 0,593, в реальности не превышает 0,45),
Ng — КПД электрогенератора,
Nb — КПД мультипликатора — механизма, передающего вращение от ветрового колеса с лопастями к электрогенератору с определенным коэффициентом.

Важным моментом является то, что в установившемся режиме мощность ветряка не зависит ни от ширины лопастей, ни от их количества. Тем не менее, от ширины лопастей и их количества зависит пуск ветряка. Чем эти показатели больше, тем меньшее дуновение ветра необходимо, чтобы ветряк начал вертеться. В реальности, количество и ширина лопастей определяются компромиссом между необходимостью уменьшить нагрузку на ось ветряка и необходимостью обеспечить запуск ветрогенератора от небольших порывов ветра.

Площадь ометания пропорциональна квадрату от размаха лопастей, иначе именуемого диаметром ветрового колеса. Поэтому зависимость мощности от диаметра ветрового колеса также носит квадратичный характер. В индивидуальных ветрогенераторах с горизонтальной осью размах лопастей обычно лежит в пределах от 1,2 до 7 м, что ограничивает генерируемую мощность. Максимальное значение мощности современных малых ветрогенераторов составляет 15 кВт.
Следует отметить, что формула [1] дает мощность, вырабатываемую ветрогенератором в заданный момент времени. Для вычисления средней мощности, вырабатываемой ветрогенератором, требуется знать статистику распределения скоростей ветра по времени суток для тех или иных времен года.

Ветряки с вертикальной осью

В таких генераторах ветровое колесо имеет ось, расположенную в вертикальной плоскости. Главным преимуществом ветряков с вертикальной осью является то, что они не требуют ориентации по направлению воздушного потока. Кроме этого, они, как правило, выглядят куда красивее, чем ветряки с горизонтальной осью, что крайне важно для индивидуальных ветрогенераторов, которые могут располагаться в самых разных местах. В каком-то смысле, ветряки с вертикальной осью являются украшением пейзажа.


Современная конструкция ветрового колеса с вертикальной осью, способная стартовать от ветра

Поскольку существует множество разнообразных конструкций вертикальных ветрогенераторов, их мощность рассчитывается по более сложным формулам, чем [1] эти формулы зависят от конкретной конструкции. Тем не менее, зависимость, по которой мощность пропорциональна кубу от скорости ветра, здесь также присутствует.

До недавнего времени ветряки с вертикальной осью требовали дополнительного воздействия для пуска. При этом электрогенератор переводился в режим электродвигателя и запускал ветряк от энергии,. накопленной ранее в аккумуляторе. Сейчас созданы конструкции ветряков, которые самостоятельно запускаются от ветра.

Другой проблемой является значительно меньший КПД ветряка с вертикальной осью по сравнению с обычным «пропеллером». Применительно к индивидуальным ветрогенераторам этот недостаток компенсируется тем, что ветроколесо практичски не ограничивается в размерах по эстетическим соображениям. Например, при размещении на крыше здания его можно сделать в виде высокого цилиндра и оно не будет портить вид строения.

В ряде европейских стран ветрогенераторы с вертикальной осью устанавливают на крышах жилых и административных зданий и включают их параллельно электрическим сетям. Ветрогенераторы позволят уменьшить счета за электричество.

Мультипликатор

Самое быстрое ветроколесо способно дать скорость вращения не более 400 об/мин. В то же время, наибольший КПД электрического генератора, как правило, достигается при частоте вращения около 1000 об/мин. Поэтому на ветроэлектростанциях, обслуживающих нескольких потребителей, используют так называемые мультипликаторы — механизмы, передающие вращение от ветроколеса к электрическому генератору с повышающим коэффициентом.В индивидуальных ветрогенераторах мультипликаторы зачастую не используются. При этом мирятся со снижением КПД электрического генератора во имя удешевления конструкции.

Накопление энергии

Мощность, которую дает ветрогенератор, крайне нестабильна, так как скорость ветра постоянно меняется. Поэтому обязательно использование аккумулятора, в котором накапливается и постепенно отдается в нагрузку.

Для накопления энергии обычно используются гелевые аккумуляторы (от слова «гель» — по принципу действия они аналогичны кислотным, но электролит находится в виде желе) напряжением 12 В. Иногда аккумуляторы соединяют последовательно в батареи напряжением до 120 В. Ветряк подключается к аккумулятору через специальный контроллер, управляющий процессом зарядки. Напряжение 220 В с частотой 50 Гц, подаваемое потребителю, вырабатывается при помощи инвертора.

Защита от разрушения ветроколеса

При большой скорости ветра может произойти превышение скорости вращения ветроколеса сверх допустимой нормы, что приводит к его разрушению. Чтобы этого не происходило, генератор всегда должен находиться под нагрузкой. Если аккумулятор полностью заряжен и нет нагрузки, то к генератору подключается балластный резистор.

При штормовом ветре у генераторов с диаметром ветроколеса до 2 м просто останавливают лопасти во избежание их поломки. При большем размере лопастей ветроколесо поворачивается в горизонтальную плоскость. На крупных ветроэлектростанциях лопасти складываются.

Гибридная генерация

Крупные ветроэлектростанции размещаются там, где ветер дует постоянно, например, в прибрежных зонах. В отличие от них, индивидуальные ветрогенераторы размещают вблизи потребителя. И здесь может возникнуть ситуация, когда на протяжении нескольких дней нет ветра с достаточной для нормальной работы генератора скоростью. Поэтому для обеспечения надежной бесперебойной поставки электроэнергии используются так называемые гибридные системы, объединяющие несколько источников энергии. Как правило, это комбинация из ветряка и солнечных батарей. Когда ветра нет, обычно нет и облаков на небе, и можно использовать энергию солнца.


Контроллер для гибридного электропитания от ветряка
и солнечной батареи китайской компании Sunteams

Энергия от солнечных батарей и обоих источников накапливается в одном аккумуляторе (или батарее аккумуляторов) и отдается потребителю по мере необходимости. Для управления процессами зарядки применяется специальный двухканальный контроллер. Большинство современных моделей контроллеров для солнечных батарей являются двухканальными и предусматривают возможность использования в гибридных системах.

Применение малой ветроэнергетики

В настоящее время индивидуальные ветрогенераторы широко используются в нашей стране для выработки электричества в сельской местности. Мотивы к переходу на альтернативные источники энергоснабжения могут быть разными — от снижения текущих расходов на электроэнергию до стремления избежать огромных затрат на подключение нового здания. Причем ветрогенераторы заводят не только жители небогатых сел, вынужденные экономить на электроэнергии, но и обитатели шикарных коттеджных поселков, которым монопольные поставщики электроэнергии выставляют огромные счета. Наконец, есть места, где электричества нет, а прокладывать линии электропередач экономически невыгодно.

На некоторых фермах ветрогенераторы используются для снижения затрат, а, значит, снижения себестоимости продукции. Необходимость бесперебойного электроснабжения диктует использование в таких местах гибридных систем, объединяющих ветряк, бензогенератор и, если позволяют средства, солнечные батареи.


Осветительная установка с гибридным питанием

Гибридные системы, состоящие из ветрогенератора с диаметром ветряного колеса около 1,5 м и солнечных батарей площадью 1-2 кв. м, можно использовать для питания светодиодных светильников. Это позволяет освещать сложные участки дороги и пешеходные переходы там, куда невыгодно или просто невозможно подвести электропитание. В условиях средней полосы России такая установка способна обеспечить бесперебойную круглогодичную работу светильника с потребляемой мощностью 20-30 Вт в темное время суток.

Перспективы развития

Основным направлением совершенствования малой ветроэнергетики является развитие ветрогенераторов с вертикальной осью. Постоянное совершенствование ветряков позволяет повысить их КПД, приблизив его к значению этого параметра для ветряков с горизонтальной осью.


Выпускаемая серийно гибридная установка светодиодного освещения
китайской компании TIMAR, оснащенная ветряком с вертикальной осью

Кроме этого, большие преимущества сулит использование для накопления энергии конденсаторов большой емкости вместо аккумуляторов. Это позволит повысить эффективность систем питания и снизить затраты на их обслуживание.

Алексей Васильевв

​Ветряк для выработки электроэнергии: сколько стоит, как работает, примеры

Ветроэлектростанции (ВЭС), или как их еще называют ветряки – это устройства, преобразующие энергию движения ветра в электричество. Электричество, получаемое при помощи ветряков, является простым и экологичным источником энергии, поэтому в некоторых частях земли построены огромные комплексы, объединяющие множество ветрогенераторов в единую сеть. Такие массивы способны обеспечивать электроэнергией крупные населенные пункты, и даже целые регионы. Но для питания частного дома достаточно одного небольшого ветряка, и получать электричество при его помощи можно практически в любой местности.

Содержание

Классификация ВЭС

Существует множество разновидностей ВЭС, и все их можно классифицировать по различным признакам. Основным отличительным признаком являются конструктивные особенности. По конструкции они подразделяются на роторные и крыльчатые. По способу расположения выделяют следующие виды:

  • Наземные;
  • Прибрежные;
  • Плавающие;
  • Офшорные.

А по функциональному назначению ветряные электростанции бывают стационарные и мобильные.

Наиболее популярной конструкцией для промышленного получения электрической энергии являются ветряки крыльчатого типа. Они позволяют вырабатывать больше энергии, но, при этом, роторные конструкции издают меньше шума и не так сильно зависят от направления ветра.

Принцип работы

Все современные ветряки работают по проверенному веками принципу ветряной мельницы. Только в данном случае энергия вращения лопастей передается не на механический привод, а на генератор, при вращении ротора которого вырабатывается электричество. Затем электроэнергия накапливается в блоке аккумуляторных батарей и через инвертор передается к потребителям. Для обеспечения электроснабжения большого количества потребителей требуется объединение ветряков в единую сеть.

Для изготовления ветряка применены следующие элементы:

  • Лопасти;
  • Ротор турбины;
  • Редуктор;
  • Контроллер;
  • Ось электрического генератора;
  • Генератор
  • Инвертор;
  • Аккумулятор.

Для изготовления пропеллера можно использовать практически любые материалы, обеспечивающие достаточную парусность. Это может быть парусный ветряк из прочной ткани, ветряк из бочки или пластиковых бутылок. При изготовлении миниатюрной установки ветряк можно сделать даже из бумаги.

При изготовлении ветряка своими руками можно использовать ротор из шуруповерта или двигатель от любой бытовой техники. Для изготовления самодельного генератора для ветряка подойдет шаговый двигатель от принтера, а автомобильный генератор можно использовать практически без переделки.

Шаговый двигатель

Электрическая схема генератора на шаговом двигателе

С появлением на российском рынке неодимовых магнитов, популярность приобрела схема изготовления низкооборотистого аксиального генератора для ветряка на этих магнитах.

Подключение ветряка к генератору

При изготовлении своими руками ветряка мощностью до 3 кВт и рабочим напряжением 220В можно воспользоваться идеей разработки российской компании Аэрогрин. В конструкции данного ветряка применен принцип роторной авиационной турбины. В качестве лопастей используются небольшие лопатки из полимерных материалов. Вся конструкция укрыта кожухом из звукопоглощающего материала. Такой ветряк не тратит энергию на поиск ветра, создает минимум шума и не раздражает соседей постоянно вращающимися лопастями.

Сколько стоит ветряк

Для того чтобы купить ВЭС заводского производства в России можно сравнить цены на ветряки для выработки электроэнергии от различных производителей. Лучше всего для этого указать в запросе поисковой системы свой регион, это позволит быстрее найти поставщиков, которые работают ближе к планируемому месту установки ветряка и сэкономить на доставке и установке. Например, при необходимости организовать электроснабжение дачи в Ленинградской области, в поисковой строке можно набрать следующий запрос: «купить ветряк для частного дома цена СПб».

Приобрести можно как комплекс целиком, так и отдельные детали. Если лопасти и ротор можно изготовить самостоятельно, то генератор для ветряка можно купить по сравнительно низким ценам.

Выбор конструкции ветрогенератора

Основной проблемой при выборе конструкции ветряка является выбор между ветряками с горизонтальной и вертикальной осью вращения. Однозначного ответа на вопрос, какой ветряк лучше горизонтальный или вертикальный, не существует.

Классический ветрогенератор имеет горизонтальную ось вращения и механизм поиска ветра, работающий по принципу флюгера. Для его раскручивания необходим ветер, дующий со скоростью 7 – 8 м/с.

Тогда как спиралевидные ветряки с вертикальной осью вращения не так сильно зависят от скорости и направления ветра.

Но самое широкое распространения ВЭС получили на территории Крымского полуострова. В силу своего географического положения Крым имеет возможность использовать энергию ветра с максимальной пользой. Ветряки в Крыму расположены практически везде, где позволяет местность. Здесь расположено несколько крупных ветряных электростанций. На самой крупной из них работают 127 ветрогенераторов.

В прошлом году в Ульяновске был запущен комплекс из 14 ветряков общей мощностью более 30МВт. Строительство ветряной электростанции начато и в республике Адыгея. Планируется, что ветряки, установленные в Адыгее, будут давать мощность в 150МВт.

Также в прошлом году начало свою работу совместное российско-испанское предприятие по выпуску ветряков в Таганроге. Производство организовано на заводе «Красный котельщик».

Ветряки в Европе

Для многих европейских стран наличие ветряков в некоторых регионах уже давно стало привычным делом. Причем устанавливают их не только на суше но и в море.

Лидерами по производству и использованию ветряков являются Франция, Германия и скандинавские страны.

В последнее время в европейских странах построено множество гигантских ветряков. Например, одним из крупнейших ветряков в Германии является огромная башня высотой 120м с ротором, каждая из трех лопастей которого имеет длину 52 м, ширину 6 м и весит 20 т. Это гигантское сооружение построено под Магдебургом в 2002 году и его мощность составляет 4,5 МВт.

На данный момент самым большим в мире ветряком считается ветрогенератор мощностью 7 МВт и высотой 141 м, расположенный рядом с немецким городом Эмден. Но в ближайшее время в Норвегии планируется запуск ветряка высотой 162 м, который сможет обеспечить электроэнергией около 2000 домов.

Преимущества энергии ветряных мельниц - обновленная статья с дополнительной информацией об электроэнергии ветряных мельниц

В качестве альтернативного источника энергии энергия ветряных мельниц зарекомендовала себя как отличный ресурс. Какую пользу принесет энергия ветряных мельниц США и миру
? Где используется энергия ветряных мельниц? Энергия ветряных мельниц имеет много преимуществ. Первый и наиболее очевидный заключается в том, что выработка электроэнергии ветряными мельницами не приводит к загрязнению воздуха или воды, поэтому не вносит никакого вклада в глобальное потепление.Также известно снижение парникового эффекта. Электроэнергия ветряных мельниц является источником возобновляемой энергии, а это означает, что ее можно использовать снова и снова, не истощая ресурс, чего нельзя сказать об ископаемом топливе и газе. Энергия ветряных мельниц может стать ответом мира на рост цен на газ и нефть.

Особое преимущество ветряной энергии для США заключается в том, что она снижает зависимость страны от иностранного импорта ископаемого топлива, что является огромным бременем. Кроме того, можно создать много новых рабочих мест в районах, расположенных недалеко от турбин.Еще одним преимуществом является то, что ветряки не занимают много места, а их установка занимает всего несколько месяцев. Земля под турбинами все еще может использоваться в сельскохозяйственных целях. Энергии ветряных мельниц тоже достаточно. Ветер бесплатный, и его можно эффективно уловить с помощью современных технологий. Он доступен по всему миру, поэтому устраняет зависимость одной нации от другой. Энергия ветряных мельниц может быть широко распространена и имеет много преимуществ по сравнению с традиционными методами производства энергии.

Еще одна вещь, на которую стоит обратить внимание, это то, что выработка ветровой электроэнергии теперь намного дешевле, чем раньше. Затраты на производство энергии ветряными мельницами снизились как минимум на 80 процентов с 80-х годов. Это делает рынок энергии ветряных мельниц очень конкурентоспособным не только в экологическом, но и в финансовом смысле. Возможно, что энергия ветряных мельниц станет самым дешевым способом производства энергии в больших масштабах в будущем. Энергия ветряных мельниц также более постоянный вид.Пока мы здесь, ветер не перестанет существовать, поэтому наша работа - воспользоваться им. Теоретически, если бы мы могли улавливать всю доступную нам энергию ветряных мельниц, у нас могло бы быть в 10 раз больше энергии, чем мы фактически используем ежедневно, - и она была бы доступна в любое время.

Производство электроэнергии ветряными мельницами также играет важную роль в развивающихся странах. В мире есть много отдаленных районов, которые не подключены к основной электросети. Эти районы могут использовать электроэнергию, вырабатываемую ветряными турбинами, для собственного энергоснабжения.Существуют ветряные турбины самых разных размеров. Это означает, что многие предприятия могут использовать их в соответствии со своими потребностями. Даже целые деревни и города могут использовать имеющиеся турбины.

Для получения дополнительной информации посетите:
en.wikipedia.org,
eere.energy.gov

Для просмотра исходной статьи щелкните здесь

Оставить комментарий

Вы должны войти, чтобы оставить комментарий.

Infogalactic: ядро ​​планетарного знания

Ветряная мельница - это мельница, которая преобразует энергию ветра в энергию вращения с помощью лопастей, называемых парусами или лопастями. [1] [2] Столетия назад ветряные мельницы обычно использовались для измельчения зерна, перекачивания воды или того и другого. Таким образом, они часто были мельницами, ветряными насосами или и тем, и другим. [3] Большинство современных ветряных мельниц представляют собой ветряные турбины, используемые для выработки электроэнергии, или ветряные насосы, используемые для перекачивания воды для осушения земель или для извлечения грунтовых вод.

Ветряные мельницы в древности

Ветровое колесо греческого инженера Герона Александрийского в первом веке нашей эры - это самый ранний известный пример использования ветряного колеса для привода машины. [4] [5] Еще одним ранним примером ветряного колеса было молитвенное колесо, которое использовалось в древнем Тибете и Китае с четвертого века. [6] Утверждалось, что вавилонский император Хаммурапи планировал использовать энергию ветра для своего амбициозного ирригационного проекта в семнадцатом веке до нашей эры. [7]

Ветряные мельницы горизонтальные

Персидская горизонтальная ветряная мельница Мельница Хупера, Маргейт, Кент, европейская горизонтальная ветряная мельница восемнадцатого века

Первые практические ветряные мельницы имели паруса, вращавшиеся в горизонтальной плоскости вокруг вертикальной оси. [8] Согласно Ахмаду Й. аль-Хасану, эти ветряные мельницы панемоне были изобретены в восточной Персии, как записал персидский географ Эстахри в девятом веке. [9] [10] Подлинность более раннего анекдота о ветряной мельнице с участием второго халифа Умара (634–644 гг. Н.э.) подвергается сомнению на том основании, что он встречается в документе десятого века. [11] Эти ветряные мельницы, сделанные из шести-двенадцати парусов, покрытых тростниковой циновкой или тканевым материалом, использовались для измельчения зерна или сбора воды и сильно отличались от более поздних европейских вертикальных ветряных мельниц.Ветряные мельницы широко использовались на Ближнем Востоке и в Центральной Азии, а затем распространились оттуда в Китай и Индию. [12]

Подобный тип горизонтальной ветряной мельницы с прямоугольными лопастями, используемой для орошения, также можно найти в Китае XIII века (во времена династии Чжурчжэнь Цзинь на севере), представленной во время путешествий Елю Чукая в Туркестан в 1219 году. [13 ]

Горизонтальные ветряные мельницы были построены в небольшом количестве в Европе в течение 18 и 19 веков, [8] например, мельница Фаулера в Баттерси в Лондоне и мельница Хупера в Маргейте в Кенте.На эти ранние современные образцы, похоже, не повлияли напрямую горизонтальные ветряные мельницы Среднего и Дальнего Востока, а как самостоятельные изобретения инженеров, испытавших влияние промышленной революции. [14]

Вертикальные ветряки

Из-за отсутствия доказательств среди историков ведутся споры о том, были ли ближневосточные горизонтальные ветряные мельницы инициированием первоначального развития европейских ветряных мельниц. [15] [16] [17] [18] В северо-западной Европе горизонтальная ось или вертикальная ветряная мельница (так называемая из-за плоскости движения парусов) считается датируемой последняя четверть XII века в треугольнике северной Франции, восточной Англии и Фландрии.

Самое раннее упоминание о ветряной мельнице в Европе (предположительно вертикального типа) датируется 1185 годом в бывшей деревне Уидли в Йоркшире, которая находилась на южной оконечности Уолда с видом на устье Хамбера. [19] Также был обнаружен ряд более ранних, но менее достоверно датированных европейских источников XII века, относящихся к ветряным мельницам. [20] Эти самые ранние мельницы использовались для измельчения зерновых.

Почтовый стан

В настоящее время есть свидетельства того, что самым ранним типом ветряных мельниц в Европе была мельница с столбами, названная так из-за большого вертикального столба, на котором уравновешена основная конструкция мельницы («корпус» или «опора»).При такой установке корпуса мельница может вращаться в направлении ветра; важное требование к ветряным мельницам для рентабельной работы в северо-западной Европе, где направления ветра изменчивы. В кузове размещено все фрезерное оборудование. Первые столбовые мельницы были затонувшего типа, где столб был закопан в земляной вал, чтобы поддерживать его. Позже была разработана деревянная опора - эстакада. Его часто закрывали или окружали навесом, чтобы защитить эстакаду от погодных условий и обеспечить место для хранения.Этот тип ветряных мельниц был наиболее распространен в Европе до девятнадцатого века, когда их заменили более мощные башенные и шатровые мельницы.

Стан для полых столбов

В мельнице с полыми столбами стойка, на которой установлен корпус, имеет полую часть для размещения приводного вала. [21] Это дает возможность управлять механизмами ниже или снаружи тела, сохраняя при этом возможность вращать корпус против ветра. Ведущие черпающие колеса полых мельниц использовались в Нидерландах для осушения водно-болотных угодий с четырнадцатого века.

Башенная мельница

К концу тринадцатого века была представлена ​​каменная башенная мельница, на которой вращается только колпак, а не весь корпус мельницы. Распространение башенных мельниц сопровождалось ростом экономики, которая требовала более крупных и стабильных источников энергии, хотя их строительство было дороже. В отличие от стоечной мельницы, только верхнюю часть башенной мельницы нужно повернуть против ветра, поэтому основную конструкцию можно сделать намного выше, что позволит сделать паруса длиннее, что позволяет им выполнять полезную работу даже при низких температурах. ветры.Крышку можно повернуть против ветра либо с помощью лебедки, либо зацепления внутри крышки, либо от лебедки на хвостовой стойке за пределами мельницы. Способ автоматически удерживать колпак и паруса против ветра заключается в использовании веерного хвоста, небольшой ветряной мельницы, установленной под прямым углом к ​​парусам, в задней части мельницы. Они также устанавливаются на хвостовые опоры почтовых мельниц и распространены в Великобритании и англоязычных странах бывшей Британской империи, Дании и Германии, но редко в других местах. В некоторых частях Средиземного моря были построены башенные мельницы с фиксированными крышками, потому что большую часть времени направление ветра мало менялось.

Шатровая мельница

Шатровая мельница является более поздним развитием башенной мельницы, в которой башня заменена деревянным каркасом, называемым «шатер». Рубашка обычно имеет восьмиугольную форму, хотя существуют примеры с большим или меньшим количеством сторон. Халат покрыт соломой, досками или другими материалами, такими как шифер, листовой металл или гудрон. Более легкая конструкция по сравнению с башенными мельницами делает шатровые мельницы практичными в качестве дренажных, поскольку их часто приходилось строить в районах с нестабильным грунтом.Шатровые мельницы, возникшие как дренажная мельница, также используются для различных целей. При использовании в застроенной зоне его часто кладут на каменную основу, чтобы поднять его над окружающими зданиями.

Механика

Паруса

Основная статья: Парус ветряной мельницы

Паруса обыкновенные состоят из решетчатого каркаса, на который расстелена парусина. Фрезеровщик может регулировать количество расстилаемой ткани в зависимости от количества ветра и необходимой мощности. В средневековых мельницах парусина наматывалась на паруса лестничного типа.Постсредневековые мельничные паруса имели решетчатый каркас, на который накрывалась парусина, в то время как в более холодном климате ткань заменяли деревянными планками, с которыми было легче обращаться в морозных условиях. [22] Стаксель обычно встречается в странах Средиземноморья и состоит из простого треугольника из ткани, намотанной на лонжерон.

Во всех случаях мельница должна быть остановлена ​​для регулировки парусов. Изобретения в Великобритании в конце восемнадцатого и девятнадцатого веков привели к созданию парусов, которые автоматически подстраиваются под скорость ветра без необходимости вмешательства мельника, кульминацией чего стали запатентованные паруса, изобретенные Уильямом Кубиттом в 1807 году.В этих парусах полотно заменено механизмом соединенных жалюзи.

Во Франции Пьер-Теофиль Бертон изобрел систему, состоящую из продольных деревянных планок, соединенных механизмом, который позволяет фрезеру открывать их во время вращения мельницы. В двадцатом веке расширение знаний об аэродинамике в результате разработки самолета привело к дальнейшему повышению эффективности немецким инженером Билау и несколькими голландскими монтажниками.

У большинства ветряных мельниц четыре паруса.Многопарусные мельницы с пятью, шестью или восемью парусами были построены в Великобритании (особенно в графствах Линкольншир и Йоркшир и их окрестностях), Германии и, реже, в других местах. Ранее многопарковые мельницы находились в Испании, Португалии, Греции, некоторых частях Румынии, Болгарии и России. [23] Мельница с четным числом парусов имеет преимущество в том, что она может работать с поврежденным парусом и удаленным противоположным, не приводя к разбалансировке мельницы.

В Нидерландах стационарное положение парусов, т.е.е. когда мельница не работает, давно используется для подачи сигналов. Небольшой наклон парусов перед главным зданием сигнализирует о радости, а наклон за зданием - о трауре. По всей территории Нидерландов ветряные мельницы были размещены в траурных позах в честь голландцев, пострадавших от сбития рейса 17 Malaysian Airlines в 2014 году. [24]

Машины

Основная статья: Мельничное оборудование

Шестерни внутри ветряной мельницы передают энергию от вращательного движения парусов механическому устройству.Паруса держатся на горизонтальном валу. Windshafts может быть полностью изготовлен из дерева, или дерева с концом чугуна опроса (где установлены паруса) или целиком из чугуна. Тормозное колесо устанавливается на валу между передним и задним подшипником. Он имеет тормоз вокруг внешней стороны обода и зубья на боковой стороне обода, которые приводят в движение горизонтальное зубчатое колесо, называемое валлоувером, на верхнем конце вертикального вертикального вала. В зерновых мельницах большое прямозубое колесо, опускающееся по вертикальному валу, забивает одну или несколько каменных гаек на валы, приводящие в движение каждый жернов.Столбовые фрезы иногда имеют головное и / или хвостовое колесо, приводящее непосредственно в движение каменные гайки, вместо цилиндрической шестерни. Дополнительные шестерни приводят в движение подъемник для мешков или другое оборудование. Оборудование отличается, если ветряная мельница используется не для измельчения зерна. Дренажная мельница использует другой набор зубчатых колес на нижнем конце вертикального вала, чтобы приводить в движение черпак или винт Архимеда. На лесопильных заводах используется коленчатый вал для обеспечения возвратно-поступательного движения пил. Ветряные мельницы использовались для питания многих других промышленных процессов, включая бумажные фабрики, молотилки, а также для обработки масличных семян, шерсти, красок и изделий из камня. [3]

Распространение и падение

Ветряная мельница в Уэльсе, Великобритания. 1815 г.

Общее количество ветряных мельниц в Европе на пике, по оценкам, составляло около 200 000, что немного по сравнению с примерно 500 000 водяных колес. [22] Ветряные мельницы применялись в регионах, где было слишком мало воды, где реки замерзают зимой, и на равнинах, где течение реки было слишком медленным, чтобы обеспечить необходимую мощность. [22] С наступлением промышленной революции важность ветра и воды как основных промышленных источников энергии снизилась и в конечном итоге были заменены паром (в паровых мельницах) и двигателями внутреннего сгорания, хотя ветряные мельницы продолжали строиться в больших количествах. до конца девятнадцатого века.Совсем недавно ветряные мельницы были сохранены за их историческую ценность, в некоторых случаях как статичные экспонаты, когда старинное оборудование слишком хрупкое, чтобы привести его в движение, а в других случаях как полностью работающие мельницы. [25]

Из 10 000 ветряных мельниц, использовавшихся в Нидерландах около 1850 г., [26] около 1000 все еще стоят. Большинством из них управляют добровольцы, хотя некоторые мельницы по-прежнему работают на коммерческой основе. Многие дренажные мельницы были назначены в качестве резервных для современных насосных станций.Считается, что район Заан был первым промышленно развитым регионом мира, где к концу восемнадцатого века работало около 600 ветряных предприятий. [26] Экономические колебания и промышленная революция оказали гораздо большее влияние на эти отрасли, чем на зерновые и дренажные мельницы, поэтому осталось очень мало.

Строительство мельниц распространилось на Капскую колонию в семнадцатом веке. Первые башенные мельницы не пережили шторм на полуострове Кейп, поэтому в 1717 году Херен XVII послал плотников, каменщиков и материалы для строительства прочной мельницы.Мельница, построенная в 1718 году, стала известна как Oude Molen и располагалась между станцией Пайнлендс и Черной рекой. Давным-давно снесенный, он продолжает жить как техническое училище в Пайнеландс. К 1863 году в Кейптауне могло быть 11 мельниц, простирающихся от Паарден Эйланд до Моубрея. [27]

Ветряные турбины

Основные статьи: энергия ветра и энергия ветра на большой высоте Rønland Windpark в Дании

Ветряная турбина - это конструкция, похожая на ветряную мельницу, специально разработанную для выработки электроэнергии.Их можно рассматривать как следующий шаг в развитии ветряной мельницы. Первые ветряные турбины были построены в конце девятнадцатого века профессором Джеймсом Блитом в Шотландии (1887 г.), [28] Чарльз Ф. Браш в Кливленде, штат Огайо (1887–1888) [29] [30] и Поул ла Кур в Дании (1890-е годы). Мельница Ла Кур с 1896 года впоследствии стала местной электростанцией села Асков. К 1908 году в Дании было 72 ветряных электрогенератора мощностью от 5 до 25 кВт. К 1930-м годам ветряные мельницы широко использовались для выработки электроэнергии на фермах в Соединенных Штатах, где системы распределения еще не были установлены, и были построены такими компаниями, как Jacobs Wind, Wincharger, Miller Airlite, Universal Aeroelectric, Paris-Dunn, Airline и Winpower. .Корпорация Dunlite производила турбины для аналогичных мест в Австралии.

Предшественниками современных горизонтально-осевых ветряных генераторов были WIME-3D, находившиеся на вооружении в Балаклаве СССР с 1931 по 1942 год, генератор мощностью 100 кВт на 30-метровой башне, [31] Ветряная турбина Smith-Putnam, построенная в 1941 году на горе, известная как Дедушка Кноб в Каслтоне, Вермонт, США, мощностью 1,25 МВт [32] и ветряные турбины НАСА, разработанные с 1974 до середины 1980-х годов.При разработке этих 13 экспериментальных ветряных турбин были впервые использованы многие из используемых сегодня технологий проектирования ветряных турбин, в том числе: башни из стальных труб, генераторы с регулируемой скоростью, материалы из композитных лопастей и управление шагом частичного пролета, а также аэродинамические, конструктивные и возможности акустического проектирования. Современная ветроэнергетика началась в 1979 году с серийного производства ветряных турбин датскими производителями Kuriant, Vestas, Nordtank и Bonus. Эти первые турбины были небольшими по сегодняшним меркам, мощностью 20–30 кВт каждая.С тех пор коммерческие турбины значительно увеличились в размерах: Enercon E-126 способен выдавать до 7 МВт, а производство ветряных турбин расширилось во многих странах.

В начале 21 века растущие опасения по поводу энергетической безопасности, глобального потепления и возможного истощения ископаемого топлива привели к росту интереса ко всем доступным формам возобновляемой энергии. В настоящее время во всем мире работают многие тысячи ветряных турбин общей номинальной мощностью 194 400 МВт. [33] На Европу приходилось 48% от общего количества в 2009 году.

Ветряные насосы

Ветряные насосы использовались для перекачки воды, по крайней мере, с 9 века на территории нынешних Афганистана, Ирана и Пакистана. [34] Использование ветряных насосов стало широко распространенным в мусульманском мире, а затем распространилось на Китай и Индию. [35] Ветряные мельницы позже широко использовались в Европе, особенно в Нидерландах и в районе Восточной Англии Великобритании, начиная с позднего средневековья, для осушения земель в сельскохозяйственных или строительных целях.

Американская ветряная мельница , или ветряная машина , была изобретена Дэниелом Халладеем в 1854 г. [36] и использовалась в основном для подъема воды из колодцев. Более крупные версии также использовались для таких задач, как распиловка древесины, рубка сена, лущение и измельчение зерна. [37] В ранней Калифорнии и некоторых других штатах ветряная мельница была частью автономной системы водоснабжения, которая включала вырытый вручную колодец и деревянную водонапорную башню, поддерживающую резервуар из красного дерева, окруженный деревянной обшивкой, известной как резервуар.В конце 19 века стальные лопасти и стальные башни заменили деревянную конструкцию. На пике своего развития в 1930 году использовалось примерно 600 000 единиц. [38] Такие фирмы, как U.S. Wind Engine and Pump Company, Challenge Wind Mill and Feed Mill Company, Appleton Manufacturing Company, Star, Eclipse, Fairbanks-Morse и Aermotor, стали основными поставщиками в Северной и Южной Америке. Эти ветряные насосы широко используются на фермах и ранчо в США, Канаде, Южной Африке и Австралии.У них большое количество лопастей, поэтому они медленно вращаются со значительным крутящим моментом при слабом ветре и саморегулируются при сильном ветре. Редуктор с верхней опорой и коленчатый вал преобразуют вращательное движение в возвратно-поступательные ходы, передаваемые вниз через шток к цилиндру насоса ниже. Такие мельницы перекачивали воду и приводили в действие комбикормовые заводы, лесопилки и сельскохозяйственную технику.

В Австралии братья Гриффитс из Тувумбы производили ветряные мельницы с 1876 года, а с 1903 года использовалось торговое название Southern Cross Windmills.Они стали символом австралийского сельского сектора благодаря использованию воды Большого артезианского бассейна. [39]

См. Также

Список литературы

  1. «Определение мельницы». Thefreedictionary.com. Проверено 15 августа 2013.
  2. «Определение ветряной мельницы, в котором говорится, что ветряная мельница - это мельница или машина, управляемая ветром». Merriam-webster.com. 31 августа 2012 г. Проверено 15 августа 2013.
  3. 3,0 3,1 Грегори Р. Промышленная ветряная мельница в Великобритании. Филлимор, 2005
  4. ↑ Дитрих Лорманн, "Von der östlichen zur westlichen Windmühle", Archiv für Kulturgeschichte , Vol. 77, выпуск 1 (1995), стр 1-30 (10f.)
  5. ↑ А.Г. Драхман, «Ветряная мельница Герона», Центавр , 7 (1961), стр. 145-151
  6. Лукас, Адам (2006). Ветер, вода, работа: древние и средневековые технологии фрезерования . Brill Publishers. п. 105. ISBN 90-04-14649-0 .
  7. Сатьяджит, Мэтью (2006). Энергия ветра: основы, анализ ресурсов и экономика . Springer Berlin Heidelberg. С. 1–9. ISBN 978-3-540-30905-5 .
  8. 8.0 8,1 Уэйлс, Р. Горизонтальные ветряные мельницы. Лондон, Труды Общества Ньюкомен, том XL 1967-68, стр 125-145
  9. ↑ [1] Архивировано 19 июня 2012 года в Wayback Machine
  10. .
  11. ↑ Ахмад И Хассан, Дональд Рутледж Хилл (1986). Исламская технология: иллюстрированная история , стр. 54. Cambridge University Press. ISBN 0-521-42239-6.
  12. ↑ Дитрих Лорманн, "Von der östlichen zur westlichen Windmühle", Archiv für Kulturgeschichte , Vol. 77, выпуск 1 (1995), стр.1–30 (8)
  13. ↑ Дональд Рутледж Хилл, «Машиностроение на Средневековом Ближнем Востоке», Scientific American , май 1991 г., стр. 64–69. (см. Дональд Рутледж Хилл, Машиностроение)
  14. ↑ Нидхэм, Том 4, Часть 2, 560.
  15. ↑ Холмы, Р. Л. Сила ветра: История ветряных мельниц. Издательство Кембриджского университета 1993
  16. Фаррох, Каве (2007), Тени в пустыне , Osprey Publishing, стр. 280, ISBN 1-84603-108-7
  17. ↑ Линн Уайт мл. Средневековые технологии и социальные изменения (Оксфорд, 1962) с. 86 и стр. 161–162
  18. Лукас, Адам (2006), Wind, Water, Work: Ancient and Medieval Milling Technology , Brill Publishers, стр. 106–7, ISBN 90-04-14649-0
  19. Бент Соренсен (ноябрь 1995 г.), «История и недавний прогресс в использовании энергии ветра», Ежегодный обзор энергетики и окружающей среды , 20 (1): 387–424, DOI: 10.1146 / annurev.eg.20.110195.002131
  20. Лоуренс Тернер, Рой Грегори (2009). Ветряные мельницы Йоркшира . Катрин, Восточный Эйршир: Stenlake Publishing. п. 2. ISBN 9781840334753 .
  21. ↑ Линн Уайт мл., Средневековые технологии и социальные изменения (Оксфорд, 1962) с. 87.
  22. Мартин Уоттс (2006). Ветряные мельницы . Osprey Publishing. п. 55. ISBN 978-0-7478-0653-0 .
  23. 22,0 22,1 22,2 «Ветряные заводы: история (и будущее) промышленных ветряных мельниц». Низкотехнологичный журнал. 2009-10-08. Проверено 15 августа 2013.
  24. Wailes, Rex (1954), The English Windmill , London: Routledge & Kegan Paul, стр.99–104
  25. «На мрачной церемонии голландцы принимают первые останки жертв Mh27». Проверено 24 июля 2014 г.
  26. Victorian Farm , Эпизод 1. Режиссер и продюсер Наоми Бенсон. BBC Television
  27. 26,0 26,1 Endedijk, L и другие. Molens, De Nieuwe Stockhuyzen.Бродит. 2007. ISBN 978-90-400-8785-1
  28. .
  29. «Местные ветряные мельницы». Mostertsmill.co.za. Проверено 15 августа 2013.
  30. Шеклтон, Джонатан. «Впервые в мире Шотландия дает студентам инженерных специальностей урок истории». Университет Роберта Гордона. Проверено 20 ноября 2008 г.
  31. ↑ [Anon, 1890, 'Mr.Ветряная мельница Динамо Кисти, Scientific American, vol 63 no. 25, 20 декабря, стр. 54]
  32. History of Wind Energy in Cutler J. Cleveland, (ed) Encyclopedia of Energy Vol.6 , Elsevier, ISBN 978-1-60119-433-6, 2007, стр. 421-422
  33. ↑ Эрих Хау, Ветровые турбины: основы, технологии, применение, экономика , Birkhäuser, 2006 ISBN 3-540-24240-6, стр. 32, с фото
  34. ↑ Возвращение энергии ветра в Дедушкин Ноб и округ Ратленд, Noble Environmental Power, LLC, 12 ноября 2007 г.Получено с веб-сайта Noblepower.com, 10 января 2010 г. Комментарий: это настоящее название горы, на которой была построена турбина, если вам интересно.
  35. ↑ Глобальный совет по ветроэнергетике
  36. Лукас, Адам (2006), Wind, Water, Work: Ancient and Medieval Milling Technology , Brill Publishers, p. 65, ISBN 90-04-14649-0
  37. ↑ Дональд Рутледж Хилл, «Машиностроение на Средневековом Ближнем Востоке», Scientific American , май 1991 г., стр.64-69. (см. Дональд Рутледж Хилл, Машиностроение)
  38. "fnal.gov". fnal.gov. Проверено 15 августа 2013.
  39. Клементс, Элизабет. «Исторические повороты в городе ветряных мельниц». Новости Ferimi . Управление науки / Министерство энергетики США. Проверено 25 января 2015 г.
  40. ↑ Paul Gipe, Wind Energy Comes of Age , John Wiley and Sons, 1995 ISBN 0-471-10924-X, страницы 123-127
  41. ↑ Брюс Миллет, Triumph of the Griffiths Family (1984) (извлечено 10 декабря 2013 г.)

Дополнительная литература

  • Chartrand. Французские крепости в Северной Америке 1535–1763: Квебек, Монреаль, Луисбург и Новый Орлеан .
  • Драхман А.Г. (1961) «Ветряная мельница цапли», Центавр, 7.
  • Грегори, Рой и Лоуренс Тернер (2009) Ветряные мельницы Йоркшира ISBN 978-1-84033-475-3.
  • Хасан, Ахмад Й., Дональд Рутледж Хилл (1986). Исламские технологии: иллюстрированная история . Издательство Кембриджского университета. ISBN 0-521-42239-6.
  • Лорманн, Дитрих (1995) "Von der östlichen zur westlichen Windmühle", Archiv für Kulturgeschichte, Vol.77, Выпуск 1
  • Нидхэм, Джозеф (1986). Наука и цивилизация в Китае: Том 4, Физика и физические технологии, Часть 2, Машиностроение . Тайбэй: Caves Books Ltd.
  • Шеперд, Деннис Г. (1990) Историческое развитие ветряной мельницы, Итака, Нью-Йорк: Корнельский университет, Отчет подрядчика НАСА 4337 DOE / NASA.5266-1, подготовленный для Национального управления по аэронавтике и исследованию космического пространства, Исследовательский центр Льюиса и Управление управления , Отдел научно-технической информации, DOI: 10.1115 / 1.802601.
  • Тунис, Эдвин (1999), Colonial living , The Johns Hopkins University Press, ISBN 0-8018-6227-2, стр. 72 и 73.
  • Ваулс, Хью Пембрук: «Исследование происхождения ветряной мельницы», Journal of the Newcomen Society , Vol. 11 (1930–31)

Внешние ссылки

Викискладе есть медиафайлы, связанные с Windmills .

es: Molino # Molinos de viento

Ветряная мельница Электричество | Использование самодельных ветряных мельниц для получения электроэнергии