Вах идеального диода – Вольт-амперная характеристика идеального диода (вентиля)

Содержание

Вольт-амперная характеристика идеального диода (вентиля)

 

Основные параметры полупроводниковых приборов

 

1. Максимально допустимый средний за период прямой ток (IПР. СР.)

- это такой ток, который диод способен пропустить в прямом направлении.

Величина допустимого среднего за период прямого тока равна 70% от тока теплового пробоя.

По прямому току диоды делятся на три группы:

1) Диоды малой мощности (IПР.СР < 0,3 А)

2) Диоды средней мощности (0,3 <I ПР.СР <1 0 А)

3) Диоды большой мощности (IПР.СР > 10 А)

Диоды малой мощности не требуют дополнительного теплоотвода (тепло отводится с помощью корпуса диода)

Для диодов средней и большой мощности, которые не эффективно отводят тепло своими корпусами, требуется дополнительны теплоотвод (радиатор – кубик металла, в котором с помощью литья или фрезерования делают шипы, в результате чего возрастает поверхность теплоотвода. Материал - медь, бронза, алюминий, силумин)

 

2. Постоянное прямое напряжение (Uпр.)

Постоянное прямое напряжение – это падение напряжения между анодом и катодом при протекании максимально допустимого прямого постоянного тока.

Проявляется особенно при малом напряжении питания.

Постоянное прямое напряжение зависит от материала диодов (германий - Ge, кремний - Si)

Uпр. Ge ≈ 0.3÷0.5 В (Германиевые) Uпр. Si ≈ 0.5÷1 В (Кремниевые)

Германиевые диоды обозначают – ГД (1Д) Кремниевые диоды обозначают – КД (2Д)

 

3. Повторяющееся импульсное обратное максимальное напряжение (Uобр. max)

Электрический пробой идет по амплитудному значению (импульсу) Uобр. max ≈ 0.7UЭл. пробоя (10÷100 В)

Для мощных диодов Uобр. max= 1200 В.

Этот параметр иногда называют классом диода (12 класс -Uобр. max= 1200 В)

 

4. Максимальный обратный ток диода

(Imax ..обр.)

Соответствует максимальному обратному напряжению (составляет единицы mA).

Для кремниевых диодов максимальный обратный ток в два раза меньше, чем для германиевых.

 

5. Дифференциальное (динамическое) сопротивление.

 

 

 

1. Iпр max ↑ ≤30 А

2. Uпр max ↓ ≤1.2 В

3. Uобр max ≤1600

4. Iобр max <100мА

 

Падение напряжения на отдельном диоде зависит от величины прямого тока и температуры и применяется в диапазоне для германиевых диодов, и для кремниевых .

Обратный ток

, протекающий через диод, сильно зависит от температуры, и при некотором значении приближается к некоторому постоянному значению (с увеличением температуры происходит увеличение обратного тока).

Предельное значение температуры для германиевых диодов составляет ; кремниевых диодов .

В электрических схемах диоды включаются в цепь в прямом направлении. Е – напряжение источника питания. В практических схемах в цепь диода всегда включается какая-либо нагрузка, например, резистор. Такой режим работы диода называется рабочим. Его расчет производится по известным значениям и ВАХ диода. Расчет производится по формуле

.

В формуле две неизвестных . Решение производится графически. На ВАХ диода накладывается прямая нагрузка, которая строится по 2-м точкам на осях координат при:

, т. А на рисунке.

, что соответствует т. Б.

Через эти точки проводим прямую, которая и является линией нагрузки. Координаты т. Т определяют рабочий режим диода.

Рабочий режим характеризуется следующими параметрами: - максимально допустимая мощность, рассеиваемая диодом; температурные параметры.

Рассмотрим группу полупроводниковых диодов, особенность работы которых связана с использованием нелинейных свойств p-n-перехода.

Выпрямительные диоды предназначены для преобразования переменного напряжения низкой частоты ( ) в постоянное. Они подразделяются на диоды

  • малой ,
  • средней
  • большой мощности.

Основными параметрами, характеризующими выпрямительные диоды, являются:

  • Обратный ток при некотором значении обратного напряжения;
  • Максимальным током в прямом направлении;
  • Падение напряжения на диоде при некотором значении прямого тока через диод;
  • Барьерная емкость диода при подаче на него обратного напряжения некоторой величины;
  • Диапазон частот, в котором возможна работа диода без существенного снижения выпрямленного тока;
  • Рабочий диапазон температур.

В рабочем режиме через диод протекает ток, и в его электрическом переходе выделяется мощность, вследствие чего температура перехода повышается. В установившемся режиме подводимая к переходу мощность

и отводимая от него должны быть равны и не превышать максимально допустимой мощности , рассеиваемой диодом, т.е . . В противном случае наступает тепловой пробой диода.

Качество теплоотвода в диоде характеризуется параметром эксплуатационного режима – тепловым сопротивлением под которым подразумевается отношение разности температур электрического перехода и корпуса диода к мощности рассеиваемой на диоде установившемся режиме. Уменьшение
позволяет при заданном значении увеличивать рабочую температуру перехода или при известном перепаде температур повышать прямые и обратные токи и напряжения диода. Это достигается применением специальных теплоотводов-радиаторов.

Для выпрямления высоких обратных напряжений применяются выпрямительные столбы, в которых диоды включаются последовательно.

Последовательное соединение диодов используется, если максимально допустимое обратное напряжение одного диода меньше напряжения, которое нужно выпрямить.

, где - число диодов; , - действующее значение; - коэффициент нагрузки.

, где 1.1 –коэффициент, учитывающий 10% разброс значений сопротивления по напряжению .

Из-за разброса этого параметра с тем, чтобы обратное напряжение более равномерно распределялось между диодами, диоды шунтируются резисторами с одинаковыми значениями сопротивлений, каждое из которых значительно наименьшего из обратных сопротивлений диодов, но достаточно большим, чтобы не вызвать рост обратного тока. Обычно это значение выбирается в пределах от нескольких десятков до сотен кОМ.

Например, Uн = 624В, а диод имеет следующие справочные данные: Uобр max = 400В, Iобр max = 5μА. Это параметры, которым должны удовлетворять все диоды данного типа, то есть наихудшие. Более качественный диод данного типа вполне может иметь меньший обратный ток (например, 1μА). Рассчитаем величину обратных соединений диодов:

R1 обр = 80МОм

R2 обр = 400Мом, при этом U1 обр = 104В, U2 обр = 520В> Uобр max, то есть второго, лучший диод выходит из строя.



Рассчитав по формуле = 8МОм и включив параллельно каждому из диодов резисторы, рассчитанного сопротивления, получим R\обр = 727Мом, при U\1 обр = 301В, U\2 обр = 323В< Uобр max.

Иногда в электрических схемах применяют параллельное соединение диодов для получения прямого тока, значение которого больше предельного значения тока одного диода.

Из-за разброса ВАХ диоды по току получают различную нагрузку. Поэтому для выравнивания значений токов, протекающих через них, применяют уравнительные добавочные резисторы, на которые падает излишнее напряжение. Практически параллельное соединение более 3-х диодов не применяется.

, где

- среднее падение напряжения на диоде с прямым включением; Необходим ток для компенсации напряжения на втором диоде.

Например, есть диоды со следующими данными, взятыми из справочника.

Рассчитываем

Для другого, лучшего диода этого типа (на переходе падает 0,6В и 0,07 на p и n областях), а значит .

Получаем: и лучший диод выходит из строя.

и получаем . При этом

Используется редко из-за большой потери мощности и относительно невысокого КПД.

Включение выпрямительных диодов в схемах выпрямителей. Диоды в схемах выпря-

мителей включаются по одно- и двухполупериодной схемам. Если взять один диод, то ток в

нагрузке будет протекать за одну половину периода, поэтому такой выпрямитель называется

однополупериодным. Его недостаток – малый КПД.

 

 

 

Значительно чаще применяются двухполупериодные выпрямители.

Стабилитроны – полупроводниковые диоды, работающие на обратной ветви ВАХ в области, где изменение напряжения электрического пробоя слабо зависит от значения обратного тока и применяется для стабилизации напряжения.

 

Односторонний стабилитрон

Двусторонний стабилитрон

 

 

Основными параметрами стабилитронов являются:

Uст - напряжение стабилизации при номинальном значении тока;

Iст min - минимальный ток стабилизации, при котором возникает устойчивый пробой;

Iст max максимальный ток стабилизации, при котором мощность, рассеиваемая на стабилитроне, не превышает допустимого значения;

Rст - дифференциальное сопротивление, характеризующее изменение напряжения стабилизации при изменении тока: Rст =DU/DI

ВАХ стабилитрона ВАХ стабилитрона

При рассмотрении ВАХ стабилитрона видно, что в области электрического пробоя имеется участок, который может быть использован для стабилизации напряжения. Такой участок у кремниевых плоскостных диодов соответствует изменениям обратного тока в широких пределах. При этом до наступления пробоя обратный ток очень мал, а в режиме пробоя, в данном случае в режиме стабилизации, он становится такого же порядка, как и прямой ток. Стабилитроны изготавливаются исключительно из кремния, их также еще называют опорными диодами, т. к. в ряде случаев получаемое от них стабильное напряжение используется в качестве опорного. При обратном токе напряжение стабилизации меняется незначительно. Стабилитрон работает при обратном напряжении.

Принцип работы поясняет схема параметрического стабилизатора напряжения. Нагрузка включена параллельно стабилитрону, поэтому в режиме стабилизации, когда напряжение на стабилитроне постоянно, такое же напряжение будет и на нагрузке. Все изменение входного напряжения будет поглощаться резистором Rогр, которое еще называют балластным. Сопротивление этого резистора должно быть определенного значения и его обычно рассчитывают для средней точки. Если входное напряжение будет изменяться, то будет изменяться ток стабилитрона, но напряжение на нем, следовательно, и на нагрузке, будет оставаться постоянным.

При напряжениях меньше 7В имеет место полевой (туннельный) пробой, больше 15В - лавинный пробой, от 7 до 15В - смешанный пробой. Пробои в стабилитронах обратимы.

В схемах со стабилитроном должен быть ограничивающий резистор.

Динамическое сопротивление, определяющее качество стабилитрона: (чем меньше, тем лучше)

Статическое сопротивление:

Коэффициент качества: =0,01 – 0,05

Температурный коэффициент напряжения: ТКН = (0,2 – 0,4%)/°С

Недостаток стабилитрона: при малых токах стабилизации <3 мА увеличивается и существенную роль играют шумы.

 

Стабисторы - это полупроводниковые диоды, аналоги стабилитронов, но в отличие от последних у стабисторов используется не обратное напряжение, а прямое. Значение этого напряжение мало зависит от тока в некоторых пределах. Напряжение стабилизации стабисторов обычно не более 2 вольт, чаще всего 0,7 В при токе до нескольких десятков мА. Особенность стабисторов - отрицательный температурный коэффициент напряжения, т. е. напряжение стабилизации с повышением температуры уменьшается. Поэтому стабисторы применяют также в качестве термокомпенсирующих элементов, соединяя их с обычными стабилитронами, имеющими положительный ТКН при условии непревышения тока самого слаботочного из них

Напряжения при этом складываются. Согласное параллельное включение не используется. Встречное параллельное и последовательное включение позволяет получить при необходимости разные уровни ограничиваемого напряжения для разных полярностей переменного тока, протекающего через нагрузку.

 

Варикапы - п/п нелинейный управляемый конденсатор, сконструированный таким образом, чтобы потери в диапазоне рабочих частот были минимальными. В варикапах используется свойство p – n перехода изменять свою барьерную емкость под действием внешнего запирающего нарпяжения. Диффузионная ёмкость в связи с её зависимостью от температуры и частоты, а главное с тем, что она шунтирована низким сопротивлением прямосмещённого р-n перехода использовать не представляет возможным. Барьерная ёмкость при обратном смещении р-n перехода широко используется. В качестве варикапов можно использовать стабилитроны с напряжением ниже напряжения стабилизации, когда обратный ток еще очень мал, а обратное сопротивление очень велико.

Добротность:

 

Применяют в электронных устройствах для настройки частоты параллельных колебательных контуров, в избирательных усилителях и генераторах (например, с целью выбора телевизионных и радиопрограмм).

Тоннельные диоды – диоды, в основе которых использован туннельный эффект. Любой двухполюсник, имеющий на ВАХ участок отрицательного дифференциального сопротивления, может использоваться как усилитель или генератор, но не оправдали надежд, так как подвержены временной деградации.

Тоннельный эффект. Тоннельный эффект (открыт в 1958 году в Японии) проявляется на p-n переходе в вырожденных полупроводниках.

Вырожденный полупроводник – это полупроводник с очень высокой концентрацией донорной или акцепторной примеси. (Концентрация – 1024 атомов примеси на 1 куб. см. полупровод-

ника).

В вырожденных полупроводниках очень тонкий p-n переход: его ширина составляет сотые доли микрона, а напряжённость внутреннего поля p-n перехода составляет Ep-n ≈ 108 B/м, что обеспечивает очень высокий потенциальный барьер. Основные носители заряда не могут преодолеть этот потенциальный барьер, но за счёт малой его ширины как бы механически пробивают в нём тоннели, через которые проходят другие носители зарядов. Следовательно, свойство односторонней проводимости на p-n переходе при тоннельном эффекте отсутствует, а ток через p-n переход будет иметь три составляющие:

I = Iт.пр. – Iт.обр. + Iпр., где Iт.пр. – прямой тоннельный ток, за счёт прохождения зарядов через тоннели при прямом включении;

Iт.обр. – обратный тоннельный ток, тот же самый, что и прямой, но при обратном включении;

Iпр. – прямой ток проводимости. Вызван носителями заряда, преодолевающими потенциальный барьер при относительно высоком прямом напряжении.

Вольтамперная характеристика p-n перехода при тоннельном эффекте будет иметь вид, изображённый на рисунке .

 

 

На участке АВ прямой тоннельный ток уменьшается за счёт снижения потенциального барьера и в точке В он становится равным нулю, а ток проводимости незначительно возрастает. За счёт этого общий ток на участке АВ уменьшается. Особенностью тоннельного эффекта является то, что на участке АВ характеристики имеет место отрицательное динамическое сопротивление:

 

Тоннельный эффект применяется в тоннельных диодах, которые используются в схемах генераторов гармонических колебаний и как маломощные бесконтактные переключающие устройства.

Обращенные диоды – разновидность туннельных, не имеющие на ВАХ участки отрицательного дифференциального сопротивления, используются для выпрямления малых сигналов (за счет большой крутизны обратной диодной характеристики).

 

Диод Шоттки – диод, полученный путём металлизации p-проводника. У него отсутствует Сдиф, что позволяет увеличить быстродействие диода на порядок, имеет малое прямое напряжение
(Uпр < 0,3В), но имеет большие обратные токи (сотни мА) и малое пробивное напряжение (<200В).

Образование перехода Шоттки.

Переход Шоттки возникает на границе раздела металла и полупроводника n-типа, причём металл должен иметь работу выхода электрона большую, чем полупроводник.

При контакте двух материалов с разной работой выхода электронов электрон проходит из материала с меньшей работой выхода в материал с большей работой выхода, и ни при каких условиях - наоборот. Электроны из приграничного слоя полупроводника переходят в металл, а на их месте остаются некомпенсированные положительные заряды ионов донорной примеси.

В металле большое количество свободных электронов, и, следовательно, на границе металл полупроводник возникает электрическое поле и потенциальный барьер. Возникшее поле будет тормозящим для электронов полупроводника и будет отбрасывать их от границы раздела. Граница раздела металла и полупроводника со слоем положительных зарядов ионов донорной примеси называется переходом Шоттки (открыт в 1934 году).

Прямое и обратное включение диодов Шоттки.

Если приложить внешнее напряжение плюсом на металл, а минусом на полупроводник, возникает внешнее электрическое поле, направленное навстречу полю перехода Шоттки. Это внешнее поле компенсирует поле перехода Шоттки и будет являться ускоряющим для электронов полупроводника. Электроны будут переходить из полупроводника в металл, образуя сравнительно большой прямой ток. Такое включение называется прямым. При подаче минуса на металл, а плюса на полупроводник возникает внешнее электрическое поле, сонаправленное с полем перехода Шоттки. Оба этих поля будут тормозящими для электронов полупроводника, и будут отбрасывать их от границы раздела. Оба этих поля будут ускоряющими для электронов металла, но они через границу раздела не пройдут, так как у металла больше работа выхода электрона. Такое включение перехода Шоттки называется обратным.

Обратный ток через переход Шоттки будет полностью отсутствовать, так как в металле не су-

ществует неосновных носителей зарядов.

Достоинства перехода Шоттки:

- отсутствие обратного тока;

- переход Шоттки может работать на СВЧ;

- высокое быстродействие при переключении из прямого состояния в обратное и наоборот.

Недостаток – стоимость. В качестве металла обычно применяют золото.

 

В качестве генераторных и усилительных диодов на СВЧ могут так же использоваться лавинно-пролетные диоды и диоды Гана, которые в последнее время были вытеснены арсенид галлиевыми СВЧ полевыми транзисторами за счет их лучших шумовых и усилительных характеристик.

Эффект Гана проявляется в полупроводниках n-типа проводимости в сильных электрически

полях.

 

 

Участок ОА – линейный участок, на котором соблюдается закон Ома. Участок АВ – при срав-

нительно больших напряжённостях электрического поля уменьшается подвижность электро-

нов (показывает, как легко электроны проходят сквозь кристаллическую решётку проводника)

за счёт увеличения амплитуд колебания атомов в узлах кристаллической решётки. И за счёт

этого рост тока замедляется. Участок ВС – сильное уменьшение подвижности электронов, что

приводит к уменьшению тока. Участок CD – при очень больших напряжённостях значительно

увеличивается генерация носителей зарядов и, хотя подвижность электронов уменьшается, ток

возрастает за счёт увеличения количества зарядов.

Сущность эффекта Гана состоит в том, что если в полупроводнике создать напряжённость

электрического поля, большую Екр, но меньшую Епор, т. е. на участке ВС характеристики, то

в полупроводнике возникнут электрические колебания сверхвысокой частоты (СВЧ).

Эффект Гана применяется в диодах Гана, которые используются как маломощные генераторы

СВЧ.

 


Похожие статьи:

poznayka.org

2.3 Отличие реальной вах диода от идеальной

2.3.1 Прямое включение (прямая ветвь)

Мы прикладывали в идеальном случае напряжение к p-n-переходу без потерь. На участке прямой ветви при прохождении больших токов через p-n-переход не всё внешнее напряжение будет прикладываться к p-n-переходу. Часть напряжения будет падать на областях, прилегающих к p-n-переходу: двух контактах металл-полупроводник, а также двух областях полупроводника от контактов до области p-n-перехода.

В диодах принято различать области, прилегающие к p-n-переходу. Одну называют эмиттером, другую − базой.

Эмиттер диода – область более легированная, т.к. она является основным поставщиком носителей заряда при прямом включении.

База – область менее легированная.

Рис. 2 – чаще применяется в кремниевых диодах.

Легированность – наличие примесей.

Основное падение напряжения внутри диода будет в области базы, т. к. она имеет максимальное сопротивление внутри этой структуры.

Прямое падение напряжения: = .

= , где − сопротивление базы; − прямой ток.

U = . (2.3)

1 – невырожденный участок; U = − реальное равно идеальному.

2 − проявляется падение напряжения на базе − вырожденный участок.

3 − U = − линейная зависимость; << .

Угол наклона прямой к оси и даст сопротивление.

В общем случае сопротивление базы диода является одной из главных характеристик диода.

Чаще всего говорят о дифференциальном сопротивлении базы диода:

= . (2.4)

При выводе ВАХ диода мы считали, что в p-n-переходе отсутствуют явления генерации и рекомбинации носителей.

В реальных диодах эти процессы наблюдаются. Для прямой ВАХ важным является процесс рекомбинации.

Будет уменьшаться общий ток через структуру. При больших токах потери на рекомбинацию не существенны и это будет практически незаметно.

2.3.2 Обратное включение (обратная ветвь)

При выводе ВАХ в p-n-переходе мы не учитывали генерацию и рекомбинацию. На обратной ветви рекомбинация на ток практически не влияет. Зато генерация может привести к увеличению тока через p-n-переход:

=.

При прикладывании внешнего напряжения границы p-n-перехода будут увеличиваться.

> .

Чем больше обратное напряжение, тем больше ток генерации.

Ток генерации практически не зависит от температуры, тепловой же ток сильно зависит от температуры. Поэтому при различных температурах поведение обратной ветви будет различным.

Для германиевых диодов >> . Их обратная ветвь хорошо совпадает с обратной ветвью идеального диода.

А для кремниевых диодов << . Поэтому тока насыщения не будет. Ток всё время будет увеличиваться.

Второе отличие: наличие на обратной ветви реального диода явления пробоя.

Резкое увеличение тока через структуру при достижении определённого обратного напряжения.

Различают три основных вида пробоя:

1. Туннельный электрический пробой.

2. Лавинный электрический пробой.

3. Тепловой пробой.

Электрические пробои при условии ограничения тока в структуре можно удалить. Это обратимые пробои. Прибор восстанавливает свои свойства.

При тепловом пробое возникает разрушение структуры. Это необратимый пробой. Прибор полностью плавится (портится).

studfile.net

Принцип работы диода. Вольт-амперная характеристика. Пробои p-n перехода

Здравствуйте уважаемые читатели сайта sesaga.ru. В первой части статьи мы с Вами разобрались, что такое полупроводник и как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов.

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Полупроводниковые диоды

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p-типа, а другая — проводимостью n-типа.

Диод в виде кристалла полупроводника

На рисунке дырки, преобладающие в области p-типа, условно изображены красными кружками, а электроны, преобладающие в области n-типа — синими. Эти две области являются электродами диода анодом и катодом:

Анод – положительный электрод диода, в котором основными носителями заряда являются дырки.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны.

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс» а на вывод катода «минус», то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

Прямое включение диода

При такой полярности подключения электроны из области n-типа устремятся навстречу дыркам в область p-типа, а дырки из области p-типа двинутся навстречу электронам в область n-типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом, они встретятся, где происходит их взаимное поглощение или рекомбинация.

Например. Oсновные носители заряда в области n-типа электроны, преодолевая p-n переход попадают в дырочную область p-типа, в которой они становятся неосновными. Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками. Таким же образом дырки, попадая в электронную область n-типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами.

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n-типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p-типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p-типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через диод будет течь ток, называемый прямым током диода Iпр.

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

Обратное включение диода

В этом случае электроны в области n-типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p-типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью.

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал, а сопротивление p-n перехода велико.

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный, и такие диоды называют выпрямительными.

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода.

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр), а в нижней части — обратного тока (Iобр).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр, а в левой части – обратного напряжения (Uобр).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь, в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь, в левой нижней части, соответствующая обратному (закрытому) току через диод.

Вольт-амперная характеристика диода

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов. Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр) в сотни раз больше обратного тока (Iобр).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а» на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б» на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в» на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Пробои p-n переходов диода

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый, то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта, который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины, некоторые электроны проникают (просачиваются) через переход из области p-типа в область n-типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды.

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка. Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах, применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр) рассеиваемая мощность на переходе растет. Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в следующей части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

Источник:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н. Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.

sesaga.ru

Вольт-амперная характеристика (ВАХ) полупроводникового диода

Что такое идеальный диод?

Основная задача обычного выпрямительного диода – проводить электрический ток в одном направлении, и не пропускать его в обратном. Следовательно, идеальный диод должен быть очень хорошим проводником с нулевым сопротивлением при прямом подключении напряжения (плюс — к аноду, минус — к катоду), и абсолютным изолятором с бесконечным сопротивлением при обратном.

Вот так это выглядит на графике:

Такая модель диода используется в случаях, когда важна только логическая функция прибора. Например, в цифровой электронике.

ВАХ реального полупроводникового диода

Однако на практике, в силу своей полупроводниковой структуры, настоящий диод обладает рядом недостатков и ограничений по сравнению с идеальным диодом. Это можно увидеть на графике, приведенном ниже.

Vϒ(гамма) — напряжение порога проводимости

При прямом включении напряжение на диоде должно достигнуть определенного порогового значения — Vϒ. Это напряжение, при котором PN-переход в полупроводнике открывается достаточно, чтобы диод начал хорошо проводить ток. До того как напряжение между анодом и катодом достигнет этого значения, диод является очень плохим проводником. Vϒ у кремниевых приборов примерно 0.7V, у германиевых – около 0.3V.

ID_MAX — максимальный ток через диод при прямом включении

При прямом включении полупроводниковый диод способен выдержать ограниченную силу тока ID_MAX. Когда ток через прибор превышает этот предел, диод перегревается. В результате разрушается кристаллическая структура полупроводника, и прибор становится непригодным. Величина данной силы тока сильно колеблется в зависимости от разных типов диодов и их производителей.

IOP – обратный ток утечки

При обратном включении диод не является абсолютным изолятором и имеет конечное сопротивление, хоть и очень высокое. Это служит причиной образования тока утечки или обратного тока IOP. Ток утечки у германиевых приборов достигает до 200 µА, у кремниевых до нескольких десятков nА. Самые последние высококачественные кремниевые диоды с предельно низким обратным током имеют этот показатель около 0.5 nA.

PIV(Peak Inverse Voltage) — Напряжение пробоя

При обратном включении диод способен выдерживать ограниченное напряжение – напряжение пробоя PIV. Если внешняя разность потенциалов превышает это значение, диод резко понижает свое сопротивление и превращается в проводник. Такой эффект нежелательный, так как диод должен быть хорошим проводником только при прямом включении. Величина напряжения пробоя колеблется в зависимости от разных типов диодов и их производителей.

Паразитическая емкость PN-перехода

Даже если на диод подать напряжение значительно выше Vϒ, он не начнет мгновенно проводить ток. Причиной этому является паразитическая емкость PN перехода, на наполнение которой требуется определенное время. Это сказывается на частотных характеристиках прибора.

Приближенные модели диодов

В большинстве случаев, для расчетов в электронных схемах, не используют точную модель диода со всеми его характеристиками. Нелинейность этой функции слишком усложняет задачу. Предпочитают использовать, так называемые, приближенные модели.

Приближенная модель диода «идеальный диод + Vϒ»

Самой простой и часто используемой является приближенная модель первого уровня. Она состоит из идеального диода и, добавленного к нему, напряжения порога проводимости Vϒ.

Приближенная модель диода «идеальный диод + Vϒ + rD»

Иногда используют чуть более сложную и точную приближенную модель второго уровня. В этом случае добавляют к модели первого уровня внутреннее сопротивление диода, преобразовав его функцию из экспоненты в линейную.

hightolow.ru

Идеальный диод

Представление реального диода в виде «идеального диода» равносильно модели идеального вентиля: полностью открыт (прямое включение), полностью закрыт (обратное включение). В закрытом положении ток равен нулю при любом отрицательном напряжении на диоде, в открытом положении напряжение равно нулю при любом токе. Таким образом дифференциальные сопротивления в закрытом и открытом состоянии равны соответственно бесконечности и нулю. На рис.2.2. представлены ВАХ «идеального диода»(жирно) и его схемы замещения в открытом и закрытом состяниях.

Рис. 2.2

Такое представление реального диода часто удобно использовать для анализа схем выпрямителей с большими значениями амплитуд выпрямляемых напряжений, когда нелинейностью начального участка прямой ветви ВАХ и наличием небольшого обратного тока можно пренебречь.

Рассмотрим пример работы простейшей выпрямительной схемы с «идеальным диодом» при гармоническом входном напряжении и нулевом постоянном смещении (Рис.2.3). Величина сопротивления нагрузки R , с которого снимается выпрямленное напряжение, значительно больше дифференциального сопротивления в открытом состоянии реального диода, и меньше дифференциального сопротивления закрытого перехода.

Рис. 2.3

Пусть , причем амплитуда Еm такова, что можно использовать модель «идеального диода». При положительных значениях входного напряжения диод обладает нулевым дифференциальным сопротивлением, и ток в цепи равен

а при отрицательных значениях е(t) ток равен нулю. Осциллограммы тока и напряжений в схеме показаны на рис.2.4.

Рис. 2.4

Поскольку напряжение на нагрузке R несинусоидально, его можно разложить в ряд Фурье по гармоникам частоты входного напряжения. Выпрямленным напряжением является постоянная составляющая напряжения uR (t) :

Из рисунка 2.4 видно, что напряжение на нагрузке отнюдь не постоянно, а пульсирует относительно постоянного напряжения UR,0.

При наличии дополнительного постоянного напряжения Есм (смещение) изменится уровень положительных и отрицательных напряжений на диоде, т.к. входное напряжение выпрямителя будет равно

На рис.2.5 показаны осциллограммы тока и напряжений для отрицательного смещения. На рисунке положительные уровни сигналов отмечены штриховкой.

Рис. 2.5

Как видим, обратное напряжение на диоде здесь увеличилось на величину смещения, а выпрямленное напряжение уменьшилось не только за счет уменьшения амплитуды тока, но и за счет уменьшения длительности импульсов тока.

В данной схеме выпрямителя выходное напряжение не постоянно, а имеет форму усеченных косинусоидальных импульсов, что свидетельствует о наличии в спектре тока и напряжения гармоник частоты выпрямляемого напряжения. Для уменьшения амплитуды гармоник на нагрузке выпрямителя ставят специальные фильтры нижних частот. Простейшим вариантом такого фильтра является параллельная цепочка RC вместо одного сопротивления R (см.рис.2.6).

Рис. 2.6

Величину емкости определяют исходя из заданного коэффициента подавления амплитуды первой гармоники, как наибольшей в спектре тока или из неравенства:

При выполнении этого неравенства постоянная составляющая тока протекает через резистор R , а все переменные составляющие – через конденсатор С , так как его сопротивление переменным токам будет значительно меньше сопротивления резистора.

Можно рассмотреть работу выпрямителя и во временной области. Осциллограммы токов и напряжений в установившемся режиме показаны на рис. 2.7, причем входное и выходное напряжения здесь совмещены на одном графике.

Рис. 2.7

Напряжение на диоде определяется разностью входного и выходного напряжений:

Напряжение же на выходе можно представить в виде процессов заряда и разряда конденсатора С . При положительных напряжениях на диоде сопротивление последнего равно нулю (или мало в реальном диоде в прямом режиме) конденсатор быстро (практически мгновенно) заряжается до напряжения, примерно равному е(t1); в следующие моменты времени напряжение на диоде становится отрицательным, диод закрывается, и емкость медленно разряжается через сопротивление R достаточно большой величины. При правильном выборе С и R постоянная времени разряда емкости значительно больше постоянной времени заряда, так что при разряде напряжение на выходе почти не меняется. В установившемся режиме выходное напряжение колеблется около некоторого среднего значения Uвых,0 , близком по величине к амплитуде входного напряжения. Пульсации выпрямленного напряжения здесь значительно меньшие, чем в схеме без конденсатора.

jstonline.narod.ru

§1. Полупроводниковые диоды

Полупроводниковый диод – это прибор с двухслойнойP-Nструктурой и однимP-Nпереходом.

Слой Р- акцепторная примесь ( основные носители - дырки ). СлойN- донорная примесь (основные носители - электроны).

Обозначение на схемах:

Катод

VилиVD- обозначение диодаVS– обозначение диодной сборки

V7 Цифра послеV, показывает номер диода в схеме Анод – это полупроводникP-типа Катод – это полупроводник N-типа

Анод

При приложении внешнего напряжения к диоду в прямом направлении («+» на анод, а « - » на катод) уменьшается потенциальный барьер, увеличивается диффузия – диод открыт (закоротка).

При приложении напряжения в обратном направлении увеличивается потенциальный барьер, прекращается диффузия – диод закрыт (разрыв).

Вольт-амперная характеристика (вах) полупроводникового диода

Uэл.проб.= 10 ÷1000 В – напряжение электрического пробоя.

Uнас.= 0,3 ÷ 1 В – напряжение насыщения.

IaиUa– анодный ток и напряжение.

Участок I:– рабочий участок (прямая ветвь ВАХ)

Участки II,III,IV, - обратная ветвь ВАХ (не рабочий участок)

Участок II:Если приложить к диоду обратное напряжение – диод закрыт, но все равно через него будет протекать малый обратный ток (ток дрейфа, тепловой ток), обусловленный движением не основных носителей.

Участок III:Участок электрического пробоя. Если приложить достаточно большое напряжение, неосновные носители будут разгоняться и при соударении с узлами кристаллической решетки происходит ударная ионизация, которая в свою очередь приводит к лавинному пробою (вследствие чего резко возрастает ток)

Электрический пробой является обратимым, после снятия напряжения P-N-переход восстанавливается.

Участок IV:Участок теплового пробоя. Возрастает ток, следовательно, увеличивается мощность, что приводит к нагреву диода и он сгорает.

Тепловой пробой - необратим.

Вслед за электрическим пробоем, очень быстро следует тепловой, поэтому диоды при электрическом пробое не работают.

Вольт-амперная характеристика идеального диода (вентиля)

Основные параметры полупроводниковых приборов

1. Максимально допустимый средний за период прямой ток (IПР. СР.)

- это такой ток, который диод способен пропустить в прямом направлении.

Величина допустимого среднего за период прямого тока равна 70% от тока теплового пробоя.

По прямому току диоды делятся на три группы:

  1. Диоды малой мощности (IПР.СР < 0,3 А)

  2. Диоды средней мощности (0,3 <IПР.СР <1 0 А)

  3. Диоды большой мощности (IПР.СР > 10 А)

Диоды малой мощности не требуют дополнительного теплоотвода (тепло отводится с помощью корпуса диода)

Для диодов средней и большой мощности, которые не эффективно отводят тепло своими корпусами, требуется дополнительны теплоотвод (радиатор – кубик металла, в котором с помощью литья или фрезерования делают шипы, в результате чего возрастает поверхность теплоотвода. Материал - медь, бронза, алюминий, силумин)

2. Постоянное прямое напряжение(Uпр.)

Постоянное прямое напряжение – это падение напряжения между анодом и катодом при протекании максимально допустимого прямого постоянного тока.

Проявляется особенно при малом напряжении питания.

Постоянное прямое напряжение зависит от материала диодов (германий - Ge, кремний -Si)

Uпр. Ge≈ 0.3÷0.5 В (Германиевые) Uпр. Si≈ 0.5÷1 В (Кремниевые)

Германиевые диоды обозначают – ГД (1Д) Кремниевые диоды обозначают – КД (2Д)

3. Повторяющееся импульсное обратное максимальное напряжение(Uобр. max)

Электрический пробой идет по амплитудному значению (импульсу) Uобр. max≈ 0.7UЭл. пробоя (10÷100 В)

Для мощных диодов Uобр. max= 1200 В.

Этот параметр иногда называют классом диода (12 класс -Uобр. max= 1200 В)

4. Максимальный обратный ток диода(Imax ..обр.)

Соответствует максимальному обратному напряжению (составляет единицы mA).

Для кремниевых диодов максимальный обратный ток в два раза меньше, чем для германиевых.

5. Дифференциальное (динамическое) сопротивление.

studfile.net

Глава 2

Полупроводниковые диоды

2.1 Идеальная вольт-амперная характеристика диода

Диод – электропреобразовательный прибор, который, как правило, содержит один или несколько электрических переходов и два вывода для подключения к внешней цепи.

Для характеристики приборов полезно знать вольт-амперную характеристику.

В общем случае ток через диод или через p-n-переход состоит из инжекционной и рекомбинационной составляющих.

Инжекция – перенос носителей из одной зоны в другую (много → мало).

Рекомбинация – одновременное появление или исчезновение дырки и электрона.

Появляется дополнительный ток, связанный с рекомбинацией.

При выводе идеальной ВАХ будем учитывать только инжекционную составляющую.

При обратном включении будем учитывать рекомбинационную составляющую.

Второе допущение: диод – идеально-плоская структура с равномерным распределением полей и носителей.

= ; =.

Заменим приращения на небольшие величины:

; .

Заменим в этих формулах средней длиной свободного пробега:

= ; = .

Все величины нам здесь известны. Осталось найти и.

Наибольший интерес представляют неосновные носители заряда ив чужих зонах.

В равновесном состоянии без приложенного внешнего напряжения:

= ; = ;

= ≈ 26 мВ – температурный потенциал (при Т ≈ 20 º С).

Из этих формул выразим соответственно и:

= ; = .

При приложении внешнего напряжения будем считать, что всё напряжение прикладывается к p-n-переходу.

= - U.

Изменение высоты потенциального барьера будет приводить к изменению всех четырёх концентраций на границе p-n-перехода: ,,,.

Т. к. концентрация основных носителей заряда в соответствующих областях значительно больше концентрации неосновных, то изменение концентрации основных носителей будет незначительно.

=; = .

Изменение происходит для неосновных носителей:

- U = ; - U = .

= ; = .

= = ; = = .

= - = - ; = - = - .

Можно записать, чему будет равняться плотность тока:

= ; = .

Сложив обе эти составляющие и умножив на площадь, получим ток:

= = , (2.1)

где = − тепловой ток диода. То:

= − ВАХ идеального диода. (2.2)

При постоянной температуре не меняется во времени.

Построим ВАХ идеального диода:

При больших отрицательных напряжениях ток неизменен и равен .

2.2 Результаты изучения вах идеального диода

1. Параметры диода (ВАХ) сильно зависят от температуры за счёт зависимости от температуры.

С ростом температуры ток растёт.

При одном и том же токе с ростом температуры величина потенциального барьера уменьшается.

Обратный ток (ток утечки) при нагреве будет увеличиваться.

2. Зависимость от материала.

Величина зависит от материала полупроводника. Если мы используем полупроводник с более широкой зоной, процесс диффузии будет происходить хуже. Величина токабудет падать.

Si − широкая зона;

Ge − малая зона.

3. Зависимость от площадиp-n-перехода.

Чем больше площадь S, тем больше ток .

> .

Прямо пропорциональная зависимость: ~ S.

studfile.net

Отправить ответ

avatar
  Подписаться  
Уведомление о