В россии ток постоянный или переменный ток – Отличие переменного тока от постоянного: преобразование, разница, принцип действия

Содержание

Какой ток опаснее постоянный или переменный

Трудно даже представить жизнь современного человека без электричества. Но, пользуясь эти достижением прогресса человечества, никогда не стоит забывать о том, что электрический ток — не только верный друг и помощник. При безалаберном отношении к соблюдению элементарных требований безопасности, при нарушении установленных правил монтажа и эксплуатации приборов, он способен превратиться в страшного врага. И ему ничего не стоит в доли секунды лишить человека здоровья или даже жизни.

Какой ток опаснее постоянный или переменныйКакой ток опаснее постоянный или переменный

К сожалению, немало людей даже не читают те разделы инструкций к приобретённым электроприборам, которые посвящены проблемам безопасности. По всей видимости, они не осознают в полной мере, какие последствия могут случиться из-за пренебрежения этими рекомендациями. Поэтому эта публикация будет отличаться от остальных. В ней, вместо практических вопросов, попробуем разъяснить читателю, что электричество легкомысленности не прощает. Разберем, какие угрозы таит вообще любой электрический ток. Постараемся ответить на часто задаваемый вопрос – какой ток опаснее постоянный или переменный.

Опасность электрического тока для человека

В статьях нашего портала, посвященных электрохозяйству – системам проводки доме или квартире, осветительным приборам, бытовой технике и электроинструментам всегда отводится должное внимание обеспечению безопасности. Это касается и монтажных работ, и эксплуатации. Специальные публикации подробно рассказывают о системах защиты – заземлении в частном доме, автоматических выключателях, дифференциальных автоматах и УЗО. Особое внимание уделено правильности организации домашней или квартирной электрической сети.

Какой ток опаснее постоянный или переменныйМонтаж электропроводки в доме не терпит упрощений и безалаберности!

Здесь должно действовать жёсткое правило: нет уверенности в своих возможностях – не принимайся за работу, зови специалиста. А если уж взялся делать сам, то строго соблюдай все до мелочей требования монтажа электрической проводки в доме

– об этом рассказывает специальная статья портала. Свои особенности всегда имеет и прокладка электропроводки в деревянном доме.

Не следует относиться к рекомендациям по безопасности, как каким-то навязчивым нравоучениям. Электричество не прощает ошибок и небрежности. Его основная опасность в том, что угроза здоровью и жизни человека вообще может себя никак не проявлять.

Органы чувств предупреждают нас о многих видах опасностей. Можно увидеть приближающуюся угрозу, услышать ее, почувствовать запах газа или горения, ощутить кожей повышение температуры и т.п. Электричество же не имеет ни цвета, ни запаха, разит молниеносно, часто не давая ни доли секунды на ответную реакцию. Причем, даже те объекты (домашняя бытовая техника, приборы, сантехническое оборудование, инструменты, предметы обстановки т.п.) которые, казалось бы, никогда не представляли никакой угрозы, могут внезапно стать потенциально опасными.

"<yoastmark

Еще одна важнейшая опасность электричества – при его воздействии поражаются не только участки непосредственного контакта, но и системы и органы, находящиеся на пути прохождения тока через тело человека. Но и это не всё. Воздействие электричеством вызывает рефлекторные реакции, судорожные сокращения мышечных тканей, приводит к глубоким поражениям нервной системы и другим необратимым последствиям.

Ознакомьтесь с инструкцией, как измерить силу тока мультиметром, из нашей новой статьи на нашем портале.

Для начала рассмотрим, в каких условиях человек может быть поражен электрическим током.

Как человек может стать «звеном» электрической цепи?

Возможные случаи поражения током

Для того чтобы человек получил поражение током, он должен стать одним из звеньев электрической цепи, то есть через его тело должен пройти ток. Предпосылок к этому – немало.

  • Самые распространенные случаи – касание предметов, находящихся под напряжением. Это могут быть оголенная проводка, неисправные, с разбитым или отсутствующим корпусом розетки, выключатели или иные приборы. Напряжение может присутствовать на металлическом корпусе прибора или инструмента, если нарушилась внутренняя изоляция, а объект не имеет заземления. В этом случае цепь может замкнуться через пол. Но особую опасность представляют одновременные касания заземленных предметов, например, труб или радиаторов отопления, водопровода, сантехнических приборов.

"<yoastmark

  • Она из коварных особенностей электричества – это способность поражать даже без непосредственного контакта с токопроводящими предметами. При определенных условиях достаточно будет недопустимо близкого сближения с проводами, шинами, мощными установками, чтобы возникла электрическая дуга. Вероятность ее образования особенно возрастает при повышенной влажности.

"<yoastmark

  • Еще одну серьезную опасность представляют обрывы линий электропередач от 0,38 кВт и выше, лежащие на земле. В радиусе до 10 метров от точки касания провода с грунтом создается опасная зона. По сути, земля становится проводником электрического тока. Но в связи с ее высоким сопротивлением, потенциал уменьшается от центра к периферии. В чем же опасность? Дело в том, что у перемещающегося по этой зоне человека под разными ногами может оказаться и весьма значительная разность потенциалов. А это уже – напряжение, то есть необходимое условие для протекания электрического тока. И чем шире шаг, тем напряжение (а отсюда – и сила тока) может быть больше. Это явление называется шаговым напряжением, которое может оказаться чрезвычайно опасным.
Как правильно выбираться из опасной зоны, где возможен эффект шагового напряженияКак правильно выбираться из опасной зоны, где возможен эффект шагового напряжения

Безусловно, всегда стоит избегать приближения к замеченным лежащим на земле проводам. Но если уж угораздило попасть в такую зону, то следует знать, как максимально безопасно из нее выбираться. Ни в коем случае нельзя пытаться ускорить выход за счет широких шагов – так опасность поражения многократно возрастает. Выходить необходимо «гусиными шагами», перемещая ногу вперед без отрыва от земли и ставя ее пятку к носку другой. И так далее – до полного выхода из зоны, хотя бы на 10 метров от центра.

Пути прохождения электрического тока через тело человека

Степень опасности, глубины и необратимости поражения во многом зависит от пути, которым пойдет ток через человеческое тело. Особо тяжкие последствия могут наступить, если в эту «петлю» попадают наиболее уязвимые и жизненно важные органы – сердце, центральная нервная система, спинной мозг, легкие. Но это вовсе не означает, что если ток пошел по иному пути, то последствий может не быть. Выше уже упоминалось, что воздействие электричества приводит к непредсказуемым рефлекторным реакциям организма. И вероятность смертельного поражения хоть и становится ниже, но не исчезает полностью.

Путей прохождение тока через организм человека может быть очень много. Из их числа называют наиболее вероятными пятнадцать. Но и из этого количества можно выделить несколько случаев, которые на практике встречаются особенно часто.

ИллюстрацияПуть прохождения тока и его особенности
Как правильно выбираться из опасной зоны, где возможен эффект шагового напряженияРука — рука.
Статистика показывает, что до 40% всех поражений проходит именно по этой петле.
Путь опасен тем, что проходит через верхнюю область грудной клетки, и до 3,3% тока может идти через сердце.
Если рассматривать привычное бытовое напряжение в 220 вольт, то доля терявших сознание при таком поражении доходит до 83%.
Как правильно выбираться из опасной зоны, где возможен эффект шагового напряженияПравая рука — ноги.
Петля через ноги всегда опасная, так как проходит через жизненно важные органы, в том числе через сердце, легкие и периферическую нервную систему спинного мозга.
Это – явные последствия работы на токопроводящем полу в обуви с недиэлектрическими подошвами.
Статистическая частота – до 20% от общего количества случаев.
Доля тока, проходящего через сердце – до 6,7%.
Потеря сознания – у 87% пораженных.
Как правильно выбираться из опасной зоны, где возможен эффект шагового напряженияЛевая рука — ноги
.
Аналогично предыдущему варианту, но статистическая частота случаев несколько меньше (17%), наверное, просто из-за того, что преобладают люди-правши.
Доля тока, проходящего через сердечную мышцу – до 3,7%.
Порядка 80% случаев сопровождалось потерей сознания.
Как правильно выбираться из опасной зоны, где возможен эффект шагового напряженияНога — нога.
Типичный пример поражения в зоне шагового напряжения, о чем говорилось выше.
На такой тип поражения приходится до 6% всех зарегистрированных случаев.
Казалось бы, жизненно важные органы не затрагиваются – через сердце при такой петле может пройти не более 0,4% тока.
Однако, до 15% случаев поражений заканчиваются потере сознания. Опасность кроется в рефлекторном сокращении мышц – у человека в зоне поражения могут буквально просто подкоситься ноги.
Как правильно выбираться из опасной зоны, где возможен эффект шагового напряжения
Голова — ноги
.
Нечастый (порядка 5% от общего количества поражений), но чрезвычайно опасный путь прохождения тока через тело. В зоне поражения оказывается головной мозг, позвоночник, все органы грудной клетки и брюшной полости. Доля тока, приходящееся на сердце – 6,8%.
До 88% случаев оканчиваются потерей сознания и срочной необходимостью реанимационных действий.
Важный аргумент в пользу того, что электромонтажные работы под напряжением следует проводить с закрытой головой.
Как правильно выбираться из опасной зоны, где возможен эффект шагового напряженияГолова — руки.
Эта петля даже опаснее предыдущей. На долю сердечной мышцы выпадает до 7% проходящего через тело тока.
Потеря сознания фиксировалась в 92% случаях такого поражения.
Статистически частота возникновения подобной петли – до 4% от общего количества.
Как правильно выбираться из опасной зоны, где возможен эффект шагового напряженияНа оставшиеся возможные пути прохождения тока приходится порядка 8% случаев. Чаще всего они связаны со случайными прикосновения к предметам или приборам под напряжением незакрытыми участками тела – плечом, бедром, локтем и т.п.
Степень опасности определить сложно, так как она зависит от конкретного участка контакта. Но даже если она и ниже, чем в описанных выше петлях, то это не значит, что можно к такой вероятности поражения относиться с пренебрежением.
В медицинской практике зарегистрированы случаи летальных исходов даже при прохождении тока от пальца к пальцу на одной руке.

Как видно, большинство из представленных случаев легко представляются возможными в бытовых условиях. Так что следует соблюдать осторожность самому, научить правилам безопасности всех своих домочадцев, в особенности – детей. И никогда не пренебрегать требованиями организации заземляющего контура, в особенности если речь идет о собственном загородном доме. Не следует жалеть денег на надёжные средства защиты от поражения электрическим током от стационарных бытовых приборов – устанавливать УЗО или дифференциальные автоматы.

В качестве интересного примера предлагаем посмотреть книгу, выпущенную еще в начале 30-х годов прошлого века в Германии. Зная техническую «неподкованность» тогдашних обывателей, авторы постарались максимально наглядно показать опасность электрического тока, продемонстрировать возможные случаи поражения в самых элементарных бытовых условиях. И несмотря на то что многие приборы, изображённые в этой книге, сейчас выглядят анахронизмом, большинство иллюстраций вовсе не потеряло своей актуальности и в наше время.

Впечатляет? Наверное, будет нелишним познакомить с этими картинками и своих домашних. Нередко информация, изложенная в подобном виде, воспринимается лучше, чем докучливые поучения.

Разновидности электрических травм

Электрический ток, проходя через тело человека, способен оказывать целый ряд негативных воздействий, угрожающих здоровью и жизни. К таковым относят термическое, электролитическое, биологическое и световое.

Просто из этических соображений не станем размещать в данной публикации фотографии последствий поражений электричеством – это жуткое зрелище. Любой желающий сможет без труда их найти в интернете.

  • Местные электротравмы обычно обусловлены термическим действием и чаще всего проявляются в виде ожогов различной степени. В большинстве случаев это не приводит к летальному исходу, но если ожог обширный, отнесен к III или IV степени, то велика вероятность и необратимых последствий.

Воздействие тока нередко оставляет на коже электрические знаки – в точках входа и выхода в виде пятен или омертвелых кожных отвердений по типу мозоли. Случается, что такие знаки сопровождаются и металлизацией кожи – при попадании на нее брызг расплавленного электрической дугой металла.

  • Электролитическое действие заключается в резко нарушении сбалансированного химико-биологического состава жизненно важных жидкостей. Это прежде всего касается крови, но может отразиться и на лимфе и спинномозговой жидкости. Последствия бывают очень печальные, причем проявляться во всей своей тяжести они могут даже спустя некоторое время после получения травмы, переходить в хроническую стадию.
  • Электрическая дуга, даже если не было прямого поражения током через кожу, способна своей ультрафиолетовой составляющей вызвать ожоги роговицы глаза, воспаление слизистых оболочек, поражения век, слезных желез. Это последствия электроофтальмии (так правильно называется подобное воздействие), хоть и не относятся к смертельно опасным, способны надолго испортить человеку жизнь, привести к стойким, длительным или даже безвозвратным ухудшениям зрения. Типичный пример – ожоги глаз при выполнении сварочных работ без средств защиты.
  • Самыми опасными для здоровья и жизни человека являются биологические воздействия электрического тока. Такие поражения чаще называть электрическими ударами. Они сопровождаются судорожными неконтролируемыми сокращениями мышечных тканей или, наоборот, параличом отдельных групп мышц.

Электрические удары подразделяют на четыре группы по степени тяжести их последствий:

— Первая группа – удар сопровождается ощутимыми судорожными мышечными сокращениями, но человек не сознание не теряет.

— Вторая группа – судорожные сокращения сопровождаются резкими болевыми ощущениями, но без потери сознания.

— Третья группа – потеря сознания, но без катастрофических нарушений функции сердца и органов дыхания.

— Четвертая группа – полная потеря сознания с явными нарушениями сердечной и (или) дыхательной деятельности.

— Пятая группа – электрические удары, вызывающие клиническую смерть, то есть полную остановку сердца или полный паралич мышц грудной клетки, делающий невозможным дыхание.

Особая опасность электрических ударов связана с возможным вызовом фибрилляции сердца. Под этим термином понимают непроизвольное хаотичное сокращение мышечных волокон миокарда с большой частотой. Это резко нарушает нормальный режим работы сердца, приводит к утрате им своих перекачивающих возможностей, откуда недалеко до полной остановки (сердце перестает питать кровью себя) или до глубоких нарушений работы всего организма, в том числе – центральной нервной системы.

"<yoastmark

Электрические удары часто сопровождаются и сильными механическими повреждениями. Судорожные сокращения мышц могут закончиться разрывом тканей и кровеносных сосудов, вывихами суставов и даже переломами костей. Естественно, все это часто приводит к болевым шокам, еще больше усугубляющим состояние пораженного током человека.

От чего зависит тяжесть последствий поражения электрическим током

Степень поражения человека электрическим током зависит от множества факторов. Один уже был упомянут выше – это путь протекания тока через тело. К остальным можно отнести следующее:

  • силу тока и величину напряжения;
  • сопротивление человеческого тела;
  • тип тока и его частоту;
  • продолжительность воздействия;
  • индивидуальные особенности пораженного.

Сила тока и напряжение

Если быть точнее, то решающим фактором является все же сила тока. Напряжение играет больше опосредованную роль, влияющую именно на силу тока в конкретных условиях. Так, в медицинской практике немало примеров смертельных исходов при, казалось бы, «смешном» напряжении в 12 вольт, и случаев благополучного возвращения к жизни человека, перенесшего воздействие в несколько киловольт.

А вот сила тока действительно напрямую влияет и на восприятие человеком, и на степень поражения. По этим параметрам его разделяют на ощутимый ток, неотпускающий (притягивающий) и фибриляционный.

  • Граница с которой начинаются неприятные ощущения от воздействия тока, но пока не приводящие к травмам — 0,8÷1,2 мА (обратите внимание – именно миллиампер). Для постоянного тока этот порог существенно выше — 5÷ 7 мА.
  • Неотпускающий (притягивающий) пороговый ток, когда человеку становится трудно, а то и вовсе невозможно самостоятельно освободиться от проводника (токоведущих деталей), вызывающего поражение — 10÷15 мА. Для постоянного тока этот порог составляет 50÷80 мА.
  • Фибриляционный порог – это значение силы тока, которое способно спровоцировать фибрилляцию сердца и его последующую остановку. Таким образом, его можно рассматривать уже как смертельно опасный для человека. Для переменного тока (при обычной частоте в 50 Гц) этот порог обозначен в 100 мА, для постоянного – 300 мА.

Отчасти этим подразделом мы уже начали отвечать на вопрос: какой ток опаснее — постоянный или переменный.

Длительность поражающего воздействия

Вполне понятно, что чем дольше человек находится под воздействием электрического тока, тем обширнее и глубже полученные поражения. Есть и еще один очень важный фактор, напрямую влияющий на тяжесть электрического удара.

Дело в том, что если рассматривать цикл сердечных сокращений, то в фазе относительного покоя сердца, на переходе от систолы к диастоле, есть небольшой период (на схеме он обозначен буквой Т) продолжительностью около 0,2 секунды. Если поражение током произойдет именно в этот период, то вероятность возникновения эффекта фибрилляции стремится к 100%. За пределами этого временного отрезка риск резко падает практически впятеро.

"<yoastmark

Именно поэтому столь важное значение имеют исправность защитных систем отключения (УЗО или дифференциальных автоматов) и скорость из срабатывания. Современные приборы такого типа при опасных токах утечки (обычно  для жилых комнат это 30 мА, для влажных помещений и детских – 10 мА) могут срабатывать буквально в течение 0,2 секунды, и чем больше ток утечки, тем выше и скорость. То есть вероятность получить электрический удар, приводящий к остановке сердца или тяжелым травмам, сводится к минимуму.

Сопротивление человеческого тела

Элементарные законы физики дают четкое представление – чем выше сопротивление электрической цепи, тем меньше сила тока при равных значениях напряжения на входе и выходе. Это в полной мере относится и к человеческому телу.

Его суммарное сопротивление – достаточно велико, и может доходить до 10 ÷ 100 кОм. Но это если речь идет о практически идеальных условиях. В реальности может быть все совсем не так.

Дело в том, что сопротивление тела зависит далеко не только от физических свойств – здесь вступают в силу многочисленные биохимические факторы. Например, сухие, здоровые, неповрежденные кожные покровы при огрубелом роговом слое близки к своим токопроводящим способностям к диэлектрику – настолько высоко их сопротивление. Но стоит току найти лазейку (участок воспалённой или поврежденной кожи), как картина становится кардинально иной – при отсутствии кожных покровов в месте контакта с проводником сопротивление тела резко падает до 500÷600 Ом. То есть во многом общее сопротивление тела напрямую зависит от диэлектрических характеристик эпидермиса.

Но и сопротивление кожи – тоже не постоянная величина. В условиях повышенной температуры (при обильном потоотделении и открытых порах) или высокой влажности (тем более – при полном погружении в воду) оно падает буквально на порядок.

Одна из причин категорического запрета на электротехнические работы для лиц в состоянии опьянения – это не только из-за возможных недостаточных координации движений и адекватности мышления. У выпившего человека резко снижается сопротивление тела, и риск получить смертельную травму многократно возрастает.

Из-за степени огрубелости кожи обычно сопротивление тела у женщин меньше, чем у мужчин. Соответственно, у детей оно ниже, чем у взрослых. То есть дети и представители слабого пола при получении электротравм рискуют больше.

На теле у каждого человека есть участки, наиболее уязвимые для поражения током, как обладающие минимальным сопротивлением кожи. К таковым можно отнести височную область, боковые поверхности шеи, участок между большим и указательным пальцем, спину, плечи, запястья, передние поверхности ног и другие точки.

Тип тока и его частота

Вот, наконец, вплотную мы добрались до вопроса, вынесенного в заголовок статьи – какой же ток опаснее. Однозначного ответа нет – здесь тоже прослеживается зависимость от нескольких факторов. Но если рассматривать в диапазоне напряжений, с которыми приходится сталкиваться в бытовых условиях, то вероятность получить серьёзное поражение постоянным током все же значительно меньше.

По-разному ощущается и воздействие тока. При постоянном токе человек чувствует разовый «толчок» а после этого ощущения притупляются. Переменный же воспринимается как постоянно чередующаяся серия толчков, и это сопровождается весьма болезненными ощущениями. Но, повторимся, речь здесь идет о напряжениях, которые неспособны на пробой кожных покровов.

 Кстати, доказано, что опасность переменного тока несколько снижается с ростом его частоты. Правда, имеются в виду значения в несколько килогерц. А так, в диапазоне, скажем, от привычных 50 до 500 герц говорить об уменьшении опасности – совершенно незачем.

В таблице ниже приведены некоторые сравнения воздействия на организм человека равных по силе постоянного и переменного тока.

Сила тока, мАПеременное напряжение, частота 50÷60 ГцПостоянное напряжение
2 ÷ 3Сильный тремор кистей рук (дрожание пальцев) с легкими болезненными ощущениямиДействие не ощущается
5 ÷ 7Судорожные сокращения рук, сопровождающиеся значительными болевыми ощущениямиЕле воспринимаемый зуд, легкое ощущение нагрева кожи
8 ÷ 10Эффект притягивания к источнику тока, но еще с возможностью самостоятельно оторвать руки от него.
Сильные болезненные ощущения в кистях и пальцах.
Усиление ощущения нагрева, без болезненных проявлений и мышечных сокращений.
20 ÷ 25Полная парализация, сведение кистей рук, абсолютная невозмодн6орсть самостоятельно оторваться от источника поражения.
Затруднение дыхания.
Усиление ощущения нагрева, возможны незначительные судорожные сокращения мышц на руках.
50 ÷ 80Возможен паралич дыхательного центра, начало проявления фибрилляции желудочков сердца.Сильный нагрев кожи, судорожные сокращения мышц на руках, ощущение затруднённости дыхания
100Почти гарантированный паралич дыхательного центра.
При воздействии продолжительностью 3 секунд и более – фибрилляция сердца и его остановка.
Нет объективных данных
300 и вышеПри действии более 0,1 секунды – остановка сердца, термическое разрушение тканей.

Какой вывод?

Действительно, при напряжениях в пределах до 220 вольт можно говорить, что переменный ток — намного опаснее постоянного. Но это не должно никого успокаивать – воздействие всегда имеет сугубо индивидуальный характер, о чем мы уже выше говорили. Так что в равных условиях и болезненность порогового восприятия, и степень поражения для разных людей могут значительно отличаться.

В диапазоне от 220 до 500 вольт можно говорить, что по степени опасности переменный и постоянный токи примерно выравниваются. А вот при более высоких значениях напряжения картина меняется даже на противоположную – значительно большую опасность начинает представлять постоянный ток. Это обуславливается его выраженным электролитическим действием – в считанные секунды он способен кардинально нарушить биохимический состав крови и других жизненно важных жидкостей.

*  *  *  *  *  *  *

Надеемся, полученная информация подвигнет читателя к правильным выводам – он не только сам станет безоговорочно соблюдать все требования безопасности и рекомендации, изложенные в инструкциях к электроприборам, но и научит, если надо – заставит следовать им всех своих домочадцев. И уж, конечно, не пожалеет денег на приобретение эффективных средств защиты.

Остается добавить, что воздействие электрического тока на организм во многом зависит от индивидуальных особенностей человека, в том числе – и в текущий момент. Так, гораздо больше риск получить серьёзную травму у человека больного, утомленного, возбужденного, испугавшегося, с учащенным сердцебиением, испытывающего голод или жажду, употребившего спиртное или некоторые типы лекарств. И, наоборот, вероятность поражения снижается, если человек настороже, но не теряет спокойствия и способен предпринять адекватные шаги в экстремальной ситуации. Все это необходимо в обязательном порядке учитывать, если планируется проведение электротехнических работ.

В завершение публикации – видеосюжет, который, наверное, будет одинаково полезным и взрослым, и детям.

Видео: Когда электричество становится коварным врагом?

stroyday.ru

Напряжение 220 Вольт | Практическая электроника

Да, все знают что это электрический ток в розетке должен быть 220 вольт». Но тех, кто представляет хотя бы приблизительно как он образуется и передаётся потребителю, кто может сказать «в бытовой электросети однофазная линия переменного тока 220 вольт частотой 50 Герц» совсем немного и, скорее всего, это будут специально обученные люди, которые тоже порой не задумываются о том, почему именно 220 вольт? Почему переменный ток, почему частота сети именно 50 Герц? А действительно, почему сложилось именно так? Вариантов-то было множество. И кстати, заходя вперёд, стоит сообщить что вышеперечисленное не эталонный стандарт для всей планеты. Кто-то пошёл и другим путём в возведении электро-инфраструктуры. На эти и некоторые другие вопросы мы попытаемся дать ответы в данной статье.

Генератор

Чтобы подать электричество в розетку, необходимо его как-то сгенерировать. Для  выработки электроэнергии до сих пор в большинстве применяются технологии конца 19 века – электромагнитная индукция, преобразующая механическую энергию в электрическую. Проще говоря – генераторы. Различие генераторов  лишь в том, каким образом подают механическую энергию. Раньше это были громоздкие паровые машины. Со временем добавились гидротурбины для проточной воды (гидроэлектростанции) , двигатели внутреннего сгорания, ядерные реакторы.

Принцип действия генератора основан на магнитной индукции. Вращательное движение генератора превращается в электрический ток. То есть можно сказать, что генератор – это тот же самый электродвигатель, но обратного действия. Если на электродвигатель подать напряжение, то он начнет вращаться. Генератор работает наоборот. Вращательное движение вала генератора превращается в электрический ток. Поэтому, чтобы вращать вал генератора, нам потребуется какая-либо энергия извне. Это может быть пар, который раскручивает турбину, а она в свою очередь раскручивает вал генератора

ТЭСПринцип работы ТЭС

либо это может быть сила потока воды, которая с помощью гидротурбины раскручивает вал генератора, а он в свою очередь также вырабатывает электрический ток

ГЭСПринцип работы ГЭС

Ну или это может быть даже ветряк

ветряная электростанцияВетряная электростанция

Короче говоря, принцип везде один и тот же.

Кстати, ядерный реактор не способен самостоятельно выработать энергию. По сути, атомная энергоустановка является тем же самым примитивным паровым котлом, где рабочим телом является обыкновенный пар. Да, нынче существуют иные способы генерации электричества, на вроде тех же самых солнечных элементов, бетагальванических и изотопных ядерных батарей, «мифических»  токомаков.  Однако, вышеперечисленный «хайтэк» имеет существенные ограничения – запредельная стоимость материалов ,монтажа и наладки, габариты и малый кпд. Потому, всерьёз рассматривать всё это в качестве полноценной электростанции большой мощности не стоит (по крайней мере в ближайшие пару десятков лет).

Экскурс в историю

Итак, генератор на нашей электростанции преобразовывает механическую энергию в электрическую. А что дальше? В каком виде и как именно передавать энергию потребителю? Как избежать колоссальных потерь при передаче?

Поразительно, но подобная ситуация существовала на самом деле! В той же Российской Империи вплоть до начала 20 века была полная неразбериха. Рядом с каждым «крупным» потребителем электроэнергии (фабрика, подворье преуспевающего купца или гостиница для особ благородных кровей) строили отдельную электростанцию. Было множество конкурирующих фирм, предоставляющих услуги электрификации и, в последующем, своё электрическое оборудование заточенное только под свою сеть. Каждый поставщик электроэнергии задавал собственные параметры электросети – напряжение, частоту. Были даже электросети с постоянным током! Человек, купивший, к примеру, электролампочки в «Товариществе электрического освещения Лодыгин и Ко» смог бы использовать их лишь в электросети этой же компании. При подключении к сети «Дженерал электрик» эта лампочка тут же вышла бы из строя – напряжение сети этой фирмы было значительно выше необходимого, не говоря уже о других параметрах.

Лишь в 1913 году имперские инженеры решились передавать электроэнергию на большие расстояния по воздушным проводным линиям, избавив от необходимости постройки электростанций «у каждой розетки». В преддверии грядущей великой войны и нахлынувшего патриотизма власть задумалась об импортозамещении. Ну прям как в наше время, после кризиса 2014 года). Были финансово и юридически задавлены многие небольшие западные фирмы (кроме германских и французских), преференции и льготы давались лишь отечественным товариществам и предприятиям. В итоге, это привело к монополизму на рынке поставщика электроэнергии и, невольно, стандартизации параметров электрической сети.

Так как Берлин и Париж были уже электрифицированы единой энергосистемой с переменным напряжением сети 220 вольт, отечественные компании также приняли этот стандарт. Людям было удобнее использовать электрические приборы единого типа, не беспокоясь что их новомодный электрический пылесос сгорит на новом месте жительства из-за других параметров энергосети. Произошло полное вытеснение многих небольших фирм – никто уже не хотел пользоваться их услугами и их приборами, хотя они вынужденно подстроились под единый  стандарт электросети. Те самые 220 вольт переменного тока.

Почему именно переменное напряжение?

Не так давно по историческим меркам у человечества возникла дилемма: какой ток лучше? Переменный или постоянный? Этот период времени был известен, как “война токов”. На самом деле были споры между Николой Теслой и Эдисоном – самыми великими учеными-изобретателями того времени. Эдисон был за постоянный ток, а Никола Тесла – за переменный. Это борьба продолжалось более 100 лет, даже после смерти этих великих ученых! Но все-таки в 2007 году окончательную победу одержал переменный ток.

Дело все в том, что постоянный ток при передаче на большие расстояния теряет свою энергию на нагрев проводов. Здесь во всем виноват закон Джоуля-Ленца

Q=I2Rt

где

Q — количество выделяемого тепла (Джоули)

I — сила тока, протекающего через проводник (Амперы)

R — сопротивление проводника (Омы)

t — время прохождения тока через проводник (Секунды)

Нетрудно догадаться, что чем больше сила тока будет протекать по проводам, и чем длиннее будут провода, тем больше они будут нагреваться, так как сопротивление провода выражается формулой:

сопротивление провода формуласопротивление провода формула

Второй причиной было то, что в генераторе постоянного тока надо было использовать специальную конструкцию, которая бы позволяла снимать электрический ток с движущихся обмоток. Для этого на валу двигателя крепился так называемый коллектор, к которому припаивались обмотки генератора. Коллектор все время находился в движении, так как он закреплен на самом валу генератора. С коллектора с помощью графитовых щеток снималось напряжение. Тот же самый принцип до сих пор используется в генераторах и двигателях постоянного тока.

двигатель постоянного токаПринцип работы генератора постоянного тока

Минусом такой конструкции является то, что со временем щетки и коллектор изнашиваются. Поэтому, такой генератор надо часто обслуживать, вовремя заменять щетки и чистить коллектор. Чаще всего такой генератор имеет два провода: плюс и минус. Чем больше коллекторных пластин (ламелей) на таком генераторе, тем чище будет постоянный ток с такого генератора. Если  такой генератор имеет множество ламелей и крутится с одинаковой скоростью, то на осциллографе можно увидеть примерно такую картину постоянного тока

постоянный ток на осциллограммеосциллограмма постоянного тока

Таких недостатков лишен генератор переменного напряжения. Принцип его действия показан ниже

принцип работы двигателя переменного токаПринцип работы генератора переменного тока

В настоящее время в нем используются три обмотки,  разнесенные друг от друга на 120 градусов. Один конец каждой обмотки соединяется с друг другом, образуя так называемый “ноль”. В нашей стране такие генераторы на ТЭС или ГЭС стараются крутить со скоростью 50 оборотов/сек. Ну или 3000 оборотов/минуту. Неплохая такая скорость). В Америке же их крутят под 60 оборотов/сек. А что такое обороты в секунду? Это и есть частота. А частота, как вы помните, выражается в Герцах (Гц). Поэтому, у нас в розетках частота 50 Гц, в Америке 60 Гц.

Такие генераторы называют трехфазными, так как они имеют три фазы: A, B, C. В англо-язычной литературе можно увидеть обозначение R, S, T либо L1, L2, L3. Точка, где соединяется конец всех обмоток обозначается буквой N (ноль).

генератор переменного токаГенератор переменного тока

То есть по сути с генератора выходит 4 провода: фазы A,B,С и 0, он же нейтраль N, который соединяет один конец каждой из трех обмоток.

генератор переменного тока схемаОбмотки генератора переменного тока

При вращении ротора-магнита в каждой обмотке создается электрический ток. Если с помощью осциллографа вывести осциллограммы сразу трех обмоток, то можно увидеть что-то типа этого:

три фазы на осциллограммеОсциллограммы трехфазного напряжения

Передача электрического тока на дальние расстояния

Итак, электрический ток мы получили. Теперь надо как-то передать его на дальние расстояния, не забывая про закон Джоуля-Ленца: Q=I2Rt . То есть нам надо каким-то чудом уменьшить силу тока, которая будет течь по проводам, так как в основном из-за нее происходят большие потери.

Для этих целей идеально подойдет трансформатор, но не простой, а трехфазный. Здесь используется замечательное свойство трансформатора: если повышаем напряжение, то понижаем силу тока, и наоборот, понижаем напряжение, увеличиваем силу тока. Поэтому, для того, чтобы передать полученную электроэнергию на дальние расстояния, нам нужно увеличить в несколько раз напряжение, тем самым мы в это же число раз уменьшим силу тока. Ниже на рисунке схема передачи электроэнергии от генератора ГЭС и до конечного потребителя, то есть для заводов, для электротранспорта и для нас с вами.

схема ЛЭППередача электроэнергии от генератора до конечного потребителя

С ГЭС напряжение повышают до нескольких киловольт, чаще всего до 110 кВ. Все это достигается с помощью трехфазного высоковольтного повышающего трансформатора (2).

высоковольтный трансформаторТрехфазный высоковольтный трансформатор

Далее высоковольтное напряжение идет по высоковольтной линии (3) и доходит до какого-либо города, либо райцентра.

высоковольтная ЛЭПВысоковольтная линия передачи электроэнергии

В каждом райцентре либо городе есть своя подстанция, где имеется уже свой высоковольтный понижающий трансформатор (4), который преобразует напряжение 110 кВ в 10 кВ, либо в 6 кВ (5).

Почему нельзя было сразу тянуть провода с генератора? Зачем надо было повышать, а потом снова понижать напряжение? Все опять же из за закона Джоуля-Ленца. Так как ГЭС находится на очень большом расстоянии от потребителей электроэнергии, приходится повышать напряжение, чтобы минимизировать потери на нагрев проводов. Как мы уже говорили, трансформатор повышает напряжение, но при этом уменьшает во столько же раз силу тока, поэтому потери в проводах на дальние расстояния сокращаются в разы, исходя из формулы Джоуля-Ленца Q=I2Rt.

Потом уже с подстанции напряжение расходится по трансформаторным “будкам”, которые можно уже заметить в каждом районе.

Напряжение 220 ВольтТрансформатор 6 кВ в 380 В

От этих “будок” выходит после преобразования приблизительно 380 Вольт. Но здесь есть один нюанс. Везде используется три провода, а к нам в дома заходят чаще всего два провода. В чем же дело? А дело как раз в том, что есть такое понятие как линейное и фазное напряжение. Линейное напряжение замеряется между 3 проводами, по которым идут 380 В. Они называются фазами. То есть грубо говоря – это те же самые провода, которые вышли с генератора еще где-нибудь на ГЭС. Но если взять любую из фаз и замерять напряжение относительно нулевого проводника, то есть относительно нуля, то у нас будет фазное напряжение 220 В. Получается, к нам в дом заходит ОДНА фаза и НОЛЬ. Куда деваются другие фазы? Они равномерно распределяются между жильцами дома или вашего района. То есть к вашему соседу может придти другая фаза, но тот же самый ноль.

три фазы и нольТрехфазное линия передачи электроэнергии

Напряжение 220 Вольт

Очень много вопросов в рунете именно по напряжению “из розетки”.  Самый часто задаваемый вопрос выглядит так:

– Какой ток в розетке?

Здесь вопрос, конечно же, поставлен неправильно. Током чаще всего называют именно силу тока. Правильнее было бы задать вопрос: “Какое напряжение в розетке?”

У нас в России в домашней сети переменное напряжение с частотой в 50 Герц,  максимальной амплитудой приблизительно в 310 Вольт и действующим напряжением в 220 Вольт. Думаю, это будет самый развернутый ответ.

Итак, теперь давайте разбираться что к чему.

Как  же выглядит этот “ток из розетки” на осциллографе? Ну примерно вот так:

Напряжение 220 Вольт

По вертикали у нас одна клеточка равняется 100 Вольтам. Следовательно, максимальная амплитуда Umax будет равна где-то 330 Вольт

амплитудное значение напряженияамплитудное значение напряжения

По идее должно быть 310 Вольт. Хотя оно и не удивительно. Напряжение в сети редко когда бывает стабильным. Все, конечно же, зависит от потребителей и трансформатора на электростанции, который их питает.

Когда я был еще совсем маленьким, рядом с телевизором у нас стояло очень интересное устройство. На нем была шкала, и мы вечером подкручивали крутилку, чтобы шкала показывала ровно 220 Вольт, иначе телевизор отказывался работать. С возрастом я понял, что это был ручной стабилизатор напряжения, так как именно вечером все соседи начинали “жрать” электричество и поэтому в сети было вольт 190-200. Это уже сейчас во всех телевизорах и других бытовых приборах эти стабилизаторы встроены прямо внутри прибора, и поэтому надобность в стабилизаторах резко отпала.

Фаза и ноль

К вам 220 Вольт приходит по двум проводам. Иногда с ними бывает в связке еще и третий провод желто-зеленого цвета – это земля. Этот провод используется для обеспечения безопасности. В старых домах такого провода нет. Земля в 90% случаев обозначается как желто-зеленый провод. Другие провода могут иметь различную окраску, но чаще всего стараются ноль маркировать синим проводом, а фазу –  ярким цветом. Например, красным.

фаза и ноль на проводе цветаОбозначение фазы, нуля и земли на проводе

Итак, по одному проводу течет фаза, по другому – ноль. Ноль – это провод для съема электрического тока с фазы. Ноль не представляет опасности для человека, но лучше все-таки не экспериментировать! В фазе напряжение очень быстро изменяется сначала от какого-то максимального значения (для 220 Вольт это значение равняется 310 Вольт), потом падает до нуля, и потом идет в минус и достигает значения в -310 Вольт и потом снова до нуля и снова до 310 Вольт. Итак, за секунду он успевает проделать эту операцию 50 раз, так как генератор на ГЭС, ТЭС или АЭС крутится именно с такой скоростью.

осциллограмма 220 Восциллограмма 220 В

Какие процессы происходят на фазе?

В какой-то момент времени фаза бывает больше по напряжению, чем ноль. В какой-то момент времени она становится равна нулю. А в какой-то момент времени становится меньше чем ноль. Или, иначе говоря, ноль становится больше по напряжению, чем фаза). Потом фаза снова становится равна нулю, а потом снова больше нуля и все это повторяется до тех пор, пока работает генератор на электростанции.

Хотите узнать, как все это выглядит на графике? Да пожалуйста 😉

фаза и ноль на осциллограммефаза и ноль на осциллограмме

Как я уже сказал, фаза без нуля – ничто! И если даже встать на диэлектрический коврик, то есть полностью изолировать себя от контакта с землей, то можно даже и потрогать фазу без вреда для здоровья. НО! не вздумайте проверять это дома! Так поступают только матерые электрики и у них имеются в наличии эти диэлектрические коврики и другие прибамбасы.

Но никогда, слышите, НИКОГДА! не дотрагивайтесь голыми руками сразу до двух проводов, тем более взяв их по одному в руки! Вы будете проводником, соединяющим цепь 220 Вольт. Или попросту говоря, вас ударит электрическим током. Думаю, некоторые до сих пор помнят эти “приятные” ощущения. А как бодрит сразу! Уууухх)))

Напряжение 220 Вольт

Напряжение в розетке – это действующее напряжение и вычисляется оно по формуле:

Напряжение 220 Вольт

где

UД  – это действующее напряжение, В

Umax – максимальное напряжение, В

Следовательно,

Напряжение 220 Вольт

что мы и видели на осциллограмме.

Так что знайте, что в электронике и в электрике если вам говорят, что напряжение переменного тока, допустим, 24 Вольта – это действующее напряжение. Максимальным значением переменного напряжения никто не пользуется.

Резюме

В наших розетках электрический ток вырабатывают генераторы переменного тока, которые находятся за много километров от нас. Вал таких генераторов разгоняют турбины, которые преобразуют энергию падающей воды либо горячего пара во вращательное движение.

Электрический ток несколько раз трансформируется в разные величины напряжения, пока идет до конечного потребителя.

В промышленности используются другие значения электрического тока, такие как 10 кВ, 6 кВ, 380 В по три фазы. Для простого обывателя, типа меня и вас, электрический ток идет по двум проводам, называемым фазой и нулем.

www.ruselectronic.com

Что лучше, переменный ток или постоянный ток? Поясните чем

ДЛЯ ЧЕГО? У каждого вида тока есть своё назначение, и наоборот - для каждой задачи нужен свой вид тока. Для генерации и передачи на большие расстояния лучше переменный, потому что для него проще преобразования из сравнительно низкого напряжения (генератор) в высокое (ЛЭП) и снова в низкое (потребитель) . И только при передачи на сверхдальние расстояния, когда уже существенны индуктивные потери на проводах ЛЭП, опять становится выгоднее постоянный. Для двигателей всё равно, но в промышленности чаще применяются двигатели переменного тока. Они проще конструктивно (отсутствует коллектор со щётками и не нужен преобразователь переменного тока в постоянный) , они не искрят, и у них элементарно выполняется реверс, если работать от трёхфазной сети. Для нагревательных элементов, от паяльника до электроплиты, по фигу какое напряжение, а раз по фигу - то проще переменное. Опять же - не надо преобразовывать. Для работы различной электронной аппаратуры нужно постоянное напряжение. Вот всё, что связано с обработкой сигналов - приёмник, рация, компьютер, даже микропроцессоор в утюге или в плите - это всё требует для работы источника постоянного напряжения. Поэтому в сетевой аппаратуре обязательно присутствует встроенный источник питания, коорый из 220 В переменного делает сколько нужно постоянного.

Это уж кто какой больше обожает.

Переменный лучше. Не так больно бьёт.

По утрам - постоянный, а потом лучше переменный:)

так нельзя сказать какой ток лучше. Вон в 80-х начали пропускать ток по проводам на большие расстояния напряжением 1.5 миллиона вольт постоянного тока. Второе - все нынешние приборы быта, кроме холодильников и стиральных машин работают на постоянном токе, как и твой комп. Переменный ток выпрямляется затем импульсным генератором преодразуется в низкое напряжение с высокой частотой и так же выпрямляется. Это сделано для экономии меди и уменьшения габаритов электороблоков питания. такие блоки называются инверторами.

Постоянный проще рекупировать. Переменный проще передавать. С высоковольтной линии где ток меньше трансом сделать нужный конечному потребителю. Постоянный сложнее генерировать.

при передаче на очень большие расстояние выгоднее постоянный ток очень высокого напряжения, так как провода при такой длине имеют слишком большие потери -у них при этом значительное индуктивное сопротивление и реактивное сопротивление

На вкус они оба не очень.

touch.otvet.mail.ru

Чем отличается переменный ток от постоянного

Хотя электрические приборы мы каждый день используем в повседневной жизни, не каждый может ответить, чем отличается переменный ток от постоянного, несмотря на то, что об этом рассказывается в рамках школьной программы. Поэтому имеет смысл напомнить основные догматы.

Обобщенные определения

Физический процесс, при котором заряженные частицы движутся упорядоченно (направленно), называется электротоком. Его принято разделять на переменный и постоянный. У первого направление и величина остаются неизменными, а у второго эти характеристики меняются по определенной закономерности.

Приведенные определения сильно упрощены, хотя и объясняют разницу между постоянным и переменным электротоком. Для лучшего понимания, в чем заключается это различие, необходимо привести графическое изображение каждого из них, а также объяснить, как образуется переменная электродвижущая сила в источнике. Для этого обратимся к электротехнике, точнее ее теоретическим основам.

Источники ЭДС

Источники электротока любого рода бывают двух видов:

  • первичные, с их помощью происходит генерация электроэнергии путем превращения механической, солнечной, тепловой, химической или другой энергии в электрическую;
  • вторичные, они не генерируют электроэнергию, а преобразуют ее, например, из переменной в постоянную или наоборот.

Единственным первичным источником переменного электротока является генератор, упрощенная схема такого устройства показана на рисунке.

Упрощенное изображение конструкции генератораУпрощенное изображение конструкции генератора

Обозначения:

  • 1 – направление вращения;
  • 2 – магнит с полюсами S и N;
  • 3 – магнитное поле;
  • 4 – проволочная рамка;
  • 5 – ЭДС;
  • 6 – кольцевые контакты;
  • 7 – токосъемники.

Принцип работы

Механическая энергия преобразуется изображенным на рисунке генератором в электрическую следующим образом:

за счет такого явления, как электромагнитная индукция, при вращении рамки «4», помещенной в магнитное поле «3» (возникающее между различными полюсами магнита «2»), в ней образуется ЭДС «5». Напряжение в сеть  подается через токосъемники «7» с кольцевых контактов «6», к которым подключена рамка «4».

Видео: постоянный и переменный ток — отличия

Что касается величины ЭДС, то она зависит от скорости пересечения силовых линий «3» рамкой «4». Из-за особенностей электромагнитного поля минимальная скорость пересечения, а значит и самое низкое значение электродвижущей силы будет в момент, когда рамка находится в вертикальном положении, соответственно, максимальное — в горизонтальном.

Учитывая изложенное выше, в процессе равномерного вращения индуктируется ЭДС, характеристики величины и направления которого изменяются с определенным периодом.

Графические изображения

Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).

Горизонтальная ось отображает время, вертикальная – напряжениеГоризонтальная ось отображает время, вертикальная – напряжение

Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.

Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.

Горизонтальная ось отображает угол поворота в градусах, вертикальная - величину ЭДС (напряжение)Горизонтальная ось отображает угол поворота в градусах, вертикальная — величину ЭДС (напряжение)

Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)

Начальное положение рамкиНачальное положение рамки

Обозначения:

  • 1 – полюса магнита S и N;
  • 2 – рамка;
  • 3 – направление вращения рамки;
  • 4 – магнитное поле.

Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.

Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).

Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).

Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц). Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.

Определяется частота по формуле:  . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).

Трехфазные генераторы

Заметим, что наиболее экономически выгодным способом получения переменного электротока будет использование трехфазного генератора. Упрощенная схема его конструкции показана на рисунке.

Устройство трехфазного генератораУстройство трехфазного генератора

Как видим, в генераторе используются три катушки, размещенные со смещением 120°, соединенные между собой треугольником (на практике такое соединение обмоток генератора не применяется в виду низкого КПД). При прохождении одного из полюсов магнита мимо катушки, в ней индуктируется ЭДС.

Графическое изображение сгенерированного трехфазного электротокаГрафическое изображение сгенерированного трехфазного электротока

Чем обосновано разнообразие электротоков

У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.

В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:

  • задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
  • преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
  • поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
  • двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.

Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:

  • чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
  • питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
  • постоянное напряжение значительно безопаснее для человека, чем переменное.

Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.

www.asutpp.ru

Чем отличается переменный ток от постоянного?

Чем постоянный ток отличается от переменного и как преобразовывается?

Постоянный ток.

Постоянный ток - характеризует движение частиц в определенном направлении, его напряжение или сила имеют одно и то же значение. Источниками постоянного тока могут выступать: аккумуляторы, батарейки или генераторы, где он выпрямляется за счет коллектора. Постоянный ток применяется часто, с ним работают: бытовые приборы, зарядные устройства, его применяют в двигателях и аккумуляторах.

Переменный ток.

Чаще всего используется переменный ток, по величине и направлению он постоянно изменяется, с равными промежутками времени. Переменный ток может быть однофазным и многофазным. Для выработки переменного тока используют генераторы. Он используется в: радио, телевидении, телефонии, широко применяется в промышленности.

Преобразование.

В розетках мы получаем переменный ток, но электрическим приборам необходим - постоянный.

Для преобразования одного вида в другой используются специальные выпрямители. Преобразование может происходить как из переменного в постоянный ток, так и наоборот.

Выработка тока.

Генератор постоянного и переменного тока.

Генератор превращает механическую энергию в электрическую энергию. Тот ток, который получается после такого процесса, бывает постоянным и переменным. Устройство генератора постоянного тока простое и понятное, оно состоит из неподвижного статора, имеющего вращающийся ротор, и оснащено дополнительной обмоткой. Благодаря движениям ротора происходит выработка электрического тока. За счет действий ротора, совершаемых в магнитном поле, генератор переменного тока дает энергию. Главное преимущество такого генератора, это быстрое вращение движущего элемента. Скорость ротора быстрее в сравнении с генератором переменного тока.

Синхронный и асинхронный генератор.

Генератор переменного тока разделяют на синхронный и асинхронный. Их отличие, это возможности, которые они предоставляют. Конструкция синхронного генератора намного сложнее, чем в асинхронном. Он производит ток более чистый, пусковые загрузки переносятся легко. Такие конструкции подключают к технике, которая переносит перепады напряжения не очень хорошо.

Что касается асинхронных генераторов, то конструкция намного проще, из-за этого они легко справляются с короткими замыканиями. Их часто используют для питания техники сварочного типа и электрических инструментов. Высокоточную технику к такому устройству подключать не нужно.

Однофазный и трехфазный генератор.

Во внимание обязательно стоит брать характеристику тока, который вырабатывается. Однофазный генератор работает на 220В, а вот трехфазный 380 В. Любой покупатель, должен это знать и при покупке такой конструкции обращать на это внимание. Однофазные модели можно встретить в бытовых нуждах, для такого назначения они используются часто. А вот трехфазные генераторы питают энергией большие объекты, здания, сооружения, деревня и поселки.

Перед совершением данной покупки нужно изучить некоторую информацию, касающуюся генераторов, чтобы понимать их отличия и разницу в характеристиках. Это значительно облегчит выбор и поможет правильно подобрать генератор именно для ваших требований и нужд.

hi-po.ru

Чем постоянный ток отличается от переменного и как преобразовывается?

Постоянный электрический ток — это движение частиц с зарядом в определенном направлении. То есть его напряжение или сила (характеризующие величины) имеют одно и то же значение и направление. Это то, чем постоянный ток отличается от переменного. Но рассмотрим все по порядку.

чем постоянный ток отличается от переменного

История появления и «войны токов»

Постоянный ток раньше называли гальваническим из-за того, что его открыли в результате гальванической реакции. Томас Эдисон пробовал передавать его по линиям электрических передач. В то время велись нешуточные споры между учеными по этому вопросу. Они даже получили название «войны токов». Решался вопрос о выборе в качестве основного, переменного или постоянного. «Борьба» была выиграна переменным видом, так как постоянный несет существенные потери, передаваясь на расстоянии. Зато трансформировать переменный вид не составляет никакого труда, это то, чем постоянный ток отличается от переменного. Поэтому последний легко передавать даже на огромные расстояния.

постоянный электрический ток

Источники постоянного электрического тока

В качестве источников могут служить аккумуляторы или другие приборы, где он возникает посредством химической реакции.

Это и генераторы, где он получается в результате электромагнитной индукции, а после этого выпрямляется за счет коллектора.

Применение

В различных устройствах постоянный ток применяется довольно часто. С ним работают, например, многие бытовые приборы, зарядные устройства и генераторы автомобиля. Любой портативный аппарат запитывается от источника, вырабатавающего постоянный вид.

В промышленных масштабах его применяют в двигателях и аккумуляторах. А в некоторых странах им оснащают высоковольтные линии электропередач.

В медицине с помощью постоянного электрического тока проводят оздоровительные процедуры.

На железной дороге (для транспорта) используют и переменный, и постоянный виды.

Переменный ток

Чаще всего, впрочем, применяют именно его. Здесь среднее значение силы и напряжения за определенный период равны нулю. По величине и направлению он постоянно изменяется, причем с равными промежутками времени.

источники постоянного электрического тока

Чтобы вызвать переменный ток, используют генераторы, в которых во время электромагнитной индукции возникает электродвижущая сила. Это осуществляется при помощи магнита, вращаемого в цилиндре (роторе), и статора, выполненного в виде неподвижного сердечника с обмоткой.

Переменный ток используют в радио, телевидении, телефонии и многих других системах ввиду того, что его напряжение и силу возможно преобразовывать, почти не теряя энергию.

Широко применяют его и в промышленности, а также в целях освещения.

Он может быть однофазным и многофазным.

Переменный ток, который изменяется согласно синусоидальному закону, является однофазным. Он изменяется в течение определенного промежутка времени (периода) по величине и направлению. Частота переменного тока является числом периодов за секунду.

частота переменного тока

Во втором случае самое большое распространение получил трехфазный вариант. Это система из трех электроцепей, которые имеют одинаковую частоту и ЭДС, сдвинуты по фазе на 120 градусов. Ее используют для питания электрических двигателей, печей, осветительных приборов.

Многими разработками в сфере электричества и практическим их применением, а также воздействием на переменный ток высокой частоты человечество обязано великому ученому Николе Тесла. До сих пор не все его труды, оставшиеся потомкам, являются познанными.

Чем постоянный ток отличается от переменного и каков его путь от источника до потребителя?

Итак, переменным называют ток, способный меняться по направлению и величине в течение определенного времени. Параметры, на которые при этом обращают внимание, это частота и напряжение. В России в бытовых электрических сетях подают переменный ток, имеющий напряжение 220 В и частоту 50 Гц. Частота переменного тока — это количество изменений направления частиц определенного заряда за секунду. Получается, что при 50 Гц он меняет свое направление пятьдесят раз, в чем постоянный ток отличается от переменного.

Его источником являются розетки, к которым подключают бытовые приборы под различным напряжением.

Переменный ток начинает свое движение от электрических станций, где имеются мощные генераторы, откуда он выходит с напряжением от 220 до 330 кВ. Далее переходит в трансформаторные подстанции, которые находятся вблизи домов, предприятий и остальных конструкций.

В подстанции ток попадает под напряжением 10 кВ. Там он преобразовывается в трехфазное напряжение 380 В. Иногда с таким показателем ток переходит непосредственно на объекты (где организовано мощное производство). Но в основном его снижают до привычных во всех домах 220 В.

переменный ток высокой частоты

Преобразование

Понятно, что в розетках мы получаем переменный ток. Но часто для электрических приборов необходим постоянный вид. Для этой цели служат специальные выпрямители. Процесс состоит из следующих действий:

  • подключение моста с четырьмя диодами, имеющих необходимую мощность;
  • подключение фильтра или конденсатора на выход с моста;
  • подключение стабилизаторов напряжения для уменьшения пульсаций.

Преобразование может происходить как из переменного в постоянный ток, так и наоборот. Но последний случай будет реализовать значительно труднее. Потребуются инверторы, которые, помимо прочего, стоят совсем недешево.

fb.ru

Какой ток опаснее постоянный или переменный?

Для человека опасен как постоянный, так и переменный ток, но последний считается в 3–5 раз более опасным: пороговое безопасное значение силы постоянного тока – 50 мА, а переменного – всего 10 мА. При этом опасность переменного и постоянного тока зависит от напряжения: считается, что при напряжении до 400 В опаснее переменный ток (частотой 50 Гц) , около 500 В оба вида представляют одинаковую опасность, а при напряжении выше 500 В постоянный ток становится более опасным.

Постоянный... В переменном, может попадете в тот мамент, когда он типо отдыхает.

Который через тебя пойдет

все зависит от силы тока чем больше ток тем опаснее при одинаковой силе тока переменный опасней

Свойства электрического тока определяются характером тока ( постоянный или переменный ), напряжением и частотой его, направлением, длительностью действия. Постоянный ток действует быстрее, чем пепременный, но переменный опаснее постоянного при относительно небольшом его напряжении и низкой частоте, так как сопротивление тканей переменному току слабее, чем постоянному. Увеличение частоты периодов уменьшает вредное действие тока. Высокочастотные токи не опасны и применяются в лечебных целях.

в принципе любой убить может..

Для меня, лично, 220W голыми руками соединяю и не чую. А вот постоянный в 110W кусается.

New York Rangers хорошо написал, но вообще-то всё сильно зависит от частоты. Переменный ток достаточно высоких частот малоопасен даже при напряжениях в десятки киловольт благодаря скин-эффекту. Чем и пользовался в своих "фокусах" Тесла.

Переменный конечно! Притом в 5 раз опаснее постоянного. Короче при напряжении 24 вольта переменки опасность поражения примерно как от 110 вольт постоянки.

touch.otvet.mail.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о