Устройство ротора: Принцип работы ротора

Содержание

Ротор электродвигателя - что это?

В каждом аппарате, работающем от электрической энергии, используется такое устройство как электродвигатель, который состоит из статора – неподвижной части и ротора – подвижной. Далеко не каждому известно что такое ротор электродвигателя и какие его функции, поэтому, возникают ложные представления.


Состоит ротор из цилиндра, составленного из листов штампованной электротехнической стали, которые одеты на вал. По своей природе роторы бывают фазными и короткозамкнутыми. Фазные роторы имеют обмотку трёхфазного типа со схемой соединения «звезда» и вращающимися вместе с валом контактными кольцами. К данным кольцам с помощью определённых щёток возможно подключить:

  • дроссели для удержания токов ротора и стабилизации работы электродвигателя в моменты возможных перегрузок и падения оборотов;
  • источник постоянного тока;
  • пускорегулирующий реостат, для увеличения пускового момента с помощью снижения пускового тока;
  • инверторное питание, для управления моментных характеристик и оборотов двигателя.

Таким образом, фазные роторы снабжают асинхронные электродвигатели  рабочей стабильностью, позволяя использовать их в различных установках по типу мостовых кранов и других устройств, где не требуются широкая и плавна регулировка скорости электродвигателей большой мощности.

Короткозамкнутый ротор, имеющий обмотку с названием «беличье колесо» состоит из вставленных в сердечник стержней алюминиевого или медного происхождения и коротко замыкающих колец с торцевым лопастями. Для улучшения его пусковые характеристики на роторе выполняют паз специальной формы, создающий из-за своей неординарной относительно оси вращения структуры эффект вытеснения тока, вызывающего большие показатели сопротивлений, например, при пуске. Применяют такие роторы в двигателях асинхронного типа в приводах, которые не используют большие пусковые моменты, например, это могут быть водные насосы небольших мощностей без возможности регулировки рабочей скорости.

Среди всех преимуществ двигателей с короткозамкнутым ротором можно выделить:

  • практически одинаковая скорость с применением разных нагрузок;
  • допустимость больших рабочих перегрузок;
  • простота и удобство автоматизации пуска;
  • высокие показатели КПД;
  • конструктивная простота.

Как видим, хотя внешне и функционально роторы и имеют различия, влияющие существенно на область их применения, используются они в равных долях во всех сферах деятельности человека. Так, электродвигатели от Siemens изготавливаются с роторами и того и другого типа, что способствовало крупному внедрению этих агрегатов во многие производственные процессы.

Так же, кроме вышеперечисленных типов ротора стоит отметить и существование массивного ротора, состоящего из материала ферромагнитного происхождения, играющего роль магнитопровода и проводника одновременно. Быть может он не нашёл столь широкого применения как фазный ли короткозамкнутый, но имеет ряд преимуществ:

  • низкая себестоимость;
  • простота изготовления;
  • высокий пусковой момент;
  • высоких показатель механической прочности, что немаловажно в машинах работающих на высоких скоростях.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Устройство роторного двигателя

После создания двигателя внутреннего сгорания началась эра автомобилей. Самое большое распространение при этом получил мотор поршневого типа. Но при этом с момента создания ДВС перед конструкторами стала задача извлечения максимального КПД при минимальных затратах топлива. Решалась эта задача несколькими путями – от технического улучшения уже имеющихся двигателей, до создания абсолютно новых, с другой конструкцией. Одним из таковых стал роторный двигатель.

Роторный двигатель

Появился он значительно позже поршневого, в 30-х годах. Полноценно работоспособная же модель такого двигателя появилась и вовсе в 50-х годах. После появления роторный двигатель вызвал заинтересованность у многих автопроизводителей, и все они кинулись разрабатывать свои модели роторных силовых установок, однако вскоре от них отказались в пользу обычных поршневых. Из приверженцев роторного мотора осталась только японская фирма Mazda, которая сделала такого типа мотор своей визитной карточкой.

Особенностью такого мотора является его конструкция, которая вообще не предусматривает наличие поршней. В целом это сильно сказалось на конструктивной простоте.

В поршневых моторах энергия сгораемого топлива воспринимается поршнем, который за счет своего возвратно-поступательного движения передает ее на кривошипы коленвала, обеспечивая ему вращение.

У роторных же двигателей энергия сразу преобразовывается во вращение вала, минуя возвратно-поступательное движение. Это сказывается на уменьшении потерь мощности на трение, меньшую металлоемкость и простоту конструкции. За счет этого КПД двигателя значительно возрастает.

Конструкция

Чтобы понять принцип работы, следует разобраться, какова конструкция роторного двигателя. Итак, вместо поршней энергия сгорания топлива у такого силового агрегата воспринимается ротором. Ротор имеет вид равностороннего треугольника. Каждая сторона этого треугольника и играет роль поршня.

Ротор

Чтобы обеспечить процесс горения, ротор помещается в закрытое пространство, состоящее из трех элементов – двух боковых корпусов, и одного центрального, называющегося статором. Пространство, в котором производится процесс горения, сделано в статоре, боковые корпуса обеспечивают только герметичность этого пространства.

Внутри статора сделан цилиндр, в котором и размещается ротор. Чтобы внутри этого цилиндра происходили все необходимые процессы, выполнен он в виде овала, с немного прижатыми боками.

Сам статор с одной стороны имеет окна для впуска топливовоздушной смеси или воздуха, и выпуска отработанных газов. Противоположно им сделано отверстие под свечи зажигания.

Устройство двигателя

Особенностью движения ротора в цилиндре статора является то, что его вершины постоянно контактируют с поверхностью цилиндра, его движение сделано по эксцентриковому типу. Он не только вращается вокруг своей оси, но еще и смещается относительно нее.

Для этого в роторе сделано большое отверстие, с одной стороны этого отверстия имеется зубчатый сектор. С другой стороны в ротор вставлен вал с эксцентриком.

Чтобы обеспечить вращение в боковой корпус установлена неподвижная шестерня, входящая в зацепление с зубчатым сектором ротора, она является опорной точкой для него. При своем эксцентриковом движении он опирается на неподвижную шестерню, а зацепление обеспечивает ему вращательное движение. Вращаясь, он обеспечивает и вращение вала с эксцентриком, на который он одет.

Принцип работы

Теперь о самом принципе работы. Выполнение определенной работы поршня внутри цилиндров называется тактами. Классический поршневой двигатель имеет четыре такта:

  • впуск — в цилиндр подается горючая смесь;
  • сжатие — увеличение давления в цилиндре за счет уменьшения объема;
  • рабочий ход — энергия, выделенная при сгорании смеси, преобразовывается во вращение вала;
  • выпуск — из цилиндра выводятся отработанные газы;

Данные такты имеют все двигатели внутреннего сгорания, и сопровождаются они определенным движением поршня.

Однако они выполняются по-разному. Существуют двухтактные поршневые двигатели, в которых такты совмещены, но такие моторы чаще применяются на мотоциклах и другой бензиновой технике, хотя раньше создавались и дизельные двухтактные моторы. В них одно движение поршня включает два такта. При движении поршня вверх – впуск и сжатие, а при движении вниз – рабочий ход и выпуск. Все это обеспечивается наличием впускных и выпускных окон.

Классические автомобильные поршневые двигатели обычно являются 4-тактными, где каждый такт отделен. Но для этого в двигатель включен механизм газораспределения, который значительно усложняет конструкцию.

Что касается роторного двигателя, то отсутствие поршня как такового позволило несколько совместить конструктивные особенности 2-тактных и 4-тактных моторов.

Принцип работы

Поскольку цилиндр роторного двигателя имеет впускные и выпускные окна, то надобность в газораспределительном механизме отпала, при этом сам процесс работы сохранил все четыре такта по отдельности.

Теперь рассмотрим, как все это происходит внутри статора. Углы ротора постоянно контактируют с цилиндром статора, обеспечивая герметичное пространство между сторонами ротора.

Овальная форма цилиндра статора обеспечивает изменение пространства между стенкой цилиндра и двумя близлежащими вершинами ротора.

Далее рассмотрим действие внутри цилиндра только с одной стороны ротора. Итак, при вращении ротора, одна из его вершин, проходя сужение овала цилиндра, открывает впускное окно и в полость между стороной треугольника ротора и стенкой цилиндра начинает поступать горючая смесь или воздух. При этом движение продолжается, эта вершина достигает и проходит высокую часть овала и дальше идет на сужение. Возможность постоянного контакта вершины ротора обеспечивается его эксцентриковым движением.

Впуск воздуха производится до тех пор, пока вторая вершина ротора не перекроет впускное окно. В это время первая вершина уже прошла высоту овала цилиндра и пошла на его сужение, при этом пространство между цилиндром и стороной ротора начинает значительно сокращаться в объеме – происходит такт сжатия.

В момент, когда сторона ротора проходит максимальное сужение, в пространство между стороной ротора и стенкой цилиндра подается искра, которая воспламеняет горючую смесь, сжатую между зауженной стенкой цилиндра и стороной ротора.

Особенностью роторного двигателя является то, что воспламенение производится не перед прохождением стороны так называемой «мертвой точки», как это делается в поршневом двигателе, а после ее прохождения. Делается это для того, чтобы энергия, выделенная при сгорании, воздействовала на ту часть стороны ротора, которая уже прошла ВМТ (верхняя мёртвая точка). Этим обеспечивается вращение ротора в нужную сторону.

После прохождения свечи, первая вершина ротора начинает открывать выпускное окно, и постепенно, пока вторая вершина не перекроет выпускное окно – производится отвод газов.

Такты двигателя

Следует отметить, что был описан весь процесс, сделанный только одной стороной ротора, все стороны проделывают процесс один за другим. То есть, за одно вращение ротора производится одновременно три цикла – пока в полость между одной стороной ротора и цилиндра запускается воздух или горючая смесь, в это время вторая сторона ротора проходит ВМТ, а третья – выпускает отработанные газы.

Теперь о вращении вала, на эксцентрик которого надет ротор. За счет этого эксцентрика полный оборот вала производится меньше чем за один оборот ротора. То есть, за один полный цикл вал сделает три оборота, при этом отдавая полезное действие дальше. В поршневом двигателе один цикл происходит за два оборота коленчатого вала и только один полуоборот при этом является полезным. Этим обеспечивается высокий выход КПД.

Если сравнить роторный двигатель с поршневым, то выход мощности с одной секции, которая состоит из одного ротора и статора, равна мощности 3-цилиндрового двигателя.

А если учитывать, что Mazda устанавливала на свои авто двухсекционные роторные моторы, то по мощности они не уступают 6-цилиндровым поршневым моторам.

Достоинства и недостатки

Теперь о достоинствах роторных моторов, а их вполне много. Выходит, что одна секция по мощности равна 3-цилиндровому мотору, при этом она в габаритных размерах значительно меньше. Это сказывается на компактности самых моторов. Об этом можно судить по модели Mazda RX-8. Этот автомобиль, обладая хорошим показателем мощности, имеет средне моторную компоновку, чем удалось добиться точной развесовки авто по осям, влияющую на устойчивость и управляемость авто.

Помимо компактных размеров в этом двигателе отсутствует газораспределительный механизм (ГРМ), ведь все фазы газораспределения выполняются самим ротором. Это значительно уменьшило металлоемкость конструкции, и как следствие – массу двигателя.

Из-за ненадобности поршней и ГРМ снижено количество подвижных частей в двигателе, что сказывается на надежности конструкции.

Сам двигатель из-за отсутствия разнонаправленных движений, которые есть в поршневом моторе, при работе меньше вибрирует.

Но и недостатков у такого двигателя тоже хватает. Начнем с того, что система смазки у него идентична с системой 2-тактного двигателя. То есть, смазка поверхности цилиндра производится вместе с топливом. Но только организация подачи масла несколько иная. Если в 2-тактном двигателе масло для смазки добавляется прямо в топливо, то в роторном оно подается через форсунки, а потом оно уже смешивается с топливом.

Использование такого типа смазки привело к тому, что для двигателя подходит только минеральное масло или специализированное полусинтетическое. При этом в процессе работы масло сгорает, что негативно сказывается на составе выхлопных газов. По экологичности роторный двигатель сильно уступает 4-тактному поршневому двигателю.

При всей простоте конструкции роторный мотор обладает сравнительно небольшим ресурсом. У той же Mazda пробег до капитального ремонта составляет всего 100 тыс. км. В первую очередь «страдают» апексы – аналоги компрессионных колец в поршневом двигателе. Апексы размещаются на вершинах ротора и обеспечивают плотное прилегание вершины к стенке цилиндра.

Недостатком является также невозможность проведения восстановительных работ. Если у ротора изношены посадочные места апексов – ротор полностью заменяется, поскольку восстановить эти места невозможно.

То же касается и цилиндра статора. При его повреждении расточка практически невозможна из-за сложности выполнения такой работы.

Из-за большой скорости вращения эксцентрикового вала, его вкладыши изнашиваются значительно быстрее.

В общем, при значительно простой конструкции, из-за сложности процессов его работы роторный двигатель оказывается по надежности значительно хуже поршневого.

Но в целом, роторный двигатель не является тупиковой ветвью развития двигателей внутреннего сгорания. Та же Mazda постоянно совершенствует данный тип мотора. К примеру, мотор, устанавливаемый на RX-8 по токсичности уже мало отличается от поршневого, что является большим достижением.

Теперь они стараются еще и увеличить ресурс. Однако это скорее всего будет достигнуто за счет использования особых материалов изготовления элементов двигателя, а также из-за высокой степени обработки поверхностей, что еще больше осложнит и увеличит стоимость ремонта.

Устройство автомобиля. Как работает роторный двигатель
Роторный двигатель представляет собой двигатель внутреннего сгорания, устройство которого в корне отличается от обычного поршневого двигателя.
В поршневом двигателе в одном и том же объеме пространства (цилиндре) выполняются четыре такта: впуск, сжатие, рабочий ход и выпуск. Роторный двигатель осуществляет те же такты, но все они происходят в различных частях камеры. Это можно сравнить с наличием отдельного цилиндра для каждого такта, причем поршень постепенно перемещается от одного цилиндра к другому.

Роторный двигатель изобретен и разработан доктором Феликсом Ванкелем и иногда называется двигатель Ванкеля или роторный двигатель Ванкеля.

В этой статье мы расскажем о том, как работает роторный двигатель. Для начала рассмотрим принцип его работы.

Принцип работы роторного двигателя

Ротор и корпус роторного двигателя Mazda RX-7. Эти детали заменяют поршни, цилиндры, клапаны и распредвал поршневого двигателя. Как и поршневой, роторный двигатель использует давление, которое создается при сгорании топливовоздушной смеси. В поршневых двигателях, это давление создается в цилиндрах, и приводит поршни в движение. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

В роторном двигателе, давление сгорания образуется в камере, сформированной частью корпуса, закрытой стороной треугольного ротора, который используется вместо поршней.

Ротор вращается по траектории, напоминающую линию, нарисованную спирографом. Благодаря такой траектории, все три вершины ротора контактируют с корпусом, образуя три разделенных объема газа. Ротор вращается, и каждый из этих объемов попеременно расширяется и сжимается. Это обеспечивает поступление топливовоздушной смеси в двигатель, сжатие, полезную работу при расширении газов и выпуск выхлопа.

Далее мы расскажем о строении роторного двигателя, но, прежде всего, рассмотрим некоторые автомобили с таким типом двигателя.

Mazda RX-8

Mazda стала пионером в массовом производстве автомобилей с роторным двигателем. RX-7, который поступил в продажу в 1978 году, был, пожалуй, наиболее успешным автомобилем с роторным двигателем. Но ему предшествовал целый ряд автомобилей, грузовиков и даже автобусов с роторным двигателем, начиная с Cosmo Sport 1967 года. Однако RX-7 не производится с 1995 года, но идея роторного двигателя не умерла.

Mazda RX-8 оснащена роторным двигателем под названием RENESIS. Этот двигатель был назван лучшим двигателем 2003 г. Он является атмосферным двухроторным и производит 250 л.с.

Строение роторного двигателя

Роторный двигатель имеет систему зажигания и систему впрыска топлива, схожие с используемыми в поршневых двигателях. Строение роторного двигателя в корне отличается от поршневого.

Ротор

Ротор имеет три выпуклых стороны, каждая из которых выполняет роль поршня. Каждая сторона ротора имеет углубление, что повышает скорость вращения ротора, предоставляя больше пространства для топливовоздушной смеси.

На вершине каждой грани расположена металлическая пластина, которая разделяет пространство на камеры. Два металлических кольца на каждой стороне ротора формируют стенки этих камер.

В центре ротора расположено зубчатое колесо с внутренним расположением зубьев. Оно сопрягается с шестерней, закрепленной на корпусе. Такое сопряжение задает траекторию и направление вращения ротора в корпусе.

Корпус (статор)

Корпус имеет овальную форму (форму эпитрохоиды, если быть точным). Форма камеры разработана так, чтобы три вершины ротора всегда находились в контакте со стенкой камеры, образуя три изолированных объемах газа.

В каждой части корпуса происходит один из процессов внутреннего сгорания. Пространство корпуса разделено для четырех тактов:

  • Впуск
  • Сжатие
  • Рабочий такт
  • Выпуск

Порты впуска и выпуска расположены в корпусе. В портах отсутствуют клапаны. Выпускной порт непосредственно соединен с выхлопной системой, а впускной порт - с дросселем.

Выходной вал

Выходной вал (обратите внимание на эксцентриковые кулачки) Выходной вал имеет закругленные выступы-кулачки, расположенные эксцентрично, т.е. смещены относительно центральной оси. Каждый ротор сопряжен с одним из этих выступов. Выходной вал является аналогом коленчатого вала в поршневых двигателях. При вращении ротор толкает кулачки. Так как кулачки установлены несимметрично, сила с которой ротор на него давит, создает крутящий момент на выходном валу, заставляя его вращаться.

Сбор роторного двигателя

Роторный двигатель собирается слоями. Двухроторный двигатель состоит из пяти слоев, удерживаемых длинными болтами, установленными по кругу. Охлаждающая жидкость проходит через все части конструкции.

Два крайних слоя имеют уплотнения и подшипники для выходного вала. Они также изолируют две части корпуса, в которых расположены роторы. Внутренние поверхности этих частей являются гладкими, что обеспечивает надлежащее уплотнение роторов. Впускной порт подачи расположен в каждой из крайних частей.

Часть корпуса, в которой расположен ротор (обратите внимание на расположение выпускного порта) Следующий слой включает корпус ротора овальной формы и выпускной порт. В этой части корпуса установлен ротор.

Центральная часть включает два впускных порта - по одному для каждого ротора. Она также разделяет роторы, поэтому ее внутренняя поверхность является гладкой.

В центре каждого ротора расположено зубчатое колесо с внутренним расположением зубьев, которое вращается вокруг меньшей шестерни, установленной на корпусе двигателя. Она определяет траекторию вращения ротора.

Мощность роторного двигателя

В центральной части расположен впускной порт для каждого ротора Как и поршневые двигатели, в роторном двигателе внутреннего сгорания используется четырехтактный цикл. Но в роторном двигателе такой цикл осуществляется иначе.

За один полный оборот ротора эксцентриковый вал выполняет три оборота.

Основным элементом роторного двигателя является ротор. Он выступает в роли поршней в обычном поршневом двигателе. Ротор установлен на большом круглом кулачке выходного вала. Кулачок смещен относительно центральной оси вала и выступает в роли коленчатой рукояти, позволяя ротору вращать вал. Вращаясь внутри корпуса, ротор толкает кулачок по окружности, поворачивая его три раза за один полный оборот ротора.

Размер камер, образованных ротором, изменяется при его вращении. Такое изменение размера обеспечивает насосное действие. Далее мы рассмотрим каждый из четырех тактов роторного двигателя.

Впуск

Такт впуска начинается при прохождении вершины ротора через впускной порт. В момент прохождения вершины через впускной порт, объем камеры приближен к минимальному. Далее объем камеры увеличивается, и происходит всасывание топливовоздушной смеси.

При дальнейшем повороте ротора, камера изолируется, и начинается такт сжатия.

Сжатие

При дальнейшем вращении ротора, объем камеры уменьшается, и происходит сжатие топливовоздушной смеси. При прохождении ротора через свечи зажигания, объем камеры приближен к минимальному. В этот момент происходит воспламенение.

Рабочий такт

Во многих роторных двигателях установлено две свечи зажигания. Камера сгорания имеет достаточно большой объем, поэтому при наличии одной свечи, воспламенение происходило бы медленнее. При воспламенении топливовоздушной смеси образуется давление, приводящее ротор в движение.

Давление сгорания вращает ротор в сторону увеличения объема камеры. Газы сгорания продолжают расширяться, вращая ротор и создавая мощность до момента прохождения вершины ротора через выпускной порт.

Выпуск

При прохождении ротора через выпускной порт, газы сгорания под высоким давлением выходят в выхлопную систему. При дальнейшем вращении ротора, объем камеры уменьшается, выталкивая оставшиеся выхлопные газы в выпускной порт. К тому моменту, как объем камеры приближается к минимальному, вершина ротора проходит через впускной порт, и цикл повторяется.

Необходимо отметить, что каждая из трех сторон ротора всегда вовлечена в один из тактов цикла, т.е. за один полный оборот ротора осуществляется три рабочих такта. За один полный оборот ротора, выходной вал совершает три оборота, т.к. на один оборот вала приходится один такт.

Различия и проблемы

По сравнению с поршневым двигателем, роторный двигатель имеет определенные отличия.

Меньше движущихся деталей

В отличие от поршневого двигателя, в роторном двигателе используется меньше движущихся деталей. Двухроторный двигатель включает три движущиеся детали: два ротора и выходной вал. Даже в простейшем четырехцилиндровом двигателе используется не менее 40 движущихся деталей, включая поршни, шатуны, распредвал, клапаны, клапанные пружины, коромысла, ремень ГРМ и коленвал.

Благодаря уменьшению количества движущихся деталей, повышается надежность роторного двигателя. По этой причине некоторые производители вместо поршневых двигателей используют роторные на своих воздушных судах.

Плавная работа

Все части роторного двигателя вращаются непрерывно в одном направлении, а не постоянно меняют направление движения, как поршни в обычном двигателе. В роторных двигателях используются сбалансированные вращающиеся противовесы, предназначенные для гашения вибраций.

Подача мощности также обеспечивается более плавно. В связи с тем, что каждый такт цикла протекает за поворот ротора на 90 градусов, и выходной вал совершает три оборота на каждый оборот ротора, каждый такт цикла протекает за поворот выходного вала на 270 градусов. Это значит, что двигатель с одним ротором обеспечивает подачу мощности при 3/4 оборота выходного вала. В одноцилиндровом поршневом двигателе, процесс сгорания происходит на 180 градусах каждого второго оборота, т.е. 1/4 каждого оборота коленвала (выходной вал поршневого двигателя).

Медленная работа

В связи с тем, что ротор вращается со скоростью, равной 1/3 скорости вращения выходного вала, основные движущиеся детали роторного двигателя движутся медленнее, чем детали в поршневом двигателе. Благодаря этому, также обеспечивается надежность.

Проблемы

Роторные двигатели имеют ряд проблем:
  • Сложное производство в соответствии с нормами состава выбросов.
  • Затраты на производство роторных двигателей выше по сравнению с поршневыми, так как количество производимых роторных двигателей меньше.
  • Расход топлива у автомобилей с роторным двигателей выше по сравнению с поршневыми двигателями, в связи с тем, что термодинамический КПД снижен из-за большого объема камеры сгорания и низкого коэффициента сжатия.

Фазный ротор электродвигателя

Широкое распространение асинхронного электродвигателя (АД) вызвано его надежностью и простотой конструкции. Статор такого двигателя стандартный, представляет собой изготовленный из пластин электростатической стали полый цилиндр с трехфазной обмоткой. Ротор же может быть короткозамкнутым и фазным. Последний вариант получил более широкое распространение по ряду причин, хотя его конструкция намного сложнее, чем у короткозамкнутого ротора.



 

Конструкция фазного ротора


 

Фазный ротор  АД конструктивно напоминает его статор. Основа ротора набирается из пластин электростатической стали, которые насаживаются на вал. Конструкция имеет продольные пазы, в которые укладываются витки катушек фазной обмотки. Количество фаз ротора строго соответствует количеству фаз статора. Для подключения обмотки ротора к цепи, на валу последнего устанавливаются 3 контактных кольца, к которым подведены концы обмотки, находящиеся в соприкосновении с токопроводящими щетками. В свою очередь щетки имеют выходы в коробку корпуса, что позволят подключать внешнее дополнительное сопротивление.

В зависимости от напряжения сети, фазы обмотки соединяются “треугольником” или “звездой”. Оси катушек двухполюсного электродвигателя смещены на 120 градусов относительно друг друга.

Контактные кольца изготавливаются из латуни или стали. На вал они посажены с обязательной изоляцией между собой. Щетки расположены на щеткодержатле, изготовлены из металлографита, к кольцам прижимаются посредством пружин.


Зачем нужно добавочное сопротивление?

Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.

Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.

Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.


Отличие короткозамкнутого ротора от фазного

В короткозамкнутом роторе электродвигателя, в отличие от фазного варианта, нет обмоток. Их заменяют замкнутые с торцов между собой кольцами стержни, изготовленные из алюминия или меди. Визуально конструкция такого ротора напоминает беличье колесо, от чего он и получил свое название - “беличья клетка”.

Короткозамкнутый ротор приводится во вращение за счет наведения тока магнитным полем статора. Чтобы исключить пульсирование магнитного поля в роторе, стержни “беличьей клетки” располагаются параллельно между собой, но под наклоном относительно оси вращения. АД с короткозамкнутым ротором обладают высокой надежностью за счет отсутствия щеток, которые со временем перетираются. Кроме того, их стоимость меньше, чем у вариантов с фазным ротором.


Преимущества и недостатки электродвигателя с фазным ротором

Широкое распространение АД с фазным ротором получил за счет ряда серьезных преимуществ перед другими машинами подобного рода. Среди них следует отметить большой вращающий момент при запуске, а также относительно постоянную скорость вращения даже при высоких нагрузках. Такие электродвигатели для запуска требуют меньший пусковой ток, а конструкция позволяет использовать автоматические пусковые устройства. Кроме того, эти электрические машины хорошо переносят продолжительные перегрузки.

Как и любой электрический механизм, электродвигатели с фазным ротором имеют ряд недостатков:

  • Чувствительность к перепадам напряжения;
  • Большие габаритные размеры
  • Высокая стоимость;;
  • Более сложная конструкция за счет цепи ротора с добавочным сопротивлением;
  • Меньшие показатели коэффициента мощности и КПД (относительно АД с короткозамкнутым ротором).

  Область применения электродвигателей с фазным ротором

Ад с фазным ротором, за счет высокого крутящего момента, низких пусковых токов и способности долговременно работать при повышенных нагрузках, используются там, где необходима большая мощность электродвигателя, но нет необходимости плавно регулировать скорость вращения в широких диапазонах. Кроме того, эти машины отлично приспособлены под пуск с нагрузкой на валу.

За счет высокой производительности, наиболее часто АД с фазным ротором используются на различном серьезном, тяжелом силовом оборудовании, например, подъемных кранах, лифтовых приводах, станках, различных подъемниках. Иными словами, эти двигатели используются там, где есть необходимость запуска под нагрузкой, а не на холостом ходу.


  Проверка электродвигателя с фазным ротором


Как известно, электродвигатели с фазным ротором имеют обмотки как на статоре, так и на роторе, что повышает вероятность выхода из строя именно одной из них.

Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.

Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.

О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:


  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата

 Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

Асинхронный двигатель с короткозамкнутым ротором: конструкция, принцип работы

Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.

Конструкция

В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они заключены в защитный кожух. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.

Конструкции статоров рассматриваемых электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока. Сердечники статора, предназначенного для работы при трехфазном напряжении, располагаются по кругу под углом 120º. На них устанавливаются обмотки из изолированной медной проволоки определённого сечения, которые соединяются треугольником или звездой. Конструкция магнитопровода статора жёстко крепится на стенках цилиндрического корпуса.

Строение электродвигателя понятно из рисунка 1. Обратите внимание на конструкцию обмоток без сердечника в короткозамкнутом роторе.

Строение асинхронного двигателя с КЗ РоторомРис. 1. Строение асинхронного двигателя с КЗ Ротором

Немного по-другому устроен ротор. Конструкция его обмотки очень похожа на беличью клетку. Она состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца. В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление, но он дороже алюминия. К тому же медь быстрее плавится, а это не желательно, так как вихревые токи могут сильно нагревать сердечник.

Конструктивно стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, а проводники обмотки впрессовывают (заливают) в пазы магнитопровода. При этом нет необходимости в изоляции пазов сердечника. На рисунке 2 показано фото ротора с КЗ обмотками.

Ротор асинхронного двигателя с КЗ обмотками Рис. 2. Ротор асинхронного двигателя с КЗ обмотками

Пластины магнитопроводов таких роторов не требуют лаковой изоляции поверхностей. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей, доля которых составляет до 90% от общего числа электромоторов.

Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров. Оптимальный зазор находится в пределах от 0,5 мм до 2 мм.

В зависимости от количества используемых фаз асинхронные электродвигатели можно разделить на три типа:

Они отличаются количеством и расположением обмоток статора. Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У них лучшие пусковые характеристики. Зачастую такие электродвигатели используют простую схему пуска.

Двухфазные двигатели имеют две перпендикулярно расположенных обмотки статора, на каждую из которых поступает переменный ток. Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания второй применяют фазосдвигающий конденсатор. Без этой детали вращение вала асинхронного электродвигателя самостоятельно не начнётся. В связи с тем, что конденсатор является неотъемлемой частью двухфазного электромотора, такие двигатели ещё называют конденсаторными.

В конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети, либо замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.

Принцип работы

Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

n= (f1*60) / p, где n1 – синхронная частота,  f1 частота переменного тока, а pколичество пар полюсов.

В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем. В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы. Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.

Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

s = 100% * ( n/ n1) = 100% * (n— n2) / n1 , где nsчастота скольжения; n1, n2 – частоты вращений статорных и роторных магнитных полей соответственно.

С целью уменьшения гармоник ЭДС и сглаживания пульсаций момента силы, стержни короткозамкнутых витков немного скашивают. Взгляните ещё раз на рис. 2 и обратите внимание на расположение стержней, выполняющих роль обмоток ротора, относительно оси вращения.

Скольжение зависит от того, какую механическую нагрузку приложено к валу двигателя. В асинхронных электромоторах изменение параметров скольжения происходит в диапазоне от 0 до 1. Причём в режиме холостого хода набравший обороты ротор почти не испытывает активного сопротивления. S приближается к нулю.

Увеличение нагрузки способствует увеличению скольжения, которое может достигнуть единицы, в момент остановки двигателя из-за перегрузки. Такое состояние равносильно режиму короткого замыкания и может вывести устройство из строя.

Относительная величина отставания соответствующая номинальной нагрузке электрической машины называется номинальным скольжением. Для маломощных электромоторов и двигателей средней мощности этот показатель изменяется в небольших пределах – от 8% до 2%. При неподвижности ротора электродвигателя скольжение стремится к 0, а при работе на холостом ходу оно приближается к 100%.

Во время запуска электромотора его обмотки испытывают нагрузку, что приводит к резкому увеличению пусковых токов. При достижении номинальных мощностей электрические двигатели с короткозамкнутыми витками самостоятельно восстанавливают номинальную частоту ротора.

Обратите внимание на кривую крутящего момента скольжения, изображённую на рис. 3.

Кривая крутящего момента скольженияРис. 3. Кривая крутящего момента скольжения

При увеличении крутящего момента коэффициент s изменяется от 1 до 0 (см. отрезок «моторная область»). Возрастает также скорость вращения вала. Если скорость вращения вала превысит номинальную частоту, то крутящий момент станет отрицательным, а двигатель перейдёт в режим генерации (отрезок «генерирующая область»). В таком режиме ротор будет испытывать магнитное сопротивление, что приведёт к торможению мотора. Колебательный процесс будет повторяться, пока не стабилизируется крутящий момент, а скольжение не приблизится к номинальному значению.

Преимущества и недостатки

Повсеместное использование асинхронных двигателей с короткозамкнутыми роторами обусловлено их неоспоримыми преимуществами:

  • стабильностью работы на оптимальных нагрузках;
  • высокой надёжностью в эксплуатации;
  • низкие эксплуатационные затраты;
  • долговечностью функционирования без обслуживания;
  • сравнительно высокими показателями КПД;
  • невысокой стоимостью, по сравнению с моделями на основе фазных роторов и с другими типами электромоторов.

Из недостатков можно отметить:

  • высокие пусковые токи;
  • чувствительность к перепадам напряжений;
  • низкие коэффициенты скольжений;
  • необходимость в применении устройств, таких как преобразователи частоты, пусковые реостаты и др., для улучшения характеристик электромотора;
  • ЭД с короткозамкнутым ротором нуждаются в дополнительных коммутационных управляющих устройствах, в случаях, когда возникает необходимость регулировать скорость.

Электродвигатели данного типа имеют приличную механическую характеристику. Несмотря на недостатки, они лидируют по показателям их применения.

Основные технические характеристики

В зависимости от класса электродвигателя, его технические характеристики меняются. В рамках данной статьи не ставится задача приведения параметров всех существующих классов двигателей. Мы остановимся на описании основных технических характеристик для электромоторов классов 56 А2 – 80 В2.

В этом небольшом промежутке на линейке моделей эелектромоторов с короткозамкнутыми роторами можно отметить следующее:

Мощность составляет от 0,18 кВт (класс 56 А2) до 2,2 кВт (класс 80 В2).

Ток при максимальном напряжении – от 0,55 А до 5А.

КПД от 66% до 83%.

Частота вращения вала для всех моделей из указанного промежутка составляет 3000 об./мин.

Технические характеристики конкретного двигателя указаны в его паспорте.

Подключение

Статорные обмотки трёхфазного АДКР можно подключать по схеме «треугольник» либо «звезда». При этом для звёздочки требуется напряжение выше, чем для треугольника.

Обратите внимание на то, что электродвигатель, подключенный разными способами к одной и той же сети, потребляет разную мощность. Поэтому нельзя подключать электромотор, рассчитанный на схему «звезда» по принципу треугольника. Но с целью уменьшения пусковых токов можно коммутировать на время пуска контакты звезды в треугольник, но тогда уменьшится и пусковой момент.

Схемы включения понятны из рисунка 4.

Схемы подключенияРис. 4. Схемы подключения

Для подключения трёхфазного электрического двигателя к однофазному току применяют фазосдвигающие элементы: конденсаторы, резисторы. Примеры таких подключений смотрите на рисунке 5. Можно использовать как звезду, так и треугольник.

Примеры подключений в однофазную сетьРис. 5. Примеры схем подключений в однофазную сеть

С целью управления работой двигателя в электрическую цепь статора подключаются дополнительные устройства.

Принцип работы асинхронного двигателя

Электродвигатель предназначен для преобразования, с малыми потерями, электрическую энергию в механическую.

Строение двигателя

Основные элементы электродвигателя это – статор, ротор, их обмотки и магнитопровод.

Преобразование электрической энергии в механическую происходит во вращающейся части мотора — роторе.

У двигателя переменного тока, ротор получает энергию не только за счет магнитного поля, но и при помощи индукции. Таким образом, они называются асинхронными двигателями. Это можно сравнить с вторичной обмоткой трансформатора. Эти асинхронные двигатели еще называют вращающимися трансформаторами. Чаще всего используется модели рассчитанные на трех фазное включение.

Конструкция асинхронного двигателя

Направление вращения электродвигателя задается правилом левой руки буравчика: оно демонстрирует связь между магнитным полем и проводником.

Второй очень важный закон – Фарадея:

  1. ЭДС наводиться в обмотке, но электромагнитный поток меняется во временем.
  2. Величина наведенной ЭДС прямо пропорциональна скорости изменения электрического потока.
  3. Направление ЭДС противодействует току.

Принцип действия

При подаче напряжения на неподвижные обмотки статора, оно создает магнитное в статора. Если подается напряжение переменного тока, то магнитный поток, созданный им, изменяется. Так статор производит изменение магнитного поля, и ротор получает магнитные потоки.

Таким образом, ротор электродвигателя принимает эти поток статора и, следовательно, вращается. Это основной принцип работы и скольжения в асинхронных машинах. Из вышеизложенного следует отметить, что магнитный поток статора (и его напряжение) должно быть равно переменному току для вращения ротора, так что асинхронная машина может работать только от сети переменного тока.

Принцип работы асинхронного двигателя

Когда такие двигатели действуют в качестве генератора, они будет генерировать непосредственно переменный ток. В случае такой работы, ротор вращается с помощью внешних средств скажем, турбины. Если ротор имеет некоторый остаточный магнетизм, то есть некоторые магнитные свойства, которые сохраняет по типу магнита внутри материала, то ротор создает переменный поток в стационарной обмотке статора. Так что это обмотки статора будут получать наведенное напряжение по принципу индукции.

Индукционные генераторы используются в небольших магазинах и домашних хозяйствах, чтобы обеспечить дополнительную поддержку питания и являются наименее дорогостоящими из-за легкого монтажа. В последнее время они широко используется людьми в тех странах, где электрические машины теряют мощность из-за постоянных перепадов напряжения в питающей электросети. Большую часть времени, ротор вращается при помощи небольшого дизельного двигателя соединенного с асинхронным генератором переменного напряжения.

Как вращается ротор

Вращающийся магнитный поток проходит через воздушный зазор между статором, ротором и обмоткой неподвижных проводников в роторе. Этот вращающийся поток, создает напряжение в проводниках ротора, тем самым заставляя наводиться в них ЭДС. В соответствии с законом Фарадея электромагнитной индукции, именно это относительное движение между вращающимся магнитным потоком и неподвижными обмотками ротора, которые возбуждает ЭДС, и является основой вращения.

Двигатель с короткозамкнутым ротором, в котором проводники ротора образовывают замкнутую цепь, в следствии чего возникает ЭДС наводящая ток в нем, направление задается законом Ленса, и является таким, чтобы противодействовать причине его возникновения. Относительное движение ротора между вращающимся магнитным потоком и неподвижным проводником и является его действием к вращению. Таким образом, чтобы уменьшить относительную скорость, ротор начинает вращаться в том же направлении, что и вращающийся поток на обмотках статора, пытаясь поймать его. Частота наведенной на него ЭДС такая же, как частота питания.

Гребневые асинхронные двигатели

Когда напряжение питания низкое, возбуждение обмоток короткозамкнутого ротора не происходит. Это обусловлено тем что, когда число зубцов статора и число зубьев ротора равное, таким образом вызывая магнитную фиксацию между статором и ротором. Этот физический контакт иначе называется зубо-блокировкой или магнитной блокировкой. Данная проблема может быть преодолена путем увеличения количества пазов ротора или статора.

Подключение

Асинхронный двигатель можно остановить, просто поменяв местами любые два из выводов статора. Это используется во время чрезвычайных ситуаций. После он изменяет направление вращающегося потока, который производит вращающий момент, тем самым вызывая разрыв питания на роторе. Это называется противофазным торможением.

Видео: Как работает асинхронный двигатель

//www.youtube.com/embed/hu9TaxRe2UE?feature=player_detailpage

Для того чтобы этого не происходило в однофазном асинхронном двигателе, необходимо использование конденсаторного устройства.

Его нужно подключить к пусковой обмотке, но предварительно обязательно проводится его расчет.

Формула, из которой следует, что электрические машины переменного тока двухфазного или однофазного типа должны снабжаться конденсаторами с мощностью, равной самой мощности двигателя.

QC = Uс I2 = U2 I2 / sin2

Схема: Подключение асинхронного двигателя

Аналогия с муфтой

Рассматривая принцип действия асинхронного электродвигателя, используемого в промышленных машинах, и его технические характеристики, нужно сказать про вращающуюся муфту механического сцепления . Крутящий момент на валу привода должен равняться крутящему моменту на ведомом валу. Кроме того, следует подчеркнуть, что эти два момента являются одним и тем же, поскольку крутящий момент линейного преобразователя вызывается трением между дисков внутри самой муфты.

Электромагнитная муфта сцепления

Похожий принцип действия и у тягового двигателя с фазным ротором. Система такого мотора состоит из восьми полюсов (из которых 4 – основные, а 4 – добавочные), и остовы. На основных полюсах расположены медные катушки. Вращение такого механизма обязано зубчатой передаче, которая получает крутящий момент от вала якоря, так же называемого сердечником. Включение в сеть, производится четырьмя гибкими кабелями. Основное назначение многополюсного электродвигателя – приведение в движение тяжелой техники: тепловозы, тракторы, комбайны и в некоторых случаях, станки.

Достоинства и недостатки

Устройство асинхронного двигателя является практически универсальным, но так же, у данного механизма есть свои плюсы и минусы.

Преимущества асинхронных двигателей переменного тока:

  1. Конструкция простой формы.
  2. Низкая стоимость производства.
  3. Надежная и практичная в обращении конструкция.
  4. Не прихотлив в эксплуатации.
  5. Простая схема управления

Эффективность этих двигателей очень высока, так как нет потерь на трение, и относительно высокий коэффициент мощности.

Недостатки асинхронных двигателей переменного тока:

  1. Не возможен контроль скорости без потерь мощности.
  2. Если увеличивается нагрузка – уменьшается момент.
  3. Относительно небольшой пусковой момент.

Трехфазный асинхронный двигатель

Трехфазный асинхронный электродвигатель - это асинхронный электродвигатель, который имеет трехфазную обмотку статора.

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Асинхронный двигатель с короткозамкнутым ротором - это асинхронный электродвигатель, у которого ротор выполнен с короткозамкнутой обмоткой в виде беличьей клетки [1].

Конструкция асинхронного электродвигателя

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей - статора и ротора. Статор - неподвижная часть, ротор - вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор асинхронного двигателяРотор асинхронного двигателя

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Корпус и сердечник статора асинхронного электродвигателяКонструкция шихтованного сердечника асинхронного двигателя

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле - это основная концепция электрических двигателей и генераторов.

ЗагрузкаВращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

, где n1 – частота вращения магнитного поля статора, об/мин, f1 – частота переменного тока, Гц, p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

ЗагрузкаМагнитное поле прямого проводника с постоянным токомМагнитное поле создаваемое обмоткой

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времениТок протекающий в витках электродвигателя (сдвиг 60°)ЗагрузкаВращающееся магнитное поле

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор "беличья клетка" наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый роторМагнитный момент действующий на ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2, где s – скольжение асинхронного электродвигателя, n1 – частота вращения магнитного поля статора, об/мин, n2 – частота вращения ротора, об/мин,

Рассмотрим случай когда частота вращения ротора будет совпадать с частотой вращения магнитного поля статора. В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. Это значит что сила действующая на ротор будет равна нулю. Таким образом ротор будет замедляться. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила. В реальности же ротор асинхронного электродвигателя никогда не достигнет скорости вращения магнитного поля статора. Ротор будет вращаться с некоторой скоростью которая немного меньше синхронной скорости.

Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0—100%. Если s~0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s=1 — режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 8% до 2%.

Преобразование энергии

Асинхронный двигатель преобразует электрическую энергию подаваемую на обмотки статора, в механическую (вращение вала ротора). Но входная и выходная мощность не равны друг другу так как во время преобразования происходят потери энергии: на трение, нагрев, вихревые токи и потери на гистерезисе. Это энергия рассеивается как тепло. Поэтому асинхронный электродвигатель имеет вентилятор для охлаждения.

Параметры асинхронного двигателя

При подборе таких машин, а также при дальнейшей их эксплуатации необходимо учитывать характеристики асинхронного двигателя. Они бывают энергетические - это коэффициент полезного действия, коэффициент мощности. Важно учитывать и механические показатели. Основным из них считается зависимость между скоростью вращения вала и рабочим усилием, прикладываемым к нему. Существуют ещё пусковые характеристики. Они определяют пусковой, минимальный и максимальный моменты и их соотношение. Важно также знать, каков пусковой ток асинхронного двигателя. Для наиболее эффективного использования двигателя необходимо учитывать все эти параметры.

Нельзя оставить без внимания вопрос энергосбережения. В последнее время он рассматривается не только с позиции уменьшения эксплуатационных затрат. Экономичность электродвигателей снижает уровень экологических проблем, связанных с производством электроэнергии.

Перед производителями постоянно ставятся задачи разработки и выпуска энергосберегающих двигателей, повышения эксплуатационного ресурса, уменьшения шумового уровня.

Улучшить энергосберегающие показатели можно путём снижения потерь при эксплуатации. А они напрямую зависят от рабочей температуры машины. Кроме того, совершенствование этой характеристики неизбежно приведёт к увеличению срока эксплуатации двигателя.

Снизить температуру обмоток можно, применяя вентилятор наружного обдува, закреплённый на хвостовике вала ротора. Но это приводит к неизбежному повышению шума, производимого двигателем при работе. Особенно ощутим этот показатель при высокой скорости вращения ротора.

Таким образом, видно, что асинхронный двигатель имеет один существенный недостаток. Он не способен поддерживать постоянную частоту вращения вала при возрастающих нагрузках. Зато такой двигатель имеет множество преимуществ по сравнению с образцами электродвигателей других конструкций.

Во-первых, он имеет надёжную конструкцию. Работа асинхронного двигателя не вызывает никаких сложностей при его использовании.

Во-вторых, асинхронный двигатель экономичен в производстве и эксплуатации.

В-третьих, эта машина универсальна. Имеется возможность её использования в любых устройствах, которые не требуют точного поддержания частоты вращения вала якоря.

В-четвёртых, двигатель с асинхронным принципом действия востребован и в быту, получая питание только от одной фазы.

Режимы работы

Электродвигатель асинхронного типа универсальный механизм и по продолжительности работы имеет несколько режимов:

  • Продолжительный;
  • Кратковременный;
  • Периодический;
  • Повторно-кратковременный;
  • Особый.

Продолжительный режим – основной режим работы асинхронных устройств, который характеризуется постоянной работой электродвигателя без отключений с неизменной нагрузкой. Такой режим работы самый распространенный, используется на промышленных предприятиях повсеместно.

Кратковременный режим – работает до достижения постоянной нагрузки определенное время (от 10 до 90 минут), не успевая максимально разогреться. После этого отключается. Такой режим используют при подаче рабочих веществ (воду, нефть, газ) и прочих ситуациях.

Периодический режим – продолжительность работы имеет определенное значение и по завершении цикла работ отключается. Режим работы пуск-работа-остановка. При этом он может отключаться на время, за которое не успевает остыть до внешних температур и включаться заново.

Повторно-кратковременный режим – двигатель не нагревается максимально, но и не успевает остыть до внешней температуры. Применяется в лифтах, эскалаторах и прочих устройствах.

Особый режим – продолжительность и период включения произвольный.

В электротехнике существует принцип обратимости электрических машин — это означает, что устройство может, как преобразовывать электрическую энергию в механическую, так и совершать обратные действия.

Асинхронные электродвигатели тоже соответствуют этому принципу и имеют двигательный и генераторный режим работы.

Двигательный режим – основной режим работы асинхронного электродвигателя. При подаче напряжения на обмотки возникает электромагнитный вращающий момент, увлекающий за собой ротор с валом и, таким образом, вал начинает вращаться, двигатель выходит на постоянную частоту вращения, совершая полезную работу.

Генераторный режим – основан на принципе возбуждения электрического тока в обмотках двигателя при вращении ротора. Если вращать ротор двигателя механическим способом, то на обмотках статора образуется электродвижущая сила, при наличии конденсатора в обмотках возникает емкостный ток. Если емкость конденсатора будет определенного значения, зависящего от характеристик двигателя, то произойдет самовозбуждение генератора и возникнет трехфазная система напряжений. Таким образом короткозамкнутый электродвигатель будет работать как генератор.

Регулирование частоты вращения асинхронных двигателей

Для регулирования частоты вращения асинхронных электродвигателей и управления режимами их работы существуют следующие способы:

  1. Частотный – при изменении частоты тока в электрической сети изменяется частота вращения электрического двигателя. Для такого способа применяют устройство, которое называется частотный преобразователь;
  2. Реостатный – при изменении сопротивления реостата в роторе, изменяется частота вращения. Такой способ увеличивает пусковой момент и критическое скольжение;
  3. Импульсный – способ управления, при котором на двигатель подается напряжение специального вида.
  4. Переключение обмоток по время работы электрического двигателя со схемы «звезда» на схему «треугольник», что снижает пусковые токи;
  5. Управление с изменения пар полюсов для короткозамкнутых роторов;
  6. Подключение индуктивного сопротивления для двигателей с фазным ротором.

С развитием электронных систем, управление различными электродвигателями асинхронного типа становится все более эффективным и точным. Такие двигатели используются в мире повсеместно, разнообразие задач, выполняемых такими механизмами, с каждым днем растет, и потребность в них не уменьшается.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Ротор и статор электродвигателя: определение, виды, назначение
Рано или поздно человек, интересующийся электротехникой, слышит упоминания о роторе и статоре, и задается вопросом: «Что это такое, и в чем отличие этих устройств?» Простыми словами, ротор и статор – это две основные части, расположенные в электродвигателе (устройстве по преобразованию электрической энергии в механическую). Без них существование современных двигателей, а значит и большинства электрических приборов на их основе, было бы невозможным. Статор является неподвижной частью устройства, а ротор – подвижной, они вращаются в разные стороны относительно друг друга. В этой статье мы подробно разберем конструкцию этих деталей и их принцип действия, чтобы после прочтения статьи у читателей сайта Сам Электрик больше не осталось вопросов по данному поводу.

Что такое ротор

Ротор, еще его иногда называют якорь, это подвижная, то есть вращающаяся часть в генераторе или электродвигателях, которые повсеместно применяются в бытовой и промышленной технике.

Внешний вид ротора коллекторного двигателя

Если рассматривать ротор двигателя постоянного тока или универсального коллекторного двигателя, то он состоит из нескольких основных узлов, а именно:

  1. Сердечник. Он выполнен из множества штампованных тонких металлических пластин, изолированных друг от друга специальным диэлектриком или же просто оксидной пленкой, которая проводит ток гораздо хуже, чем чистый металл. Сердечник набирается из них и представляет собой «слоеный пирог». В результате электроны не успевают разогнаться из-за маленькой толщины металла, и нагрев ротора гораздо меньше, а эффективность всего устройства выше за счет уменьшения потерь. Данное конструктивное решение принято для уменьшения вихревых токов Фуко, которые неизбежно возникают при работе двигателя из-за перемагничивания сердечника. Этот же метод борьбы с ними используется и в трансформаторах переменного тока.
  2. Обмотки. Вокруг сердечника особым образом намотана медная проволока, покрытая лаковой изоляцией для предотвращения появления короткозамкнутых витков, которые недопустимы. Вся обмотка дополнительно пропитана эпоксидной смолой или лаком для фиксации обмоток, чтобы они не повреждались при вибрациях от вращения.
  3. Обмотки ротора могут подключаться к коллектору – специальному блоку с контактами, надежно закрепленному на валу. Эти контакты называются ламелями, они выполнены из меди или ее сплава для лучшей передачи электрического тока. По нему скользят щетки, обычно выполненные из графита, и в нужный момент на обмотки подается электрический ток. Это называется скользящий контакт.
  4. Сам вал является металлическим стержнем, на его концах расположены посадочные места под подшипники качения, он может иметь резьбу или выемки, пазы под шпонку для крепления шестерен, шкивов или других деталей, приводимых в движение электродвигателем.
  5. На валу также размещается крыльчатка вентилятора, чтобы двигатель охлаждал сам себя и не приходилось бы устанавливать дополнительное устройство для отвода тепла.

Стоит отметить, что не у всякого ротора есть обмотки, которые, в сущности, представляют собой электромагнит. Вместо них могут применяться постоянные магниты, как в бесщеточных двигателях постоянного тока. А у асинхронного двигателя с короткозамкнутым ротором обмоток в привычном виде вовсе нет, вместо них используются короткозамкнутые металлические стержни, но об этом ниже.

Что такое статор

Статор – это неподвижная часть в электродвигателе. Обычно он совмещен с корпусом устройства и представляет собой цилиндрическую деталь. Он так же состоит из множества пластин для уменьшения нагрева из-за токов Фуко, в обязательном порядке покрытых лаком. На торцах располагаются посадочные места под подшипники скольжения или качения.

Внешний вид статора

Конструкция называется пакет статора, она впрессовывается в чугунный корпус устройства. Внутри этого цилиндра вытачиваются пазы под обмотки, которые, так же как и для ротора, пропитываются специальными составами, чтобы тепло равномернее распределялось по устройству, и обмотки не терлись друг об друга от вибрации.

Обмотки статора могут подключаться разными способами в зависимости от назначения и типа электрической машины. Для трехфазных электродвигателей применимы типы подключения звезда и треугольник. Они представлены на схеме:

Схемы подключения звездой и треугольником

Для выполнения подключений на корпусе устройства предусмотрена специальная распределительная коробка («борно»). В эту коробку выведены начала и концы трех обмоток и предусмотрены специальные клеммники различных конструкций, в зависимости от мощности и назначения машины.

Существуют серьезные отличия в работе двигателей при разном соединении обмоток. Например, при подключении звездой двигатель будет стартовать плавнее, однако нельзя будет развить максимальную мощность. При присоединении треугольником, электродвигатель будет выдавать весь крутящий момент, заявленный производителем, но пусковые токи в таком случае достигают высоких значений. Электросеть может быть просто не рассчитана на такие нагрузки. Использование устройства в этом режиме чревато нагревом проводов, и в слабом месте (это места соединения и разъемы) провод может отгореть и привести к пожару. Главным преимуществом асинхронных двигателей является удобство в смене направления их вращения, нужно просто поменять местами подключения двух любых обмоток.

Статор и ротор в асинхронных двигателях

Трехфазные асинхронные двигатели имеют свои особенности, ротор и статор в них отличаются от использованных в других типах электродвигателей. Например, ротор может иметь две конструкции: короткозамкнутый и фазный. Рассмотрим особенности строения каждого из них по подробнее. Однако для начала давайте вкратце разберемся, как работает асинхронный двигатель.

В статоре создается вращающееся магнитное поле. Оно наводит на роторе индуцируемый ток и тем самым приводит его в движение. Таким образом ротор всегда пытается «догнать» вращающееся магнитное поле.

Необходимо также упомянуть о такой важной особенности асинхронного двигателя, как скольжение ротора. Это явление заключается в разности частот вращения ротора и магнитного поля, создаваемого статором. Объясняется это как раз тем, что ток индуцируется в роторе только при его движении относительно магнитного поля. И если бы частоты вращения были одинаковы, то этого движения бы просто не происходило. В результате ротор пытается «догнать» по оборотам магнитное поле, и если это происходит, то ток в обмотках перестает индуцироваться и ротор замедляется. В этот момент сила, действующая на него, растет, он начинает опять ускоряться. Так и получается эффект стабилизации частоты вращения, за что эти электродвигатели и пользуются большой востребованностью.

Схематическое изображения статора и ротора

Короткозамкнутый ротор

Он также представляет собой конструкцию, состоящую из металлических пластин, выполняющих функцию сердечника. Однако вместо медной обмотки там установлены стержни или пруты, не касающиеся друг друга и накоротко замкнутые между собой металлическими пластинами на торцах. При этом стержни не перпендикулярны пластинам, а направлены под углом. Это делается для уменьшения пульсаций магнитного поля и момента. Таким образом получаются витки, замкнутые накоротко, от сюда и название.

 

Коротко замкнутый ротор и статор асинхронного двигателя

Фазный ротор

Главное отличие фазного ротора от короткозамкнутого заключается в наличии трехфазной обмотки, уложенной в проточки сердечника и соединяющейся в особом коллекторе с тремя кольцами вместо ламелей. Эти обмотки обычно соединяются «звездой». Такие электродвигатели более трудоемки в производстве за счет усложнения конструкции, однако их пусковые токи ниже, чем у двигателей с короткозамкнутым ротором, а также они лучше поддаются регулировке.

Фазный ротор

Надеемся, что после прочтения данной статьи у вас больше не осталось вопросов о том, что такое ротор и статор электродвигателя и какой у них принцип работы. Напоследок рекомендуем просмотреть видео, в котором наглядно рассмотрен данный вопрос:

Материалы по теме:

приложение ROTOR Power | Компоненты ROTOR Bike

Мы с гордостью объявляем о выпуске нашего долгожданного приложения ROTOR. Он отображает большие данные 2INpower на вашем мобильном устройстве и позволяет анализировать вашу производительность, ход педали и пост-обработку вашей поездки.

AppInpowerSlider

Установка Q-Rings стала проще

Мы, следовательно, доработали нашу уникальную функцию TORQUE 360, которая позволяет отображать вращение кривошипа в режиме реального времени.Приложение ROTOR Power непосредственно дает рекомендацию OCP после поездки в сводке поездки.

Процедура настройки Q-Rings больше не ставится под угрозу, поскольку пользователи Q-Rings, магазины велосипедов и монтажники могут использовать велосипед с Q-Rings, установленными прямо на улице. Находясь на персональной установке в привычной обстановке во время поездки, вы получите точную установку OCP.

Описание применения

Подключите измеритель мощности ROTOR 2INpower и монитор сердечного ритма к мобильным устройствам через Bluetooth®.Отслеживайте свою поездку с помощью трех основных функций приложения - RIDE, BASIC TRAINING и TORQUE 360, последние две из которых известны из нашего пользовательского программного обеспечения измерителя мощности ROTOR.

RIDE:

05_Ride-Started

Отображение вашего измерителя мощности, пульсометра и данных GPS в режиме реального времени на экране вашего мобильного устройства. Несколько экранов данных могут быть изменены пользователем. В конце поездки запишите свои данные в виде файла .fit, чтобы экспортировать их для дальнейшего анализа.

ОСНОВНОЙ РЕЖИМ ОБУЧЕНИЯ:

02_Basic Training

Отображение данных о производительности в режиме реального времени на временной шкале для структурирования тренировок и планирования интервалов.Посмотрите, насколько эффективно и уравновешенно вы катаетесь.

РЕЖИМ TORQUE 360:

03_Torque_360

Показывайте ход педали в реальном времени благодаря тензодатчикам и акселерометру 2INpower. Анализируйте непосредственно ход педали с помощью известных параметров, таких как эффективность крутящего момента и плавность педали. Находясь на дороге на велосипеде, вы увидите естественное значение ОСА, при котором вы прикладываете максимальное усилие к педали.

Q-Rings пользуются этим преимуществом, и наше приложение предоставляет точную величину OCP для легкой ориентации Q-Rings.

Кроме того, вы можете настроить свой профиль и управлять им в СЕРВИСНОМ РЕЖИМЕ, который также связывает приложение ROTOR power с вашим измерителем мощности и пульсометром или который настраивает ваш пользовательский язык.

Управляйте своими поездками и сводками тренировок с помощью функции ИСТОРИЯ.

Приложение ROTOR 2INpower создает на мобильном устройстве папку ROTOR Power, откуда вы также можете экспортировать свои поездки, которые хранятся в виде.подходят и .csv файлы.

Системные требования

Android 4.4 или более поздняя версия

iOS 9.3 или более поздняя версия

BluetoothⓇ 4.0

ROTOR 2INpower измеритель мощности

LogoAppStoreDef150x50 LogoGooglePlayDef150x50

.
роторное устройство - определение - английский язык

Примеры предложений с «роторным устройством», память переводов

патент-wipoA многостадийный процесс непрерывного производства эмульсии, включающий в себя, по меньшей мере, две несмешивающиеся жидкости с последовательностью, по меньшей мере, двух стадий смешивания осуществляется, по меньшей мере, в двух последовательных устройствах (4) статора-ротора, в которых периферийный выход из первого устройства (8, 12) статора-ротора соединен с осевым входом (9, 13) в последующем устройстве ротора-статора посредством воздуховод, в котором число Рейнольдса ReT внутри упомянутого воздуховода выше 5000, и периферическая скорость каждого ротора упомянутых устройств ротор-статор составляет от 5 до 60 м / с. патент-wipoПервое роторное устройство может приводиться в движение в первом направлении вращения (32) ветром для преобразования энергии ветра в движущую силу, а второе роторное устройство имеет приводное устройство (34) и может приводиться в действие второе направление (36) вращения, которое проходит противоположно первому направлению вращения. патент-wipo Роторные лопасти циклонного роторного устройства (10) в качестве роторных лопастей транспортного роторного устройства (20) могут быть установлены на одном и том же вращающемся валу (5) для создания дополнительной вращательной силы в суспензии. патент-wipo Изобретение относится к электрической машине (1), в частности к усилителю рулевого управления (40) на автомобиле, содержащей статорное устройство (1) и роторное устройство (2), а также множество намоточных устройств. (21a-21f, 31a-31f), имеющей первое соединение (22a-22f, 32a-32f) и второе соединение (23a-23f, 33a-33f), которые расположены на устройстве статора (1), где множество Обмоточные узлы (21a-21f, 31a-31f) электрически соединены друг с другом посредством соединений (22a-22f, 32a-32f; 23a-23f, 33a-33f), образуя приводной узел (20, 30) в такой таким образом, чтобы генерировать посредством источника питания магнитное поле для приведения в действие роторного устройства (2) в электрической машине (10). патентная заявка. Для обеспечения наиболее эффективного использования энергии ветра предусмотрен ротор с ветровым приводом (10), который имеет первое роторное устройство (12) и второе роторное устройство (14). патент-wipoA способ обработки, настройки, сборки и / или ремонта двухроторного устройства (200, 1200) включает нанесение материала покрытия (102) на внутренний набор рабочих поверхностей (218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228) устройства с двумя роторами, по меньшей мере, частично собранного. Патенты-wipo Одна или несколько рабочих характеристик устройства с двумя роторами могут быть улучшены покрытием, и вариация между сериями устройства с двумя роторами может быть уменьшена или существенно устранена. патент-wipoРоторное устройство (83) заменяет традиционное собранное роторное устройство, которое содержит опорную раму электрической машины, маховик двигателя, диск привода сцепления и так далее. патент-wipo Устройство с двумя роторами может быть нагнетателем 200, винтовым компрессором 1200 или другим устройством с двумя роторами. патент-wipoРоторное устройство и приводное устройство, снабженное таким роторным устройством для сосуда корпус, ротор, содержащий ротор-корпус, установленный на опорной оси и проход щее в радиальном направлении от несущего вала, и множество роликов, смонтированных на радиально внешней части ротора корпуса, и приводное устройство, соединенного с опорным валом для приведения в движение ротора, в котором перистальтический насос дополнительно содержит ряд маркеров роликовых, соответствующих числу роликов, в котором роликовые маркеры указывают на мертвую зону, роликовые маркеры предоставляются прямо или косвенно на опорной оси. патент-wipoЭтот метод предназначен для обработки почвы между сельскохозяйственными растениями с использованием роторного устройства с вращающимся зубчатым ротором, имеющим смещение зубца от оси вращения, скорость вращения и скорость поступательного движения. Патент-wipoРоторное устройство интегрированной системы стартера-генератора и ротора. Патент-wipoA роторное устройство (83) интегрированного стартера-генератора и системы ротора. Патентное устройство - роторное устройство, приводимое в действие движущейся жидкостью, имеет удлиненную лопасть ротора, установленную на пути движущейся жидкости для вращения вокруг неподвижной оси. патент-wipoA ветродвигатель с вертикальной осью вращения (0), на котором установлены один или несколько горизонтальных роторов (A), оснащенных лопастями. патент-wipo Первое роторное устройство вращается вокруг первой оси вращения (16) и имеет по меньшей мере две лопасти ротора (18), которые движутся по орбите (20) вокруг первой оси вращения. патент-wipoA устройство винтового ротора имеет корпус (12) с входным отверстием (18) и выходным отверстием (20), охватываемый ротор (14) и охватывающий ротор (16). патентов-wipoIn с возвратно-поступательным ротор устройства (10), такие как сканирование гальванометр, подшипник в сборе (50), состоящий из реологического подшипника муфты (54), расположенные между валом ротора (10) и опорной конструкцией подшипником или кожухом (56 ), где соединитель (54) для реологических подшипников является относительно жестким на участках вращения ротора с постоянной скоростью, обеспечивая адекватную геометрическую точность ротора внутри корпуса ротора во время фазы сканирования. патент-wipo Это изобретение относится к эксцентриковому равновесному роторному устройству, применимому для устройств с положительным смещением жидкости, таких как компрессоры, насосы, воздуходувки или двигатели, имеющие две скрещенные и одинаково утяжеленные скользящие лопатки, закрепленные на поперечном пути скольжения в корпусе. полого ротора и перпендикулярно друг другу. патент-wipo Второе роторное устройство вращается вокруг второй оси вращения (26) и имеет второй вращательный элемент (28), имеющий закрытую вторую поверхность кожуха (30), причем второй вращающийся элемент расположен, по меньшей мере, частично внутри виртуального первого элемент вращения Патенты-wipoРоторное устройство для поглощения энергии удара Патенты-wipoПокрытие может быть нанесено на заводе или в полевых условиях на новое или бывшее в употреблении устройство с двумя роторами. патент-wipo Отделенные всплывающие фракции могут быть удалены из пузырьков газа, к которым они прилипают, с помощью противовспенивающего устройства, приводимого в действие вращающимся валом (5) устройства транспортного ротора (20). Патенты -wipoA Одноразовая сумка и система трубок также раскрыты для использования с многоразовыми роторными устройствами.

Показаны страницы 1. Найдено 2268 предложения с фразой rotor device.Найдено за 11 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 0 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они приходят из многих источников и не проверяются. Имейте в виду.

роторное устройство - определение - английский язык

Примеры предложений с «роторным устройством», память переводов

патент-wipoA многостадийный процесс непрерывного производства эмульсии, включающий в себя, по меньшей мере, две несмешивающиеся жидкости с последовательностью, по меньшей мере, двух стадий смешивания осуществляется, по меньшей мере, в двух последовательных устройствах (4) статора-ротора, в которых периферийный выход из первого устройства (8, 12) статора-ротора соединен с осевым входом (9, 13) в последующем устройстве ротора-статора посредством воздуховод, в котором число Рейнольдса ReT внутри упомянутого воздуховода выше 5000, и периферическая скорость каждого ротора упомянутых устройств ротор-статор составляет от 5 до 60 м / с. патент-wipoПервое роторное устройство может приводиться в движение в первом направлении вращения (32) ветром для преобразования энергии ветра в движущую силу, а второе роторное устройство имеет приводное устройство (34) и может приводиться в действие второе направление (36) вращения, которое проходит противоположно первому направлению вращения. патент-wipo Роторные лопасти циклонного роторного устройства (10) в качестве роторных лопастей транспортного роторного устройства (20) могут быть установлены на одном и том же вращающемся валу (5) для создания дополнительной вращательной силы в суспензии. патент-wipo Изобретение относится к электрической машине (1), в частности к усилителю рулевого управления (40) на автомобиле, содержащей статорное устройство (1) и роторное устройство (2), а также множество намоточных устройств. (21a-21f, 31a-31f), имеющей первое соединение (22a-22f, 32a-32f) и второе соединение (23a-23f, 33a-33f), которые расположены на устройстве статора (1), где множество Обмоточные узлы (21a-21f, 31a-31f) электрически соединены друг с другом посредством соединений (22a-22f, 32a-32f; 23a-23f, 33a-33f), образуя приводной узел (20, 30) в такой таким образом, чтобы генерировать посредством источника питания магнитное поле для приведения в действие роторного устройства (2) в электрической машине (10). патентная заявка. Для обеспечения наиболее эффективного использования энергии ветра предусмотрен ротор с ветровым приводом (10), который имеет первое роторное устройство (12) и второе роторное устройство (14). патент-wipoA способ обработки, настройки, сборки и / или ремонта двухроторного устройства (200, 1200) включает нанесение материала покрытия (102) на внутренний набор рабочих поверхностей (218, 222, 224, 226, 228, 1218, 1222, 1224, 1226, 1228) устройства с двумя роторами, по меньшей мере, частично собранного. Патенты-wipo Одна или несколько рабочих характеристик устройства с двумя роторами могут быть улучшены покрытием, и вариация между сериями устройства с двумя роторами может быть уменьшена или существенно устранена. патент-wipoРоторное устройство (83) заменяет традиционное собранное роторное устройство, которое содержит опорную раму электрической машины, маховик двигателя, диск привода сцепления и так далее. патент-wipo Устройство с двумя роторами может быть нагнетателем 200, винтовым компрессором 1200 или другим устройством с двумя роторами. патент-wipoРоторное устройство и приводное устройство, снабженное таким роторным устройством для сосуда корпус, ротор, содержащий ротор-корпус, установленный на опорной оси и проход щее в радиальном направлении от несущего вала, и множество роликов, смонтированных на радиально внешней части ротора корпуса, и приводное устройство, соединенного с опорным валом для приведения в движение ротора, в котором перистальтический насос дополнительно содержит ряд маркеров роликовых, соответствующих числу роликов, в котором роликовые маркеры указывают на мертвую зону, роликовые маркеры предоставляются прямо или косвенно на опорной оси. патент-wipoЭтот метод предназначен для обработки почвы между сельскохозяйственными растениями с использованием роторного устройства с вращающимся зубчатым ротором, имеющим смещение зубца от оси вращения, скорость вращения и скорость поступательного движения. Патент-wipoРоторное устройство интегрированной системы стартера-генератора и ротора. Патент-wipoA роторное устройство (83) интегрированного стартера-генератора и системы ротора. Патентное устройство - роторное устройство, приводимое в действие движущейся жидкостью, имеет удлиненную лопасть ротора, установленную на пути движущейся жидкости для вращения вокруг неподвижной оси. патент-wipoA ветродвигатель с вертикальной осью вращения (0), на котором установлены один или несколько горизонтальных роторов (A), оснащенных лопастями. патент-wipo Первое роторное устройство вращается вокруг первой оси вращения (16) и имеет по меньшей мере две лопасти ротора (18), которые движутся по орбите (20) вокруг первой оси вращения. патент-wipoA устройство винтового ротора имеет корпус (12) с входным отверстием (18) и выходным отверстием (20), охватываемый ротор (14) и охватывающий ротор (16). патентов-wipoIn с возвратно-поступательным ротор устройства (10), такие как сканирование гальванометр, подшипник в сборе (50), состоящий из реологического подшипника муфты (54), расположенные между валом ротора (10) и опорной конструкцией подшипником или кожухом (56 ), где соединитель (54) для реологических подшипников является относительно жестким на участках вращения ротора с постоянной скоростью, обеспечивая адекватную геометрическую точность ротора внутри корпуса ротора во время фазы сканирования. патент-wipo Это изобретение относится к эксцентриковому равновесному роторному устройству, применимому для устройств с положительным смещением жидкости, таких как компрессоры, насосы, воздуходувки или двигатели, имеющие две скрещенные и одинаково утяжеленные скользящие лопатки, закрепленные на поперечном пути скольжения в корпусе. полого ротора и перпендикулярно друг другу. патент-wipo Второе роторное устройство вращается вокруг второй оси вращения (26) и имеет второй вращательный элемент (28), имеющий закрытую вторую поверхность кожуха (30), причем второй вращающийся элемент расположен, по меньшей мере, частично внутри виртуального первого элемент вращения Патенты-wipoРоторное устройство для поглощения энергии удара Патенты-wipoПокрытие может быть нанесено на заводе или в полевых условиях на новое или бывшее в употреблении устройство с двумя роторами. патент-wipo Отделенные всплывающие фракции могут быть удалены из пузырьков газа, к которым они прилипают, с помощью противовспенивающего устройства, приводимого в действие вращающимся валом (5) устройства транспортного ротора (20). Патенты -wipoA Одноразовая сумка и система трубок также раскрыты для использования с многоразовыми роторными устройствами.

Показаны страницы 1. Найдено 2268 предложения с фразой rotor device.Найдено за 10 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 0 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они приходят из многих источников и не проверяются. Имейте в виду.

ROTOR запускает приложение «ROTOR Power» для 2INpower

Logo_512x512

Мы с гордостью объявляем о выпуске нашего долгожданного приложения ROTOR. Он отображает большие данные 2INpower на вашем мобильном устройстве и позволяет анализировать вашу производительность, ход педали и пост-обработку вашей поездки.

Установка Q-Rings стала проще

Мы, следовательно, доработали нашу уникальную функцию TORQUE 360, которая позволяет отображать вращение кривошипа в режиме реального времени. Приложение ROTOR Power непосредственно дает рекомендацию OCP после поездки в сводке поездки.

Процедура настройки Q-Rings больше не ставится под угрозу, поскольку пользователи Q-Rings, магазины велосипедов и монтажники могут использовать велосипед с Q-Rings, установленными непосредственно на улице. Находясь на персональной установке в привычной обстановке во время поездки, вы получите точную установку OCP.

Описание приложения

01_Home

Подключите измеритель мощности ROTOR 2INpower и пульсометр к мобильным устройствам через Bluetooth®

Отследите свою поездку с помощью трех наших основных функций приложения - RIDE, BASIC TRAINING MODE и TORQUE 360, два последних из которых известны из нашего пользовательского программного обеспечения ROTOR.

RIDE:

Отображение вашего измерителя мощности, пульсометра и данных GPS в режиме реального времени на экране вашего мобильного устройства. Несколько экранов данных могут быть изменены пользователем. В конце поездки запишите свои данные в виде файла .fit, чтобы экспортировать их для дальнейшего анализа.

ОСНОВНОЙ РЕЖИМ ОБУЧЕНИЯ:

02_Basic Training

Отображение данных о производительности в режиме реального времени на временной шкале для структурирования тренировок и планирования интервалов. Посмотрите, насколько эффективно и уравновешенно вы катаетесь.

TORQUE 360 MODE:

03_Torque_360 Показывайте ход педали в реальном времени благодаря тензодатчикам и акселерометру 2INpower. Анализируйте непосредственно ход педали с помощью известных параметров, таких как эффективность крутящего момента и плавность педали. Находясь на дороге на велосипеде, вы увидите естественное значение ОСА, при котором вы прикладываете максимальное усилие к педали.

Q-Rings пользуются этим преимуществом, и наше приложение предоставляет точную величину OCP для легкой ориентации Q-Rings.

Кроме того, вы можете настроить и управлять своим профилем в SERVICE MODE, , который также соединяет приложение ROTOR power с вашим измерителем мощности и пульсометром или который настраивает ваш пользовательский язык.

Управляйте своими поездками и тренировочными сводками с помощью функции ИСТОРИЯ .

Приложение ROTOR 2INpower создает на мобильном устройстве папку с именем ROTOR Power , откуда вы также можете экспортировать поездки, которые хранятся в виде файлов .fit и .csv.

Системные требования:

Android 4.4 или более поздней версии
iOS 9.3 или более поздней версии
Bluetooth® 4.0
ROTOR 2INpower power meter

03_Torque_360 03_Torque_360

,

Отправить ответ

avatar
  Подписаться  
Уведомление о