Устройство простейшего конденсатора: Простейший конденсатор — Большая Энциклопедия Нефти и Газа, статья, страница 2

Содержание

Плоский конденсатор. Заряд и емкость конденсатора.

Наряду с резисторами одними из наиболее часто используемых электронных компонентов являются конденсаторы. И в этой статье мы разберемся, из чего они состоят, как работают и для чего применяются 👍 В первую очередь, рассмотрим устройство и принцип работы, а затем плавно перейдем к основным свойствам и характеристикам — заряду, энергии и, конечно же, емкости конденсатора.

Плоский конденсатор.

Итак, простейший конденсатор представляет из себя две плоские проводящие пластины, расположенные параллельно друг другу и разделенные слоем диэлектрика. Причем расстояние между пластинами должно быть намного меньше, чем, собственно, размеры пластин:

Такое устройство называется плоским конденсатором, а пластины — обкладками конденсатора. Стоит уточнить, что здесь мы рассматриваем уже заряженный конденсатор (сам процесс зарядки мы изучим чуть позже), то есть на обкладках сосредоточен определенный заряд. Причем наибольший интерес представляет тот случай, когда заряды пластин конденсатора одинаковы по модулю и противоположны по знаку (как на рисунке).

А поскольку на обкладках сосредоточен заряд, между ними возникает электрическое поле. Поле плоского конденсатора, в основном, сосредоточено между пластинами, однако, в окружающем пространстве также возникает электрическое поле, которое называют полем рассеяния. Очень часто его влиянием в задачах пренебрегают, но забывать о нем не стоит.

Для определения величины этого поля рассмотрим еще одно схематическое изображение плоского конденсатора:

Каждая из обкладок конденсатора в отдельности создает электрическое поле:

  • положительно заряженная пластина (+q) создает поле, напряженность которого равна E_{+}
  • отрицательно заряженная пластина (-q) создает поле, напряженность которого равна E_{-}

Выражение для напряженности поля равномерно заряженной пластины выглядит следующим образом:

E_{пл} = \frac{\sigma}{2\varepsilon_0\thinspace\varepsilon}

Здесь \sigma- это поверхностная плотность заряда: \sigma = \frac{q}{S}, а \varepsilon — диэлектрическая проницаемость диэлектрика, расположенного между обкладками конденсатора. Поскольку площадь пластин конденсатора у нас одинаковая, как и величина заряда, то и модули напряженности электрического поля, равны между собой:

E_+ = E_- = \frac{q}{2\varepsilon_0\thinspace\varepsilon S}

Но направления векторов разные — внутри конденсатора вектора направлены в одну сторону, а вне — в противоположные. Таким образом, внутри обкладок результирующее поле определяется следующим образом:

E = E_+ + E_- = \frac{q}{2\varepsilon_0\thinspace\varepsilon S} + \frac{q}{2\varepsilon_0\thinspace\varepsilon S} = \frac{q}{\varepsilon_0\thinspace\varepsilon S}

Соответственно, вне конденсатора (слева и справа от обкладок) поля пластин компенсируют друг друга и результирующая напряженность равна 0.

Процессы зарядки и разрядки конденсаторов.

С устройством мы разобрались, теперь разберемся, что произойдет, если подключить к конденсатору источник постоянного тока. На принципиальных электрических схемах конденсатор обозначают следующим образом:

Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что будет происходить?

Свободные электроны с первой обкладки конденсатора устремятся к положительному полюсу источника. Из-за этого на обкладке возникнет недостаток отрицательно заряженных частиц, и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора. В результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной.

Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную разность потенциалов. Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока. После этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.

При отключении от источника конденсатор может на протяжении длительного времени сохранять накопленные заряды. Соответственно, заряженный конденсатор является источником электрической энергии, это означает, что он может отдавать энергию во внешнюю цепь. Давайте создадим простейшую цепь, просто соединив обкладки конденсатора друг с другом:

В данном случае по цепи начнет протекать ток разряда конденсатора, а электроны начнут перемещаться с отрицательно заряженной обкладки к положительной. В результате напряжение на конденсаторе (разность потенциалов между обкладками) начнет уменьшаться. Этот процесс завершится в тот момент, когда заряды пластин конденсаторов станут равны друг другу, соответственно электрическое поле между обкладками пропадет и по цепи перестанет протекать ток. Именно так происходит разряд конденсатора, в результате которого он отдает во внешнюю цепь всю накопленную энергию. Как видите, здесь нет ничего сложного.

Емкость и энергия конденсатора.

Важнейшей характеристикой является электрическая емкость конденсатора. Это физическая величина, которая определяется как отношение заряда q одного из проводников к разности потенциалов между проводниками:

C = \frac{q}{\Delta\varphi} = \frac{q}{U}

Емкость конденсатора изменяется в Фарадах, но величина 1 Ф является неимоверно большой, поэтому чаще всего используются микрофарады (мкФ), нанофарады (нФ) и пикофарады (пФ).2}{2C}

Помимо емкости конденсаторы характеризуются еще одним параметром, а именно величиной напряжения, которое может выдержать его диэлектрик. При слишком больших значениях напряжения электроны диэлектрика отрываются от атомов, и диэлектрик начинает проводить ток. Это явление называется пробоем конденсатора, и в результате обкладки оказываются замкнутыми друг с другом. Собственно, характеристикой, которая часто используется при работе с конденсаторами является не напряжение пробоя, а рабочее напряжение. Это такая величина напряжения, при которой конденсатор может работать неограниченно долгое время, и пробоя не произойдет.

Итак, резюмируем — сегодня рассмотрели основные свойства конденсаторов, их устройство и характеристики, так что на этом заканчиваем статью, а в следующей мы будем обсуждать различные варианты соединений и маркировку.

Конденсаторы | 8 класс | Физика

Если тело обладает некоторым электрическим зарядом, то вокруг него обязательно присутствует электрическое поле. Это поле обладает некоторой энергией — может совершить какую-то работу.

Можно ли как-то накопить эту энергию? Да, такая возможность существует. Для этого используют специальный прибор — конденсатор.

Конденсатор — это устройство, позволяющее накапливать электрические заряды и, соответственно, энергию электрического поля.

На данном уроке вы познакомитесь с устройством этого прибора, его характеристиками и свойствами.

{"questions":[{"content":"Конденсатор — это прибор для[[choice-1]]","widgets":{"choice-1":{"type":"choice","options":["накопления энергии электрического поля","измерения энергии электрического поля","регулировки силы тока в цепи"],"explanations":["","","Эту функцию выполняют реостаты."],"answer":[0]}}}]}

Простейший конденсатор и его устройство

Устройство простейшего конденсатора представлено на рисунке 1. Он состоит из двух одинаковых металлический пластин. Эти пластины называются обкладками конденсатора.

Рисунок 1. Устройство простейшего конденсатора

Обкладки расположены на небольшом расстоянии друг от друга. Этот промежуток между ними обязательно должен быть заполнен слоем диэлектрика. В нашем случае таким диэлектриком является обычный воздух.

Такой конденсатор называется плоским (по форме обкладок).

Конденсатор имеет свой условный знак для обозначения на схеме электрической цепи (рисунок 2).

Рисунок 2. Условный знак для обозначения конденсатора на схеме электрической цепи
{"questions":[{"content":"Между обкладками конденсатора обязательно должен присутствовать[[choice-9]]","widgets":{"choice-9":{"type":"choice","options":["слой диэлектрика","проводник","защитный слой"],"answer":[0]}}}]}

Зарядка конденсатора и его способность накапливать заряды

Теперь разберемся, каким же образом мы можем накапливать заряды с помощью конденсатора.

Рассмотрим простой опыт. Возьмем конденсатор, состоящий из двух металлических пластин, расположенных параллельно друг другу, и заряженный аккумулятор.

Две обкладки конденсатора подключим к разным полюсам аккумулятора. На обкладках начнут образовываться электрические заряды (рисунок 3). Они будут равны друг другу, но иметь противоположные знаки.

Рисунок 3. Зарядка конденсатора от аккумулятора

Эти заряды образуют электрическое поле конденсатора. Оно будет сосредоточено между обкладками.

Отключим аккумулятор от конденсатора. Что мы увидим? Заряды, образованные на обкладках, никуда не деваются. Они сохраняются, как и электрическое поле между пластин. Конденсатор заряжен.

Если мы соединим проводником обкладки конденсатора, то увидим, что по нему некоторое время будет течь ток. Значит, заряженный конденсатор является источником тока в электрической цепи.

{"questions":[{"content":"Какой конденсатор может быть источником тока в электрической цепи?[[choice-12]]","widgets":{"choice-12":{"type":"choice","options":["Заряженный","любой","разряженный","Плоский"],"answer":[0]}}}]}

Электроемкость конденсатора

Логично предположить, что разные конденсаторы по-разному будут накапливать заряд. Как охарактеризовать эту способность прибора? Для этого существует специальная величина — электроемкость (или просто емкость) конденсатора.

Чтобы понять смысл этой величины, рассмотрим опыт. Возьмем две металлические пластины и установим их на изолированных подставках друг напротив друга.

Подключим к пластинам электрометр. Этот прибор (рисунок 4) по своему устройству и принципу действия схож с электроскопом. Он позволит нам зафиксировать значения напряжения, которое возникнет между пластинами.

Рисунок 4. Электрометр

Итак, одну из пластин (A) мы соединим проводом со стержнем электрометра, а другую (B) соединим с корпусом прибора (заземлим). Коснемся положительно наэлектризованной стеклянной палочкой внешней стороны пластины A (рисунок 5).

Рисунок 5. Электризация одной пластины конденсатора

Мы сообщили пластине A положительный заряд $+q$. Вокруг этого заряда (пластины A) теперь существует электрическое поле. Под его действием произойдет перераспределение зарядов в пластине B. Отрицательные заряды перейдут на внутреннюю сторону пластины, а положительные — на внешнюю.

Помните, что мы заземлили пластину B? За счет этого на пластину пойдут свободные электроны с земли. Они нейтрализуют положительный заряд на внешней стороне пластины. Таким образом, мы получили на пластине B отрицательный заряд $-q$ (рисунок 6). По величине он равен заряду на другой пластине.

Рисунок 6. Результат электризации пластины конденсатора

Стрелка электрометра отклонилась. Зафиксируем это значение напряжения между пластинами. Далее мы снова сообщим заряд пластине B, равный по величине первому сообщаемому заряду. Потом сообщим третий и четвертый такие же заряды, наблюдая за стрелкой электрометра.

Вы увидите, что при увеличении заряда в 2, 3, 4 раза, соответственно, в 2, 3, 4 раза увеличиваются показания электрометра — напряжение между пластинами. Важно отметить, что отношение заряда к напряжению при этом будет постоянно:
$\frac{q}{U} = \frac{2q}{2U} = \frac{3q}{3U} = \frac{4q}{4U} = const$.

Теперь мы можем дать определение электроемкости конденсатора.

Электроемкость конденсатора — это величина, измеряемая отношением заряда на одной из пластин конденсатора к напряжению между пластинами:
$C = \frac{q}{U}$.

{"questions":[{"content":"Электроемкость конденсатора определяется отношением[[choice-16]]","widgets":{"choice-16":{"type":"choice","options":["заряда к напряжению между обкладками","напряжения между обкладками к заряду","заряда на одной обкладке к заряду на другой"],"explanations":["","","Эти заряды равны, но противоположны друг другу по знаку. За заряд конденсатора мы принимаем численное значение заряда одной из обкладок."],"answer":[0]}}}]}

Единицы измерения электроемкости

В СИ электроемкость измеряется в фарадах ($Ф$).

Электроемкость конденсатора равна единице, если при сообщении ему заряда в $1 \space Кл$ возникает напряжение, равное $1 \space В$ (рисунок 7):
$1 \space Ф = \frac{1 \space Кл}{1 \space В}$.{-12} \space Ф$.

{"questions":[{"content":"Электроемкость измеряется в[[choice-24]]","widgets":{"choice-24":{"type":"choice","options":["фарадах","ньютонах","амперах","ваттах"],"explanations":["","Это единица измерения силы.","Это единица измерения силы тока.","Это единица измерения мощности тока."],"answer":[0]}}}]}

Зависимость электроемкости от площади пластин конденсатора

От чего зависит электроемкость? Начнем с размера пластин.

Зафиксируем полученное в первом опыте с электрометром и конденсатором значение напряжения $U_1$. Теперь возьмем пластины, имеющие большую площадь. Сообщим им точно такой же заряд $q$ (рисунок 9).

Рисунок 9. Зависимость емкости конденсатора от площади его пластин

Мы увидим, что стрелка электрометра отклоняется меньше. Это означает, что напряжение между этими пластинами меньше напряжения между пластинами меньшей площади ($U_1 > U_2$).

Из определения электроемкости:
$C_1 = \frac{q}{U_1}$,
$C_2 = \frac{q}{U_2}$,
$C_2 > C_1$.

Чем больше площадь пластин, тем больше электроемкость конденсатора.

{"questions":[{"content":"Если мы уменьшим площадь обкладок конденсатора, то его электроемкость[[choice-31]]","widgets":{"choice-31":{"type":"choice","options":["уменьшится","увеличится","не изменится"],"answer":[0]}}}]}

Зависимость электроемкости от расстояния между пластинами конденсатора

Снова обратимся к опыту. Теперь изменим расстояние между пластинами — уменьшим его (рисунок 10).

Рисунок 10. Зависимость емкости конденсатора от расстояния между пластинами

Мы увидим, что напряжение между пластинами уменьшилось: $U_2 < U_1$. Значит,
$C_1 = \frac{q}{U_1}$,
$C_2 = \frac{q}{U_2}$,
$C_2 > C_1$.

При уменьшении расстояния между пластинами конденсатора и при неизменном заряде электроемкость конденсатора увеличивается.

{"questions":[{"content":"Один из способов уменьшить емкость конденсатора — это [[choice-34]]","widgets":{"choice-34":{"type":"choice","options":["увеличить расстояние между его обкладками","уменьшить расстояние между его обкладками","увеличить площадь его обкладок"],"answer":[0]}}}]}

Зависимость электроемкости от диэлектрика

Проведем еще один опыт. Зафиксируем значение напряжения между пластинами конденсатора. Затем внесем между ними лист из оргстекла (рисунок 11). Он является диэлектриком.

Рисунок 11. Зависимость емкости конденсатора от диэлектрика

Если раньше диэлектриком между пластинами являлся только воздух, то теперь это и воздух, и лист оргстекла. Напряжение между пластинами уменьшилось: $U_1 > U_2$. Значит,
$C_1 = \frac{q}{U_1}$,
$C_2 = \frac{q}{U_2}$,
$C_2 > C_1$.

При внесении диэлектрика электроемкость конденсатора увеличивается.

{"questions":[{"content":"Если добавить еще один слой диэлектрика между обкладками конденсатора, то его емкость[[choice-37]]","widgets":{"choice-37":{"type":"choice","options":["увеличится","уменьшится","не изменится"],"answer":[0]}}}]}

Виды конденсаторов

Между обкладками конденсатора могут быть помещены разнообразные диэлектрики. В зависимости от природы этого диэлектрика конденсаторы разделяют на несколько видов: с твердым, жидким и газообразным диэлектриком.

Также существует классификация и по форме обкладок. Конденсаторы бывают плоские, цилиндрические, сферические (рисунок 12) и др.

Рисунок 12. Виды конденсаторов по форме обкладок

Конденсаторы бывают с постоянной емкостью и с переменной емкостью. В последних можно регулировать параметры, от которых зависит емкость — ширину пластин и расстояние между ними.

На данный момент существует огромное разнообразие конденсаторов (рисунок 13). Многие из них носят названия, происходящие от названий материалов, составляющих их: слюдяные, керамические, алюминиевые электролитические, танталовые электролитические, конденсаторы на полимерной пленке.

Рисунок 13. Современные конденсаторы
{"questions":[{"content":"Если конденсатор имеет плоские обкладки, параллельные друг другу, его называют[[choice-40]]","widgets":{"choice-40":{"type":"choice","options":["плоским","квадратным","параллельным","прямоугольным"],"answer":[0]}}}]}

Энергия конденсатора и работа его электрического поля

Заряженный конденсатор обладает некоторой энергией. Это легко проверить на опыте. Если мы подключим к конденсатору электрическую лампочку, то она она ярко вспыхнет (рисунок 14). Энергия конденсатора превратилась во внутреннюю энергию нити накаливания лампы и соединительных проводов.

Рисунок 14. Наличие энергии у заряженного конденсатора

Откуда взялась эта энергия? Конденсатор получает ее при зарядке.

Для того, чтобы зарядить конденсатор, нужно совершить работу по разделению отрицательных и положительных зарядов. По закону сохранения энергии совершенная работа A и будет равна энергии конденсатора E:
$A = E$.

Для расчета такой работы электрического поля конденсатора существует  специальная формула.

$A = qU_{ср}$,
где $U_{ср}$ — среднее значение напряжения.2}{2}$»,»$A = qU$»],»answer»:[0]}}}]}

Это свойство (накопление энергии и ее быстрая отдача) широко применяется в различных электронных устройствах, в медицинской технике (рентген, устройства для электротерапии), при изготовлении дозиметров, фотосъемке.

Последовательное соединение конденсаторов

В электрической цепи может быть не один, а сразу несколько конденсаторов. Они могут быть соединены как последовательно, так и параллельно.

Рассмотрим первый тип соединения — последовательный (рисунок 15).

Рисунок 15. Последовательное соединение конденсаторов

Обкладки 2 и 3, принадлежащие разным конденсаторам, будут являться отдельной деталью. По закону сохранения заряда, заряды на обкладках 2 и 3 будут равны друг другу по модулю, но противоположны по знаку. Из этого следует, что общий заряд конденсаторов численно будет равен заряду на любой из обкладок конденсаторов.

$q = q_1 = q_2 = … = q_n$

Напряжение на концах участка цепи с последовательно соединенными конденсаторами будет складываться из значения напряжений на каждом конденсаторе.

$U = U_1 + U_2 + … + U_n$

Чтобы получить формулу для общей емкости конденсаторов, последнее равенство нужно разделить на заряд q (любой, так как они равны).

$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + … \frac{1}{C_n}$.

{"questions":[{"content":"Общий заряд последовательно соединенных конденсаторов равен[[choice-49]]","widgets":{"choice-49":{"type":"choice","options":["заряду на любой из обкладок конденсаторов","сумме зарядов на всех обкладках конденсаторов","сумме зарядов на двух обкладках одного конденсатора"],"answer":[0]}}}]}

Параллельное соединение конденсаторов

Параллельное соединение конденсаторов показано на рисунке 16.

Рисунок 16. Параллельное соединение конденсаторов

В этом случае выходы от источника питания будут соединены с каждой обкладкой конденсаторов. Поэтому напряжение на концах такого участка цепи будет равно напряжению между обкладками любого из конденсаторов.

$U = U_1 = U_2 = … = U_n$

Заряды на обкладках будут суммироваться.

$q = q_1 + q_2 + … + q_n$

Разделим это равенство на значение напряжения и получим формулу для электроемкости параллельно соединенных конденсаторов.

$C = C_1 + C_2 + … + C_n$

{"questions":[{"content":"Напряжение на концах участка цепи с параллельно соединенными конденсаторами равно[[choice-54]]","widgets":{"choice-54":{"type":"choice","options":["напряжению между обкладками любого из конденсаторов","сумме напряжений между обкладками всех конденсаторов","напряжению на полюсах источника тока"],"answer":[0]}}}]}

Первый конденсатор — лейденская банка

Лейденская банка официально является первым конденсатором. Изобретение ее относится к 1745 году. Существует множество версий о том, кто же именно должен считаться изобретателем этого прибора, но официально авторство принадлежит Питеру ван Мушенбруку и его студенту Андреасу Кунэусу.

В ранней версии лейденская банка была на часть заполнена водой, которая выступала в роли обкладки (рисунок 17). Второй обкладкой являлась рука, держащая банку. После зарядки этого приспособления Андреас Кунэус испытал сильный удар током, коснувшись до верха металлического стержня.

Рисунок 17. Ранняя версия лейденской банки

Более поздняя и более распространенная версия этого незамысловатого прибора представляет собой сосуд из стекла с широким горлом, снаружи покрытый листом из фольги (рисунок 18). Фольга также находится и внутри банки. Через пробку в этот сосуд вставляется металлический стержень. Он должен касаться фольги внутри банки.

Рисунок 18. Лейденская банка с обкладками из фольги

Таким образом, фольга внутри и фольга снаружи становятся своеобразными обкладками. При подключении к источнику тока на них накапливается электрический заряд.

Внимание! Лейденская банка не является безопасным инструментом в электротехнике! Разряд такого конденсатора может оказаться смертельным  или привести к серьезным физическим повреждениям. Будьте аккуратны при использовании данного прибора: не следует пытаться разрядить лейденскую банку, взявшись за нее голыми руками.

{"questions":[{"content":"У лейденской банки, изображенной на рисунке 18, обкладками являются[[choice-57]]","widgets":{"choice-57":{"type":"choice","options":["слой фольги снаружи и слой фольги внутри банки","металлический стержень и слой фольги снаружи банки","Пробка и стеклянный сосуд"],"answer":[0]}}}]}

Как изготовить лейденскую банку своими руками? Возьмите пластиковую банку с крышкой (из-под кофе, витаминов). Внешнюю сторону банки на $\frac{2}{3}$ обклейте фольгой. Далее или налейте в банку соленую воду, или обклейте изнутри фольгой. Затем закройте крышку и проткните ее достаточно длинным гвоздем, чтобы он касался внутренней обкладки (воды или фольги). После зарядки такая банка представляет собой заряженный конденсатор.

Упражнения

Упражнение №1

Пластины плоского конденсатора подсоединяют к источнику напряжения в $220 \space В$.6 \space В$.

Виды переменных конденсаторов. Электрический конденсатор

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от , которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой — станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.

Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.

В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

Как устроен конденсатор

Устройство конденсатора практически ничем не отличается от лейденской банки: все те же две обкладки, разделенные диэлектриком. Именно так на современных электрических схемах изображаются конденсаторы. На рисунке 1 показано схематичное устройство плоского конденсатора и формула для его расчета.

Рисунок 1. Устройство плоского конденсатора

Здесь S — площадь пластин в квадратных метрах, d — расстояние между пластинами в метрах, C — емкость в фарадах, ε — диэлектрическая проницаемость среды. Все величины, входящие в формулу, указаны в системе СИ. Эта формула справедлива для простейшего плоского конденсатора: можно просто расположить рядом две металлические пластины, от которых сделаны выводы. Диэлектриком может служить воздух.

Из этой формулы можно понять, что емкость конденсатора тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Для конденсаторов с другой геометрией формула может быть иной, например, для емкости одиночного проводника или . Но зависимость емкости от площади пластин и расстояния между ними та же, что и у плоского конденсатора: чем больше площадь и чем меньше расстояние, тем больше емкость.

На самом деле пластины не всегда делаются плоскими. У многих конденсаторов, например металлобумажных, обкладки представляют собой алюминиевую фольгу свернутую вместе с бумажным диэлектриком в плотный клубок, по форме металлического корпуса.

Для увеличения электрической прочности тонкая конденсаторная бумага пропитывается изолирующими составами, чаще всего трансформаторным маслом. Такая конструкция позволяет делать конденсаторы с емкостью до нескольких сотен микрофарад. Примерно так же устроены конденсаторы и с другими диэлектриками.

Формула не содержит никаких ограничений на площадь пластин S и расстояние между пластинами d. Если предположить, что пластины можно развести очень далеко, и при этом площадь пластин сделать совсем незначительной, то какая-то емкость, пусть небольшая, все равно останется. Подобное рассуждение говорит о том, что даже просто два проводника, расположенные по соседству, обладают электрической емкостью.

Этим обстоятельством широко пользуются в высокочастотной технике: в некоторых случаях конденсаторы делаются просто в виде дорожек печатного монтажа, а то и просто двух скрученных вместе проводков в полиэтиленовой изоляции. Обычный провод-лапша или кабель также обладают емкостью, причем с увеличением длины она увеличивается.

Кроме емкости C, любой кабель обладает еще и сопротивлением R. Оба этих физических свойства распределены по длине кабеля, и при передаче импульсных сигналов работают как интегрирующая RC — цепочка, показанная на рисунке 2.

Рисунок 2.

На рисунке все просто: вот схема, вот входной сигнал, а вот он же на выходе. Импульс искажается до неузнаваемости, но это сделано специально, для чего и собрана схема. Пока же речь идет о влиянии емкости кабеля на импульсный сигнал. Вместо импульса на другом конце кабеля появится вот такой «колокол», а если импульс короткий, то он может и вовсе не дойти до другого конца кабеля, вовсе пропасть.

Исторический факт

Здесь вполне уместно вспомнить историю о том, как прокладывали трансатлантический кабель. Первая попытка в 1857 году потерпела неудачу: телеграфные точки — тире (прямоугольные импульсы) искажались так, что на другом конце линии длиной 4000 км разобрать ничего не удалось.

Вторая попытка была предпринята в 1865 году. К этому времени английский физик У. Томпсон разработал теорию передачи данных по длинным линиям. В свете этой теории прокладка кабеля оказалась более удачной, сигналы принять удалось.

За этот научный подвиг королева Виктория пожаловала ученого рыцарством и титулом лорда Кельвина. Именно так назывался небольшой город на побережье Ирландии, где начиналась прокладка кабеля. Но это просто к слову, а теперь вернемся к последней букве в формуле, а именно, к диэлектрической проницаемости среды ε.

Немножко о диэлектриках

Эта ε стоит в знаменателе формулы, следовательно, ее увеличение повлечет за собой возрастание емкости. Для большинства используемых диэлектриков, таких как воздух, лавсан, полиэтилен, фторопласт эта константа практически такая же, как у вакуума. Но вместе с тем существует много веществ, диэлектрическая проницаемость которых намного выше. Если воздушный конденсатор залить ацетоном или спиртом, то его емкость возрастет раз в 15…20.

Но подобные вещества обладают кроме высокой ε еще и достаточно высокой проводимостью, поэтому такой конденсатор заряд держать будет плохо, он быстро разрядится сам через себя. Это вредное явление называется током утечки. Поэтому для диэлектриков разрабатываются специальные материалы, которые позволяют при высокой удельной емкости конденсаторов обеспечивать приемлемые токи утечки. Именно этим и объясняется такое разнообразие видов и типов конденсаторов, каждый из которых предназначен для конкретных условий.

Наибольшей удельной емкостью (соотношение емкость / объем) обладают . Емкость «электролитов» достигает до 100 000 мкФ, рабочее напряжение до 600В. Такие конденсаторы работают хорошо только на низких частотах, чаще всего в фильтрах источников питания. Электролитические конденсаторы включаются с соблюдением полярности.

Электродами в таких конденсаторах является тонкая пленка из оксида металлов, поэтому часто эти конденсаторы называют оксидными. Тонкий слой воздуха между такими электродами не очень надежный изолятор, поэтому между оксидными обкладками вводится слой электролита. Чаще всего это концентрированные растворы кислот или щелочей.

На рисунке 3 показан один из таких конденсаторов.

Рисунок 3. Электролитический конденсатор

Чтобы оценить размеры конденсатора рядом с ним сфотографировался простой спичечный коробок. Кроме достаточно большой емкости на рисунке можно разглядеть еще и допуск в процентах: ни много ни мало 70% от номинальной.

В те времена, когда компьютеры были большими и назывались ЭВМ, такие конденсаторы стояли в дисководах (по-современному HDD). Информационная емкость таких накопителей теперь может вызвать лишь улыбку: на двух дисках диаметром 350 мм хранилось 5 мегабайт информации, а само устройство весило 54 кг.

Основным назначением показанных на рисунке суперконденсаторов был вывод магнитных головок из рабочей зоны диска при внезапном отключении электроэнергии. Такие конденсаторы могли хранить заряд несколько лет, что было проверено на практике.

Чуть ниже с электролитическими конденсаторами будет предложено проделать несколько простых опытов, чтобы понять, что может делать конденсатор.

Для работы в цепях переменного тока выпускаются неполярные электролитические конденсаторы, вот только достать их почему-то очень непросто. Чтобы как-то эту проблему обойти, обычные полярные «электролиты» включают встречно-последовательно: плюс-минус-минус-плюс.

Если полярный электролитический конденсатор включить в цепь переменного тока, то сначала он будет греться, а потом раздастся взрыв. Отечественные старые конденсаторы разлетались во все стороны, импортные же имеют специальное приспособление, позволяющее избежать громких выстрелов. Это, как правило, либо крестовая насечка на донышке конденсатора, либо отверстие с резиновой пробкой, расположенное там же.

Очень не любят электролитические конденсаторы повышенного напряжения, даже если полярность соблюдена. Поэтому никогда не надо ставить «электролиты» в цепь, где предвидится напряжение близкое к максимальному для данного конденсатора.

Иногда в некоторых, даже солидных форумах, начинающие задают вопрос: «На схеме означен конденсатор 470µF * 16V, а у меня есть 470µF * 50V, можно ли его поставить?». Да, конечно можно, вот обратная замена недопустима.

Конденсатор может накапливать энергию

Разобраться с этим утверждением поможет простая схема, показанная на рисунке 4.

Рисунок 4. Схема с конденсатором

Главным действующим лицом этой схемы является электролитический конденсатор C достаточно большой емкости, чтобы процессы заряда — разряда протекали медленно, и даже очень наглядно. Это дает возможность наблюдать работу схемы визуально с помощью обычной лампочки от карманного фонаря. Фонари эти давно уступили место современным светодиодным, но лампочки для них продаются до сих пор. Поэтому, собрать схему и провести простые опыты очень даже просто.

Может быть, кто-то скажет: «А зачем? Ведь и так все очевидно, да если еще и описание почитать…». Возразить тут, вроде, нечего, но любая, даже самая простая вещь остается в голове надолго, если ее понимание пришло через руки.

Итак, схема собрана. Как она работает?

В положении переключателя SA, показанном на схеме, конденсатор C заряжается от источника питания GB через резистор R по цепи: +GB __ R __ SA __ C __ -GB. Зарядный ток на схеме показан стрелкой с индексом iз. Процесс заряда конденсатора показан на рисунке 5.

Рисунок 5. Процесс заряда конденсатора

На рисунке видно, что напряжение на конденсаторе возрастает по кривой линии, в математике называемой экспонентой. Ток заряда прямо-таки зеркально отражает напряжение заряда. По мере того, как напряжение на конденсаторе растет, ток заряда становится все меньше. И только в начальный момент соответствует формуле, показанной на рисунке.

Через некоторое время конденсатор зарядится от 0В до напряжения источника питания, в нашей схеме до 4,5В. Весь вопрос в том, как это время определить, сколько ждать, когда же конденсатор зарядится?

Постоянная времени «тау» τ = R*C

В этой формуле просто перемножаются сопротивление и емкость последовательно соединенных резистора и конденсатора. Если, не пренебрегая системой СИ, подставить сопротивление в Омах, емкость в Фарадах, то результат получится в секундах. Именно это время необходимо для того, чтобы конденсатор зарядился до 36,8% напряжения источника питания. Соответственно для заряда практически до 100% потребуется время 5* τ.

Часто, пренебрегая системой СИ, подставляют в формулу сопротивление в Омах, а емкость в микрофарадах, тогда время получится в микросекундах. В нашем случае результат удобнее получить в секундах, для чего придется микросекунды просто умножить на миллион, а проще говоря, переместить запятую на шесть знаков влево.

Для схемы, показанной на рисунке 4, при емкости конденсатора 2000мкФ и сопротивлении резистора 500Ω постоянная времени получится τ = R*C = 500 * 2000 = 1000000 микросекунд или ровно одна секунда. Таким образом, придется подождать приблизительно 5 секунд, пока конденсатор зарядится полностью.

Если по истечении указанного времени переключатель SA перевести в правое положение, то конденсатор C разрядится через лампочку EL. В этот момент получится короткая вспышка, конденсатор разрядится и лампочка погаснет. Направление разряда конденсатора показано стрелкой с индексом iр. Время разряда также определяется постоянной времени τ. График разряда показан на рисунке 6.

Рисунок 6. График разряда конденсатора

Конденсатор не пропускает постоянный ток

Убедиться в этом утверждении поможет еще более простая схема, показанная на рисунке 7.

Рисунок 7. Схема с конденсатором в цепи постоянного тока

Если замкнуть переключатель SA, то последует кратковременная вспышка лампочки, что свидетельствует о том, что конденсатор C зарядился через лампочку. Здесь же показан и график заряда: в момент замыкания переключателя ток максимальный, по мере заряда конденсатора уменьшается, а через некоторое время прекращается совсем.

Если конденсатор хорошего качества, т.е. с малым током утечки (саморазряда) повторное замыкание выключателя к вспышке не приведет. Для получения еще одной вспышки конденсатор придется разрядить.

Конденсатор в фильтрах питания

Конденсатор ставится, как правило, после выпрямителя. Чаще всего выпрямители делаются двухполупериодными. Наиболее распространенные схемы выпрямителей показаны на рисунке 8.

Рисунок 8. Схемы выпрямителей

Однополупериодные выпрямители также применяются достаточно часто, как правило, в тех случаях, когда мощность нагрузки незначительна. Самым ценным качеством таких выпрямителей является простота: всего один диод и обмотка трансформатора.

Для двухполупериодного выпрямителя емкость конденсатора фильтра можно рассчитать по формуле

C = 1000000 * Po / 2*U*f*dU, где C емкость конденсатора мкФ, Po мощность нагрузки Вт, U напряжение на выходе выпрямителя В, f частота переменного напряжения Гц, dU амплитуда пульсаций В.

Большое число в числителе 1000000 переводит емкость конденсатора из системных Фарад в микрофарады. Двойка в знаменателе представляет собой число полупериодов выпрямителя: для однополупериодного на ее месте появится единица

C = 1000000 * Po / U*f*dU,

а для трехфазного выпрямителя формула примет вид C = 1000000 * Po / 3*U*f*dU.

Суперконденсатор — ионистор

В последнее время появился новый класс электролитических конденсаторов, так называемый . По своим свойствам он похож на аккумулятор, правда, с несколькими ограничениями.

Заряд ионистора до номинального напряжения происходит в течение короткого времени, буквально за несколько минут, поэтому его целесообразно использовать в качестве резервного источника питания. По сути ионистор прибор неполярный, единственное, чем определяется его полярность это зарядкой на заводе — изготовителе. Чтобы в дальнейшем эту полярность не перепутать она указывается знаком +.

Большую роль играют условия эксплуатации ионисторов. При температуре 70˚C при напряжении 0,8 от номинального гарантированная долговечность не более 500 часов. Если же прибор будет работать при напряжении 0,6 от номинального, а температура не превысит 40 градусов, то исправная работа возможна в течение 40 000 часов и более.

Наиболее распространенное применение ионистора это источники резервного питания. В основном это микросхемы памяти или электронные часы. В этом случае основным параметром ионистора является малый ток утечки, его саморазряд.

Достаточно перспективным является использование ионисторов совместно с солнечными батареями. Здесь также сказывается некритичность к условию заряда и практически неограниченное число циклов заряд-разряд. Еще одно ценное свойство в том, что ионистор не нуждается в обслуживании.

Пока получилось рассказать, как и где работают электролитические конденсаторы, причем, в основном в цепях постоянного тока. О работе конденсаторов в цепях переменного тока будет рассказано в другой статье — .


Электрический конденсатор — один из самых распространених радио элементов, служит он для накопления электроэнергии (заряда). Самый простой конденсатор можно представить в виде двух металлических пластин (обкладок) и диэлектрика который находится между ними.

Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.

В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.

Конденсаторы алюминиевые электролитические

Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.


В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!


Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.

Керамические однослойные конденсаторы

Такие типы, например как К10-7В, К10-19, КД-2. Максимальное напряжения такого типа конденсаторов лежит в пределах 15 — 50 вольт, а ёмкость от 1 пФ до 0.47 мкф при сравнительно небольших размерах довольно не плохой результат технологии.
У данного типа характерны малые токи утечки и низкая индуктивность что позволяет им легко работать на высоких частотах, при постоянном, переменном и пульсирующих токах.
Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА.
Конденсаторы данного типа спокойно переносят внешние факторы, такие как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.


Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее «ходовых» ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.

Керамические многослойные конденсаторы

Например К10-17А или К10-17Б.
В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.

Керамические высоковольтные конденсаторы

Например К15У, КВИ и К15-4
Максимальное рабочее напряжение данного типа может достигать 15 000 вольт! Но ёмкость у них небольшая, порядка 68 — 100 нФ.


Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.


Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.

Танталовые конденсаторы

Например К52-1 или smd А. Основным веществом служит — пентоксид тантала, а в качестве электролита — диоксид марганца.

Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.


Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.

Полиэстеровые конденсаторы

Например K73-17 или CL21, на основе металлизированной пленки…
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.


Ёмкость таких конденсаторов идет порядка 1 нф — 15мкф и максимальное рабочее напряжение у них от 50 до 1500 вольт.
Большой диапазон максимального напряжения и ёмкости дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсных токов.

Полипропиленовые конденсаторы

Например К78-2 и CBB-60.
В данного типа конденсаторов в качестве диэлектрика выступает полипропиленовая пленка. Корпус изготовлен из негорючих материалов, а сам конденсатор призначен для работы в тяжелых условиях.
Ёмкость, как правило в пределах 100пф — 10мкф, но в последнее время выпускают и больше, а по поводу напряжение то большой запас может достигать и 3000 вольт!

Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.

Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.

Конденсатор – распространенное двухполюсное устройство, применяемое в различных электрических цепях. Он имеет постоянную или переменную ёмкость и отличается малой проводимостью, он способен накапливать в себе заряд электрического тока и передавать его другим элементам в электроцепи.
Простейшие примеры состоят из двух пластинчатых электродов, разделенных диэлектриком и накапливающих противоположные заряды. В практических условиях мы используем конденсаторы с большим числом разделенных диэлектриком пластин.


Заряд конденсатора начинается при подключении электронного прибора к сети. В момент подключения прибора на электродах конденсатора много свободного места, потому электрический ток , поступающий в цепь, имеет наибольшую величину. По мере заполнения, электроток будет уменьшаться и полностью пропадет, когда ёмкость устройства будет полностью наполнена.

В процессе получения заряда электрического тока, на одной пластине собираются электроны (частицы с отрицательным зарядом), а на другой – ионы (частицы с положительным зарядом). Разделителем между положительно и отрицательно заряженными частицами выступает диэлектрик, в качестве которого могут использоваться различные материалы.

В момент подключения электрического устройства к источнику питания, напряжение в электрической цепи имеет нулевое значение. По мере заполнения ёмкостей напряжение в цепи увеличивается и достигает величины, равной уровню на источнике тока.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам. Нагрузка образует цепь между его пластинами, потому в момент отключения питания положительно заряженные частицы начнут двигаться по направлению к ионам.

Начальный ток в цепи при подключении нагрузки будет равняться напряжению на отрицательно заряженных частицах, разделенному на величину сопротивления нагрузки. При отсутствии питания конденсатор начнет терять заряд и по мере убывания заряда в ёмкостях, в цепи будет снижаться уровень напряжения и величины тока. Этот процесс завершится только тогда, когда в устройстве не останется заряда.

На рисунке выше представлена конструкция бумажного конденсатора:
а) намотка секции;
б) само устройство.
На этой картинке:

  1. Бумага;
  2. Фольга;
  3. Изолятор из стекла;
  4. Крышка;
  5. Корпус;
  6. Прокладка из картона;
  7. Оберточная бумага;
  8. Секции.

Ёмкость конденсатора считается важнейшей его характеристикой, от него напрямую зависит время полной зарядки устройства при подключении прибора к источнику электрического тока. Время разрядки прибора также зависит от ёмкости, а также от величины нагрузки. Чем выше будет сопротивление R, тем быстрее будет опустошаться ёмкость конденсатора.

В качестве примера работы конденсатора можно рассмотреть функционирование аналогового передатчика или радиоприемника. При подключении прибора к сети, конденсаторы, подключенные к катушке индуктивности, начнут накапливать заряд, на одних пластинах будут собираться электроды, а на других – ионы. После полной зарядки ёмкости устройство начнет разряжаться. Полная потеря заряда приведет к началу зарядки, но уже в обратном направлении, то есть, пластины имевшие положительный заряд в этот раз будут получать отрицательный заряд и наоборот.

Назначение и использование конденсаторов

В настоящее время их используют практически во всех радиотехнических и различных электронных схемах.
В электроцепи переменного тока они могут выступать в качестве ёмкостного сопротивления. К примеру, при подключении конденсатора и лампочки к батарейке (постоянный ток), лампочка светиться не будет. Если же подключить такую цепь к источнику переменного тока, лампочка будет светиться, причем интенсивность света будет напрямую зависеть от величины ёмкости используемого конденсатора. Благодаря этим особенностям, они сегодня повсеместно применяются в цепях в качестве фильтров, подавляющих высокочастотные и низкочастотные помехи.

Конденсаторы также используются в различных электромагнитных ускорителях, фотовспышках и лазерах, благодаря способности накапливать большой электрический заряд и быстро передавать его другим элементам сети с низким сопротивлением, за счет чего создается мощный импульс.

Во вторичных источниках электрического питания их применяют для сглаживания пульсаций при выпрямлении напряжения.

Способность сохранять заряд длительное время дает возможность использовать их для хранения информации.

Использование резистора или генератора тока в цепи с конденсатором позволяет увеличить время заряда и разряда ёмкости устройства, благодаря чему эти схемы можно использовать для создания времязадающих цепей, не предъявляющих высоких требований к временной стабильности.

В различной электрической технике и в фильтрах высших гармоник данный элемент применяется для компенсации реактивной мощности.

  • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с жидким диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металле, являющийся анодом. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги.
    Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:
  • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.

  • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.
  • зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространенные низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.
  • Являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

    Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

    Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

    Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

    К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:

    У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

    Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

    Неполярный конденсатор изображение на схеме

    На фото ниже изображены пленочный и керамический конденсаторы:

    Пленочный


    Керамический

    Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

    На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:

    Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:

    Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

    Переменные конденсаторы


    Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:

    Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей.

    На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:

    На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом:

    Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.

    На следующем рисунке изображено строение подстроечного конденсатора:

    Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV .

    Обсудить статью КОНДЕНСАТОР

    Услуги электрика Воронеж — Электрическая емкость и конденсаторы

    Способность проводников накапливать электрическая заряды нызвается электрической емкостью.

    Единицей измерения емкости является фарада (ф). Фарада — очень крупная единица измерения, поэтому в технике обычно пользуются более мелкими единицами измерения емкости, являющимися долями фарады:

    1 микрофарада (мкф) = 1/1 000 000 ф;

    1 пикофарада (пф) = 1/1 000 000 000 000 ф.

    Соотношение между емкостью и зарядом определяется формулой

    где С — емкость, ф;
    Q — заряд, к;
    U — напряжение между проводниками, в.

    Емкость зависит от размеров проводников, расстояния между ними и материала разделяющего их диэлектрика.

    Конденсатор — это устройство для накопления электрических зарядов, состоящее из проводников, разделенных диэлектриками.

    Устройство простейшего конденсатора показано на рис. 1. Конденсатор состоит из двух пластин, разделенных слоем воздуха или иного диэлектрика. При подводе напряжения к обкладкам конденсатора на них накапливается заряд:

    Q=UC

    После снятия напряжения заряд конденсатора сохраняется. Таким образом, конденсатор обладает способностью не только накапливать электрические заряды, но и сохранять их в течение некоторого времени.

    Конструкция конденсаторов

    В зависимости от типа диэлектрика конденсаторы делятся на бумажные, слюдяные, керамические, электролитичексие и воздушные.

    Для увеличения емкости конденсаторы соединяют параллельно. При таком соединении (рис. 1) напряжение на каждом параллельно соединенным конденсаторе равно напряжению источника.

    Суммарный заряд всех параллельно соединенных конденсаторов равен сумме зарядов каждого, т.е.

    Qобщ = Q1+Q2

    Общая емкость параллельно соединенных конденсаторов равна сумме емкостей отдельных конденсаторов:

    Собщ = С12

    Если параллельно соединены конденсаторы одинаковой емкости, то общая емекость

    Собщ = Сn,

    Где С — емкость одного конденсатора
    n — количество параллельно соединенных конденсаторов.

    Последовательно соединение конденсаторов применяют для снижения напряжения на конденсаторах. Одновременно будет уменьшаться общая емкость. Последовательным называется соединение (рис. 2), при котором один из выводов первого конденсатора соединяют с одним из выводов второго, а другой вывод второго конденсатора — с одним из выводов третьего и т.д. Провода от источника тока подводят к свободным выводам первого и последнего конденсаторов.

    Если последовательно соединенные конденсаторы подключить к источнику постоянного тока, то обкладки каждого конденсатора получат равные по величине и противоположные по знаку заряды, равные общему заряду.

    Если емкости конденсаторов не равны между собой, то напряжения на них будут различными. Сумма напряжений на конденсаторах равна общему напряжению источника тока, т.е.

    Uобщ = U1+U2.

    Общая емкость двух последовательно соединенных конденсаторов определяется выражением:

    Это выражение может быть преобразовано:

    Если последовательно соединены не два конденсатора, а n конденсаторов, то

    При конденсаторах равной емкости

    Напряжение на любом из последовательно соединенных конденсаторов определяется по формуле

    Un=Uобщ*(Cобщ/Cn),

    где Un — напряжение на соответствующем конденсаторе
    Cn — емкость этого конденсатора.

    При последовательном соединении n конденсаторов равной емкости напряжения на них будут равными и могут быть определены по формуле:

    Un=Uобщ/n,

    Конденсатор со стрелкой. Электрический конденсатор. Виды конденсаторов. Что такое электрический конденсатор

    Конденсатор (capacitor, cap) — это маленький «аккумулятор», который быстро заряжается при наличии напряжения вокруг него и быстро разряжается обратно, когда напряжения недостаточно для удержания заряда.

    Основной характеристикой конденсатора является ёмкость. Она обозначается символом C , единица её измерения — Фарад. Чем больше ёмкость, тем больший заряд может удерживать конденсатор при заданном напряжении. Также чем больше ёмкость, тем меньше скорость зарядки и разрядки.

    Типичные значения, применяемые в микроэлектронике: от десятков пикофарад (pF, пФ = 0.000000000001 Ф) до десятков микрофарад (μF, мкФ = 0.000001). Самые распростронённые типы конденсаторов: керамический и электролитический. Керамические меньше по размеру и обычно имеют ёмкость до 1 мкФ; им всё равно какой из контактов будет подключен к плюсу, а какой — к минусу. Электролитические конденсаторы имеют ёмкости от 100 пФ и они полярны: к плюсу должен быть подключен конкретный контакт. Ножка, соответствующая плюсу, делается длинее.

    Конденсатор представляет собой две пластины, разделённые слоем диэлектрика. Пластины скапливают заряд: одна положительный, другая отрицательный; тем самым внутри создаётся напряжение . Изолирующий диэлектрик не даёт внутреннему напряжению превратиться во внутренний ток , который бы уравнял пластины.

    Зарядка и разрядка

    Рассмотрим такую схему:

    Пока переключатель находится в положении 1, на конденсаторе создаётся напряжение — он заряжается. Заряд Q на пластине в определённый момент времени расчитывается по формуле:

    C — ёмкость, e — экспонента (константа ≈ 2.71828), t — время с момента начала зарядки. Заряд на второй пластине по значению всегда точно такой же, но с противоположным знаком. Если резистор R убрать, останется лишь небольшое сопротивление проводов (оно и станет значением R ) и зарядка будет происходить очень быстро.

    Изобразив функцию на графике, получим такую картину:

    Как видно, заряд растёт не равномерно, а обратно-экспоненциально. Это связанно с тем, что по мере того, как заряд копится, он создаёт всё большее и большее обратное напряжение V c , которое «сопротивляется» V in .

    Заканчивается всё тем, что V c становится равным по значению V in и ток перестаёт течь вовсе. В этот момент говорят, что конденсатор достиг точки насыщения (equilibrium). Заряд при этом достигает максимума.

    Вспомнив Закон Ома , мы можем изобразить зависимость силы тока в нашей цепи при зарядке конденсатора.

    Теперь, когда система находится в равновесии, поставим переключатель в положение 2.

    На пластинах конденсатора заряды противоположных знаков, они создают напряжение — появляется ток через нагрузку (Load). Ток пойдёт в противоположном направлении, если сравнивать с направлением источника питания. Разрядка тоже будет происходить наоборот: сначала заряд будет теряться быстро, затем, с падением напряжения создаваемого им же, всё медленее и медленее. Если за Q 0 обозначить заряд, который был на конденсаторе изначально, то:

    Эти величины на графике выглядят следующим образом:

    Опять же, через некоторое время система придёт в состояние покоя: весь заряд потеряется, напряжение исчезнет, течение тока прекратится.

    Если снова воспользоваться переключателем, всё начнётся по кругу. Таким образом конденсатор ничего не делает кроме как размыкает цепь когда напряжение постоянно; и «работает», когда напряжение резко меняется. Это его свойство и определяет когда и как он применяется на практике.

    Применение на практике

    Среди наиболее распространённых в микроэлектронике можно выделить такие шаблоны:

      Резервный конденсатор (bypass cap) — для уменьшения ряби напряжения питания

      Фильтрующий конденсатор (filter cap) — для разделения постоянной и изменяющейся составляющих напряжения, для выделения сигнала

    Резервный конденсатор

    Многие схемы расчитаны на получение постоянного, стабильного питания. Например 5 В. Их им поставляет источник питания. Но идеальных систем не существует и в случае резкого изменения потребления тока устройством, например когда включается компонент, источник питания не успевает «отреагировать» моментально и происходит кратковременный спад напряжения. Кроме того, в случаях когда провод от источника питания до схемы достаточно длинный, он начинает работать как антенна и тоже вносить нежелательный шум в уровень напряжения.

    Обычно отклонение от идеального напряжения не превышает тысячной доли вольта и это являние абсолютно незначительно, если речь идёт о питании, например, светодиодов или электродвигателя. Но в логических цепях, где переключение логического нуля и логической единицы происходит на основе изменения малых напряжений, шумы питания могут быть ошибочно приняты за сигнал, что приведёт к неверному переключению, которое по принципу домино поставит систему в непредсказуемое состояние.

    Для предотвращения таких сбоев, непосредственно перед схемой ставят резервный конденсатор

    В моменты, когда напряжение полное, конденсатор заряжается до насыщения и становится запасом резервного заряда. Как только уровень напряжения на линии падает, резервный конденсатор выступает в роли быстрой батарейки, отдавая накопленный ранее заряд, чтобы заполнить пробел пока ситуация не нормализуется. Такая помощь основному источнику питания происходит огромное количество раз ежесекундно.

    Если рассуждать с другой точки зрения: конденсатор выделяет из постоянного напряжения переменную составляющую и пропуская её через себя, уводит её с линии питания в землю. Именно поэтому резервный конденсатор также называют «bypass capacitor».

    В итоге, сглаженное напряжение выглядит так:

    Типичный конденсаторы, который используется для этих целей — керамические, номиналом 10 или 100 нФ. Большие электролитические слабо подходят на эту роль, т.к. они медленее и не смогут быстро отдавать свой заряд в этих условиях, где шум обладает высокой частотой.

    В одном устройстве резервные конденсаторы могут присутствовать во множестве мест: перед каждой схемой, представляющей собой самостоятельную единицу. Так, например, на Arduino уже есть резервные конденсаторы, которые обеспечивают стабильную работу процессора, но перед питанием подключаемого к нему LCD экрана должен быть установлен свой собственный.

    Фильтрующий конденсатор

    Фильтрующий конденсатор используется для снятия сигнала с сенсора, который передаёт его в форме изменяющегося напряжения. Примерами таких сенсоров являеются микрофон или активная Wi-Fi антенна.

    Рассмотрим схему подключения электретного микрофона. Электретный микрофон — самый распространённый и повсеместный: именно такой применяется в мобильных телефонах, в компьютерных аксессуарах, системах громкой связи.

    Для своей работы микрофон требует питания. В состоянии тишины, его сопротивление велико и составляет десятки килоом. Когда на него воздействует звук, затвор встроенного внутри полевого транзистора открывается и микрофон теряет внутреннее сопротивление. Потеря и восстановление сопротивления происходит много раз ежесекундно и соответствует фазе звуковой волны.

    На выходе нам интересно напряжение только в те моменты, когда звук есть. Если бы не было конденсатора C , на выход всегда бы дополнительно воздействовало постоянное напряжение питания. C блокирует эту постоянную составляющую и пропускает только отклонения, которые и соответствуют звуку.

    Слышимый звук, который нам и интересен, находится низкочастотном диапазоне: 20 Гц — 20 кГц. Чтобы выделить из напряжения именно сигнал звука, а не высокочастотные шумы питания, в качестве C используется медленный электролитический конденсатор номиналом 10 мкФ. Если был бы использован быстрый конденсатор, например, на 10 нФ, на выход прошли бы сигналы, не связанные со звуком.

    Обратите внимание, что выходной сигнал поставляется в виде отрицательного напряжения. То есть при соединении выхода с землёй, ток потечёт из земли к выходу. Пиковые значения напряжения в случае с микрофоном составляют десятки милливольт. Чтобы перевернуть напряжение обратно и увеличить его значение, выход V out обычно подключают к операционному уселителю.

    Соединение конденсаторов

    Если сравнивать с соединением резисторов , расчёт итогового номинала конденсаторов выглядит наоборот.

    При параллельном соединении суммарная ёмкость суммируется:

    При последовательном соединении, итоговая ёмкость расчитывается по формуле:

    Если конденсатора всего два, то при последовательном соединении:

    В частном случае двух одинаховых конденсаторов суммарная ёмкость последовательного соединения равна половине ёмкости каждого.

    Предельные характеристики

    В документации на каждый конденсатор указано максимальное допустимое напряжение. Его превышение может привести к пробою диэлектрика и взрыву конденсатора. Для электролитических конденсаторов обязательно должна быть соблюдена полярность. В противном случае либо вытечет электролит, либо опять же будет взрыв.

    Было рассказано об электролитических конденсаторах. В основном они применяются в цепях постоянного тока, в качестве фильтрующих емкостей в выпрямителях. Также без них не обойтись в развязывающих цепочках питания транзисторных каскадов, стабилизаторах и транзисторных фильтрах. При этом, как было сказано в статье, постоянного тока они не пропускают, а на переменном работать вовсе не хотят.

    Для цепей переменного тока существуют неполярные конденсаторы, причем, множество их типов говорит о том, что условия работы очень разнообразные. В тех случаях, когда требуется высокая стабильность параметров, а частота достаточно высокая, применяются конденсаторы воздушные и керамические.

    К параметрам таких конденсаторов предъявляются повышенные требования. В первую очередь это высокая точность (маленький допуск), а также незначительный температурный коэффициент емкости ТКЕ. Как правило, такие конденсаторы ставятся в колебательных контурах приемной и передающей радиоаппаратуры.

    Если же частота невелика, например, частота осветительной сети или частоты звукового диапазона, то вполне возможно применение бумажных и металлобумажных конденсаторов.

    Конденсаторы с бумажным диэлектриком имеют обкладки из тонкой металлической фольги, чаще всего алюминиевой. Толщина обкладок колеблется в пределах 5…10мкм, что зависит от конструкции конденсатора. Между обкладками вложен диэлектрик из конденсаторной бумаги, пропитанной изоляционным составом.

    В целях повышения рабочего напряжения конденсатора бумага может быть положена в несколько слоев. Весь этот пакет скручивается, как ковровая дорожка, и помещается в корпус круглого или прямоугольного сечения. При этом, конечно, от обкладок делаются выводы, а корпус такого конденсатора ни с чем не соединен.

    Бумажные конденсаторы используются в низкочастотных цепях при больших рабочих напряжениях и значительных токах. Одно из таких очень распространенных применений — включение трехфазного двигателя в однофазную сеть.

    В металлобумажных конденсаторах роль обкладок выполняет распыленный в вакууме на конденсаторную бумагу тончайший слой металла, все того же алюминия. Конструкция конденсаторов такая же, как и бумажных, правда, габариты намного меньше. Область применения обоих типов примерно одинакова: цепи постоянного, пульсирующего и переменного тока.

    Конструкция бумажных и металлобумажных конденсаторов, кроме емкости, обеспечивает этим конденсаторам еще и значительную индуктивность. Это приводит к тому, что на какой-то частоте бумажный конденсатор превращается в резонансный колебательный контур. Поэтому такие конденсаторы применяются лишь на частотах не более 1МГц. На рисунке 1 показаны бумажные и металлобумажные конденсаторы, выпускавшиеся в СССР.

    Рисунок 1.

    Старинные металлобумажные конденсаторы имели свойство самовосстановления после пробоя. Это были конденсаторы типов МБГ и МБГЧ, но теперь их заменили конденсаторы с керамическим или органическим диэлектриком типов К10 или К73.

    В некоторых случаях, например, в аналоговых запоминающих устройствах, или по другому, устройствах выборки-хранения (УВХ) к конденсаторам предъявляются особые требования, в частности, малый ток утечки. Тогда на помощь приходят конденсаторы, диэлектрики которых выполнены из материалов с высоким сопротивлением. В первую очередь это фторопластовые, полистирольные и полипропиленовые конденсаторы. Несколько меньшее сопротивление изоляции у слюдяных, керамических и поликарбонатных конденсаторов.

    Эти же конденсаторы используются в импульсных схемах, когда требуется высокая стабильность. В первую очередь для формирования различных временных задержек, импульсов определенной длительности, а также для задания рабочих частот различных генераторов.

    Чтобы временные параметры схемы были еще более стабильны, в некоторых случаях рекомендуется использовать конденсаторы с повышенным рабочим напряжением: ничего плохого нет в том, чтобы в схему с напряжением 12В установить конденсатор с рабочим напряжением 400 или даже 630В. Места такой конденсатор займет, конечно, побольше, но и стабильность работы всей схемы в целом тоже увеличится.

    Электрическая емкость конденсаторов измеряется в Фарадах Ф (F), но это величина очень большая. Достаточно сказать, что емкость Земного шара не превышает 1Ф. Во всяком случае, именно так написано в учебниках физики. 1 Фарада это емкость, при которой при заряде q в 1 кулон разность потенциалов (напряжение) на обкладках конденсатора составляет 1В.

    Из только что сказанного следует, что Фарада величина очень большая, поэтому на практике чаще используются более мелкие единицы: микрофарады (мкФ, µF), нанофарады (нФ, nF) и пикофарады (пФ, pF). Эти величины получаются с помощью использования дольных и кратных приставок, которые показаны в таблице на рисунке 2.

    Рисунок 2.

    Современные детали становятся все меньше, поэтому не всегда удается на них нанести полную маркировку, все чаще пользуются различными системами условных обозначений. Все эти системы в виде таблиц и пояснений к ним можно найти в интернете. На конденсаторах, предназначенных для SMD монтажа, чаще всего не ставится вообще никаких обозначений. Их параметры можно прочитать на упаковке.

    Для того, чтобы выяснить, как ведут себя конденсаторы в цепях переменного тока, предлагается проделать несколько простейших опытов. При этом, каких-то особых требований к конденсаторам не предъявляется. Вполне подойдут самые обычные бумажные или металлобумажные конденсаторы.

    Конденсаторы проводят переменный ток

    Чтобы убедиться в этом воочию, достаточно собрать несложную схему, показанную на рисунке 3.

    Рисунок 3.

    Сначала надо включить лампу через конденсаторы C1 и C2, соединенные параллельно. Лампа будет светиться, но не очень ярко. Если теперь добавить еще конденсатор C3, то свечение лампы заметно увеличится, что говорит о том, что конденсаторы оказывают сопротивлению прохождению переменного тока. Причем, параллельное соединение, т.е. увеличение емкости, это сопротивление снижает.

    Отсюда вывод: чем больше емкость, тем меньше сопротивление конденсатора прохождению переменного тока. Это сопротивление называется емкостным и в формулах обозначается как Xc. Еще Xc зависит от частоты тока, чем она выше, тем меньше Xc. Об этом будет сказано несколько позже.

    Другой опыт можно проделать используя счетчик электроэнергии, предварительно отключив все потребители. Для этого надо соединить параллельно три конденсатора по 1мкФ и просто включить их в розетку. Конечно, при этом надо быть предельно осторожным, или даже припаять к конденсаторам стандартную штепсельную вилку. Рабочее напряжение конденсаторов должно быть не менее 400В.

    После этого подключения достаточно просто понаблюдать за счетчиком, чтобы убедиться, что он стоит на месте, хотя по расчетам такой конденсатор эквивалентен по сопротивлению лампе накаливания мощностью около 50Вт. Спрашивается, почему не крутит счетчик? Об этом тоже будет рассказано в следующей статье.

    Много написано про конденсаторы, стоит ли добавлять еще пару тысяч слов к тем миллионам, что уже есть? Таки добавлю! Верю, что моё изложение принесёт пользу. Ведь оно будет сделано с учётом .

    Что такое электрический конденсатор

    Если говорить по-русски, то конденсатор можно обозвать «накопитель». Так даже понятнее. Тем более именно так переводится на наш язык это название. Стакан тоже можно обозвать конденсатором. Только он накапливает в себе жидкость. Или мешок. Да, мешок. Оказывается тоже накопитель. Накапливает в себе всё, что мы туда засунем. Причем тут электрический кондесатор? Он такой же как стакан или мешок, но только накапливает электрический заряд.

    Представь себе картину: по цепи проходит электрический ток, на его пути встречаются резисторы, проводники и, бац, возник конденсатор (стакан). Что случится? Как ты знаешь, ток — это поток электронов, а каждый электрон имеет электрический заряд. Таким образом, когда кто-то говорит, что по цепи проходит ток, ты предствляешь себе как по цепи бегут миллионы электронов. Именно вот эти самые электрончики, когда на их пути возникает конденсатор, и накапливаются. Чем больше запихнем в конденсатор электронов, тем больше будет его заряд.

    Возникает вопрос, а сколько можно таким образом накопить электронов, сколько влезет в конденсатор и когда он «наестся»? Давай выяснять. Очень часто для упрощенного объяснения простых электрических процессов используют сравнение с водой и трубами. Воспользуемся таким подходом тоже.

    Представь, трубу, по которой течет вода. На одном конце трубы насос, который с силой закачивает воду в эту трубу. Затем поперек трубы мысленно поставь резиновую мембрану. Что произойдёт? Мембрана станет растягиваться и напрягаться под действием силы давления воды в трубе (давление создаётся насосом). Она будет растягиваться, растягиваться, растягиваться и в итоге сила упругости мембраны либо уравновесит силу насоса и поток воды остановится, либо мембрана порвётся (Если так непонятно, то представь себе воздушный шарик, который лопнет, если его накачать слишком сильно) ! Тоже самое происходит и в электрических конденсаторах. Только там вместо мембраны используется электрическое поле, которое растёт по мере зарядки конденсатора и постепенно уравновешивает напряжение источника питания.

    Таким образом, у конденсатора есть некоторый предельный заряд, который он может накопить и после превышения которого произойдёт пробой диэлектрика в конденсаторе он сломается и перестанет быть конденсатором. Самое время, видимо, рассказать как устроен конденсатор.

    Как устроен электрический конденсатор

    В школе тебе рассказывали, что конденсатор — это такая штуковина, которая состоит из двух пластин и пустоты между ними. Пластины эти называли обкладками конденсатора и к ним подключали проводки, чтобы подать напряжение на конденсатор. Так вот современные конденсаторы не сильно отличаются. Они все также имеют обкладки и между обкладками находится диэлектрик. Благодаря наличию диэлектрика улучшаются харктеристики конденсатора. Например, его ёмкость.

    В современных конденсаторах используются разные виды диэлектриков (об этом ниже) , которые запихиваются между обкладок конденсаторов самыми изощренными способами для достижения опредлённых характеристик.

    Принцип работы

    Общий принцип работы достаточно прост: подали напряжение — заряд накопился. Физические процессы, которые при этом происходят сейчас тебя не сильно должны интересовать, но если захочешь, то можешь об этом прочитать в любой книге по физике в разделе электростатики.

    Конденсатор в цепи постоянного тока

    Если поместить наш конденсатор в электрическую цепь (рис. ниже), включить последовательно с ним амперметр и подать в цепь постоянный ток, то стрелка амперметра кратковременно дёрнется, а затем замрет и будет показывать 0А — отсутствие тока в цепи. Что случилось?

    Будем считать, что до того, как был подан ток в цепь, конденсатор был пуст (разряжен), а когда подали ток, то он очень быстро стал заряжаться, а когда зарядился (эл. поле между обкладками конденсатора уравновесило источник питания), то ток прекратился (здесь график заряда конденсатора).

    Именно поэтому говорят, что конденсатор не пропускает постоянный ток. На самом деле пропускает, но очень короткое время, которое можно посчитать по формуле t = 3*R*C (Время зарядки конденсатора до объёма 95% от номинального. R- сопротивление цепи, C — ёмкость конденсатора) Так конденсатор ведёт себя в цепи постоянного тока. Совсем иначе он себя ведёт в цепи переменного!

    Конденсатор в цепи переменного тока

    Что такое переменный ток? Это когда электроны «бегут» сначала туда, потом назад. Т.е. направление их движения все время меняется. Тогда, если по цепи с конденсатором побежит переменный ток, то на каждой его обкладке будет скапливаться то «+» заряд, то «-«. Т.е. фактически будет протекать переменный ток. А это значит, что переменный ток «беспрепятственно» проходит через конденсатор.

    Весь этот процесс можно смоделировать с помощью метода гидравлических аналогий. На картинке ниже аналог цепи переменного тока. Поршень толкает жидкость то вперёд, то назад. Это заставляет крутится крыльчатку вперёд-назад. Получается как бы переменный поток жидкости (читаем переменный ток).

    Давай теперь поместим между источником силы (поршнем) и крыльчаткой меодель конденсатора в виде мембраны и проанализируем, что изменится.

    Похоже, что ничего не изменится. Как жидкость совершала колебательные движения, так она их и совершает, как из-за этого колебалась крыльчатка, так и будет колебаться. А значит наша мембрана не является препятствием для переменного потока. Также будет и для электронного конденсатора.

    Дело в том, что хоть электроны, которые бегут поцепи и не пересекают диэлектрик (мембрану) между обкладками конденсатора, но за пределами конденсатора их движение колебательное (туда-сюда), т.е. протекает переменный ток. Эх!

    Таким образом конденсатор пропускает переменный ток и задерживает постоянный. Это очень удобно, когда требуется убрать постоянную составляющую в сигнале, например, на выходе/входе аудиоусилителя или, когда требуется посмотреть только переменную часть сигнала (пульсации на выходе источника постоянного напряжения).

    Реактивное сопротивление конденсатора

    Конденсатор обладает сопротивлением! В принципе, это можно было предположить уже из того, что через него не проходит постоянный ток, как если бы это был резистор с оооочень большим сопротивлением.

    Другое дело ток переменный — он проходит, но испытывает со стороны конденсатора сопротивление:

    f — частота, С — ёмкость конденсатора. Если внимательно посмотреть на формулу, то станет видно, что если ток постоянный, то f = 0 и тогда (да простят меня воинствующие математики!) X c = бесконечность. И постоянного тока через конденсатор нет.

    А вот сопротивление переменному току будет менять в зависимости от его частоты и ёмкости конденсатора. Чем больше частота тока и емкость конденсатора, тем меньше сопротивляется он этому току и наоборот. Чем быстрее меняется напряже-
    напряжение, тем больше ток через конденсатор, этим и объясняется уменьшение Хс с ростом частоты.

    Кстати, ещё одной особенность конденсатора заключается в том, что на нём не выделяется мощность, он не нагревается! Поэтому его иногда используют для гашения напряжения там, где резистор бы задымился. Например для понижения напряжения сети с 220В до 127В. И ещё:

    Ток в конденсаторе пропорционален скорости приложенного к его выводам напряжения

    Где используются конденсаторы

    Да везде где требуются их свойства (не пропускать постоянный ток, умение накапливать электрическую энергию и менять свое сопротивление в зависимости от частоты), в фильтрах, в колебательных контурах, в умножителях напряжения и т.д.

    Какие бывают конденсаторы

    Промышленность выпускает множество разных видов конденсаторов. Каждый из них обладает опредлёнными преимуществами и недостатками. У одних малый ток утечки, у других большая ёмкость, у третьих что-нибудь ещё. В зависимости от этих показателей и выбирают конденсаторы.

    Радиолюбители, особенно как мы — начинающие — особо не заморачиваются и ставят, что найдут. Тем не менее следует знать какие основные виды конденсаторов существуют в природе.

    На картинке показано весьма условное разделение конденсаторов. Я его составил на свой вкус и нравится оно мне тем, что сразу понятно существуют ли переменные конденсаторы, какие бывают постоянные конденсаторы и какие диэлектрики используются в распространённых конденсаторах. В общем-то всё, что нужно радиолюбителю.


    Обладают малым током утечки, малыми габаритами, малой индуктивность, способны работать на высоких частотах и в цепях постоянного, пульсирующего и переменного тока.

    Выпускаются в широком диапазоне рабоичх напряжений и ёмкостей: от 2 до 20 000 пФ и в зависимости от исполнения выдерживают напряжение до 30кВ. Но чаще всего ты встретишь керамические конденсаторы с рабочим напряжением до 50В.


    Честно скажу не знаю выпускают ли их сейчас. Но раньше в таких конденсаторах в качестве диэлектрика использовалась слюда. А сам конденсатор состоял из пачки слюдяных, на каждой из которых с обеих сторон наносились обкладки, а потом такие платсинки собирались в «пакет» и запаковывались в корпус.

    Обычно они имели ёмкость от нескольких тысяч до десятков тысяч пикофорад и работали в диапазоне напряжений от 200 В до 1500 В.

    Бумажные конденсаторы

    Такие конденсаторы в качестве диэлектрика имеют конденсаторную бумагу, а в качестве обкладок — алюминиевые полоски. Длинные ленты алюминиевой фольги с проложенной между ними лентой бумаги сворачиваются в рулон и пакуются в корпус. Вот и весь фокус.

    Такие конденсаторы бывают ёмкостью от тысяч пикофорад до 30 микрофорад, и могут выдерживать напряжение от 160 до 1500 В.

    Поговаривают, что сейчас они ценятся аудиофиалами. Не удивлен — у них и провода односторонней проводимости бывают…

    В принципе обычные кондесаторы с полиэстером в качестве диэлектрика. Разброс ёмкостей от 1 нФ до 15 мФ при рабочем напряжении от 50 В до 1500 В.


    У конденсаторов этого типа есть два неоспоримых преимущества. Первое — можно их делать с очень маленьким допуском всего в 1%. Так что, если на таком написано 100 пФ, то значит его ёмкость 100 пФ +/- 1%. И второе — это то, что их рабочее напряжение может достигать до 3 кВ (а ёмкость от 100 пФ, до 10 мФ)

    Электролитические кондесаторы


    Эти конденсаторы отличаются от всех других тем, что их можно включать только цепь постоянного или пульсирующего тока. Они полярные. Имеют плюс и минус. Связано это с их конструкцией. И если такой конденсатор включить наоборот, то он скорее всего вздуется. А раньше они еще и весело, но небезопасно взрывались. Бывают электролитические конденсаторы алюминиевые и танталовые.

    Алюминиевые электролитические конденсаторы устроены почти как бумажные с той лишь разницей, что обкладками такого конденсатора являются бумажная и алюминиевые полосы. Бумага пропитана электролитом, а на алюминиевыую полосу нанесен тонкий слой окисла, который и выступает в роли диэлектрика. Если подать на такой конденсатор переменный ток или включить обратно полярностям вывода, то электролит закипает и конденсатор выходит из строя.

    Электролитические конденсаторы обладают достаточно большой ёмкостью, благодаря чему их, к примеру, часто используют в выпрямительных цепях.

    На этом наверно всё. За кадром остались конденсаторы с диэлектриком из полкарбоната, полистирола и наверно ещё многие другие виды. Но думаю, что это уже будет лишним.

    Продолжение следует…

    Во второй части я планирую показать примеры типичного использования конденсаторов..

    Конденсатор в цепи переменного тока или постоянного, который нередко называется попросту кондёром, состоит из пары обкладок, покрытых слоем изоляции. Если на это устройство будет подаваться ток, оно будет получать заряд и сохранять его в себе некоторое время. Емкость его во многом зависит от промежутка между обкладками.

    Конденсатор может быть выполнен по-разному, но суть работы и основные его элементы остаются неизменными в любом случае. Чтобы понять принцип работы, необходимо рассмотреть самую простую его модель.

    У простейшего устройства имеются две обкладки: одна из них заряжена положительно, другая — наоборот, отрицательно. Заряды эти хоть и противоположны, но равны. Они притягиваются с определенной силой, которая зависит от расстояния. Чем ближе друг к другу располагаются обкладки, тем больше между ними сила притяжения. Благодаря этому притяжению заряженное устройство не разряжается.

    Однако достаточно проложить какой-либо проводник между двумя обкладками и устройство мгновенно разрядится. Все электроны от отрицательно заряженной обкладки сразу же перейдут на положительно заряженную, в результате чего заряд уравняется. Иными словами, чтобы снять заряд с конденсатора, необходимо лишь замкнуть две его обкладки.

    Электрические цепи бывают двух видов — постоянными или переменными . Все зависит от того, как в них протекает электроток. Устройства в этих цепях ведут себя по-разному.

    Чтобы рассмотреть, как будет вести себя конденсатор в цепи постоянного тока, нужно:

    1. Взять блок питания постоянного напряжения и определить значение напряжения. Например, «12 Вольт».
    2. Установить лампочку, рассчитанную на такое же напряжение.
    3. В сеть установить конденсатор.

    Никакого эффекта не будет: лампочка так и не засветится, а если убрать из цепи конденсатор, то свет появится. Если устройство будет включено в сеть переменного тока, то она попросту не будет замыкаться, поэтому и никакой электроток здесь пройти не сможет. Постоянный — не способен проходить по сети, в которую включен конденсатор. Всему виной обкладки этого устройства, а точнее, диэлектрик, который разделяет эти обкладки.

    Убедиться в отсутствии напряжения в сети постоянного электротока можно и другими способами. Подключать к сети можно, что угодно, главное, чтобы в цепь был включен источник постоянного электротока. Элементом же, который будет сигнализировать об отсутствии напряжения в сети или, наоборот, о его присутствии, также может быть любой электроприбор. Лучше всего для этих целей использовать лампочку: она будет светиться, если электроток есть, и не будет гореть при отсутствии напряжения в сети.

    Можно сделать вывод, что конденсатор не способен проводить через себя постоянный ток, однако это заключение неправильное. На самом деле электроток сразу после подачи напряжения появляется, но мгновенно и исчезает. В этом случае он проходит в течение лишь нескольких долей секунды. Точная продолжительность зависит от того, насколько емким является устройство, но это, как правило, в расчет не берется.

    Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.

    Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.

    Убедиться в том, что конденсатор может проводить переменный электроток, наглядно поможет простейшая цепь, составленная из:

    • Источника тока. Он должен быть переменным.
    • Потребителя электротока. Лучше всего использовать лампу.

    Однако стоит помнить об одном: лампа загорится лишь в том случае, если устройство имеет довольно большую емкость. Переменный ток оказывает на конденсатор такое влияние, что устройство начинает заряжаться и разряжаться. А ток, который проходит по сети во время перезарядки, повышает температуру нити накаливания лампы. В результате она и светится.

    От емкости устройства, подключенного к сети переменного тока, во многом зависит электроток перезарядки. Зависимость прямо пропорциональная: чем большей емкостью обладает, тем больше величина, характеризующая силу тока перезарядки. Чтобы в этом убедиться, достаточно лишь повысить емкость. Сразу после этого лампа начнет светиться ярче, так как нити ее будут больше накалены. Как видно, конденсатор, который выступает в качестве одного из элементов цепи переменного тока, ведет себя иначе, нежели постоянный резистор.

    При подключении конденсатора переменного тока начинают происходить более сложные процессы. Лучше их понять поможет такой инструмент, как вектор. Главная идея вектора в этом случае будет заключаться в том, что можно представить значение изменяющегося во времени сигнала как произведение комплексного сигнала, который является функцией оси, отображающей время и комплексного числа, которое, наоборот, не связано со временем.

    Поскольку векторы представляются некоторой величиной и некоторым углом, начертить их можно в виде стрелки, которая вращается в координатной плоскости. Напряжение на устройстве немного отстает от тока, а оба вектора, которыми они обозначаются, вращаются на плоскости против часовых стрелок.

    Конденсатор в сети переменного тока может периодически перезаряжаться: он то приобретает какой-то заряд, то, наоборот, отдает его. Это означает, что кондер и источник переменного электротока в сети постоянно обмениваются друг с другом электрической энергией. Такой вид электроэнергии в электротехнике носит название реактивной.

    Конденсатор не позволяет проходить по сети постоянному электротоку. В таком случае он будет иметь сопротивление, приравнивающееся к бесконечности. Переменный же электроток способен проходить через это устройство. В этом случае сопротивление имеет конечное значение.

    На вопрос Почему конденсатор не пропускает постоянный ток, но зато пропускает переменный? заданный автором Sodd15 sodd лучший ответ это Ток течёт только до тех пор, пока конденсатор заряжается.
    В цепи постоянного тока конденсатор заряжается сравнительно быстро, после чего ток уменьшается и практически прекращается.
    В цепи переменного тока конденсатор заряжается, затем напряжение меняет полярность, он начинает разряжаться, а потом заряжаться в обратную сторону, и т. д. — ток течёт постоянно.
    Ну представьте себе банку, в которую можно налить воду только до тех пор, пока она не заполнится. Если напряжение постоянное, банка заполнится и после этого ток прекратится. А если напряжение переменное — вода в банку заливается — выливается — заливается и т. д.

    Ответ от Просунуться [новичек]
    спасибо ребята за классную информацию!!!

    Ответ от Avotara [гуру]
    Конденсатор не пропускает ток он может только заряжаться и разряжаться
    На постоянном токе конденсатор заряжается 1 раз а дальше становится бесполезным в цепи.
    На пульсирующем токе когда напряжение повышается он заряжается (накапливает в себе электрическую энергию) , а когда напряжение от максимального уровня начинает снижаться он возвращает энергию в сеть стабилизируя при этом напряжение.
    На переменном токе когда напряжение возрастает от 0 к максимуму конденсатор заряжается, когда снижается от максимума до 0 разряжается возвращая энергию обратно в сеть, когда полярность меняется все происходит точно также но с другой полярностью.

    Ответ от Вровень [гуру]
    Конденсатор на самом деле не пропускает сквозь себя ток. Конденсатор сначала накапливает на своих обкладках заряды — на одной обкладке избыток электронов, на другой недостаток — а потом отдает их, в результате во внешней цепи электроны бегают туда-сюда — с одной обкладки убегают, на вторую прибегают, потом обратно. То есть движение электронов туда-сюда во внешней цепи обеспечивается, в ней идет ток — но не внутри конденсатора.
    Сколько электронов может принять обкладка конденсатора при напряжении, в один вольт, называется емкостью конденсатора, но ее обычно измеряют не в триллионах электронов, а в условных единицах емкости — фарадах (микрофарадах, пикофарадах).
    Когда говорят, что ток идет через конденсатор, это просто упрощение. Все происходит так, как будто бы через конденсатор шел ток, хотя на самом деле ток идет только снаружи конденсатора.
    Если углубляться в физику, то перераспределение энергии в поле между пластинами конденсатора называют током смещения в отличие от тока проводимости, представляющего собой перемещение зарядов, но ток смещения — это уже понятие из электродинамики, связанное с уравнениями Максвелла, совсем другой уровень абстракции.

    Ответ от сосочек [гуру]
    в чисто физическом плане: конденсатор — есть развыв цепи, т. к. его прокладки не соприкасаются друг с другом, между ними диэлектрик. а как мы знаем диэлектрики не проводят электричесний ток. поэтому постоянный ток через него и не идёт.
    хотя…
    Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора) , по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.
    а для переменного тока конденсатор является частью колебательного контура. он играет роль накопителя электрической энергии и в сочетаниии с катушкой, они прекрасно сосуществуют, переобразовывая электрическую энегрию в магнитную и обратно со скоростью/частотой равной их собственной omega = 1/sqrt(C*L)
    пример: такое явление как молния. думаю слышал. хотя плохой пример, там зарядка происходит через электризацию, изза трения атмосферного воздуха о поверхность земли. но пробой всегда как и в конденсаторе происходит только при достижении так называемого пробивного напряжения.
    не знаю, помогло ли тебе это 🙂

    Ответ от [email protected] [новичек]
    конденсатор работает как в переменном токе так и в постоянном, т. к. он заряжается на постоянном токе и не может никуда деть ту энергию, для этого в цепь соединяют через ключ обратную ветвь, для смены полярности, чтобы его разрядить и освободить место для новой порции, неа переменном на оборот, кандёр заряжается и разряжается за счет перемены полярностей….

    Конденсатор проводит ток. Электрический конденсатор. Виды конденсаторов. Простейший тип включения

    Конденсатор в цепи переменного тока или постоянного, который нередко называется попросту кондёром, состоит из пары обкладок, покрытых слоем изоляции. Если на это устройство будет подаваться ток, оно будет получать заряд и сохранять его в себе некоторое время. Емкость его во многом зависит от промежутка между обкладками.

    Конденсатор может быть выполнен по-разному, но суть работы и основные его элементы остаются неизменными в любом случае. Чтобы понять принцип работы, необходимо рассмотреть самую простую его модель.

    У простейшего устройства имеются две обкладки: одна из них заряжена положительно, другая — наоборот, отрицательно. Заряды эти хоть и противоположны, но равны. Они притягиваются с определенной силой, которая зависит от расстояния. Чем ближе друг к другу располагаются обкладки, тем больше между ними сила притяжения. Благодаря этому притяжению заряженное устройство не разряжается.

    Однако достаточно проложить какой-либо проводник между двумя обкладками и устройство мгновенно разрядится. Все электроны от отрицательно заряженной обкладки сразу же перейдут на положительно заряженную, в результате чего заряд уравняется. Иными словами, чтобы снять заряд с конденсатора, необходимо лишь замкнуть две его обкладки.

    Электрические цепи бывают двух видов — постоянными или переменными . Все зависит от того, как в них протекает электроток. Устройства в этих цепях ведут себя по-разному.

    Чтобы рассмотреть, как будет вести себя конденсатор в цепи постоянного тока, нужно:

    1. Взять блок питания постоянного напряжения и определить значение напряжения. Например, «12 Вольт».
    2. Установить лампочку, рассчитанную на такое же напряжение.
    3. В сеть установить конденсатор.

    Никакого эффекта не будет: лампочка так и не засветится, а если убрать из цепи конденсатор, то свет появится. Если устройство будет включено в сеть переменного тока, то она попросту не будет замыкаться, поэтому и никакой электроток здесь пройти не сможет. Постоянный — не способен проходить по сети, в которую включен конденсатор. Всему виной обкладки этого устройства, а точнее, диэлектрик, который разделяет эти обкладки.

    Убедиться в отсутствии напряжения в сети постоянного электротока можно и другими способами. Подключать к сети можно, что угодно, главное, чтобы в цепь был включен источник постоянного электротока. Элементом же, который будет сигнализировать об отсутствии напряжения в сети или, наоборот, о его присутствии, также может быть любой электроприбор. Лучше всего для этих целей использовать лампочку: она будет светиться, если электроток есть, и не будет гореть при отсутствии напряжения в сети.

    Можно сделать вывод, что конденсатор не способен проводить через себя постоянный ток, однако это заключение неправильное. На самом деле электроток сразу после подачи напряжения появляется, но мгновенно и исчезает. В этом случае он проходит в течение лишь нескольких долей секунды. Точная продолжительность зависит от того, насколько емким является устройство, но это, как правило, в расчет не берется.

    Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.

    Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.

    Убедиться в том, что конденсатор может проводить переменный электроток, наглядно поможет простейшая цепь, составленная из:

    • Источника тока. Он должен быть переменным.
    • Потребителя электротока. Лучше всего использовать лампу.

    Однако стоит помнить об одном: лампа загорится лишь в том случае, если устройство имеет довольно большую емкость. Переменный ток оказывает на конденсатор такое влияние, что устройство начинает заряжаться и разряжаться. А ток, который проходит по сети во время перезарядки, повышает температуру нити накаливания лампы. В результате она и светится.

    От емкости устройства, подключенного к сети переменного тока, во многом зависит электроток перезарядки. Зависимость прямо пропорциональная: чем большей емкостью обладает, тем больше величина, характеризующая силу тока перезарядки. Чтобы в этом убедиться, достаточно лишь повысить емкость. Сразу после этого лампа начнет светиться ярче, так как нити ее будут больше накалены. Как видно, конденсатор, который выступает в качестве одного из элементов цепи переменного тока, ведет себя иначе, нежели постоянный резистор.

    При подключении конденсатора переменного тока начинают происходить более сложные процессы. Лучше их понять поможет такой инструмент, как вектор. Главная идея вектора в этом случае будет заключаться в том, что можно представить значение изменяющегося во времени сигнала как произведение комплексного сигнала, который является функцией оси, отображающей время и комплексного числа, которое, наоборот, не связано со временем.

    Поскольку векторы представляются некоторой величиной и некоторым углом, начертить их можно в виде стрелки, которая вращается в координатной плоскости. Напряжение на устройстве немного отстает от тока, а оба вектора, которыми они обозначаются, вращаются на плоскости против часовых стрелок.

    Конденсатор в сети переменного тока может периодически перезаряжаться: он то приобретает какой-то заряд, то, наоборот, отдает его. Это означает, что кондер и источник переменного электротока в сети постоянно обмениваются друг с другом электрической энергией. Такой вид электроэнергии в электротехнике носит название реактивной.

    Конденсатор не позволяет проходить по сети постоянному электротоку. В таком случае он будет иметь сопротивление, приравнивающееся к бесконечности. Переменный же электроток способен проходить через это устройство. В этом случае сопротивление имеет конечное значение.

    В которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю.

    В первую четверть периода напряжение на зажимах генератора будет возрастать, начиная от нуля, и конденсатор начнет заряжаться. В цепи появится ток, однако в первый момент заряда конденсатора, несмотря на то, что напряжение на его пластинах только что появилось и еще очень мало, ток в цепи (ток заряда) будет наибольшим. По мере же увеличения заряда конденсатора ток в цепи убывает и доходит до нуля в момент, когда конденсатор полностью зарядится. При этом напряжение на пластинах конденсатора, строго следуя за напряжением генератора, становится к этому моменту максимальным, но обратного знака, т. е. направлено навстречу напряжению генератора.


    Рис. 1. Изменение тока и напряжения в цепи с емкостью

    Таким образом, ток с наибольшей силой устремляется в свободный от заряда конденсатор, но тут же начинает убывать по мере заполнения зарядами пластин конденсатора и падает до нуля, полностью зарядив его.

    Сравним это явление с тем, что происходит с потоком воды в трубе, соединяющей два сообщающихся сосуда (рис. 2),один из которых наполнен, а другой пустой. Стоит только выдвинуть заслонку, преграждающую путь воде, как вода сразу же из левого сосуда под большим напором устремится по трубе в пустой правый сосуд. Однако тотчас же напор воды в трубе начнет постепенно ослабевать, вследствие выравнивания уровней в сосудах, и упадет до нуля. Течение воды прекратится.

    Рис. 2. Изменение напора воды в трубе, соединяющей сообщающиеся сосуды, сходно с изменением тока в цепи во время заряда конденсатора

    Подобно этому и ток сначала устремляется в незаряженный конденсатор, а затем постепенно ослабевает по мере его заряда.

    С началом второй четверти периода, когда напряжение генератора начнет сначала медленно, а затем все быстрее и быстрее убывать, заряженный конденсатор будет разряжаться на генератор, что вызовет в цепи ток разряда. По мере убывания напряжения генератора конденсатор все больше и больше разряжается и ток разряда в цепи возрастает. Направление тока разряда в этой четверти периода противоположно направлению тока заряда в первой четверти периода. Соответственно этому кривая тока, пройдя нулевое значение, располагается уже теперь ниже оси времени.

    К концу первого полупериода напряжение на генераторе, а также и на конденсаторе быстро приближается к нулю, а ток в цепи медленно достигает своего максимального значения. Вспомнив, что величина тока в цепи тем больше, чем больше величина переносимого по цепи заряда, станет ясным, почему ток достигает максимума тогда, когда напряжение на пластинах конденсатора, а следовательно, и заряд конденсатора быстро убывают.

    С началом третьей четверти периода конденсатор вновь начинает заряжаться, но полярность его пластин, так же как и полярность генератора, изменяется «а обратную, а ток, продолжая течь в том же направлении, начинает по мере заряда конденсатора убывать, В конце третьей четверти периода, когда напряжения на генераторе и конденсаторе достигают своего максимума, ток становится равным нулю.

    В последнюю четверть периода напряжение, уменьшаясь, падает до нуля, а ток, изменив свое направление в цепи, достигает максимальной величины. На этом и заканчивается период, за которым начинается следующий, в точности повторяющий предыдущий, и т. д.

    Итак, под действием переменного напряжения генератора дважды за период происходят заряд конденсатора (первая и третья четверти периода) и дважды его разряд (вторая и четвертая четверти периода). Но так как чередующиеся один за другим сопровождаются каждый раз прохождением по цепи зарядного и разрядного токов, то мы можем заключить, что по цепи с емкостью проходит .

    Убедиться в этом можно на следующем простом опыте. Подключите к сети переменного тока через лампочку электрического освещения мощностью 25 Вт конденсатор емкостью 4-6 мкф. Лампочка загорится и не погаснет до тех пор, пока не будет разорвана цепь. Это говорит о том, что по цепи с емкостью проходил переменный ток. Однако проходил он, конечно, не сквозь диэлектрик конденсатора, а в каждый момент времени представлял собой или ток заряда или ток разряда конденсатора.

    Диэлектрик же, как нам известно, поляризуется под действием электрического поля, возникающего в нем при заряде конденсатора, и поляризация его исчезает, когда конденсатор разряжается.

    При этом диэлектрик с возникающим в нем током смещения служит для переменного тока своего рода продолжением цепи, а для постоянного разрывает цепь. Но ток смещения образуется только в пределах диэлектрика конденсатора, и поэтому сквозного переноса зарядов по цепи не происходит.

    Сопротивление, оказываемое конденсатором переменному току, зависит от величины емкости конденсатора и от частоты тока.

    Чем больше емкость конденсатора, тем больший заряд переносится по цепи за время заряда и разряда конденсатора, а следовательно, и тем больший будет ток в цепи. Увеличение же тока в цепи свидетельствует о том, что уменьшилось ее сопротивление.

    Следовательно, с увеличением емкости уменьшается сопротивление цепи переменному току.

    Увеличение увеличивает величину переносимого по цепи заряда, так как заряд (а равно и разряд) конденсатора должен произойти быстрее, чем при низкой частоте. В то же время увеличение величины переносимого в единицу времени заряда равносильно увеличению тока в цепи, а следовательно, уменьшению ее сопротивления.

    Если же мы каким-либо способом будем постепенно уменьшать частоту переменного тока и сведем ток к постоянному, то сопротивление конденсатора, включенного в цепь, будет постепенно возрастать и станет бесконечно большим (разрыв цепи) к моменту появления в .

    Следовательно, с увеличением частоты уменьшается сопротивление конденсатора переменному току.

    Подобно тому как сопротивление катушки переменному току называют индуктивным, сопротивление конденсатора принято называть емкостным.

    Таким образом, емкостное сопротивление тем больше, чем меньше емкость цепи и частота питающего ее тока.

    Емкостное сопротивление обозначается через Хс и измеряется в омах.

    Зависимость емкостного сопротивления от частоты тока и емкости цепи определяется формулой Хс = 1/ ωС, где ω — круговая частота, равная произведению 2 πf , С-емкость цепи в фарадах.

    Емкостное сопротивление, как и индуктивное, является реактивным по своему характеру, так как конденсатор не потребляет энергии источника тока.

    Формула для цепи с емкостью имеет вид I = U/Xc , где I и U — действующие значения тока и напряжения; Хс — емкостное сопротивление цепи.

    Свойство конденсаторов оказывать большое сопротивление токам низкой частоты и легко пропускать токи высокой частоты широко используется в схемах аппаратуры связи.

    С помощью конденсаторов, например, достигается необходимое для работы схем разделение постоянных токов и токов низкой частоты от токов высокой частоты.

    Если нужно преградить путь току низкой частоты в высокочастотную часть схемы, последовательно включается конденсатор небольшой емкости. Он оказывает большое сопротивление низкочастотному току и в то же время легко пропускает ток высокой частоты.

    Если же надо не допустить ток высокой частоты, например, в цепь питания радиостанции, то используется конденсатор большой емкости, включаемый параллельно источнику тока. Ток высокой частоты в этом случае проходит через конденсатор, минуя цепь питания радиостанции.

    Активное сопротивление и конденсатор в цепи переменного тока

    На практике часто встречаются случаи, когда в цепи последовательно с емкостью Общее сопротивление цепи в этом случае определяется по формуле

    Следовательно, полное сопротивление цепи, состоящей из активного и емкостного сопротивлений, переменному току равно корню квадратному из суммы квадратов активного и емкостного сопротивлений этой цепи.

    Закон Ома остается справедливым и для этой цепи I = U/Z .

    На рис. 3 приведены кривые, характеризующие фазовые соотношения между током и напряжением в цепи, содержащей емкостное и активное сопротивления.

    Рис. 3. Ток, напряжение и мощность в цепи с конденсатором и активным сопротивлением

    Как видно из рисунка, ток в этом случае опережает напряжение уже не на четверть периода, а меньше, так как активное сопротивление нарушило чисто емкостный (реактивный) характер цепи, о чем свидетельствует уменьшенный сдвиг фаз. Теперь уже напряжение на зажимах цепи определится как сумма двух слагающих: реактивной слагающей напряжения u с, идущей на преодоление емкостного сопротивления цепи, и активной слагающей напряжения преодолевающей активное ее сопротивление.

    Чем больше будет активное сопротивление цепи, тем меньший сдвиг фаз получится между током и напряжением.

    Кривая изменения мощности в цепи (см. рис. 3) дважды за период приобрела отрицательный знак, что является, как нам уже известно, следствием реактивного характера цепи. Чем менее реактивная цепь, тем меньше сдвиг фаз между током и напряжением и тем большую мощность источника тока эта цепь потребляет.

    Почему конденсатор не пропускает постоянный ток, но зато пропускает переменный?

    1. Конденсатор не пропускает ток он может только заряжаться и разряжаться
      На постоянном токе конденсатор заряжается 1 раз а дальше становится бесполезным в цепи.
      На пульсирующем токе когда напряжение повышается он заряжается (накапливает в себе электрическую энергию) , а когда напряжение от максимального уровня начинает снижаться он возвращает энергию в сеть стабилизируя при этом напряжение.
      На переменном токе когда напряжение возрастает от 0 к максимуму конденсатор заряжается, когда снижается от максимума до 0 разряжается возвращая энергию обратно в сеть, когда полярность меняется все происходит точно также но с другой полярностью.
    2. Ток течт только до тех пор, пока конденсатор заряжается.
      В цепи постоянного тока конденсатор заряжается сравнительно быстро, после чего ток уменьшается и практически прекращается.
      В цепи переменного тока конденсатор заряжается, затем напряжение меняет полярность, он начинает разряжаться, а потом заряжаться в обратную сторону, и т. д. — ток течт постоянно.
      Ну представьте себе банку, в которую можно налить воду только до тех пор, пока она не заполнится. Если напряжение постоянное, банка заполнится и после этого ток прекратится. А если напряжение переменное — вода в банку заливается — выливается — заливается и т. д.
    3. конденсатор работает как в переменном токе так и в постоянном, т. к. он заряжается на постоянном токе и не может никуда деть ту энергию, для этого в цепь соединяют через ключ обратную ветвь, для смены полярности, чтобы его разрядить и освободить место для новой порции, неа переменном на оборот, кандр заряжается и разряжается за счет перемены полярностей….
    4. спасибо ребята за классную информацию!!!
    5. в чисто физическом плане: конденсатор — есть развыв цепи, т. к. его прокладки не соприкасаются друг с другом, между ними диэлектрик. а как мы знаем диэлектрики не проводят электричесний ток. поэтому постоянный ток через него и не идт.
      хотя.. .
      Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора) , по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

      а для переменного тока конденсатор является частью колебательного контура. он играет роль накопителя электрической энергии и в сочетаниии с катушкой, они прекрасно сосуществуют, переобразовывая электрическую энегрию в магнитную и обратно со скоростью/частотой равной их собственной omega = 1/sqrt(C*L)

      пример: такое явление как молния. думаю слышал. хотя плохой пример, там зарядка происходит через электризацию, изза трения атмосферного воздуха о поверхность земли. но пробой всегда как и в конденсаторе происходит только при достижении так называемого пробивного напряжения.

      не знаю, помогло ли тебе это 🙂

    6. Конденсатор на самом деле не пропускает сквозь себя ток. Конденсатор сначала накапливает на своих обкладках заряды — на одной обкладке избыток электронов, на другой недостаток — а потом отдает их, в результате во внешней цепи электроны бегают туда-сюда — с одной обкладки убегают, на вторую прибегают, потом обратно. То есть движение электронов туда-сюда во внешней цепи обеспечивается, в ней идет ток — но не внутри конденсатора.
      Сколько электронов может принять обкладка конденсатора при напряжении, в один вольт, называется емкостью конденсатора, но ее обычно измеряют не в триллионах электронов, а в условных единицах емкости — фарадах (микрофарадах, пикофарадах) .
      Когда говорят, что ток идет через конденсатор, это просто упрощение. Все происходит так, как будто бы через конденсатор шел ток, хотя на самом деле ток идет только снаружи конденсатора.
      Если углубляться в физику, то перераспределение энергии в поле между пластинами конденсатора называют током смещения в отличие от тока проводимости, представляющего собой перемещение зарядов, но ток смещения — это уже понятие из электродинамики, связанное с уравнениями Максвелла, совсем другой уровень абстракции.

    Много написано про конденсаторы, стоит ли добавлять еще пару тысяч слов к тем миллионам, что уже есть? Таки добавлю! Верю, что моё изложение принесёт пользу. Ведь оно будет сделано с учётом .

    Что такое электрический конденсатор

    Если говорить по-русски, то конденсатор можно обозвать «накопитель». Так даже понятнее. Тем более именно так переводится на наш язык это название. Стакан тоже можно обозвать конденсатором. Только он накапливает в себе жидкость. Или мешок. Да, мешок. Оказывается тоже накопитель. Накапливает в себе всё, что мы туда засунем. Причем тут электрический кондесатор? Он такой же как стакан или мешок, но только накапливает электрический заряд.

    Представь себе картину: по цепи проходит электрический ток, на его пути встречаются резисторы, проводники и, бац, возник конденсатор (стакан). Что случится? Как ты знаешь, ток — это поток электронов, а каждый электрон имеет электрический заряд. Таким образом, когда кто-то говорит, что по цепи проходит ток, ты предствляешь себе как по цепи бегут миллионы электронов. Именно вот эти самые электрончики, когда на их пути возникает конденсатор, и накапливаются. Чем больше запихнем в конденсатор электронов, тем больше будет его заряд.

    Возникает вопрос, а сколько можно таким образом накопить электронов, сколько влезет в конденсатор и когда он «наестся»? Давай выяснять. Очень часто для упрощенного объяснения простых электрических процессов используют сравнение с водой и трубами. Воспользуемся таким подходом тоже.

    Представь, трубу, по которой течет вода. На одном конце трубы насос, который с силой закачивает воду в эту трубу. Затем поперек трубы мысленно поставь резиновую мембрану. Что произойдёт? Мембрана станет растягиваться и напрягаться под действием силы давления воды в трубе (давление создаётся насосом). Она будет растягиваться, растягиваться, растягиваться и в итоге сила упругости мембраны либо уравновесит силу насоса и поток воды остановится, либо мембрана порвётся (Если так непонятно, то представь себе воздушный шарик, который лопнет, если его накачать слишком сильно) ! Тоже самое происходит и в электрических конденсаторах. Только там вместо мембраны используется электрическое поле, которое растёт по мере зарядки конденсатора и постепенно уравновешивает напряжение источника питания.

    Таким образом, у конденсатора есть некоторый предельный заряд, который он может накопить и после превышения которого произойдёт пробой диэлектрика в конденсаторе он сломается и перестанет быть конденсатором. Самое время, видимо, рассказать как устроен конденсатор.

    Как устроен электрический конденсатор

    В школе тебе рассказывали, что конденсатор — это такая штуковина, которая состоит из двух пластин и пустоты между ними. Пластины эти называли обкладками конденсатора и к ним подключали проводки, чтобы подать напряжение на конденсатор. Так вот современные конденсаторы не сильно отличаются. Они все также имеют обкладки и между обкладками находится диэлектрик. Благодаря наличию диэлектрика улучшаются харктеристики конденсатора. Например, его ёмкость.

    В современных конденсаторах используются разные виды диэлектриков (об этом ниже) , которые запихиваются между обкладок конденсаторов самыми изощренными способами для достижения опредлённых характеристик.

    Принцип работы

    Общий принцип работы достаточно прост: подали напряжение — заряд накопился. Физические процессы, которые при этом происходят сейчас тебя не сильно должны интересовать, но если захочешь, то можешь об этом прочитать в любой книге по физике в разделе электростатики.

    Конденсатор в цепи постоянного тока

    Если поместить наш конденсатор в электрическую цепь (рис. ниже), включить последовательно с ним амперметр и подать в цепь постоянный ток, то стрелка амперметра кратковременно дёрнется, а затем замрет и будет показывать 0А — отсутствие тока в цепи. Что случилось?

    Будем считать, что до того, как был подан ток в цепь, конденсатор был пуст (разряжен), а когда подали ток, то он очень быстро стал заряжаться, а когда зарядился (эл. поле между обкладками конденсатора уравновесило источник питания), то ток прекратился (здесь график заряда конденсатора).

    Именно поэтому говорят, что конденсатор не пропускает постоянный ток. На самом деле пропускает, но очень короткое время, которое можно посчитать по формуле t = 3*R*C (Время зарядки конденсатора до объёма 95% от номинального. R- сопротивление цепи, C — ёмкость конденсатора) Так конденсатор ведёт себя в цепи постоянного тока. Совсем иначе он себя ведёт в цепи переменного!

    Конденсатор в цепи переменного тока

    Что такое переменный ток? Это когда электроны «бегут» сначала туда, потом назад. Т.е. направление их движения все время меняется. Тогда, если по цепи с конденсатором побежит переменный ток, то на каждой его обкладке будет скапливаться то «+» заряд, то «-«. Т.е. фактически будет протекать переменный ток. А это значит, что переменный ток «беспрепятственно» проходит через конденсатор.

    Весь этот процесс можно смоделировать с помощью метода гидравлических аналогий. На картинке ниже аналог цепи переменного тока. Поршень толкает жидкость то вперёд, то назад. Это заставляет крутится крыльчатку вперёд-назад. Получается как бы переменный поток жидкости (читаем переменный ток).

    Давай теперь поместим между источником силы (поршнем) и крыльчаткой меодель конденсатора в виде мембраны и проанализируем, что изменится.

    Похоже, что ничего не изменится. Как жидкость совершала колебательные движения, так она их и совершает, как из-за этого колебалась крыльчатка, так и будет колебаться. А значит наша мембрана не является препятствием для переменного потока. Также будет и для электронного конденсатора.

    Дело в том, что хоть электроны, которые бегут поцепи и не пересекают диэлектрик (мембрану) между обкладками конденсатора, но за пределами конденсатора их движение колебательное (туда-сюда), т.е. протекает переменный ток. Эх!

    Таким образом конденсатор пропускает переменный ток и задерживает постоянный. Это очень удобно, когда требуется убрать постоянную составляющую в сигнале, например, на выходе/входе аудиоусилителя или, когда требуется посмотреть только переменную часть сигнала (пульсации на выходе источника постоянного напряжения).

    Реактивное сопротивление конденсатора

    Конденсатор обладает сопротивлением! В принципе, это можно было предположить уже из того, что через него не проходит постоянный ток, как если бы это был резистор с оооочень большим сопротивлением.

    Другое дело ток переменный — он проходит, но испытывает со стороны конденсатора сопротивление:

    f — частота, С — ёмкость конденсатора. Если внимательно посмотреть на формулу, то станет видно, что если ток постоянный, то f = 0 и тогда (да простят меня воинствующие математики!) X c = бесконечность. И постоянного тока через конденсатор нет.

    А вот сопротивление переменному току будет менять в зависимости от его частоты и ёмкости конденсатора. Чем больше частота тока и емкость конденсатора, тем меньше сопротивляется он этому току и наоборот. Чем быстрее меняется напряже-
    напряжение, тем больше ток через конденсатор, этим и объясняется уменьшение Хс с ростом частоты.

    Кстати, ещё одной особенность конденсатора заключается в том, что на нём не выделяется мощность, он не нагревается! Поэтому его иногда используют для гашения напряжения там, где резистор бы задымился. Например для понижения напряжения сети с 220В до 127В. И ещё:

    Ток в конденсаторе пропорционален скорости приложенного к его выводам напряжения

    Где используются конденсаторы

    Да везде где требуются их свойства (не пропускать постоянный ток, умение накапливать электрическую энергию и менять свое сопротивление в зависимости от частоты), в фильтрах, в колебательных контурах, в умножителях напряжения и т.д.

    Какие бывают конденсаторы

    Промышленность выпускает множество разных видов конденсаторов. Каждый из них обладает опредлёнными преимуществами и недостатками. У одних малый ток утечки, у других большая ёмкость, у третьих что-нибудь ещё. В зависимости от этих показателей и выбирают конденсаторы.

    Радиолюбители, особенно как мы — начинающие — особо не заморачиваются и ставят, что найдут. Тем не менее следует знать какие основные виды конденсаторов существуют в природе.

    На картинке показано весьма условное разделение конденсаторов. Я его составил на свой вкус и нравится оно мне тем, что сразу понятно существуют ли переменные конденсаторы, какие бывают постоянные конденсаторы и какие диэлектрики используются в распространённых конденсаторах. В общем-то всё, что нужно радиолюбителю.


    Обладают малым током утечки, малыми габаритами, малой индуктивность, способны работать на высоких частотах и в цепях постоянного, пульсирующего и переменного тока.

    Выпускаются в широком диапазоне рабоичх напряжений и ёмкостей: от 2 до 20 000 пФ и в зависимости от исполнения выдерживают напряжение до 30кВ. Но чаще всего ты встретишь керамические конденсаторы с рабочим напряжением до 50В.


    Честно скажу не знаю выпускают ли их сейчас. Но раньше в таких конденсаторах в качестве диэлектрика использовалась слюда. А сам конденсатор состоял из пачки слюдяных, на каждой из которых с обеих сторон наносились обкладки, а потом такие платсинки собирались в «пакет» и запаковывались в корпус.

    Обычно они имели ёмкость от нескольких тысяч до десятков тысяч пикофорад и работали в диапазоне напряжений от 200 В до 1500 В.

    Бумажные конденсаторы

    Такие конденсаторы в качестве диэлектрика имеют конденсаторную бумагу, а в качестве обкладок — алюминиевые полоски. Длинные ленты алюминиевой фольги с проложенной между ними лентой бумаги сворачиваются в рулон и пакуются в корпус. Вот и весь фокус.

    Такие конденсаторы бывают ёмкостью от тысяч пикофорад до 30 микрофорад, и могут выдерживать напряжение от 160 до 1500 В.

    Поговаривают, что сейчас они ценятся аудиофиалами. Не удивлен — у них и провода односторонней проводимости бывают…

    В принципе обычные кондесаторы с полиэстером в качестве диэлектрика. Разброс ёмкостей от 1 нФ до 15 мФ при рабочем напряжении от 50 В до 1500 В.


    У конденсаторов этого типа есть два неоспоримых преимущества. Первое — можно их делать с очень маленьким допуском всего в 1%. Так что, если на таком написано 100 пФ, то значит его ёмкость 100 пФ +/- 1%. И второе — это то, что их рабочее напряжение может достигать до 3 кВ (а ёмкость от 100 пФ, до 10 мФ)

    Электролитические кондесаторы


    Эти конденсаторы отличаются от всех других тем, что их можно включать только цепь постоянного или пульсирующего тока. Они полярные. Имеют плюс и минус. Связано это с их конструкцией. И если такой конденсатор включить наоборот, то он скорее всего вздуется. А раньше они еще и весело, но небезопасно взрывались. Бывают электролитические конденсаторы алюминиевые и танталовые.

    Алюминиевые электролитические конденсаторы устроены почти как бумажные с той лишь разницей, что обкладками такого конденсатора являются бумажная и алюминиевые полосы. Бумага пропитана электролитом, а на алюминиевыую полосу нанесен тонкий слой окисла, который и выступает в роли диэлектрика. Если подать на такой конденсатор переменный ток или включить обратно полярностям вывода, то электролит закипает и конденсатор выходит из строя.

    Электролитические конденсаторы обладают достаточно большой ёмкостью, благодаря чему их, к примеру, часто используют в выпрямительных цепях.

    На этом наверно всё. За кадром остались конденсаторы с диэлектриком из полкарбоната, полистирола и наверно ещё многие другие виды. Но думаю, что это уже будет лишним.

    Продолжение следует…

    Во второй части я планирую показать примеры типичного использования конденсаторов..

    Конденсатор (capacitor, cap) — это маленький «аккумулятор», который быстро заряжается при наличии напряжения вокруг него и быстро разряжается обратно, когда напряжения недостаточно для удержания заряда.

    Основной характеристикой конденсатора является ёмкость. Она обозначается символом C , единица её измерения — Фарад. Чем больше ёмкость, тем больший заряд может удерживать конденсатор при заданном напряжении. Также чем больше ёмкость, тем меньше скорость зарядки и разрядки.

    Типичные значения, применяемые в микроэлектронике: от десятков пикофарад (pF, пФ = 0.000000000001 Ф) до десятков микрофарад (μF, мкФ = 0.000001). Самые распростронённые типы конденсаторов: керамический и электролитический. Керамические меньше по размеру и обычно имеют ёмкость до 1 мкФ; им всё равно какой из контактов будет подключен к плюсу, а какой — к минусу. Электролитические конденсаторы имеют ёмкости от 100 пФ и они полярны: к плюсу должен быть подключен конкретный контакт. Ножка, соответствующая плюсу, делается длинее.

    Конденсатор представляет собой две пластины, разделённые слоем диэлектрика. Пластины скапливают заряд: одна положительный, другая отрицательный; тем самым внутри создаётся напряжение . Изолирующий диэлектрик не даёт внутреннему напряжению превратиться во внутренний ток , который бы уравнял пластины.

    Зарядка и разрядка

    Рассмотрим такую схему:

    Пока переключатель находится в положении 1, на конденсаторе создаётся напряжение — он заряжается. Заряд Q на пластине в определённый момент времени расчитывается по формуле:

    C — ёмкость, e — экспонента (константа ≈ 2.71828), t — время с момента начала зарядки. Заряд на второй пластине по значению всегда точно такой же, но с противоположным знаком. Если резистор R убрать, останется лишь небольшое сопротивление проводов (оно и станет значением R ) и зарядка будет происходить очень быстро.

    Изобразив функцию на графике, получим такую картину:

    Как видно, заряд растёт не равномерно, а обратно-экспоненциально. Это связанно с тем, что по мере того, как заряд копится, он создаёт всё большее и большее обратное напряжение V c , которое «сопротивляется» V in .

    Заканчивается всё тем, что V c становится равным по значению V in и ток перестаёт течь вовсе. В этот момент говорят, что конденсатор достиг точки насыщения (equilibrium). Заряд при этом достигает максимума.

    Вспомнив Закон Ома , мы можем изобразить зависимость силы тока в нашей цепи при зарядке конденсатора.

    Теперь, когда система находится в равновесии, поставим переключатель в положение 2.

    На пластинах конденсатора заряды противоположных знаков, они создают напряжение — появляется ток через нагрузку (Load). Ток пойдёт в противоположном направлении, если сравнивать с направлением источника питания. Разрядка тоже будет происходить наоборот: сначала заряд будет теряться быстро, затем, с падением напряжения создаваемого им же, всё медленее и медленее. Если за Q 0 обозначить заряд, который был на конденсаторе изначально, то:

    Эти величины на графике выглядят следующим образом:

    Опять же, через некоторое время система придёт в состояние покоя: весь заряд потеряется, напряжение исчезнет, течение тока прекратится.

    Если снова воспользоваться переключателем, всё начнётся по кругу. Таким образом конденсатор ничего не делает кроме как размыкает цепь когда напряжение постоянно; и «работает», когда напряжение резко меняется. Это его свойство и определяет когда и как он применяется на практике.

    Применение на практике

    Среди наиболее распространённых в микроэлектронике можно выделить такие шаблоны:

      Резервный конденсатор (bypass cap) — для уменьшения ряби напряжения питания

      Фильтрующий конденсатор (filter cap) — для разделения постоянной и изменяющейся составляющих напряжения, для выделения сигнала

    Резервный конденсатор

    Многие схемы расчитаны на получение постоянного, стабильного питания. Например 5 В. Их им поставляет источник питания. Но идеальных систем не существует и в случае резкого изменения потребления тока устройством, например когда включается компонент, источник питания не успевает «отреагировать» моментально и происходит кратковременный спад напряжения. Кроме того, в случаях когда провод от источника питания до схемы достаточно длинный, он начинает работать как антенна и тоже вносить нежелательный шум в уровень напряжения.

    Обычно отклонение от идеального напряжения не превышает тысячной доли вольта и это являние абсолютно незначительно, если речь идёт о питании, например, светодиодов или электродвигателя. Но в логических цепях, где переключение логического нуля и логической единицы происходит на основе изменения малых напряжений, шумы питания могут быть ошибочно приняты за сигнал, что приведёт к неверному переключению, которое по принципу домино поставит систему в непредсказуемое состояние.

    Для предотвращения таких сбоев, непосредственно перед схемой ставят резервный конденсатор

    В моменты, когда напряжение полное, конденсатор заряжается до насыщения и становится запасом резервного заряда. Как только уровень напряжения на линии падает, резервный конденсатор выступает в роли быстрой батарейки, отдавая накопленный ранее заряд, чтобы заполнить пробел пока ситуация не нормализуется. Такая помощь основному источнику питания происходит огромное количество раз ежесекундно.

    Если рассуждать с другой точки зрения: конденсатор выделяет из постоянного напряжения переменную составляющую и пропуская её через себя, уводит её с линии питания в землю. Именно поэтому резервный конденсатор также называют «bypass capacitor».

    В итоге, сглаженное напряжение выглядит так:

    Типичный конденсаторы, который используется для этих целей — керамические, номиналом 10 или 100 нФ. Большие электролитические слабо подходят на эту роль, т.к. они медленее и не смогут быстро отдавать свой заряд в этих условиях, где шум обладает высокой частотой.

    В одном устройстве резервные конденсаторы могут присутствовать во множестве мест: перед каждой схемой, представляющей собой самостоятельную единицу. Так, например, на Arduino уже есть резервные конденсаторы, которые обеспечивают стабильную работу процессора, но перед питанием подключаемого к нему LCD экрана должен быть установлен свой собственный.

    Фильтрующий конденсатор

    Фильтрующий конденсатор используется для снятия сигнала с сенсора, который передаёт его в форме изменяющегося напряжения. Примерами таких сенсоров являеются микрофон или активная Wi-Fi антенна.

    Рассмотрим схему подключения электретного микрофона. Электретный микрофон — самый распространённый и повсеместный: именно такой применяется в мобильных телефонах, в компьютерных аксессуарах, системах громкой связи.

    Для своей работы микрофон требует питания. В состоянии тишины, его сопротивление велико и составляет десятки килоом. Когда на него воздействует звук, затвор встроенного внутри полевого транзистора открывается и микрофон теряет внутреннее сопротивление. Потеря и восстановление сопротивления происходит много раз ежесекундно и соответствует фазе звуковой волны.

    На выходе нам интересно напряжение только в те моменты, когда звук есть. Если бы не было конденсатора C , на выход всегда бы дополнительно воздействовало постоянное напряжение питания. C блокирует эту постоянную составляющую и пропускает только отклонения, которые и соответствуют звуку.

    Слышимый звук, который нам и интересен, находится низкочастотном диапазоне: 20 Гц — 20 кГц. Чтобы выделить из напряжения именно сигнал звука, а не высокочастотные шумы питания, в качестве C используется медленный электролитический конденсатор номиналом 10 мкФ. Если был бы использован быстрый конденсатор, например, на 10 нФ, на выход прошли бы сигналы, не связанные со звуком.

    Обратите внимание, что выходной сигнал поставляется в виде отрицательного напряжения. То есть при соединении выхода с землёй, ток потечёт из земли к выходу. Пиковые значения напряжения в случае с микрофоном составляют десятки милливольт. Чтобы перевернуть напряжение обратно и увеличить его значение, выход V out обычно подключают к операционному уселителю.

    Соединение конденсаторов

    Если сравнивать с соединением резисторов , расчёт итогового номинала конденсаторов выглядит наоборот.

    При параллельном соединении суммарная ёмкость суммируется:

    При последовательном соединении, итоговая ёмкость расчитывается по формуле:

    Если конденсатора всего два, то при последовательном соединении:

    В частном случае двух одинаховых конденсаторов суммарная ёмкость последовательного соединения равна половине ёмкости каждого.

    Предельные характеристики

    В документации на каждый конденсатор указано максимальное допустимое напряжение. Его превышение может привести к пробою диэлектрика и взрыву конденсатора. Для электролитических конденсаторов обязательно должна быть соблюдена полярность. В противном случае либо вытечет электролит, либо опять же будет взрыв.

    Конденсаторы. Теория

    В простейшем виде конденсатор можно представить, как два проводника или две пластины, находящиеся на определённом расстоянии друг от друга. Пластины могут  быть разделены  прокладкой из любого диэлектрика (изолятора). При производстве конденсаторов обычно пластины  сворачивают в рулон (рис. 25.1,6).

    Если подсоединить конденсатор к источнику постоянного напряжения, одна из обкладок приобретёт положительный потенциал, другая отрицательный.

    Заряд, приобретаемый каждой из обкладок конденсатора, пропорционален разности потенциалов Vba из расчёта:

    Q = CVba 

    Здесь С — коэффициент пропорциональности, который характеризует электрическую ёмкость данного конденсатора. 

    С подробностями можно ознакомиться по ссылке на публикацию по материалам Джанколи: http://tel-spb.ru/statika/capacitor.php

    Определить ёмкость простейшего конденсатора можно аналитически. Например,  рассчитаем емкость С  плоского конденсатора с параллельными пластинами площадью А, находящимися на расстоянии d друг от друга, который представлен выше на рисунке 25.1 . Условимся считать, что расстояние d  ничтожно мало по сравнению с размерами пластин, так что электрическое поле Е  между пластинами однородно и искривлением силовых линий  можно пренебречь.

    Плотность заряда σ = Q/A

     

    Напряженность электрического поля между  пластинами  Е = σ/ε0

    Здесь ε0  — электрическая постоянная, равная 8.85×10-12

    Выразив напряжённость электрического поля через площадь и заряд, получим выражение:

    Определим разность потенциалов исходя из геометрических параметров и величины заряда интегрированием:

    Исходя и этого можно выразить электрическую ёмкость конденсатора C = Q/Vba , зная его геометрические данные A и d

    Формула определения ёмкости 25.2 плоского конденсатора будет справедлива для изолятора — вакуума. 

    Применяя другие изолирующие материалы между пластинами, необходимо учитывать коэффициент К, характеризующий  диэлектрическую проницаемость выбранного материала в качестве диэлектрика.

    С = КεA/d

    Изменение ёмкости происходит по причине поляризации диэлектрика и электрического взаимодействия зарядов пластин и зарядов диэлектрика в слоях близких к пластинам. В результате  уменьшается реальная величина d между пластинами.

    Ниже приведена таблица для коэффициента К  некоторых видов диэлектриков:

     

     

     

     

     

    ионный конденсатор работает | Ionic Documentation

    Запуск проекта Ionic на подключенном устройстве

      $ ioniccapacinrun[options] 
    Копировать

    ioniccapacinrun выполнит следующие действия:

    • сервер от ionic serve с опцией --livereload )
    • Запустить конденсатор запустить (или открыть IDE для собственного проекта с опцией --open )

    При использовании --livereload с

    7 устройства, помните, что livereload требует активного соединения между устройством и компьютером.В некоторых сценариях вам может потребоваться разместить сервер разработки на внешнем адресе, используя параметр

    --external . Дополнительные сведения см. в этих документах.

    Если у вас несколько устройств и эмуляторов, вы можете настроить таргетинг на конкретное по идентификатору с помощью параметра --target . Вы можете перечислить цели с помощью --list .

    Для Android и iOS вы можете настроить удаленную отладку на своем устройстве с помощью инструментов разработки браузера, используя эти документы.

    Примеры url=http://localhost:8100


    Копия

    платформа

    Описание

    Платформа для запуска (e.грамм. Android , IOS )

    0

    —list

    Описание

    Список Все доступные цели

    — target =

    Описание

    Развертывание в конкретное устройство по его ID (используйте --List , чтобы увидеть все)

    —Open

    Описание

    Открыть родной IDE вместо Конденсатор

    —livereload

    —NO Build

    Описание

    не вызывает IONIC Build

    —внешний

    Описание

    Hos t dev server на всех сетевых интерфейсах (т.е. --host = 0.0.0.0 0 )

    Описание

    Spin UP DEV Server для Live-Revord WWW файлов

    псевдоним -L

    —livereload-URL =

    Описание

    Описание пользовательских URL к DEV Server

    — Prod

    Описание

    Флаг для использования конфигурации производства Ионная документация

    Запуск ионный проект на подключенном устройстве

      $ Ionic Consistor Run [Параметры] 
    コピー

    Ионный конденсатор Run сделает следующее:

    • Выполните Ionic Build (или запустить Dev сервер от ionic serve с опцией --livereload )
    • Запустить конденсатор запустить (или открыть IDE для собственного проекта с опцией --open )

    При использовании --livereload с

    7 устройства, помните, что livereload требует активного соединения между устройством и компьютером.В некоторых сценариях вам может потребоваться разместить сервер разработки на внешнем адресе, используя параметр

    --external . Дополнительные сведения см. в этих документах.

    Если у вас несколько устройств и эмуляторов, вы можете настроить таргетинг на конкретное по идентификатору с помощью параметра --target . Вы можете перечислить цели с помощью --list .

    Для Android и iOS вы можете настроить удаленную отладку на своем устройстве с помощью инструментов разработки браузера, используя эти документы.

    Примеры​

      $ ионный конденсатор запустить 
    $ ионный конденсатор запустить андроид
    $ ионный конденсатор запустить андроид -l --external
    $ ионный конденсатор запустить ios --livereload --external
    $ ионный конденсатор запустить ios --livereload- url=http://localhost:8100
    コピー

    платформа

    Описание платформы для запуска (грамм. Android , IOS )

    0

    —list

    Описание

    Список Все доступные цели

    — target =

    Описание

    Развертывание в конкретное устройство по его ID (используйте --List , чтобы увидеть все)

    —Open

    Описание

    Открыть родной IDE вместо Конденсатор

    —livereload

    —NO Build

    Описание

    не вызывает IONIC Build

    —внешний

    Описание

    Hos t dev server на всех сетевых интерфейсах (т.е. --host = 0.0.0.0 0 )

    Описание

    Spin UP DEV Server для Live-Revord WWW файлов

    псевдоним -L

    —livereload-URL =

    Описание

    Описание пользовательских URL к DEV Server

    — Prod

    Описание

    Флаг для использования конфигурации производства Ionic Documentation

    Запуск проекта Ionic на подключенном устройстве

      $ ioniccapacinrun[options] 
    Копировать

    ioniccapacinrun выполнит следующие действия:

    • сервер из ionic serve с опцией --livereload )
    • Скопируйте веб-активы на указанную нативную платформу
    • Откройте IDE для вашего нативного проекта (Xcode для iOS, Android Studio для Android)

    При использовании --livereload и если вам нужно обслуживать вашу локальную сеть, устройство или эмулятор, также используйте параметр --external .В противном случае веб-представление пытается получить доступ к localhost .

    После того, как веб-ресурсы и конфигурация будут скопированы в ваш собственный проект, приложение может работать на устройствах и эмуляторах/симуляторах с помощью собственной IDE. К сожалению, программная сборка и запуск нативного проекта пока не поддерживается.

    Для Android и iOS вы можете настроить удаленную отладку на своем устройстве с помощью инструментов разработки браузера, используя эти документы.

    Примеры url=http://localhost:8100


    Копия

    платформа

    Описание

    Платформа для запуска (e.грамм. Android , iOS )

    —livereload

    —ssl

    Описание

    Использование HTTPS для DEV Server

    —no build

    Описание

    не вызывают IONIC Build

    —no-Open

    Описание

    не вызывают конденсатор

    —external

    Описание

    Сервер Host dev на всех сетевых интерфейсах (т.е. --host = 0.0.0.0 0 )

    Описание

    Spin UP DEV Server для Live-Revord WWW файлов

    псевдоним -L

    —livereload-URL =

    Описание

    Описание пользовательских URL к DEV Server

    — Prod

    Описание
    Описание

    Флаги для использования Конфигурация

    Дополнительные варианты

    Как использовать конденсатор Plugin

    IOS Начное использование #

    Для использования конденсатора Core Plugin, вам необходимо установить плагин как зависимость в вашем Podfile .

    Podfile

      pod 'IonicPortals', '~> 0.5.1' pod 'CapacitorStorage', '~> 1.2.0'  
    Копия

    Во избежание ошибок убедитесь, что версии в вашем Podfile и

    7 package.json

    совпадений!

    После установки зависимости внедрите подключаемый модуль в мост портала. Вы можете сделать это в функции viewDidLoad.

      override func viewDidLoad() { // Внедрить плагин в родной мост apiPlugin = bridge?.plugin(withName: "MyPlugin") как? MyPlugin // теперь вызовите super, который запустит первоначальную загрузку super.viewDidLoad()}  
    Copy

    Published Plugins#

    В CocoaPods перед плагинами Capacitor стоит Capacitor . Например, плагин @capacitor/storage в npm называется CapacitorStorage в CocoaPods. В CocoaPods доступны следующие плагины.

    CapacitorActionSheet

    API Листов действий обеспечивает доступ к собственным Листам действий, которые появляются в нижней части экрана и отображают действия, которые может предпринять пользователь.

    CapacitorAppLauncher

    AppLauncher API позволяет открывать другие приложения.

    CapacitorCamera

    API камеры позволяет сделать снимок с помощью камеры или выбрать фотографии из фотоальбома.

    CapacitorClipboard

    API буфера обмена позволяет копировать и вставлять данные в/из системного буфера обмена.

    CapacitorDevice

    API устройства предоставляет внутреннюю информацию об устройстве, такую ​​как модель и версия операционной системы, а также информацию о пользователе, такую ​​как уникальные идентификаторы.

    CapacitorDialog

    Dialog API предоставляет методы для запуска собственных диалоговых окон для предупреждений, подтверждений и подсказок ввода.

    CapacitorFilesystem

    API Filesystem предоставляет NodeJS-подобный API для работы с файлами на устройстве.

    CapacitorGeolocation

    API геолокации предоставляет простые методы для получения и отслеживания текущего положения устройства с помощью GPS, а также информацию о высоте, курсе и скорости, если она доступна.

    CapacitorHaptics

    Haptics API обеспечивает физическую обратную связь с пользователем посредством прикосновения или вибрации.

    CapacitorKeyboard

    API клавиатуры обеспечивает управление отображением и видимостью клавиатуры, а также отслеживание событий, когда клавиатура отображается и скрывается.

    CapacitorLocalNotifications

    API локальных уведомлений позволяет планировать уведомления устройств локально (т. е. без отправки push-уведомлений сервером).

    CapacitorNetwork

    Network API предоставляет информацию о сети и подключении.

    CapacitorPushNotifications

    API push-уведомлений обеспечивает доступ к собственным push-уведомлениям.

    CapacitorScreenReader

    API для чтения с экрана обеспечивает доступ к TalkBack/VoiceOver и т. д.и обеспечивает простые возможности преобразования текста в речь для визуальной доступности.

    CapacitorShare

    Share API предоставляет методы для обмена контентом с любыми приложениями с поддержкой общего доступа, которые могут быть установлены пользователем.

    CapacitorSplashScreen

    API экрана-заставки предоставляет методы для отображения или скрытия изображения-заставки.

    CapacitorStatusBar

    API StatusBar Предоставляет методы для настройки стиля строки состояния, а также для ее отображения или скрытия.

    CapacitorStorage

    Storage API обеспечивает простое постоянное хранилище данных типа «ключ-значение» для легковесных данных.

    CapacitorTextZoom

    API масштабирования текста позволяет изменять размер текста веб-представления для визуальной доступности.

    CapacitorToast

    Toast API предоставляет всплывающее уведомление для отображения важной информации пользователю. Как настоящий тост!

    Android Native Usage#

    Чтобы использовать плагин Capacitor Core, вам необходимо установить плагин как зависимость в вашей сборке .файл градла .

    build.gradle

      зависимости { реализация 'io.ionic:portals:0.5.0' реализация 'com.capacitorjs.storage:1.2.0'}  
    Копировать

    Во избежание ошибок убедитесь, что версии в вашем build.gradle и package.json совпадают!

    Затем включите его с помощью функций PortalBuilder.setPlugins() или PortalBuilder.addPlugin().

      var builder: PortalBuilder = someValuebuilder = builder.addPlugin(MyPlugin::class.java)  
    Копировать
      PortalBuilder builder = someValue; builder = builder.addPlugin(MyPlugin.class)  
    Копировать

    Опубликованные плагины#

    В MavenCentral перед плагинами Capacitor стоит com.capacitor7s . Например, плагин @capacitor/storage в npm называется com.capacitorjs.storage в Maven. В MavenCentral доступны следующие подключаемые модули.

    com.capacitorjs.action-sheet

    API Листов действий обеспечивает доступ к собственным Листам действий, которые появляются в нижней части экрана и отображают действия, которые может предпринять пользователь.

    com.capacitorjs.app-launcher

    API AppLauncher позволяет открывать другие приложения .

    com.capacitorjs.camera

    API камеры позволяет сделать снимок с помощью камеры или выбрать фотографии из фотоальбома.

    com.capacitorjs.clipboard

    API буфера обмена позволяет копировать и вставлять в/из системного буфера обмена.

    com.capacitorjs.device

    API устройства предоставляет внутреннюю информацию об устройстве, такую ​​как модель и версия операционной системы, а также информацию о пользователе, такую ​​как уникальные идентификаторы.

    com.capacitorjs.dialog

    Dialog API предоставляет методы для запуска собственных диалоговых окон для предупреждений, подтверждений и подсказок ввода.

    com.capacitorjs.filesystem

    API Filesystem предоставляет NodeJS-подобный API для работы с файлами на устройстве.

    com.capacitorjs.geolocation

    API геолокации предоставляет простые методы для получения и отслеживания текущего положения устройства с помощью GPS, а также информации о высоте, направлении и скорости, если она доступна.

    com.capacitorjs.haptics

    Haptics API обеспечивает физическую обратную связь с пользователем посредством прикосновения или вибрации.

    com.capacitorjs.keyboard

    API клавиатуры обеспечивает управление отображением и видимостью клавиатуры, а также отслеживание событий, когда клавиатура отображается и скрывается.

    com.capacitorjs.local-notifications

    API локальных уведомлений позволяет планировать уведомления устройств локально (т. е. без отправки push-уведомлений сервером).

    com.capacitorjs.network

    Network API предоставляет информацию о сети и подключении.

    com.capacitorjs.push-notifications

    API push-уведомлений предоставляет доступ к собственным push-уведомлениям.

    ком.конденсаторjs.screen-reader

    API для чтения с экрана обеспечивает доступ к TalkBack/VoiceOver и т. д. и обеспечивает простые возможности преобразования текста в речь для визуальной доступности.

    com.capacitorjs.share

    Share API предоставляет методы для обмена контентом с любыми приложениями с поддержкой общего доступа, которые могут быть установлены пользователем.

    com.capacitorjs.splash-screen

    API экрана-заставки предоставляет методы для отображения или скрытия изображения-заставки.

    com.capacitorjs.status-bar

    API StatusBar Предоставляет методы для настройки стиля строки состояния, а также для ее отображения или скрытия.

    com.capacitorjs.storage

    Storage API предоставляет простое постоянное хранилище данных типа «ключ-значение» для легковесных данных.

    com.capacitorjs.text-zoom

    API Text Zoom позволяет изменять размер текста веб-представления для визуальной доступности.

    ком.конденсаторjs.toast

    Toast API предоставляет всплывающее уведомление для отображения важной информации пользователю. Как настоящий тост!

    Лабор. 4. Зарядка и разрядка конденсатора

    Введение

    Конденсаторы — это устройства, способные накапливать электрический заряд и энергию. Конденсаторы имеют несколько применений, например, фильтры в источниках питания постоянного тока и аккумуляторы энергии для импульсных лазеров. Конденсаторы пропускают переменный ток, но не пропускают постоянный ток, поэтому они используются для блокировки постоянной составляющей сигнала, чтобы можно было измерить переменную составляющую.Физика плазмы использует способность конденсаторов накапливать энергию. В физике плазмы часто требуются короткие импульсы энергии при чрезвычайно высоких напряжениях и токах. Конденсатор можно медленно заряжать до необходимого напряжения, а затем быстро разряжать, чтобы обеспечить необходимую энергию. Можно даже зарядить несколько конденсаторов до определенного напряжения, а затем разрядить их таким образом, чтобы получить из системы большее напряжение (но не больше энергии), чем было введено. В этом эксперименте используется схема RC , которая является одной из самых простых схем, использующих конденсатор.Вы изучите эту схему и способы изменения ее эффективной емкости путем последовательного и параллельного соединения конденсаторов.

    Обсуждение принципов

    Конденсатор состоит из двух проводников, разделенных небольшим расстоянием. При подключении проводников к зарядному устройству (например, аккумулятору) заряд передается от одного проводника к другому до тех пор, пока разность потенциалов между проводниками из-за их одинакового, но противоположного заряда не станет равной разности потенциалов между выводами зарядного устройства.Количество заряда, накопленного на любом проводнике, прямо пропорционально напряжению, а константа пропорциональности известна как емкость . Это записывается алгебраически как Заряд Кл измеряется в единицах кулон (Кл), напряжение

    ΔV

    в вольт (В), а емкость Кл в единицах фарад (Ф). Конденсаторы являются физическими устройствами; емкость является свойством устройств.

    Зарядка и разрядка

    В простой RC-цепи резистор и конденсатор соединены последовательно с батареей и выключателем. См. рис. 1.

    Рисунок 1 : Простая RC-цепь

    Когда переключатель находится в положении 1, как показано на рис. 1 (а), заряд на проводниках через некоторое время достигает максимального значения. Когда переключатель переведен в положение 2, как на рис. 1(b), батарея больше не является частью цепи, и, следовательно, заряд конденсатора не может быть восполнен.В результате конденсатор разряжается через резистор. Если мы хотим изучить зарядку и разрядку конденсатора, нас интересует, что происходит сразу после перевода переключателя в положение 1 или 2, а не последующее поведение схемы в установившемся режиме. Для схемы, показанной на рис. 1(а), петлевое уравнение Кирхгофа можно записать в виде Решение уравнения (2) есть

    ( 3 )

    Q = Q f
    1 − e (−t / RC)
    где

    Q f  

    представляет собой окончательный заряд конденсатора, который накапливается за бесконечное время, R представляет собой сопротивление цепи, а C представляет собой емкость конденсатора.Из этого выражения видно, что в процессе зарядки заряд нарастает экспоненциально. См. рис. 2(а). Когда переключатель переводится в положение 2, для схемы, показанной на рис. 1(b), уравнение контура Кирхгофа теперь имеет вид Решение уравнения (4) есть

    ( 5 )

    Q = Q 0 e (−t / RC)  

    где

    Q 0  

    представляет собой начальный заряд конденсатора в начале разряда, т. е. при

    t = 0.

    Из этого выражения видно, что заряд убывает экспоненциально, когда конденсатор разряжается, и что для полной разрядки требуется бесконечное количество времени. См. рис. 2(б).

    Рисунок 2 : Графики изменения во времени

    Постоянная времени

    τ Продукт

    RC

    (имеющий единицы времени) имеет особое значение; это называется постоянной времени цепи. Постоянная времени — это количество времени, необходимое для того, чтобы заряд зарядного конденсатора увеличился до 63% от его конечного значения.Другими словами, когда

    t = RC,

    ( 6 )

    Q = Q f
    1 − e −1
    и

    ( 7 )

    1 - е -1 = 0,632.

    Другой способ описать постоянную времени — сказать, что это количество секунд, необходимое для того, чтобы заряд разряжающегося конденсатора
    упал до 36,8%

    (e −1 = 0,368) 

    от его начального значения.Мы можем использовать определение

    (I = dQ/dt)

    тока через резистор и уравнение (3) Q = Q f
    1 − e (−t / RC)
    и уравнение (5)

    Q = Q 0 e (−t / RC)  

    , чтобы получить выражение для тока в процессах зарядки и разрядки.

    ( 8 )

    зарядка: I = +I 0 e −t/RC  

    ( 9 )

    разрядка: I = −I 0 e −t/RC  

    где в уравнении(8)

    зарядка: I = +I 0 e −t/RC  

    и уравнение (9)

    разрядка: I = −I 0 e −t/RC  

    – максимальный ток в цепи в момент времени t = 0. Тогда разность потенциалов на резисторе будет определяться следующим образом.

    ( 10 )

    зарядка: ΔV = + ΔV f e −t/RC  

    ( 11 )

    разрядка: ΔV = − ΔV 0 e −t/RC  

    Обратите внимание, что в процессе разрядки ток будет течь через резистор в противоположном направлении.Отсюда I и

    ΔV

    в уравнении. (9)

    разряд: I = -I 0 e -t/RC  

    и уравнение. (11)

    разрядка: ΔV = − ΔV 0 e −t/RC  

    отрицательны. Это напряжение как функция времени показано на рис. 3.

    Рисунок 3 : Напряжение на резисторе как функция времени

    Полезно описывать зарядку и разрядку в терминах разности потенциалов между проводниками (т.т. е. «напряжение на конденсаторе»), поскольку напряжение на конденсаторе можно измерить непосредственно в лаборатории. Используя соотношение

    Q = C ΔV,

    ур. (3) Q = Q f
    1 − e (−t / RC)
    и уравнение (5)

    Q = Q 0 e (−t / RC)  

    , которые описывают зарядку и разрядку конденсатора, можно переписать в терминах напряжения. Просто разделите оба уравнения на

    C,

    , и соотношение станет следующим.

    ( 12 )

    зарядка: ΔV = ΔV f
    1 − e (−t/RC)

    ( 13 )

    разрядка: ΔV = ΔV 0 e (−t/RC)  

    Обратите внимание, что эти два уравнения по форме аналогичны уравнению. (3) Q = Q f
    1 − e (−t / RC)
    и уравнение 5

    Q = Q 0 e (−t / RC)  

    .График зависимости напряжения на конденсаторе от времени показан на рис. 4 ниже.

    Рисунок 4 : Напряжение на конденсаторе как функция времени

    Переставляя уравнение (12) зарядка: ΔV = ΔV f
    1 − e (−t/RC)
    получаем Возьмите натуральный логарифм (ln) обеих частей этого выражения и умножьте на –1, чтобы получить

    ( 15 )

    −ln
    = .

     

    График зависимости

    −ln((ΔV f − ΔV)/ΔV f )

    от времени будет представлять собой прямолинейный график с наклоном 1/ RC . Точно так же для процесса разрядки уравнение. 13

    разрядка: ΔV = ΔV 0 e (−t/RC)  

    можно переписать, чтобы получить Возьмите натуральный логарифм (ln) обеих частей этого выражения и умножьте на –1, чтобы получить

    ( 17 )

    −ln
    = .

     

    График зависимости

    −ln(ΔV)/ΔV 0 )

    от времени даст прямолинейный график с наклоном 1/ RC .

    Использование прямоугольной волны для имитации роли переключателя

    В этом эксперименте вместо переключателя мы будем использовать генератор сигналов, который может генерировать периодические волны различной формы, такие как синусоида, треугольная волна и прямоугольная волна. Также можно регулировать как частоты, так и амплитуды волновых форм. Здесь мы будем использовать генератор сигналов для создания изменяющегося во времени напряжения прямоугольной формы на конденсаторе, подобного показанному на рис.5.

    Рисунок 5 : Прямоугольная волна с периодом Τ

    Выходное напряжение генератора сигналов изменяется от постоянного положительного значения до постоянного нуля вольт через равные промежутки времени t . Время

    T = 2t

    является периодом прямоугольной волны. В течение первой половины цикла, когда напряжение положительное, это похоже на то, что переключатель находится в положении 1. Во время второй половины цикла, когда напряжение равно нулю, это то же самое, что и переключатель в положении 2. .Таким образом, прямоугольная волна, представляющая собой постоянное напряжение, которое периодически включается и выключается, служит одновременно и батареей, и переключателем в схеме на рис. 1. Генератор сигналов позволяет выполнять это переключение многократно, и можно оптимизировать сбор данных, регулируя частоту повторения. Эта частота будет зависеть от постоянной времени RC-цепи. Когда время t больше, чем постоянная времени τ RC-цепи, у конденсатора будет достаточно времени для зарядки и разрядки, а напряжение на конденсаторе будет таким, как показано на рис.4.

    Цель

    В этом эксперименте будет использоваться (эмулируемый компьютером) осциллограф для контроля разности потенциалов и, таким образом, косвенно, заряда конденсатора. Измерения напряжения будут использоваться двумя разными способами для вычисления постоянной времени цепи. Наконец, конденсаторы будут соединены параллельно, чтобы проверить их эквивалентную емкость цепи.

    Оборудование

    • печатная плата ПАСКО
    • Сигнальный интерфейс с выходной мощностью
    • Соединительные провода
    • Программное обеспечение Capstone

    Процедура

    Пожалуйста, распечатайте рабочий лист для этой лабораторной работы.Этот лист понадобится вам для записи ваших данных.

    Настройка RC-цепи

    Печатная плата RLC, которую вы будете использовать, состоит из трех резисторов и двух конденсаторов среди других элементов. См. рис. 6 ниже. Теоретически у вас могут быть разные комбинации резисторов и конденсаторов. В этом эксперименте вы будете использовать резисторы 33 Ом и 100 Ом и два конденсатора.

    Рис. 6 : Печатная плата RLC

    1

    Подключите крайнюю правую выходную клемму сигнального интерфейса к резистору 33 Ом в точке 2.

    2

    Для обхода катушки индуктивности подключите провод от точки 8 к точке 9.

    3

    Подключите точку 6 ко второй выходной клемме сигнального интерфейса, чтобы замкнуть цепь.

    4

    Подключите пробник напряжения к аналоговому каналу А.

    5

    Чтобы измерить напряжение на конденсаторе, подключите черный провод пробника напряжения к точке 6, а красный провод к точке 9. Убедитесь, что земля интерфейса (вывод «–») подключена к той же стороне конденсатора, что и земля генератора сигналов (выходная мощность).Подключение вашей схемы должно выглядеть так, как показано на рис. 7.

    Рисунок 7 : Принципиальная схема

    Контрольная точка 1:
    Попросите вашего ТА проверить соединения цепи.

    Процедура A: постоянная времени цепи

    В этом эксперименте мы будем использовать компьютер для эмуляции осциллографа.

    6

    Откройте файл Capstone, связанный с этой лабораторией.Отображается экран, аналогичный рис. 8.

    Рисунок 8 : Экран открытия файла Capstone

    7

    Настройте генератор сигналов на создание положительной прямоугольной волны, выбрав положительную прямоугольную волну в окне генератора сигналов, как показано на рис. 9 ниже.

    Рисунок 9 : Окно генератора сигналов

    8

    Если он еще не установлен при открытии файла Capstone, настройте генератор сигналов на создание прямоугольной волны амплитудой 5 В с частотой 20 Гц и установите смещение напряжения на 5 В.

    9

    Включите генератор сигналов, нажав на в окне генератора сигналов.

    10

    Для мониторинга сигнала нажмите кнопку СТАРТ в главном окне. Будет необходимо отрегулировать шкалы времени и напряжения, чтобы получить кривую сигнала, подобную той, что показана на рис. 10. Это позволит вам наблюдать, как напряжение на конденсаторе изменяется в зависимости от времени. Для этого установите курсор на любое значение по оси, которую вы хотите увеличить, и перемещайте курсор влево-вправо или вверх-вниз по мере необходимости.При правильном масштабировании на графике будет отображаться только одна длина волны, как на графике на рис. 10.

    Рисунок 10 : Трасса сигнала

    Если в любое время вы захотите удалить записанный набор данных, нажмите кнопку Удалить последний прогон под графиком.

    11

    Выберите кнопку Показать координаты из кнопок над графиком. См. рис. 11.

    Рисунок 11 : Показать координаты

    Когда отображение координат активно, показания напряжения и времени отображаются везде, где вы их перетаскиваете, как на рис.11. Используя этот инструмент, определите и запишите время начала (т. е. когда кривая начинается вверх от 0 вольт) на рабочем листе.

    12

    Рассчитайте 63,2% от максимального напряжения,

    ΔV f ,

    (которое должно быть 5 В), настройку по амплитуде генератора сигналов. Используя Показать координаты , определите и запишите время начала (т. е. когда трасса начинается вверх от 0 вольт) на рабочем листе.

    13

    Из этих двух значений времени определите и запишите время, необходимое для перехода сигнала от Δ В = 0 до Δ В = 0.632

    ΔV f .

    Это экспериментальное значение для RC .

    14

    На рабочем листе заполните принятые значения сопротивления и емкости, которые напечатаны на печатной плате.

    15

    Вычислите экспериментальное значение емкости, используя экспериментальное значение для RC и принятое значение R . Запишите это в рабочий лист.

    16

    Вычислите процентную ошибку, используя два значения емкости.См. Приложение Б.

    Контрольная точка 2:
    Попросите вашего ассистента проверить ваши данные и расчеты, прежде чем продолжить.

    Процедура B: Расчет емкости графическими методами

    17

    Запишите максимальное напряжение в рабочий лист.

    18

    По записанным данным найдите моменты времени, когда Δ В = 1, 2, 3 и 4 вольт на восходящей части кривой с помощью интеллектуального инструмента.Запишите эту информацию в таблицу данных 1 на рабочем листе. Примечание . Возможно, вам придется значительно увеличить масштаб, чтобы получить необходимую точность при использовании интеллектуального инструмента.

    19

    Выполните необходимые расчеты, чтобы заполнить таблицу данных 1.

    20

    С помощью Excel постройте график

    −ln((ΔV f − ΔV) / ΔV f )

    в зависимости от времени. См. Приложение G.

    21

    Используйте параметр линии тренда в Excel, чтобы нарисовать линию, наиболее подходящую для ваших данных, определить наклон линии и записать это значение на листе.См. Приложение Н.

    22

    По значению наклона определите постоянную времени и емкость. Запишите эти значения в рабочий лист.

    23

    Вычислите процентную ошибку между этим значением емкости и принятым значением.

    Контрольная точка 3:
    Попросите вашего ассистента проверить ваши данные, график и расчеты, прежде чем продолжить.

    Процедура C: Измерение эффективной емкости

    Емкость складывается напрямую, когда конденсаторы соединены параллельно, и наоборот, при последовательном соединении.Это противоречит правилу для резисторов. Для конденсаторов, включенных параллельно, эффективная емкость определяется выражением

    ( 18 )

    С эфф = С 1 + С 2 + С 3 + . . .

    а для последовательно соединенных конденсаторов эффективная емкость равна

    24

    Подсоедините второй конденсатор (330 µ F) параллельно конденсатору, используемому в процедуре А, подключив провод от точки 6 к точке 7.

    25

    Переключите резистор на резистор 10 Ом, переместив соединение из точки 2 в точку 1.

    26

    Запишите другой набор данных, нажав СТАРТ в главном окне. После того, как вы записали второй набор данных, вы можете захотеть отобразить только эти данные на графике и удалить набор данных 1. Для этого удалите первый запуск (см. примечание к шагу 10). На графическом дисплее вы будете видеть только одну длину волны.

    27

    В этой части эксперимента вы будете рассматривать разгрузочную часть кривой. Теперь начальное напряжение

    ΔV 0  

    будет наибольшим значением пика до того, как график начнет спадать.Запишите это значение в рабочий лист.

    28

    По записанным данным найдите моменты времени, когда Δ В = 1, 2, 3 и 4 вольт на падающей части кривой с помощью интеллектуального инструмента. ( Примечание : вам может потребоваться сильно увеличить масштаб, чтобы получить необходимую точность при использовании интеллектуального инструмента). Запишите эту информацию в таблицу данных 2 на рабочем листе.

    29

    Выполните необходимые расчеты, чтобы заполнить таблицу данных 2.

    30

    Используя Excel, постройте график зависимости

    −ln(ΔV) / ΔV 0 )

    от времени.

    31

    Используйте параметр линии тренда в Excel, чтобы нарисовать линию, наиболее подходящую для ваших данных, определить наклон линии и записать это значение на листе.

    32

    По значению наклона определите постоянную времени и запишите это значение в рабочий лист.

    33

    Вычислите

    C eff

    эффективную емкость параллельной комбинации, используя принятое значение для R .

    34

    Сравните это экспериментальное значение с тем, что вы получили из уравнения.18

    С эфф = С 1 + С 2 + С 3 + . . .

    и принятые значения емкости путем вычисления процентной ошибки между двумя значениями.

    Контрольная точка 4:
    Попросите вашего ассистента проверить ваши данные и расчеты, прежде чем продолжить.

    Copyright © 2012 Advanced Instructional Systems, Inc. и Университет штата Северная Каролина | Кредиты

    Capacitor: запуск веб-приложения на мобильном устройстве

    Capacitor, проект, созданный командой Ionic, — отличный способ взять ваши веб-приложения JavaScript и запустить их на iOS, Android, рабочем столе (через Electron) или веб-платформе. .Он позволяет вам получить доступ к SDK собственного устройства и призван заменить Cordova. Я предполагаю, что у нас есть приложение Ionic, созданное с помощью Create React App (да, вы правильно прочитали!) для этой статьи, но ваша реализация может отличаться.

    Во-первых, давайте создадим наше приложение, чтобы нашу производственную сборку можно было запустить на устройстве:

      $ npm запустить сборку
      

    Затем, чтобы установить Capacitor, запустите в своем терминале в папке проекта следующее, чтобы установить необходимые пакеты:

      $ npm install --save @capacitor/core @capacitor/cli
    
    $ npx заглавная буква
      

    Затем вас спросят о вашем проекте.Так как это проект является просто примером, используйте значения по умолчанию для каждой подсказки.

    Затем нас встретит что-то похожее на это:

      🎉 Ваш проект конденсатора готов к работе! 🎉
    
    Добавьте платформы с помощью «npx cap add»:
    
      шапка npx добавить андроид
      шапка npx добавить ios
      крышка npx добавить электрон
      

    Здесь мы можем выбрать проект, который мы хотим построить. В качестве примера я буду использовать ios .

      $ npx крышка добавить ios
      

    Ого, запуск с настройками по умолчанию дает нам эту ошибку!

      [ошибка] Capacitor не удалось найти каталог веб-ресурсов «/repos/ionic-react/www».Пожалуйста, создайте его и убедитесь, что он содержит файл index.html. Ты можешь измениться
        путь к этому каталогу в конденсаторе.config.json.
        Дополнительная информация: https://capacitor.ionicframework.com/docs/basics/configuring-your-app
      

    Это распространенная ошибка, с которой вы можете столкнуться при добавлении конденсатора в новый проект Ionic. Давайте обновим недавно созданный конденсатор.config.json , чтобы он указывал на каталог сборки :

      {
      "appId": "com.example.app",
      "имя_приложения": "Приложение",
      "связанный WebRuntime": ложь,
      "веб-каталог": "сборка"
    }
      

    Если мы снова запустим команду, Capacitor добавит в наш проект iOS-приложение, которое мы сможем открыть внутри Xcode с помощью:

      $ npx крышка открыть ios
      

    Мы можем открыть наше приложение на устройстве, нажав кнопку Play в Xcode.

    Внесение изменений в приложение

    Поскольку мы продолжаем разработку нашего приложения, мы не хотим каждый раз удалять папку платформы и добавлять ее заново. К счастью, мы можем создать наш JavaScript и скопировать файлы в наш проект iOS, используя cap copy :

    .
      $ npm запустить сборку
    
    Копия шапки $ npx
      

    Это будет использовать файлы внутри нашей папки build для обновления нашей сборки. Если мы снова перезапустим наше приложение из Xcode, вы увидите, что приложение обновляется с любыми внесенными вами изменениями.

    И все! Теперь, когда вы установили и работаете с Capacitor, вы можете ознакомиться с официальной документацией, чтобы узнать о плагинах и о том, как использовать различные SDK для устройств или веб-API.

    Произошла ошибка при настройке пользовательского файла cookie

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка браузера на прием файлов cookie

    Существует множество причин, по которым файл cookie не может быть установлен правильно.Ниже приведены наиболее распространенные причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки браузера, чтобы принять файлы cookie, или спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файл cookie.
    • Ваш браузер не поддерживает файлы cookie. Попробуйте другой браузер, если вы подозреваете это.
    • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы это исправить, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Предоставить доступ без файлов cookie потребует от сайта создания нового сеанса для каждой посещаемой вами страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в файле cookie; никакая другая информация не фиксируется.

    Как правило, в файле cookie может храниться только та информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, если вы не решите ввести его.

    Добавить комментарий

    Ваш адрес email не будет опубликован.