Устройство магнитные пускатели: Магнитные пускатели. Принцип действия и схемы включения

Содержание

Магнитный пускатель устройство и принцип работы

На заре электротехники коммутация трехфазных электродвигателей осуществлялась с помощью ручных рубильников. Они не обеспечивали в должной мере электробезопасность и требовали соединения с пультом управления с помощью силовых линий. Дальнейшее развитие коммутационных процессов привело к изобретению магнитного пускателя, лишенного недостатков обычного рубильника. Данное устройство дало возможность дистанционного включения нагрузки и автоматического управления рабочими процессами оборудования.

Виды магнитных пускателей

Сам магнитный пускатель имеет довольно простое устройство и принцип работы. Он состоит из двух видов контактов – подвижных и стационарных. Их замыкание вызывает запуск электродвигателя, а размыкание – отключение и остановку. Работа контактов осуществляется под действием магнитного поля.

Основным предназначением магнитных пускателей является дистанционное управление трехфазными асинхронными электродвигателями с короткозамкнутым ротором. Они работают при переменном токе, напряжением 380 и 660 вольт, с частотой 50 Гц. В число основных операций входят пуск, остановка и реверсирование.


Дополнительно, магнитные пускатели в совокупности с тепловыми реле, защищают управляемые электродвигатели от возможных перегрузок с недопустимой продолжительностью. В некоторых конструкциях пускателей имеются ограничители перенапряжений, используемые в полупроводниковых системах управления.

В соответствии со схемой включения нагрузки могут быть реверсивными и нереверсивными. Классификация по размещению предполагает магнитные пускатели следующих типов:

  • Открытого исполнения. Устанавливаются в закрытых шкафах, на панелях, и прочих местах, куда не может попасть пыль, влага и посторонние предметы.
  • Защищенного исполнения. Монтируются внутри помещений с низким содержанием пыли в окружающей среде. Исключается попадание воды на оболочку устройства.
  • Пылебрызгонепроницаемого исполнения. Устанавливаются внутри помещений и снаружи под навесами, защищающими от дождя и солнечных лучей.

Дополнительная классификация пускателей осуществляется по следующим признакам:

  • Кнопочный пост на корпусе прибора. Нереверсивные пускатели оборудованы кнопками ПУСК и СТОП, а реверсивные устройства имеют кнопки ПУСК ВПЕРЕД, ПУСК НАЗАД и СТОП. На некоторых моделях в корпусе монтируется сигнальная лампа ВКЛЮЧЕНО.
  • Дополнительные блокировочные и сигнальные контакты. Используются в разных комбинациях, в качестве замыкающих или размыкающих. Они могут быть встроенными или оборудоваться как отдельная приставка. Некоторые дополнительные контакты могут использоваться в качестве составной части общей схемы пускателя. Например, в реверсивных устройствах с их помощью осуществляется электрическая блокировка.
  • Ток и напряжение втягивающей катушки.
  • Наличие в схеме теплового реле. Его основной характеристикой является номинальный ток несрабатывания на средних установках. Регулировка тока несрабатывания выполняется в допустимых пределах +15% от номинала.

Отдельные виды магнитных пускателей могут быть укомплектованы ограничителями перенапряжения и другими видами установочных изделий

Устройство магнитного пускателя

Конструкция магнитного пускателя условно разделяется на верхнюю и нижнюю части. Вверху располагается подвижная система контактов совместно с дугогасительной камерой. Здесь же находится и подвижная половинка электромагнита, имеющая механическую связь с силовыми контактами, входящими в подвижную контактную систему.

В нижней части устройства расположена катушка, возвратная пружина и вторая часть электромагнита. Основной функцией возвратной пружины является возврат верхней половинки в исходное положение после того как прекращается подача питания на катушку. Таким образом, происходит разрыв силовых контактов пускателя.

В конструкцию обеих половинок электромагнита входят Ш-образные пластины, для изготовления которых использована электромагнитная сталь. В качестве обмотки применяется медный провод с определенным количеством витков, рассчитанных на работу с определенным питающим напряжением, значением 24, 36, 110, 220 и 380 В. Подача напряжения приводит к появлению в катушке магнитного поля. В результате, обе половинки стремятся соединиться, что приводит к образованию замкнутого контура. При отключении питания, магнитное поле исчезает, и верхняя часть возвращается в исходное положение под действием возвратной пружины.

Принцип работы

Принцип действия магнитного пускателя заложен уже в его названии. Он срабатывает как электромагнит, когда электрический ток проходит по обмотке катушки. После срабатывания силовых контактов, происходит запуск электродвигателя.

Общая конструкция устройства включает в себя основную часть, закрепленную стационарно и подвижный якорь, передвигающийся по направляющим. В самом упрощенном виде пускатель является единой кнопкой, корпус которой оборудован клеммами для подключения силовых цепей и стационарных контактов.

Подвижная часть оборудована контактным мостиком, обеспечивающим двойной разрыв силовой цепи, чтобы отключить питание нагрузки. Кроме того, эта деталь предназначена для надежного электрического соединения проводов входа и выхода, когда схема включается в работу. Проверить работу системы можно вручную. Для этого нужно надавить на якорь и ощутить усилие от сжатия пружин. Именно это усилие должно преодолеваться магнитным полем. Когда якорь отпускается, контакты отбрасываются пружинами в отключенное положение.

В процессе работы такое ручное управление не применяется, оно необходимо только для проверок. Фактически используется только дистанционная коммутация под действием электромагнитного поля. Само поле возникает в катушке под влиянием электротока, проходящего через ее витки. Прохождение тока значительно улучшается за счет шихтованного стального магнитопровода, разделенного на две части.

При отсутствии электрического тока, магнитное поле вокруг катушки тоже исчезает. Это приводит к отбрасыванию якоря вверх за счет энергии пружин. Когда ток вновь начинает проходить по обмотке, возникают магнитные силы, обеспечивающие движение якоря вниз.

Нижнее положение якоря оказывает влияние на работу всего устройства. В этом положении контакты должны надежно соединяться между собой. В случае ослабления возможно подгорание контактов, чрезмерный нагрев и последующее отгорание проводов.

Монтаж и подключение электромагнитного пускателя

Для обеспечения дальнейшей надежной работы магнитных пускателей, монтаж этих устройств рекомендуется выполнять на ровной поверхности, закрепленной жестко, в вертикальном положении. Установка пускателей с тепловыми реле должна производиться в условиях минимальной разности температур окружающего воздуха.

Неправильная установка может привести к ложным срабатываниям. Поэтому следует избегать мест, подверженных вибрации, сильным толчкам и ударам. Например, электромагнитные устройства с номинальным током свыше 150 А во время включения создают заметные сотрясения и удары.

Тепловые реле могут подвергаться дополнительному нагреву от других источников тепла. Это оказывает отрицательное влияние на всю работу данных устройств. Поэтому их нельзя размещать рядом с аппаратурой теплового действия или в тех частях шкафов, которые более всего подвержены нагреву.

Когда с контактным зажимом пускателя соединяется один проводник, его конец загибается в кольцо или П-образно. Такой способ соединения предотвращает перекос пружинных шайб, установленных в зажиме. Если же к зажиму подключаются сразу два проводника с примерно одинаковым сечением, их концы должны иметь прямую форму и располагаться по обеим сторонам от зажимного винта.

До того, как подключать медные провода, их концы необходимо залудить. В многожильных проводах концы перед лужением предварительно скручиваются. Концы проводов из алюминия зачищаются мелким надфилем, после чего покрываются техническим вазелином или специальной пастой. Смазка контактов и подвижных частей устройства не допускается.

Перед пуском необходимо осмотреть магнитный пускатель снаружи и проверить исправность всех его частей. Все подвижные элементы должны свободно двигаться от руки. Сверить все электрические соединения со схемой.

Уход за магнитным пускателем

Для того чтобы правильно ухаживать за магнитным пускателем, необходимо хорошо знать возможные неисправности этого устройства. Как правило, это повышенная температура деталей и сильное гудение прибора.

Повышенная температура в первую очередь связана с межвитковыми замыканиями катушки. В подобных случаях требуется ее замена. Кроме того, излишний нагрев может произойти в связи с повышением напряжения сети выше номинального, а также при перегрузках, слабых контактных соединениях и недопустимом износе контактов.

Чрезмерное гудение устройства может происходить по целому ряду причин. Среди них в первую очередь следует отметить неплотное прилегание якоря к сердечнику, в результате загрязнения поверхностей или их повреждения. Другой серьезной причиной становится заедание подвижных частей, а также снижение напряжения в сети более чем на 15% от номинала.

Для того чтобы избежать подобных неисправностей, требуется своевременный уход. В целом, магнитный пускатель не требует каких-либо дорогостоящих мероприятий. Прежде всего, нужно не допускать попадания внутрь прибора грязи, пыли и влаги. Нужно регулярно проверять состояние контактов и плотность зажимов. Существует определенный перечень мероприятий по техническому обслуживанию и ремонту, выполняемый специалистами-электротехниками.

Магнитный пускатель: устройство и принцип работы

Исходя из названия, данное электротехническое устройство выступает в качестве электромагнита, который срабатывает при прохождении по обмотке катушки электрического тока. При этом основное назначение магнитного пускателя – это запуск в работу электродвигателя.

С точки зрения конструкции любой магнитный пускатель включает в себя подвижной якорь, который перемещается по специальным полозьям относительно стационарно закрепленной неподвижной части.

Принцип действия электромагнитной системы

Если рассматривать пускатель максимально упрощенно, то его можно представить в виде обычной кнопки с расположенными на ее корпусе клеммами подключения стационарных контактов и силовых цепей. Подвижная часть выступает в роли контактного мостика, назначение которого следующее:

1. Обеспечение двойного размыкания силовой цепи целью отключения питания электродвигателя;
2. Обеспечение надежного контакта проводников при функционирующей схеме.

Если на якорь воздействовать вручную, можно ощутить усилие сжатия имеющихся в конструкции пружин, которые отбрасывают контакты в исходное положение при отпускании якоря. Однако такой способ ручного управления пускателем не используется, а его основное назначение – тестирование устройства. В процессе же эксплуатации управление пускателями осуществляется исключительно дистанционно, что достигается посредством применения специально предусмотренной электромагнитной катушки. Конструкция данной катушки включает в себя две половины – нижнюю неподвижную и верхнюю, которая входит в состав якоря.

Так, если обмотка катушки обесточена, соответственно, магнитного поля вокруг нее нет, поэтому якорь отбрасывается в исходное положение усилием пружин. Но как только магнитные силы начинают действовать при прохождении тока через обмотку, якорь переходит в рабочее положение.

Принцип действия системы силовых контактов

Учитывая тот факт, что силовые контакты постоянно подвергаются большим нагрузкам и агрессивному воздействию, их надежная и длительная эксплуатация достигается, за счет принятия следующих мер:

• применение сплавов технического серебра в качестве материала посредством нанесения специальным методом на медные перемычки;
• изготовление контактов с существенным запасом прочности;
• силовые контакты изготавливаются в форме, специально разработанной для достижения максимального электрического контакта при минимальном воздействии дуги при разрыве контакта.

В случае с трехфазными схемами в конструкции пускателя присутствуют три силовых контакта и несколько дополнительных, которые повторяют положение якоря и применяются для управления работой двигателя. В зависимости от назначения, управляющие контакты в процессе срабатывания магнитного пускателя могут, как замыкать цепь, так и размыкать ее.

Современные магнитные пускатели, которые поставляют отечественные производители, классифицируются на семь групп, исходя из возможностей работы с нагрузками той или иной мощности. Для их обозначения используются определенные значения по возрастанию, начиная с нулевой величины (ток коммутации составляет до 6,3 ампера) и заканчивая шестой с током коммутации 160 А.

Для классификации пускателей импортного производства применяются собственные, отличные от описанных выше критерии.

Различные модели магнитных пускателей и их конструктивные особенности

Достаточно ранние модели магнитных пускателей снабжались силовыми контактами и повторителями на размыкание и замыкание в количестве, как правило, одного-двух штук. Современные же модели получают ряд дополнительных конструктивных элементов, благодаря чему, их набор функций значительно расширяется.

Одним из ярких примеров сказанного выше служат изделия в комплектном исполнении, которые способны управлять работой трехфазных электродвигателей в различных режимах и реверсивном, в том числе, за счет применения дополнительного оснащения. Все что требуется в данном случае от потребителя – подключить к имеющемуся модулю питание и электродвигатель. Сама же схема является смонтированной и отлаженной, исходя из тех или иных нагрузок.

Магнитные пускатели достаточно высокой мощности, помимо всего прочего, снабжаются системой гашения дуги, которая возникает при размыкании силовых контактов.

устройство, принцип работы, назначение — ABC IMPORT

Содержание статьи:

Магнитные пускатели и контакторы - это устройства, предназначенные для коммутации силовых цепей. Кстати, о названии и характеристиках пускателей и контакторов: столь значительных отличий между устройством магнитного пускателя и контактором вы не найдете. Просто в Советском Союзе существовали пускатели, которые держали ток от 10 А до 400 А, и контакторы, которые держали ток от 100 А до 4 800 А. После магнитные пускатели стали классифицировать как маломощные и малогабаритные контакторы. Далее мы расскажем подробнее об устройстве и принципе действия магнитного пускателя.

Для чего используют магнитные пускатели?

Вам будет интересно:Что такое счетчик? Устройство, виды, применение

Смысл их применения бывает разный. К примеру, в станках в малярных цехах, насосных установках, перекачивающих топливо, и тому подобных помещениях располагать коммутирующую аппаратуру не рекомендуется. Опасность состоит в том, что каково бы ни было устройство и принцип работы магнитного пускателя, разрывая нагрузку, он создает искру и дуговые разряды, которые могут поджечь, подобно искре в зажигалке, легко воспламеняемые пары. Для этого все пускатели выносят в отдельное, практически герметично отгороженное помещение. Рабочее напряжение пускателей обычно ограничивают до 12 вольт, чтобы в кнопках, которые размещены в опасной зоне, не возникали искры. Также пускатели применяются в различных схемах защиты, взаимоблокировки, реверса и тому подобных. Ниже мы приведем примеры некоторых таких схем.

Устройство

Вам будет интересно:Расход воды в посудомоечной машине: сравнение по моделям

Разбирать устройство магнитного пускателя будем на примере модели ПМЕ-211. Этот тип хоть и морально устарел, но часто встречается в оборудовании и станках еще советского производства. Устройство магнитного пускателя ПМЕ довольно простое и для освоения - в самый раз. Снимая защитную крышку, мы видим контактные группы.

Они состоят из контактов, которые, в свою очередь, делятся на подвижные (установлены в подвижную раму с якорем) и неподвижные (установлены на головке контактора). Обратим внимание, что все контакты на подвижной части подпружинены. Это делается для наилучшего касания между контактными площадками, то есть термостойким наплавлением на контакте. Сняв головку контактора, мы видим, что внизу на ней расположен якорь прямо напротив магнитопровода с катушкой. Между ними установлена отбрасывающая пружина, которая необходима в устройстве магнитного пускателя для того, чтобы привести его в нормальное состояние. Эта пружина достаточно сильная, чтобы резко привести пускатель в такое состояние и разорвать нагрузку для уменьшения времени воздействия возникающей дуги. Она достаточно слаба, чтобы перегружать катушку, а также помешать магнитопроводу замкнуться и плотно прилегать друг к другу. Из-за неправильно подобранной пружины пускатель работает довольно шумно. При ремонте и обслуживании эту особенность стоит учитывать. На катушке обычно нанесена информация о ней, рабочее напряжение, род тока, количество витков, частота.

Вам будет интересно:Усилитель звуковых частот: типы, классы и классификация по категориям

Принцип действия

Устройство магнитного пускателя подразумевает работу по такому принципу: на катушку, которая установлена на магнитопроводе, подается питающее напряжение. Магнитопровод намагничивается, притягивая якорь, а тот, в свою очередь, тянет за собой раму, на которой закреплены контактные группы. Устройство и работа магнитного пускателя основаны на действии электромагнита. При втягивании якоря замыкаются контактные группы силовых контактов.

Вспомогательные контакты делятся на 2 типа:

  • нормально замкнутые, то есть те, которые при отсутствии напряжения на катушке размыкаются, отключая питание или же формируя отрицательный сигнал, смотря как и к чему подключено;
  • нормально разомкнутые, которые наоборот замыкаются, тем самым влияя на цепь управления или подавая положительный сигнал.

При снятии напряжения пускатель приходит в нормальное состояние, и контакты отбрасываются под действием возвратной пружины. Все контакты магнитного пускателя, установленные в диэлектрической раме, как правило, из термостойкого пластика, подпружинены для обеспечения наилучшего прилегания между подвижными и неподвижными контактами. Достаточно просто устроен магнитный пускатель, и принцип его работы основан на электромагните.

Как отличить нормально замкнутые от нормально разомкнутых контактов?

На пускателях ПМЕ они открыты и их видно. Но мы покажем на примере пускателя ПМЛ, как это сделать в случае, когда контакты закрыты.

Мультиметр устанавливается в режим прозвонки, а на пускатель не подается напряжение. Это его нормальное состояние. Затем поочередно прозваниваются контактные группы. Те, которые не звонятся, являются нормально разомкнутыми, а которые, наоборот, звонятся – нормально замкнутыми.

Вам будет интересно:Альтернативное электричество: методы получения энергии, необходимое оборудование

Обслуживание и ремонт

Устройство и принцип магнитного пускателя подразумевает регулярное обслуживание и ремонт. Стоит делать это планово, так как со временем на контактных площадках появляется нагар. В связи с этим магнитопровод может окисляться под действием сырой среды, а отслоившаяся ржавчина формирует абразивную пыль, которая, попадая в подвижные части, приводит к их чрезмерному износу.

Внешний осмотр

Он делается для того, чтобы обнаружить трещины, сколы, оплавленные места. Также со временем целостность оболочки, в которую был установлен пускатель, может нарушаться, а наличие излишней пыли или кристалловидные солевые наросты будут свидетельствовать об этом. Стоит понимать, что пускатель при включении и отключении немного подпрыгивает, а значит, элементы крепежа не должны быть потрескавшимися. В противном случае пускатель может просто отвалиться и включить нагрузку. Или же включить, к примеру, две фазы из трех, что непременно спалит двигатель.

Контактные группы

Вскрывая защитную крышку, мы можем увидеть контактные группы. В зависимости от назначения и устройства магнитного пускателя они могут быть разного размера и с напайками из разного металла. Незначительный нагар убирается ветошью или надфилем. Применять шкурку здесь нельзя, так как сложно уследить за углом наклона, плоскость не будет выдержана. Из-за этого контакт будет неплотным, а значит, контактные площадки будут нагреваться. Наплавления и раковины убирают с помощью напильника, а затем посредством мелкого надфиля.

Якорь, магнитопровод и катушка

Якорь и магнитопровод не должны иметь следов ржавчины, а пластины, из которых они собраны, должны быть надежно заклепаны. Катушка, в свою очередь, должна быть сухой и не иметь следов нагара (в случае использования в качестве внешней изоляции бумаги) или оплавлений, если она залита пластиком. При обнаружении подобных признаков лучше ее заменить.

Крепление подвижных частей, пазы

Пазы не должны иметь трещин, сколов и пыли. В противном случае это может стать причиной закусывания и медленного отброса подвижных контактов от неподвижных. Элементы, устанавливаемые в пазы, должны слегка люфтить и свободно перемещаться вдоль паза. Также стоит отметить, что якорь, как и магнитопровод, не установлен жестко. Это сделано с той целью, чтобы магнитопровод мог с легкостью примагнитить якорь плотно и надежно. Незначительное покачивание якоря в своем пазу - это нормально. Если покачивания нет, это значит, что там скопилось много пыли или крепление деформировано. Это непременно следует устранить в целях бесперебойного выполнения прибором функционального назначения.

Устройства магнитных пускателей по принципу действия, выполняемого в цепи

Обычно такая схема применяется в том случае, когда критична потеря напряжения в том или ином оборудовании. К примеру, бытовой однофазный насос с пусковой обмоткой. Если вдруг пропадет питание и через несколько секунд появится снова, то двигатель попросту сгорит. Для подобных защит и существует следующая схема.

Схема защиты от самовключения работает следующим образом: напряжение на катушку пускателя проходит через нормально замкнутый контакт кнопки «стоп», которая на схеме обозначена как КнС, на нормально разомкнутый контакт кнопки “пуск”. Между кнопками “стоп” и “пуск” выводится провод, который идет к нормально разомкнутому вспомогательному контакту на пускателе. С другой стороны контакта подводится 2 провода: выход после кнопки “пуск” и провод питания на катушку. При нажатии кнопки “пуск” питание поступает в обход нормально разомкнутого контакта на катушку, вследствие чего контакт замыкается. Когда мы отпускаем кнопку “пуск”, пускатель обеспечивает питанием сам себя через вспомогательный контакт. При нажатии кнопки “стоп” катушка теряет питание, из-за чего контакт размыкается.

Схема взаимоблокировки

Обычно эта схема применяется с двумя пускателями в паре для включения реверса двигателя или, к примеру, для ограничения работы одной функции, пока включена другая.

Питание на цепь управления подается на нормально замкнутый контакт кнопки “стоп” (КнС). Затем происходит разветвление на нормально разомкнутые контакты КнП “право” и КнП “лево”. Причем питание приходит на нормально разомкнутый контакт КнП “право” через нормально замкнутый контакт КнП “лево”. И наоборот. Сделано это во избежание одновременного включения обоих пускателей, как защита от случайных нажатий. Если пускатели включатся одновременно, то так как реверс работает из-за смены двух проводов, местами произойдет короткое замыкание, которое нанесет существенный вред контактным группам.

Затем провод, который подходит к нормально разомкнутому контакту КнП “право”, идет на вспомогательный нормально разомкнутый контакт пускателя. Затем с другой стороны этого пускателя подводится выход с КнП “право” и устанавливается перемычка, ведущая на контакт катушки. Второй контакт катушки пропускается через нормально замкнутый вспомогательный контакт второго пускателя. Делается это для перестраховки, чтобы исключить возможность одновременного включения пускателей. Питание второго пускателя устроено аналогичным образом. Прежде чем прийти на нормально разомкнутый контакт КнП “лево”, он пропущен через нормально замкнутый контакт КнП “право”. Затем похожим образом он подключается ко второму пускателю. С одной стороны нормально разомкнутой контактной группы подводится провод, идущий до КнП “лево”, а с противоположной стороны - который идет после КнП “лево”. Устанавливается перемычка, ведущая на контакт катушки. Второй контакт катушки пропущен через нормально замкнутый контакт первого пускателя.

В заключение можем сказать, что методов использования пускателей великое множество. Мы привели самые широко распространенные, которые используются на производствах, а также могут быть полезны в быту. В любом случае, как бы вы ни использовали устройство контактора, магнитного пускателя, перед покупкой следует рассчитать ток, который будет проходить через его силовые контакты, установить рабочее напряжение катушки, род тока. Также стоит предусмотреть пыле- и влагозащиту пускателя от вредных факторов окружающей среды. Обязательно необходимо осматривать пускатели планово и внепланово, когда оборудование, которое он питает, пришло в негодность. Иногда именно пускатель является причиной поломки оборудования.

Источник

100 фото современных моделей и схемы их подключения

Коммутационный аппарат, предназначенный для дистанционного управления электропитанием трехфазных электродвигателей, именуют магнитным пускателем. Посредством этого устройства выполняется пуск, отключение или реверс электромоторов, в паре с тепловым реле защищает их от перегрузок. Модели магнитных пускателей представлены на фото в нашей статье и в галерее.

Разновидности

В зависимости от схемы подключения различают нереверсивные и реверсивные МП. Первый – осуществляет подключение и отключение потребителей от сети, второй же может менять подключение фаз и в этом случае ротор изменяет направление вращения.

А по месту установки виды магнитных пускателей бывают:

  • Открытого типа. Их размещают в щитках или других местах, защищенных от действия неблагоприятных факторов окружающей среды;
  • Защищенного исполнения. Монтируют в непыльных помещениях;
  • Влагонепроницаемые. Могут располагаться как с внутренней, так и с наружной стороны здания, если имеются навесы либо козырьки, защищающие от негативного воздействия солнца и воды.

Некоторые модели пускателей имеют на корпусе контрольную лампочку «включено».

Конструктивные особенности

Вверху пускателя находятся подвижные контакты, а также перемещающая часть магнита, которая воздействует на силовые контакты. Крышка керамическая, она же и камера для гашения дуги.

Катушка, как и возвратная пружина, располагаются в его нижней части. Когда на обмотке отключается питание, пружина заставляет вернуться подвижную часть в первоначальное состояние и силовые контакты размыкаются.

В центре пускателя находятся Ш-образные пластины, изготовленные из специальной стали. Катушка магнитного пускателя состоит из пластикового каркаса, на который наматывается медная проволока.

Как работает

Принцип действия магнитного пускателя рассмотрим на примере по фото:

  • сердечник;
  • пускатель;
  • контакты;
  • якорь.

Как только на катушку приходит напряжение, электромагнит притягивается, подвижная часть опускается и контакты замыкаются. Теперь, если мы обесточим катушку, произойдет размыкание контактов и они вернутся в первоначальное состояние.

Реверсивные МП работают таки же образом, как и нереверсивные. Разница лишь в чередовании фаз. Во избежание короткого замыкания в этом случае предусмотрена блокировка от возможности включения нескольких устройств одновременно.

Монтаж и схемы подключения

Магнитные пускатели устанавливают на закрепленной поверхности в вертикальном положении. Тепловое реле крепится таким образом, чтобы не было разницы с температурой окружающего воздуха. Нарушение правил монтажа вызывает ложные срабатывания оборудования. Поэтому не допускается размещать устройство в местах, где наблюдается сильная вибрация.

Также не следует устанавливать МП по соседству с горячим оборудованием, это неизменно приведет к нагреву корпуса теплового реле и пускатель может работать с нарушениями.

Самая простая классическая схема подключения выглядит так, как показано на фото.

Она состоит из кнопок «стоп», «пуск» и самого МП. Фаза приходит на кнопку«стоп», через нормально замкнутый контакт поступает на кнопку«пуск» и с неё на вывод катушки пускателя. Самоподхват подключается параллельно кнопки «пуск».

Для облегчения монтажа, с одного контакта провод идет на кнопку «пуск», а другой – перемычкой пускается на один вывод катушки. На второй вывод катушки подключается ноль, который от него он уходит к источнику питания.

Осталось подключить к силовым контактам пускателя нагрузку.

Техническое обслуживание

Для грамотного обслуживания таких устройств необходимо знать вероятные признаки их поломки. Чаще всего это сильный гул и большая температура корпуса, причиной которой является замыкание обмотки.

В этом случае потребуется заменить катушку. Увеличение температуры может произойти из-за поднятия напряжения выше номинального, неудовлетворительного качества контактов или их износ.

Неплотное прилегание якоря, возникающее из-за сильного загрязнения поверхности, низкое напряжение сети, заклинивание подвижных элементов может послужить причиной гула.

Чтобы этого не происходило, нужно периодически осматривать оборудование. Для этого составляют перечень и назначают сроки обслуживания для электромонтеров-ремонтников.

Фото магнитных пускателей

Также рекомендуем посетить:

Устройство магнитного пускателя

 

Главными составляющими любого магнитного пускателя является его электромагнитная система и система контактов, состоящая из групп подвижных и неподвижных контактов (главные контакты) и блок-контактов. Открутив винты и сняв крышку кожуха магнитного пускателя, можно увидеть его подвижные и неподвижные контакты. Подвижные контакты закреплены на одной изоляционной траверсе, с ней-же связаны дополнительные контакты (блок-контакты), что обеспечивает одновременное замыкание или размыкание всех полюсов.

Пускатели, предназначенные для коммутирования электрических цепей с большими токами, как правило, оснащены дугогасителями, располагаемыми в специальных дугогасительных камерах над главными контактами.

Корпус магнитного пускателя состоит из двух половин, соединенных винтами. Выкрутив эти винты, можно увидеть магнитопровод, состоящий из неподвижной его части - сердечника, закрепленного в основании нижней половины пускателя и подвижной - якоря, соединенный механически с контактной системой.

Как видно из фото, на среднем стержне неподвижного сердечника расположена электромагнитная катушка, с помощью которой и осуществляется управление магнитным пускателем. При прохождении в ней электрического тока, возникает электромагнитное поле, притягивающее якорь к неподвижному сердечнику и осуществляющее замыкание главных и замыкание (размыкание) вспомогательных контактов.

При размыкании цепи катушки управления, отсутствие электромагнитной силы и действие возвратной пружины вызовет возврат якоря в исходное положение, что приведет к размыканию контактов магнитного пускателя. Рабочее напряжения катушки управления магнитного пускателя, обычно указывается на корпусе. Так стандартный ряд значений Uкат: 12, 24, 110, 220 и 380 В.

Блок-контакты. Очень важная часть устройства магнитного пускателя. В отличие от главных силовых контактов, блок-контакты предназначены для коммутации цепи управления. Их замыкание и размыкание происходит одновременно с замыканием и размыканием главных контактов, т .к. они расположены на одной изоляционной траверсе.

При срабатывании магнитного пускателя эти дополнительные контакты замыкают либо размыкают цепь катушки управления (см. Схемы подключения магнитных пускателей). В зависимости от состояния контактов в нормальном положении (когда пускатель отключен, т. е., его катушка находится не под напряжением) различают блок-контакты NC и NO.

Первые (NC - Normal Close) - нормально закрытые, в нормальном положении пускателя замкнуты, вторые (NO - Normal Close) - наоборот, разомкнуты в нормальном положении и замыкаются при срабатывании магнитного пускателя. На фото справа показаны блок-контакты NC и NO, находящиеся в одном корпусе.

Тепловое реле. Наличие этого устройства в магнитном пускателе, позволяет реализовать защиту электродвигателей от перегрузок по току недопустимой длительности. Они состоят из биметаллических пластин, отдельных для каждого полюса ("фазы"), системы рычагов, спусковой механизм и NC-контакта.

Принцип действия теплового реле, вкратце можно описать следующим образом: ток. превышающий номинальный, проходя через биметаллические пластины вызывает их нагревание, отчего пластины деформируются и выгибаясь, воздействуют на систему рычагов реле, приводя в свою очередь, в действие систему рычагов, которая и размыкает NC-контакт.

Размыкаемый нормально закрытый контакт включается в цепь электромагнитной катушки последовательно и при его размыкании размыкается цепь управления. Происходит возврат якоря с силовыми контактами в исходное положение, таким образом, двигатель обесточивается, что и убережет от преждевременного выхода его из строя.

Принцип работы магнитного пускателя и его техничекие характеристики

Освещение в доме мы включаем обыкновенным выключателем, при этом через него проходит ток небольшой величины. Для включения мощных нагрузок однофазных на 220 Вольт и 3 фазных на 380 Вольт используются специальные коммутирующие электротехнические аппараты— магнитные пускатели. Они позволяют дистанционно при помощи кнопок (можно сделать и от обычного выключателя) включать-выключать мощные нагрузки, например освещение целой улицы или мощный электродвигатель.

В квартирах пускатели не используются, за то довольно часто применяются на производстве, в гаражах на даче для запуска, защиты и реверсирования асинхронных электрических двигателей. Да же из названия понятно, что главное его предназначение заключается в запуске электродвигателей. А кроме того вместе с тепловым реле, магнитный пускатель защищает мотор от ошибочных включений и повреждений в аварийных ситуациях: возникновении перегрузок, нарушении изоляции обмоток, пропадании одной фазы и т. п.

Часто пускатели устанавливаются для включения и выключения не только двигателей, но и других много киловаттных нагрузок- уличное освещение, обогреватели и т. п.

После пропадания электричества он сам отключится и включится только после повторного нажатия кнопки «Пуск». Но если использовать для дома простейшую схему управления при помощи обычного выключателя, тогда во включенном его положении всегда будет срабатывать пускатель. Он работает по принципу реле, только в отличие от него управляет мощными нагрузками до 63 Киловатт, при больших используется контактор. Для автоматизации управления, например уличным освещением можно к контактам катушки подключить управляющие таймеры, датчики движения или освещения.

Устройство и принцип работы магнитного пускателя

Основой является электромагнитная система, состоящая из катушки, неподвижной части сердечника и подвижной- якоря, который крепится к изоляционной траверсе с подвижными контактами. К неподвижным контактам при помощи болтовых соединений подключаются с одной стороны провода от электросети, а с другой- к нагрузке.

Для осуществления защиты от ошибочных включений устанавливаются по бокам или сверху над основными- блок контакты, которые например в реверсивной схеме с двумя пускателями при включении одного пускателя, блокируют включение второго. Если включится сразу два, то возникнет межфазное короткое замыкание, потому что изменение направления вращения асинхронного двигателя достигается благодаря замене местами 2 фаз. То есть со стороны подключения электродвигателя между пускателями делаются перемычки с чередованием на одном из них 2 фаз. Так же одна пара блок контактов необходима для удержания во включенном состоянии пускателя после отпускания кнопки «Пуск». Подробно схему подключения Мы рассмотрим в следующей статье.

Принцип работы пускателя довольно прост. Для включения необходимо подать рабочее напряжение на катушку. Она при включении потребляет по цепи управления очень маленький ток, их мощность находится в пределах от 10 до 80 Ватт, в зависимости от величины.

При включении катушка намагничивает сердечник и происходит втягивание якоря, который при этом замыкает главные и вспомогательные контакты. Цепь замыкается и электрический ток начинает протекать через подключенную нагрузку.

Для отключения необходимо обесточить катушку, и возвратная пружина возвращает якорь на место- блок и главные контакты размыкаются.

Между пускателем и 3 фазным асинхронным двигателем устанавливается тепловое реле, которое защищает его то токов перегрузки во внештатных ситуациях.

Внимание, тепловое реле не защищает от коротких замыканий, поэтому требуется установка перед пускателем необходимой величины автоматического выключателя.

Принцип работы теплового реле прост— оно подбирается под определенный рабочий ток двигателя, при превышении его предела происходит нагревание и размыкание биметаллических контактов, которые размыкают цепь управления с отключением пускателя. Схема подключения будет рассмотрена в следующей статье.

Технические характеристики магнитных пускателей.

Основные технические характеристики можно узнать из условного обозначения, состоящего чаще всего из трех букв и четырех цифр . Например, ПМЛ-Х Х Х Х:

      1. Первые две буквы обозначают- пускатель магнитный.
      2. Третья буква указывает на серию или тип пускателя. Бывают ПМЛ, ПМЕ, ПМУ, ПМА…
      3. Первая после букв цифра указывает на величину пускателя по номинальному току:
        Величина, первая цифра 1 2 3 4 5 6 7
        Номинальный ток 10 или 16 А 25 А 40 А 63 или 80 А 125 А 160 А 250 А
      4. Вторая цифра — наличие тепловой защиты и характеристику работы электродвигателя.
        1 2 3 4 5
        Реверсивный  —  — да да да
        С тепловым реле да да  да
        Электрическая блокировка  — есть есть
        Механическая блокировка  есть есть
      5. Третья цифра указывает на наличие кнопок и степень защиты.
        0 1 2 3 4
        В корпусе да да да да
        С кнопками «пуск» и «стоп» да да
        Класс защищенности IP00 IP54 IP54 IP54 IP40
        Сигнальные лампы  — есть

        IP54- брызго- и пылезащитный корпус, IP40- только пылезащитный корпус.

      6. Четвертая цифра — количество контактов вспомогательной цепи.
        0 1 2 3 4
        Количество замкнутых контактов 1 2 3 3  5
        Количество разомкнутых контактов 1 2 3 1 1

При покупке обращайте и на другие параметры:

  • Самый важный параметр- это рабочее напряжение катушки оно может быть как переменным 24, 36, 42, 110, 220 ил 380 Вольт, так и постоянным. Для домашнего хозяйства берите с катушкой на переменное напряжение величиной 380 Вольт для подключения 3 фазных электромоторов, и на 220 В- для подключения других нагрузок. Будьте внимательны всегда проверяйте величину напряжения только на корпусе самой катушки, а не пускателя.
  • Не менее важно обратить на тип крепления— под болты или на Din рейку.
  • Класс износостойкости обозначается буквами «А» (3 мл. рабочих циклов), «Б» (1.5 мл. циклов) и «В» (300 тыс. циклов).
  • Рабочее напряжение коммутации главных контактов- 380 или 660 Вольт.
  • Ток теплового реле. Должен соответствовать мощности электрического двигателя. Для других устройств нет необходимости в установке теплового реле.

Предлагаю  в сводной таблице ознакомиться с основными  характеристиками самых распространенных пускателей серии ПМЛ.

Есть еще целый ряд не существенных параметров- потребляемый ток катушки, максимальный ток вспомогательных контактов. На них не стоит обращать внимание при покупке.

Принцип работы магнитного пускателя: описание, характеристики

Автор Почемучка На чтение 24 мин. Просмотров 3k.

Для отключения необходимо обесточить катушку, и возвратная пружина возвращает якорь на место- блок и главные контакты размыкаются.

Освещение в доме мы включаем обыкновенным выключателем, при этом через него проходит ток небольшой величины. Для включения мощных нагрузок однофазных на 220 Вольт и 3 фазных на 380 Вольт используются специальные коммутирующие электротехнические аппараты— магнитные пускатели. Они позволяют дистанционно при помощи кнопок (можно сделать и от обычного выключателя) включать-выключать мощные нагрузки, например освещение целой улицы или мощный электродвигатель.

В квартирах пускатели не используются, за то довольно часто применяются на производстве, в гаражах на даче для запуска, защиты и реверсирования асинхронных электрических двигателей. Да же из названия понятно, что главное его предназначение заключается в запуске электродвигателей. А кроме того вместе с тепловым реле, магнитный пускатель защищает мотор от ошибочных включений и повреждений в аварийных ситуациях: возникновении перегрузок, нарушении изоляции обмоток, пропадании одной фазы и т. п.

Часто пускатели устанавливаются для включения и выключения не только двигателей, но и других много киловаттных нагрузок- уличное освещение, обогреватели и т. п.

Обращаем Ваше внимание на то, что мгновенное размыкание контактов произойдет не только, после намеренного отключения питания, но и если напряжение в сети упадет больше, чем на 60% от номинального значения.

Первым делом рассмотрим устройство магнитного пускателя. На самом деле конструкция не сложная и включает в себя подвижную и неподвижную часть. Чтобы информация была более понятной, рассмотрим конструкцию аппарата, опираясь на модель серии ПМЕ:

Конструкция аппарата ПМЕ

  1. Контактные пружины, которые обеспечивают плавное замыкание контактов при включении пускателя, а также создают необходимое усилие нажатия.
  2. Контактные мостики.
  3. Контактные пластины.
  4. Пластмассовая траверса.
  5. Якорь.
  6. Обмотка.
  7. Ш-образная часть сердечника (неподвижная)
  8. Дополнительные контакты.

Помимо этого устройство магнитного пускателя может включать в себя амортизаторы, назначение которых – смягчить удар во время пуска аппарата. В серии ПМ12 амортизаторы обозначены цифрой 8, но более понятно они показаны на второй картинке – конструкции магнитного пускателя ПАЕ-311 (обозначение «10»).

Мы рассказали, из чего состоит магнитный пускатель, однако вряд ли это дало Вам что-либо понять, особенно если Ваш уровень знаний «чайник в электрике». Чтобы все стало на свои места, далее мы рассмотрим принцип работы аппарата.

В зависимости от назначения пускатели выполняют трех- или четырехполюсными. Но есть и аппараты, имеющие один или два полюса.

Электрические характеристики магнитных пускателей

Номинальный ток пускателя – это ток, выдерживаемый силовыми контактами в течение продолжительного времени. У некоторых моделей устаревших пускателей для разных диапазонов токов меняются габаритные размеры или «величина».

Номинальное напряжение – напряжение питающей сети, которое выдерживает изоляция между силовыми контактами.

Напряжение катушки управления – рабочее напряжение, на котором работает катушка управления пускателя. Выпускаются пускатели с катушками, работающие от сети постоянного или переменного тока.

Управление пускателем не обязательно питается напряжением силовых цепей, в некоторых случаях схемы управления имеют независимое питание. Поэтому катушки управления выпускаются на широкий ассортимент напряжений.

Напряжения катушек управления пускателей
Переменный ток 12 36 48 110 220 380
Постоянный ток 12 36 48 110 220

Для нормальной работы теплового реле температура окружающей среды не должна превышать 40 0 С. Также не рекомендуется установка рядом с нагревательными элементами (реостаты) и не устанавливать их в наиболее нагреваемых частях шкафа, например вверху шкафа.

Советы по монтажу магнитных пускателей

При монтаже магнитных пусковых устройств с тепловыми реле необходимо устанавливать с минимальной разностью температур окружающей среды между электродвигателем и магнитным пусковым устройством.

Нежелательна установка магнитных устройств в местах подверженных сильным ударам или вибрациям, а также рядом с мощными электромагнитными аппаратами, токи которых превышают 150 А, так как они при срабатывании создают довольно большие удары и толчки.

Для нормальной работы теплового реле температура окружающей среды не должна превышать 40 0 С. Также не рекомендуется установка рядом с нагревательными элементами (реостаты) и не устанавливать их в наиболее нагреваемых частях шкафа, например вверху шкафа.

Сравнение магнитного и гибридного пускателя:

Реверсивные пускатели могут также иметь механическую блокировку , которая располагается под основание (панелью) пускателя и также служит для предотвращения одновременного включения двух магнитных пускателей. При электрической блокировке через нормально-замкнутые контакты самого пускателя (что предусмотрено его внутренними соединениями) реверсивные пускатели надежно работают и без механической блокировки.

Магнитные пускатели предназначены, главным образом, для дистанционного управления трехфазными асинхронными электродвигателями с короткозамкнутым ротором, а именно:

  • для пуска непосредственным подключением к сети и остановки (отключения) электродвигателя (нереверсивные пускатели),
  • для пуска, остановки и реверса электродвигателя (реверсивные пускатели).

Кроме этого, пускатели в исполнении с тепловым реле осуществляют также защиту управляемых электродвигателей от перегрузок недопустимой продолжительности.

Магнитные пускатели открытого исполнения предназначены для установки на панелях, в закрытых шкафах и других местах, защищенных от попадания пыли и посторонних предметов.

Магнитные пускатели защищенного исполнения предназначены для для установки внутри помещений, в которых окружающая среда не содержит значительного количества пыли.

Магнитные пускатели пылебрызгонепроницаемого исполнения предназначены как для внутренних, так и для наружных установок в местах, защищенных от солнечных лучей и от дождя (под навесом).

Магнитный пускатель серии ПМЛ

Устройство магнитного пускателя

Магнитные пускатели имеют магнитную систему , состоящую из якоря и сердечника и заключенную в пластмассовый корпус. На сердечнике помещена втягивающая катушка . По направляющим верхней части пускателя скользит траверса, на которой собраны якорь магнитной системы и мостики главных и блокировочных контактов с пружинами .

Принцип работы пускателя прост : при подаче напряжения на катушку якорь притягивается к сердечнику, нормально-открытые контакты замыкаются, нормально-закрытые размыкаются. При отключении пускателя происходит обратная картина: под действием возвратных пружин подвижные части возвращаются в исходное положение, при этом главные контакты и нормально-открытые блокконтакты размыкаются, нормально-закрытые блокконтакты замыкаются.

Реверсивные магнитные пускатели представляют собой два обычных пускателя, укрепленных на общей основании (панели) и имеющем электрические соединения, обеспечивающие электрическую блокировку через нормально-замкнутые блокировочные контакты обоих пускателей, которая предотвращает включение одного магнитного пускателя при включенном другом.

Самые распространенные схемы включения нереверсивного и реверсивного магнитного пускателя смотрите здесь: Схемы включения магнитным пускателем асинхронного электродвигателя. В этих схемах предусмотрена нулевая защита с помощью нормально-открытого контакта пускателя, предотвращающая самопроизвольное включение пускателя при внезапном появлении напряжения.

Реверсивные пускатели могут также иметь механическую блокировку , которая располагается под основание (панелью) пускателя и также служит для предотвращения одновременного включения двух магнитных пускателей. При электрической блокировке через нормально-замкнутые контакты самого пускателя (что предусмотрено его внутренними соединениями) реверсивные пускатели надежно работают и без механической блокировки.

Реверсивный магнитный пускатель

Реверс электродвигателя при помощи реверсивного пускателя осуществляется через предварительную остановку, т.е. по схеме: отключение вращающегося двигателя — полная остановка — включение на обратное вращения. В этом случает пускатель может управлять электродвигателем соответствующей мощности.

В случае применения реверсирования или торможения электродвигателя противовключением его мощность должна быть выбрана ниже в 1,5 — 2 раза максимальной коммутационной мощности пускателя, что определяется состоянием контактов, т.е. их износоустойчивостью, при работе в применяемом режиме. В этом режиме пускатель должен работать без механической блокировки. При этом электрическая блокировка через нормально-замкнутые контакты магнитного пускателя обязательна.

Магнитные пускатели защищенного и пылебрызгонепроницаемого исполнений имеют оболочку. Оболочка пускателя пылебрызгонепроницаемого исполнения имеет специальные резиновые уплотнения для предотвращения попадания внутрь пускателя пыли и водяных брызг. Входные отверстия в оболочку закрыты специальными пробами с применением уплотнений.

Ряд магнитных пускателей комплектуется тепловыми реле , которые осуществляют тепловую защиту электродвигателя о перегрузок недопустимой продолжительности. Регулировка тока уставки реле — плавная и производится регулятором уставки путем поворота его отверткой. Здесь смотрите про устройство тепловых реле. В случае невозможности осуществления тепловой защиты в повторно-краковременном режиме работы следует применять магнитные пускатели без теплового реле. От коротких замыканий тепловые реле не защищают

Тепловые реле

Схема прямого пуска и защиты асинхронного двигателя с короткозамкнутым ротором (а), (б) – пусковая характеристика двигателя (1) и защитная характеристика теплового реле (2)

Монтаж магнитных пускателей

Для надежной работы монтаж магнитных пускателей должен производится на ровной, жестко укрепленной вертикальной поверхности. Пускатели с тепловым реле рекомендуется устанавливать при наименьшей разности температуры воздуха, окружающего пускатель и электродвигатель.

Что бы не допустить ложных срабатываний не рекомендуется устанавливать пускатели с тепловым реле в местах подверженных ударам, резким толчкам и сильной тряске (например, на общей панели с электромагнитными аппаратами на номинальные токи более 150 А), так как при включении они создают большие удары и сотрясения.

Для уменьшения влияния на работу теплового реле дополнительного нагрева от посторонних источников тепла и соблюдении требования о недопустимости температуры окружающего пускатель воздуха более 40 о рекомендуется не размещать рядом с магнитными пускателями аппараты теплового действия (реостаты и т.д.) и не устанавливать их с тепловым реле в верхних, наиболее нагреваемых частях шкафов.

При присоединении к контактному зажиму магнитного пускателя одного проводника его конец должен быть загнут в кольцеобразную или П-образную форму (для предотвращения перекоса пружинных шайб этого зажима). При присоединении к зажиму двух проводников примерно равного сечения их концы должны быть прямыми и распологаться по обе стороны от зажимного винта.

Присоединяемые концы медных проводников должны быть залужены. Концы многожильных проводников перед лужением должны быть скручены. В случае присоединения алюминиевых проводов их концы должны быть зачищены мелким надфилем под слоем смазки ЦИАТИМ или технического вазелина и дополнительно покрыты после зачистки кварцевазилиновой или цинко-вазелиновой пастой. Контакты и подвижные части магнитного пускателя смазывать нельзя.

Перед пуском магнитного пускателя необходимо произвести его наружный осмотр и убедится в исправности всех его частей, а также в свободном передвижении всех подвижных частей (от руки), сверить номинальное напряжение катушки пускателя с напряжением, подаваемым на катушку, убедится, что все электрические соединения выполнены по схеме.

При использовании пускателей в реверсивных режимах, нажав от руки подвижную траверсу до момента соприкосновения (начало замыкания) главных контактов, проверить наличие раствора нормально-замкнутых контактов, что необходимо для надежной работы электрической блокировки.

У включенного магнитного пускателя допускается небольшое гудение электромагнита , характерное для шихтованных магнитных систем переменного тока.

Уход за магнитными пускателями в процессе эксплуатации

Уход за пускателями должен заключаться, прежде всего, в защите пускателя и теплового реле от пыли, грязи и влаги . Необходимо следить, чтобы винты контактных зажимов были плотно затянуты. Надо также проверять состояние контактов.

Контакты современных магнитных пускателей особого ухода не требуют. Срок износа контактов зависит от условий и режима работы пускателя. Зачистка контактов пускателей не рекомендуется, так как удаление контактного материала при зачистке приводит к уменьшению срока службы контактов. Только в отдельных случаях сильного оплавления контактов при отключении аварийного режима электродвигателя допускается их зачистка мелким надфилем.

При появлении после длительной эксплуатации магнитного пускателя гудения, носящего, характер дребезжания, необходимо чистой ветошью очистить от грязи рабочие поверхности электромагнита, проверить наличие воздушного зазора, а также проверить отсутствие заеданий подвижных частей и трещин на короткозамкнутых витках, расположенных на сердечнике.

При разборке и последующей сборке магнитного пускателя следует сохранять взаимное расположение якоря и сердечника, бывшее до разборки, так как их приработавшиеся поверхности способствуют устранению гудения. При разборках магнитных пускателей необходимо чистой и сухой ветошью протирать пыль с внутренних и наружных поверхностей пластмассовых деталей пускателя.

Сделайте небольшой донат на развитие сайта «Школа для электрика»!

Пуск через автотрансформатор часто применяется для снижения начального тока асинхронных двигателей. Обычно процесс проходит ряд этапов, в течение которых последовательно задействуются разные выводы (это причина применения непосредственно автотрансформаторов, в результате вдвое снижается число переключаемых контактов). Напряжение ступенями растёт постепенно, пока оборудование не включается в сеть напрямую.

Как устроены магнитные пускатели, разновидности

Основной исполнительной частью магнитного пускателя считается контактор. Это катушка с частично подвижным сердечником. За счёт возникающих магнитных полей в нужный момент контактор срабатывает под действием напряжения. В ход идёт магнитная индукция, и чтобы не получилось, как в электрической плитке, сердечник состоит из множества тонких пластин. Используется специальная электротехническая сталь. Этим обеспечивается разбиение объёма сердечника на части. Меж пластинами применяется лаковая изоляция.

В результате вихревые токи по толще материала не наводятся, снижаются потери. Вдобавок к общей части прилагается целый сонм оборудования. Но прежде, нежели описать упомянутую груду, рассмотрим, как проводится запуск электродвигателя, исключающий перегрузку сети.

Перекоммутация типа объединения

Изменение питающего напряжения

Изменение частоты

Автотрансформатор

Пуск через автотрансформатор часто применяется для снижения начального тока асинхронных двигателей. Обычно процесс проходит ряд этапов, в течение которых последовательно задействуются разные выводы (это причина применения непосредственно автотрансформаторов, в результате вдвое снижается число переключаемых контактов). Напряжение ступенями растёт постепенно, пока оборудование не включается в сеть напрямую.

К приведённым выше способам дадим пояснения. К примеру, как работает магнитный пускатель 380В с повышенным напряжением? Суть в том, что при включении звездой возможно использовать вольтаж приблизительно в корень из трёх раз больший, нежели номинальный. Разумеется, запрещается включать обмотки треугольником. А сделать наоборот – уменьшить питание в корень из трёх раз – не получится, произойдёт падение мощности.

За счёт описанного принципа работают устройства на автотрансформаторах и делители на потенциометрах (реостатах). Рассмотрим управление магнитными пускателями с точки зрения плюсов и минусов:

Итак, технические характеристики магнитных пускателей во всех случаях характеризуются недостатками. Но для дорогого оборудования этот тип устройств непременно идёт в паре.

2. Во — вторых необходимо знать номинальную силу тока нагрузки в Амперах, чтобы подобрать оптимальный вариант прибора для его нормальной эксплуатации;

Принцип работы магнитного пускателя

Принцип работы магнитного контактора довольно простой. На управляющую катушку подается напряжение питания (управляющее напряжение). За счет этого появляется магнитное поле катушки, которое притягивает вовнутрь сердечник магнитопровода, на котором закреплена группа силовых (рабочих) контактов контактора. Контакты замыкаются и через контактор начинает течь ток потребляемый нагрузкой.

Особенности выбора контакторов:

1. В первую очередь нужно узнать род нагрузки (нагрузка переменного или постоянного тока). Это связано из некоторым различием в контакторах переменного и постоянного тока, в первую очередь с конструкцией дугогасительной камеры;

2. Во — вторых необходимо знать номинальную силу тока нагрузки в Амперах, чтобы подобрать оптимальный вариант прибора для его нормальной эксплуатации;

3. Число полюсов силовых контактов. Может быть от одного до четырех, в зависимости от числа полюсов подключаемой нагрузки;

4. Рабочее напряжение катушки управления. Этот параметр выбирается из требований безопасности эксплуатации оборудования;

5. Наличие теплового реле. Если контактор включает и выключает электрический двигатель, то необходимо устанавливать тепловое реле для отслеживания состояния перегрева двигателя и своевременного отключения его от сети. На рисунке 3 показано внешний вид теплового реле компании LSIS. Тепловое реле подключается к нижним силовым контактам контактора;

6. Способ монтажа контактора. Монтаж можно осуществлять как на DIN – рейку, так и на крепежные болты. Все зависит от габаритов контактора и от места установки.

За более детальной информацией обращайтесь к нашим менеджерам, которые помогут выбрать лучшый вариант.

С точки зрения конструкции любой магнитный пускатель включает в себя подвижной якорь, который перемещается по специальным полозьям относительно стационарно закрепленной неподвижной части.

Исходя из названия, данное электротехническое устройство выступает в качестве электромагнита, который срабатывает при прохождении по обмотке катушки электрического тока. При этом основное назначение магнитного пускателя – это запуск в работу электродвигателя.

С точки зрения конструкции любой магнитный пускатель включает в себя подвижной якорь, который перемещается по специальным полозьям относительно стационарно закрепленной неподвижной части.

Принцип действия электромагнитной системы

Если рассматривать пускатель максимально упрощенно, то его можно представить в виде обычной кнопки с расположенными на ее корпусе клеммами подключения стационарных контактов и силовых цепей. Подвижная часть выступает в роли контактного мостика, назначение которого следующее:

1. Обеспечение двойного размыкания силовой цепи целью отключения питания электродвигателя;
2. Обеспечение надежного контакта проводников при функционирующей схеме.

Так, если обмотка катушки обесточена, соответственно, магнитного поля вокруг нее нет, поэтому якорь отбрасывается в исходное положение усилием пружин. Но как только магнитные силы начинают действовать при прохождении тока через обмотку, якорь переходит в рабочее положение.

Принцип действия системы силовых контактов

Учитывая тот факт, что силовые контакты постоянно подвергаются большим нагрузкам и агрессивному воздействию, их надежная и длительная эксплуатация достигается, за счет принятия следующих мер:

• применение сплавов технического серебра в качестве материала посредством нанесения специальным методом на медные перемычки;
• изготовление контактов с существенным запасом прочности;
• силовые контакты изготавливаются в форме, специально разработанной для достижения максимального электрического контакта при минимальном воздействии дуги при разрыве контакта.

В случае с трехфазными схемами в конструкции пускателя присутствуют три силовых контакта и несколько дополнительных, которые повторяют положение якоря и применяются для управления работой двигателя. В зависимости от назначения, управляющие контакты в процессе срабатывания магнитного пускателя могут, как замыкать цепь, так и размыкать ее.

Современные магнитные пускатели, которые поставляют отечественные производители, классифицируются на семь групп, исходя из возможностей работы с нагрузками той или иной мощности. Для их обозначения используются определенные значения по возрастанию, начиная с нулевой величины (ток коммутации составляет до 6,3 ампера) и заканчивая шестой с током коммутации 160 А.

Для классификации пускателей импортного производства применяются собственные, отличные от описанных выше критерии.

Различные модели магнитных пускателей и их конструктивные особенности

Достаточно ранние модели магнитных пускателей снабжались силовыми контактами и повторителями на размыкание и замыкание в количестве, как правило, одного-двух штук. Современные же модели получают ряд дополнительных конструктивных элементов, благодаря чему, их набор функций значительно расширяется.

Одним из ярких примеров сказанного выше служат изделия в комплектном исполнении, которые способны управлять работой трехфазных электродвигателей в различных режимах и реверсивном, в том числе, за счет применения дополнительного оснащения. Все что требуется в данном случае от потребителя – подключить к имеющемуся модулю питание и электродвигатель. Сама же схема является смонтированной и отлаженной, исходя из тех или иных нагрузок.

Магнитные пускатели достаточно высокой мощности, помимо всего прочего, снабжаются системой гашения дуги, которая возникает при размыкании силовых контактов.

Катушка находится в нижней части вместе с возвратной пружиной. Свойством пружины возврата является возвращение верхней половины в исходное состояние после отключения питания на обмотке. Так осуществляется разъединение силовых контактов.

Конструкция пускателя простая, так же, как и его принцип работы. Пускатель состоит из контактов двух видов: неподвижных и подвижных. При замыкании этих контактов электродвигатель запускается, а при разъединении контактов происходит остановка и выключение питания.

Разновидности

Магнитные пускатели предназначены в основном для управления работой 3-фазных электромоторов на дистанционном уровне. Основные операции, проводимые с помощью магнитных пускателей – это запуск, отключение или реверс.

Вспомогательной функцией пускателя вместе с тепловым реле является защита электродвигателя от излишних нагрузок. Имеются схемы пускателей с ограничителями напряжения на основе полупроводниковых элементов. По схемам подключения нагрузки бывают реверсивными и нереверсивными.

По типу расположения магнитные пускатели классифицируются:
  • Открытого типа . Располагают в защищенных шкафах, панелях, и других местах, не доступных для влаги, пыли и других вредных факторов.
  • Защищенного исполнения . Монтируются в помещениях с пониженным содержанием пыли в воздухе, исключающих доступ воды к устройству.
  • Влагонепроницаемого исполнения . Монтируются внутри зданий, снаружи под оборудованными навесами от воды и солнца.
Вспомогательная классификация:
  • Блок с кнопками на корпусе пускателя. Пускатели без реверса имеют две кнопки: Пуск и Стоп, устройства с реверсом оснащены тремя кнопками, две из них те же, что и в прошлом виде, добавлена кнопка Пуска назад. Некоторые исполнения устройств предусматривают лампу, сигнализирующую включение.
  • Устройства со вспомогательными контактами сигналов и блокировок. Применяются в различных сочетаниях, как замыкающие или разъединяющие. Контакты бывают встроенными, либо выполнены на отдельной подставке. Иногда вспомогательные контакты применяются в общем составе схемы пускателя. В устройствах с реверсом с помощью дополнительных контактов выполняется электрическая блокировка.
  • Значение напряжения и тока силовой обмотки.
  • Тепловое реле. Его свойство – это ток номинала, при котором реле не срабатывает на средних настройках. Это значение тока может регулироваться в некоторых пределах от номинального значения тока.

Некоторые магнитные пускатели комплектуются ограничителями напряжения и другими блокировками.

Конструктивные особенности

Все устройство пускателя делится на две половины: верхнюю и нижнюю. В верхней половине расположены двигающиеся контакты вместе с камерой гашения дуги. Там же расположена и подвижная часть магнита. Она действует на силовые контакты.

Катушка находится в нижней части вместе с возвратной пружиной. Свойством пружины возврата является возвращение верхней половины в исходное состояние после отключения питания на обмотке. Так осуществляется разъединение силовых контактов.

Принцип действия

Название устройства говорит о его способе работы. Он действует по принципу электромагнита, во время прохождения тока по катушке. После притягивания контактов электродвигатель запускается.

1 — Подвижные контакты
2 — Подвижный якорь
3 — Пружины
4 — Катушка
5 — Стационарный сердечник
6 — Подвижный сердечник
7 — Стационарные контакты

Общее устройство состоит из основной части и якоря, который двигается по направляющим. Проще сказать, что все магнитные пускатели выполнены в виде большой кнопки с клеммами силовых контактов, и неподвижных контактов.

Двигающаяся часть имеет мостик с контактами, который обеспечивает разрыв цепи в двух местах, для выключения напряжения. Также мостик служит для качественного соединения проводов во время подключения схемы в действие. Система проверяется вручную. Надавливают на якорь и чувствуют усилие пружин, которое при работе преодолевается электромагнитом. При отпускании якоря контакты возвращаются назад.

В работе подобное управление не требуется, оно нужно для контроля. Реально применяется дистанционная форма подключения электромагнитным полем, которое возникает в обмотке от электрического тока. Шихтованный магнитопровод обеспечивает хорошую проводимость тока.

Когда в цепи отсутствует электрический ток, то вокруг обмотки магнитное поле исчезает, что приводит к отходу якоря в первоначальное положение. При подаче напряжения происходит обратный процесс. Рабочее включенное положение якоря влияет на функционирование устройства. В таком положении должно быть качественное соединение контактов. При малейшем ослаблении пружин контакты начинают подгорать, нагреваться, происходит отгорание концов проводов.

Установка и подключение

Для возможности качественной эксплуатации пускателей, их установку проводят на ровной неподвижной поверхности, вертикально. Устройства с тепловым реле нужно ставить так, чтобы не было разницы температуры с внешней средой.

Монтаж с нарушением приводит к ложным срабатываниям. Поэтому нельзя устанавливать магнитные пускатели в местах с вибрацией, ударами. Устройства с током номинала более 150 ампер при запуске сильно вибрируют и сотрясаются.

Корпус теплового реле может нагреться от других устройств. Это отрицательно действует на правильность работы пускателя. Поэтому не рекомендуется размещать пускатели рядом с горячим оборудованием.

При соединении провода с контактом пускателя, его конец загибают в виде кольца. Это не дает возникнуть перекосу пружинных шайб в зажиме. При подключении двух проводов с одним сечением, их располагают по двум противоположным сторонам от винта.

Перед монтажом концы проводов лудят. В многожильных проводах перед тем, как проводить лужение, концы скручивают. Концы алюминиевых проводов чистят надфилем, покрываются специальной пастой. Подвижные контакты и части пускателя смазывать запрещается. Перед запуском магнитные пускатели осматривают снаружи и контролируют исправность частей. От руки двигающиеся части должны легко перемещаться. Схема соединения сверяется.

Техническое обслуживание

Для качественного ухода за пускателем нужно знать возможные признаки поломок устройства. Обычно это высокая температура корпуса, сильное гудение.

Для предотвращения таких поломок нужен постоянный уход. В общем, магнитные пускатели не нуждаются в дорогостоящих работах. Нельзя допускать внутрь грязи, влаги и пыли. Необходимо регулярно контролировать плотность прилегания и качество контактов. Составляют перечень работ по техническому уходу и ремонту электромонтерами-ремонтниками.

TeSys F
Контакторы до 450кВт/400В и 1600А/АС1

Магнитный пускатель является коммутационным устройством, относящимся к ряду электромагнитных контакторов. Он позволяет коммутировать мощные нагрузки постоянного и переменного тока, а также, предназначен для частых включений и отключений силовых электрических цепей.

Магнитные пускатели, в основном, служат для запуска, остановки и реверса (переключения направления вращения его ротора) трехфазных асинхронных электродвигателей. Также, они отлично работают в схемах дистанционного управления освещением, системах управления компрессорами, насосами, тепловыми печами, кран-балками, кондиционерами, ленточными конвейерами и т.д. В общем, у магнитного пускателя большая сфера применения.

Для примера, рассмотрим пускатель EasyPact TVS от известного производителя Schneider Electric.

Серия EasyPact TVS, включающая в себя контакторы, промежуточные реле, тепловые реле перегрузки и автоматические выключатели, предназначена для защиты и управления электродвигателями в стандартных видах применения.

Серия EasyPact TVS предлагает оптимальный баланс рабочих характеристик, удобство выбора, приобретения и хранения и расширенную гибкость.

Пускатели серии EasyPact TVS предназначены для стандартных видов применения.

Контакторы на токи от 6 до 630 А

Тепловые реле перегрузки

Промежуточные реле

Автоматические выключатели защиты двигателя

Принцип работы магнитного пускателя.

Принцип работы совершенно прост: подается напряжение питания на катушку пускателя, в катушке появляется магнитное поле. За счет этого в середину катушки втягивается металлический сердечник, к которому закреплена группа силовых (рабочих) контактов. Контакты замыкаются, и через них начинает течь электрический ток. Основное управление магнитным пускателем осуществляется кнопками «Пуск», «Стоп», «Вперед» и «Назад».

Устройство магнитного пускателя.

Магнитный пускатель состоит из двух частей — пускатель и блок контактов.

Варианты пускателей

Блок контактов не является основной частью магнитного пускателя и далеко не всегда используется. Но при использовании пускателя в схеме, где должны быть задействованы дополнительные контакты этого пускателя, например, реверс электродвигателя, сигнализация работы пускателя или включение дополнительного оборудования пускателем, то для размножения контактов, как раз, и служит блок контактов или, как его еще называют — приставка контактная.

Реверсивные и нереверсивные контакторы

TeSys B
Реечные контакторы до 2750А

TeSys D
Реверсивные или нереверсивные контакторы до 75 кВт/400В и 250А/АС1

TeSys F
Контакторы до 450кВт/400В и 1600А/АС1

TeSys K
Реверсивные или нереверсивные контакторы до 5,5 кВт 400/415В

Пускатели прямого включения

TeSys GV2, LC
Пускатели прямого включения с автоматическим выключателем до 15кВт/400В

TeSys LUTM
Контроллеры TeSys U до 450кВт м

TeSys U
Многофункциональные устройства управления и защиты TeSys U до 15кВт

Пускатели в корпусе

TeSys GV2-ME
Пускатели безопасности в корпусе

TeSys LE
Пускатели в корпусе до 132кВт/400В

TeSys LG, LJ
Пускатели безопасности в корпусе

За более детальной информацией о продукции обращайтесь к нашим менеджерам.

Данная цепь поделена на две части:

Схема подключения

Одним из базовых элементов магнитного контактора является кнопка.

Кнопки осуществляют «Пуск», «Назад», «Вперед», «Стоп»

Вышеупомянутые элементы обеспечивают дистанционное управление пускателя.

Кнопка «Стоп» задействует размыкающий контакт, благодаря которому напряжение попадает на схему управления.

Кнопка «Пуск» нужна для того, чтобы контакт замкнулся, через него будет течь ток.

Схема, представленная на рис. 7, показывает стандартный запуск мотора двигателя.

Как подключить магнитный пускатель? Нужно уделить надлежащее внимание вышеупомянутой схеме.

Данная цепь поделена на две части:

  • Силовая – питание приходит от переменного источника напряжения (380 V) и подразделяется на три основных фазы:

Силовой блок содержит выключать QF1, несколько силовых выводов: 1L1-2T1, 3L2-4L2, 5L3-6T3 и двигатель «М».

  • Цепь управления – получает сигнал с фазы «А». В этой же цепи присутствуют:
    • сигнал «стоп» – SB1;
    • сигнал «пуск» – SB2;
    • обмотки контактора КМ1;
    • дополнительный элемент 13НО-14НО.

Схема включение 13НО-14НО осуществляется параллельно SB2.

Запуская QF1 фазы «А», «В», «С» попадают на контакты 1L1, 3L2, 5L3 и переходят в дежурное положение. Поступление фазы «А» на контакт «3» осуществляется через кнопку «Стоп». Элемент 13НО продолжает оставаться в дежурном положении на этих двух контактах. Электрическая цепь готова. Обязательным условием работы с электродвигателями – электрические схемы с тепловым реле, имеющее свойство защиты прибора от токовых перегрузок.

Современные пускатели контакторные, авто-выключатели могут быть размещены в одном щитке на одной DIN-рейке. Система автоматизированного управления (САУ), отвечающая за взаимодействие всех элементов магнитных установок, технологических процессов и контроллеров основана на применении магнитных пускателей.

Приведенная информация данной статьи, позволит с легкостью сконструировать такого рода схему и использовать ее по необходимому назначению.

Источники

Источник — http://jelektro.ru/elektricheskie-terminy/vybor-rabota-puskatelej.html
Источник — http://samelectrik.ru/kak-rabotaet-magnitnyj-puskatel.html
Источник — http://electric-tolk.ru/princip-raboty-i-xarakteristiki-magnitnogo-puskatelya/
Источник — http://elenergi.ru/magnitnye-puskateli.html
Источник — http://electricalschool.info/main/electromontag/751-magnitnye-puskateli.html
Источник — http://vashtehnik.ru/elektrika/princip-raboty-magnitnogo-puskatelya-i-ego-texnicheskie-xarakteristiki.html
Источник — http://electricshop.com.ua/blog/printsip-raboty-magnitnogo-puskatelya
Источник — http://1.jelektrik.by/jelektrika-spravochnik/640-magnitnyj-puskatel-ustrojstvo-i-printsip-raboty
Источник — http://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/magnitnye-puskateli/
Источник — http://www.nek2000.ru/magnitnyy-puskatel/
Источник — http://amperof.ru/elektropribory/montazh/podklyuchenie-puskatelya-magnitnogo.html

Что такое пускатели двигателя?

Пускатель двигателя - это переключающее устройство с электронным управлением, которое запускает или включает двигатель, позволяя ему безопасно запускаться и останавливаться.

Необходимость в стартере продиктована типом двигателя. Вообще говоря, маломощные двигатели не требуют стартеров, хотя то, что считается малой мощностью, может быть спорным. Например, для небольших двигателей постоянного тока, которые работают от низкого напряжения (24 В или меньше), не требуются пускатели. Иногда говорят, что маломощные моторы, ниже 5 л.с., тоже не требуют стартера.

Основным определяющим фактором является величина тока, потребляемого при запуске. Из закона Ома мы знаем, что ток равен приложенному напряжению, деленному на сопротивление. Таким образом, если напряжение питания двигателя высокое, а сопротивление низкое, величина пускового тока может составлять 100 ампер, что может привести к повреждению двигателя и его выходу из строя.

Детали пускателя двигателя
Все пускатели двигателя состоят из двух частей; контактор и устройство защиты от перегрузки.

Контактор подает ток на двигатель для запуска.Механизм для этого аналогичен действию реле, когда небольшой ток на катушке размыкает или замыкает контакты, которые позволяют большему току протекать через цепь. Это принцип работы реле, при котором небольшой ток управляет гораздо большим током. Это позволяет осуществлять дистанционный запуск, обеспечивать безопасность рабочих, удерживая их подальше от двигателя и любых потенциальных отказов, которые могут привести к серьезным травмам.

Устройство защиты от перегрузки служит для защиты двигателя от слишком большого тока, который может повредить двигатель, вызывая его перегрев.Обычно он защищает от продолжительной перегрузки по току. Обычно в блоке защиты от перегрузки имеется цепь измерения тока, которая определяет величину тока, подаваемого на двигатель. На некоторых типах устройств защиты от перегрузки, например электронных, пользователи могут установить максимальный уровень тока. Некоторые позволяют разработчикам программировать небольшой ток перегрузки, чтобы предотвратить так называемое ложное срабатывание. Другие типы, включая блоки тепловой защиты, требуют установки теплового элемента, рассчитанного на требуемый максимальный ток.

Пример ручного пускателя двигателя от ABB.

Пускатели двигателей можно классифицировать как ручные или магнитные. Ручной пускатель приводится в действие нажатием кнопки или переключателя, который механически связан с контактором, который затем размыкает или замыкает и включает или выключает двигатель. Ручные пускатели обычно используются на нагрузках с более низким напряжением. С другой стороны, магнитные пускатели двигателей предлагают преимущества дистанционного запуска и автоматического управления.

Выбор пускателя двигателя
Для выбора правильного пускателя необходимо знать особенности применения.Например, какой это тип двигателя (постоянного, однофазного, трехфазного) и реверсивный или нереверсивный? Вам также необходимо знать номинальные значения напряжения и тока двигателя, включая напряжение питания двигателя, а также любое доступное управляющее напряжение (для цепи управления стартером). Текущие рейтинги включают как ток полной нагрузки, так и максимальный ток, который также может быть выражен в единицах номинальной мощности.

Другой вопрос - выбрать пускатель с номиналом NEMA или IEC.Пускатели NEMA обычно больше, чем модели IEC, которые обычно меньше и компактнее. Пускатели NEMA, как правило, дороже, чем пускатели IEC, но они также более гибкие и могут соответствовать требованиям во многих различных приложениях.

Типы пускателей двигателя

| Типы контакторов двигателя

Контакторы двигателя и Пускатели двигателя - это пилотные устройства, используемые для управления большими токовыми нагрузками. Для больших токовых нагрузок, таких как обогреватели, огни парковки и электродвигатели, требуется большой ток во время запуска.Чтобы избежать воздействия этих высоких токов на оператора и легкие устройства управления, такие как обычные домашние выключатели света, используются контакторы и пускатели двигателей. Подрядчики, как показано на рисунке 1, и пускатели двигателей, как показано на рисунке 2, напрямую подключаются к нагрузкам, которые должны управляться, как мощная лампа или трехфазный промышленный двигатель. Устройство управления или система управления используются для управления подрядчиком или пускателем двигателя.

Рис.1: Контактор двигателя

Рис.2: Пускатель двигателя с электронным устройством защиты от перегрузки

Принцип работы контактора и пускателя двигателя

Контакторы и пускатели двигателей содержат катушку с проволокой, обернутую вокруг сердечника из мягкого железа. При подаче напряжения на катушку пилотного устройства создается электромагнитное поле. Это электромагнитное поле используется пилотным устройством для включения и выключения нагрузок. Ток, используемый для питания катушки, намного меньше тока, необходимого для работы нагрузки.Это означает, что нагрузка может потреблять 30 А при запуске контактора или пускателя двигателя, но она будет управляться током, который составляет всего около 0,2 А или 200 мА. Безопаснее работать с низким током, чем с большим током, который потенциально может нанести вред оператору или оборудованию.

Номинал и размер контактора и пускателя двигателя

Контакторы и пускатели двигателей бывают разных размеров и номиналов, чтобы соответствовать широкому спектру приложений и операций.Применения могут варьироваться от пускателя, который используется для включения сверлильного станка, до контактора, который используется для управления электрическим котлом . Важно знать, что не только контактор или двигатель любого размера будет достаточным для работы с нагрузками; При работе с контакторами и пускателями двигателей специалисты по обслуживанию и установщики должны соблюдать инструкции по установке пилотных устройств. Один важный ориентир, который следует знать, - это сила тока обслуживаемой нагрузки. Это определит выбор правильного размера пилотного устройства NEMA (Национальная ассоциация производителей электрооборудования) или IEC (Международная электротехническая коалиция).Также важно знать среду, в которой будет установлено устройство. Это гарантирует, что можно выбрать правильный корпус, чтобы избежать перебоев в работе пилотного устройства. Хотя эти пилотные устройства выполняют одну и ту же работу, они не могут выполнять одну и ту же функцию.

Моторный контактор

В следующем разделе подробно рассматриваются контакторы. Контакторы бывают двух видов: ручного и магнитного исполнения. Ручные контакторы и пускатели двигателей предназначены для работы с нагрузкой от среднего до низкого, когда оператору безопаснее находиться в непосредственной близости от нагрузки, которую необходимо включать и выключать.Магнитные контакторы и пускатели двигателей используются для автоматизации и дистанционного управления нагрузками, которые могут пропускать слишком большой ток для безопасной работы.

Принцип работы ручного контактора

Ручные контакторы - это пилотное устройство, используемое для управления нагрузками, которым не нужна защита от перегрузки, такими как нагревательные элементы, или они работают с нагрузками, которые имеют внутреннюю защиту от перегрузки, например, однофазные двигатели переменного тока. Ручные контакторы сконструированы с тумблером включения и выключения для управления подключенными к ним нагрузками, это означает, что требуется, чтобы кто-то физически нажал кнопку для подачи питания на нагрузки.Контакторы с ручным управлением лучше подходят для средних нагрузок, потому что контакты, встроенные в блоки, способны выдерживать большой ток в течение длительного периода времени, по сравнению с обычным переключателем, который рассчитан на работу с более низким током и не может обрабатывать большое количество тока. ток в течение длительного времени.

Рис.3: Ручной контактор двигателя

Принцип работы магнитного контактора

Магнитные контакторы , как показано на рисунке 4, содержат соленоид, который представляет собой катушку из проволоки, обернутую вокруг или окруженную железным сердечником.Для работы магнитного контактора требуются два источника напряжения; один из источников - облегчить работу нагрузки (например, нагревателей или станков). Второе напряжение, необходимое для управления работой соленоида, называется управляющим напряжением . Управляющее напряжение обычно ниже, чем в цепи электропитания, и поступает от управляющего трансформатора. Типичное напряжение, используемое для управления соленоидом, составляет от 24 В постоянного тока до 120 В переменного тока, но могут использоваться другие напряжения, в зависимости от конструкции, предпочтений и ситуации.

Рис.4: Контактор с магнитным двигателем

Выбор номинальной мощности магнитного контактора

Магнитные контакторы выбираются на основе номинальной силы тока . Номинальный ток в амперах - это сила тока, которую использует контакт из серебряного сплава для безопасной передачи и передачи электроэнергии без повреждения контакторов или электропроводки.

Типы магнитных контакторов

Контакторы также бывают разных физических конфигураций .Контакторы могут иметь один набор контакторов для однофазного режима, в котором один токопроводящий провод может замыкать или размыкать контактор, или два набора контактов, чтобы замыкать или размыкать два горячих проводника в однофазном режиме. Контакторы могут иметь до четырех наборов контактов, которые нормально разомкнуты, но могут быть изменены на нормально замкнутые в соответствии с определенным порядком работы. Все магнитные контакторы содержат соленоид с двумя выводами, которые важно найти для обеспечения правильной работы контактора. Напряжение соленоида должно соответствовать управляющему напряжению, слишком высокое напряжение вызовет сгорание соленоида, и в результате контакты не смогут размыкаться или замыкаться. При слишком низком напряжении контактор не будет работать, потому что магнитное поле недостаточно сильное для втягивания якоря.

Пускатель двигателя

В промышленности используются два типа пускателей двигателей; они включают ручной пускатель двигателя и магнитный пускатель двигателя. Каждый пускатель выполняет одну и ту же функцию, которая заключается в включении или отключении линии питания, обслуживающей нагрузку, подключенную к управляющему устройству, и обеспечению защиты нагрузки от перегрузки. Разница между ручным и магнитным пускателем двигателя заключается в том, как они управляют включением и отключением питания нагрузки.

Принцип работы ручного пускателя двигателя

Ручной пускатель , , как показано на Рисунке 5, представляет собой контактор, который не имеет катушки и действует больше как переключатель, чем контактор.Ручной пускатель двигателя состоит из оператора, который может включать в себя селекторный переключатель или набор кнопок, которые размыкают и замыкают контакты пилотного устройства. Название «Ручной пускатель двигателя» означает, что требуется, чтобы кто-то управлял контактами, но перегрузочные контакты ручного пускателя двигателя автоматически управляют нагрузкой; в случае перегрева из-за механического отказа или высоких температур окружающей среды.

Рис.5: Схема ручного пускателя двигателя

Принцип работы магнитного пускателя двигателя

Магнитные пускатели двигателя , как показано на Рисунке 6, представляют собой магнитные контакторы с блоком защиты от перегрузки, подключенным к клеммной стороне пилотное устройство.Магнитный пускатель двигателя используется чаще, потому что его можно использовать в операциях, требующих автоматического управления нагрузкой, а магнитный контактор можно активировать дистанционно с помощью устройств управления или с помощью комплекса операций устройства управления.

Рис.6: Схема электрических соединений магнитного пускателя двигателя

Магнитный пускатель двигателя имеет три линейных клеммы с маркировкой L1, L2 и L3. Здесь подача питания на пускатель двигателя. Клеммы в нижней части пускателя двигателя имеют маркировку T1, T2 и T3, которые также называют стороной нагрузки, которая подключается к обслуживаемой нагрузке.Для включения и выключения нагрузки катушка должна быть подключена к нормально замкнутому контакту перегрузки, который обычно подключается с помощью заводского провода, установленного на агрегате. Нормально замкнутый контакт не считается вспомогательным контактом; поэтому его нельзя использовать ни для чего другого в цепи управления. Магнитный пускатель двигателя также содержит нормально разомкнутый вспомогательный контакт, который подключается к системе управления, что позволяет включать и отключать магнитную катушку.Вспомогательные контакты будут иметь одну сторону, подключенную непосредственно к клемме магнитной катушки, которая иногда подключается к полевым устройствам, которые переключают работу магнитной катушки. нормально разомкнутый контакт используется для герметизации катушки пилотного устройства. Когда используется уплотнение, это называется трехпроводным управлением пускателем двигателя.Когда уплотнение не используется, это называется двухпроводным управлением .

Что такое комбинированный пускатель двигателя?

Комбинированные пускатели двигателей могут эффективно использоваться для размещения пускателя двигателя и устройств электрической защиты в одном корпусе.

Пускатели двигателей

предназначены для обеспечения безопасности пользователей при запуске или останове двигателя с помощью электромеханического переключателя. Это похоже на управление реле, но также обеспечивает защиту двигателя от перегрузки.Комбинированные пускатели двигателей могут быть полезны для обеспечения пользователей еще одним уровнем защиты. Они собирают:

  • Устройство управления, также известное как подрядчик
  • Обеспечивает защиту двигателя от перегрузки, которая помогает предотвратить перегрев двигателя
  • Защита от короткого замыкания

Он имеет дополнительную защиту от короткого замыкания, которая позволяет пуску реагировать на определенные неисправности для защиты двигателя. Неисправность может быть фатальной для вашего двигателя или может привести к необратимому повреждению двигателя.Таким образом, эта защита помогает предотвратить необратимое повреждение двигателя и избежать дорогостоящего ремонта. Защиту от короткого замыкания можно обеспечить с помощью:

Все эти элементы объединены в одном корпусе, что позволяет легко установить и получить доступ к соответствующим работникам при выполнении операций во время аварийных или обычных операций.

Как работает стартер комбинированного двигателя?

Комбинированный пускатель двигателя обычно работает аналогично стандартному пускателю двигателя.Тем не менее, они могут безопасно переключать необходимое количество тока на двигатель и помогают предотвратить потребление двигателем тока, превышающего параметры безопасности.

С помощью защиты от короткого замыкания, доступной в комбинированном пускателе электродвигателя, схема получает все необходимое для работы с соответствующими мерами отказоустойчивости. Если вы используете комбинированный пускатель двигателя и размыкающий выключатель или автоматический выключатель, вы можете отключить все линии в случае неисправности любой фазы.Это может быть полезно для предотвращения однофазного режима, который может привести к дисбалансу напряжений и перегоранию двигателя.

Пускателем можно управлять вручную или электронным способом с помощью магнитных компонентов, и это полностью зависит от ваших эксплуатационных потребностей.

Ручные комбинированные пускатели электродвигателей

Ручные комбинированные пускатели двигателей просты в эксплуатации. Пользователю просто нужно нажать кнопку или повернуть ручку переключателя мощности, чтобы включить или выключить подключенный двигатель. Затем он управляет механическими связями, открывая или закрывая их, чтобы запустить или остановить двигатель.

Пускатели с ручным управлением

могут быть идеальным выбором, поскольку они предлагают:

  • Безопасная и эффективная работа
  • Меньший размер, что делает их пригодными для различных применений
  • Начальная стоимость ручного стартера сравнительно невысока
  • Автоматический выключатель / выключатель с предохранителем для обеспечения дополнительной отказоустойчивости

Магнитные пускатели комбинированных двигателей

Магнитные комбинированные пускатели двигателей

предлагают электромагнитное управление, что позволяет управлять ими дистанционно.Поэтому он идеально подходит для крупномасштабных операций. Однако нагрузку двигателя, подключенную к пуску двигателя, можно включить / выключить, используя более безопасное напряжение, обычно 120 В для ваших устройств управления.

Существуют различные типы комбинированных магнитных пускателей двигателей, имеющих определенную конфигурацию в цепи. Различные типы комбинированных магнитных пускателей двигателей:

  • Пускатели с прямым включением (DOL) или пускатели с прямым подключением к сети, нереверсивные (FVNR)
    • Это пускатель общего назначения с магнитным контактором для подключения полного напряжения источника питания к двигателю.Их можно использовать для двигателей, которым просто необходимо работать с фиксированной скоростью в одном направлении.
  • Реверсивные пускатели прямого включения (DOL) или пускатели прямого действия с реверсированием полного напряжения (FVR)
    • Он также поставляется с той же утилитой, что и стандартные стартеры DOL, но также имеет возможность работать в прямом и обратном направлении. Таким образом, он особенно полезен для конвейерного оборудования, где требуется управление направлением движения.
  • Пускатели звезда-треугольник
    • Это двигатель пониженного напряжения, который подходит для более длительных циклов разгона и работы в больших масштабах.Он разработан для работы с трехфазными асинхронными двигателями и может переключать обмотки между треугольником и пусковым соединением для запуска двигателя.
  • Устройства плавного пуска
    • Обычно они используются для управления электродвигателями переменного тока. Они помогают снизить крутящий момент и нагрузку во время фазы запуска и скачков электрического тока.

Зачем нужен комбинированный пускатель двигателя?

Использование комбинированного пускателя двигателя может обеспечить дополнительное спокойствие относительно безопасности цепи двигателя.Однако стандартные пускатели двигателей способны выполнять тот же процесс. Тем не менее, преимущества комбинированного пускателя двигателя могут быть полезны для обеспечения устройств повышенной защиты цепи, которые объединены в одном корпусе.

Комбинированный пускатель двигателя поставляется с автоматическим выключателем или разъединителем с плавким предохранителем и предлагает встроенную возможность защиты двигателя от короткого замыкания. Таким образом, он не только защищает ваш двигатель от перегорания из-за сбоя тока, но и обеспечивает все, что требуется цепи в соответствии со статьей 430 Национального электрического кодекса.

С помощью сбрасываемой защиты цепи вы сможете быстро перезагрузить двигатель и запустить его после устранения неисправности. Это означает, что вы сможете свести к минимуму время простоя двигателя и заставить его снова работать быстрее.

Комбинированный пускатель двигателя может использоваться по-разному:

  • Вентиляторы
  • Тепловые насосы
  • Водяные насосы
  • Компрессоры
  • Вентиляторы
  • Конвейерные ленты
  • Воздуходувки

Почему стоит покупать комбинированные пускатели электродвигателей от Spike Electric?

Мы являемся одним из крупнейших производителей складских запасов в Северной Америке, когда речь идет о комбинированных компонентах стартера двигателя.Мы предлагаем безопасные, надежные и эффективные энергетические решения.

Не стесняйтесь обращаться к нам, если у вас возникнут какие-либо вопросы.

Как работает магнитный пускатель двигателя

Большинство людей не имеют технических знаний об электрических компонентах наших машин, особенно тех, которые не видны или работают внутри машины, как пускатели магнитных двигателей. Вы когда-нибудь задавали вопрос «, как работает магнитный пускатель

Магнитный пускатель - это выключатель с электромагнитным управлением, который защищает ваш электродвигатель во время запуска.Он может выдерживать тяжелые нагрузки, такие как трехфазные большие двигатели и другое промышленное оборудование. Магнитные пускатели двигателей обеспечивают защиту от пониженного напряжения и перегрузки, а также автоматическое отключение в случае сбоя питания. Другой целью магнитного пускателя двигателя является защита двигателя, который не имеет защиты от тепловой перегрузки в самом двигателе. Магнитный пускатель двигателя представляет собой комбинацию контактора и реле перегрузки, которое откроет управляющее напряжение на катушку стартера, если обнаружит перегрузку от ваших двигателей во время использования.В тепловом типе используется устройство, установленное на реле перегрузки, называемое «нагревателем». Это биметаллический элемент, через который проходит каждая ножка мотора. Магнитный пускатель двигателя бывает разных номиналов в зависимости от силы тока полной нагрузки двигателя. Пока ваша машина работает, через нагреватель протекает ток. Если ток, потребляемый двигателем, превышает номинал нагревателя, нагревательный элемент нагревается и вызывает «срабатывание» реле, которое прерывает цепь катушки контактора и обесточивает контактор.Вот два типа магнитных пускателей двигателей, которые использует Meiji:

  1. Полное напряжение (поперек линии) Магнитный пускатель двигателя

Магнитные пускатели двигателя обычно доступны как полновольтные, (поперечно-линейные). -line), пониженного напряжения и реверсивного . Полновольтный или линейный магнитный пускатель двигателя подает на двигатель полное напряжение, что означает, что он предназначен для правильного управления уровнями бросков тока, которые будут возникать при запуске двигателя.Пускатели пониженного напряжения предназначены для ограничения воздействия пускового тока при запуске двигателя. Они доступны в электромеханическом и электронном форматах.

  1. Реверсивный пускатель полного напряжения

Реверсивный пускатель предназначен для реверсирования вала трехфазного двигателя. Это достигается путем замены любых двухлинейных проводов, питающих нагрузку двигателя. Реверсивный магнитный пускатель двигателя включает в себя пускатель прямого и обратного хода как часть узла.Предусмотрены электрические и механические блокировки, чтобы гарантировать, что только пускатель прямого или обратного хода может быть включен в любой момент времени, но не одновременно. Магнитные пускатели двигателей обычно используются в деревообрабатывающем оборудовании, таком как столярные пилы или формовщики. Машины с меньшими нагрузками, такие как сверлильный станок или большинство ручных инструментов, обычно используют только переключатель. Магнитные пускатели являются стандартными компонентами для многих машин, и стартеры послепродажного обслуживания также доступны для использования в качестве замены или для модернизации старых машин.

«Национальная ассоциация противопожарной защиты (NFPA), торговая ассоциация США, заявляет, что всему оборудованию требуется магнитный пускатель для защиты от непреднамеренного перезапуска машины в случаях: восстановление напряжения ». - Стандарт 7.5.3 NFPA 79, Википедия.

Компания Meiji Electric производит высококачественные пускатели магнитных двигателей LS. У вас есть возможность вложить пускатель двигателя в комплект или оставить его как есть.Meiji поставляет магнитные пускатели двигателей мощностью от 1/8 до 300 л.с. Полновольтные нереверсивные и реверсивные пускатели, магнитные пускатели с пониженным напряжением, в частности пускатели электродвигателей звезда-треугольник, мощностью от 7 1/2 л.с. до 215 л.с. для линейного напряжения 220 и 440 также доступны с управляющим напряжением в соответствии с потребностями клиентов.

Сделайте хороший старт для своих машин с Meiji Electric!

UL 508A - Традиционные комбинированные пускатели в Северной Америке

В США существует несколько типов пускателей двигателей (тип A, тип B, тип C, тип D, тип E и тип F), которые различаются в зависимости от используемых защитных устройств.Пускатель двигателя типа A, например, включает ручной выключатель , предохранитель , контроллер двигателя и реле перегрузки . Тип A - единственный пускатель двигателя, для которого требуется предохранитель, который играет роль магнитной защиты и, следовательно, устройства защиты параллельной цепи (BCPD), то есть устройства, которое должно гарантировать защиту от токов короткого замыкания и ограничивать параллельную цепь.

Тип B, который сегодня больше не используется, включает ручной разъединитель , магнитный предохранитель двигателя от короткого замыкания , контроллер двигателя и реле перегрузки .

Тип C, с другой стороны, отличается от Типа A и Типа B, потому что вместо предохранителя и устройства защиты двигателя от короткого замыкания он включает автоматический выключатель с обратнозависимой выдержкой времени , который не только обеспечивает магнитное и тепловое сопротивление. защиты, но обеспечивает такую ​​же функцию выключателя-разъединителя .

Тип D, который редко используется, имеет автоматический выключатель с мгновенным срабатыванием (который выполняет функции разъединителя и защиты от короткого замыкания ), контроллер двигателя и реле перегрузки .

Тип E, принятый UL в 1990 году, был создан как ручной самозащищенный комбинированный контроллер двигателя (выключатель , реле перегрузки и защита от короткого замыкания в одном устройстве). Сегодня пускатель двигателя типа E включает в себя также контроллер двигателя , таким образом предлагая компактное устройство , называемое комбинированным контроллером двигателя с самозащитой , состоящее из ручного комбинированного контроллера двигателя с самозащитой и контроллера двигателя .

Тип F (принят UL только в 2002 г.) означает хорошо известный «европейский» пускатель электродвигателя, то есть ручной автономный комбинированный контроллер электродвигателя + отдельный контроллер электродвигателя . В этом случае координация между контроллером мотора и защитой внутри ручного самозащитного комбинированного контроллера мотора играет фундаментальную роль с точки зрения SCCR.

Определения, принятые в UL 508A в отношении функций защиты:

ЗАЩИТА ОТ ПЕРЕГРУЗОЧНОГО ТОКА: защита от перегрузки, короткого замыкания и замыкания на землю.
ЗАЩИТА ОТ ПЕРЕГРУЗКИ: защита, необходимая для цепей двигателя, цель которой - избежать чрезмерного перегрева из-за перегрузок.
Термин комбинированный контроллер двигателя относится к комбинации устройств, обеспечивающих средства отключения цепи, защиту параллельной цепи (короткого замыкания), управление двигателем и защиту двигателя от перегрузки. Внутри устройства находится:

Пускатель двигателя: комбинация защиты от перегрева и контроллера двигателя.
Ручной контроллер двигателя: комбинация реле перегрузки , разъединителя и защиты от короткого замыкания.

Планы управления Обучение устранению ошибок

Пускатели магнитных двигателей переменного тока Тип пускателя для двигателей переменного тока, который сочетает в себе магнитный контактор и реле перегрузки. Магнитными пускателями переменного тока можно управлять дистанционно.
пускатели поперечного сечения Пускатель двигателя, в котором двигатель напрямую подключен к источнику питания.Сетевые пускатели при пуске позволяют подавать на двигатель полное напряжение.
активировать Чтобы привести машину или устройство в движение или работу. Контакты могут активировать устройства вывода.
переменный ток AC. Ток образуется, когда электроны движутся в одном направлении, а затем в противоположном.Переменный ток нестабилен и часто должен быть преобразован в постоянный.
ампер ампер. Единица электрического измерения, которая описывает как количество электричества, так и время, необходимое электричеству для прохождения определенного расстояния. Один ампер или ампер равен одному кулону в секунду.
дугогасительные камеры Дугогасящее устройство.Дугогасительные камеры гаснут дуги, направляя их в камеры над контактами.
дуговая колонна Электрическая искра в форме струны, проходящая через промежуток между двумя контактами. Колонны дуги возникают, когда электричество проходит через молекулы ионизированного воздуха или испаренный металл, что приводит к повреждению контактов.
гашение дуги Любой метод тушения электрической дуги между контактами.Гашение дуги необходимо для обеспечения безопасности работников и продления срока службы контактов.
дуга Перегрев, возникающий, когда электричество перетекает с одной поверхности на другую. Электрическая дуга опасна, поскольку может привести к травмам операторов и повреждению оборудования.
якорь Любой магнитный полюс, вызывающий механическое движение.Якорь - это механическая деталь, которая перемещается в реле и контакторах.
биметаллическая лента Полоса, полученная путем соединения двух разнородных металлов, которые расширяются с разной скоростью при нагревании. Биметаллическая полоса скручивается при разной скорости расширения.
биметаллическое тепловое реле перегрузки Тип механизма тепловой перегрузки, в котором используется полоса, состоящая из двух разных металлов.При нагревании два металла в биметаллическом тепловом реле перегрузки расширяются с разной скоростью, вызывая деформацию полосы и образование разрыва в цепи.
удар В предохранителях, чтобы прервать электрическую цепь из-за расплавленного компонента. Предохранитель перегорает или срабатывает, когда ток превышает установленный предел.
обдувочные змеевики Устройство гашения дуги, использующее магнитные катушки для создания магнитных полей, которые толкают дуги вверх, пока они не разорвутся.Вытяжные катушки обычно используются для контакторов и пускателей двигателей постоянного тока.
перерыв Место, в котором цепь может быть замкнута или замкнута. Разрывы можно открывать или закрывать с помощью переключателей разных типов.
контур Полностью закрытый путь различных устройств, по которому проходит электрический ток.Цепи обычно включают в себя источник, путь, нагрузку и элемент управления.
выключатели Устройство безопасности, обнаруживающее перегрузку по току в цепи. Автоматические выключатели размыкают цепи во избежание коротких замыканий.
замкнутый контур Контролируемый путь, по которому движется живое электричество.Замкнутая цепь может быть образована реле.
замкнутые контакты Точка, в которой два контакта соединяются друг с другом, позволяя течь току. Замкнутые контакты создают цепь.
катушки Пучок проводов, непрерывно намотанных на магнитный сердечник.Катушки используются для создания магнитного поля, когда через них проходит ток.
токопроводящий Способность материала действовать как путь для движения электричества. Проводящие материалы часто представляют собой металлы.
дребезг контакта Нежелательный эффект, который возникает, когда контакты замыкаются под высоким давлением, а затем отскакивают друг от друга из-за силы.Отскок контакта нежелателен, поскольку он может создавать вторичные дуги, сокращать срок службы контактов и приводить к точечной коррозии.
контакторы Тип реле, предназначенное для работы с большими и переменными токовыми нагрузками. Контакторы обеспечивают безопасное подключение и отключение нагрузки двигателя и используют электромагнитную катушку для управления контактами.
контактов Проводящая металлическая часть в электрической цепи.Контакты размыкают или замыкают цепи, соединяясь или отделяясь друг от друга.
цепь управления Тип схемы, в которой используются устройства управления для определения включения или отключения нагрузки путем управления протеканием тока. В цепях управления обычно меньше напряжения, чем в цепях питания.
реле управления Электрический выключатель, размыкающий и замыкающий цепь.Реле управления могут размыкать или замыкать один или несколько наборов контактов.
текущий Поток электричества по цепи. Сила тока в цепи может колебаться.
постоянного тока Постоянный ток. Ток образуется, когда электроны непрерывно движутся в одном направлении.Постоянный ток контролируется катушками на контакторах.
деионизация Процесс удаления ионов для снятия электрического заряда. Деионизацию можно использовать как метод гашения дуги.
дельта Соединение трех компонентов в виде последовательной треугольной цепи.Соединения треугольником используются в пускателях звезда-треугольник.
постоянный ток DC. Ток образуется, когда электроны непрерывно движутся в одном направлении. Постоянный ток контролируется катушками на контакторах.
рассеивание Распасться, разойтись и исчезнуть.Устройства гашения дуги рассеивают дуги, которые могут образоваться между контактами.
диверта Чтобы изменить путь или движение чего-либо. Устройства гашения дуги отводят дуги, которые могут образоваться между контактами.
двухполюсный двухходовой DPDT. Набор из двух подвижных контактов, каждый из которых может разорвать цепь в двух местах.Двухполюсный двухпозиционный переключатель - это тип переключателя.
двухполюсный одинарный ДПСТ. Набор из двух подвижных контактов, каждый из которых может разомкнуть цепь в одном месте. Двухполюсный однопозиционный переключатель - это тип переключателя.
двигатели двойного напряжения Тип трехфазного двигателя, работающего на двух уровнях напряжения.Двигатели с двойным напряжением позволяют использовать один и тот же двигатель с двумя разными напряжениями в линии питания.
двухэлементные предохранители с выдержкой времени Устройство защиты двигателя от перегрузки, обеспечивающее протекание пускового тока. Двухэлементный предохранитель с выдержкой времени содержит три элемента, которые плавятся при броске тока и, таким образом, позволяют двигателю время для запуска без сгорания предохранителя.
электрическая дуга Область, в которой электричество переходит от одного проводника к другому, вызывая сильное тепло и свет.Электрические дуги используются в сварочных и некоторых промышленных печах.
электромагнит Магнит, образованный электрическим током. Электромагнит обычно формируется путем наматывания нескольких витков проволоки на железный сердечник.
электронное реле перегрузки Тип реле, которое обнаруживает перегрузку путем контроля тока двигателя.Электронные реле перегрузки очень гибкие и могут быть запрограммированы для решения многих задач.
элементов Компоненты, расположенные на обоих концах двухэлементного предохранителя с выдержкой времени для предотвращения перегрузки двигателя. При перегрузке элементы плавятся, но предохранители не перегорают, давая двигателю время для запуска.
эвтектический сплав Смесь металлов, плавящихся для активации механического устройства.Когда эвтектические сплавы плавятся в реле перегрузки, они сигнализируют реле о размыкании цепи.
эвтектическая перегрузка Тип теплового реле перегрузки, в котором для активации механических устройств используется плавящийся сплав. Эвтектическая перегрузка, также известная как реле перегрузки плавящегося сплава, размыкает цепь в случае перегрузки.
предохранители Устройство безопасности, обнаруживающее превышение тока в цепи.В предохранителях часто есть компонент, который плавится и размыкает цепь при возникновении перегрузки по току.
тепловая чувствительность Склонность к изгибу при нагревании. Тепловая чувствительность приводит к короблению, которое часто вызывается физическим скручиванием или поворотом детали из-за внутреннего напряжения.
л.с. Единица измерения, которая указывает количество электроэнергии в более крупных устройствах.Для описания мощности электродвигателей вместо ватт используется лошадиная сила.
МЭК Международная электротехническая комиссия. Международная организация, которая разрабатывает и публикует все стандарты для электрических, электронных и связанных с ними технологий. IEC разрабатывает стандарты, которые применяются в Европе и других странах.
пусковой ток Первоначальный выброс тока в двигатель.Пусковой ток может быть до десяти раз выше постоянного необходимого тока из-за отсутствия сопротивления.
изоляция Непроводящий материал. Изоляция предотвращает контакт электрически заряженных компонентов с другими компонентами.
ионизированный Вещество, обладающее отрицательным или положительным зарядом.Ионизация происходит после получения или потери одного или нескольких электронов.
нагрузок Компонент схемы, преобразующий электричество в свет, тепло или механическое движение. Примеры нагрузок включают лампочки, бытовую технику или другие машины.
Магнитный контактор Контактор, который управляется дистанционно с помощью соленоида.Магнитные контакторы предлагают операторам удобство и безопасность, обеспечивая удаленный доступ к цепи.
Магнитный контактор Контактор с дистанционным управлением. Магнитные контакторы предлагают операторам удобство и безопасность, обеспечивая удаленный доступ к цепи.
магнитные контакторы Контактор, который управляется дистанционно с помощью соленоида.Магнитные контакторы предлагают операторам удобство и безопасность, обеспечивая удаленный доступ к цепи.
магнитное поле Сила притяжения, окружающая магниты или электрическое поле. Магнитные поля создаются электричеством.
магнитное реле перегрузки Тип реле перегрузки, которое определяет силу магнитного поля, создаваемого током.Магнитные реле перегрузки отключают двигатели при слишком сильном магнитном поле.
ручной контактор Тип контактора, для работы с которым требуется физическое управление человеком. Ручные контакторы включают механические переключатели или кнопки, замыкающие или размыкающие цепь.
ручной контроллер Механическая кнопка или переключатель, который человек должен задействовать физически для размыкания и замыкания цепи в ручном контакторе.Ручные контроллеры являются составными частями ручных контакторов.
ручные пускатели Тип сетевого пускателя двигателя переменного тока, который должен физически запускаться или останавливаться с помощью переключателя непосредственно на стартере. Ручные пускатели обеспечивают защиту двигателя как от перегрузки, так и от поражения электрическим током.
Реле перегрузки плавящегося сплава Тип теплового реле перегрузки, в котором для активации механических устройств используется плавящийся сплав.Реле перегрузки плавящегося сплава, также известное как эвтектическая перегрузка, размыкает цепь в случае перегрузки.
Компоненты управления двигателем Устройство, выполняющее определенные функции в электродвигателях. Компоненты управления двигателем включают реле, контакторы и пускатели двигателя.
защита двигателя от перегрузки Использование устройств для размыкания цепи в случае перегрузки.Защита двигателя от перегрузки предотвращает чрезмерный ток в обмотках двигателя с течением времени, пока в двигателе присутствует ток.
стартер двигателя Устройство, запускающее двигатель при срабатывании триггера. Пускатели двигателей рассчитываются по току или мощности и служат одной из форм защиты двигателя.
пускатели двигателей Переключатель с электрическим приводом, который использует магнитную индукцию для подачи пускового тока на двигатель.Пускатели двигателей не обладают достаточной мощностью по току для самостоятельного пуска двигателей, и для этого требуются другие компоненты управления.
двигатели Машина, преобразующая одну форму энергии, например электричество, в механическую энергию или движение. Двигатели работают по принципу магнитной индукции.
подвижные контакты Контакт на подвижной арматуре.Подвижные контакты подключаются к соответствующим стационарным контактам.
NEMA Национальная ассоциация производителей электрооборудования. Ассоциация, устанавливающая стандарты для электрического оборудования, используемого в Соединенных Штатах. Устройства NEMA обычно более прочные и дорогие, чем устройства, оцененные IEC.
нормально замкнутые контакты НЗ контакт.Устройство, поддерживающее цепь во время нормальной работы. Нормально замкнутые контакты размыкаются для размыкания цепи при срабатывании реле.
нормально разомкнутые контакты Н.О. контакты. Устройство, которое отключает цепь, предотвращая протекание тока. Для образования замкнутой цепи нормально разомкнутые контакты должны быть замкнуты.
открытые контакты Контакты отделены друг от друга пробелом, что препятствует прохождению тока.Открытые контакты предотвращают образование цепей.
устройства вывода Устройство, выполняющее механическое действие. Выходные устройства должны получать электрический сигнал, чтобы действовать.
перегрузка Превышение тока в замкнутой цепи с течением времени. Перегрузка вызвана накоплением тока в двигателе.
реле перегрузки Реле, которое подключается к контактору для создания пускателя двигателя. Реле перегрузки защищают двигатель от перегрузки, отключая питание двигателя и останавливая его работу.
Пускатели с неполной обмоткой Пускатель пониженного напряжения, который подает питание на один набор обмоток, а затем на другой, когда двигатель набирает обороты.Этот процесс пуска с частичной обмоткой позволяет обмоткам производить пониженный пусковой ток и крутящий момент.
собачка Шарнирное или поворотное устройство, которое вставляется в паз храпового колеса, шестерни или стержня. Собачка и храповик работают вместе, чтобы обеспечить движение вперед или предотвратить движение назад.
питтинг Коррозия металла, возникающая в определенных местах детали или компонента.Точечная коррозия проявляется на поверхности в виде небольших трещин или вмятин на поверхности.
силовая цепь Тип цепи, по которой подается питание на электрические нагрузки. Силовые цепи часто имеют высокое напряжение и состоят из входящего основного источника питания, пускателя двигателя и двигателя.
силовые реле Реле с прочными контактами, рассчитанными на 15 ампер или выше.Силовые реле также известны как контакторы.
первичный резистор пускателя пониженного напряжения Пускатель двигателя с резисторами, которые борются с пусковым током. Пускатели с пониженным напряжением с первичным резистором обеспечивают плавное ускорение двигателя при запуске с постепенным увеличением крутящего момента и напряжения.
кнопка Регулятор мощности, который активирует или деактивирует компонент или систему.Кнопки управляются вручную и обычно имеют два положения.
храповое колесо Зубчатое колесо, которое использует собачку для предотвращения вращения в одном направлении. Храповое колесо часто используется при работе с системами, поднимающими тяжелые грузы.
Пускатели пониженного напряжения Пускатель двигателя, который снижает мощность, поступающую в двигатель при его первоначальном запуске.Пускатели пониженного напряжения помогают в защите двигателя.
Пускатели пониженного напряжения Пускатель двигателя, который снижает мощность, поступающую в двигатель при его первоначальном запуске. Пускатели пониженного напряжения защищают двигатели большой мощности от ударов.
реле Электрический выключатель, который размыкает и замыкает цепь с помощью электромагнитной катушки.Реле могут размыкать или замыкать один или несколько наборов контактов.
резисторы Электронный компонент, который регулирует, ограничивает и препятствует прохождению электрического тока. Резисторы склонны преобразовывать электрическую энергию в тепло.
селекторный переключатель Переключатель, который можно поворачивать в разные положения.В каждом положении селекторный переключатель подключается к определенному набору контактов.
принцип соленоида Использование катушки, которая позволяет напряжению изменять электрическую энергию. Принцип соленоида использует магнитные поля для преобразования электрической энергии в механическую.
стационарные контакты Контакт, который остается в фиксированном положении во время работы.Стационарные контакты часто подключаются к соответствующим подвижным контактам.
напряжение питания Ток, питающий двигатель. Напряжение питания часто отключается с помощью защитных устройств, чтобы предотвратить повреждение двигателя и его компонентов.
переключатель Управляющее устройство, которое замыкает или размыкает цепь для включения или выключения цепи.Переключатель может быть ручным, механическим или автоматическим.
тепловое реле перегрузки Устройство, отключающее двигатель от его силовой цепи, когда реле обнаруживает избыточный ток в виде тепла. Реле тепловой перегрузки содержат нагреватели.
трансформаторы Устройство, передающее электрическую энергию из одной цепи в другую без изменения частоты с помощью электромагнитной индукции.Трансформаторы чаще всего используются для изменения сетевого напряжения.
поездка В предохранителях, чтобы прервать электрическую цепь из-за расплавленного компонента. Предохранитель срабатывает или перегорает, когда ток превышает установленный предел.
Расцепитель Механическая часть магнитного реле перегрузки, которая наклоняется во время перегрузки и освобождает набор размыкающих контактов.Расцепители размыкают цепи.
время срабатывания Время, необходимое устройству для размыкания цепи в случае перегрузки. Время поездки варьируется от устройства к устройству.
отключение Процесс, при котором устройство размыкает цепь. Отключение происходит при перегрузке.
испаряется Процесс, при котором жидкость становится газом. При испарении металла может образоваться дуга.
напряжение Мера электрического давления или потенциала, известная как электродвижущая сила. Напряжение измеряется в вольтах.
вольт Единица измерения электромагнитной силы или давления.Вольты указывают напряжение.
основа Чтобы согнуть то, что раньше было прямым. Деформация часто вызывается физическим скручиванием или поворотом детали из-за внутреннего напряжения.
обмоток Проводящая катушка в двигателе, намотанная на якорь.Обмотки могут использоваться для передачи напряжения в трансформаторах.
обмоток Проводящие катушки в двигателе, намотанные на якорь. Обмотки могут использоваться для передачи напряжения в трансформаторах.
Пускатели звезда-треугольник Тип пускателя пониженного напряжения, в котором обмотки образуют букву Y, а затем треугольник.Пускатели звезда-треугольник снижают пусковой ток и лучше всего подходят для приложений с медленными и частыми запусками.

Что такое стартер двигателя? Типы пускателей двигателей

Типы пускателей двигателей и способы их запуска

Что такое пускатель двигателя?

Пускатель двигателя - это электрическое устройство, которое используется для безопасного пуска и остановки двигателя. Подобно реле, пускатель двигателя включает / выключает питание и, в отличие от реле, он также обеспечивает защиту от низкого напряжения и перегрузки по току.

Основная функция пускателя двигателя:

  • Для безопасного запуска двигателя
  • Для безопасной остановки двигателя
  • Для изменения направления вращения двигателя
  • Для защиты двигателя от низкого напряжения и перегрузки по току.

Пускатель двигателя состоит из двух основных компонентов, которые работают вместе для управления и защиты двигателя;

  • Электрический контактор : Назначение контактора состоит в том, чтобы включать / выключать питание двигателя путем замыкания или размыкания контактных клемм.
  • Схема защиты от перегрузки : Назначение этой схемы - защитить двигатель от потенциального повреждения из-за состояния перегрузки. Сильный ток через ротор может повредить обмотку, а также другие устройства, подключенные к источнику питания. Он определяет ток и прерывает подачу питания.

Зачем нужен стартер с двигателем?

Пускатель двигателя необходим для пуска асинхронного двигателя. Это из-за низкого импеданса ротора.Импеданс ротора зависит от скольжения асинхронного двигателя, которое представляет собой относительную скорость между ротором и статором. Импеданс изменяется обратно пропорционально скольжению.

Скольжение асинхронного двигателя максимальное, т.е. 1 в состоянии покоя (положение покоя), таким образом, полное сопротивление минимально, и он потребляет огромное количество тока, называемого пусковым током. Большой пусковой ток намагничивает воздушный зазор между ротором и статором, что вызывает ЭДС в обмотке ротора. Эта ЭДС создает электрический ток в обмотке ротора, который создает магнитное поле для создания крутящего момента в роторе.По мере увеличения скорости ротора скольжение двигателя уменьшается, и ток, потребляемый двигателем, уменьшается.

Высокий пусковой ток в 5-8 раз превышает нормальный номинальный ток полной нагрузки. Таким образом, такое количество тока может повредить или сжечь обмотки двигателя, что сделает машину бесполезной, и это может вызвать огромное падение напряжения в линии питания, которое может повредить другие устройства, подключенные к той же линии.

Чтобы защитить двигатель от такого огромного количества токов, мы используем стартер, который ограничивает начальный ток на короткое время при запуске, и как только двигатель достигает определенной скорости, нормальное питание двигателя возобновляется.Они также обеспечивают защиту от неисправностей, таких как низкое напряжение и перегрузка по току во время нормальной работы.

Хотя небольшие двигатели мощностью менее 1 лошадиных сил обладают высоким импедансом и могут выдерживать начальный ток, поэтому им не нужен такой пускатель двигателя, однако им нужна система защиты от перегрузки по току, которую обеспечивают пускатели DOL (Direct On-Line). Приведенное выше объяснение показывает, зачем нам нужен стартер для установки с двигателем?

Как работает стартер двигателя?

Пускатель - это устройство управления, которое используется для переключения двигателя вручную или автоматически.Он используется для безопасного включения / выключения электродвигателей путем замыкания или размыкания его контактов.

Ручной пускатель используется для двигателей меньшего размера, у которых рычаг с ручным управлением приводится в действие вручную (перемещает положение контактов) в положение ВКЛ или ВЫКЛ. Недостатком таких стартеров является то, что они должны включаться после отключения питания. Другими словами, им необходимо ручное управление для каждой операции (ВКЛ или ВЫКЛ). Иногда эта операция может привести к протеканию больших токов в обмотке двигателя, что может привести к сгоранию двигателя.Вот почему в большинстве случаев не рекомендуется использовать другие альтернативные пускатели двигателей с защитой, такие как автоматические пускатели.

С другой стороны, автоматические пускатели, состоящие из электромеханических реле и контакторов, используются для включения / выключения двигателя. Когда ток проходит через катушки контактора, он возбуждает и создает электромагнитное поле, которое притягивает или толкает контакты, чтобы соединить обмотки двигателя с источником питания.

Кнопки пуска и останова, подключенные к двигателю и пускателю, могут использоваться для включения и выключения двигателей.Катушки контактора можно обесточить, нажав кнопку останова, что приведет к обесточиванию катушки. Таким образом, контакты контактора возвращаются из-за пружинного положения в нормальное положение, что приводит к выключению двигателя. В случае сбоя питания или ручного выключения двигатель не запустится автоматически, пока мы не запустим его вручную, нажав «кнопку запуска». На следующей диаграмме показано, как пускатель двигателя DOL работает в режиме ВКЛ / ВЫКЛ.

Типы пускателей двигателей, основанные на методах и методах пуска

В промышленности для пуска асинхронного двигателя используются различные методы пуска.Прежде чем обсуждать типы двигателей, рассмотрим некоторые методы, используемые в пускателях двигателей.

  • Полное напряжение или через линию Пускатель

Такие пускатели напрямую соединяют двигатель с линией питания, обеспечивающей полное напряжение. Двигатели, подключенные через такие пускатели, имеют низкую номинальную мощность, поэтому они не создают большого падения напряжения в линии электропередачи. Они используются в приложениях, где двигатели имеют низкие характеристики и должны вращаться в одном направлении.

  • Реверсивный пускатель полного напряжения

Направление трехфазного асинхронного двигателя можно изменить, поменяв местами любые две фазы. Такой пускатель включает в себя два магнитных контактора с механической блокировкой и переключением фаз для прямого и обратного направления. Он используется в приложениях, где двигатель должен работать в обоих направлениях, а контакторы используются для управления им.

Чтобы изменить скорость двигателя переменного тока, вам необходимо изменить частоту источника переменного тока или количество полюсов (путем повторного соединения обмоток в некоторых) двигателя.Такие типы стартеров запускают двигатель на нескольких заранее выбранных скоростях для соответствия его задачам.

Наиболее распространенный метод пуска - снижение напряжения при пуске двигателя для уменьшения пускового тока, который может повредить обмотки двигателя, а также вызвать сильное падение напряжения. Эти стартеры используются для двигателей с высокими номиналами.

На основе описанных выше методов в промышленности используются следующие типы пускателей двигателей.

Тип пускателя двигателя:

Мы обсудим следующие типы двигателей и способы их пуска на основе вышеуказанных методов пуска двигателей с преимуществами и недостатками.

  1. Пускатель прямого действия (DOL)
  2. Пускатель сопротивления статора
  3. Пускатель двигателя с контактным кольцом
  4. Пускатель с автотрансформатором
  5. Пускатель для плавного включения треугольника 9016 Преобразователь частоты (VFD)

Пускатели двигателей бывают разных типов, но в основном они подразделяются на два типа.

Этот тип пускателя управляется вручную и не требует никакого опыта.Кнопка используется для выключения и включения двигателя, подключенного к ней. Механизм за кнопкой включает в себя механический переключатель, который размыкает или заставляет цепь останавливать или запускать двигатель.

Они также обеспечивают защиту от перегрузки. Однако эти пускатели не имеют LVP (защиты от низкого напряжения), т.е. они не размыкают цепь при сбое питания. Это может быть опасно для некоторых приложений, потому что двигатель перезапускается при восстановлении питания. Таким образом, они используются для двигателя малой мощности.Пускатель прямого включения (DOL) - это ручной пускатель, обеспечивающий защиту от перегрузки.

Магнитные пускатели являются наиболее распространенным типом пускателей и в основном используются для двигателей переменного тока большой мощности. Эти пускатели работают электромагнитно, как реле, размыкающее или замыкающее контакты с помощью магнетизма.

Обеспечивает более низкое и безопасное напряжение для запуска, а также включает защиту от низкого напряжения и перегрузки по току. При сбое питания магнитный пускатель автоматически разрывает цепь.В отличие от ручных пускателей, он включает автоматическое и дистанционное управление, исключающее оператора.

Магнитный пускатель состоит из двух цепей;

  • Силовая цепь; эта цепь отвечает за подачу питания на двигатель. Он состоит из электрических контактов, которые включают / выключают питание, подаваемое от линии питания к двигателю через реле перегрузки.
  • Цепь управления; : эта схема управляет контактами силовой цепи, чтобы включить или отключить подачу питания на двигатель.Электромагнитная катушка включает или отключает питание, чтобы тянуть или толкать электрические контакты. Таким образом обеспечивается дистанционное управление магнитным пускателем.
Пускатель с прямым подключением к сети (DOL)

Устройство прямого запуска с прямым подключением к сети - это простейшая форма пускателя двигателя, которая подключает двигатель напрямую к источнику питания. Он состоит из магнитного контактора, который соединяет двигатель с линией питания, и реле перегрузки для защиты от перегрузки по току. Для безопасного пуска двигателя снижение напряжения отсутствует.Следовательно, двигатель, используемый с такими стартерами, имеет номинальную мощность менее 5 л.с. Он имеет две простые кнопки, запускающие и останавливающие двигатель.

Нажатие кнопки пуска активирует катушку, которая стягивает контакторы вместе, замыкая цепь. А нажатие кнопки останова обесточивает катушку контактора и раздвигает его контакты, разрывая цепь. Переключатель, используемый для включения / выключения источника питания, может быть любого типа, например, поворотный, уровень, поплавок и т. Д.

Хотя этот пускатель не обеспечивает безопасного пускового напряжения, реле перегрузки обеспечивает защиту от перегрева и перегрузки по току.Реле перегрузки имеет нормально замкнутые контакты, которые питают катушку контактора. Когда реле срабатывает, катушка контактора обесточивается и размыкает цепь.

Преимущества пускателя прямого двигателя

  • Он имеет очень простую и экономичную конструкцию.
  • Это очень легко понять и работать.
  • обеспечивает высокий пусковой момент за счет высокого пускового тока.

Недостатки прямого пускателя двигателя

  • Высокий пусковой ток может повредить обмотки.
  • Высокий пусковой ток вызывает провал напряжения в линии питания.
  • Не подходит для тяжелых двигателей.
  • Может сократить срок службы двигателя.
Пускатель сопротивления статора

Пускатель сопротивления статора использует метод RVS (пускатель пониженного напряжения) для запуска двигателя. Внешнее сопротивление добавляется последовательно с каждой фазой статора трехфазного асинхронного двигателя. Задача резистора - снизить линейное напряжение (впоследствии уменьшая начальный ток), приложенное к статору.

Первоначально переменный резистор находится в максимальном положении, обеспечивая максимальное сопротивление.Следовательно, напряжение на двигателе минимально (на безопасном уровне) из-за падения напряжения на резисторе. Низкое напряжение статора ограничивает пусковой пусковой ток, который может повредить обмотки двигателя. Когда двигатель набирает скорость, сопротивление уменьшается, и фаза статора напрямую подключается к линиям электропередач.

Поскольку ток прямо пропорционален напряжению, а крутящий момент изменяется в квадрате тока, уменьшение напряжения в 2 раза снижает крутящий момент в 4 раза.Таким образом, пусковой момент при использовании такого стартера очень низкий и его необходимо поддерживать.

Преимущества пускателя электродвигателя сопротивления статора

  • Обеспечивает гибкость пусковых характеристик.
  • Источник переменного напряжения обеспечивает плавное ускорение.
  • Его можно подключать к двигателю как по схеме звезды, так и по схеме треугольника.

Недостатки стартера двигателя с сопротивлением статора

  • Резисторы рассеивают мощность
  • Пусковой момент очень низкий из-за снижения напряжения
  • Резисторы довольно дороги для больших двигателей.
Сопротивление ротора или пускатель электродвигателя с контактным кольцом

Этот тип пускателя электродвигателя работает по технологии запуска электродвигателя при полном напряжении. Он работает только на асинхронном двигателе с контактным кольцом, поэтому он также известен как пускатель двигателя с контактным кольцом.

Внешние сопротивления соединены с ротором в звездообразной комбинации через контактное кольцо. Эти резисторы ограничивают ток ротора и увеличивают крутящий момент. Это, в свою очередь, снижает пусковой ток статора. Это также помогает улучшить коэффициент мощности.

Резисторы используются только во время запуска двигателя и удаляются, когда двигатель набирает свою номинальную скорость.

Преимущества пускателя двигателя с сопротивлением ротора

  • Он обеспечивает низкий пусковой ток при использовании полного напряжения.
  • Из-за высокого пускового момента двигатель может запускаться под нагрузкой.
  • Этот метод улучшает коэффициент мощности.
  • Он обеспечивает широкий диапазон регулирования скорости.

Недостатки стартера двигателя с сопротивлением ротора

  • Он работает только с асинхронным электродвигателем с контактным кольцом.
  • Ротор дороже и тяжелее.
Автотрансформатор Пускатель

В пускателях такого типа используется автотрансформатор в качестве понижающего трансформатора для снижения напряжения, приложенного к статору во время стадии пуска. Его можно подключать как к двигателям, подключенным по схеме звезды, так и по схеме треугольника.

Вторичная обмотка автотрансформатора подключена к каждой фазе двигателя. Несколько лент автотрансформатора обеспечивают малую часть номинального напряжения. Во время пуска реле находится в исходном положении i.е. точка ответвления, обеспечивающая пониженное напряжение для запуска. Реле переключается между точками отвода для увеличения напряжения со скоростью двигателя. Наконец, он подключает его к полному номинальному напряжению.

По сравнению с другими методами снижения напряжения, он предлагает высокое напряжение для определенного пускового тока. Это помогает обеспечить лучший пусковой крутящий момент.

Преимущества автотрансформаторного пускателя

  • Обеспечивает лучший пусковой момент.
  • Используется для пуска больших двигателей со значительной нагрузкой.
  • Он также предлагает ручное управление скоростью.
  • Он также обеспечивает гибкость пусковых характеристик.

Недостатки автотрансформатора стартера

  • Из-за больших размеров автотрансформатора такой стартер занимает слишком много места.
  • Схема сложная и относительно дорогая по сравнению с другими пускателями.
Пускатель звезда-треугольник

Это еще один распространенный метод пуска, используемый в промышленности для больших двигателей.Обмотки трехфазного асинхронного двигателя переключаются между звездой и треугольником для запуска двигателя.

Для запуска асинхронного двигателя он соединяется звездой с помощью трехполюсного реле с двойным ходом. Фазное напряжение при соединении звездой уменьшается в 1 / √3 раз и снижает пусковой ток, а также пусковой момент на 1/3 от нормального номинального значения.

Когда двигатель ускоряется, реле таймера переключает соединение звездой обмоток статора на соединение треугольником, обеспечивая полное напряжение на каждой обмотке.Двигатель работает с номинальной скоростью.

Преимущества пускателя со звездой-треугольником

  • Его конструкция проста и дешева
  • Не требует обслуживания
  • Обеспечивает низкий импульсный ток.
  • Используется для пуска больших асинхронных двигателей.
  • Лучше всего для длительного разгона.

Недостатки пускателя со звезды на треугольник

  • Работает на двигателе, подключенном по схеме треугольник.
  • Имеется больше проводных соединений.
  • Он обеспечивает низкий пусковой крутящий момент, который невозможно поддерживать.
  • Очень ограниченная гибкость пусковых характеристик.
  • Механический рывок при переключении со звезды на треугольник.
Устройство плавного пуска

В устройстве плавного пуска также используется метод снижения напряжения. Он использует полупроводниковые переключатели, такие как TRIAC, для управления напряжением, а также пусковым током, подаваемым на асинхронный двигатель.

ТРИАК с фазовым управлением используется для обеспечения переменного напряжения.Напряжение изменяется путем изменения угла проводимости или угла включения симистора. Угол проводимости поддерживается минимальным для обеспечения пониженного напряжения. Напряжение увеличивается постепенно, увеличивая угол проводимости. При максимальном угле проводимости на асинхронный двигатель подается полное линейное напряжение, и он работает с номинальной скоростью.

Обеспечивает постепенное и плавное увеличение пускового напряжения, тока и крутящего момента. Таким образом, отсутствует механический рывок и обеспечивается плавная работа, увеличивающая срок службы машины.

Преимущества устройства плавного пуска

  • Он обеспечивает лучший контроль над пусковым током и напряжением
  • Он обеспечивает плавное ускорение без рывков.
  • Уменьшает скачки напряжения в системе.
  • Продлевает срок службы системы
  • Обеспечивает лучшую эффективность и отсутствие необходимости в обслуживании
  • Его размер небольшой

Недостатки устройства плавного пуска

  • Это относительно дорого
  • Есть рассеивание энергии в форма нагрева
Переменная частота Dr ive (VFD)

Как и устройство плавного пуска, преобразователь частоты (VFD) может изменять как напряжение, так и частоту питающего тока.Он в основном используется для управления скоростью асинхронного двигателя, поскольку она зависит от частоты питания.

Переменный ток линии питания преобразуется в постоянный ток с помощью выпрямителей. Чистый постоянный ток преобразуется в переменный ток с регулируемой частотой и напряжением с использованием метода широтно-импульсной модуляции через силовой транзистор, такой как IGBT.

Обеспечивает полный контроль скорости двигателя от 0 до номинальной. Опция регулировки скорости с переменным напряжением обеспечивает лучший пусковой ток и ускорение.

Преимущества частотно-регулируемого привода

  • Он обеспечивает лучшее и плавное ускорение для большого двигателя.
  • Он предлагает полный контроль скорости с плавным ускорением и замедлением.
  • Увеличивает срок службы из-за отсутствия электрических и механических нагрузок
  • Предлагает прямое и обратное вращение двигателя

Недостатки частотно-регулируемого привода

  • Это относительно дорого, если не требуется регулирование скорости
  • Имеется тепловыделение
  • ЧРП создают гармоники в электрических линиях, которые могут повлиять на электронное оборудование и коэффициент мощности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *