Устройство электродвигателей и принцип работы: типы, устройство, принцип работы, параметры, производители

Содержание

Устройство, принцип работы и подключения электродвигателей переменного тока | Полезные статьи

Электродвигатели переменного тока являются электротехническими устройствами, которые преобразовывают электрическую энергию в механическую. Электромоторы нашли широкое применение во многих отраслях промышленности для привода всевозможных станков и механизмов. Без такого оборудования невозможна работа стиральных машин, холодильников, соковыжималок, кухонных комбайнов, вентиляторов и других бытовых приборов.

По принципу работы электродвигатели переменного тока делятся на синхронные и асинхронные. Асинхронные электромоторы переменного тока наиболее часто применяются в промышленности.

Асинхронный двигатель с креплением к фланцу

Стоит рассмотреть устройство электродвигателя переменного тока асинхронного.

Данный вид электромоторов состоит из главных частей — статора и ротора. В современных асинхронных электромоторах статор имеет неявно выраженные полюсы.

Для того чтобы максимально снизить потери от вихревых токов, сердечник статора изготавливают из соответствующей толщины листов электротехнической стали, подвергшихся штамповке. В пазы статора впрессовывается обмотка из медного провода. Фазовые обмотки статора устройства могут соединяться «звездой» или «треугольником». При этом все начала и концы впрессованных обмоток электромотора выводятся на корпус — в клеммную коробку. Подобное устройство статора электродвигателя оправданно, так как дает возможность включать его обмотки на различные стандартные напряжения. Сердечник статора запрессовывается в чугунный или алюминиевый корпус.

Устройство асинхронного электродвигателя

Ротор асинхронного мотора также состоит из подвергшихся штамповке листов электротехнической стали, и во все его пазы закладывается обмотка.

Учитывая конструкцию ротора, асинхронные электродвигатели подразделяются на устройства с короткозамкнутым ротором и фазным ротором.

Обмотку короткозамкнутого ротора, сделанную из медных стержней, закладывают в пазы ротора. При этом все торцы стержней соединяют при помощи медного кольца. Данный вариант обмотки считается обмоткой типа «беличья клетка». Стоит отметить, что медные стержни в пазах ротора не изолируются. Во многих асинхронных электромоторах «беличью клетку» сменяют литым ротором. Ротор напрессовывается на вал двигателя и является с ним одним целым.

Синхронные электродвигатели устанавливаются в различных электроинструментах, пылесосах, стиральных машинах. На корпусе синхронного электромотора переменного тока имеется сердечник полюса, в котором расположены обмотки. Обмотки возбуждения намотаны и на якорь. Их выводы припаяны ко всем секторам токосъемного коллектора, на которые при использовании графитовых щеток подается напряжение.

Устройство синхронного электродвигателя

Принцип действия электродвигателя переменного тока основан на применении закона электромагнитной индукции. При взаимодействии переменного электрического тока в проводнике и магните может возникнуть непрерывное вращение.

В синхронном электродвигателе якорь вращается синхронно с электромагнитным полем полюса, а у асинхронного электромотора ротор вращается с отставанием от вращающегося магнитного поля статора.

Для работы асинхронного электромотора необходимо, чтобы ротор устройства вращался в более медленном темпе, чем электромагнитное поле статора. При подаче тока на обмотку статора между сердечником статора и ротора возникает электромагнитное поле, которое наводит ЭДС в роторе. Возникает вращающийся момент, и вал электродвигателя начинает вращаться. Из-за трения подшипников или определенной нагрузки на вал, ротор асинхронного двигателя всегда вращается в более медленном темпе.

Принцип работы электродвигателя переменного тока асинхронного заключается в том, что магнитные полюса устройства постоянно вращаются в обмотках электромотора и направление тока в роторе постоянно меняется.

Скорость вращения ротора электромотора асинхронного зависит от общего количества полюсов. Для того чтобы понизить скорость вращения ротора в таком двигателе, требуется увеличить общее количество полюсов в статоре.

В синхронных электродвигателях вращающий момент в устройстве создается при взаимодействии между током в обмотке якоря и магнитным потоком в обмотке возбуждения. При изменении направления переменного тока одновременно меняется направление магнитного потока в корпусе и якоре. При таком варианте вращение якоря всегда будет в одну сторону. Примечательно, что плавная регулировка скорости вращения таких электромоторов регулируется величиной подаваемого напряжения, при помощи реостата или переменного сопротивления.

В зависимости от напряжения сети фазные обмотки статора асинхронного электромотора могут подсоединяться в «звезду» или «треугольник». Схема электродвигателя переменного тока при подключении его в сеть с напряжением 220 Вольт обмотки соединяются в треугольник, а при подключении в сеть 380 Вольт — схема обмоток имеет вид звезды.

Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту [email protected] ru с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.  

Электродвигатель постоянного тока: принцип работы и действия, устройство, характеристики

Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т.д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.

Краткая история создания

Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.

Принцип действия электродвигателя постоянного тока

На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.

Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.

Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).

Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).

Устройство электродвигателя постоянного тока

Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.

Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.

В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.

Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.

Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.

Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.

Особенности и характеристики электродвигателя постоянного тока

Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:

  • Экологичность. При работе не выделяются вредные вещества и отходы.
  • Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
  • Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
  • Простота управления.
  • Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
  • Легкость запуска.
  • Небольшие размеры.
  • Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.

Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:

  • Их себестоимость, следовательно, и цена достаточно высока.
  • Для подключения к сети необходим выпрямитель тока.
  • Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
  • При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.

Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.


Устройство и принцип работы электродвигателя переменного тока

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться. В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.  На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается.

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым.
Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

В корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щеток или их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора. Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

Режимы работы электродвигателя в следующей статье.

Электрический двигатель - принцип работы электромотора классификация и технические характеристики

Электрические двигатели предназначены для преобразования электрической энергии в механическую. Первые их прототипы были созданы в 19 веке, а сегодня эти устройства максимально интегрированы в жизнь современного человечества. Примеры их использования можно встретить в любой сфере жизнедеятельности: от общественного транспорта до домашней кофемолки.

Содержание:

Электрический двигатель: вид в разрезе

Принцип преобразования энергии

Принцип работы электродвигателя любого типа заключается в использовании электромагнитной индукции, возникающей внутри устройства после подключения в сеть. Для того чтобы понять, как эта индукция создается и приводит элементы двигателя в движение, следует обратиться к школьному курсу физики, объясняющему поведение проводников в электромагнитном поле.

Итак, если мы погрузим проводник в виде обмотки, по которому движутся электрические заряды, в магнитное поле, он начнет вращаться вокруг своей оси. Это связано с тем, что заряды находятся под влиянием механической силы, изменяющей их положение на перпендикулярной магнитным силовым линиям плоскости. Можно сказать, что эта же сила действует на весь проводник.

Схема, представленная ниже, показывает токопроводящую рамку, находящуюся под напряжением, и два магнитных полюса, придающие ей вращательное движение.

Картинка кликабельна.

Именно эта закономерность взаимодействия магнитного поля и токопроводящего контура с созданием электродвижущей силы лежит в основе функционирования электродвигателей всех типов. Для создания аналогичных условий в конструкцию устройства включают:

  • Ротор (обмотка) – подвижная часть машины, закрепленная на сердечнике и подшипниках вращения. Она исполняет роль токопроводящего вращательного контура.
  • Статор – неподвижный элемент, создающий магнитное поле, воздействующее на электрические заряды ротора.
  • Корпус статора. Оснащен посадочными гнездами с обоймами для подшипников ротора. Ротор размещается внутри статора.

Для представления конструкции электродвигателя можно создать принципиальную схему на основе предыдущей иллюстрации:

После включения данного устройства в сеть, по обмоткам ротора начинает идти ток, который под воздействием магнитного поля, возникающего на статоре, придает ротору вращение, передаваемое на крутящийся вал. Скорость вращения, мощность и другие рабочие показатели зависят от конструкции конкретного двигателя и параметров электрической сети.

Классификация электрических двигателей

Все электродвигатели между собой классифицируют в первую очередь по типу тока, протекающему через них. В свою очередь, каждая из этих групп тоже делить на несколько видов, в зависимости от технологических особенностей.
Двигатели постоянного тока

На маломощных двигателях постоянного тока магнитное поле создается постоянным магнитом, устанавливаемым в корпусе устройства, а обмотка якоря закрепляется на вращающемся валу. Принципиальная схема ДПТ выглядит следующим образом:

Обмотка, расположенная на сердечнике, изготавливается из ферромагнитных материалов и состоит из двух частей, последовательно соединенных между собой. Своими концами они подсоединяются к коллекторным пластинам, к которым прижимаются графитовые щетки. На одну из них подается положительный потенциал от источника постоянного тока, а на другую – отрицательный.

После подачи питания на двигатель происходит следующее:

  1. Ток от нижней «плюсовой» щетки подается на ту коллекторную пластину, к контактной платформе которой она подключена.
  2. Прохождение тока по обмотке на коллекторную пластину (обозначено пунктирной красной стрелкой), подключенную к верхней «отрицательной» щетке создает электромагнитное поле.
  3. Согласно правилу буравчика, в правой верхней части якоря возникает магнитное поле южного, а в левой нижней — северного магнитного полюса.
  4. Магнитные поля с одинаковым потенциалом отталкиваются друг от друга и приводят ротор во вращательное движение, обозначенное на схеме красной стрелкой.
  5. Устройство коллекторных пластин приводит к смене направления протекания тока по обмотке во время инерционного вращения, и рабочий цикл повторяется вновь.

Самый простой электрический двигатель

При очевидной простоте конструкции существенным недостатком таких двигателей является низкий КПД, обусловленный большими потерями энергии. Сегодня ДПТ с постоянными магнитами используются в простых бытовых приборах и детских игрушках.

Устройство двигателей постоянного тока большой мощности, используемых в производственных целях, не предусматривает использование постоянных магнитов (они занимали бы слишком много места). В этих машинах используется следующая конструкция:

  • обмотка состоит из большего количества секций, представляющих собой металлический стержень;
  • каждая обмотка отдельно подключается к положительному и отрицательному полюсу;
  • количество контактных площадок на коллекторном устройстве соответствует количеству обмоток.

Таким образом, снижение потерь электроэнергии обеспечивается плавным подключением каждой обмотки к щеткам и источнику питания. На следующей картинке представлена конструкция якоря такого двигателя:

Устройство электрических двигателей постоянного тока позволяет легко обратить направление вращения ротора с помощью простой смены полярности на источнике питания.

Функциональные особенности электродвигателей определяются наличием некоторых «хитростей», к которым относится сдвиг токосъемных щеток и несколько схем подключения.

Сдвиг узла токосъемных щеток относительно вращения вала происходит после запуска двигателя и изменения подаваемой нагрузки. Это позволяет компенсировать «реакцию якоря» — эффект, снижающий эффективность машины за счет торможения вала.

Есть три способа подключения ДПТ:

  1. Схема с параллельным возбуждением предусматривает параллельное подключение независимой обмотки, как правило, регулируемой реостатом. Так обеспечивается максимальная стабильность скорости вращения и её плавная регулировка. Именно благодаря этому двигатели с параллельным возбуждением находят широкое применение в грузоподъемном оборудовании, на электрическом транспорте и станках.
  2. Схема с последовательным возбуждением тоже предусматривает использование дополнительной обмотки, но подключается она последовательно с основной. Это позволяет при необходимости резко увеличить крутящий момент двигателя, к примеру, на старте движения железнодорожного состава.
  3. Смешанная схема использует преимущества обоих способов подключения, описанных выше.

Биполярный электрический двигатель

Двигатели переменного тока

Главным отличием этих двигателей от описанных ранее моделей заключается в токе, протекающем по их обмотке. Он описывает по синусоидальному закону и постоянно меняет свое направление. Соответственно и питание этих двигателей осуществляется от генераторов со знакопеременной величиной.

Одним из главных конструктивных отличий является устройство статора, представляющего собой магнитопровод со специальными пазами для расположения витков обмотки.

Двигатели переменного тока классифицируют по принципу работы на синхронные и асинхронные. Коротко говоря, это означает, что в первых частота вращения ротора совпадает с частотой вращения магнитного поля в статоре, а во вторых – нет.

Настоятельно рекомендуем прочитать нашу статью об устройстве электродвигателей переменного тока.

Синхронные двигатели

В основе работы синхронных электродвигателей переменного тока тоже лежит принцип взаимодействия полей, возникающих внутри устройства, однако в их конструкции постоянные магниты закрепляются на роторе, а по статору проводится обмотка. Принцип их действия демонстрирует следующая схема:

Проводники обмотки, по которой проходит ток, показанные на рисунке в виде рамки. Вращение ротора происходит следующим образом:

  1. На определенный момент времени ротор с закрепленным на нем постоянным магнитом находится в свободном вращении.
  2. На обмотке в момент прохождения через нее положительной полуволны формируется магнитное поле с диаметрально противоположными полюсами Sст и Nст. Оно показано на левой части приведенной схемы.
  3. Одноименные полюса постоянного магнита и магнитного поля статора отталкиваются друг от друга и приводят двигатель в положение, показанное на правой части схемы.

В реальных условиях для создания постоянного плавного вращения двигателя используется не одна катушка обмотки, а несколько. Они поочередно пропускают через себя ток, благодаря чему создается вращающееся магнитное поле.

Асинхронные двигатели

А асинхронном двигателе переменного тока вращающееся магнитное поле создается тремя (для сети 380 В) обмотками статора. Их подключение к источнику питания осуществляется через клеммную коробку, а охлаждение — вмонтированным в двигатель вентилятором.

Ротор, собранный из нескольких замкнутых между собой металлических стержней, жестко соединен с валом, составляя с ним одно целое. Именно из-за соединения стержней межу собой этот тип ротора называется короткозамкнутым. Благодаря отсутствию токопроводящих щеток в данной конструкции значительно упрощается техническое обслуживание двигателя, увеличивается срок службы и надежность. Главной причиной выхода из строя двигателей этого типа является износ подшипников вала.

Принцип работы асинхронного двигателя основывается на законе электромагнитной индукции – если частота вращения электромагнитного поля обмоток статора превышает частоту вращения ротора, в нем наводится электродвижущая сила. Это важно, поскольку при одинаковой частоте ЭДС не возникает и, соответственно, не возникает вращения. В действительности нагрузка на вал и сопротивление от трения подшипников всегда замедляет ротор и создает достаточные для работы условия.

Главным недостатком двигателей данного типа является невозможность получения постоянной частоты вращения вала. Дело в том, что рабочие характеристики устройства изменяются в зависимости от различных факторов. К примеру, без нагрузки на вал циркулярная пила вращается с максимальной скоростью. Когда мы подводим к пильному полотну доску и начинаем её резать, частота вращения диска заметно снижается. Соответственно, снижается и скорость вращения ротора относительно электромагнитного поля, что приводит к наведению еще большей ЭДС. Это увеличивает потребляемый ток и рабочая мощность мотора увеличивается до максимальной.

Принцип работы электрического мотора

Важно подбирать двигатель подходящей мощности – слишком низкая приведет к повреждению короткозамкнутого ротора из-за превышения расчетного максимума ЭДС, а слишком высокая приводит к необоснованным энергозатратам.

Асинхронные двигатели переменного тока рассчитаны на работу от трехфазной электрической сети, однако могут быть подключены и в однофазную сеть. Так, например, они используются в стиральных машинах и станках для домашних мастерских. Однофазный двигатель имеет примерно на 30% более низкую мощность, по сравнению с трехфазным – от 5 до 10 кВт.

Ввиду простоты исполнения и надежности асинхронные двигатели переменного тока наиболее распространены не только в производственном оборудовании, но и в бытовой технике.

Универсальные коллекторные двигатели

Во многих бытовых электроприборах необходимо наличие высокой скорости вращения двигателя и крутящего момента при малых пусковых токах и плавной регулировке. Всем этим требования удовлетворяют коллекторные двигатели, называемые универсальными. По своему устройству они очень похожи на двигатели постоянного тока с последовательным возбуждением.

Главным отличием от ДПТ является магнитная система, комплектуемая несколькими изолированными друг от друга листами электротехнической стали, к полюсам которых подсоединены по две секции обмотки. Такая конструкция снижает нагрев элементов токами Фуко и перемагничивание.

Высокая синхронность магнитных полей в универсальных коллекторных двигателях сохраняет высокую скорость вращения даже под большой нагрузкой на вал. Поэтому их используют в маломощном быстроходном оборудовании и домашней технике. При подключении в цепь регулируемого трансформатора появляется возможность плавной настройки частоты вращения.

Главный недостаток таких электромоторов заключается в низком моторесурсе, обусловленном быстрым стиранием графитовых щеток.

Принцип работы электродвигателя постоянного тока, устройство электромотора.

Электродвигатель постоянного тока был изобретен раньше других типов машин, преобразующих электрическую энергию в механическую. Несмотря на то, что позднее самое широкое распространение получили двигатели переменного тока, существуют сферы применения, в которых нет альтернативы электродвигателям постоянного тока.

Подробно о классификации и принципах работы электрических моторов, рекомендуем прочитать в нашей отдельной статье.

Содержание:

Электродвигатель постоянного и переменного тока

История изобретения

Электродвигатель Якоби.

Для того чтобы понять принцип работы электрических двигателей постоянного тока (ДПТ) мы обратимся к истории его создания. Итак, первые опытные доказательства того, что электрическую энергию можно превращать в механическую, продемонстрировал Майкл Фарадей. В 1821 году он провел опыт с проводником, опущенным в сосуд, наполненный ртутью, на дне которого располагался постоянный магнит. После подачи электричества на проводник, тот начинал вращаться вокруг магнита, демонстрируя свою реакцию на имеющееся в сосуде магнитное поле. Эксперимент Фарадея не нашел практического применения, но доказал возможность создания электрических машин, и дал старт развитию электромеханики.

Первый электрический двигатель постоянного тока, в основу которого был положен принцип вращения подвижной части (ротора) был создан русским физиком-механиком Борисом Семеновичем Якоби в 1834 году. Это устройство работало следующим образом:

  1. После подачи питания вокруг якоря-ротора создавалось электромагнитное поле, чьи полюса располагались напротив друг друга по правилу буравчика и отклонялись от одноименных полюсов индуктора.
  2. Перед тем, как электромагнитное поле якоря устанавливалось на максимальном приближении к разноименным полюсам индуктора, специальный коммутатор отключал питание, и якорь продолжал вращаться по инерции.
  3. После того, как якорь выходил из-под полюсов индуктора, коммутатор включал питание с обратной полярностью и появившееся «перевернутое» электромагнитное поле отталкивалось от полюсов индуктора, делая полный оборот якоря.

    1-4 — металлические кольца, 5 — скользящий контакт, 6 — батарея

Описанный принцип использовался в двигателе, который Якоби установил на лодке с 12 пассажирами в 1839 году. Судно двигалось рывками со скоростью в 3 км/ч против течения (по другим данным — 4.5 км/ч), но успешно пересекло реку и высадило пассажиров на берег. В качестве источника питания использовалась батарея с 320 гальваническими элементами, а движение осуществлялось с помощью лопастных колес.

Дальнейшее изучение вопроса привело исследователей к разрешению массы вопросов, касаемо того, какие источники питания лучше использовать, как улучшить его рабочие характеристики и оптимизировать габариты.

В 1886 году Фрэнком Джулиан Спрэгом впервые был сконструирован электродвигатель постоянного тока, близкий по конструкции тем, которые применяются в наши дни. В нем был реализован принцип самовозбуждения и принцип обратимости электрической машины. К этому моменту все двигатели данного типа перешли на питание от более подходящего источника – генератора постоянного тока.

Щёточно-коллекторный узел обеспечивает электрическое соединение цепи ротора с цепями, расположенными в неподвижной части машины

Устройство и принцип работы

В современных ДПТ используется все тот же принцип взаимодействия заряженного проводника с магнитным полем. С усовершенствованием технологий устройство лишь дополняется некоторыми элементами, улучшающими производительность. К примеру, в наши дни постоянные магниты используются лишь в двигателях низкой мощности, поскольку в крупных аппаратах они занимали бы слишком много места.

Основной принцип

Первоначальные прототипы двигателей данного типа были заметно проще современных аппаратов. Их примитивное устройство включало в себя лишь статор из двух магнитов и якорь с обмотками, на которые подавался ток. Изучив принцип взаимодействия магнитных полей, конструкторы определили следующий алгоритм работы двигателя:

  1. Подача питания создает на обмотках якоря электромагнитное поле.
  2. Полюса электромагнитного поля отталкиваются от одноименных полюсов поля постоянного магнита.
  3. Якорь вместе с валом, на котором он закреплен, вращается в соответствии с отталкивающимся полем обмотки.

Данный алгоритм отлично работал в теории, однако на практике перед создателями первых двигателей вставали характерные проблемы, препятствовавшие функционированию машины:

  • Мертвое положение, из которого двигатель невозможно запустить – когда полюса точно сориентированы друг перед другом.
  • Невозможность пуска из-за сильного сопротивления или слабого отталкивания полюсов.
  • Ротор останавливается после совершения одного оборота. Это связано с тем, что после прохождения половины окружности притягивание магнита не разгоняло, а тормозило вращение ротора.

Решение первой проблемы было найдено довольно быстро – для этого было предложено использовать более двух магнитов. Позднее в устройство двигателя стали включать несколько обмоток и коллекторно-щеточный узел, который подавал питание только на одну пару обмоток в определенный момент времени.

Коллекторно-щеточная система подачи тока решает и проблему торможения ротора – переключение полярности происходит до того момента, когда вращение ротора начинает замедляться. Это значит, что во время одного оборота двигателя происходит как минимум два переключения полярности.

Проблема слабых пусковых токов рассматривается ниже в отдельном разделе.

Конструкция

Итак, постоянный магнит закрепляется на корпусе двигателя, образуя вместе с ним статор, внутри которого располагается ротор. После подачи питания на обмотке якоря возникает электромагнитное поле, вступающее во взаимодействие с магнитным полем статора, это приводит к вращению ротора, жестко посаженного на вал. Для передачи электрического тока от источника к якорю двигатель оснащается коллекторно-щеточным узлом, состоящим из:

  1. Коллектора. Он представляет собой токосъемное кольцо из нескольких секций, разделенных диэлектрическим материалом, подключается к обмоткам якоря и крепится непосредственно на валу двигателя.
  2. Графитовых щеток. Они замыкают цепь между коллектором и источником питания с помощью щеток, которые прижимаются к контактным площадкам коллектора прижимными пружинами.

Обмотки якоря одними концами соединяются между собой, а другими – с секциями коллектора, образуя таким образом цепь, по которой ток идет по следующему маршруту: входная щетка –> обмотка ротора -> выходная щетка.

Приведенная принципиальная схема (рис. 3) демонстрирует принцип работы примитивного электродвигателя постоянного тока с коллектором из двух секций:

  1. В этом примере мы будет считать стартовым положением ротора то, которое нарисовано на схеме. Итак, после подачи питания на нижнюю щетку, помеченную знаком «+», ток протекает по обмотке и создает вокруг нее электромагнитное поле.
  2. По правилу буравчика в левой нижней части формируется северный полюс якоря, а на правой верхней – южный. Располагаясь вблизи одноименных полюсов статора, они начинают отталкиваться, приводя тем самым ротор в движение, которое продолжается до тех пор, пока противоположные полюса не окажутся на минимальном друг от друга расстоянии, то есть придут в окончательное положение (рис. 1).
  3. Конструкция коллектора на данном этапе приведет к переключению полярности на обмотках якоря. В результате этого полюса магнитных полей снова окажутся на близком расстоянии и начнут отталкиваться.
  4. Ротор совершает полный оборот, и коллектор снова меняет полярность, продолжая его движение.

Детали электродвигателя постоянного тока

Здесь, как уже было отмечено, продемонстрирован принцип работы примитивного прототипа. В настоящих двигателях используется более двух магнитов, а коллектор состоит из большего числа контактных площадок, благодаря чему обеспечивается плавное вращение.

В высокомощных двигателях использование постоянных магнитов не представляется возможным из-за их большого размера. Альтернативой для них служит система из нескольких токопроводящих стержней, на каждой из которых имеется своя обмотка, подключаемая к питающим шинам. Одноименные полюса включаются в сеть последовательно. На корпусе может присутствовать от 1 до 4 пар полюсов, а их количеству должно соответствовать число токосъемных щеток на коллекторе.

Электродвигатели, рассчитанные на большую мощность, обладают рядом функциональных преимуществ перед более «легкими» аналогами. К примеру, здешнее устройство токосъемных щеток поворачивает их на определенный угол относительно вала для компенсации торможения вала, названного «реакцией якоря».

Пусковые токи

Постепенное оснащение ротора двигателя дополнительными элементами, обеспечивающими его бесперебойную работу и исключающими секторальное торможение, возникает проблема его запуска. Но все это увеличивает вес ротора – с учетом сопротивления вала столкнуть его с места становится сложнее. Первым решением этой проблемы, приходящим в голову, может быть увеличение силы тока, подаваемой на старте, но это может привести к неприятным последствиям:

  • защитный автомат линии не выдержит тока и отключится;
  • провода обмотки сгорят от перегрузки;
  • секторы переключения на коллекторе приварятся от перегрева.

Поэтому такое решение можно назвать скорее рискованной полумерой.

Вообще, данная проблема является главным недостатком электродвигателей постоянного тока, но включает в себя основное их преимущество, благодаря которому они незаменимы в некоторых областях. Преимущество это заключается в прямой передаче момента вращения сразу же после пуска – вал (если тронется с места) будет крутиться с любой нагрузкой. Двигатели переменного тока на такое не способны.

Решить эту проблему полностью до сих пор не удалось. На сегодняшний день для пуска таких двигателей используется автомат-стартер, чей принцип работы схож с автомобильной коробкой передач:

  1. Сначала ток постепенно поднимается до пускового значения.
  2. После «сдвига» с места значение тока резко падает и снова плавно поднимается «подгоняя вращение вала».
  3. После подъема до предельного значения сила тока снова снижается и «подгоняется».

Данный цикл повторяется 3-5 раз (рис. 4) и решает необходимость старта двигателя без возникновения критических нагрузок в сети. Фактически, «плавный» запуск по-прежнему отсутствует, однако оборудование работает безопасно, а главное достоинство электродвигателя постоянного тока – крутящий момент – сохраняется.

Схемы подключения

Подключение ДПТ выполняется несколько сложнее, в сравнении с двигателями со спецификацией на переменный ток.

У двигателей высокой и средней мощности, как правило, есть специальные контакты обмотки возбуждения (ОВ) и якоря, вынесенные в клеммную коробку. Чаще всего на якорь подают выходное напряжение источника, а на ОВ – ток, отрегулированный, как правило, реостатом. Скорость вращения двигателя напрямую зависит от силы тока, поданного на обмотку возбуждения.

Есть три основные схемы включения якоря и обмотки возбуждения электродвигателей постоянного тока:

  1. Последовательное возбуждение используется в моторах, от которых требуется большая сила тока на старте (электрический транспорт, прокатное оборудование и т.п.). Данная схема предусматривает последовательное подключение ОВ и якоря к источнику. После подачи напряжения по обмоткам якоря и ОВ проходят токи одинаковой величины.Следует учитывать, что снижение нагрузки на вал даже на четверть при последовательном возбуждении приведет к резкому повышению оборотов, что может привести к поломке двигателя, поэтому эта схема и используется в условиях постоянной нагрузки.
  2. Параллельное возбуждение применяется в моторах, обеспечивающих работу станкового, вентиляторного и прочего оборудования, которое в момент пуска не оказывает высокую нагрузку на вал. В этой схеме для возбуждения ОВ используется независимая обмотка, регулируемая, чаще всего, реостатом.
  3. Независимое возбуждение очень схоже с параллельным, но в данном случае для подачи питания ОВ используется независимый источник, что исключает появление электрической связи между якорем и обмоткой возбуждения.

В современных электрических двигателях постоянного тока могут применяться смешанные схемы, основанные на базе трех описанных.

Регулировка скорости вращения

Способ регулирования оборотов ДПТ зависит от схемы его подключения:

  1. В моторах с параллельным возбуждением снижение оборотов относительно номинала можно производить изменяя напряжение якоря, а повышение – ослабляя поток возбуждения. Для увеличения оборотов (не более чем в 4 раза относительно номинальной величины) в цепь ОВ добавляется реостат.
  2. При последовательном возбуждении регулировка легко осуществляется переменным сопротивлением в цепи якоря. Правда этот метод подходит только для снижения оборотов и лишь в соотношениях 1:3 или 1:2 (кроме того, это приводит к большим потерям в реостате). Повышение осуществляется с помощью регулировочного реостата в цепи ОВ.

Данные схемы редко применяются в современном высокотехнологичном оборудовании, поскольку обладают узким диапазоном регулировки и другими недостатками. В наши дни для этих целей все чаще создают электронные схемы управления.

Реверсирование

Для того чтобы реверсировать (обратить) вращение двигателя постоянного тока необходимо:

  • при последовательном возбуждении – просто изменить полярность входных контактов;
  • при смешанном и параллельном возбуждении – необходимо менять направление тока в обмотке якоря; разрыв ОВ может привести к критическому повышению нагнетаемой электродвижущей силы и пробою изоляции проводов.

Сфера применения

Как вы уже поняли, использование электродвигателей постоянного тока целесообразно в условиях, когда постоянное беспрерывное подключение к сети неосуществимо. Хорошим примером здесь может служить автомобильный стартер, толкающий двигатель внутреннего сгорания «с места», или детские игрушки с моторчиком. В данных случаях для запуска двигателя используются аккумуляторные батареи. В промышленных целях ДПТ применяются на прокатных станах.

Основная же сфера применения ДПТ – электрический транспорт. Пароходы, электровозы, трамваи, троллейбусы и другие аналогичные имеют очень большое пусковое сопротивление, преодоление которого возможно только с помощью двигателей постоянного тока с их мягкими характеристиками и широкими пределами регулировки вращения. С учетом стремительного развития и популяризации экологических транспортных технологий, сфера применения ДПТ лишь увеличивается.

Самый простой щёточно-коллекторный узел

Достоинства и недостатки

Резюмируя все вышесказанное, можно описать характерные для электродвигателей постоянного тока достоинства и недостатки относительно их аналогов, рассчитанных на работу от переменного тока.

Основные достоинства:

  • ДПТ незаменимы в ситуациях, когда необходим сильный пусковой момент;
  • скорость вращения якоря легко регулируется;
  • двигатель постоянного тока является универсальной электрической машиной, то есть может применяться в качестве генератора.

Главные недостатки:

  • ДПТ имеют высокую производственную стоимость;
  • использование щеточно-коллекторного узла приводит к необходимости частого техобслуживания и ремонта;
  • для работы нужен источник постоянного тока или выпрямители.

Электродвигатели постоянного тока, безусловно, проигрывают своим «переменным» сородичам по стоимости и надежности, однако используются и будут использоваться, поскольку плюсы от их использования в определенных сферах категорические перечеркивают все минусы.

устройство, принцип работы, классификация, основные параметры

Электрический двигатель (electric motor), сокращенно электродвигатель,  – это электрическая машина, с помощью которой электрическая энергия преобразуется в механическую, с ее помощью приводятся в движение различные механизмы.

Электродвигатель является основным элементом электропривода. В некоторых режимах работы электропривода электродвигатель осуществляет обратное преобразование энергии (когда механическая работа преобразуется в электрическую энергию и тепло), то есть работает в режиме электрического генератора.

Устройство электродвигателя

Электродвигатель состоит из

  • Статора - это неподвижная его часть.
  • Ротора - подвижная часть.
  • Коллектора, выполняющего одновременно 2 функции: является датчиком углового положения ротора и переключателем тока со скользящими контактами.
  • Щеток – скользящих контактов, расположенных вне ротора и прижатых к коллектору.

Принцип работы электродвигателя

Современные электрические моторы работают благодаря существованию такого понятия, как электромагнитная индукция. Оба магнитных поля ротора и статора взаимодействуют между собой. В определенное время происходит так называемый “вращающий момент”, когда подвижная часть конструкции приводится в движение.
В результате взаимодействия магнитных полей электрическая энергия начинает превращаться в механическую.

Классификация электродвигателей

В зависимости от характеристик питающей сети выделяют 2 основных типа двигателя:
- Постоянного тока
- Переменного тока:

  • Синхронные (где ротор вращается синхронно с магнитным полем питающего напряжения)
  • Асинхронные (где частота вращения ротора отличается от частоты вращения магнитного поля): однофазные, двухфазные, трехфазные, многофазные    

Основные параметры электродвигателей

Номинальными данными электрической машины называют данные, характеризующие ее работу в режиме, для которого она предназначена заводом-изготовителем. К номинальным данным относятся мощность, напряжение, ток, частота, КПД, коэффициент мощности, частота вращения и ряд других данных в зависимости от типа и назначения машины.

  • Мощность, Вт
  • Частота вращения, об/мин
  • Крутящий (вращающий) момент, Нм
  • Потребляемый ток, А
  • КПД, %
  • Напряжение сети, В
  • Частота сети, Гц    

Устройство и принцип работы электроинструмента

Содержание:

  1. 1. Коллекторный электродвигатель постоянного тока
    1. 1.1. Принцип действия
    2. 1.2. Недостатки
  2. 2. Бесколлекторный двигатель
  3. 3. Редуктор
    1. 3.1. Особенности редукторов
  4. 4. Устройства управления
  5. 5. Для безопасной работы

Двигатель, редуктор, устройства управления и детали для безопасной работы — вот основные узлы каждого электроинструмента. Для ручной машины важно, что бы она была как можно легче и меньше. Кроме того, от нее требуется высокая скорость, которую можно регулировать. Этим условиям отвечают двигатели постоянного тока. Они подразделяются на коллекторные и вентильные.

Коллекторный электродвигатель постоянного тока

Что бы понять, как электрическая энергия превращается в механическую, познакомимся с устройством двигателя. Его основные узлы: статор (индуктор), ротор (якорь) и примыкающий к нему щеточноколлекторный узел.

Статор — неподвижная стальная деталь, к которой прикрепляются главные и добавочные полюсы. Обмотка главных полюсов создает магнитное поле, а добавочная улучшает работу коллектора.

Вращающийся ротор устанавливается на валу. Он состоит из сердечника и обмотки. Ее концы соединяются с пластинами коллектора, к которому, в свою очередь, примыкают щетки - через них обмотка якоря соединяется с внешней цепью. Щетки занимают определенное положение по отношению к полюсам двигателя. В некоторых электроинструментах имеется поворотный щеткодержатель-траверса, благодаря ему положение щеток можно изменять. Это позволяет сохранить мощность при работе в режиме реверса. В остальных случаях вращение в обратном режиме включают электронные магнитные пускатели.

Принцип действия

Двигатель работает за счет электромагнитной индукции. При подаче напряжения на графитовые щетки, они замыкаются с ротором. По его обмотке проходит электрический ток. Так как ротор находится внутри магнитного поля статора, на него начинают действовать силы Ампера. На концах якоря они направлены в противоположные стороны, что создает крутящий момент. Ротор поворачивается на 180°. В этот момент крутящий момент становится равным нулю. Что бы вращение продолжалось необходимо переключить направление тока — провести коммутацию. По коллектору, который начал вращаться вместе с ротором, скользят щетки, в нужный момент они переходят с одной пластины на другую, меняя направление тока в обмотках ротора.

Частота вращения двигателя регулируется за счет изменения магнитного поля статора, которое в свою очередь генерируется током возбуждения двигателя. На этот ток можно повлиять реостатом, транзистором, т. е. любым устройством с активным сопротивлением. Таким образом, осуществляется электронная регулировка скорости.

Недостатки

Слабое место коллекторного двигателя — графитовые щетки, в процессе эксплуатации они истираются. При интенсивной нагрузке их приходится часто заменять. Кроме того, такой двигатель шумит и вибрирует во время работы, особенно на больших скоростях. Бороться с этими недостатками помогает использование в конструкциях качественных деталей и внешних антивибрационных элементов.

Бесколлекторный двигатель

Существует вид двигателей постоянного тока, в которых отсутствует щеточно-коллекторный узел. Ток в них изменяется с помощью электронных переключателей, что избавляет конструкцию от наличия щеток. Такие моторы называют вентильными. Принцип их работы аналогичен описанному выше. От коллекторных их отличает конструкция: магниты размещены на роторе, а обмотка на статоре.

Датчик углового положения ротора указывает электронному блоку, когда нужно менять направление тока. Единственный недостаток вентильного двигателя — дорогостоящие детали. По этой причине в ручных электроинструментах в основном используются коллекторные двигатели, с вентильным — лишь единичные модели: компании Makita и Hitachi предлагают аккумуляторные ударные шуруповерты, называя их инструментами будущего.

Редуктор

Механическую энергию, которую вырабатывает двигатель, нужно передать на рабочий орган машины (шпиндель). Эту функцию выполняет редуктор. Часто его называют понижающим. Скорость вращения входного вала высокая, механическая передача (одна или несколько) преобразует ее так, что на выходном валу получается меньшее число оборотов, но высокий крутящий момент.

В ручных машинах применяют разнообразные виды механических передач: зубчатая, ременная, цепная, планетарная. В большинстве случаев на выходе получается вращение. Но есть инструменты, в которых этот вид движения преобразуется в другой.

Ударный механизм перфоратора работает следующим образом. На валу установлен «пьяный» подшипник — качающийся привод, которой преобразует вращательное движение от двигателя в поступательное - цилиндра. В пространстве между цилиндром, поршнем и бойком, находится воздух. Он сжимается и заставляет поршень перемещаться сначала вперед к бойку, а затем возвращает его в исходное положение.

Редуктор электролобзика преобразует вращение вала двигателя в возвратно-поступательное движение ползуна. Расположенный вертикально ползун перемещает пилку вниз и вверх. Пилка опирается на опорный ролик. Наличие функции маятникового хода означает, что опорный ролик и вилка, на которой он держится, могут отклоняться назад. В результате пилка, кроме основного, совершает движение вперед и назад. Это увеличивает скорость прямолинейного реза. Ступени маятникового хода задаются степенью отклонения ролика.

В вибрационных шлифмашинах эксцентрик, установленный на валу, так преобразует вращательное движение, что подошва всего лишь колеблется с маленькой амплитудой. В эксцентриковых шлифовальных машинах вращательное движение рабочего органа сохраняется, но эксцентрик добавляет ему колебания. Такие преобразования позволяют выполнять с помощью этих инструментов тонкую шлифовку.

Особенности редукторов

Для пользователя имеет значение, из каких деталей изготовлен редуктор, от этого зависит его надежность и срок службы всего электроинструмента. В моделях бытового класса часто используются шестерни из пластмассы, в профессиональных — редуктор полностью металлический. Преимуществом считается, если и корпус то же выполнен из металла. В этом случае инструмент лучше выдерживает большие нагрузки и удары.

Важной функцией, которую может выполнять редуктор, является ступенчатое изменение частоты вращения выходного вала. Она доступна на отдельных моделях дрелей, шуруповертов. Механическое переключение скоростей позволяет работать с меньшей скоростью и большим крутящим моментом на первой передаче и с более высоким числом оборотов - на второй. Если сравнить технические характеристики в цифрах, то можно сразу заметить, что инструменты с двухскоростным (трехскоростные встречаются редко) редуктором отличаются большим числом оборотов по сравнению с обычными моделями, в которых обороты регулируются только электроникой. Эта особенность обеспечивает высокую производительность и оптимальный подбор режима работы.

Устройства управления

Для питания двигателя в электроинструментах используются различные схемы, в том числе микропроцессорные электроприводы. Обязательным элементом любой системы является выпрямитель. Он преобразует переменный ток сети в постоянный, который подается на электродвигатель. В аккумуляторных инструментах, которые питаются от батарей, выпрямитель не требуется.

Скорость вращения регулирует преобразователь частоты. Самый простой его вариант — это несколько реле, с помощью которых число оборотов можно установить вручную. В систему так же могут входить магнитные пускатели с кнопкой для изменения направления вращения двигателя (функция реверса). Устройство управления двигателем размещают под рукояткой или вблизи нее, где на корпус выводятся курок-выключатель, колесико регулировки скорости, кнопка реверса.

Для безопасной работы

К ручным инструментам предъявляются особые требования, связанные с безопасностью работы. Электропроводящие детали покрывают специальным материалом для защиты пользователя от поражения током. Многие производители, кроме основной изоляции, на случай ее повреждения, применяют дополнительную, получая, таким образом, двойную. Остальные защитные устройства, такие как муфты, фиксаторы применяются в зависимости от вида инструмента.

Двигатели постоянного тока

| Принцип работы | Ресурсы для инженеров

Электродвигатели, работающие на электромагнетизме. Однако существуют и другие типы двигателей, в которых используются электростатические силы или пьезоэлектрический эффект. В случае двигателя PMDC (постоянного магнита постоянного тока) движение создается электромагнитом (якорем), взаимодействующим с магнитом с фиксированным полем (корпус в сборе).

В щеточном двигателе электрический ток протекает через клеммы двигателя в узле торцевой крышки, который входит в контакт с коммутатором в узле якоря через угольные щетки или щеточные листы.Электрический ток питает катушки, создавая магнитное поле, заставляющее якорь вращаться, когда он взаимодействует с магнитами, заключенными в корпус в сборе. Правило левой руки Флемминга помогает определить направление силы, тока и магнитного потока.

В бесщеточном двигателе, когда электричество подается на вывод двигателя, ток течет через фиксированное поле статора и взаимодействует с движущимся постоянным магнитом или движущимся индуцированным магнитным полем внутри ротора / якоря.После того, как движение и силовая нагрузка будут удовлетворены доступным источником тока, он возвращается обратно к источнику, выходящему из двигателя.

Ключевые элементы, взаимодействующие для создания движения

Магнитный поток - Двигатель может иметь катушку с фиксированной обмоткой или статор с постоянным магнитом и якорь с подвижной обмоткой или ротор с постоянными магнитами, которые будут иметь взаимодействующие поля магнитного потока для создания силы и движения.

Сила - Величина тока, протекающего через электромагнитное поле, пропорциональна величине силы взаимодействующего электромагнитного поля, необходимой для достижения противоположной рабочей нагрузки.Помимо силы и движения, необходимых для устройства, необходимо учитывать любую потерю эффективности при преобразовании электроэнергии в механическую работу (ватты).


Обзор шагового двигателя

Что такое шаговый двигатель

Шаговые двигатели работают иначе, чем другие двигатели постоянного тока, которые просто вращаются при подаче напряжения. Вращательный шаговый двигатель - это электромеханическое устройство, которое может разделить один полный оборот (360 °) на большое количество шагов вращения. Шаговые двигатели управляются электроникой и не требуют дорогостоящих устройств обратной связи.Линейный шаговый двигатель подобен вращающемуся двигателю, за исключением того, что вал движется линейно или продольно. Оба типа имеют две схемы обмотки для своих электромагнитных катушек: униполярную и биполярную. Униполярный означает, что каждый конец катушки имеет одну полярность. Рекомендуемый стабилитрон используется для обеспечения быстрого спада тока в отключенной катушке. Это приведет к увеличению крутящего момента двигателя, особенно на более высоких частотах.

Биполярный означает, что каждый конец катушки имеет обе полярности.Катушка будет положительной и отрицательной во время каждого цикла движения. Поскольку каждая катушка используется полностью, двигатель имеет более высокий крутящий момент по сравнению с униполярной катушкой. Биполярный драйвер может включать в себя возможность управления постоянным током, называемую приводом прерывателя. Это обеспечит увеличенный выходной крутящий момент на более высоких частотах и ​​снизит влияние колебаний температуры и напряжения питания.

Основы шагового двигателя

Шаговый двигатель PM или «консервная банка» - это недорогое решение для ваших приложений позиционирования с типичным углом шага 7.5 ° - 15 °. Меньшие углы шага можно получить с помощью Microstepping. Вал двигателя перемещается с определенным шагом при подаче электрических управляющих импульсов. Текущая полярность и частота подаваемых импульсов определяют направление и скорость движения вала.

Одним из наиболее значительных преимуществ шагового двигателя является его способность точно регулироваться в системе с разомкнутым контуром. Управление без обратной связи означает, что обратная связь о положении вала не требуется.Этот тип управления устраняет необходимость в дорогостоящих устройствах обратной связи, просто отслеживая входные ступенчатые импульсы. Шаговый двигатель - хороший выбор, когда требуется контролируемое движение. Они рекомендуются в приложениях, где необходимо контролировать угол поворота, скорость, положение и синхронизм. Возможности фиксации, удержания, втягивания и извлечения крутящего момента, скорости (об / мин) и шагов на оборот (угол шага) характеризуют шаговый двигатель.

Момент фиксации - определяет максимальный крутящий момент, который может быть приложен к обесточенному двигателю, не вызывая вращения двигателя.

Удерживающий момент - определяет максимальный крутящий момент, с которым двигатель, находящийся под напряжением, может быть нагружен, не вызывая вращательного движения.

Pull-In - производительность определяет способность двигателя запускаться или останавливаться. Это максимальная частота, при которой двигатель может запускаться или останавливаться мгновенно с приложенной нагрузкой без потери синхронизации.

Pull-Out определяет максимальный крутящий момент при применении рампы ускорения / замедления без потери шагов.Он определяет максимальную частоту, на которой двигатель может работать без потери синхронизма.

Наш шаговый двигатель можно комбинировать с полной линейкой редукторов для увеличения крутящего момента и снижения скорости.

Как работают электродвигатели?

Криса Вудфорда. Последнее изменение: 25 июля 2020 г.

Щелкните выключателем и мгновенно получите власть - как наши предки любили электродвигатели! Вы можете найти их во всем, начиная с электропоезда с дистанционным управлением автомобили - и вы можете быть удивлены, насколько они распространены.Сколько электрических моторы сейчас есть в комнате с тобой? Наверное, два в вашем компьютере для начала, один круто ездить, а еще один питает охлаждающий вентилятор. Если вы сидите в спальне, вы найдете моторы в фенах и многих игрушки; в ванной - вытяжки и электробритвы; На кухне моторы есть практически во всех приборах, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей.Электродвигатели зарекомендовали себя среди лучших изобретения всех времен. Давайте разберемся и узнаем, как они работай!

Фото: Даже маленькие электродвигатели на удивление тяжелые. Это потому, что они набиты туго намотанной медью и тяжелыми магнитами. Это мотор от старой электрической газонокосилки. Вещь медного цвета в сторону В передней части оси с прорезями находится коммутатор, удерживающий двигатель вращение в том же направлении (как описано ниже).

Как электромагнетизм заставляет двигатель двигаться?

Основная идея электродвигателя очень проста: вы помещаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая то. Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, у нас есть вернуться во времени почти на 200 лет.

Предположим, вы берете кусок обычного провода, превращаете его в большую петлю, и положите его между полюсами мощной постоянной подковы магнит.Теперь, если вы подключите два конца провода к батарее, провод будет прыгать кратко. Удивительно, когда видишь это впервые. Это прямо как по волшебству! Но есть совершенно научный объяснение. Когда электрический ток начинает течь по проводу, он создает магнитное поле вокруг него. Если разместить провод рядом с постоянным магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы знаете, что два магнита расположены рядом друг с другом. либо притягивать, либо отталкивать.Таким же образом временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и это то, что заставляет проволоку подпрыгивать.

Правило левой руки Флеминга

Вы можете определить направление, в котором будет прыгать провод, используя удобная мнемоника (вспомогательная память), называемая правилом левой руки Флеминга (иногда называется Motor Rule).

Вытяните большой, указательный и второй пальцы левой руки. рука так, чтобы все три были под прямым углом.Если вы укажете вторым пальцем в направлении Течения (который течет от положительного к положительному отрицательная клемма АКБ), а Первая палец в направление поля (которое течет с севера на южный полюс магнит), ваш thuMb будет показать направление, в котором провод Движется.

Это ...

  • Первый палец = Поле
  • SeCond палец = текущий
  • ЧтМб = Движение

Несколько слов о текущем

Если вас смущает то, что я говорю, что ток течет с положительного на отрицательный, это просто историческая конвенция.Такие люди, как Бенджамин Франклин, помогавший разобраться тайна электричества еще в 18 веке, считали, что это поток положительных зарядов, так что она перетекала с положительного на отрицательный. Мы называем эту идею условным током. и до сих пор используют его в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как электричество работает, мы склонны говорить о токе как о потоке электронов от отрицательного к положительному в направлении , противоположном направлению по отношению к обычному току.Когда вы пытаетесь вычислить вращение двигателя или генератора, обязательно помните, что ток означает обычный ток , а не поток электронов.

Как работает электродвигатель - теоретически

Фото: Электрик ремонтирует электродвигатель. на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото, но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица любезно предоставлено ВМС США.

Связь между электричеством, магнетизмом и движением изначально была открыт в 1820 году французским физиком Андре-Мари Ампер (1775–1867), и это фундаментальная наука, лежащая в основе электродвигателя. Но если мы хотим превратить это удивительное научное открытие в более практическое Немного технологий для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, которые сделали это, были англичане Майкл Фарадей (1791–1867). и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878).Вот как они пришли к своему гениальному изобретению.

Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, так что эффективно два параллельных провода, проходящие через магнитное поле. Один из них отводит электрический ток от нас по проводам, а другой один возвращает ток обратно. Поскольку ток течет в в противоположных направлениях проводов, Правило левой руки Флеминга говорит нам о том, что два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов двинется вверх и другой будет двигаться вниз.

Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась непрерывно - и мы будем на пути к созданию электрического мотор. Но этого не может произойти с нашей нынешней настройкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко хватит, что-нибудь еще случится. Как только катушка достигла вертикали положение, он перевернется, и электрический ток будет течь через него в противоположном направлении. Теперь силы на каждого сторона катушки перевернется.Вместо непрерывного вращения в в том же направлении, он двинется назад в том же направлении, в котором только что пришел! Представьте себе электропоезд с таким двигателем: он будет держать перетасовки назад и вперед на месте, даже не идя где угодно.

Как работает электродвигатель - на практике

Есть два способа решить эту проблему. Один из них - использовать своего рода электрический ток, который периодически меняет направление, что известно как переменный ток (AC). В виде небольших батарейных двигатели, которые мы используем дома, лучшее решение - добавить компонент назвал коммутатором концы катушки.(Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «добираться до работы». Это просто означает изменение взад и вперед в одном и том же путь, который ездит на работу, означает путешествовать туда и обратно.) В своей простейшей форме Коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его задача - реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Один конец катушки прикреплен к каждая половина коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя.Они подают электроэнергию в коммутатор через пару незакрепленных разъемы, называемые щетками, сделали либо из кусочков графита (мягкий уголь, похожий на карандаш "свинец") или тонкие отрезки упругого металла, который (как название предполагает) "задела" коммутатор. С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.

Художественное произведение: упрощенная схема деталей в электрическом мотор. Анимация: как это работает на практике.Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила на каждой стороне катушки всегда толкая в том же направлении, что позволяет катушке вращаться по часовой стрелке.

Такой простой экспериментальный двигатель, как этот, не может большая мощность. Мы можем увеличить усилие поворота (или крутящий момент) что двигатель может творить тремя способами: либо у нас может быть больше мощный постоянный магнит, или мы можем увеличить электрический ток протекает через провод, или мы можем сделать катушку так, чтобы в ней было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки.На практике двигатель также имеет постоянный магнит, изогнутый в круглой формы, так что он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.

Хотя мы описали несколько различных частей, вы можете думать о двигателе как о двух основных компонентах:

  • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
  • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коммутатор.

Универсальные двигатели

Такие двигатели постоянного тока

отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемые автомобили или электробритвы), но вы не найдете их во многих бытовых приборах. Мелкие бытовые приборы (например, кофемолки или электрические блендеры), как правило, используют так называемые универсальные двигатели , которые могут питаться как от переменного, так и от постоянного тока.В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает энергию от источника постоянного или переменного тока, который вы питаете:

  • Когда вы питаетесь постоянным током, электромагнит работает как обычный постоянный магнит и создает магнитное поле, которое всегда направлено в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном и том же направлении.
  • Когда вы подаете переменный ток, однако, ток, протекающий через электромагнит, и ток, протекающий через катушку. или против часовой стрелки.А как насчет коммутатора? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.

Анимация: Как работает универсальный двигатель: Электроснабжение питает как магнитное поле, так и вращающуюся катушку. С источником постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании от сети переменного тока и магнитное поле, и ток в катушке меняют направление каждый раз, когда ток питания меняется на противоположное.Это означает, что сила, действующая на катушку, всегда направлена ​​в одну сторону.

Фото: Внутри типичного универсального двигателя: основные части внутри среднего двигателя от кофемолки, которая может работать как от постоянного, так и от переменного тока. Серый электромагнит по краю - это статор (статическая часть), и он питается от катушек оранжевого цвета. Обратите внимание на прорези в коллекторе и прижимающиеся к нему угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких устройствах, как электрические железнодорожные поезда, во много раз больше и мощнее этого, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения в домашних условиях. который приводит в действие универсальные двигатели.

Электродвигатели прочие

В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электропитания, а статор представляет собой постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как заводские машины) работают немного по-другому: они пропускают переменный ток через противоположные пары магнитов, чтобы создать вращающееся магнитное поле, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться.Подробнее об этом вы можете прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его так, чтобы статор фактически превратился в длинную непрерывную дорожку, ротор может катиться по нему по прямой. Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские машины и плавучие железные дороги «маглев» (магнитная левитация).

Еще одна интересная конструкция - бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, при этом несколько железных катушек статичны в центре и постоянный магнит вращается вокруг них, а коммутатор и щетки заменяются электронной схемой.Вы можете прочитать больше в нашей основной статье о мотор-редукторах. Шаговые двигатели, которые вращаются на точно контролируемые углы, представляют собой разновидность бесщеточных двигателей постоянного тока.

Принцип электродвигателя - HiSoUR - Hi So You Are

🔊 Аудиочтение

Электродвигатель - это электромеханический преобразователь (электрическая машина), преобразующий электрическую энергию в механическую. В обычных электродвигателях генерируются магнитные поля в катушках с токонесущими проводниками, силы взаимного притяжения и отталкивания которых реализуются в движении.Таким образом, электродвигатель является аналогом очень похожего по конструкции генератора, который преобразует мощность двигателя в электрическую. Электродвигатели обычно генерируют вращательные движения, но их также можно использовать для поступательных движений (линейный привод). Электродвигатели используются для привода многих видов оборудования, машин и транспортных средств.

Принцип действия
Электродвигатели - это устройства, преобразующие электрическую энергию в механическую. Средством преобразования энергии в электродвигателях является магнитное поле.Существуют разные типы электродвигателей, и каждый тип имеет разные компоненты, структура которых определяет взаимодействие электрических и магнитных потоков, которые вызывают силу или крутящий момент двигателя.

Основным принципом, описывающим, как сила вызывается взаимодействием точечного электрического заряда q в электрическом и магнитном полях, является закон Лоренца:


где:

q: точечный электрический заряд
E: электрическое поле
v: скорость частицы
B: плотность магнитного поля
В случае чисто электрического поля выражение уравнения сводится к:


Сила в этом случае определяется только зарядом q и электрическим полем E.Это кулоновская сила, которая действует вдоль проводника, порождающего электрический поток, например, в катушках статора асинхронных машин или в роторе двигателей постоянного тока.

В случае чисто магнитного поля:


Сила определяется зарядом, плотностью магнитного поля B и скоростью груза v. Эта сила перпендикулярна магнитному полю и направлению скорости груза. Обычно в движении находится много грузов, поэтому выражение удобно переписать в терминах плотности заряда Fv (сила на единицу объема):


Для продукта это известно как плотность тока J (ампер на квадратный метр):


Тогда полученное выражение описывает силу, создаваемую взаимодействием тока с магнитным полем:


Это основной принцип, объясняющий, как возникают силы в электромеханических системах, таких как электродвигатели.Однако полное описание каждого типа электродвигателя зависит от его компонентов и конструкции.

Линейный двигатель
Линейный двигатель - это, по сути, любой электродвигатель, который был «раскручен» так, что вместо создания крутящего момента (вращения) он создает прямолинейную силу по своей длине.

Линейные двигатели чаще всего представляют собой асинхронные двигатели или шаговые двигатели. Линейные двигатели обычно используются во многих американских горках, где быстрое движение безмоторного железнодорожного вагона контролируется рельсом.Они также используются в поездах на магнитной подвеске, где поезд «летает» над землей. В меньшем масштабе перьевой плоттер HP 7225A 1978 года использовал два линейных шаговых двигателя для перемещения пера по осям X и Y.

Электромагнетизм

Сила и крутящий момент
Основной целью подавляющего большинства электродвигателей в мире является электромагнитное индуцирование относительного движения в воздушном зазоре между статором и ротором для создания полезного крутящего момента или линейной силы.

Согласно закону силы Лоренца сила проводника обмотки может быть просто выражена как:


или более широко, для работы с проводниками любой геометрии:


Наиболее общие подходы к вычислению сил в двигателях используют тензоры.

Мощность
Где об / мин - частота вращения вала, а T - крутящий момент, механическая выходная мощность двигателя Pem определяется выражением

.

в британских единицах с T, выраженным в фут-фунтах,

(лошадиные силы) и,
в единицах СИ с угловой скоростью вала, выраженной в радианах в секунду, и T, выраженным в ньютон-метрах,

(Вт).
Для линейного двигателя с силой F, выраженной в ньютонах, и скоростью v, выраженной в метрах в секунду,

(Вт).
В асинхронном или асинхронном двигателе соотношение между скоростью двигателя и мощностью воздушного зазора без учета скин-эффекта определяется следующим образом:

, где
Rr - сопротивление ротора
I r 2 - квадрат индуцированного тока в роторе
s - скольжение двигателя; я.е., разница между синхронной скоростью и скоростью скольжения, которая обеспечивает относительное движение, необходимое для индукции тока в роторе.

Задний ЭДС

Поскольку обмотки якоря двигателя постоянного тока или универсального двигателя движутся через магнитное поле, в них возникает индуцированное напряжение. Это напряжение имеет тенденцию противодействовать напряжению питания двигателя и поэтому называется «противоэлектродвижущей силой (ЭДС)». Напряжение пропорционально скорости вращения двигателя. Обратная ЭДС двигателя плюс падение напряжения на внутреннем сопротивлении обмотки и щетках должны равняться напряжению на щетках.Это обеспечивает основной механизм регулирования скорости в двигателе постоянного тока. Если механическая нагрузка увеличивается, двигатель замедляется; в результате возникает ЭДС нижней части спины, и больше тока потребляется от источника питания. Этот увеличенный ток обеспечивает дополнительный крутящий момент для уравновешивания новой нагрузки.

В машинах переменного тока иногда полезно учитывать источник обратной ЭДС внутри машины; Например, это особенно важно при точном регулировании скорости асинхронных двигателей на частотно-регулируемых приводах.

Потери
Потери электродвигателя в основном связаны с резистивными потерями в обмотках, потерями в сердечнике и механическими потерями в подшипниках, а также аэродинамическими потерями, особенно при наличии охлаждающих вентиляторов.

Потери также возникают при коммутации, искрообразовании в механических коммутаторах и электронных коммутаторах, а также при рассеивании тепла.

КПД
Для расчета КПД двигателя механическая выходная мощность делится на входную электрическую:

,
где - эффективность преобразования энергии, - входная электрическая мощность и - механическая выходная мощность:



где - входное напряжение, - входной ток, T - выходной крутящий момент и - выходная угловая скорость.Можно аналитически вывести точку максимальной эффективности. Обычно он составляет менее 1/2 крутящего момента при остановке.

Различные регулирующие органы во многих странах приняли и внедрили законы, поощряющие производство и использование электродвигателей с более высоким КПД.

Фактор качества
Эрик Лэйтуэйт предложил метрику для определения «качества» электродвигателя:

Где:

- коэффициент качества (коэффициенты выше 1, вероятно, будут эффективными)
- площади поперечного сечения магнитной и электрической цепи
- длины магнитной и электрической цепей
- проницаемость сердечника
- угловая частота двигатель приводится в движение на
Из этого он показал, что наиболее эффективные двигатели, вероятно, будут иметь относительно большие магнитные полюса.Однако это уравнение напрямую относится только к двигателям без ПМ.

Рабочие параметры

Допустимый крутящий момент типов двигателей
Все электромагнитные двигатели, включая упомянутые здесь типы, получают крутящий момент из векторного произведения взаимодействующих полей. Для расчета крутящего момента необходимо знать поля в воздушном зазоре. После того, как они были установлены с помощью математического анализа с использованием FEA или других инструментов, крутящий момент может быть вычислен как интеграл всех векторов силы, умноженный на радиус каждого вектора.Ток, протекающий в обмотке, создает поля, и для двигателя, использующего магнитный материал, поле не линейно пропорционально току. Это затрудняет расчет, но компьютер может выполнить множество необходимых расчетов.

Как только это будет сделано, число, связывающее ток с крутящим моментом, можно использовать в качестве полезного параметра для выбора двигателя. Максимальный крутящий момент двигателя будет зависеть от максимального тока, хотя обычно его можно использовать только до тех пор, пока не будут преобладать тепловые соображения.

При оптимальном проектировании в пределах заданного ограничения по насыщению сердечника и для заданного активного тока (т. Е. Тока крутящего момента), напряжения, числа пар полюсов, частоты возбуждения (т. Е. Синхронной скорости) и плотности магнитного потока в воздушном зазоре, все категории электрических двигатели или генераторы будут демонстрировать практически одинаковый максимальный постоянный крутящий момент на валу (то есть рабочий крутящий момент) в пределах заданной области воздушного зазора с пазами обмотки и глубиной задней части, которая определяет физический размер электромагнитного сердечника.Для некоторых приложений требуются всплески крутящего момента, превышающие максимальный рабочий крутящий момент, например, короткие всплески крутящего момента для ускорения электромобиля с места. Всегда ограниченная насыщением магнитного сердечника или безопасным повышением рабочей температуры и напряжения, способность к скачкам крутящего момента сверх максимального рабочего крутящего момента значительно различается между категориями электродвигателей или генераторов.

Способность к скачкам крутящего момента не следует путать с возможностью ослабления поля. Ослабление поля позволяет электрической машине работать за пределами расчетной частоты возбуждения.Ослабление поля выполняется, когда максимальная скорость не может быть достигнута путем увеличения приложенного напряжения. Это относится только к двигателям с полями, управляемыми током, и поэтому не может быть достигнуто с двигателями с постоянными магнитами.

Электрические машины без трансформаторной топологии схемы, такие как WRSM или PMSM, не могут реализовать всплески крутящего момента, превышающие максимальный расчетный крутящий момент, без насыщения магнитного сердечника и без того, чтобы любое увеличение тока было бесполезным. Кроме того, сборка постоянных магнитов PMSM может быть непоправимо повреждена, если будут предприняты попытки увеличения крутящего момента, превышающего максимально допустимый рабочий крутящий момент.

Электрические машины с топологией трансформаторной схемы, такие как асинхронные машины, индукционные электрические машины с двойным питанием, а также асинхронные или синхронные машины с двойным питанием с фазным ротором (WRDF), демонстрируют очень высокие всплески крутящего момента, потому что наведенный ЭДС активный ток на обе стороны трансформатора противостоят друг другу и, таким образом, не вносят никакого вклада в плотность потока магнитного сердечника трансформатора, что в противном случае привело бы к насыщению сердечника.

Электрические машины, основанные на индукционных или асинхронных принципах, закорачивают один порт цепи трансформатора, и в результате реактивное сопротивление цепи трансформатора становится доминирующим по мере увеличения скольжения, что ограничивает величину активного (т.е.е., реальный) ток. Тем не менее, всплески крутящего момента, которые в два-три раза превышают максимальный расчетный крутящий момент, возможны.

Бесщеточная машина с синхронным двойным питанием с фазным ротором (BWRSDF) - единственная электрическая машина с действительно двухпортовой топологией трансформаторной схемы (т. Е. Оба порта возбуждаются независимо без короткозамкнутого порта). Топология схемы с двумя портами трансформатора, как известно, нестабильна и требует многофазного узла контактного кольца-щетки для передачи ограниченной мощности на обмотку ротора.Если бы были доступны прецизионные средства для мгновенного управления углом крутящего момента и скольжением для синхронной работы во время движения или генерации, одновременно обеспечивая бесщеточную мощность для обмотки ротора, активный ток машины BWRSDF не зависел бы от реактивного сопротивления цепи трансформатора и всплески крутящего момента, значительно превышающие максимальный рабочий крутящий момент и намного превосходящие практические возможности любого другого типа электрической машины, были бы возможны.Были рассчитаны всплески крутящего момента, превышающие рабочий крутящий момент в восемь раз.

Плотность постоянного крутящего момента
Плотность постоянного крутящего момента обычных электрических машин определяется размером области воздушного зазора и глубиной задней части, которые определяются номинальной мощностью комплекта обмотки якоря, скоростью машины, и достижимая плотность потока в воздушном зазоре до насыщения сердечника. Несмотря на высокую коэрцитивную силу неодимовых или самариево-кобальтовых постоянных магнитов, постоянная плотность крутящего момента практически одинакова для электрических машин с оптимально спроектированными наборами обмоток якоря.Постоянная плотность крутящего момента относится к способу охлаждения и допустимому периоду эксплуатации до разрушения из-за перегрева обмоток или повреждения постоянного магнита.

Другие источники утверждают, что различные топологии электронных машин имеют разную плотность крутящего момента. Один источник показывает следующее:

Тип электрической машины Удельный крутящий момент (Нм / кг)
SPM - бесщеточный переменный ток, токопроводимость 180 ° 1,0
SPM - бесщеточный переменный ток, токопроводимость 120 ° 0.9-1,15
ИМ, асинхронная машина 0,7–1,0
IPM, машина с внутренним постоянным магнитом 0,6-0,8
VRM, машина двойного сопротивления 0,7–1,0

где - удельная плотность крутящего момента нормирована на 1,0 для SPM - бесщеточный переменный ток, токопроводимость 180 °, SPM - машина с поверхностным постоянным магнитом.

Плотность крутящего момента для электродвигателей с жидкостным охлаждением примерно в четыре раза больше, чем для электродвигателей с воздушным охлаждением.

Источник, сравнивающий постоянный ток (DC), асинхронные двигатели (IM), синхронные двигатели с постоянными магнитами (PMSM) и реактивные реактивные двигатели (SRM), показал:

Характеристика постоянного тока IM PMSM SRM
Плотность крутящего момента 3 3,5 5 4
Удельная мощность 3 4 5 3.5

Другой источник отмечает, что синхронные машины с постоянными магнитами мощностью до 1 МВт имеют значительно более высокую плотность крутящего момента, чем асинхронные машины.

Постоянная плотность мощности
Постоянная плотность мощности определяется произведением постоянной плотности крутящего момента и диапазона скорости постоянного крутящего момента электрической машины.

Специальные магнитные двигатели

Поворотный

Двигатель с ротором без сердечника или без сердечника.
Ни в одном из описанных выше двигателей не требуется, чтобы железные (стальные) части ротора действительно вращались.Если магнитомягкий материал ротора выполнен в виде цилиндра, то (за исключением эффекта гистерезиса) крутящий момент действует только на обмотки электромагнитов. Преимущество этого факта - двигатель постоянного тока без сердечника или железа, специализированная форма двигателя постоянного тока с постоянными магнитами. Эти двигатели, оптимизированные для быстрого разгона, имеют ротор без железного сердечника. Ротор может иметь форму заполненного обмоткой цилиндра или самонесущей конструкции, содержащей только магнитный провод и связующий материал.Ротор может помещаться внутри магнитов статора; магнитомягкий неподвижный цилиндр внутри ротора обеспечивает обратный путь для магнитного потока статора. Во второй конструкции корзина обмотки ротора окружает магниты статора. В этой конструкции ротор помещается внутри магнитомягкого цилиндра, который может служить корпусом для двигателя, а также обеспечивает обратный путь для магнитного потока.

Поскольку ротор намного легче по весу (массе), чем обычный ротор, сформированный из медных обмоток на стальных пластинах, ротор может ускоряться намного быстрее, часто достигая механической постоянной времени менее одной мс.Это особенно верно, если в обмотках используется алюминий, а не более тяжелая медь. Но поскольку в роторе нет металлической массы, которая могла бы служить радиатором, даже небольшие двигатели без сердечника часто должны охлаждаться принудительным воздухом. Перегрев может быть проблемой для двигателей постоянного тока без сердечника. Современное программное обеспечение, такое как Motor-CAD, может помочь повысить тепловой КПД двигателей еще на стадии проектирования.

Среди этих типов есть типы дискового ротора, более подробно описанные в следующем разделе.

Виброзвонок сотовых телефонов иногда генерируется крошечными цилиндрическими типами постоянного магнита, но есть также дискообразные типы, которые имеют тонкий многополярный дисковый магнит поля и намеренно несбалансированную конструкцию ротора из формованного пластика с двумя соединенными катушками без сердечника. . Металлические щетки и плоский коммутатор переключают питание на катушки ротора.

Соответствующие приводы с ограниченным ходом не имеют сердечника и катушки, размещенной между полюсами тонких постоянных магнитов с высокой магнитной индукцией.Это быстрые позиционеры головки для жестких дисков («жестких дисков»). Хотя современный дизайн значительно отличается от громкоговорителей, он все еще свободно (и неправильно) называется структурой «звуковой катушки», потому что некоторые более ранние головки жестких дисков двигались по прямым линиям и имели структуру привода, очень похожую на что из громкоговорителя.

Двигатель с цилиндрическим или осевым ротором.
Якорь с печатным рисунком или двигатель с осевым ротором имеет обмотки в форме диска, перемещающегося между группами магнитов с большим магнитным потоком.Магниты расположены по кругу напротив ротора с промежутком между ними, образуя осевой воздушный зазор. Эта конструкция широко известна как двигатель-блинчик из-за ее плоского профиля. С момента своего создания у технологии было много торговых марок, таких как ServoDisc.

Якорь с печатным рисунком (первоначально сформированный на печатной плате) в двигателе с печатным рисунком якоря изготовлен из перфорированных медных листов, которые ламинированы вместе с использованием современных композитов, чтобы сформировать тонкий жесткий диск. Печатный якорь имеет уникальную конструкцию в мире щеточных двигателей, поскольку он не имеет отдельного кольцевого коммутатора.Щетки движутся непосредственно по поверхности якоря, что делает всю конструкцию очень компактной.

Альтернативный метод производства заключается в использовании намотанного медного провода, уложенного плоско с центральным обычным коммутатором, в форме цветка и лепестка. Обмотки обычно стабилизируются электрическими системами заливки эпоксидной смолой. Это эпоксидные смолы с наполнителем, которые имеют умеренную смешанную вязкость и длительное время гелеобразования. Они отличаются низкой усадкой и низким экзотермическим эффектом и, как правило, признаны UL 1446 в качестве заливочного компаунда с изоляцией до 180 ° C, класс H.

Уникальным преимуществом двигателей постоянного тока без железа является отсутствие зубцов (изменения крутящего момента, вызванные изменением притяжения между железом и магнитами). Паразитные вихревые токи не могут образовываться в роторе, поскольку он полностью не содержит железа, хотя роторы из железа являются слоистыми. Это может значительно повысить эффективность, но контроллеры с регулируемой скоростью должны использовать более высокую частоту переключения (> 40 кГц) или постоянный ток из-за уменьшения электромагнитной индукции.

Изначально эти двигатели были изобретены для привода приводов магнитных лентопротяжных устройств, где минимальное время для достижения рабочей скорости и минимальный тормозной путь были критическими.Блинные двигатели широко используются в высокопроизводительных сервоуправляемых системах, роботизированных системах, промышленной автоматизации и медицинских устройствах. Из-за разнообразия конструкций, доступных в настоящее время, технология используется в приложениях от высокотемпературных военных до недорогих насосов и базовых сервоприводов.

Другой подход (Magnax) заключается в использовании одного статора, зажатого между двумя роторами. Одна такая конструкция обеспечивает пиковую мощность 15 кВт / кг, постоянную мощность около 7,5 кВт / кг. Этот двигатель с осевым потоком без ярма обеспечивает более короткий путь потока, удерживая магниты дальше от оси.Конструкция позволяет иметь нулевой вылет обмотки; Активны 100 процентов обмоток. Это усиливается за счет использования медного провода прямоугольного сечения. Двигатели можно штабелировать для параллельной работы. Нестабильность сводится к минимуму за счет того, что два диска ротора прикладывают равные и противоположные силы к диску статора. Роторы соединены напрямую друг с другом через кольцо вала, что нейтрализует магнитные силы.

Размеры двигателей

Magnax варьируются от 15 до 5,4 метра (5,9–17 футов 8,6 дюйма) в диаметре.

Серводвигатель
Серводвигатель - это двигатель, очень часто продаваемый в виде готового модуля, который используется в системе управления положением или скоростью с обратной связью. Серводвигатели используются в таких приложениях, как станки, перьевые плоттеры и другие технологические системы. Двигатели, предназначенные для использования в сервомеханизмах, должны иметь хорошо задокументированные характеристики скорости, крутящего момента и мощности. Кривая зависимости скорости от крутящего момента очень важна и является высоким соотношением для серводвигателя. Также важны характеристики динамического отклика, такие как индуктивность обмотки и инерция ротора; эти факторы ограничивают общую производительность контура сервомеханизма.В больших, мощных, но медленно реагирующих сервоконтурах могут использоваться обычные двигатели переменного или постоянного тока и приводные системы с обратной связью по положению или скорости на двигателе. По мере увеличения требований к динамическому отклику используются более специализированные конструкции двигателей, такие как двигатели без сердечника. Превосходная удельная мощность и характеристики ускорения двигателей переменного тока по сравнению с двигателями постоянного тока имеют тенденцию способствовать применению синхронных приводов с постоянными магнитами, постоянного тока постоянного тока, индукции и SRM.

Сервосистема отличается от некоторых приложений с шаговыми двигателями тем, что обратная связь по положению является непрерывной, пока двигатель работает.Шаговая система по своей сути работает с разомкнутым контуром - полагаясь на двигатель, который не «пропускает шаги» для кратковременной точности - с любой обратной связью, такой как «исходный» переключатель или датчик положения, являющиеся внешними по отношению к двигательной системе. Например, когда запускается типичный компьютерный принтер с точечной матрицей, его контроллер заставляет шаговый двигатель печатающей головки перемещаться в крайнее левое положение, где датчик положения определяет исходное положение и останавливает шаг. Пока питание включено, двунаправленный счетчик в микропроцессоре принтера отслеживает положение печатающей головки.

Шаговый двигатель
Шаговый двигатель - это тип двигателя, который часто используется, когда требуется точное вращение. В шаговом двигателе внутренний ротор, содержащий постоянные магниты, или магнитно-мягкий ротор с явными полюсами управляется набором внешних магнитов, которые переключаются электронно. Шаговый двигатель также можно рассматривать как нечто среднее между электродвигателем постоянного тока и вращающимся соленоидом. Поскольку каждая катушка поочередно получает питание, ротор выравнивается с магнитным полем, создаваемым обмоткой возбуждения под напряжением.В отличие от синхронного двигателя, шаговый двигатель не может вращаться непрерывно; вместо этого он «шагает» - запускается, а затем быстро останавливается - от одного положения к другому, поскольку обмотки возбуждения последовательно включаются и отключаются. В зависимости от последовательности, ротор может вращаться вперед или назад, и он может произвольно менять направление, останавливаться, ускоряться или замедляться в любое время.

Простые драйверы шаговых двигателей полностью включают или полностью обесточивают обмотки возбуждения, приводя ротор к «зубчатой ​​передаче» в ограниченное количество положений; более сложные драйверы могут пропорционально управлять мощностью обмоток возбуждения, позволяя роторам располагаться между точками зубчатых колес и, таким образом, вращаться чрезвычайно плавно.Такой режим работы часто называют микрошагом. Шаговые двигатели с компьютерным управлением - одна из самых универсальных форм систем позиционирования, особенно когда они являются частью цифровой системы с сервоуправлением.

Шаговые двигатели

можно легко поворачивать на определенный угол дискретными шагами, и поэтому шаговые двигатели используются для позиционирования головки чтения / записи в дисководах компьютерных гибких дисков. Они использовались для той же цели в компьютерных дисковых накопителях до гигабайтной эпохи, где точность и скорость, которые они предлагали, были достаточными для правильного позиционирования головки чтения / записи жесткого диска.По мере увеличения плотности накопителей, ограничения точности и скорости шаговых двигателей сделали их устаревшими для жестких дисков - ограничение точности сделало их непригодными для использования, а ограничение скорости сделало их неконкурентоспособными - таким образом, в новых жестких дисках используются системы привода головки на основе звуковой катушки. (Термин «звуковая катушка» в этой связи является историческим; он относится к структуре в типичном (конусном) громкоговорителе. Эта структура некоторое время использовалась для размещения головок. Современные приводы имеют поворотное крепление катушки; катушка качается вперед-назад, что-то вроде лопасти вращающегося вентилятора.Тем не менее, подобно звуковой катушке, современные проводники катушки исполнительного механизма (магнитный провод) движутся перпендикулярно магнитным силовым линиям.)

Шаговые двигатели были и до сих пор часто используются в компьютерных принтерах, оптических сканерах и цифровых копировальных аппаратах для перемещения оптического сканирующего элемента, каретки печатающей головки (матричных и струйных принтеров), а также валика или подающих роликов. Аналогичным образом, многие компьютерные плоттеры (которые с начала 1990-х были заменены широкоформатными струйными и лазерными принтерами) использовали вращающиеся шаговые двигатели для перемещения пера и валика; типичными альтернативами здесь были либо линейные шаговые двигатели, либо серводвигатели с аналоговыми системами управления с обратной связью.

Так называемые кварцевые аналоговые наручные часы содержат самые маленькие обычные шаговые двигатели; у них одна катушка, они потребляют очень мало энергии и имеют ротор с постоянными магнитами. Такой же двигатель приводит в действие кварцевые часы с батарейным питанием. Некоторые из этих часов, например хронографы, содержат более одного шагового двигателя.

По конструкции тесно связаны с трехфазными синхронными двигателями переменного тока, шаговые двигатели и SRM классифицируются как двигатели с регулируемым сопротивлением. Шаговые двигатели были и до сих пор часто используются в компьютерных принтерах, оптических сканерах и станках с числовым программным управлением (ЧПУ), таких как маршрутизаторы, плазменные резаки и токарные станки с ЧПУ.

Немагнитные двигатели
Электростатический двигатель основан на притяжении и отталкивании электрического заряда. Обычно электростатические двигатели являются двойными по сравнению с обычными двигателями с катушкой. Обычно для них требуется высоковольтный источник питания, хотя в очень маленьких двигателях требуется более низкое напряжение. Вместо этого обычные электродвигатели используют магнитное притяжение и отталкивание и требуют высокого тока при низких напряжениях. В 1750-х годах первые электростатические двигатели были разработаны Бенджамином Франклином и Эндрю Гордоном.Сегодня электростатический двигатель часто используется в микроэлектромеханических системах (MEMS), где их управляющее напряжение ниже 100 вольт, а в подвижных заряженных пластинах гораздо проще изготовить, чем катушки и железные сердечники. Кроме того, молекулярные механизмы, управляющие живыми клетками, часто основаны на линейных и вращающихся электростатических двигателях.

Пьезоэлектрический двигатель или пьезодвигатель - это тип электродвигателя, основанный на изменении формы пьезоэлектрического материала при приложении электрического поля.Пьезоэлектрические двигатели используют обратный пьезоэлектрический эффект, при котором материал производит акустические или ультразвуковые колебания для создания линейного или вращательного движения. В одном механизме удлинение в одной плоскости используется для последовательного растяжения и удержания положения, подобно тому, как движется гусеница.

В двигательной установке космического корабля с электроприводом используется технология электродвигателя для приведения космического корабля в космическое пространство, большинство систем основано на электрическом приводе топлива в высокую скорость, а некоторые системы основаны на принципах электродинамического троса для движения к магнитосфере.

Источник из Википедии

Электродвигатель

| Encyclopedia.com

Двигатель постоянного тока

Типы двигателей постоянного тока

Двигатели переменного тока

Принципы работы трехфазного двигателя

Ресурсы

Электродвигатель - это машина, используемая для преобразования электрической энергии в механическую. Электродвигатели важны для современной жизни, они используются в пылесосах, посудомоечных машинах, компьютерных принтерах, факсах, водяных насосах, производстве, автомобилях (как обычных, так и гибридных), станках, печатных станках, системах метро и т. Д.

Основные физические принципы работы электродвигателя известны как закон Ампера и закон Фарадея. Первый гласит, что электрический проводник, находящийся в магнитном поле, будет испытывать силу, если любой ток, протекающий через проводник, имеет компонент, расположенный под прямым углом к ​​этому полю. Изменение направления тока или магнитного поля приведет к возникновению силы, действующей в противоположном направлении. Второй принцип гласит, что если проводник перемещается через магнитное поле, то любой компонент движения, перпендикулярный этому полю, будет создавать разность потенциалов между концами проводника.

Электродвигатель состоит из двух основных элементов. Первый, статический компонент, который состоит из магнитных материалов и электрических проводников для создания магнитных полей желаемой формы, известен как статор . Второй, который также сделан из магнитных и электрических проводников для создания определенных магнитных полей, которые взаимодействуют с полями, создаваемыми статором, известен как ротор . Ротор содержит подвижный компонент двигателя, имеющий вращающийся вал для соединения с приводимой в действие машиной и некоторые средства поддержания электрического контакта между ротором и корпусом двигателя (обычно угольные щетки, прижатые к контактным кольцам).В процессе работы электрический ток, подаваемый на двигатель, используется для создания магнитных полей как в роторе, так и в статоре. Эти поля сталкиваются друг с другом, в результате чего ротор испытывает крутящий момент и, следовательно, вращается.

Электродвигатели делятся на две большие категории, в зависимости от типа применяемой электроэнергии: двигатели постоянного (DC) и переменного тока (AC).

Первый электродвигатель постоянного тока был продемонстрирован Майклом Фарадеем в Англии в 1821 году.Поскольку единственными доступными источниками электроэнергии был постоянный ток, первые коммерчески доступные двигатели были электродвигателями постоянного тока, которые стали популярными в 1880-х годах. Эти двигатели использовались как для маломощных, так и для больших мощностей, таких как электрические уличные железные дороги. Только в 1890-х годах, когда появилась электроэнергия переменного тока, двигатель переменного тока был разработан, в первую очередь, корпорациями Westinghouse и General Electric. В течение этого десятилетия было решено большинство проблем, связанных с однофазными и многофазными двигателями переменного тока.Следовательно, все основные характеристики электродвигателей были разработаны к 1900 году.

Работа двигателя постоянного тока зависит от взаимодействия полюсов статора с частью ротора или якоря. Статор содержит четное количество полюсов переменной магнитной полярности, каждый полюс состоит из электромагнита, образованного из обмотки полюса, намотанной на сердечник полюса. Когда через обмотку протекает постоянный ток, создается магнитное поле. Якорь также содержит обмотку, в которой ток течет в указанном направлении.Этот ток якоря взаимодействует с магнитным полем в соответствии с законом Ампера, создавая крутящий момент, который поворачивает якорь.

Если бы обмотки якоря вращались вокруг следующего полюсного наконечника противоположной полярности, крутящий момент работал бы в противоположном направлении, останавливая якорь. Чтобы предотвратить это, ротор содержит коммутатор, который изменяет направление тока якоря для каждого полюсного наконечника, мимо которого вращается якорь, таким образом гарантируя, что все обмотки, проходящие, например, через полюс северной полярности, будут иметь ток, протекающий в в том же направлении, в то время как обмотки, проходящие через южные полюса, будут иметь противоположный ток, чтобы создать крутящий момент в том же направлении, что и крутящий момент, создаваемый северными полюсами.Коммутатор обычно состоит из разъемного контактного кольца, по которому движутся щетки, протекающие по постоянному току.

Вращение обмоток якоря через поле статора создает на якоре напряжение, известное как противо-ЭДС (электродвижущая сила), поскольку оно противодействует приложенному напряжению: это следствие закона Фарадея. Величина противо-ЭДС зависит от напряженности магнитного поля и скорости вращения якоря. При первоначальном включении двигателя постоянного тока нет противо-ЭДС, и якорь начинает вращаться.Счетчик ЭДС увеличивается с вращением. Действующее напряжение на обмотках якоря - это приложенное напряжение за вычетом противо-ЭДС.

Двигатели постоянного тока встречаются чаще, чем мы думаем. Автомобиль может иметь до 20 двигателей постоянного тока для привода вентиляторов, сидений и окон. Они бывают трех разных типов, классифицируемых в зависимости от используемой электрической схемы. В параллельном двигателе якорь и обмотки возбуждения соединены параллельно, поэтому токи через каждую из них относительно независимы.Ток через обмотку возбуждения можно регулировать с помощью реостата возбуждения (переменного резистора), что позволяет изменять скорость двигателя в широких пределах в широком диапазоне условий нагрузки. Этот тип двигателя используется для привода станков или вентиляторов, для которых требуется широкий диапазон скоростей.

В последовательном двигателе обмотка возбуждения соединена последовательно с обмоткой якоря, что приводит к очень высокому пусковому моменту, поскольку как ток якоря, так и напряженность поля максимальны.Однако, как только якорь начинает вращаться, противо-ЭДС снижает ток в цепи, тем самым уменьшая напряженность поля. Серийный двигатель используется там, где требуется большой пусковой крутящий момент, например, в автомобильных стартерах, кранах и подъемниках.

Составной двигатель представляет собой комбинацию последовательного и параллельного двигателей с параллельными и последовательными обмотками возбуждения. Этот тип двигателя имеет высокий пусковой момент и способность изменять скорость и используется в ситуациях, требующих обоих этих свойств, таких как пробивные прессы, конвейеры и лифты.

Двигатели переменного тока встречаются гораздо чаще, чем двигатели постоянного тока, потому что почти все системы электроснабжения работают с переменным током. Существует три основных типа двигателей: многофазные асинхронные, многофазные синхронные и однофазные. Поскольку трехфазные источники питания являются наиболее распространенными многофазными источниками, большинство многофазных двигателей работают от трехфазных. Трехфазные источники питания широко используются в коммерческих и промышленных условиях, тогда как однофазные источники питания почти всегда используются в домашних условиях.

Основное различие между двигателями переменного и постоянного тока заключается в том, что магнитное поле, создаваемое статором, вращается в корпусе переменного тока. Через клеммы вводятся три электрические фазы, каждая фаза питает отдельный полюс поля. Когда каждая фаза достигает своего максимального тока, магнитное поле на этом полюсе достигает максимального значения. По мере уменьшения тока уменьшается и магнитное поле. Поскольку каждая фаза достигает своего максимума в разное время в пределах цикла тока, тот полюс поля, магнитное поле которого является наибольшим, постоянно изменяется между тремя полюсами, в результате чего магнитное поле, видимое ротором, вращается.Скорость вращения магнитного поля, известная как синхронная скорость, зависит от частоты источника питания и количества полюсов, создаваемых обмоткой статора. Для стандартного источника питания 60 Гц, используемого в США, максимальная синхронная скорость составляет 3 600 об / мин.

В трехфазном асинхронном двигателе обмотки ротора не подключены к источнику питания, а

Ключевые термины

AC - Переменный ток, при котором ток, проходящий через цепь, меняет направление потока через равные промежутки времени.

DC - Постоянный ток, при котором ток в цепи примерно постоянен во времени.

Ротор - Та часть электродвигателя, которая может свободно вращаться, включая вал, якорь и связь с машиной.

Статор - Та часть электродвигателя, которая не может вращаться, включая катушки возбуждения.

Крутящий момент - Способность или сила, необходимые для поворота или скручивания вала или другого объекта.

- это, по сути, короткие замыкания.Самый распространенный тип обмотки ротора, обмотка с короткозамкнутым ротором, очень похожа на ходовое колесо, используемое в клетках для домашних песчанок. Когда двигатель первоначально включен, а ротор неподвижен, проводники ротора испытывают изменяющееся магнитное поле, распространяющееся с синхронной скоростью. Согласно закону Фарадея, эта ситуация приводит к индукции токов вокруг обмоток ротора; величина этого тока зависит от импеданса обмоток ротора. Поскольку условия для работы двигателя теперь выполнены, то есть токопроводящие проводники находятся в магнитном поле, ротор испытывает крутящий момент и начинает вращаться.Ротор никогда не может вращаться с синхронной скоростью, потому что не будет относительного движения между магнитным полем и обмотками ротора, и ток не может быть индуцирован. Асинхронный двигатель имеет высокий пусковой момент.

В двигателях с короткозамкнутым ротором скорость двигателя определяется нагрузкой, которую он передает, и числом полюсов, создающих магнитное поле в статоре. Если некоторые полюса включаются или выключаются, скорость двигателя можно регулировать с приращением. В двигателях с фазным ротором сопротивление обмоток ротора может быть изменено извне, что изменяет ток в обмотках и, таким образом, обеспечивает непрерывное регулирование скорости.

Трехфазные синхронные двигатели сильно отличаются от асинхронных двигателей. В синхронном двигателе ротор использует катушку под напряжением постоянного тока для создания постоянного магнитного поля. После того, как ротор приближается к синхронной скорости двигателя, северный (южный) полюс магнита ротора блокируется с южным (северным) полюсом вращающегося поля статора, и ротор вращается с синхронной скоростью. Ротор синхронного двигателя обычно включает в себя обмотку с короткозамкнутым ротором, которая используется для запуска вращения двигателя до подачи питания на катушку постоянного тока.Беличья клетка не действует на синхронных скоростях по причине, описанной выше.

Однофазные асинхронные двигатели и синхронные двигатели, используемые в большинстве бытовых ситуаций, работают по принципам, аналогичным описанным для трехфазных двигателей. Однако для создания пусковых моментов необходимо внести различные модификации, поскольку одна фаза не будет генерировать только вращающееся магнитное поле. Следовательно, в асинхронных двигателях используются конструкции с разделенной фазой, конденсаторным пуском или с экранированными полюсами.Небольшие синхронные однофазные двигатели, используемые для таймеров, часов, магнитофонов и т. П., Основаны на конструкциях с реактивным сопротивлением или гистерезисом.

КНИГИ

Красильщик. Катушки силы тока: как сделаны и как используются: с описанием электрического света, электрических звонков, электродвигателей, телефона, микрофона и фонографа . Бостон: Adamant Media Corporation, 2005.

Эмади, Али. Энергоэффективные электродвигатели . Нью-Йорк: CRC, 2004.

Hughes, Austin. Электродвигатели и приводы . Оксфорд, Великобритания: Newnes, 2005.

Иэн А. Макинтайр

Электродвигатели: что это такое и как они работают?

Электродвигатели используются постоянно для питания устройств, которые мы используем каждый день. Будь то вентилятор, охлаждающий вас в жаркий день, двигатель воздуходувки для листьев или электромобиль, без электродвигателей, мир был бы совсем другим.

Что такое электродвигатель?

Электродвигатель - это машина, которая может преобразовывать электрическую энергию в механическую (в частности, кинетическую энергию или энергию движения).Обычно это достигается за счет использования взаимосвязи между электричеством и магнетизмом.

Электродвигатели могут питаться от переменного тока, например, от сетевой розетки, или постоянного тока, например от аккумулятора.

Как работает электродвигатель?

Основной принцип, лежащий в основе электродвигателя, заключается в том, что должна быть катушка с проволокой, которая могла бы свободно вращаться в присутствии внешнего магнитного поля.

Когда ток проходит через катушку с проволокой, взаимодействие между током и полем создает крутящий момент, заставляющий катушку вращаться.Это вращение можно использовать, например, для вращения шин игрушечной машины, или оно может приводить в движение коленчатый вал и преобразовывать вращательное движение в поступательное.

Как сделать свой собственный электродвигатель

Иногда лучший способ понять, как работает двигатель, - это построить его самостоятельно. Вы можете построить простой двигатель постоянного тока из обычных предметов домашнего обихода.

Посылая ток через провод тщательно продуманной формы в присутствии магнитного поля, мы можем создать часть нашей цепи, которая будет вращаться, позволяя нам преобразовывать электрическую энергию в механическую.

    Сделайте катушку из провода, несколько раз обернув обмотку вокруг батареи 1,5 В с элементом «D» (батарея служит формой; снимите катушку, когда закончите намотку). Оставьте примерно 2-3 см торча с обоих концов. Убедитесь, что все витки намотаны в одном направлении.

    Катушка должна быть хорошо сбалансирована на этих концах, чтобы она могла легко поворачиваться при установке в подставку, предусмотренную скрепками. Вы должны удерживать катушку вместе, скручивая последнюю петлю вокруг катушек, чтобы намотать катушки вместе.

    Когда катушка находится в показанном положении, с одного из концов провода, который будет контактировать со скрепками, изоляция должна быть удалена только с нижней стороны. Другой конец должен быть полностью обнажен в месте контакта со скрепкой. Таким образом, примерно половину времени через катушку будет проходить ток.

    Согните две скрепки так, чтобы они удерживали катушку, как показано, и закрепили их на месте.

    Поместите постоянный магнит под катушку.

    Подключите источник питания, например батарею D, которую вы использовали в качестве формы, к скрепкам.

    Попробуйте запустить двигатель, слегка покрутив катушку. Попробуйте, настройте, попробуйте, настройте, попробуйте и снова настройтесь, пока не добьетесь успеха!

Как это работает?

Если катушка ориентирована, как показано на изображении, ток проходит через катушку по часовой стрелке, а магнитное поле направлено вверх, тогда на верх катушки будет ощущаться сила, указывающая наружу (относительно экрана компьютера, на котором вы это смотрите. ), и нижняя часть катушки почувствует силу, направленную внутрь. Это заставит катушку вращаться.

Как только ваша катушка повернется на 180 градусов, ток будет течь против часовой стрелки. Однако, поскольку вы сняли половину провода, ток не будет течь, пока катушка перевернута. Это сделано для того, чтобы у нас не возникла сила в противоположном направлении, заставляющая катушку реверсировать, а не продолжать.

При условии, что первоначальный толчок из-за поля достаточно силен, катушка перевернется на 180 градусов, совершая полный оборот, к концу которого ток течет таким образом, что сила заставляет ее сделать еще один оборот, как и раньше. .Если все достаточно хорошо сбалансировано, мотор должен вращаться довольно быстро и долго.

Части коммерческого двигателя

К компонентам коммерческого двигателя относятся следующие:

Якорь является силовой частью двигателя. Он может быть расположен на роторе (вращающаяся часть) или на статоре (неподвижная часть). Якорь состоит из катушек проволоки, которые взаимодействуют с магнитным полем при прохождении тока.В нашем самодельном двигателе катушка была якорем и ротором, а скрепки - статором.

Щетки позволяют передавать ток на ротор при его вращении. В нашем самодельном моторе точка контакта скрепок и медного провода служила той же цели.

Коммутатор служит для периодического изменения направления тока. Это необходимо для двигателя постоянного тока или двигателя постоянного тока, но обычно не требуется для двигателя переменного тока или двигателя переменного тока, потому что ток уже меняет направление.Мы достигли тока включения / выключения в нашем двигателе, оставив одну сторону контактного провода изолированной.

Полевой магнит или полевые катушки (электромагниты) создают необходимое магнитное поле.

Ось представляет собой стержнеобразную деталь, выровненную с осью вращения ротора, так что она вращается вместе с ротором. Горизонтальные концы нашего самодельного мотора были по сути осью.

Шестерня - это небольшая шестерня, которая может использоваться для передачи движения двигателя другому объекту или части машины.

Типы электродвигателей

Существует множество различных типов электродвигателей. Хотя сначала они подразделяются на двигатели переменного и постоянного тока, возможны и многие другие варианты. Будь то тяжелые, легкие, сельскохозяйственные или общие, здесь перечислены лишь некоторые из множества типов.

Однофазный двигатель работает от одного источника переменного тока.

Трехфазный двигатель - это двигатель, который приводится в действие тремя переменными токами одинаковой частоты, не совпадающими по фазе друг с другом.

Синхронный двигатель - это двигатель, период вращения которого кратен частоте переменного тока.

В асинхронном двигателе или электрический ток в роторе создается за счет электромагнитной индукции из магнитного поля обмотки статора.

Шаговый двигатель - это бесщеточный двигатель постоянного тока, который прерывает полное вращение на равные ступени. Мотор может двигаться и удерживаться на любом из шагов.

Электрогенераторы

Электрогенераторы являются реверсом электродвигателей; они берут механическую энергию и преобразуют ее в электрическую. Это можно сделать разными способами.

Например, энергия ветра может использоваться для вращения лопастей вентилятора ветрогенератора, которые вращают ротор внутри генератора, и возникающая в результате электромагнитная индукция вызывает протекание тока. Аналогичным образом работают гидроэлектростанции: падающая вода вращает лопасти турбины.

Электродвигатель - Energy Education

Рисунок 1. Электродвигатель от старого пылесоса. [1] Рисунок 2. Электрический ротор. [2]

Электродвигатель - это устройство, используемое для преобразования электричества в механическую энергию, противоположное электрическому генератору. Они работают с использованием принципов электромагнетизма, которые показывают, что сила прилагается, когда электрический ток присутствует в магнитном поле. Эта сила создает крутящий момент на проволочной петле, присутствующей в магнитном поле, которая заставляет двигатель вращаться и выполнять полезную работу.Двигатели используются в широком спектре приложений, таких как вентиляторы, электроинструменты, бытовая техника, электромобили и гибридные автомобили.

Как они работают

У двигателей

есть много разных рабочих частей, чтобы они постоянно вращались, обеспечивая необходимую мощность. Двигатели могут работать от постоянного (DC) или переменного (AC) тока, и оба имеют свои преимущества и недостатки. Для целей этой статьи будет проанализирован двигатель постоянного тока, чтобы прочитать о двигателях переменного тока, нажмите здесь.

Основные части двигателя постоянного тока включают: [3]

  • Статор: Неподвижная часть двигателя, а именно магнит.Электромагниты часто используются для увеличения мощности.
  • Ротор: Катушка, которая установлена ​​на оси и вращается с высокой скоростью, обеспечивая систему механической энергией вращения.
  • Коммутатор: Этот компонент является ключевым в двигателях постоянного тока, и его можно увидеть на рисунках 3 и 4. Без него ротор не смог бы вращаться непрерывно из-за противодействующих сил, создаваемых изменяющимся током. Коммутатор позволяет ротору вращаться, меняя направление тока каждый раз, когда катушка делает пол-оборота.
  • Щетки: Они подключаются к клеммам источника питания, позволяя электроэнергии течь в коммутатор.
  • Двигатель постоянного тока
  • Рисунок 3: Базовая установка двигателя постоянного тока. [3]

  • Рисунок 4: Анимация двигателя в действии. Коммутатор вращается, чтобы ротор вращался непрерывно. [3]

Список литературы

Институт

- История - Изобретение электродвигателя 1800-1854

Унив.-Проф. Д-р инж. Мартин Доппельбауэр

Сводка

С изобретением батареи (Алессандро Вольта, 1800 г.), генерации магнитного поля из электрического тока (Ганс Кристиан Эрстед, 1820 г.) и электромагнита (Уильям Стерджен, 1825 г.) был заложен фундамент для создания электродвигателей. В то время еще оставалось открытым вопрос, должны ли электродвигатели быть вращающимися или возвратно-поступательными машинами, то есть имитировать шток плунжера паровой машины.

Во всем мире многие изобретатели работали параллельно над этой задачей - это была проблема «моды». Новые явления открывались почти ежедневно. Изобретения в области электротехники и ее приложений витали в воздухе.

Часто изобретатели ничего не знали друг о друге и самостоятельно разрабатывали подобные решения. Соответствующим образом формируются национальные истории до наших дней. Ниже приводится попытка дать исчерпывающую и нейтральную картину.

Первое вращающееся устройство, приводимое в движение электромагнетизмом, было построено англичанином Питером Барлоу в 1822 году (Колесо Барлоу).

После многих других более или менее успешных попыток с относительно слабым вращающимся и возвратно-поступательным устройством немецкоязычный прусский Мориц Якоби в мае 1834 года создал первый настоящий вращающийся электродвигатель , который на самом деле развил замечательную механическую выходную мощность. Его мотор установил мировой рекорд, который был улучшен только четыре года спустя, в сентябре 1838 года, самим Якоби. Его второй двигатель был достаточно мощным, чтобы переправить лодку с 14 людьми через широкую реку.Только в 1839/40 году другим разработчикам во всем мире удалось создать двигатели с аналогичными, а затем и с более высокими характеристиками.

Уже в 1833 году немец Генрих Фридрих Эмиль Ленц опубликовал статью о законе взаимности магнитоэлектрических и электромагнитных явлений, то есть о обратимости электрогенератора и двигателя . В 1838 году он дал подробное описание своих экспериментов с генератором Pixii, который он использовал в качестве двигателя.

В 1835 году двое голландцев Сибрандус Стратинг и Кристофер Беккер построили электродвигатель, который приводил в движение небольшую модель автомобиля.Это первое известное практическое применение электродвигателя. В феврале 1837 года первый патент на электродвигатель был выдан американцу Томасу Дэвенпорту.

Однако все ранние разработки Якоби, Стратинга, Давенпорта и других в конечном итоге не привели к электродвигателям, которые мы знаем сегодня.

Двигатель постоянного тока был создан не на основе этих двигателей, а в результате разработки генераторов энергии (динамометров). Основы были заложены Уильямом Ричи и Ипполитом Пикси в 1832 году с изобретением коммутатора и, что наиболее важно, Вернером Сименсом в 1856 году с двойным Т-образным якорем и его главным инженером Фридрихом Хефнер-Альтенеком в 1872 году с помощью барабанная арматура.Двигатели постоянного тока по-прежнему занимают доминирующее положение на рынке в диапазоне малой мощности (ниже 1 кВт) и низкого напряжения (ниже 60 В).

В период с 1885 по 1889 год была изобретена трехфазная электрическая система , которая является основой для современной передачи электроэнергии и современных электродвигателей. Единого изобретателя трехфазной системы питания назвать нельзя. Есть несколько более или менее известных имен, которые принимали активное участие в изобретениях (Брэдли, Доливо-Добровольский, Феррарис, Хазельвандер, Тесла и Венстрём).Сегодня трехфазный синхронный двигатель используется в основном в высокодинамичных приложениях (например, в роботах) и в электромобилях. Впервые он был разработан Фридрихом Августом Хазельвандером в 1887 году.

Очень успешный трехфазный асинхронный двигатель был построен Михаилом Доливо-Добровольским в 1889 году. Сегодня это наиболее часто производимая машина в диапазоне мощностей от 1 кВт и выше.

Расписание 1800 - 1834: Первые эксперименты с электромагнитными устройствами
1800 Впервые Allessandro Volta (итальянский) производит непрерывную электрическую энергию (в отличие от искры или статического электричества) из набора серебряных и цинковых пластин.
1820 Ганс Христиан Эрстед (Дениш) обнаруживает генерацию магнитного поля электрическими токами, наблюдая за отклонением стрелки компаса. Это был первый случай, когда механическое движение было вызвано электрическим током.
1820 Андре-Мари Ампер (французский язык) изобретает цилиндрическую катушку (соленоид).
1821 Майкл Фарадей (британский) создает два эксперимента для демонстрации электромагнитного вращения. Вертикально подвешенный провод движется по круговой орбите вокруг магнита.
Вращающийся провод Фарадея, 1821
Фотография любезно предоставлена ​​Отделом труда и промышленности, Национальный музей американской истории, Смитсоновский институт
1822 Питер Барлоу (Великобритания) изобретает прялку (колесо Барлоу = униполярная машина).
Колесо Барлоу, 1822
Philosophical Magazine, 1822, vol. 59
1825-1826 William Sturgeon (Великобритания) изобретает электромагнит , катушку проводов с железным сердечником для усиления магнитного поля.

Первый электромагнит Стерджена, 1825 г.
Труды Общества поощрения художеств, мануфактур и торговли, 1824 г., т.43, пл. 3
1827-1828 Istvan (Ányos) Jedlik (венгерский) изобретает первую роторную машину с электромагнитами и коммутатором.
Однако Джедлик публично сообщил о своем изобретении только десятилетия спустя, и фактическая дата изобретения неизвестна.

До сих пор многие венгры считают, что Едлик изобрел электродвигатели. Функциональная модель его аппарата выставлена ​​в художественном музее в Будапеште.

Хотя на самом деле это может быть первый электродвигатель, необходимо понимать, что это устройство не оказало влияния на дальнейшее развитие электрических машин. Изобретение Джедлика долгое время оставалось скрытым, и изобретатель не преследовал его. Электротехника ничем не обязана Джедлику.


Поворотное устройство Jedlik, 1827/28
Фото: Wikipedia

Электромобиль Jedlik, 1827/28
Фото: Wikipedia
перед
1830
Иоганн Михаэль Эклинг, механик из Вены, строит двигатель по планам и идеям проф.Андреас фон Баумгартнер (австрийский физик; с 1823 г. профессор физики и прикладной математики в Вене).

Этот аппарат был приобретен в 1830 году Инсбрукским университетом по цене 50 жидких кубометров. Год постройки неизвестен, но должно быть до 1830 года, поскольку дата покупки подтверждена.


Двигатель Баумгартнера, построенный Эклингом до 1830 г.
Фотография любезно предоставлена ​​Университетом Инсбрука, Музей экспериментальной физики, Ao.Univ. Проф. Маг. Доктор Армин Денот.
1831 Майкл Фарадей (Великобритания) обнаруживает и исследует электромагнитную индукцию, то есть генерацию электрического тока из-за переменного магнитного поля (инверсия открытия Эрстеда). Фарадей закладывает основу для развития электрогенератора.
1831 Джозеф Генри (американец) находит закон индукции независимым от Фарадея и строит небольшой магнитный рокер.Он описывает это как «философскую игрушку».

В статье для английского журнала Philosophical Magazine, в 1838 году англичанин Ф. Уоткинс подробно описывает устройство Генри и называет его первым электродвигателем, когда-либо известным. Эта точка зрения распространяется и по сей день в основном на британскую литературу.


Магнитный рокер Генри, 1831
Американский журнал науки, 1831, т. 20, стр. 342
Апрель
1832
Savatore dal Negro (итальянский) создает устройство, которое может поднять 60 граммов за одну секунду на 5 сантиметров и, следовательно, развивает механическую мощность почти 30 мВт.

Вероятно, он был вдохновлен магнитным рокером Генри и создал аналогичную возвратно-поступательную машину. Однако устройство Даль Негро может производить движение с помощью специальной передачи.

Даль Негро описывает свои эксперименты в письме от апреля 1832 года, а затем в научной статье « Nuova Macchina élettro-Magnetica » в марте 1834 года.
Его устройства хранятся в Музее истории физики при университете Падуи. К сожалению, они не отображаются.


Электромагнитный маятник Даль Негро, 1832
Annali delle Scienze de Regno Lombardo-Veneto, März 1834, pl. 4
июль
1832
Первое публичное описание вращающейся электрической машины .

Автор - анонимный писатель с инициалами П.М. Теперь его с большой вероятностью опознали как ирландца Фредерика Мак-Клинтока из Дублина.

Майкл Фарадей, получатель письма от 26 июля 1832 г., немедленно его публикует. Впервые публично описана вращающаяся электрическая машина.


Первое описание вращающейся электрической машины П.М., 1832 г.
Philosophical Magazine, 1832, стр. 161–162
июль
1832
Hippolyte Pixii (французский язык) создает первое устройство для генерации переменного тока из вращения.

Устройство было публично представлено в сентябре 1832 года на заседании Академии наук . Его описание напечатано уже в июльском номере Annales de Chimie .

Pixii улучшил свое устройство в том же году, добавив переключающее устройство. Теперь он может производить пульсирующий постоянный ток.


Первый генератор постоянного тока Pixii, 1832/33
F.Niethammer, Ein- und Mehrphasen-Wechsel-strom-Erzeuger, Verlag S. Hirzel, Leipzig 1906
1832 Уильям Ритчи (британский) сообщил в марте 1833 года об устройстве, которое, как он утверждал, было построено девятью месяцами ранее летом 1832 года. Это вращающийся электромагнитный генератор с четырьмя катушками ротора, коммутатором и щетками.

Ричи считается изобретателем коммутатора.

В конце своей статьи Ричи описывает, как он смог вращать электрический магнит, используя магнитное поле Земли. Он мог поднять вес на несколько унций (50-100 грамм). Коммутация производилась двумя концами провода, которые входили в два полукруглых желоба с ртутью.


Первый генератор постоянного тока с коммутатором, 1832/33

Вращающаяся катушка Ричи, 1833
Philosophical Trans.Лондонского королевского общества, 1833, Vol. 132, стр.316, пл.7
Янв
1833
A Доктор Шультесс читает лекцию в Обществе инженеров в Цюрихе в 1832 году, в которой описывает свои идеи электродвигателя. В январе 1833 года он успешно продемонстрировал машину перед тем же цюрихским обществом.
Более подробная информация отсутствует.
Март
1833
Осенью 1832 года Уильям Sturgeon создает вращающееся электрическое устройство, которое он публично демонстрирует в марте 1833 года в Лондоне.

Как и в случае с Джедликом, нет никаких определенных доказательств даты и деталей его строительства. Осетр сообщил об этом изобретении в 1836 году в первом выпуске своего собственного журнала.


Ротационное устройство осетровых рыб, 1832
«Летопись электричества осетровых рыб», 1836/37, т. 1
декабрь
1833
В первые годы развития электротехники проводилось строгое различие между магнитно-электрическими машинами, т.е.е. электрические генераторы и электромагнитные машины, то есть электродвигатели.

Генрих Фридрих Эмиль Ленц (немецкий) обнаружил « закон взаимности магнитоэлектрических и электромагнитных явлений », то есть обратимость электрического генератора и двигателя.

Его научный текст читается в конце 1833 года в Санкт-Петербургской Академии наук и опубликован в 1834 году в журнале Поггендорфа Annalen der Physik und Chemie .Его идеи постепенно становятся обычным явлением, особенно в 1838 году после нескольких сообщений об успешных экспериментах по обращению.

Иногда утверждают, что принцип обращения был открыт в 1861 году итальянцем Пачинотти или даже только в 1873 году случайно на Всемирной выставке в Вене. Оба утверждения ложны. Эмиль Ленц широко сообщил еще в 1838 году в Annalen der Physik und Chemie Поггендорфа , как он использовал генератор Pixii в качестве двигателя.

июль
1834
Джузеппе Доменико Ботто (итальянец), профессор физики из Турина, в июле 1834 года публикует в женевском журнале Bibliotheque Universelle описание электродвигателя, над которым он работает.

Его устройство соответствует метроному (похожему на конструкции Генри и Даль Негро), действующему на маятник с помощью двух электромагнитов.Вращательное движение создается штоком поршня.

Реплика устройства сейчас выставлена ​​в Museo Galileo во Флоренции.


Роторная машина Ботто, июль 1834 г. (реконструкция)
Фотография любезно предоставлена ​​Museo Galileo, Флоренция

Расписание 1834 - 1837: Первые настоящие электродвигатели
Май
1834
Мориц Херманн Якоби (немецкоязычный прусский, натурализованный русский) начинается с экспериментов с подковообразным электромагнитом в начале 1833 года в Кенигсберге (тогда Пруссия, ныне Россия).В январе 1834 года он пишет в письме Поггендорфу, редактору журнала Annalen der Physik und Chemie , о своих успехах.

Он переходит к созданию электродвигателя, которое он завершает в мае 1834 года. Его двигатель поднимает вес от 10 до 12 фунтов со скоростью один фут в секунду, что эквивалентно примерно 15 ваттам механической мощности.
В ноябре 1834 года он отправляет отчет Академии наук в Париже и публикует подробные научные мемуары весной 1835 года.Позже за эту работу он получил звание почетного доктора факультета Кенигсбергского университета. Его текст разделен на 23 раздела и был расширен в 1837 году еще на 15 разделов.

Якоби прямо заявил в меморандуме 1835 года, что он не единственный изобретатель электромагнитного двигателя. Он указывает на приоритет изобретений Ботто и Даль Негро.

Однако Якоби, несомненно, был первым, кто создал пригодный для использования вращающийся электродвигатель.

Полнофункциональная копия его двигателя выставлена ​​в Институте электротехники (ETI) Технологического института Карлсруэ (KIT) по адресу Engelbert-Arnold-Strasse 5 (Building 11.10) в Карлсруэ, Германия.


Первый настоящий электродвигатель
Мориц Якоби, Кенигсберг, май 1834 г.
окт.
1834
Американец T. Edmundson создает электромагнитное вращающееся устройство, напоминающее водяное колесо.
Электромагнитное колесо Эдмундсона
Американский журнал науки, 1834, т. 26, стр. 205
1834-1835 В декабре 1833 года кузнец Томас Дэвенпорт (американец) покупает соленоид непосредственно у Джозефа Генри и начинает эксперименты вместе с Orange Smalley (американец) в мастерской в ​​Форестдейле, штат Вермонт.

В июле 1834 года двое мужчин создают свою первую роторную машину. Они улучшают устройство в несколько этапов, прежде чем впервые публично продемонстрировать его в декабре 1834 года.

В следующем году Давенпорт отделяется от Смолли.

Летом 1835 года Давенпорт едет в Вашингтон, округ Колумбия, чтобы продемонстрировать свою машину в патентном бюро и зарегистрировать ее. Однако из-за отсутствия денег ему пришлось безуспешно вернуться домой.


Первый двигатель Давенпорта из его первой заявки на патент в июне 1835 года
Август
1835
Фрэнсис Уоткинс (британец) создает электрическую «игрушку», с помощью которой он может приводить во вращение несколько магнитных игл. Он описывает устройство в статье для Philosophical Magazine .

Он признается, что его вдохновила электромагнитная машина (генератор) Джозефа Сакстона, которая выставлена ​​в публичной галерее в Лондоне с августа 1833 года.

Watkins можно считать одним из первых, кто понял принцип реверсирования двигателя и генератора.


Игрушка Уоткина, 1835 г.
Philosophical Magazine , 1835 г., т. 7, стр. 112
1835 Sibrandus Stratingh и Christopher Becker (голландский) создают небольшой (30 x 25 см) трехколесный автомобиль с электрическим приводом и весом около 3 кг.Он может проехать по столу от 15 до 20 минут, пока батарея не разрядится.

Stratingh и Becker публикуют отчет о своем успехе в том же году. Стратинг знал работы Якоби и в 1840 году хотел построить настоящий электромобиль, но ему это так и не удалось.


Электромодель Стрейтинга и Беккера, 1835 г.
Май
1836
Johann Philipp Wagner (немецкий) представляет электродвигатель на Stiftungsfest из Sencken-bergischen naturforschenden Gesellschaft .Его аппарат похож на устройство, созданное Стратингом и Беккером. Он может работать около 10 минут, пока батарея не разрядится.

Вагнер хранит свою конструкцию в секрете, поэтому есть отчеты о демонстрации, но нет чертежей машины. В последующие годы Вагнер продолжает развивать свой двигатель и публично демонстрирует улучшенные версии.

1836
1837
Davenport продолжает совершенствовать свои устройства.В 1836 году он находит нового партнера в лице Ransom Cook и переезжает в Саратога-Спрингс, штат Нью-Йорк, для дальнейшего развития своих двигателей. С помощью Кука он строит модель патентного бюро.
24 января 1837 года Давенпорт подает в Вашингтон свое предостережение, а 5 февраля 1837 года он получает первый в США патент на электродвигатель: « Усовершенствование движущей силы с помощью магнетизма и электромагнетизма ».

Его модель двигателя сейчас выставлена ​​в Смитсоновском институте в Вашингтоне, округ Колумбия.

В запатентованной конструкции

Davenport используются четыре вращающихся электромагнита, которые переключаются с помощью коммутатора, и постоянные постоянные магниты в форме кольца, сделанные из мягкого железа.

Усовершенствованный двигатель, который он представляет в августе 1837 года, имеет диаметр 6 дюймов, вращается со скоростью около 1000 оборотов в минуту и ​​может поднять 200-фунтовый груз на один фут за одну минуту. Это соответствует мощности 4,5 Вт.

Давенпорт в последующие годы постоянно совершенствовал свои конструкции.

Вместе с Эдвином Вильямсом из Нью-Йорка и его партнером Рэнсомом Куком Дэвенпорт 3 марта 1837 года формирует объединенную акционерную ассоциацию. Однако Уильямс не может продать достаточное количество акций, и все предприятие рушится всего через год. .


Запатентованный двигатель Давенпорта, февраль 1837 г.

Томас Дэвенпорт - Изобретатель электродвигателя?

Есть несколько текстов пафоса в американо-американской литературе, в которых Томас Дэвенпорт прославляется как изобретатель электродвигателя.Это утверждение основано на бесспорном факте, что Давенпорт был первым американцем, который создал пригодный для использования электродвигатель, а также первым, кто получил патент на такое устройство в начале 1837 года.

Однако

Davenport был далеко не первым, кто построил электродвигатель. В Европе (особенно в Англии, Италии и Пруссии) технологии были уже значительно продвинуты. Уже летом 1834 года, за три года до патента, Мориц Якоби представил двигатель, который был в три раза мощнее усовершенствованной машины, которую Давенпорт разработал через несколько месяцев после подачи заявки на патент.Вдобавок мотор Давенпорта работал быстрее, чем у Якоби. Таким образом, выходной крутящий момент двигателя Давенпорта, решающий фактор при сравнении электрических машин, составлял лишь около одной десятой от конструкции Якоби, разработанной тремя годами ранее.

В 1835 году, вскоре после появления двигателя Якоби, двое голландцев Стрейтинг и Беккер уже представили первое практическое применение, управляя небольшой электромобилем.

За годы, прошедшие после патента Давенпорта, продвижение Якоби практически не уменьшилось.В то же время, когда Якоби продемонстрировал свою следующую машину осенью 1838 года, двигатель, который имел выходную мощность 300 Вт и мог вести лодку с 14 людьми через широкую реку, Давенпорт показал крошечную модель поезда.

Мотор

Давенпорта не примечателен в историческом контексте. Его конструкция не является существенным улучшением других современных конструкций.

За прошедшие годы Давенпорт произвел большое количество машин.Но в отличие от Вернера Сименса, Джорджа Вестингауза и Томаса Эдисона он не был основателем важной компании. И в отличие от Николы Теслы, например, Томас Давенпорт никогда не мог продать или лицензировать свой патент.

Davenport не получил патент на электродвигатель как таковой, а только на его особые конструктивные особенности. В период с 1837 по 1866 год только в Англии другим изобретателям было выдано около 100 патентов на электродвигатели. После того, как Давенпорт модернизировал свой двигатель уже в 1837 году, его патент стал практически бесполезным.

Davenport - это честь быть первым из тысяч инженеров, получивших патент на электродвигатель. Но он не является их изобретателем, и его разработки не оказали сколько-нибудь значительного влияния на дальнейшее развитие электродвигателей.


Расписание 1838 - 1854 гг .: более мощные двигатели, новые применения
февр.
1838
Уоткинс публикует обширную статью в журнале Philosophical Magazine , где представляет свой двигатель.
Двигатель Уоткина, февраль 1838 г.
Philosophical Magazine, 1838 г., т. 12, пл. 4
Август 1838 г. В августе 1838 года в Лондоне выставлена ​​крошечная модель поезда с одним из двигателей Davenport . Он движется со скоростью 3 мили в час.
Модель поезда Давенпорта, 1838
Фото любезно предоставлено Отделом труда и промышленности Национального музея американской истории Смитсоновского института.
сен.
1838
Якоби переезжает в Санкт-Петербург в августе 1838 года по просьбе русского царя. Он был принят в Петербургскую Академию наук и щедро поддержан царем в его дальнейшей работе над электродвигателями.

13 сентября 1838 года Якоби впервые демонстрирует на Неве лодку с электрическим приводом и гребными колесами длиной около 8 м.

Цинковые батареи имеют 320 пар пластин и весят 200 кг.Они размещены вдоль двух боковых стенок сосуда. Мотор развивает мощность от 1/5 до 1/4 л.с. (300 Вт), лодка движется со скоростью 2,5 км / ч по маршруту длиной 7,5 км. Он может перевозить более десятка пассажиров. Якоби целыми днями разъезжает по Неве. В современных газетных статьях говорится, что после двух-трех месяцев работы потребление цинка составило 24 фунта.


Улучшенный мотор Якоби, 1838
1838 Чарльз Г. Page (американец) начинает всю жизнь заниматься электромоторами.

В течение следующих 20 лет Пейдж будет искать более совершенные и мощные машины. Его двигатели продавались по каталогам в США и достигли высокого уровня осведомленности общественности.

В первые годы многие изобретатели электродвигателей имитировали паровые двигатели с качающимся (возвратно-поступательным) поршнем. Пейдж тоже строит такую ​​машину (см. Справа), но затем обращается к вращающимся устройствам.


Первый двигатель Пейджа, 1838
Американский журнал науки , 1838, т. 35, стр. 264
Август
1839
8 августа г. Якоби испытывает усовершенствованный электродвигатель, механические характеристики которого в три-четыре раза превышают механические характеристики его второй машины 1838 года (около 1 кВт).Его лодка сейчас развивает скорость 4 км / ч. По словам Уильяма Роберта Гроува, ключевым фактором его успеха является улучшенная цинк-платиновая батарея, которую он сделал сам.

В октябре 1841 года Якоби снова демонстрирует усовершенствованный двигатель, который, однако, лишь немного превосходит модель 1839 года. Это последний электродвигатель, построенный Якоби. Теперь он обращается к теории электродвигателей, а затем переходит к другим электрическим явлениям.

1837-
1842
Роберт Дэвидсон (Шотландия) также занимается разработкой электродвигателей с 1837 года.Сделал несколько приводов для токарного станка и модельных машин.

В 1839 году Дэвидсон руководит постройкой первого автомобиля с электрическим приводом.

В сентябре 1842 года он совершает пробные пробеги с 5-тонным локомотивом длиной 4,8 м на железнодорожной линии Эдинбург - Глазго. Его двигатель развивает около 1 л.с. (0,74 кВт) и развивает скорость 4 мили в час (6,4 км / ч).


Первый электровоз Дэвидсона, 1839
От Т.du Moncel, Электричество как движущая сила , Лондон, 1883 г., рис. 32

В последующие годы начинается поток патентов на электромагнитные машины - около 100 в одной только Англии с 1837 по 1866 год.

Среди изобретателей, имеющих дело с электродвигателями: Джеймс Джоул (англ., 1838 г.), Уильям Тейлор (англ., 1838 г.), Урайа Кларк (1840 г.), Томас Райт (1840 г.), Уитстон (англ., 1841 г.) , де Гарлем (около 1841 г.), П.Элиас (американец США, около 1842 г.), Дж. Фромент (француз, около 1844 г.), Моисей Г. Фармер (американец, около 1846 г.), Г.К. Колтон (американец. Томас Холл (американец в США, около 1850 г.), Т. К. Эйвери (около 1851 г.), Серен Хьорт (датчанин, около 1851 г.), Дю Монсель (француз, около 1851 г.), Мари Дэви (франц., Около 1855 г.), Пачинотти (Италия, ab 1861)
и другие.

Изначально идет соревнование между колебательными (возвратно-поступательными) и вращательными машинами. Позже колебательные машины полностью исчезают из поля зрения.

Фундаментальная проблема первых электродвигателей заключалась в том, что электрический ток от гальванических элементов (цинковых батарей) был слишком дорогим, чтобы конкурировать с паровыми двигателями. Р. Хант сообщил в 1850 году в журнале British Philosophical Magazine , что электроэнергия даже в самых лучших условиях в 25 раз дороже, чем паровая машина. Только с продолжающейся разработкой электрогенератора (динамо-машины) ситуация начинает меняться.

1840 18 января 1840 года выходит первое издание новой газеты Давенпорта, Electro Magnet and Mechanics Intelligencer . Печатный станок приводится в движение двумя собственными моторами. Моторы выдают якобы около 2 л.с., что составляет около 1,5 кВт.
1841-
1844
По инициативе Вагнера, Германская Конфедерация под руководством Пруссии, Баварии и Австрии устанавливает в 1841 году приз в размере 100000 гульденов за создание электрической машины, мощность которой дешевле, чем мощность лошади, пара или человека. мощность.

Конечно, эта цена привлекает других изобретателей, которые параллельно с Вагнером начинают работать над электродвигателем. Среди них господин Карл Людвиг Althans из Бюккебурга недалеко от Миндена, Эмиль Stöhrer из Лейпцига, Эмиль Groos из Карлсруэ и Петер Bauer из Нюрнберга. В частности, в 1843 году Штёрер конструирует замечательную машину.

При исследовании последней машины Вагнера в мае и июне 1844 г. во Франкфурте-на-Майне федеральная комиссия определила мощность всего в 50 Вт.Потребление цинка настолько велико, что лошадь, пар и рабочая сила значительно дешевле. Из-за этой неудачи Вагнеру отказывают в цене, и он впадает в немилость.

Без мощного электрогенератора это соревнование невозможно было бы выиграть, и человечеству пришлось ждать еще 25 лет.

1851 Page увеличивает мощность двигателей с 8 до 20 л.с.

С двумя двигателями он ведет 10-тонный локомотив с максимальной скоростью 30 км / ч. Он путешествует по маршруту из Вашингтона в Бладенбург за 19 минут.

1854 Другой, 12-тонный локомотив Пейджа едет по маршруту Балтимор - Огайо.
... подробнее в части 2.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *