Устройство датчика холла принцип работы: Страница не найдена | Практическая электроника

Содержание

Датчик холла принцип работы в автомобиле

На блоге мы уже рассматривали различные системы зажигания, в частности, бесконтактных, у которых механический прерыватель в трамблёре заменён хитрым датчиком. О нём и поговорим, о датчике Холла, так его называют. Датчик Холла принцип работы его заключается в том, что он дает отсечку в нужной точке для поджига рабочей смеси в цилиндре, но давайте по порядку.

Датчик Холла принцип работы

Как мы видим, наш сегодняшний герой выполняет крайне ответственное задание в системе зажигания, но пока что он остаётся для нас тёмной лошадкой. Исправим данный недостаток. Итак, датчик холла что это и как работает?

Для начала немного истории. Своё название это устройство получило благодаря одному из сотрудников балтиморского университета Э. Холла, который в конце ХIХ века открыл эффект возникновения напряжения на краях полупроводниковой пластины при изменении магнитного поля, в котором она находится.

Другими словами, если специальную пластинку поместить в место, где будет периодически проскакивать магнит или что-либо, что может изменить имеющееся магнитное поле, к примеру, металлический предмет, то на её краях будут появляться импульсы напряжения, а они в свою очередь могут использоваться электроникой в качестве сигналов к действию.

Одно из ключевых преимуществ подобных датчиков – отсутствие каких-либо механически контактирующих элементов, а это значит, что нет износа и, как следствие, продолжительный срок безотказной работы узла.

Надо отметить, что эффект Холла стал массово использоваться в промышленности лишь во второй половине ХХ века, когда полупроводниковые материалы стали доступными.

Своё место датчики Холла нашли и в автомобилях, а если точнее – в двигателях, где их полезные свойства пригодились в системах зажигания.

Устанавливается такое устройство в корпус трамблёра. Внутри него, как мы уже знаем, имеется вал, именуемый в литературе валом прерывателя-распределителя.

В определённом месте на этом валу закреплена магнитопроводящая пластина, имеющая столько сердечников, сколько и цилиндров в силовом агрегате.

Вращаясь синхронно с распредвалом и коленвалом, она в момент прохождения одного из сердечников мимо датчика, возбуждает в нём импульс электрического напряжения, который затем поступает в коммутатор системы зажигания, где используется для управления работой катушки зажигания.

Этот импульс является отправной точкой для генерации искры свечи.

Система зажигания сгенерирует искру именно в тот момент, когда необходимо поджечь топливно-воздушную смесь – ни на мгновение раньше, ни на мгновение позже, иначе мотор просто-напросто не сможет нормально работать. Такой вот нехитрый алгоритм.

Как проверить датчик Холла?

Как и любой другой электронный элемент, наш герой тоже может выходить из строя, и узнать об этом мы можем по плохой работе двигателя авто, а именно:

  • мотор сложно завести или он вообще отказывается стартовать;
  • на холостом ходу заметны перебои или просадки оборотов;
  • при движении машина внезапно глохнет;
  • на высоких оборотах авто начинает дёргать.

Конечно же, не факт, что эти симптомы связаны именно с датчиком Холла, но, тем не менее, проверить его нужно. Сделать это можно своими силами.

  1. Попросите у друзей или где-нибудь на время проверки, переставьте и убедитесь в том, является ли причиной ваших бед именно датчик Холла;
  2. Просто замерьте напряжение на выходе, оно должно быть в точке разрыва 0,4 В, а в точке прохода пластины — 11В. ;
  3. Разобрать трамблер, провод высокого напряжения с надсвечником и свечей положите на корпус автомобиля с гарантией контакта на минус. Включите зажигание и замкните контакты 6 и 3 на панели коммутатора. Если искра на контактах свечи зажигания появится, то ваш датчик вышел из строя.

Но все-таки наиболее простой и примитивный способ – замена датчика на заведомо исправный. На видео ниже, видно как это просто.

Все-таки проверка требует квалифицированного подхода, если вы им не обладаете, не стоит экспериментировать. Надежно и с гарантией успеха лучше обратиться к специалистам и сделать все как положено.

Пожалуй, вот так кратко, датчик Холла принцип работы и его значение вам понятны. Надеюсь, вы почерпнули минимальные полезные знания из этой статьи.

На этом разрешите откланяться и напомнить, читайте свежие и интересные публикации, появляющиеся на блоге, поможет подписка. До скорых встреч!

Работа двигателя автомобиля контролируется большим количеством приборов. Датчик Холла в машине является одним из важнейших устройств системы зажигания. Любая неполадка в этом узле приводит к сбою в функционировании силовой установки. Чтобы не столкнуться с проблемами, следует разобраться с принципом работы, методами диагностики и особенностями самостоятельной замены прибора.

Принцип работы

Устройство применяется вместо контактных элементов, а также может использоваться для отслеживания показателя тока нагрузки. Основное назначение датчика состоит в отключении силовой установки в момент перегрузки в бортовой электросети. Перепады напряжения в электрической сети двигателя могут привести к сбою в работе устройства.

Чтобы избежать этих проблем, современные приборы оснащаются диодами, предотвращающими обратную активацию напряжения. Принцип действия датчика основан на эффекте Холла, при котором поперечная разность потенциалов возникает в момент перемещения одного проводника в магнитное поле.

Это может быть достигнуто благодаря тому, что токи начинают протекать через клеммы пластины, находящейся вместе с полупроводником внутри поля.

Во время работы мотора силовые лопасти перемещаются в специальных прорезях, расположенных внутри корпуса, после чего появляется возможность передавать электросигнал на коммуникатор.

В результате датчик открывает транзистор, и напряжение подается на катушку, выполняющую роль преобразователя низкочастотных импульсов в высокочастотные. Именно этот сигнал и поступает на свечи зажигания. Располагается контроллер в трамблере и внешне напоминает небольшой цилиндр.

Несколько отличается принцип работы датчика Холла в дизельных двигателях. Сигналы прибора помогают фиксировать момент прохождения поршнями каждого цилиндра верхней мертвой точки.

Это позволяет максимально точно определить положение распредвала относительно коленвала и тем самым обеспечить мгновенный пуск силового агрегата, работающего на тяжелом топливе. Кроме этого, достигается устойчивая работа мотора на любых оборотах.

Для решения этих задач конструкцию прибора пришлось доработать. Особенно это касается задающего диска, который оснащен реперами для каждой камеры сгорания.

Устройство и виды

Зная принцип работы датчика Холла, необходимо также познакомиться с конструкцией прибора. Рассмотреть ее можно на примере оптического регулятора. Основными элементами такого датчика являются:

  • постоянный магнит;
  • лопасть ротора;
  • магнитопроводы;
  • плата;
  • клеммы.

Прибор также оснащен тремя контактами. Первый из них используется для подсоединения к корпусу машины. Ко второму подключено напряжение 6 В, а с третьего подается сигнал на коммутирующее устройство. Существуют три вида датчиков Холла:

  1. Аналоговые. Эти приборы не могут изменять показатель индукции магнитного поля, а выдаваемые их контроллером параметры зависят от полярности и силы поля.
  2. Цифровые. Принцип работы таких устройств основан на том, что при достижении заданного значения контроллер выдает логическую единицу. В противном случае на коммутирующем устройстве высвечивается ноль. Основной недостаток цифровых датчиков — низкая чувствительность.
  3. Оптические. Отличаются более сложной конструкцией. В приборах этого типа можно изменять разность потенциалов благодаря перемещению магнитного поля.

Основные неисправности

Существует довольно много признаков неисправности прибора. Даже опытные автовладельцы не всегда с их помощью способны сразу выявить поломку. Однако есть несколько наиболее явных показателей:

  1. Резкое увеличение расхода топлива системой. Это связано с тем, что горючая смесь впрыскивается более одного раза за цикл прокручивания коленвала.
  2. Пропала стабильность в работе силовой установки. Во время движения автомобиль начинает дергаться, а мощность мотора резко снижается.
  3. Зафиксирован рычаг трансмиссии. В результате невозможно переключать скорость. Проблема характерна для новых иномарок и решается с помощью перезапуска силовой установки.
  4. Сбой системы самодиагностики. Чаще всего проявляется во время работы мотора на холостом ходу. После увеличения оборотов сообщение об ошибке пропадает.

Также возможны ситуации, когда датчик Холла в машине исправен, но проблемы с работой мотора присутствуют. Это может произойти по различным причинам, например, на корпусе прибора находится грязь или посторонний предмет. Среди возможных неисправностей можно выделить несколько:

  • поврежден сигнальный проводник, подключенный к контроллеру;
  • в клеммную колодку попала влага;
  • произошло замыкание сигнального провода;
  • при подключении прибора была нарушена полярность;
  • появились проблемы с работой высоковольтной цепи электрозажигания;
  • в момент установки устройства был неправильно установлен люфт между магнитопроводящим элементом и самим датчиком.

Способы диагностики

Автолюбители используют несколько способов проверки работоспособности устройства. Самым точным является применение осциллографа, так как с его помощью можно не только установить текущее состояние датчика, но и определить срок его службы. Однако такое оборудование есть не у всех автовладельцев, поэтому стоит рассмотреть более доступные способы проверки датчика Холла.

С помощью мультиметра

Предварительно измерительный прибор необходимо перевести в режим «Постоянный ток», после чего установить рабочий диапазон в пределах 20 В. Также до начала проверки нужно снять резиновый чехол. Алгоритм проведения предварительной диагностики имеет следующий вид:

  1. Основной бронепровод отсоединяется от распределительного узла и подключается к корпусу машины.
  2. Отрицательный контакт измерительного прибора подключается к кузову автомобиля.
  3. Разъем распределительного узла имеет три контакта — красный, зеленый и белый, однако в некоторых автомобилях цветовая схема может иметь отличия.
    На первый и второй контакты поступает напряжение около 12 В, а на третьем рабочий показатель должен составлять ноль.

Для проведения следующего этапа проверки датчика необходимо взять два железных штыря, например, гвозди. Один из них предстоит установить в средний контакт разъема, а второй соединить с массой. После этого активируется система зажигания, положительный щуп тестера подключается к первому штырю, отрицательный — ко второму.

Если датчик функционирует нормально, тогда показатель напряжения должен составить около 11,2 В.

Затем нужно прокрутить коленчатый вал мотора и проверить показания мультиметра. Если в это время параметр напряжения упадет до 0,02 В, а затем увеличится до 11,8 В, то контроллер Холла исправен.

Использование сопротивления

Для решения поставленной задачи потребуется сделать простейшее устройство, в состав которого входят гибкие проводники, резистор на 1 кОм и светодиод.

Резистор необходимо соединить с одной ножкой источника света. Провода припаиваются к этой детали. Чтобы проверить датчик Холла, остается выполнить следующие действия:

  1. Демонтируется крышка распределительного устройства, после чего нужно отсоединить колодку с проводниками и трамблер.
  2. Для диагностики электроцепи мультиметр подсоединяется к первому и третьему контактам. После этого включается система зажигания. Показатели напряжения в исправном датчике должны находиться в диапазоне 10—12 В.
  3. Аналогичным образом выполняется подключение собранного предварительно устройства. Если полярность была соблюдена, то светодиод начнет светиться. В противном случае придется поменять проводники местами.
  4. Подключенный к первому контакту провод остается на месте, а другой переносится с третьего на второй контакт.
  5. При прокручивании распредвала светодиод должен начать моргать.

Рекомендации по замене

Чтобы заменить контролер самостоятельно, сначала нужно снять клеммы с аккумулятора. Затем демонтируется распределительный механизм — от устройства отключаются проводники, и выкручиваются болты, предназначенные для фиксации узла. Способ крепления крышки трамблера зависит от модели автомобиля и может осуществляться с помощью специальных зажимов либо болтов.

Крайне важно запомнить положение распредузла. Для этого перед демонтажем следует сделать метку.

Когда крышка будет снята, следует совместить риску на газораспределительном устройстве с соответствующей отметкой на коленвале двигателя. Затем необходимо открутить все крепежные элементы и извлечь из распределительного узла вал. Следующим шагом станет отключение датчика и его демонтаж. Во время отсоединения проводников стоит запомнить их местоположение, чтобы затем правильно подключить рабочий прибор.

После выполнения необходимых действий нужно установить новый контроллер. Процедура его монтажа проводится в обратной последовательности. Хотя проверка и замена контроллера Холла является не самой сложной процедурой, автолюбитель должен обладать определенным опытом. Если его нет, тогда лучше не экспериментировать, а обратиться за помощью к профессионалу.

Среди элементов радиоэлектроники, автоматики, а также измерительной техники, датчик Холла, принцип работы которого основан на одноименном эффекте, занимает особое место. Смысл упомянутого эффекта заключается в том, что при помещении проводника в магнитное поле появляется электродвижущая сила (ЭДС), направление которой будет перпендикулярным полю и току. Как же это используется в автомобиле?

Датчик Холла – принцип работы и назначение

В современных условиях происходит постоянное технологическое развитие датчиков Холла. Они отличаются надежностью, точностью и постоянством данных. Широкое распространение эти приборы получили в автомобилях и других транспортных средствах. Они обладают повышенной устойчивостью к агрессивным внешним воздействиям. Датчики Холла являются составной частью многих устройств, с помощью которых контролируется определенное состояние техники.

Во многих случаях этот прибор размещается в трамблере и отвечает за образование искры, то есть он используется вместо контактов. Нередко данный прибор применяется для слежения за током нагрузки. С его помощью производится отключение при возникновении токовых перегрузок. В случае перегревания датчика происходит срабатывание температурной защиты. Резкое изменение напряжения может иметь для устройства тяжелые последствия. Поэтому в последних моделях устанавливается внутренний диод, препятствующий обратному включению напряжения.

Датчик Холла до настоящего времени не смог заменить обычные механические переключатели. Однако в любом случае он имеет ряд значительных преимуществ. Основными из них являются отсутствие контактов, загрязнений, а также механических нагрузок. Поэтому часто можно встретить датчик Холла на скутере, применяемый в качестве составной части датчика зажигания.


Датчик Холла – схема подключения и «физика» процесса

Классическое устройство датчика Холла на практике – тонкий полупроводниковый листовой материал. При прохождении через него постоянного тока на краях листа образуется сравнительно невысокое напряжение. Если под прямым углом поперек пластинки проходит магнитное поле, то на краях листа происходит усиление напряжения, которое находится в прямо пропорциональной зависимости с магнитной индукцией. Датчик Холла является одной из разновидностей датчиков импульсов, создающих электрические импульсы с низким напряжением. Благодаря своим качествам, этот элемент широко применяется в бесконтактных системах зажигания.

Мы рассмотрели, какой имеет датчик Холла принцип работы, схема его пока что нам не ясна. Она включает в свой набор постоянный магнит, полупроводниковую пластину с микросхемой и стальной экран, имеющий прорези. Стальной экран через прорези осуществляет пропуск магнитного поля, благодаря чему в пластине из полупроводников начинает возникать напряжение. Сам экран не пропускает магнитного поля, поэтому, когда прорези и экран чередуются, происходит создание импульсов низкого напряжения.

При конструктивном объединении этого датчика с распределителем получается единое устройство – трамблер, выполняющий функции прерывателя-распределителя зажигания.

Датчик Холла и особенности эксплуатации

Когда в конструкции авто активно эксплуатируется датчик Холла, схема подключения его требует регулярных проверок и профилактического обслуживания. Главное еще и не навредить во время таких проверок, поэтому отсоединение разъема кабеля от датчика должно в обязательном порядке производиться при выключенном зажигании. Иначе элемент может просто выйти из строя, ремонтировать его нет смысла, потребуется замена.

Проверить правильность схемы можно следующим образом: при вращении коленчатого вала и, соответственно, вала распределителя должен попеременно загораться и гаснуть контрольный светодиод, указывающий на наличие сигнала. Запрещается проверять датчик с помощью обычной контрольной лампы. Особое внимание во время работы устройства следует обращать на чистоту и надежность в разъеме и контакте штекеров. Необходимо помнить, что датчик Холла нельзя использовать в обычной системе зажигания.

Несмотря на сложность процедуры проверки датчика Холла каждый может провести проверку самостоятельно, хотя объективность тестирования будет ниже. Например, можно воспользоваться мультиметром, установить работу прибора в режим вольтметра и измерить выходное напряжение, которое должно находиться в диапазоне от 0,4 до 11 В. Ну, а самый простой способ проверки это установка заведомо исправного датчика, если изменения будут очевидны, это повод отправиться в магазин за новым датчиком.

Схема датчика холла и принцип работы

Физик Холл открыл принцип, который впоследствии позволил создать датчик его имени. Этот прибор относится к категории магнитоэлектрических устройств и, фактически, является датчиком магнитного поля. Устройство датчика Холла имеет два основных конструктивных варианта. По принципу действия, эти приборы могут быть цифровыми и аналоговыми.

С помощью цифровых датчиков производится определение поля, то есть, его наличие или отсутствие. При достижении индукцией определенного значения, датчик выдает результат. Однако, слабая индукция не позволяет зафиксировать наличие поля, что является минусом этого прибора.

Конструкции аналоговых датчиков Холла позволяют преобразовывать индукцию в напряжение. Полученная величина будет зависеть от силы поля и его полярности.

Принцип работы датчика Холла

Датчики Холла являются составной частью различных приборов. В большинстве случаев, они используются для измерения напряженности магнитного поля. Широкое применение эти устройства нашли в системах зажигания автомобилей, благодаря возможностям бесконтактного действия.

Бесконтактное воздействие объясняется следующими факторами. Было замечено, что при помещении пластины, находящейся под напряжением, в магнитное поле, электроны, находящиеся в этой пластине будут отклоняться в перпендикулярном направлении с магнитным потоком. В данном случае, полярность магнитного поля оказывает непосредственное влияние на направление этого отклонения. Таким образом, будет наблюдаться разница плотности электронов на противоположных концах пластины. Это приводит к созданию разности потенциалов, улавливаемой датчиками Холла.

Проверка работоспособности датчика Холла

Чаще всего, с проблемой работоспособности датчика сталкиваются автомобилисты. Наиболее легким способом считается замена прибора на исправный. Во многих случаях, это помогает полностью решить проблему.

Если же невозможно установить исправный датчик, можно воспользоваться несложным устройством, которое будет дублировать его работу. Для изготовления этого устройства, необходимо взять колодку распределителя зажигания с тремя штекерами и небольшой кусок провода.

Чтобы произвести диагностику, можно использовать обычный тестер. При неисправности датчика, тестер будет показывать менее 0,4 вольта. Проверка наличия искры осуществляется при включенном зажигании. В этом случае, концы провода соединяются с определенными выходами в коммутаторе. Однако, как уже говорилось, наиболее оптимальным вариантом является замена неисправного прибора.

Широкое применение датчик Холла имеет в транспортных системах. Также Датчик Холла применяется для контроля положения узлов различных механизмов: перемещение деталей механизмов до концевых положений, построение энкодеров. Используется для измерения больших токов. Проводятся эксперименты по использованию датчика Холла в качестве чувствительного элемента магнитного компаса. Основу датчика составляет элемент Холла, соединенный с электрической схемой. Современный датчик Холла представляет собой микросхему, к которой подводится питание, а на выходе микросхемы формируется информационный сигнал. Принцип работы датчика Холла состоит в фиксировании магнитного поля. Для измерения скорости перемещения датчика Холла закрепляется на неподвижном элементе конструкции, а в движущейся части устанавливаются магниты. Применяют и более простое решение, намагничивают подвижные элементы не внося изменений в конструкцию механизма. Для измерения скорости вращения применяется пара постоянный магнит и датчик Холла. Между ними свободно перемещается пластина, экранирующая магнитное поле. При каждом обороте с выхода датчика Холла поступает электрический импульс в схему электронного тахометра. Для увеличения точности измерения устанавливают две и более пар магнит + датчик Холла.

Принцип работы датчика Холла позволяет создать регистрирующее устройство не имеющее механического контакта с подвижной частью контролируемого механизма, что позволяет многократно увеличить ресурс работы по сравнению с герконами или механическими переключателями, кнопками. На рисунке показан узел из бесконтактной системы зажигания автомобильной схемы, с использование датчика Холла.

1 – аккумулятор;
2 – замок зажигания;
3 – свечи зажигания;
4 – двухвыводная катушка зажигания;
5 – вольтметр;
6 – коммутатор;
7 – датчик Холла.

Проверить датчик Холла можно по такой технологии. С выхода датчика снимается напряжение, если в его зазоре находится стальной экран. Если экрана в зазоре нет, то напряжение на выходе датчика близко к нулю. На снятом с двигателя датчике-распределителе зажигания датчик можно проверить по схеме, приведенной на рисунке ниже, при напряжении питания 8-14 В. Медленно вращая валик датчика-распределителя зажигания, измерьте вольтметром напряжение на выходе датчика. Оно должно резко меняться от минимального (не более 0,4 В) до максимального (не более, чем на 3 В меньше напряжения питания).

Использование совместно с датчиком Холла постоянного магнита повышает надежность по сравнению с оптопарами, требующими источника света. Постоянный магнит "не погаснет”, а источник света требует подключения к питанию, постоянно потребляет ток. Обрыв питания источника света приведет к ложному сигналу с выхода оптопары, что не может произойти с датчиком Холла. Автор статьи – Сергей Куприянов.

Датчики, иное название сенсоры, служат для регистрирования изменения различных физических величин и передачи полученной информации обрабатывающим устройствам. Если к проводнику подвести постоянный заряд и поместить его в магнитное поле, то возникнет разность потенциалов. Этот эффект был обнаружен в 1897 году учёным Эдвином Холлом. Основываясь, на этом эффекте был создан датчик, названный в честь изобретателя датчиком Холла.

Принцип работы прибора

Это устройство, регистрирующее напряжённость магнитного потока. Фактически это сенсор наличия магнитного поля. Датчики выпускаются как цифрового, так и аналогового типа. Первый тип основан на измерении индукции поля и формирования соответствующего напряжения, а второй тип реагирует на изменение полярности магнитного потока.

Принцип действия датчика Холла построен на гальваномагнитном явлении. Это явление представляет собой результат взаимодействия магнитного поля с полупроводником, который подключён к электрической энергии, и при этом изменяются его электрические свойства. Эффект Холла проявляется, если в полупроводнике, расположенном в магнитном потоке, при протекании по нему тока образуется поперечное напряжение. При этом направление заряда перпендикулярно вектору направления поля. Возникающее явление объясняется тем, что на подвижные электроны или дырки в магнитном потоке воздействует сила Лоренца, приводящая к их отклонению.

В простом примере эффект Холла представляется в следующем виде. В полупроводнике под влиянием силы Лоренца носители заряда перемещаются в разные стороны, соответствующие своему знаку. На одной стороне полупроводника скапливаются электроны, отрицательный заряд, а на другой откуда переместились электроны — положительный заряд. Между этими сторонами из-за разности зарядов образуется электрический поток, который препятствует перемещению зарядов под влиянием силы Лоренца. Когда наступает момент равенства сил Лоренца и магнитного поля, полупроводник переходит в состояние равновесия.

По своему виду датчики могут выпускаться с разным числом контактных выводов и бывают:

Так как уровень сигнала на выходах сенсора низкий, к его выходам подключается операционный усилитель. При добавлении триггера получается простое устройство, срабатывающее при определённом значении магнитного поля и вида проводимости. В цифровой электронике датчики, дополняющиеся логическими элементами, разделяются на три группы:

  1. Униполярные. Прибор регистрирует только изменение одной величины носителей заряда, дырочной или электронной проводимости.
  2. Биполярные. Сенсор реагирует на оба вида носителей заряда, но выполняет по отношению к ним противоположные действия. Например, при регистрации электронной проводимости подключённый к нему прибор начинает работать, а при регистрации дырочной проводимости отключается.
  3. Однополярные. Регистрируют просто появление проводимости и не зависят от её типа.

Датчик, использующий три вывода, в своём корпусе содержит транзистор с открытым коллектором, так как ток прибора малый с ним применяется в паре усилитель сигнала.

Применение эффекта Холла

Существует линейная зависимость между возникающей разностью потенциалов и магнитной индукцией, приводящей к её появлению. На этом и построены устройства с датчиком Холла, измеряющие магнитную индукцию.

Приборы, использующие в работе преобразователи Холла, применяются для проведения всевозможных измерений. Используя явление, при котором магнитное поле появляется под воздействием электрического тока, индукция магнитной силы соотносится с ним, и создаются бесконтактные измерители силы тока. Такой прибор выгоден при вычислении величин больших постоянных токов в проводах, которые при измерении обычным амперметром пришлось бы разрывать. Кроме этого, широкое применение получили приборы с сенсорами Холла для измерения электрической мощности, фиксирования линейных и угловых перемещений, плотности носителей заряда в полупроводнике.

Главным параметром прибора, построенным на эффекте Холла, является магнитная чувствительность. Она характеризуется соотношением появляющегося напряжения к значению магнитной индукции, то есть напряжением, при индукции равным единице.

Особое применение сенсоры получили в электродвигателях. В них датчики располагают таким образом, что устанавливаясь на статоре, отслеживают положение ротора. Установив магнит постоянного поля, получается счётчик оборотов. Величина магнитного поля, обеспечивающая срабатывание датчика, находится в пределах 150 Гауссов.

Использование в автомобилях

В машине датчик применяется в системе зажигания. Без его участия правильная работа мотора в автомобиле невозможна. Располагается он на трамблере и определяет момент появления искры, заменяя собой контактор. Здесь может использоваться как биполярный, так и униполярный вид сенсора.

Проводя измерения количества возникающих импульсов, сенсор сообщает блоку электроники информацию о необходимости создания искры. В состав прибора входят: постоянный магнит, металлический экран с отверстиями, полупроводниковая пластина. Схема работы основывается на том, что через устроенные отверстия в полупроводник проникает магнитный поток, в результате чего появляется разность потенциалов. Когда прорези закрыты экраном, поток не проходит, и напряжение не возникает. Таки образом, открывая и закрывая прорези экраном, создаётся импульсный сигнал на выходе устройства.

Датчик содержит три вывода, согласно его распиновке слева направо:

  • первый подключается к корпусу автомобиля;
  • на второй подводится напряжение равное шести вольтам;
  • третий используется как информационный.

Кроме этого, датчик используется для контроля токовой перегрузки. При появлении перегрузки происходит нагрев сенсора и срабатывание температурной защиты.

Из-за нарушений, возникающих в работе сенсора, возникают различные неисправности, что сказывается на запуске двигателя, появления рывков при работе, или просто его остановки. Проверить работоспособность датчика в автомобиле проще всего вращением коленчатого и распределительного вала. При нормальной работе светодиод, расположенный на контрольной панели, должен мигать.

При отсутствии бортового светодиода возможно выполнить приспособление самостоятельно. Для этого понадобится резистор на один килоом, светодиод и провода. Резистор последовательно соединяется со светодиодом, и от конструкции делаются отводы на проводах. Трамблер отключается и проводится подключение проводов от светодиода и резистора, после чего проворачивается распределительный вал. В результате светодиод должен мигнуть.

Для получения точных результатов лучше провести проверку датчика холла мультиметром. Потребуется любой тестер с возможностью измерения напряжения. При рабочем датчике напряжение на его выводах составит до 11 вольт. Сначала измеряется присутствие необходимых напряжений на контактной колодке трамблера. Обычно присутствуют три напряжения, равные 12 вольтам, и на одном контакте напряжение должно отсутствовать.

Включается зажигание. Положительный щуп устанавливается на выход клеммы датчика, а минусовой на провод с нулевым значением напряжения. Величина напряжения составляет около 11 вольт. При провороте коленвала напряжение должно изменяться, при этом наибольшее значение не должно опускаться ниже девяти вольт, а наименьшее быть не более 0,5 В.

Преобразователь Холла в смартфоне

Имея небольшие размеры, сенсоры Холла нашли своё применение и в электронных гаджетах. Используя его свойства в смартфонах, улучшается позиционирование, быстрее происходит запуск GPS поиска, увеличивается срок службы в автономном режиме. Применяя способность сенсора реагировать на магнитное поле, преобразователь используется также в телефонах вида «раскладушка» и ноутбуках. Месторасположение датчик занимает на лицевой стороне устройства, что увеличивает его реакцию на изменение магнитного поля.

Из-за присутствия датчика происходит автоматическое включение экрана ноутбука при его открытии или выключение при закрытии. Также и с телефоном — «раскладушкой». В смартфонах такая функция реализуется с применением чехла книжки. Датчик регистрирует величину магнитного поля, исходящего от миниатюрного магнита, вмонтированного в середину чехла. При открытии чехла, сила действия магнитного потока ослабевает, и устройство включает подсветку экрана.

Важно отметить, что использование магнита не оказывает никакого негативного влияния на гаджет, а сам датчик Холла в принципе работы применяет регистрацию магнитного потока. Он регистрирует силу магнитного поля, а не сравнивает его напряжённость. Преобразователь Холла в мобильных устройствах также имеет следующий функции:

  • помогает в ориентирование по горизонту земли;
  • обеспечивает работу компаса устройства;
  • включает и отключает экран при совместном использовании с магнитом.

Ориентирование экрана — это функция, используемая в любом современном телефоне. При разном положении гаджета в пространстве изображение на экране всегда будет правильным, а не перевёрнутым. Такую функцию можно и отключить, для этого в настройках смартфона выбирается последовательно: настройки, экран блокировки, расширенные возможности, режим смарта. Если в настройках пункта нет, придётся выпаять преобразователь из схемы.

Кроме этого, специальная микросхема, получая сигнал от преобразователя Холла, приводит к коррекции изображения. Это проявляется при фотографировании или при смене времени суток. Участвуя в работе GPS навигации, устройство помогает увеличить точность позиционирования.

Чтобы знать, как проверить датчик Холла в телефоне, особых умений не понадобится. Для этого нужно поднести любой магнит к корпусу или экрану устройства. При его работоспособности экран погаснет, если магнит убрать — загорится.

Устройство в бытовой технике

Очень часто в бытовой технике, использующей мотор (например, стиральная машинка) для подсчёта количества оборотов стоит сенсор Холла. Он имеет вид кольца с двумя проводами и крепится к ротору электродвигателя. Его работа устроена следующим образом: за счёт вращения вала на сенсор поступает напряжение, сила которого зависит от скорости вращения ротора. Чем обороты больше, тем больше и разность потенциалов. Электронный узел анализирует величину напряжения и выставляет требуемую скорость вращения.

Чтобы проверить преобразователь, потребуется взять мультиметр и прозвонить сопротивление сенсора. Нормальная величина рабочего прибора составляет около 60 Ом. Если мультиметра нет, можно взять простой вольтметр и измерить напряжение на том месте, где подключается сам датчик.

Схема для практического повторения

Несложная схема с применением датчика Холла, применяемая для регистрации открытия двери, не представляет сложности для самостоятельной сборки. Достоинство использования сенсора в том, что его работе не требуется механический контакт, как, например, геркону. Датчик размещается на дверной коробке, а магнит на двери. В основе схемы используется датчик MH 183 и микросхема CD 4093. За питание отвечает источник напряжения на девять вольт.

При воздействии магнитного потока транзисторный ключ находится в активном состоянии. Сигнал с сенсора поступает на вход микросхемы и запрещает работу её генератора. Светодиод LED1 горит. Если дверь открывается, магнитная сила, воздействующая на датчик, ослабевает или пропадает, а в микросхеме запускается генератор и светодиод гаснет. Резистор R1 предназначен для защиты преобразователя Холла от обратного пробоя напряжения. Датчик Холла нашел свое применение во многих областях и является незаменимым помощником для человека в быту. Именно благодаря ему существуют так называемые «умные» устройства.

Системы зажигания с датчиком Холла

Магнитоэлектрический датчик Холла получил свое название по имени Э. Холла американского физика, открывшего в 1879 г. важное гальваномагнитное явление.

Элемент Холла представляет собой тонкую пластинку, выполненную из полупроводникового материала (кремний, германий), с четырьмя электродами. Если через такую пластинку проходит ток I и на нее одновременно действует магнитное поле, вектор магнитной индукции В которого перпендикулярен плоскости пластинки, то на параллельных направлению тока гранях возникает э.д.с. Холла, которое определяется по следующему выражению:

Uн = кхIВ/d,
кх – постоянная Холла, зависящая от материала пластинки; d – толщина пластинки

Рис. Принцип работы элемента Холла:
1 – магнит; 2 – пластинка из полупроводникового материала

Через пластинку пропускается ток примерно 30 мА, тогда как напряжение Холла составляет 2 мВ, увеличиваясь с ростом температуры. Пластинка обычно представляет одно целое с интегральной схемой, осуществляемой усиление и формирование сигнала.

Если между магнитом и полу­проводником поместить перемещающийся экран с прорезями, получим импульсный генератор Холла.

Схема прерывателя-распределителя с датчиком Холла представлена на двух следующих рисунках.

Рис. Принцип работы датчика Холла:
1 – постоянный магнит; 2 – ротор; 3 – элемент Холла; 4 – операционный усилитель; 5 – формирователь импульсов; 6 – выходной каскад; 7 – блок стабилизации

Магнитное поле создается постоянным магнитом 1, а прерывание магнитного поля осуществляется ротором (экраном) 2 с окнами, укрепленным на валике распределителя. При прохождении окна ротора около постоянного магнита силовые линии его магнитного поля пронизывают поверхность элемента Холла и на его выходе возникает ЭДС. Если воздушный зазор между магнитом и элементом Холла перекрывается шторкой, магнитное поле замыкается на шторку экрана и не попадает на элемент Холла.

Рис. Схема прерывания магнитного потока:
1 – датчик Холла; 2 – держатель датчика; 3 – воздушный зазор; 4 – магнитный поток; 5 – ротор

Количество шторок и окон экрана соответствует количеству цилиндров двигателя. Ширина шторки экрана соответствует углу, при котором выходной транзистор коммутатора пропускает ток через первичную обмотку зажигания.

Учитывая небольшое напряжение, вырабатываемое элементом Холла, оно обрабатывается и усиливается.

Операционный усилитель 4 усиливает сигнал датчика и через формирователь импульсов 5 подает сигнал на базу выходного транзистора 6 и открывает его. Для исключения влияния на выходной сигнал датчика колебаний напряжения сети и температуры в схеме датчика имеется блок стабилизации 7.

При нахождении шторки экрана в щели воздушного зазора, величина магнитного потока резко падает, вследствие замыкании магнитного потока на шторку.

Рис. Импульсы датчика Холла:
В – магнитная индукция; Uн – напряжение, вырабатываемое элементом Холла; Ug – напряжение, вырабатываемое датчиком Холла; I – ток первичной обмотки катушки зажигания; tz – момент зажигания электрической искры; а – изменение магнитной индукции; б – изменение напряжения, вырабатываемого элементом Холла; в – изменение напряжения, вырабатываемого датчиком Холла; г – изменение силы тока первичной катушки зажигания.

Напряжение, вырабатываемое элементом Холла Uн, поступает на операционный усилитель, где происходит усиление сигнала. После этого ток поступает на формирователь импульсов и там происходит переработка из аналогового сигнала в цифровой. Затем полученный цифровой сигнал поступает на выходной каскад и окончательно усиливается до величины напряжения Ug, достаточного для работы транзисторного коммутатора. При этом напряжение Ug за счет инверсии выходного каскада вырабатывается в момент отсутствия напряжения Uн с входа элемента Холла, т.е. в момент перекрытия шторкой экрана воздушного зазора, что соответствует напряжению Uн ниже 0,4 В. В таком положении экрана транзистор выходного каскада Т0 находится в открытом состоянии, при этом от коммутатора через транзистор Т0 проходит ток и при этом база транзистора Т1 соединяется с массой.

Рис. Электрическая схема коммутатора и датчика Холла:
1 – датчик Холла; 1а – выходной сигнал; 2 – коммутатор; 3 – замок зажигания; 4 – дополнительный резистор; 5 – шунтирование дополнительного резистора; 6 – катушка зажигания

Учитывая, что проводимость транзистора Т1 n-p-n, отсутствие положительного потенциала этого транзистора приводит к его закрытию. В результате этого прекращается подача положительного потенциала на базу В через резистор R4 и коллекторно-эмитерный переход транзистора Т1. При этом ток не проходит через резистор R7 и база В включения транзисторов Т2/Т3 замыкается на массу. Учитывая проводимость этих транзисторов n-p-n, отсутствие положительного заряда на базе В, транзисторы закрываются и ток в первичную обмотку катушки зажигания не поступает. При выходе экрана из воздушного зазора напряжение с элемента Холла достигает 0,4В и через первичную обмотку катушки зажигания начинает протекать ток.

В момент попадания зуба ротора в зазор датчика на выходе датчика создается напряжение Umax примерно на 3 В меньше напряжения питания. Если через зазор датчика проходит прорезь ротора, напряжение на выходе датчика Umin близко к нулю (не более 0,4 В). Отношение периода Т к длительности Ти (скважность) равна трем. Напряжение питания датчика соответствует напряжению бортовой сети и находится в пределах 8…14 В.

Для преобразования управляющих импульсов бесконтактного датчика в импульсы тока в первичной обмотке катушки зажигания применяются коммутаторы. Коммутатор преобразует управляющие импульсы датчика в импульсы тока в первичной обмотке катушки зажигания. Коммутатор соединен с генератором импульсов (бесконтактным датчиком) тремя проводниками. Коммутатор управляет зажиганием в зависимости от частоты вращения валика датчика-распределителя, напряжения аккумулятора, полного сопротивления катушки зажигания и при любых режимах работы двигателя выдает импульсы напряжения постоянной величины. Во время прохождения положительного импульса (напряжение Umax ) от бесконтактного датчика происходит постепенное ( в течении 4…8 мс) нарастание тока в первичной обмотке катушки зажигания до максимальной величины В равной 8…9 А. В момент, когда напряжение на выходе датчика падает до Umin , выходной транзистор коммутатора закрывается и ток через первичную обмотку катушки зажигания резко прерывается. В результате во вторичной обмотке индуцируется импульс высокого напряжения.

Отдельно элементы прерывателя-распределителя с датчиком Холла показаны на рисунке. Пластинка и остальные составляющие датчика Холла устанавливается внутри пластмассового корпуса, залитого смолой. Датчик Холла неразборный и не подлежит ремонту. Для соединения с коммутатором датчик Холла имеет 3 вывода.

Рис. Элементы прерывателя-распределителя с датчиком Холла:
1 – ротор: 2 – шторка; 3 – держатель датчика Холла; 4 – постоянный магнит и датчик Холла; 5 – воздушный зазор

Датчик-распределитель выдает управляющие импульсы низкого напряжения и распределяет импульсы высокого напряжения по свечам зажигания. Он имеет центробежный и вакуумный регуляторы опережения зажигания. Бескон­тактный датчик в сборе с опорной пластиной имеет возможность поворачиваться в зависимости от разряжения, подводимого к вакуумному регулятору.

Катушка зажигания, адаптированная к данной системе зажигания, установлена рядом с коммутатором. Она преобразует прерывистый ток низкого напряжения (12 В) в ток высокого напряжения (20…25 кВ) необходимый для пробоя воздушного зазора между электродами свечей зажигания. Катушка имеет в верхней части отверстие, закрытое пробкой диаметром 5.5 мм для защиты катушки от избыточного внутреннего давления. Пробка выталкивается из отверстия при росте давления вследствие повышения температуры из-за короткого замыкания.

Видео: Как работает датчик Холла

Что такое датчик Холла?

Датчик Холла (датчик положения) представляет собой датчик магнитного поля. Работа устройства основана на эффекте Холла. Данный эффект основан на следующем принципе: если поместить определенный проводник с постоянным током в магнитное поле, то в таком проводнике возникает поперечная разность потенциалов (напряжение Холла). Другими словами, устройство служит для измерения напряжённости магнитного поля. Сегодня датчик Холла может быть как аналоговым, так и цифровым.

Сфера применения датчиков Холла очень широка. Устройство используется в таких схемах, где требуется бесконтактное измерение силы тока. Что касается автомобилей, датчик Холла служит для измерения угла положения распределительного или коленчатого вала, а также нашел свое применение в системе зажигания, указывая на момент образования искры.  

Содержание статьи

Как работает датчик Холла

Во время своих исследований в 1879 году физик Холл выявил такой эффект, что если в магнитном поле находится пластина, на которую подается напряжение (ток протекает через пластину), тогда электроны в указанной пластине начинают отклоняться. Такое отклонение происходит перпендикулярно по отношению к тому направлению, которое имеет магнитный поток.

Также направление этого отклонения происходит в зависимости от той полярности, которую имеет магнитное поле. Получается, электроны будут иметь разную плотность на разных сторонах пластины, создавая разные потенциалы. Обнаруженное явление получило название эффект Холла.

Другими словами, Холл поместил прямоугольную полупроводниковую пластину в магнитное поле и на узкие грани такого полупроводника подал ток. В результате на широких гранях появилось напряжение. Дальнейшее развитие технологий позволило создать на основе обнаруженного эффекта компактное устройство-датчик. Главным преимуществом датчиков подобного рода выступает то, что частота срабатывания устройства не смещает момент измерения. Выходной сигнал от такого устройства всегда устойчивый, без всплесков.

Простейший датчик состоит из:

  • постоянного магнита;
  • лопасти ротора;
  • магнитопроводов;
  • пластикового корпуса;
  • электронной микросхемы;
  • контактов;

Работа устройства построена на следующей схеме: через зазор осуществляется проход металлической лопасти ротора, что позволяет шунтировать магнитный поток. Результатом становится нулевой показатель индукции на микросхеме. Выходной сигнал по отношению к массе практически равняется показателю напряжения питания.

Датчик Холла в системе зажигания является аналоговым преобразователем, который непосредственно коммутирует питание. 

Среди недостатков стоит выделить чувствительность устройства к электромагнитным помехам, которые могут возникнуть в цепи. Также наличие электронной схемы в устройстве датчика несколько снижает его надежность.

Рекомендуем также прочитать статью об устройстве топливного электробензонасоса, а также о механическом решении. Из этой статьи вы узнаете о назначении, конструктивных особенностях и принципах работы данных устройств.

Аналоговые и цифровые решения

Датчики на основе эффекта Холла фиксируют разницу потенциалов. Аналоговое решение, рассмотренное выше, основано на преобразовании индукции поля в напряжение с учетом полярности и силы поля.

Принцип работы цифрового датчика состоит в фиксации присутствия или отсутствие поля. В случае достижения индукцией определенного показателя датчик отмечает наличие поля. Если индукция не соответствует необходимому показателю, тогда цифровой датчик показывает отсутствие поля. Чувствительность датчика определяется его способностью фиксировать поле при той или иной индукции. 

Цифровой датчик Холла может быть биполярным и униполярным. В первом случае срабатывание и отключение устройства происходит посредством смены полярности. Во втором случае включение происходит при появлении поля, отключается датчик в результате того, что индукция снижается.

Самостоятельная проверка устройства

Активное использование данного устройства в автомобилях означает, что при появлении определенных неисправностей или сбоев в работе ДВС может возникнуть острая необходимость проверить датчик Холла своими руками.

Перед началом работ по отсоединению разъема кабеля, который подключен к устройству, следует обязательно выключать зажигание!

Игнорирование данного правила может вывести датчик Холла из строя. Необходимо добавить, что проверка устройства при помощи контрольной лампы также недопустима.

  1. Одним из самых быстрых способов проверки является установка заведомо исправного подменного датчика на автомобиль. Если признаки неисправности после установки исчезают, тогда причина очевидна.
  2. Вторым способом, который подойдет для проверки датчика в системе зажигания, является проверка наличия искры в момент включения зажигания. Дополнительно потребуется осуществить подсоединение концов провода к нужным выходам на коммутаторе.
  3. Для максимально точной диагностики устройство лучше всего поверять при помощи осциллографа. Также в определенных условиях датчик проверяют при помощи мультиметра. Указанный мультиметр переводят в режим вольтметра, после чего подсоединяют к выходному контакту на датчике. Рабочий датчик Холла выдаст показания от 0.4 Вольт до 3-х. Если показания ниже минимального порога, тогда высока вероятность выхода датчика из строя.

Читайте также

Устройство, принцип работы датчика Холла, его применение в автомобиле

Сегодня роль электроники в автомобилестроении трудно переоценить. Автоматика оперативно контролирует и управляет всеми агрегатами современного автомобиля, обеспечивая их максимальную эффективность при высокой надёжности.

Но это возможно только при наличии достаточного количества датчиков, сообщающих электронному блоку управления множество различных параметров для выработки управляющих сигналов.

Одно из таких устройств в современном двигателе – датчик Холла. Принцип его функционирования основан на эффекте отклонения электронов в проводнике под воздействием силы Лоренса, возникающей при взаимодействии магнитного поля с движущимися заряженными частицами.

Если через две стороны плоского прямоугольного проводника помещённого плоскостью перпендикулярно силовым магнитным линиям пропускать электрический ток, то в результате их взаимодействия с электронами на двух других сторонах прямоугольника появляется электрический потенциал.

Причём сторона, куда отклоняются электроны, зависит от направления силовых магнитных линий. В результате этого эффекта создаётся плюсовой и минусовой полюс выходного потенциала.

Величина его небольшая – до 100 милливольт, и зависит от силы протекающего тока и напряжённости поля. Но этого вполне достаточно для того, чтоб электронная схема смогла его зарегистрировать.

Добавление к чувствительному элементу полупроводниковой схемы позволило создать компактный прибор, свободный от недостатков контактного прерывателя, создающего так называемый «дребезг» во время замыкания или размыкания. Благодаря сравнительно низкой цене при небольших размерах датчики Холла применяются весьма широко.

Например, для бесконтактного измерения тока, индикации или измерения уровня магнитного поля, а также в ноутбуках либо телефонах-раскладушках для отключения питания при закрывании крышки.

В автомобилестроении датчики Холла используются преимущественно для определения положения коленчатого вала, при котором следует подавать высоковольтный импульс создающий разряд на свече зажигания.

РАЗНОВИДНОСТИ ДАТЧИКОВ ХОЛЛА

По типу исполнения датчики бывают:

  • аналоговыми;
  • дискретными.

Первый тип просто генерирует двухполярный потенциал, пропорциональный напряженности и направлению магнитного поля, либо однополярный, показывая лишь его абсолютное значение. Подобные аналоговые приборы используют как измерительные.

Дискретные (цифровые) датчики разделяются на однополярные, включающиеся или выключающиеся при наличии либо отсутствии магнитного поля, и биполярные, реагирующие включением на один полюс, и выключением на другой полюс магнита.

Как правило, автомобильный датчик Холла состоит из постоянного магнита, находящегося на определённом расстоянии от чувствительного элемента, и микросхемы, усиливающей сигнал с него. Ротор из ферромагнетика (сталь, железо), своими лопастями периодически перекрывают магнитное поле между магнитом и чувствительным элементом.

Если поле не перекрыто ротором, микросхема генерирует сигнал единицы, близкий по напряжению к питающему уровню бортовой сети. Когда лопасть ротора перекрывает магнитное поле, сигнал на выходе микросхемы близок к нулю.

В системах зажигания, используются цифровые датчики с высокой стабильностью включения, непосредственно коммутирующие напряжение питания. По сравнению с обыкновенными контактными прерывателями датчики Холла характеризуются повышенной чувствительностью к электромагнитным помехам, что устраняется помещением их в магнитный экран из магнитомягкого материала (пермаллоя).

Электронная схема также несколько снижает его надёжность. Но всё это окупается высочайшей стабильностью срабатывания, а значит момента зажигания и возможностью качественной его регулировки.

КАК БЫСТРО ПРОВЕРИТЬ ДАТЧИК ХОЛЛА

Иногда в процессе эксплуатации возникают неисправности, требующие проверки работоспособности датчика Холла. Вот типовые признаки подобных дефектов:

  • мотор плохо запускается, вообще не заводится или самопроизвольно глохнет;
  • обороты коленчатого вала нестабильны, заметны рывки при работе.

Способов проверки существует несколько:

1. Простейший – заменить на заведомо исправный прибор. Не слишком эон дорог, чтобы было накладно всегда при себе иметь запасной.

2. Мультиметром в режиме вольтметра. Датчик при этом должен быть стандартно подключен к массе (клемма «-» аккумулятора) и клемме «+» аккумулятора. Для проверки подключают щупы вольтметра к общему проводу и сигнальному контакту датчика.

Перекрывая зазор датчика куском железной или стальной пластины, например, лезвием ножа наблюдаем за показаниями вольтметра. При отсутствии пластины напряжение должно быть равно примерно 0,4 В, при наличии – 11 В.

Более сложные способы проверки для любителей не подходят , посему они здесь не приводятся, а для специалистов подобные описания излишни.

  *  *  *


© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Датчик холла назначение и принцип работы

На примере датчика Холла, применяемого в бесконтактной системе зажигания автомобилей ВАЗ 2108, 2109, 21099.

Датчик Холла предназначен для определения момента искрообразования в бесконтактной системе зажигания (БСЖ) автомобиля.

Принцип действия датчика Холла

Принцип действия датчика основан на эффекте Холла, когда магнитное поле проводника изменяется при прохождении в нем специального экрана с прорезями.

На практике это выглядит так: датчик Холла автомобилей ВАЗ 2108, 2109, 21099 установлен на опорной пластине трамблера и состоит из двух частей – магнита и элемента Холла с усилителем. На датчик Холла подается напряжение с коммутатора (вывод 5) через токовый красный провод. «Масса» так же с коммутатора – бело-черный провод с вывода 3. Магнит создает магнитное поле, элемент Холла принимает его, создает напряжение, которое усиливает усилитель и через зеленый импульсный провод напряжение подается на коммутатор (вывод 6).

Для изменения магнитного поля применяется экран с четырьмя прорезями, который вращается вместе с валом распределителя зажигания (трамблера) проходя между магнитом и принимающей частью датчика Холла. При прохождении в пазу датчика прорези экрана магнитное поле имеет определенную величину и соответственно датчик выдает на коммутатор электрический ток определенного напряжения (9-12 В). При прохождении в пазу датчика зубца экрана магнитное поле экранируется и не поступает на приемник датчика, при этом напряжение, поступающее на коммутатор, падает (0-0,5 В).

Соответственно коммутатор прерывает электрический ток, подающийся на катушку зажигания, магнитное поле в ней резко сжимается и, пересекая витки обмотки, производит ЭДС 22-25 кВ (ток высокого напряжения). Ток через бронепровода попадает на распределитель трамблера и далее на свечи зажигания, производя разряд, поджигающий топливную смесь. Прохождение каждого из четырех зубцов экрана в прорези датчика соответствует такту сжатия в одном из четырех цилиндров двигателя.

Примечания и дополнения

— На эффекте Холла основан принцип действия еще нескольких автомобильных датчиков, например, датчика скорости инжекторных ВАЗ 21083, 21093, 21099.

Еще статьи по датчикам автомобилей ВАЗ 2108, 2109, 21099

Электромагнитное устройство, именуемое датчиком Холла (далее ДХ), применяется во многих приборах и механизмах. Но наибольшее применение ему нашлось в автомобилестроении. Практически во всех моделях отечественного автопрома (ВАЗ 2106, 2107, 2108 и т.д.) бесконтактная система зажигания для бензинового двигателя управляется этим датчиком. Соответственно, при его выходе из строя возникают серьезные проблемы с работой двигателя. Чтобы не ошибиться при диагностике, необходимо понимать принцип работы датчика, знать его конструкцию и методы тестирования.

Кратко о принципе работы

В основу принципа действия датчика зажигания положен эффект Холла, получивший свое название в честь американского физика, открывшего это явление в 1879 году. Подав постоянное напряжение на края прямоугольной пластины (А и В на рис. 1) и поместив ее в магнитное поле, Эдвин Холл обнаружил разность потенциалов на двух других краях (С и D).

Рис .1. Демонстрация эффекта Холла

В соответствии с законами электродинамики, сила Лоренца воздействует на носители заряда, что и приводит к разности потенциалов. Величина напряжения Uхолла довольно мала, в пределах от 10 мкВ до 100 мВ, она зависит как от силы тока, так и напряженности электромагнитного поля.

До середины прошлого века открытие не находило серьезного технического применения, пока не было налажено производство полупроводниковых элементов на основе кремния, сверхчистого германия, арсенида индия и т.д., обладающих необходимыми свойствами. Это открыло возможности для производства малогабаритных датчиков, позволяющих измерять как напряженность поля, так и силу тока, идущего по проводнику.

Типы и сфера применения

Несмотря на разнообразие элементов, применяющих эффект Холла, условно их можно разделить на два вида:

  • Аналоговые, использующие принцип преобразования магнитной индукции в напряжение. То есть, полярность, и величина напряжения напрямую зависят от характеристик магнитного поля. На текущий момент этот тип приборов, в основном, применяется в измерительной технике (например, в качестве, датчиков тока, вибрации, угла поворота). Датчики тока, использующие эффект Холла, могут измерять как переменный, так и постоянный ток
  • Цифровые. В отличие от предыдущего типа датчик имеет всего два устойчивых положения, сигнализирующих о наличии или отсутствии магнитного поля. То есть, срабатывание происходит в том случае, когда интенсивность магнитного поля достигла определенной величины. Именно этот тип устройств применяется в автомобильной технике в качестве датчика скорости, фазы, положения распределительного, а также коленчатого вала и т.д.

Следует отметить, что цифровой тип включает в себя следующие подвиды:

  • униполярный – срабатывание происходит при определенной силе поля, и после ее снижения датчик переходит в изначальное состояние;
  • биполярный – данный тип реагирует на полярность магнитного поля, то есть один полюс производит включение прибора, а противоположный – выключение.

Пример использования аналогового элемента

Рассмотрим в качестве примера конструкцию датчика тока ы основе работы которого используется эффект Холла.

Упрощенная схема датчика тока на основе эффекта Холла

Обозначения:

  • А – проводник.
  • В – незамкнутое магнитопроводное кольцо.
  • С – аналоговый датчик Холла.
  • D – усилитель сигнала.

Принцип работы такого устройства довольно прост: ток, проходящий по проводнику, создает электромагнитное поле, датчик измеряет его величину и полярность и выдает пропорциональное напряжение UДТ, которое поступает на усилитель и далее на индикатор.

Назначение ДХ в системе зажигания автомобиля

Разобравшись с принципом действия элемента Холла, рассмотрим, как используется данный датчик в системе бесконтактного зажигания линейки автомобилей ВАЗ. Для этого обратимся к рисунку 5.

Рис. 5. Принцип устройства СБЗ

Обозначения:

  • А – датчик.
  • B – магнит.
  • С – пластина из магнитопроводящего материала (количество выступов соответствует числу цилиндров).

Алгоритм работы такой схемы выгладит следующим образом:

  • При вращении вала прерывателя-распределителя (движущемуся синхронно коленвалу) один из выступов магнитопроводящей пластины занимает позицию между датчиком и магнитом.
  • В результате этого действия изменяется напряженность магнитного поля, что вызывает срабатывание ДХ. Он посылает электрический импульс коммутатору, управляющему катушкой зажигания.
  • В Катушке генерируется напряжение, необходимое для формирования искры.

Казалось бы, ничего сложного, но искра должна появиться именно в определенный момент. Если она сформируется раньше или позже, это вызовет сбой в работе двигателя, вплоть до его полной остановки.

Проявление неисправности и возможные причины

Нарушения в работе ДХ можно обнаружить по следующим косвенным признакам:

  • Происходит резкое увеличение потребления топлива. Это связано с тем, что впрыск топливно-воздушной смеси производится более одного раза за один цикл вращения коленвала.
  • Проявление нестабильной работы двигателя. Автомобиль может начать «дергаться», происходит резкое замедление. В некоторых случаях не удается развить скорость более 50-60 км.ч. Двигатель «глохнет» в процессе работы.
  • Иногда выход из строя датчика может привести к фиксации коробки передач, без возможности ее переключения (в некоторых моделях импортных авто). Для исправления ситуации требуется перезапуск мотора. При регулярных подобных случаях можно уверенно констатировать выход из строят ДП.
  • Нередко поломка может проявиться в виде исчезновения искры зажигания, что, соответственно, повлечет за собой невозможность запуска мотора.
  • В системе самодиагностики могут наблюдаться регулярные сбои, например, загореться индикатор проверки двигателя, когда он на холостом ходу, а при повышении оборотов лампочка гаснет.

Совсем не обязательно, что перечисленные факторы вызваны выходом из строя ДП. Высока вероятность того, неисправность вызвана другими причинами, а именно:

  • попаданием мусора или других посторонних предметов на корпус ДП;
  • произошел обрыв сигнального провода;
  • в разъем ДП попала вода;
  • сигнальный провод замкнулся с «массой» или бортовой сетью;
  • порвалась экранирующая оболочка на всем жгуте или отдельных проводах;
  • повреждение проводов, подающих питание к ДП;
  • перепутана полярность напряжения, поступающего на датчик;
  • проблемы с высоковольтной цепью системы зажигания;
  • проблемы с блоком управления;
  • неправильно выставлен зазор между ДП и магнитопроводящей пластиной;
  • возможно, причина кроется в высокой амплитуде торцевого биения шестеренки распределительного вала.

Как проверить работоспособность датчика Холла?

Есть разные способы, позволяющие проверить исправность датчика СБЗ, кратко расскажем о них:

  1. Имитируем наличие ДХ. Это наиболее простой способ, позволяющий быстро провести проверку. Но его эффективности может идти речь только в том случае, если не формируется искра при наличии питания на основных узлах системы. Для тестирования следует выполнить следующие действия:
  • отключаем от трамблера трехпроводной штекер;
  • запускаем систему зажигания и одновременно с этим «коротим» проводом массу и сигнал с датчика (контакты 3 и 2, соответственно). При наличии искры на катушке зажигания, можно констатировать, что датчик СБЗ потерял работоспособность и ему необходима замена.

Обратим внимание, что для выявления искрообразования высоковольтный проводок должен находиться рядом с массой.

  1. Применение мультиметра для проверки. Это способ наиболее известный, и приводится в руководстве к автомобилю. Нужно подключить щупы прибора, как продемонстрировано на рисунке 7, и произвести замеры напряжения.

Схема подключения мультиметра для проверки ДХ

На исправном датчике напряжение будет колебаться в диапазоне от 0,4 до 11 вольт (не забудьте перевести мультиметр в режим измерения постоянного тока). Следует заметить, что проверка осциллографом будет намного эффективней. Подключается он таким же образом, как и мультиметр. Пример осциллограммы рабочего ДХ приведен ниже.

Осциллограмма исправного датчика Холла СБЗ

  1. Установка заведомо рабочего ДХ. Если в наличии имеется еще один однотипный датчик, или имеется возможность взять его на время, то данный вариант тоже имеет место на существование, особенно если первые два сделать затруднительно.

Ест еще один вариант проверки, по принципу напоминающий второй способ. Он может быть полезен, если под рукой нет измерительных приборов. Для тестирования понадобиться резистор номиналом 1,0 кОм, светодиод, например, из фонарика зажигалки и несколько проводков. Из всего этого набора собираем прибор в соответствии с рисунком 9.

Рис. 9. Светоиндикаторный тестер для проверки ДХ

Тестирование осуществляем по следующему алгоритму:

  1. Проверяем питание на датчике. Для этой цели подключаем (соблюдая полярность) наш тестер к клеммам 1 и 3 ДХ. Включаем зажигание, если с питанием все нормально, светодиод загорится, в противном случае потребуется проверять цепь питания (предварительно убедившись в правильном подключении светодиода).
  2. Проверяем сам датчик. Для этого провод с первой клеммы «перебрасываем» на вторую (сигнал с ДХ). После этого начинаем крутить распредвал (руками или стартером). Моргание светодиода засвидетельствует исправность ДХ. В противном случае, на всякий случай проверяем соблюдение полярности при подключении светодиода, и если оно выполнено правильно, — меняем датчик на новый.

Среди элементов радиоэлектроники, автоматики, а также измерительной техники, датчик Холла, принцип работы которого основан на одноименном эффекте, занимает особое место. Смысл упомянутого эффекта заключается в том, что при помещении проводника в магнитное поле появляется электродвижущая сила (ЭДС), направление которой будет перпендикулярным полю и току. Как же это используется в автомобиле?

Датчик Холла – принцип работы и назначение

В современных условиях происходит постоянное технологическое развитие датчиков Холла. Они отличаются надежностью, точностью и постоянством данных. Широкое распространение эти приборы получили в автомобилях и других транспортных средствах. Они обладают повышенной устойчивостью к агрессивным внешним воздействиям. Датчики Холла являются составной частью многих устройств, с помощью которых контролируется определенное состояние техники.

Во многих случаях этот прибор размещается в трамблере и отвечает за образование искры, то есть он используется вместо контактов. Нередко данный прибор применяется для слежения за током нагрузки. С его помощью производится отключение при возникновении токовых перегрузок. В случае перегревания датчика происходит срабатывание температурной защиты. Резкое изменение напряжения может иметь для устройства тяжелые последствия. Поэтому в последних моделях устанавливается внутренний диод, препятствующий обратному включению напряжения.

Датчик Холла до настоящего времени не смог заменить обычные механические переключатели. Однако в любом случае он имеет ряд значительных преимуществ. Основными из них являются отсутствие контактов, загрязнений, а также механических нагрузок. Поэтому часто можно встретить датчик Холла на скутере, применяемый в качестве составной части датчика зажигания.


Датчик Холла – схема подключения и «физика» процесса

Классическое устройство датчика Холла на практике – тонкий полупроводниковый листовой материал. При прохождении через него постоянного тока на краях листа образуется сравнительно невысокое напряжение. Если под прямым углом поперек пластинки проходит магнитное поле, то на краях листа происходит усиление напряжения, которое находится в прямо пропорциональной зависимости с магнитной индукцией. Датчик Холла является одной из разновидностей датчиков импульсов, создающих электрические импульсы с низким напряжением. Благодаря своим качествам, этот элемент широко применяется в бесконтактных системах зажигания.

Мы рассмотрели, какой имеет датчик Холла принцип работы, схема его пока что нам не ясна. Она включает в свой набор постоянный магнит, полупроводниковую пластину с микросхемой и стальной экран, имеющий прорези. Стальной экран через прорези осуществляет пропуск магнитного поля, благодаря чему в пластине из полупроводников начинает возникать напряжение. Сам экран не пропускает магнитного поля, поэтому, когда прорези и экран чередуются, происходит создание импульсов низкого напряжения.

При конструктивном объединении этого датчика с распределителем получается единое устройство – трамблер, выполняющий функции прерывателя-распределителя зажигания.

Датчик Холла и особенности эксплуатации

Когда в конструкции авто активно эксплуатируется датчик Холла, схема подключения его требует регулярных проверок и профилактического обслуживания. Главное еще и не навредить во время таких проверок, поэтому отсоединение разъема кабеля от датчика должно в обязательном порядке производиться при выключенном зажигании. Иначе элемент может просто выйти из строя, ремонтировать его нет смысла, потребуется замена.

Проверить правильность схемы можно следующим образом: при вращении коленчатого вала и, соответственно, вала распределителя должен попеременно загораться и гаснуть контрольный светодиод, указывающий на наличие сигнала. Запрещается проверять датчик с помощью обычной контрольной лампы. Особое внимание во время работы устройства следует обращать на чистоту и надежность в разъеме и контакте штекеров. Необходимо помнить, что датчик Холла нельзя использовать в обычной системе зажигания.

Несмотря на сложность процедуры проверки датчика Холла каждый может провести проверку самостоятельно, хотя объективность тестирования будет ниже. Например, можно воспользоваться мультиметром, установить работу прибора в режим вольтметра и измерить выходное напряжение, которое должно находиться в диапазоне от 0,4 до 11 В. Ну, а самый простой способ проверки это установка заведомо исправного датчика, если изменения будут очевидны, это повод отправиться в магазин за новым датчиком.

Магнитные датчики Infineon для измерения скорости и положения

1 декабря 2020

Александр Русу (г. Одесса)

Номенклатура магнитных датчиков Infineon включает в себя дискретные датчики Холла для определения положения объекта или наличия движения, датчики для измерения угла поворота, датчики для измерения линейных перемещений, датчики для измерения скорости и датчики объемного магнитного поля со встроенными микроконтроллерами. Перечисленные датчики предназначены для применения как в автомобилестроении, так и в других отраслях промышленности.

Определение пространственного положения как устройства в целом, так и отдельных его частей, необходимо в охранных системах с контролем состояния окон и дверей, в бесколлекторных двигателях постоянного тока, где алгоритм формирования напряжений основан на информации о положении ротора, во многих бытовых приложениях. Несмотря на разнообразие типов датчиков, позволяющих вводить в электрическую схему информацию о положении того или иного объекта, в последнее время все популярнее становятся устройства, основанные на измерении напряженности внешнего магнитного поля.

Ключевыми преимуществами магнитных датчиков являются компактность, экономичность, а также отсутствие электрических и механических связей между измерительным элементом и контролируемым объектом. А если прибавить к этому высокую чувствительность, линейность, точность и стабильность в широком диапазоне рабочих температур, то становится очевидным, что даже простая замена датчиков других типов, например, оптических или механических, на магнитные положительно скажется на технических и эксплуатационных характеристиках многих приложений.

Учитывая рост спроса, компания Infineon предлагает разработчикам богатый выбор микросхем магнитных датчиков.

Принцип работы магнитных датчиков

В 1879 году Эдвин Холл обнаружил, что при помещении проводника с током в поперечное магнитное поле на его боковых сторонах появляется разность потенциалов, пропорциональная направлению и величине магнитной индукции, что является результатом воздействия силы Лоренца на движущиеся заряды (рисунок 1). До второй половины ХХ века этот эффект не находил практического применения, и только в 1960 году был представлен первый промышленный датчик, основанный на этом физическом явлении. С этого момента магнитные датчики начинают активно использоваться в технике, приобретая все большую популярность.

Рис. 1. Принцип работы датчика Холла

Поскольку сила Лоренца, а следовательно, и ЭДС Холла, напрямую связана с подвижностью зарядов, для повышения чувствительности активный элемент изготавливают из полупроводниковых материалов. Чаще всего используют кремний, однако существуют и приборы с активной зоной из германия, арсенида галлия, фосфида индия и других полупроводников. Форма и геометрические размеры чувствительного элемента зависят от конкретного назначения, поэтому существуют как плоские, так и объемные датчики, причем при производстве плоских элементов хорошо зарекомендовала себя технология вакуумного напыления проводящих слоев на диэлектрическую основу. Несмотря та то, что чувствительность и линейность измерительного элемента напрямую зависят от его размеров, на практике редко применяют датчики с объемом активного проводника больше 1 мм3, что делает эти приборы одними из самых миниатюрных.

Однако эффект Холла имеет и ряд недостатков, основными из которых являются относительно малая величина выходного напряжения, не превышающая 1000 мВ/Тл, и температурная нестабильность. Это вынуждает устанавливать операционный усилитель, чаще всего с элементами термокомпенсации, в непосредственной близости от места проведения измерений, поэтому на рынке чаще всего присутствуют готовые решения – микросхемы, содержащие все необходимые для работы узлы и требующие минимального количества внешних компонентов (рисунок 2).

Рис. 2. Структурные схемы простейших магнитных датчиков

Поскольку микросхема магнитного датчика фактически является самостоятельной измерительной системой-на-кристалле, то никто не запрещает производителям электронных компонентов расширять ее возможности, путем добавления различных узлов и модулей, улучшающих как технические характеристики, так и функциональность. Поэтому на рынке присутствуют как простые датчики с аналоговым или дискретным выходом, так и целые измерительные системы с собственными сигнальными процессорами и энергонезависимой памятью для хранения настроек, поддерживающие большинство распространенных интерфейсов передачи данных, в том числе USART, I2C и SPI. И, конечно же, в каталогах Infineon имеются специализированные датчики практически для всех стандартных инженерных задач, таких как измерение угла поворота, скорости вращения и многих других.

Дискретные датчики Холла (Switch/Latch Sensors)

Определение наличия или отсутствия какого-либо объекта является, с одной стороны, самой простой, а с другой – самой распространенной задачей. Именно поэтому сфера применения дискретных датчиков простирается от бытовых приборов до серьезных промышленных и автомобильных систем с наивысшим уровнем функциональной безопасности. Этим же объясняется и широкий ассортимент датчиков, предлагаемых компанией Infineon, которые отличаются как по электрическим (чувствительность, гистерезис, тип выхода и так далее), так и по эксплуатационным характеристикам (температурный диапазон, диапазон рабочих напряжений и прочее).

Чаще всего дискретные (одиночные) датчики Холла применяются:

  • для определения наличия или отсутствия какого-либо объекта, например, датчик закрытия двери в охранных системах;
  • для определения наличия движения, например, датчик скорости вращения вала электродвигателя;
  • для определения положения объекта, например, концевые датчики стеклоподъемников автомобилей или датчики положения ручки управления автоматической коробкой передач (рисунок 3).

Рис. 3. Два комплекта (для обеспечения функциональной безопасности) датчиков Холла для определения положения ручки управления АКПП

Принцип работы дискретных магнитных датчиков производства компании Infineon основан на классическом эффекте Холла: чувствительный элемент измеряет величину электромагнитной индукции, в зависимости от которой выход микросхемы переводится в уровень логического нуля либо логической единицы.

Существуют два основных типа датчиков, отличающихся алгоритмом изменения выходного сигнала (рисунок 4). В простых переключателях (Switch) активный уровень выходного сигнала на выходе микросхемы устанавливается, если индукция внешнего магнитного поля превышает определенную величину. При этом для возврата в исходное состояние достаточно, чтобы индукция внешнего поля всего лишь стала меньше порогового значения (с учетом гистерезиса). Полярность магнитного поля при этом может быть как определенной (Unipolar), так и неопределенной (Bipolar). Такие микросхемы идеально подходят для определения наличия или отсутствия каких-либо объектов, например, в концевых датчиках, датчиках открытия/закрытия двери, датчиках положения ротора электродвигателя и прочих.

Рис. 4. Принцип работы дискретных датчиков Холла

В дискретных датчиках с защелкой (Latch) переключение выходного сигнала происходит только при достижении индукцией внешнего магнитного поля определенных пороговых значений, причем уровень выходного сигнала при этом зависит от полярности внешнего поля. Другими словами, после установки на выходе, например, логической единицы датчик вернется в исходное состояние только после того, как внешнее магнитное поле поменяет свою полярность. Такие датчики идеальны для приложений с вращающимися элементами. Например, с помощью дискретного датчика с защелкой можно достаточно легко определить частоту вращения вала электродвигателя.

Отдельно следует отметить микросхемы, содержащие в одном корпусе два датчика Холла (Double Hall Switches), с помощью которых можно определить не только частоту, но и направление вращения вала электродвигателя. Одним из таких приборов является микросхема TLE4966 с двумя выходами (рисунок 5), на которых присутствуют сигналы как о скорости (Speed), так и о направлении (Direction) вращения вала электродвигателя.

Рис. 5. Принцип работы микросхемы TLE4966

Дискретные датчики производства компании Infineon делятся на три большие категории, отличающиеся областью применения. Для автомобильных приложений следует выбирать датчики с префиксом TLE, которые могут работать в диапазоне рабочих температур -40…170°С при напряжении питания 3,0…5,5 В или 3,0…32 В. Аналогичный диапазон питающих напряжений и у датчиков, маркированных префиксом TLI и предназначенных для промышленного использования, однако температурный диапазон у них меньше и составляет -40…125°С. Для остальных потребительских приложений лучше всего выбирать датчики с префиксами TLV, способные работать в диапазоне температур -40…125°С при напряжении питания 3,0…26 В.

Основным семейством дискретных датчиков, предлагаемых компанией Infineon, являются датчики TLx496x (таблица 1), которые могут выпускаться как в потребительском, так и в промышленном и автомобильном исполнениях. Отличительной особенностью данного семейства является широкий диапазон рабочих напряжений, составляющий 3…32 В с возможностью перенапряжения до 42 В, при собственном токе потребления, не превышающем 1,6 мА. Широкий диапазон чувствительности и рабочих температур делает эти датчики идеальными для широкого круга приложений, в том числе и для устройств с высоким уровнем функциональной безопасности: промышленного оборудования, лифтов, электроинструмента, автомобилей и многих других.

Таблица 1. Технические характеристики датчиков семейства TLx496x

Наименование Тип Индукция срабатывания, мТл Индукция отпускания, мТл Гистерезис, мТл Автомо-
бильные прило-
жения
Промышлен-
ные прило-
жения
Корпус
TLE4961-1M/L Latch 2,0 -2,0 4,0 + + SOT23/SSO-3-2
TLE4961-2M Latch 5,0 -5,0 10,0 + + SOT23
TLE4961-3M/L Latch 7,5 -7,5 15,0 + + SOT23/SSO-3-2
TLE4964-1M Switch 18,0 12,5 5,5 + + SOT23
TLE4964-2M Switch 28,0 22,5 5,5 + + SOT23
TLE4964-3M Switch 12,5 9,5 3,0 + + SOT23
TLE4964-5M Switch 7,5 5,0 2,5 + + SOT23
TLE4968-1M/L Bipolar 1,0 -1,0 2,0 + + SOT23/SSO-3-2
TLE4961-5M Latch 15,0 -15,0 30,0 + + SOT23
TLE4961-4M Latch 10,0 -10,0 20,0 + + SOT23
TLE4964-4M Switch 10,0 8,5 1,5 + + SOT23
TLE4964-6M Switch 3,5 2,5 1,0 + + SOT23
TLV4964-1M Switch 18,0 12,5 5,5 SOT23
TLV4964-2M Switch 28,0 22,5 5,5 SOT23
TLI4961-1M/L Latch 2,0 -2,0 4,0 + SOT23/SSO-3-2
TLV4961-3M Latch 7,5 -7,0 15,0 SOT23

Для приложений, требующих высокоточного определения позиции контролируемого объекта, компания Infineon рекомендует дискретные датчики семейства TLE/TLI4963/65-xM (таблица 2), отличающиеся малым уровнем джиттера, не превышающим 0,35 мкс. Микросхемы TLE/TLI4963/65-xM рассчитаны на использование в промышленных и индустриальных приложениях и могут работать в диапазоне питающих напряжений в диапазоне 3,0…5,5 В, потребляя при этом ток, не превышающий 1,4 мА.

Таблица 2. Технические характеристики датчиков семейства TLE/TLI4963/65-xM

Наименование Тип Индукция срабатывания, мТл Индукция отпускания, мТл Гистерезис, мТл Автомобильные приложения Промышленные приложения Корпус
TLE4963-1M Latch 2,0 -2,0 4,0 + SOT23
TLE4963-2M Latch 5,0 -5,0 10,0 + SOT23
TLE4965-5M Unipolarswitch 7,5 5,0 2,5 + SOT23
TLI4963-1M Latch 2,0 -2,0 4,0 + SOT23
TLI4963-2M Latch 5,0 -5,0 10,0 + SOT23
TLI4965-5M Unipolarswitch 7,5 5,0 2,5 + SOT23

В отличие от предыдущих серий дискретных датчиков, выпускаемых в SMD-корпусах, семейство TLV496x-xTA/B (таблица 3) рассчитано на использование в потребительской технике и выпускается в корпусах, предназначенных для монтажа в отверстия. Микросхемы имеют широкий диапазон рабочий напряжений, составляющий 3…26 В, при токе потребления, не превышающем 1,6 мА.

Таблица 3. Технические характеристики датчиков семейства TLV496x-xTA/B

Наименование Тип Индукция срабатывания, мТл Индукция отпускания, мТл Гистерезис, мТл Корпус
TLV4961-1TA Latch 2,0 -2,0 4,0 TO92S-3-1
TLV4961-1TB Latch 2,0 -2,0 4,0 TO92S-3-2
TLV4961-3TA Latch 7,5 -7,5 15,0 TO92S-3-1
TLV4961-3TB Latch 7,5 -7,5 15,0 TO92S-3-2
TLV4964-4TA Unipolarswitch 10,0 8,5 1,5 TO92S-3-1
TLV4964-4TB Unipolarswitch 10,0 8,5 1,5 TO92S-3-2
TLV4964-5TA Unipolarswitch 7,5 5,0 2,5 TO92S-3-1
TLV4964-5TB Unipolarswitch 7,5 5,0 2,5 TO92S-3-2
TLV4968-1TA Latch 1,0 -1,0 2,0 TO92S-3-1
TLV4968-1TB Latch 1,0 -1,0 2,0 TO92S-3-2

Для приложений, требующих определения не только скорости, но и направления вращения роторов электродвигателей, предназначены датчики линейки TLE4966 (таблица 4), содержащие в одном корпусе два датчика Холла, расположенных на расстоянии 1,45 мм. Микросхемы TLE4966 удовлетворяют требованиям AEC-Q100 и могут использоваться, в том числе, в автомобильных приложениях.

Таблица 4. Технические характеристики датчиков семейства TLE4966

Наименование Тип Индукция срабатывания, мТл Индукция отпускания, мТл Гистерезис, мТл Корпус
TLE4966K/L Double Hall, speed and direction output 7,5 -7,5 15 TSOP6/SSO-4-1
TLE4966-2K Double Hall, two independent outputs 7,5 -7,5 15 TSOP6
TLE4966-3K Double Hall, speed and direction output 2,5 -2,5 5 TSOP6
TLE4966V-1K Vertical double Hall, speed and direction output 2,5 -2,5 5 TSOP6

Датчики угла поворота (Angle Sensors)

Измерение угла поворота вращающегося объекта необходимо в таких приложениях как электродвигатели, рулевые колонки автомобилей, разнообразное промышленное оборудование, робототехника, мехатронные системы, а также во многих других. От точности и надежности этих приборов во многом зависят как безопасность, так и качество работы большинства автоматизированных систем, поэтому неудивительно, что многие производители электронных компонентов ведут активные поиски новых методов как измерения положения измеряемого объекта, так и обработки полученных результатов.

Первоначально для измерения угла поворота применялись датчики на классическом эффекте Холла с аналоговым выходом, преимуществами которых, помимо традиционных для большинства магнитных приборов компактности и экономичности, являются безынерционность ввиду отсутствия магнитного гистерезиса и возможность работы в широком диапазоне уровней магнитных полей. Однако невысокая точность не позволила их использовать в прецизионных системах и заставила искать новые подходы к проведению измерений. Именно поэтому современные датчики угла поворота практически не используют данный принцип, а вычисляют положение внешнего магнита с помощью более точных методов измерения магнитосопротивления чувствительного элемента.

Одними из первых появились датчики, измеряющие величину анизотропного магнитосопротивления (Anisotropic Magneto Resistance, AMR). Основным отличием их от датчиков Холла является ориентация внешнего магнитного поля, силовые линии которого теперь должны быть направлены не перпендикулярно, а параллельно плоскости свободного (измерительного) слоя (Free Layer, FL), как показано на рисунке 6. Ключевым преимуществом AMR-датчиков является повышенная по сравнению с датчиками Холла чувствительность, а также малый уровень джиттера. Однако для многих прецизионных приложений этой точности все же недостаточно, к тому же AMR-датчики в принципе не способны определить полярность внешнего магнитного поля, из-за чего максимальное значение измеряемого угла ограничено 180°.

Рис. 6. Принцип работы магнитных датчиков для измерения угла поворота

Устранить эти недостатки удалось путем введения дополнительного опорного магнитного слоя (Reference Layer, RL), изолированного от внешнего магнитного поля немагнитным промежутком (Non Magnetic Layer, NML). Это привело к появлению условий для возникновения гигантского магнитосопротивления (Giant Magneto Resistance, GMR) в случае, когда магнитная ориентация свободного слоя, определяемая внешним магнитным полем, оказывается направленной навстречу жестко заданной магнитной ориентации опорного слоя. Датчики на основе гигантского магнитосопротивления отличаются повышенной чувствительностью и способны отследить любое положение внешнего объекта, поскольку их рабочий диапазон измерения угла равен 360°. К недостаткам GMR-датчиков можно отнести ограниченный диапазон индукции внешнего магнитного поля, который для большинства моделей не должен превышать 100 мТл.

Дальнейшие исследования в этой области привели к созданию в 2014 году нового поколения датчиков, в основе работы которых лежит измерение туннельного магнитосопротивления (Tunneling Magneto Resistance, TMR). Структура чувствительных элементов на основе измерения TMR аналогична структуре GMR-приборов и так же содержит два магнитных слоя (свободный и опорный), разделенных туннельным барьером (Tunnel Barrier, TB). Основное отличие этих методов заключается в направлении протекания тока, используемого для измерения сопротивления, который теперь направлен не вдоль, а поперек многослойной структуры.

Ключевым преимуществом датчиков на основе измерения туннельного магнитосопротивления является ультравысокая чувствительность. Выходной сигнал датчиков на основе TMR приблизительно в 20 раз выше, чем у AMR-датчиков и в шесть раз выше, чем у GMR-аналогов. Кроме этого, TMR-датчики отличаются высокой стабильностью, меньшим температурным дрейфом и меньшей скоростью старения.

Для точного определения угла поворота обычно используют восемь чувствительных элементов – магниторезисторов с разной ориентацией магнитных моментов опорных слоев относительно корпусов приборов (рисунок 7). Эти элементы, соединенные в два измерительных моста, под действием внешнего магнитного поля формируют два основных сигнала: синусный и косинусный, являющиеся основной для последующих математических вычислений.

Рис. 7. Принцип измерения угла поворота

Для критически важных приложений с высоким уровнем функциональной безопасности, например, для автомобильной техники, необходимо обязательное дублирование критически важных компонентов. Поскольку датчики угла поворота могут использоваться, например, в системах рулевого управления, отказ которых может привести к неконтролируемому движению транспортного средства и возможным человеческим жертвам, они должны соответствовать требованиям ISO 26262, в том числе и самого жесткого уровня ASIL-D. Этим требованиям полностью отвечают микросхемы, содержащие два независимых датчика, расположенные с двух сторон подложки на расстоянии, не превышающем 600 мкм (рисунок 8). Такое расположение позволяет упростить конструкцию рулевого устройства и формировать два независимых комплекта практически одинаковых сигналов с помощью единственного ферритового магнита, поскольку при столь малом расстоянии между датчиками напряженность измеряемого поля будет практически одинакова.

Рис. 8. Конструкция микросхем с двумя независимыми датчиками, расположенными по обе стороны подложки

Однако такое расположение датчиков внутри микросхемы вовсе не обязательно, поскольку для соответствия требованиям ISO 26262 важно, чтобы датчики и их выходные сигналы были электрически изолированы и независимы. Несмотря на то, что микросхема TLE5501 содержит два одинаковых датчика, смонтированные на одной стороне подложки, она соответствует требованиям ISO 26262, поскольку они электрически никак не связаны между собой (рисунок 9).

Рис. 9. Электрическая схема и пример использования микросхемы TLE5501

Анализируя номенклатуру датчиков угла поворота производства Infineon (таблица 5, рисунок 10), можно отметить, что большинство из них использует технологию GMR, хотя есть и модели с технологией AMR (TLE5109A16), а также одна микросхема (TLE5309D), содержащая два датчика, которые выполнены по разным технологиям (AMR и GMR). Поскольку измерение TMR остается относительно новым подходом в построении датчиков, ассортимент этих приборов пока невелик, однако можно предположить, что именно эта технология в ближайшем будущем станет доминирующей, поскольку требования к точности проведения измерений с каждым годом только растут.

Рис. 10. Номенклатура датчиков угла поворота Infineon

Таблица 5. Технические характеристики датчиков угла поворота Infineon

Наименование Технология Расположение датчиков на подложке Интерфейс выходов Sin/Cos Интерфейс аналогового выхода Дополни-
тельные интер-
фейсы
Точность Корпус
TLE5009 GMR С одной стороны Аналоговый 0,9 DSO-8
TLE5009A16(D) GMR С двух сторон Аналоговый 1,0 TDSO-16
TLE5011 GMR С одной стороны SSC (SPI) 1,6 DSO-8
TLI5012B GMR С одной стороны SSC (SPI) SSC (SPI) PWM/IIF/
SPC/HSM
1,9 DSO-8
TLE5012B(D) GMR С одной или с двух сторон SSC (SPI) SSC (SPI) PWM/IIF/
SPC/HSM
1,0 DSO-8/
TDSO-16
TLE5014C16(D)* GMR С одной или с двух сторон SPC 1,0 TDSO-16
TLE5014P16(D)* GMR С одной или с двух сторон PWM 1,0 TDSO-16
TLE5014S16(D)* GMR С одной или с двух сторон SENT 1,0 TDSO-16
TLE5014SP16(D)* GMR С одной или с двух сторон SPI 1,0 TDSO-16
TLE5109A16(D) AMR С одной или с двух сторон Аналоговый 0,5 TDSO-16
TLE5309D AMR + GMR С двух сторон Аналоговый SSC (SPI) 0,5 (AMR),
1,0  (GMR)
TDSO-16
TLE5501* TMR С одной стороны Аналоговый 1,0 DSO-8
* – соответствует ISO 26262.

Датчики Холла для измерения линейных перемещений (Linear Hall Sensors)

Во многих приложениях возникает задача определения положения объекта, перемещающегося по некоторой траектории, которая совсем не обязательно должна быть прямолинейной. Контролируемым объектом может быть, например, педаль или рулевая колонка автомобиля, дроссельная заслонка топливной системы двигателя внутреннего сгорания (рисунок 11), линейный привод промышленного робота, шток измерителя уровня жидкости и многие другие приложения, содержащие движущиеся части, положение которых может принимать любое значение в некотором ограниченном пространстве.

Рис. 11. Конфигурация магнитного поля магнитного датчика для определения положения дроссельной заслонки двигателя автомобиля

Очевидно, что в подобных приложениях необходимо измерять абсолютное значение магнитного поля, зависящее как от величины индукции внешнего магнита, так и от расстояния между ним и датчиком. А это означает, что данные системы должны иметь возможность калибровки, с помощью которой можно точно учесть все специфические особенности конкретного узла. Именно поэтому большинство линейных датчиков производства компании Infineon (таблица 6) кроме измерительной части содержат узлы для обработки результатов измерений с учетом поправочных коэффициентов, хранящихся во встроенной энергонезависимой памяти (рисунок 12).

Рис. 12. Структурная схема датчиков TLE4998

Таблица 6. Технические характеристики линейных датчиков Infineon

Наименование Чувствительность Индукция отсечки, мкТл Напряжение питания (расширенный диапазон), В Автомо-
бильное исполне-
ние
Интерфейс Корпус
TLE4997 ±12,5…±300 мВ/мТл < ±400 5 ±10% (7) + Аналоговый SSO-3-10, TDSO-8
TLE4998P ±0,2…±6 %/мТл < ±400 5 ±10% (16) + PWM SSO-3-10, SSO-4-1, SSO-3-9, TDSO-8
TLE4998S ±8,2…±245 LSB/мТл < ±400 5 ±10% (16) + SENT SSO-3-10, SSO-4-1, SSO-3-9, TDSO-8
TLE4998C ±8,2…±245 LSB/мТл < ±400 5 ±10% (16) + SPC SSO-3-10, SSO-4-1, SSO-3-9, TDSO-8

Датчики для измерения скорости (Speed Sensors)

Измерения скорости движения или вращения необходимы для нормальной и безопасной работы самых различных силовых агрегатов. Например, датчики скорости используются в автоматических коробках передач, спидометрах, системах, предотвращающих блокировку колес и в других автомобильных и промышленных приложениях. В современных автомобилях датчики скорости, контролирующие работу трансмиссии, совместно с датчиками давления позволяют бортовому компьютеру поддерживать такой режим работы двигателя, при котором обеспечивается минимальный уровень выбросов углекислого газа.

Принцип измерения скорости заключается в подсчете количества импульсов за определенный промежуток времени, формируемых с помощью магнитного датчика, расположенного в непосредственной близости от специального зубчатого колеса или многополюсного магнита (рисунок 13). В качестве чувствительного элемента в магнитных датчиках скорости могут применяться классические элементы Холла или узлы, основанные на измерении гигантского магнитного сопротивления (GMR). В критически важных приложениях, работающих в жестких условиях, в том числе и в приложениях с высоким уровнем электромагнитных помех, магнитные датчики скорости могут выпускаться с интегрированными конденсаторами, позволяющими, кроме всего прочего, уменьшить размеры измерительной системы за счет меньшего количества внешних компонентов.

Рис. 13. Принцип измерения скорости вращения с помощью магнитных датчиков

Одним из самых популярных датчиков скорости, предлагаемых компанией Infineon, является микросхема TLE4922 (рисунок 14), представляющая собой простое и экономичное решение, прекрасно подходящее как для автомобильных, так и для промышленных применений. При использовании ненамагниченных зубчатых шестеренок с противоположной от колеса стороны микросхемы необходимо устанавливать постоянный магнит, в качестве которого, благодаря адаптивно изменяемой величине гистерезиса и наличию механизма калибровки, можно использовать недорогие объемные магниты, индукция которых может колебаться в широких пределах. Кроме этого, TLE4922 обеспечивают превосходную точность измерений в широком диапазоне величин воздушных зазоров, а также в условиях сильной вибрации и электромагнитных помех.

Рис. 14. Структурная схема и пример использования микросхемы TLE4922

Более сложной моделью магнитных датчиков скорости, производимых компанией Infineon, является микросхема TLE4929 (рисунок 15) – активный датчик Холла, идеально подходящий для измерения скорости вращения коленчатых валов автомобильных двигателей, а также для сходных автомобильных или промышленных применений. Ключевыми преимуществами TLE4929 являются высокая точность, малый уровень джиттера, а также два интегрированных конденсатора, позволяющих микросхеме работать в сложной электромагнитной обстановке.

Рис. 15. Структурная схема микросхемы TLE4929

Благодаря наличию трех интегрированных датчиков Холла переключение TLE4929 происходит строго в момент, когда датчик находится возле центра зубца измерительной шестерни, что обеспечивает независимость результатов измерения от направления вращения контролируемого вала. Возможность программирования данной микросхемы с сохранением настроек в энергонезависимой памяти позволяет эффективно адаптировать ее под конкретные значения индукции используемых магнитов и величин воздушных зазоров.

Датчики объемного магнитного поля (3D Magnetic Sensors)

До недавнего времени измерения магнитного поля по одной, максимум двум координатам для большинства приложений было вполне достаточно. Однако в связи с бурным развитием микропроцессорных систем и робототехники появилась возможность (и потребность) в более сложном пространственном позиционировании. Отвечая на это, компания Infineon разработала магнитные датчики, способные измерять величину магнитной индукции по трем координатам, а значит – определять пространственное положение контролируемого магнита.

В общем случае для этого необходимы три чувствительных элемента, например, на основе эффекта Холла, ориентированные в пространстве соответствующим образом, и комплект специализированных аппаратных и программных узлов, обеспечивающий обработку полученных сигналов (рисунок 16). Очевидно, что из-за повышенной сложности данной задачи обработку сигналов проще всего проводить с помощью цифровых методов, поэтому все 3D-датчики производства компании Infineon содержат интегрированный микроконтроллер, обеспечивающий обработку оцифрованных сигналов с передачей результатов вычислений по одному из широко используемых интерфейсов.

Рис. 16. Принцип работы датчиков объемного магнитного поля

Одним из таких решений являются датчики TLx493D (таблица 7), обеспечивающие точное трехмерное позиционирование с обнаружением линейных, вращательных и трехмерных перемещений. Благодаря компактному 6-выводному корпусу и ультрамалому энергопотреблению микросхемы TLx493D могут использоваться в широком спектре практических приложений и заменить традиционные резистивные и оптические датчики, не имевшие до недавнего времени аналогов в этой сфере (рисунок 17).

Рис. 17. Пример применения датчиков объемного магнитного поля

Таблица 7. Технические характеристики 3D-датчиков Infineon

Модель Диапазон рабочих температур, °C Соответст-
вие требова-
ниям
Линейный диапазон магнитного поля, мТл Разреше-
ние, мкТл/LSB
Ток потребления Частота измерений Корпус
TLV493D-A1B6 -40…125 JESD47 ±130 (тип.) 98 7 нА…3,7 мА 10 Гц…3,3 кГц TSOP6
TLI493D-A2B6 -40…105 JESD47 ±160 (мин.), ±100 (мин.) 130 (65) 7 нА…3,7 мА 10 Гц…3,3 кГц TSOP6
TLE493D-A2B6 -40…125 AEC-Q100 ±160 (мин.) 130 (65) 7 нА…3,3 мА 10 Гц…8,4 кГц TSOP6
TLE493D-W2B6 A0 -40…125 AEC-Q100 ±160 (мин.), ±100 (мин.) 130 (65) 7 нА…3,3 мА 0,05 Гц…8,4 кГц TSOP6
TLE493D-W2B6 A1
TLE493D-W2B6 A2
TLE493D-W2B6 A3

Заключение

Магнитные датчики Infineon перекрывают большинство практических приложений, начиная от простых устройств с минимальным уровнем автоматизации и заканчивая сложными промышленными и автомобильными системами с наивысшими требованиями к функциональной безопасности. Очевидно, что столь высокий уровень выпускаемой продукции был бы просто невозможен без тщательной проработки каждого узла предлагаемых микросхем на этапах проектирования и производства. Компания Infineon продолжает оставаться одним из лидеров в области магнитных датчиков, обеспечивая производителей качественной продукцией, выполненной по самым современным технологиям.

•••

Наши информационные каналы

Пять основных областей применения датчиков Холла

Более 100 лет назад был обнаружен эффект Холла. Однако практическое использование этого эффекта было разработано только в течение последних трех десятилетий. Некоторые из его первых применений включают использование в микроволновых датчиках в 1950-х годах и твердотельных клавиатурах в 1960-х годах. С 1970-х годов устройства измерения эффекта Холла нашли свое применение в широком спектре промышленных и потребительских товаров, таких как швейные машины, автомобили, обрабатывающие инструменты, медицинское оборудование и компьютеры.

Прежде чем исследовать пять основных промышленных применений датчиков Холла, необходимо определить их, их функции и различные классификации.

Что такое датчик на эффекте Холла?

Датчики на эффекте Холла

- это магнитные компоненты, которые преобразуют закодированную в магнитном поле информацию, такую ​​как положение, расстояние и скорость, чтобы электронные схемы могли ее обработать. Как правило, они классифицируются в зависимости от способа выпуска продукции или средств работы.

Классификация выходных сигналов

Разделение датчиков на эффекте Холла по выходному напряжению приводит к двум классификациям датчиков: цифровые датчики и аналоговые датчики.

Датчики Холла с цифровым выходом

Цифровой выход Датчики на эффекте Холла в основном используются в магнитных переключателях для обеспечения цифрового выхода напряжения. Таким образом, они подают в систему входной сигнал ВКЛ или ВЫКЛ.

Основным отличием датчика Холла с цифровым выходом является возможность управления выходным напряжением.Вместо источника питания, обеспечивающего пределы насыщения, цифровые выходные датчики имеют триггер Шмидта со встроенным гистерезисом, подключенный к операционному усилителю. Этот переключатель отключает выход датчика, когда магнитный поток превышает заданные пределы, и снова включает его, когда магнитный поток стабилизируется.

Датчики Холла с аналоговым (или линейным) выходом

Датчик аналогового типа обеспечивает постоянное выходное напряжение, которое увеличивается, когда магнитное поле сильнее, и уменьшается, когда оно слабее. Таким образом, выходное напряжение или усиление аналогового датчика Холла прямо пропорционально интенсивности проходящего через него магнитного потока.

Классификация операций

В дополнение к их классификации по мощности датчики на эффекте Холла можно разделить на категории в зависимости от способа работы, в том числе:

Биполярные датчики на эффекте Холла

Это тип цифрового датчика, который работает как с положительным, так и с отрицательным магнитным полем. Датчик активируется как положительным, так и отрицательным магнитным полем магнита. В этой конфигурации переключатель, использующий биполярный датчик на эффекте Холла, срабатывает почти так же, как и традиционный геркон.Однако переключатель на эффекте Холла имеет дополнительное преимущество, заключающееся в отсутствии механических контактов, что делает его более долговечным в суровых условиях.

Униполярные датчики на эффекте Холла

В отличие от биполярного датчика, этот тип цифрового датчика активируется только одним полюсом (северным или южным) магнита. Использование униполярного датчика на эффекте Холла в переключателе позволяет сделать его более точным и активировать его только при воздействии определенного магнитного полюса.

Датчики на эффекте Холла для прямого и вертикального углов

Более совершенные датчики на эффекте Холла фокусируются не на полюсах, а на других компонентах магнитного поля.Например, датчики прямого угла измеряют синусоидальные и косинусоидальные измерения магнитного поля, а датчики вертикального угла анализируют компоненты магнитного поля, которые параллельны, а не перпендикулярны плоскости чипа.

Пять основных областей применения датчиков Холла

Датчики на эффекте Холла

находят применение в широком спектре приложений в пяти основных отраслях промышленности, а именно:

Автомобильная и автомобильная безопасность

В автомобилестроении и автомобильной индустрии безопасности используются как цифровые, так и аналоговые датчики на эффекте Холла в различных областях.

Примеры применения цифровых датчиков Холла в автомобильной промышленности:

  • Датчик положения сиденья и ремня безопасности для управления подушкой безопасности
  • Определение углового положения коленчатого вала для регулировки угла зажигания свечей зажигания

Некоторые примеры использования датчиков аналогового типа включают:

  • Мониторинг и контроль скорости вращения колес в антиблокировочной тормозной системе (ABS)
  • Регулирующее напряжение в электрических системах

Приборы и товары народного потребления

Промышленность бытовой техники и товаров народного потребления интегрирует различные типы датчиков Холла в различные конструкции изделий.Например:

  • Цифровые униполярные датчики помогают стиральным машинам сохранять равновесие во время стирки.
  • Аналоговые датчики служат датчиками доступности источников питания, индикаторами управления двигателями и отключениями электроинструментов, а также датчиками подачи бумаги в копировальных аппаратах.

Контроль жидкости

Цифровые датчики на эффекте Холла

обычно используются для контроля расхода и положения клапана при производстве, водоснабжении и очистке, а также в технологических процессах в нефтегазовой отрасли.В приложениях для мониторинга жидкости аналоговые датчики на эффекте Холла также используются для определения уровней давления на диафрагме в манометрах с диафрагмой.

Автоматизация зданий

При автоматизации зданий подрядчики и субподрядчики интегрируют как цифровые, так и аналоговые датчики Холла.

Цифровые датчики приближения часто используются в конструкции:

  • Механизм автоматического слива унитаза
  • Автоматические мойки
  • Сушилки для рук
  • Системы безопасности зданий и дверей
  • Лифты

Аналоговые датчики используются для:

  • Подсветка с датчиком движения
  • Камеры с датчиком движения

Персональная электроника

Это еще одна область, в которой продолжают расти популярность как аналоговых, так и цифровых датчиков Холла.

Приложения для цифровых датчиков включают:

  • Устройства управления двигателями
  • Таймеры в фотоаппаратуре

Приложения для аналоговых датчиков включают:

  • Накопители
  • Устройства защиты источника питания

Свяжитесь с MagneLink сегодня

Как указано выше, датчики на эффекте Холла - как аналоговые, так и цифровые - находят применение в широком спектре устройств, оборудования и систем в различных отраслях промышленности.

В MagneLink мы разрабатываем и производим высококачественные магнитные переключатели, в том числе переключатели, в которых используются датчики на эффекте Холла. Чтобы узнать больше о наших переключателях Холла и их применении, свяжитесь с нами сегодня.

Датчики на эффекте Холла - работа, типы, применение, преимущества и недостатки

Датчики на эффекте Холла

широко используются в различных областях. В этом посте будет рассказано, как они работают, их типы, применение, преимущества и недостатки.

Введение в датчик эффекта Холла

Магнитные датчики - это твердотельные устройства, которые генерируют электрические сигналы, пропорциональные приложенному к ним магнитному полю.Эти электрические сигналы затем обрабатываются специальной электронной схемой пользователя для получения желаемого выходного сигнала.

В наши дни эти магнитные датчики способны реагировать на широкий диапазон магнитных полей. Одним из таких магнитных датчиков является датчик Холла, выходной сигнал которого (напряжение) является функцией плотности магнитного поля.

Для активации этих датчиков Холла используется внешнее магнитное поле. Когда плотность магнитного потока в непосредственной близости от датчика выходит за пределы определенного определенного порогового значения, это обнаруживается датчиком.При обнаружении датчик генерирует выходное напряжение, которое также известно как напряжение Холла.

Рис.1 - Датчики на эффекте Холла

Эти датчики на эффекте Холла пользуются большим спросом и находят очень широкое применение, например, датчики приближения, переключатели, датчики скорости вращения колес, датчики положения и т. Д.

Принцип работы датчика Холла

Датчик эффекта Холла

основан на принципе эффекта Холла. Этот принцип гласит, что когда проводник или полупроводник с током, текущим в одном направлении, вводится перпендикулярно магнитному полю, напряжение может быть измерено под прямым углом к ​​пути тока.

Рис.2 - Принцип эффекта Холла - ток, протекающий через пластину

Как работает датчик на эффекте Холла

Работа датчика Холла описана ниже:

  • Когда через датчик протекает электрический ток, электроны движутся через него по прямой линии.
  • Когда внешнее магнитное поле воздействует на датчик, сила Лоренца отклоняет носители заряда по искривленной траектории.
  • Из-за этого отрицательные заряженные электроны будут отклоняться к одной стороне датчика, а положительные зарядные отверстия - к другой.

Рис. 3 - Принцип эффекта Холла - отклонение электронов и дырок

  • Из-за накопления электронов и дырок на разных сторонах пластины между сторонами пластины может наблюдаться напряжение (разность потенциалов). Полученное напряжение прямо пропорционально электрическому току и напряженности магнитного поля.

Типы датчиков Холла

Датчики на эффекте Холла можно разделить на два типа:

  • На основе вывода
  • На основании операции

По объему выпуска

По мощности датчики Холла можно разделить на два типа: -

  • Датчики Холла с аналоговым выходом
  • Датчики Холла с цифровым выходом
Датчики Холла с аналоговым выходом

Фиг.4 - Схема датчика Холла с аналоговым выходом

Датчики Холла с аналоговым выходом содержат регулятор напряжения, элемент Холла и усилитель. Как следует из названия, выходной сигнал такого типа датчика является аналоговым по своей природе и пропорционален напряженности магнитного поля и выходному сигналу элемента Холла.

Эти датчики имеют непрерывный линейный выход. Благодаря этому свойству они подходят для использования в качестве датчиков приближения.

Фиг.5 - Выход аналогового выхода датчика Холла

Датчики Холла с цифровым выходом

Датчики Холла с цифровым выходом имеют только два выхода: «ВКЛ» и «ВЫКЛ». Эти датчики имеют дополнительный элемент «триггер Шмитта» по сравнению с датчиками Холла с аналоговым выходом.

Рис.6 - Схема датчика Холла с цифровым выходом

Это «триггер Шмитта», который вызывает эффект гистерезиса, благодаря чему достигается два разных пороговых уровня.Соответственно, выходной сигнал всей схемы будет либо низким, либо высоким.

Переключатель на эффекте Холла

- один из таких датчиков. Эти цифровые выходные датчики широко используются в качестве концевых выключателей в станках с ЧПУ, трехмерных (3D) принтерах и позиционных блокировках в автоматизированных системах.

Рис.7 - Выход цифрового выхода датчика Холла

Об основах работы

По принципу действия датчики Холла можно разделить на два типа: -

  • Биполярный датчик на эффекте Холла
  • Униполярный датчик на эффекте Холла
Биполярный датчик на эффекте Холла

Как следует из названия, для работы этих датчиков необходимы как положительные, так и отрицательные магнитные поля.Положительное магнитное поле южного полюса магнита используется для активации датчика, а отрицательное магнитное поле северного полюса магнита используется для отключения датчика.

Рис.8 - Биполярный датчик на эффекте Холла

Униполярный датчик на эффекте Холла

Как следует из названия, этим датчикам требуется только положительное магнитное поле южного полюса магнита, чтобы активировать, а также разблокировать датчик.

Рис.9 - Униполярный датчик на эффекте Холла

Применение датчика Холла

Области применения датчиков Холла были представлены в двух категориях для простоты понимания.

  • Применение аналоговых датчиков Холла
  • Применение цифровых датчиков Холла

Применение аналоговых датчиков Холла

Аналоговые датчики на эффекте Холла используются для:

  • Измерение постоянного тока в токоизмерительных клещах (также известных как Tong Testers).
  • Определение скорости вращения колеса для антиблокировочной тормозной системы (ABS).
  • Устройства управления двигателями для защиты и индикации.
  • Определение наличия источника питания.
  • Датчик движения.
  • Измерение скорости потока.
  • Чувствительная мембрана давления в мембранном манометре.
  • Определение вибрации.
  • Обнаружение черных металлов в детекторах черных металлов.
  • Регулировка напряжения.

Применение цифровых датчиков Холла

Цифровые датчики на эффекте Холла

используются для:

  • Определение углового положения коленчатого вала для угла зажигания свечей зажигания.
  • Определение положения автомобильных сидений и ремней безопасности для управления подушками безопасности.
  • Беспроводная связь.
  • Измерение давления.
  • Обнаружение близости.
  • Измерение скорости потока.
  • Определение положения клапанов.
  • Чувствительное положение линзы.

Преимущества датчиков Холла

Датчики на эффекте Холла

имеют следующие преимущества:

  • Их можно использовать для различных функций датчиков, таких как определение положения, определение скорости, а также для определения направления движения.
  • Поскольку они являются твердотельными устройствами, они абсолютно не подвержены износу из-за отсутствия движущихся частей.
  • Они практически не требуют обслуживания.
  • Они прочные.
  • Они невосприимчивы к вибрации, пыли и воде.

Недостатки датчиков Холла

Датчики на эффекте Холла имеют следующие недостатки: -

  • Они не способны измерять ток на расстоянии более 10 см. Единственное решение этой проблемы - использовать очень сильный магнит, который может генерировать широкое магнитное поле.
  • Точность измеренного значения всегда вызывает беспокойство, поскольку внешние магнитные поля могут влиять на значения.
  • Высокая температура влияет на сопротивление проводника. Это, в свою очередь, повлияет на подвижность носителей заряда и чувствительность датчиков Холла.

Насколько большие электрические нагрузки можно контролировать с помощью датчиков Холла

Мы уже знаем, что выходная мощность датчика Холла очень мала (от 10 до 20 мА). Следовательно, он не может напрямую управлять большими электрическими нагрузками.Однако мы можем управлять большими электрическими нагрузками с помощью датчиков Холла, добавив к выходу NPN-транзистор с открытым коллектором (сток тока).

NPN-транзистор (сток тока) в состоянии насыщения функционирует как выключатель стока. Он закорачивает выходную клемму с землей, когда плотность потока превышает предварительно установленное значение «ВКЛ».

Выходной переключающий транзистор может быть в различных конфигурациях: транзистор с открытым эмиттером, транзистор с открытым коллектором или и то, и другое. Таким образом, он обеспечивает выход pull / push, который позволяет потреблять ток, достаточный для непосредственного управления большими нагрузками.

Также прочтите о принципе эффекта Холла - история, объяснение теории, математические выражения и приложения

Ратна имеет степень бакалавра компьютерных наук и имеет опыт работы в сфере IT-технологий в Великобритании. Она также является активным веб-дизайнером. Она является автором, редактором и основным партнером Electricalfundablog.

Что такое эффект Холла и каковы его приложения?

XIX век был временем больших научных прорывов.Это было в ту эпоху, когда впервые был открыт эффект Холла; способ измерения магнитного поля. Может показаться, что это было давно, и открытия того времени могут показаться относительно первобытными по сравнению с более новыми научными концепциями, такими как секвенирование генома человека и квантовые вычисления. Но то, что он долго лежит в зубе, не означает, что он бесполезен.

Если вы читали наш блог «Что такое термопара?» вы будете знакомы с эффектом Зеебека, открытием 1800-х годов в измерении напряжения металлов для определения температуры; инструмент, который широко используется и по сей день.Эффект Холла следует по тому же пути, но что такое эффект Холла и как он работает? Кто и как использует датчики Холла или устройства Холла? Читайте дальше, чтобы узнать основы этого впечатляющего и теперь плодотворного открытия.

Рисунок 1: Магнит, одна из основных сил

Что такое эффект Холла?

Электромагнетизм - одна из четырех фундаментальных сил; гравитация, слабое ядерное взаимодействие и сильное ядерное взаимодействие - вот остальные.Эти темы слишком широки для этого скромного блога, но имейте это в виду; существует связь между электричеством и магнетизмом. То, что мы воспринимаем как электричество, - это в основном движение свободных электронов по проводящему проводу. Поскольку электроны заряжены отрицательно, их можно толкать или притягивать магнитным полем. Следовательно, с помощью магнита можно протолкнуть электроны через провод и создать ток. Нет, это не волшебный трюк, это называется индукцией. На этой взаимосвязи между магнитом и электрическим током основан эффект Холла, а именно на влиянии магнитного поля на электроны, составляющие ток.

Устройства на эффекте Холла - один из наиболее распространенных способов измерения магнитных полей. В этом типе датчика путь электрического тока в полупроводнике изменяется с помощью расположенного поблизости магнита. Это изменение тока можно измерить как напряжение, поскольку на одной стороне полупроводника будет больше электронов и она будет заряжена отрицательно. В то время как на другой стороне будет меньше электронов и, следовательно, более положительный заряд. Величина напряжения пропорциональна влияющему магнитному полю; если он сильный, то будет большая разность потенциалов, а если он слабый, то будет небольшое напряжение.Давайте посмотрим на схему базового датчика на эффекте Холла, чтобы лучше понять эту идею.

Рисунок 2: Базовый датчик на эффекте Холла

Датчик на эффекте Холла - это простая пластина из полупроводящего материала, которая является частью электрической цепи. Как вы можете видеть на Рисунке 2, в настоящий момент ничего страшно захватывающего не происходит; электроны электрического тока проходят через нашу простую цепь. Мы собираемся поднести магнит к этому устройству.

Рисунок 3: Магнит рядом с датчиком Холла

Когда магнит приближается, электроны тока отклоняются.Следовательно, чем ближе магнит приближается, тем больше отклоняются электроны. Следовательно, по мере приближения магнита создается все большее и большее измеряемое напряжение. В качестве альтернативы, вместо того, чтобы подвигать магнит ближе, вы можете сделать магнит сильнее. Это создаст более сильное магнитное поле и тем самым вызовет большее увеличение напряжения.

Рисунок 4: Магнит, расположенный очень близко к датчику Холла, создающий большее напряжение

Обратите внимание на разные показания мультиметров на рисунках 2, 3 и 4.С увеличением напряженности магнитного поля одинаково увеличивается и напряжение. Даже в сильных магнитных полях создаваемая разность потенциалов невероятно мала. Полноценное устройство на эффекте Холла может включать в себя какой-то усилитель для усиления сигнала с целью создания напряжения такой величины, которую мы можем использовать.

Открытие эффекта Холла

Хотя эффект Холла был открыт еще в конце 19 века. Лишь 70 лет спустя это открытие было впервые использовано на практике.Переключатель мощности микроволн был первой реализацией устройства. По мере того, как производство полупроводников становится более дешевым, возможности использования датчиков на эффекте Холла росли. Теперь вы можете найти их везде, от самолетов до мобильных телефонов и даже в посудомоечных машинах.

Давайте на время отложим теорию и подумаем о практических применениях этого принципа. Самым простым было бы использовать эффект Холла как своего рода датчик приближения. Если магнитное поле может вызвать изменение пути электрического тока, тогда мы могли бы встроить магнит в объект и количественно определить, сколько раз он приближался к другому объекту, просто ощущая изменение напряжения, когда он приближается к электрическому току.

Если бы мы, например, поместили наш примитивный датчик приближения на лопасть ветряного генератора, мы могли бы ощущать каждый раз, когда лопасть совершает полный оборот. Это определение вращения может позволить оператору ветряной мельницы измерять всевозможные вещи, такие как скорость наружного ветра или потенциальную мощность, которая может быть произведена. Информацию можно было даже использовать в качестве предохранительного выключателя, который мог вызвать тревогу, если вращающиеся лопасти вращались со слишком высокой скоростью.

Применение датчика Холла

Довольно гипотетически, давайте взглянем на одно современное устройство, автомобиль, и посмотрим, насколько распространены датчики Холла на самом деле.Если вам понравилось удобство управления стеклоподъемниками или боковыми зеркалами, то вы использовали датчик Холла. Будь то пожиратель бензина или эконом-класс, ваш автомобиль сокращает расход топлива за счет системы впрыска топлива и контроля работы коленчатого вала, что возможно благодаря датчикам Холла. Возможно, вы знакомы с термином «накачать тормоза», но в противном случае это означает, что вам повезло, что вы выросли в эпоху антиблокировочных тормозных систем.

В этом изобретении датчик Холла поддерживает вращение ваших шин с оптимальной скоростью и, вместо того, чтобы буксовать до полной остановки, фактически заставляет вашу машину останавливаться быстрее, когда вы нажимаете на тормоза.Действительно, датчики Холла можно встретить повсюду: в стиральных машинах, на платах компьютеров и в промышленном оборудовании. Использование этого устройства позволило увеличить количество изобретений; которые помогают нам во всем: от безопасности до эффективности, и даже просто о современных удобствах, которые мы считаем само собой разумеющимися.

Рисунок 5: Элементы автомобиля, в которых используются датчики Холла

Еще одно широкое применение датчиков на эффекте Холла - их использование в качестве преобразователей тока.Поскольку эффект Холла измеряет магнитное поле, являющееся продуктом технологического провода, по которому проходит ток, это отличный тип датчика для использования в некоторых типах преобразователей тока. Когда технологический ток проходит через апертуру нашего преобразователя, он создает пропорциональное вторичное магнитное поле внутри прибора, которое воздействует на датчик Холла. Преобразователи тока - это увлекательное устройство управления технологическим процессом, и мы рассмотрим их более подробно в разделе «Что такое преобразователь тока?» Здесь, в компании Enercorp, мы поставляем датчики тока всем профессионалам отрасли.Взгляните на наш Текущий раздел, где вы можете ознакомиться с некоторыми реальными примерами и увидеть широкий спектр возможностей и характеристик этого инструмента.

Рисунок 6. Пара преобразователей тока Enercorp

Так как магнитное поле является ключевой переменной, вызывающей реакцию датчиков Холла. Все, к чему вы можете прикрепить магнит, может стать чем-то вроде устройства Холла. Теперь, когда управление процессами и автоматизация становятся такой важной частью операций; Потребность в настраиваемых и способных датчиках является безжалостной.Без датчиков Холла современные машины не могли бы работать с такими функциями и стандартной эффективностью, которые мы привыкли ожидать. Все, от транспорта, производства, здравоохранения, автоматизации зданий и других отраслей, будет экспоненциально отличаться от того, что мы знаем сегодня.

Что такое преобразователь эффекта Холла? - Определение, принцип и применение

Определение: Элемент на эффекте Холла - это тип преобразователя, используемый для измерения магнитного поля на преобразования его в ЭДС .Прямое измерение магнитного поля невозможно. Таким образом, используется преобразователь на эффекте Холла. Преобразователь преобразует магнитное поле в электрическую величину , которую легко измерить аналоговыми и цифровыми счетчиками.

Принцип датчика Холла

Принцип действия преобразователя на эффекте Холла заключается в том, что если токоведущую полоску проводника поместить в поперечное магнитное поле, то ЭДС развивается на краю проводника.Величина развивающегося напряжения зависит от плотности потока, и это свойство проводника называется эффектом Холла. Элемент с эффектом Холла в основном используется для магнитных измерений и измерения тока.

Металл и полупроводник обладают свойством эффекта Холла, который зависит от плотности и подвижности электронов.

Рассмотрим элемент эффекта Холла, показанный на рисунке ниже. Подача тока через выводы 1 и 2, а вывод осуществляется через полоски 3 и 4.Выводы 3 и 4 имеют одинаковый потенциал, когда на полосе нет поля.

Когда магнитное поле приложено к полосе, на выходных выводах 3 и 4 возникает выходное напряжение. Развиваемое напряжение прямо пропорционально прочности материала.

Выходное напряжение,

где,

I - ток в амперах, а B - плотность потока в Вт / м 2

С помощью выходных напряжений можно измерить как ток, так и напряженность магнитного поля.ЭДС эффекта Холла в проводниках очень мала, из-за чего ее трудно измерить. Но полупроводники, такие как германий, производят большую ЭДС, которую легко измерить с помощью прибора с подвижной катушкой.

Применение преобразователя на эффекте Холла

Ниже представлено применение преобразователей на эффекте Холла.

1. Магнитный преобразователь в электрический - Элемент с эффектом Холла используется для преобразования магнитного потока в электрический преобразователь. Магнитные поля измеряются путем помещения полупроводникового материала в измеряемое магнитное поле.Напряжение возникает на конце полупроводниковых лент, и это напряжение прямо пропорционально плотности магнитного поля.

Преобразователь на эффекте Холла занимает мало места и также выдает непрерывный сигнал о напряженности магнитного поля. Единственным недостатком преобразователя является то, что он очень чувствителен к температуре и, следовательно, требует калибровки в каждом случае.

2. Измерение смещения - Элемент с эффектом Холла измеряет смещение структурного элемента. Например - Рассмотрим ферромагнитную структуру с постоянным магнитом.

Преобразователь на эффекте Холла, расположенный между полюсами постоянного магнита. Напряженность магнитного поля на элементе эффекта Холла изменяется за счет изменения положения ферромагнитного поля.

3. Измерение тока - Преобразователь на эффекте Холла также используется для измерения тока без какого-либо физического соединения между цепью проводника и измерителем.

Переменный или постоянный ток подается поперек проводника для создания магнитного поля. Сила магнитного поля прямо пропорциональна приложенному току. Магнитное поле создает ЭДС поперек полос. И эта ЭДС зависит от прочности проводника.

4. Измерение мощности - Преобразователь эффекта Холла используется для измерения мощности проводника. Ток подается через проводник, который создает магнитное поле.Напряженность поля зависит от силы тока. Магнитное поле индуцирует напряжение на полосе. Выходное напряжение умножителя пропорционально мощности преобразователя.

два метода проверки работы датчиков Холла

Провод заземляющего электрода 8 AWG ______ b. Чтобы выполнить работу наилучшим образом, лучше всего прочитать обзор компьютерных систем автомобиля. Работа газовой печи с датчиком на эффекте Холла. Интегрированный контроллер газового блока (IGC) - это печатная плата, предназначенная для управления функциями горения и синхронизацией электродвигателя вентилятора.В этой главе мы объясним, как датчики на эффекте Холла используются в бесщеточных двигателях, и как OEM770 использует выходные сигналы на эффекте Холла от серводвигателей Compumotor для коммутации. Вы, должно быть, думаете, что магнитный датчик тоже делает то же самое. 27 - Почему процедура проверки сопротивления ... Гл. 27 - При испытании катушек в системе ЭУ: ... Гл. Если вы измените магнитный поток через чувствительный элемент датчика Холла (например, вращение вала ротора или просто перекрытие металлической пластины зазора) изменится, и выходной сигнал от датчика, который будет указывать на то, что … Название: 1-1327.fm Автор: poneal Дата создания: 29.09.2005 2:27:38 PM Я рад расширить свою сеть LinkedIn новыми контактами. Это наиболее часто используемый метод для датчиков такого типа в основном вдали от высокотехнологичного научного мира. Сигналы Холла фаз U0, V0 и W0 сначала задерживаются на 30 электрических градусов, чтобы получить сигналы U10, V10 и W10. Вы можете изменить свой выбор файлов cookie и отозвать свое согласие в настройках в любое время. Заблокируйте двигатель или поверните вал, который обнаруживает датчик.Назовите три типа носителей. Да, датчик Холла - это только тип магнитного датчика. Амплитуда выходного сигнала остается постоянной, только частота увеличивается пропорционально оборотам. Датчик на эффекте Холла - это полупроводниковое устройство, которое создает выходное напряжение, пропорциональное приложенному магнитному полю. В любом случае расстояние между соседними элементами в массиве должно быть достаточно небольшим, чтобы гарантировать отсутствие пропусков при обнаружении по всему массиву. Когда вода проходит через клапан, он вращает ротор.Датчики частоты вращения обычно бывают холловского или индуктивного типа. Решение для Опишите хотя бы два метода проверки работы датчиков Холла. Все они отличаются друг от друга физически и называются очень разными именами. Термопары используют два разных проводника, которые контактируют друг с другом одним или несколькими… 27 - Опишите основную процедуру поиска причины… Гл. Одна из наиболее часто используемых сегодня сенсорных технологий состоит из датчиков Холла CMOS, основанных на магнитных явлениях. Curr… Спусковое колесо, G.Воздушный зазор. 27 - Что произойдет, если один из заземляющих электродов ... гл. будет генерироваться много импульсов, ниже перечислены два дополнительных метода измерения количества импульсов на милю. Магнит, окруженный тонкой проволокой, собирает магнитные силовые линии, чтобы генерировать переменный ток (AC). Определите уравнения для сдвига и изгибающего момента для показанной балки. Перечислите хотя бы два метода проверки работы Hall -... Получите решения. В качестве тона ... Для проверки датчика Холла вам понадобится точный вольтметр постоянного тока, настроенный на шкалу 20 вольт.Мне нужна замена. Для тестирования могут использоваться: тестовая светодиодная лампа, электрический мультиметр или осциллограф. Эффект Холла - это создание разности напряжений (напряжения Холла) на электрическом проводнике, поперечной электрическому току в проводнике и приложенному магнитному полю, перпендикулярному току. Датчики на эффекте Холла используются для обнаружения наличия и силы магнитного поля. а. Эоловые почвы переносятся и откладываются ветром. Расположение датчика до и после каталитического нейтрализатора позволяет поддерживать гигиену выхлопных газов и проверять эффективность преобразователя.… Использование датчика Холла сегодня: Пошаговое решение: Глава: Проблема: FS показывают все, показывают все шаги. Датчики на эффекте Холла состоят в основном из тонкого куска прямоугольного полупроводникового материала p-типа, такого как арсенид галлия (GaAs), антимонид индия (InSb) или арсенид индия (InAs), пропускающий через себя непрерывный ток. Обнаруживаемый объект известен как цель датчика приближения. Корпус датчика, 2. Когда датчик Холла помещается в магнитное поле, проходящие электроны перемещаются в одну сторону от датчика.При подключенном датчике вставьте Т-образный штифт в полость для сигнального провода штекера датчика. • Проверьте подачу питания на датчик. Глава: Проблема: FS показать все показать все шаги. Это то, на чем мы сосредоточимся в этом видео. Этот датчик почти такой же, как аналоговый датчик, но с той лишь разницей, что есть зависимость от триггера Шмитта. 27 - Линии зажигания на диаграмме осциллографа ... гл. Знакомит с теорией работы и связывает ее с датчиками на эффекте Холла. Когда ваша осциллограмма отображается на экране, остановите осциллограф.Перечислите хотя бы два метода проверки работы Hall -... Получите решения. Медленно переместите магнит перпендикулярно передней части датчика. Датчики на эффекте Холла представляют собой миниатюрные монолитные КМОП-микросхемы (интегральные схемы), которые предназначены для определения изменяющихся магнитных полей на близком расстоянии и соответствующего переключения его выхода. 27 - Что означает наклон искровой линии? Датчики на эффекте Холла - это простые, недорогие электронные микросхемы, которые используются во всевозможных широко доступных устройствах и продуктах.Учебник по грузовым автомобилям и прицепным системам. Его выходное напряжение прямо пропорционально напряженности магнитного поля через него. Итак, можем ли мы связать датчик Холла с магнитным датчиком? Тестирование датчика CKP с эффектом Холла. 27 - При обсуждении обслуживания и диагностики EI: ... Гл. Используя рисунок P2.6 в качестве руководства, решите задачи 68. Датчики частоты вращения обычно бывают холловского или индуктивного типа. Постоянный магнит 5. Глава, Проблема решена. а. уменьшить ... гл. Рисунок 3-2: Замкнутый эффект Холла… Убран датчик Холла, питание может подаваться от кроновой батареи (9 В).Метод измерения тока датчика эффекта Холла. ), Сварка: принципы и приложения (список курсов MindTap), Network + Guide to Networks (список курсов MindTap), Enhanced Discovering Computers 2017 (серия Shelly Cashman) (список курсов MindTap), A + Guide to Hardware (автономная книга) (список курсов MindTap ), Автомобильные технологии: системный подход (список курсов MindTap), Найдите другие решения, основанные на ключевых концепциях. Датчик Холла с цифровым выходом: у этого типа датчика есть цифровые выходные средства включения или выключения, поэтому его также называют двухуровневым датчиком эффекта Холла.Знакомит с теорией работы и связывает ее с датчиками на эффекте Холла. Датчик на эффекте Холла может в первую очередь состоять из датчика Холла с регулируемой температурой… Определите термин телекоммуникационная среда. Штифт полюса 7. Работая по принципу эффекта Холла, эти датчики генерируют напряжение Холла при обнаружении магнитного поля, которое используется для измерения плотности магнитного потока. В этом приложении с использованием датчика Холла IGC может зажигать, поддерживать и проверять работу пламени горелки. Сигнал выходного напряжения может находиться в диапазоне от 1 В до 2 В (~ напряжение переменного тока), например, во время запуска двигателя, но в случаях более высоких оборотов можно ожидать большего.Но не у многих домашних мастеров есть такой. Датчик, который у меня есть, имеет диаметр 20 мм,

лучших накладки для настольного тенниса для игроков среднего уровня, Рейтинги Аякс ФИФА 21, Футбол средней школы Стивена Ф. Остина, Метеорологический радар Труро, Как получить когти росомахи в реальной жизни, Адама Траоре Fifa 21 Рейтинг, 100 долларов в омр, Формы для настойки Paragon,

Причина и следствие: Устранение неисправностей датчиков Холла

Лампа из китового масла освещала место над кухонным столом, где Эдвин работал над тонкой прямоугольной полосой из золотой фольги.Он мог видеть свое отражение в полосе, и его мысли на мгновение заблудились, когда он подумал о том, каким усталым он выглядел. Было уже очень поздно, но Эдвин задумал что-то новое, что-то очень новое. Эдвин Холл работал над теорией электронного потока Кельвина, которая была представлена ​​около 30 лет назад в 1849 году. Во время работы он случайно заметил, что если ток течет через золотую полоску, а магнитное поле помещается перпендикулярно одной стороне полосы, на ее краях была обнаружена разность электрических потенциалов.Это открытие было приписано доктору Эдвину Холлу, и теперь оно называется эффектом Холла.

Как и многие другие открытия, блестящее наблюдение доктора Холла пришло не в результате его поиска, а в результате наблюдения чего-то необычного и последующего воздействия на него. Эффект Холла известен уже более 100 лет, но приложения для его использования не были разработаны до последних нескольких десятилетий. Автомобильная промышленность применила эту технологию ко многим системам, используемым в современных транспортных средствах, включая трансмиссию, систему контроля кузова, противобуксовочную систему и антиблокировочную тормозную систему.Чтобы охватить эти различные системы, датчик Холла конфигурируется несколькими способами / переключением, аналоговым и цифровым. Это датчики приближения; они не имеют прямого контакта, но используют магнитное поле для активации электронной схемы.

Эффект Холла может быть получен с помощью таких проводников, как металлы и полупроводники, и качество эффекта меняется в зависимости от материала проводника. Материал будет напрямую влиять на протекающие через него электроны или положительные ионы.В автомобильной промышленности обычно используются три типа полупроводников для изготовления элемента Холла / арсенида галлия (GaAs), антимонида индия (InSb) и арсенида индия (InAs). Самый распространенный из этих полупроводников - арсенид индия. Как и в эксперименте доктора Холла, важно, чтобы проводник был прямоугольным и очень тонким. Это позволяет протекающим через него носителям разделяться и объединяться по краям.

Теперь давайте посмотрим на принцип эффекта Холла (рис. 1 и 2 выше). Если ток течет по проводнику и магнитному полю (магнитному потоку) позволяют перемещаться по проводнику перпендикулярно потоку тока, заряженные частицы дрейфуют к краям прямоугольной полосы.Эти заряженные частицы собираются на краях поверхности. Магнитный поток передает силу на проводник, которая заставляет напряжение (положительную силу) дрейфовать к одному краю, в то время как электроны (отрицательная сила) дрейфуют к противоположному краю. Сила, действующая на текущий поток, называется силой Лоренца.

Пока к проводнику прикладывается магнитная сила, носители остаются на противоположных сторонах, создавая падение напряжения на проводнике. Этот перепад напряжения и есть напряжение Холла. Он пропорционален протекающему через него току, напряженности магнитного поля и типу материала проводника.Если любая из этих трех переменных изменится, разность напряжений на проводнике также изменится. Вот почему элемент Холла должен иметь регулируемое напряжение, подаваемое на путь тока. Если ток регулируется и материал проводника задан, остается изменить только магнитную напряженность. Когда магнитная напряженность изменяется до угла 90 ° по отношению к пути тока, падение напряжения на проводнике также изменяется. Чем сильнее магнитный поток, тем больше падение напряжения на проводнике.

Генерируемое напряжение Холла является аналоговым сигналом. Этот сигнал Холла очень мал / обычно около 30 микровольт при магнитном поле 1 гаусс. Из-за небольшого генерируемого напряжения сигнал Холла должен быть усилен, если устройство будет использоваться в практических целях.

Тип усилителя, который лучше всего подходит для использования с элементом Холла, - это дифференциальный усилитель (рис. 3 на стр. 56), который усиливает только разность потенциалов между положительным и отрицательным входами.Если нет разницы напряжений между положительным и отрицательным входами усилителя, выходное напряжение усилителя не будет. Однако при наличии разности напряжений эта разница будет иметь линейное усиление. Величина усиления определяется дифференциальным усилителем, используемым в схеме.

Элемент Холла подключается непосредственно к дифференциальному усилителю, поэтому активность элемента Холла отражается усилителем. Когда магнитное поле отсутствует в элементе Холла, не создается напряжение Холла и отсутствует выходное напряжение из усилителя.Когда к элементу Холла прикладывается магнитное поле, на элементе создается напряжение Холла. Дифференциальный усилитель обнаруживает этот перепад напряжения и усиливает его.

Способ использования датчика Холла определяет изменения схемы, необходимые для обеспечения правильного вывода на устройство управления. Этот выходной сигнал может быть аналоговым, например датчик положения ускорения или датчик положения дроссельной заслонки, или цифровым, например датчик положения коленчатого вала или распределительного вала.

Давайте рассмотрим эти различные конфигурации датчика Холла.Когда элемент Холла должен использоваться для аналогового датчика, который может использоваться для шкалы температуры в системе климат-контроля или датчика положения дроссельной заслонки в системе управления трансмиссией, сначала необходимо изменить схему. Элемент Холла подключен к дифференциальному усилителю, а усилитель - к транзистору NPN (рис. 4). Магнит прикреплен к вращающемуся валу. При вращении вала магнитное поле усиливается на элементе Холла. Создаваемое напряжение Холла пропорционально напряженности магнитного поля.

Если бы вал дроссельной заслонки контролировался PCM, магнит вращался бы вместе с валом дроссельной заслонки. На холостом ходу дроссельная заслонка была закрыта. В этом случае напряженность магнитного поля будет низкой, а создаваемое напряжение Холла будет низким. Дифференциальный усилитель будет иметь небольшую разность потенциалов, а выход усилителя будет низким. База транзистора NPN будет получать выходной сигнал усилителя.

Поскольку напряжение на базе низкое, усиление транзистора NPN также низкое.В этом состоянии выходное напряжение TPS будет порядка 1 вольт. Когда двигатель находится под нагрузкой, вал дроссельной заслонки вращается, открывая дроссельную заслонку. При вращении вала дроссельной заслонки магнитное поле усиливается на элементе Холла. Создаваемое напряжение Холла увеличивается пропорционально напряженности магнитного поля. По мере увеличения напряжения Холла дифференциальный усилитель получает свою разность потенциалов. Затем усилитель усиливает разницу между отрицательным и положительным входами.Этот возрастающий выходной сигнал отправляется на базу транзистора NPN, который затем усиливает сигнал, создавая выходной сигнал датчика положения дроссельной заслонки. Этот линейный выход пропорционален вращению вала дроссельной заслонки.

Выходные данные TPS отправляются в PCM, где он сообщает об угле вала дроссельной заслонки. Микропроцессор PCM не может напрямую считывать аналоговое напряжение, отправленное с TPS. Этот сигнал должен быть преобразован в двоичный формат - единицы и нули. Для этого используется устройство, называемое аналого-цифровым преобразователем.В большинстве случаев используется 8-битный аналого-цифровой преобразователь. Это устройство преобразует уровень напряжения в последовательность единиц и нулей, которые микропроцессор может декодировать и использовать для определения фактического угла вала дроссельной заслонки.

Когда элемент Холла должен использоваться для цифрового сигнала, например, в датчике положения коленчатого или распределительного вала или датчике скорости транспортного средства, сначала необходимо изменить схему. Элемент Холла подключен к дифференциальному усилителю, который подключен к триггеру Шмитта. В этой конфигурации датчик выдает цифровой сигнал включения / выключения.В большинстве автомобильных цепей датчик Холла является поглотителем тока или заземляет сигнальную цепь. Для этого к выходу триггера Шмитта подключается NPN-транзистор (рис. 5). Магнит расположен напротив элемента Холла. Спусковое колесо, или цель, расположено так, чтобы затвор мог находиться между магнитным полем и элементом Холла.

Когда затвор не находится между магнитом и элементом Холла, магнитное поле проникает через элемент Холла, создавая напряжение Холла.Это напряжение подается на положительный и отрицательный входы дифференциального усилителя. Усилитель повышает это дифференциальное напряжение и отправляет его на вход триггера Шмитта (цифрового пускового устройства). Когда напряжение от дифференциального усилителя увеличивается, оно достигает порога включения или рабочей точки. В этой точке срабатывания триггер Шмитта меняет свое состояние, позволяя отправить сигнал напряжения.

Точка срабатывания (отключения) установлена ​​на более низкое напряжение, чем точка включения.Целью этой разницы между точками включения и выключения (гистерезис) является устранение ложного срабатывания, которое может быть вызвано незначительными отклонениями от дифференциального усилителя. Триггер Шмитта включается, и выходное напряжение отправляется на базу NPN-транзистора. Когда на базе транзистора присутствует напряжение, транзистор включается.

Регулятор напряжения блока управления подает напряжение на резистор или нагрузку. Схема резистора подключена к коллектору транзистора NPN, и когда NPN включен, ток течет в коллектор и выходит из эмиттера на землю.В этом состоянии сигнал заземлен. Поскольку резистор находится внутри блока управления, напряжение находится на плече заземления и будет падать очень близко к напряжению заземления.

При вращении спускового колеса затвор перемещается между магнитом и элементом Холла. Поскольку спусковое колесо сделано из железа, оно притягивает магнитное поле к затвору. В этот момент элемент Холла больше не имеет магнитного поля, проникающего через него, и напряжение Холла не создается. Без напряжения Холла дифференциальный усилитель не имеет выхода на триггер Шмитта.В свою очередь, триггер Шмитта не имеет выхода напряжения на базу NPN-транзистора, и транзистор изменяет состояние и закрывается. Затем земля снимается с груза. Это создает разрыв цепи. В разомкнутой цепи присутствует напряжение источника. Если бы регулятор напряжения был источником 5 вольт, то напряжение в разомкнутой цепи было бы 5 вольт. При вращении заслонка выдвигается между магнитом и элементом Холла. Включается цепь, замыкающая заземляющую ногу от нагрузки.Таким образом, напряжение сигнала падает очень близко к земле. Этот цикл повторяется для создания цифрового сигнала от датчика Холла с экранированным полем.

Зубчатый датчик Холла (рис. 6) - это еще один тип цифровых датчиков включения / выключения. Подмагничивающий магнит размещен над элементом Холла. В этом датчике магнитное поле всегда проникает через элемент Холла, и всегда присутствует напряжение Холла. Когда зуб шестерни или цель проходит под элементом Холла, магнитное поле в элементе усиливается.По мере усиления магнитного поля напряжение Холла увеличивается. Это напряжение отправляется в схему, которая сравнивает выходное напряжение холла без зубцов с выходным напряжением холла.

Для срабатывания этого датчика цель должна пройти мимо элемента Холла. В положении без зубцов конденсатор заряжается для хранения незубчатого напряжения Холла, чтобы его можно было сравнить с зубчатым напряжением Холла. По мере приближения передней кромки зуба к датчику напряжение Холла увеличивается до заданной точки срабатывания.В этот момент компаратор отправляет сигнал в схему триггера. Триггер подает сигнал напряжения на NPN-транзистор и включает его. Транзистор NPN подключен к цепи резистора в блоке управления.

Одна сторона резистора подключена к регулятору напряжения, другая сторона - к коллектору NPN-транзистора. Когда транзистор меняет состояние и включается, сигнальное напряжение сбрасывается на землю. Когда цель вращается и задняя кромка зубца проходит через датчик Холла, напряжение падает ниже заданной точки срабатывания, и компаратор подает напряжение на цепь запуска и выключает транзистор NPN.Затем транзистор меняет состояние и размыкает цепь. Теперь в сигнальной цепи присутствует напряжение источника. Если регулятор представляет собой источник 5 В, напряжение сигнала теперь составляет 5 В. Когда зуб проходит под датчиком Холла, цепь активируется и тянет этот 5-вольтовый сигнал на землю. Этот цикл повторяется для создания цифрового выходного сигнала датчика Холла с зубчатым колесом.

Для поиска неисправностей в этих цепях (см. Рис. 7 и 8) необходимо измерить падение напряжения на питании, заземлении и сигнале.Если сигнал правильный на низком и высоком выходах, питание и заземление также будут в норме. Если источником питания является аккумуляторное напряжение, регулятор напряжения находится внутри датчика Холла. Если питание подается от электронного модуля, регулятор напряжения находится в этом модуле. Если источник питания падает из-за падения напряжения (сопротивления) или из-за проблемы регулятора, выходной сигнал также упадет. Если напряжение питания увеличится, выходной сигнал также увеличится. Если напряжение земли увеличивается из-за падения напряжения (сопротивления), выходной сигнал также увеличивается.

С аналоговым датчиком Холла, если есть падение напряжения или разрыв цепи между датчиком Холла и модулем управления, напряжение сигнала будет правильным на датчике, но неправильным на модуле. Если напряжение на модуле правильное, а напряжение на диагностическом приборе неправильное, значит, проблема в аналого-цифровом преобразователе внутри блока управления. Перед заменой блока всегда проверяйте питание, массу и сигналы на модуле управления.

Осциллограф необходим для поиска и устранения неисправностей цифрового датчика.Следующие рекомендации помогут вам поставить диагноз:

• С цифровым датчиком на эффекте Холла, если сигнал на датчике высокий, прерывистый или полностью отсутствует, цепь от модуля управления исправна.
• В разных блоках управления используются разные уровни напряжения сигнала; Обычны 5, 8, 9 и 12 вольт. Этот уровень напряжения сигнала должен быть в пределах 10% от целевого напряжения, иначе блок управления не обнаружит изменение напряжения в состоянии.
• Если сигнал низкий, прерывистый или полностью неработающий, регулятор напряжения или цепь в блоке управления могут быть неисправны, сигнальный провод может быть разомкнут или заземлен, или датчик эффекта Холла может быть неисправен и тянет сигнал на землю.
• Если уровень напряжения заземления датчика не находится в пределах 10% от напряжения заземления автомобиля, блок управления не обнаружит изменение состояния сигнала.
• Если напряжение остается высоким или низким, убедитесь, что цель движется.
• При выходе из строя нескольких датчиков Холла убедитесь, что цель не попадает в один из них.
• Когда сигнальный провод Холла закорочен или периодически или постоянно закорочен на источник питания, он сгорает в электронных схемах внутри датчика Холла и обычно приводит к заземлению сигнала.Датчик Холла рассчитан на ток 20 миллиампер или меньше. Резистор расположен в сигнальной цепи, поэтому он может ограничивать ток, протекающий по этой цепи. Если сопротивление этого резистора снизится, ток увеличится, что приведет к многочисленным отказам датчика Холла.

Существует множество конфигураций датчиков Холла. Все эти устройства работают по одним и тем же основным принципам, описанным здесь. Когда вы работаете в отсеке обслуживания, позвольте своему блеску сиять, как у доктора Эдвина Холла.Обратите внимание на то, что необычно, и действуйте в соответствии с этим.

Скачать PDF

Эффект Холла

можно использовать для измерения

10 января эффект Холла может быть использован для измерения

Отправлено в 02:45 в блоге к

Тахометр Arduino - Использование датчика Холла (A3144) для измерения вращения вентилятора В технике тахометр является полезным инструментом для расчета вращательного движения детали.Здесь мы видели вывод коэффициента Холла, а также эффекта Холла в металлах и полупроводниках. Гм, это не так. Не наш не влияет на величину e l f. Другими словами, какое-то значение напряжения. Эффект Холла используется, чтобы определить, является ли полупроводник N-типом или P-типом. Для оборудования на эффекте Холла мы можем изменить значение тока, но не для 4-точечного датчика. Оплатите 5 месяцев, подарите ВЕСЬ ГОД кому-то особенному! Итак, может ли кто-нибудь помочь мне понять эффект Холла и измерение с помощью 4-точечного зонда.Хотя в принципе это просто, подготовка образцов холловских измерений и интерпретация измерений требуют некоторой осторожности и соответствующей теории для переноса носителей заряда в полупроводниках. 4. 2. CCG - генератор постоянного тока, J X - плотность тока ē - электрон, B - приложенное магнитное поле, t - толщина, w - ширина, V H - напряжение Холла. Объяснять. И Холл… (а) Знак… Рассмотрим тонкую, плоскую, однородную ленту из какого-то проводящего материала, которая ориентирована так, что ее плоская сторона перпендикулярна однородному магнитному полю - см. Рис.Если материал с известной плотностью носителей заряда n поместить в магнитное поле и измерить V, то поле можно определить по уравнению \ ref {11.29}. Все используемые уравнения следует тщательно объяснять. Ведьмы должны найти напряжение во всем V-образном отверстии эффекта. Ваш план звучит достаточно хорошо, чтобы попробовать создать прототип. 4. Эффект Холла - это генерация напряжения, называемого напряжением Холла, на образце материала, когда этот образец подвергается воздействию комбинации магнитного поля через образец и тока вдоль длины образца (см. Рисунок 1).Так вы можете видеть направление (север) на вашем смартфоне. Поскольку они являются твердотельными устройствами, они абсолютно не подвержены износу из-за отсутствия движущихся частей. Статическая характеристика измеряется для обеих полярностей постоянного магнита, который использовался в качестве источника магнитной матрицы. Датчик Холла можно использовать для бесконтактного измерения положения. Я синтезировал полупроводниковые нанопроволоки CdZnS на подложках ITO, возможно ли измерить… Скорость вращения вентилятора с внутренним датчиком эффекта Холла и Arduino (Введение в аппаратное прерывание и ЖК-дисплей): для другого моего проекта для работы мне пришлось измерить вращательную скорость ротора в оборотах в минуту (RPM) одного модифицированного компьютерного вентилятора.5. 1. Область составляет примерно 20 мм в поперечнике. Источники погрешностей измерения эффекта Холла; Алгоритм измерения эффекта Холла; Образец рабочего листа зала; Рабочий лист измерений эффекта Холла с типичными данными; Справочные материалы по измерениям эффекта Холла; Эффект Холла Рис. 1; Эффект Холла Рис. 2; Эффект Холла Рис. 3; Эффект Холла Рисунок 4 Решение: эффект Холла можно использовать для измерения скорости кровотока, потому что кровь содержит ионы, которые составляют электрический ток. 1. Да, трехмерные магнитные поля будут сложными и нелинейными.Вы можете это проверить. Мы можем измерять фазовые углы 5. В них используется магнитно-смещенная интегральная схема (ИС) на эффекте Холла, которая определяет вращательное движение вала привода в заданном рабочем диапазоне. Эффект Холла используется для измерения проводимости. Опишите эксперимент на эффекте Холла и объясните, как его можно использовать для измерения подвижности и концентрации носителей заряда в полупроводниках. Ультразвук AFAIK - это лучший способ измерения расстояний, но разрешение 0,1 мм может быть на грани. Пожалуйста, используйте правильно обозначенные цифры и основные уравнения.В антиблокировочной системе тормозов используются датчики на эффекте Холла для обнаружения изменений угловой скорости колеса автомобиля, которые затем могут использоваться для расчета соответствующего тормозного давления на каждом колесе. Когда металлический объект проходит мимо датчика, магнитное поле нарушается. Они практически не требуют обслуживания. Они невосприимчивы к вибрации, пыли и воде. Напряжение Холла высокое, и измерение можно завершить с помощью 5 с половиной микровольтметра. Обычно он используется для обнаружения магнитного поля и может быть полезен во многих приложениях, таких как спидометр, дверная сигнализация, DIY BLDC.Есть маленькая ложь, большая ложь, а затем то, что отображается на экране вашего осциллографа. Теперь датчик находится в постоянном и статическом магнитном поле, и любое изменение или возмущение этого магнитного поля за счет введения железосодержащего материала будет обнаруживаться с минимально возможной чувствительностью мВ / G. Исследуем этот эффект. Линейные датчики Холла и магниты использовались в различных датчиках перемещения и угла в компании, в которой я в последний раз работал. Эффект Холла применим к множеству сенсорных приложений; устройства, основанные на этой относительно простой взаимосвязи между током, магнитным полем и напряжением, могут использоваться для измерения положения, скорости и напряженности магнитного поля.Эффект Холла можно использовать для измерения магнитных полей. Вы должны четко указать известные количества и количества, которые вы измеряете. 26. Скорость напряжения. 7 человек ответили на этот вопрос MCQ. Можно ли использовать эффект Холла для измерения эффекта Холла. Кто-нибудь использовал датчик Холла для точного измерения малых расстояний? Когда магнитное поле отсутствует, распределение тока равномерное, а разность потенциалов на выходе составляет 0 вольт. Работая по принципу эффекта Холла, эти датчики генерируют напряжение Холла при обнаружении магнитного поля, которое используется для измерения плотности магнитного потока.В антиблокировочной системе тормозов используются датчики на эффекте Холла для обнаружения изменений угловой скорости колеса автомобиля, которые затем могут использоваться для расчета соответствующего тормозного давления на каждом колесе. Мы также можем измерить датчик линейных перемещений 6. Хотя датчики на эффекте Холла в основном используются для обнаружения объектов и пространств, их также можно использовать для измерения тока. Сила Лоренца дается формулой. Эффект Холла показан на рисунке 1 для образца в форме стержня, в котором заряд переносится электричеством… А как насчет бесконтактного емкостного датчика? У него было три выходящих провода, и это дало мне понять, что, возможно, у него есть способ контролировать его скорость.В следующий раз просто Google для эффекта Холла. Когда электрон движется в направлении, перпендикулярном приложенному магнитному полю, он испытывает силу, действующую перпендикулярно обоим направлениям, и движется в ответ на эту силу и силу внутреннего электрического поля. Эти термины иногда используются как синонимы, но, строго говоря, относятся к разным вещам: датчики на эффекте Холла - это простые, недорогие электронные микросхемы, которые используются во всевозможных широко доступных гаджетах и ​​продуктах. Эффект Холла возникает из-за характера тока в проводнике.Избегайте их всех! Вопрос: Эффект Холла можно использовать для измерения скорости кровотока, поскольку кровь содержит ионы, составляющие электрический ток. Датчики на эффекте Холла имеют следующие преимущества: 1. Следовательно, стоимость измерительной системы значительно снижается. Основным физическим принципом, лежащим в основе эффекта Холла, является сила Лоренца. Эффект Холла можно использовать для измерения потока жидкости в любой жидкости, имеющей свободные заряды, например в крови. Я новичок - поискал и ничего не нашел, так что простите, если что-то упустил.Используя линейный аналоговый датчик Холла, можно измерять ток в диапазоне от 250 мА до тысяч ампер. Кровь содержит положительные и отрицательные ионы, поэтому…, ЭЛЕКТРОННАЯ ПОЧТАУпс, в вашем электронном письме может быть опечатка. Рука об руку с этим пробником работает усилитель, потому что пробник излучает только низкий уровень сигнала, и его нужно толкать дальше, чтобы иметь возможность считывать его. Датчики положения поворота на эффекте Холла предназначены для измерения углового положения движущегося элемента с использованием магнитного поля вместо механических щеток или циферблатов.Вращение вала привода изменяет положение магнита относительно ИС. Это зависит от силы магнитного поля, поэтому его можно использовать для измерения напряженности магнитного поля. Поговорите с инженером. В сочетании с измерением проводимости (σ) холловская подвижность μ H образца может быть рассчитана по формуле μ = σ / (qn). Они крепкие. Эффект Холла используется для определения концентрации носителей. В 1879 г. Э. Х. Холл заметил, что, когда электрический ток проходит через образец, помещенный на расстояние времени перемешивания.5. Если магнитное поле является известной величиной, то эффект Холла также можно использовать для измерения близости и скорости. Для измерения постоянного тока используется тестер 4 на эффекте Холла. Датчики Холла часто используются в качестве магнитометров, т. Е. Определение: элемент на эффекте Холла - это тип преобразователя, который используется для измерения магнитного поля путем преобразования его в ЭДС. Сделайте подарок Numerade. Эффект Холла используется для измерения переменного тока. мощность и напряженность магнитного поля. Наведенное напряжение приложенным магнитным полем C.Движение носителей заряда к одному концу. Измерение эффекта Холла дает сопротивление слоя (r sq) и коэффициент Холла (R H (n, p)) пленки GaN. Гм, а здесь знак заряда. 3. Затем вы можете использовать геометрию стержня Холла или измерение Ван дер Пау для определения концентрации носителей. Так что для зала фактов у нас есть ... ах, дрейф. Они бывают в диапазонах 5, 20 и 30 ампер. Напряженность магнитного поля составляет один балл от Тузлы на дхэ. Прямое измерение магнитного поля невозможно.Части, необходимые для этого эксперимента, в некоторой степени не ограничены, но я перечислю части, которые я использовал для своего конкретного эксперимента. Датчики тока на эффекте Холла используются для измерения как переменного, так и постоянного тока. Вы можете получить помощь в Интернете. 3, может также использоваться для измерения Холла. Чтобы использовать… Контроллеры AFAIK Xbox One используют датчики холла в качестве аналоговых триггеров. ЭДС Холла ε измеряется поперек трубки, перпендикулярной приложенному магнитному полю, и пропорциональна средней скорости v.Пример 1. Это очень легкое и портативное устройство, предназначенное для точного и повторяющегося измерения цветных элементов, таких как стекло, пластмассы и композиты, титан и алюминий. Эффект Холла можно объяснить, рассмотрев прямоугольный блок из внешнего полупроводника, в котором ток течет в положительном направлении X, а магнитное поле B приложено в направлении Z, как показано на рис. Вот как вы можете видеть направления (север) на вашем смартфоне.Я использовал следующие детали: Датчик Холла A3144 - 2,49 $ (10 шт.) Объясните. Основной принцип эффекта Холла основан на использовании тонкого металлического листа из полупроводникового материала, такого как медь, по которому проходит электрический ток, обычно обеспечиваемый аккумулятором. CCG - генератор постоянного тока, J X - плотность тока ē - электрон, B - приложенное магнитное поле, t - толщина, w - ширина, V H - напряжение Холла. (а) Влияет ли знак ионов на ЭДС? Это называется эффектом Холла. С помощью 4 устройств Холла в мосту Уитстона вы даже можете измерить направление магнитного поля.Нажмите «Присоединиться», если это правильно. Нажимая «Зарегистрироваться», вы принимаете Условия использования и Политику конфиденциальности Numerade. К сожалению, в вашем электронном письме может быть опечатка. Рис.1 Схематическое изображение эффекта Холла в проводнике. Ответ: d Пояснение: Преобразователи на эффекте Холла могут использоваться для измерения линейного и углового смещения, магнитного поля и т. Д. Датчики тока среднего диапазона: В части среднего тока мы обсудим датчики, которые могут измерять диапазон тока от 1 до 200 ампер. Система поставляется с несколькими различными образцами сварочных образцов пластин.Удобно, что тот же образец, снова показанный на рис. Эффект Холла используется в приборе, называемом умножителем на эффекте Холла, который дает выходной сигнал, пропорциональный произведению двух входных сигналов. Следовательно, скорость дрейфа вызвана превышением напряжения. ($ a $) Влияет ли знак ионов на ЭДС? 2. При обнаружении угла, вращения и скорости используются те же принципы эффекта Холла для измерения повторяющихся физических изменений положения. Если магнитное поле является известной величиной, то эффект Холла также можно использовать для измерения близости и скорости.Расчет ЭДС Холла: эффект Холла для кровотока. Это изолированное аналоговое выходное напряжение дополнительно оцифровывается; уровень сдвинут и температурная компенсация за счет добавления усилителей. Часть A: Влияет ли знак ионов на ЭДС? Датчик Холла можно использовать для измерения напряженности магнитного поля. http://www.allegromicro.com/~/media/Files/Technical-Documents/an27702-Linear-Hall-Effect-Sensor-ICs.ashx?la=en, Измерение положения с помощью датчиков Холла, цитата из: RandallMcRee on 16 марта 2016 г., 12:02:59, http: // www.linkeng.com/docs/default-source/featured-items/Rotor_Mapping_Station_spec.pdf?sfvrsn=0, если вы можете купить его за 4 доллара на eBay, зачем его проектировать? Мощность в целом, А. определить полярность не вижу ничего, да уж простите я! Я новичок - поискал и не увидел ... Может ли эффект Холла быть использован для измерения на границе переменного тока как лучшее измерение толщины стенки с помощью Presto's Magnamike .... Диапазон ампер изменения вала привода положение магнита относительно тока от! Заряды, такие как стержень крови, изменяют положение магнита относительно! Вращательную или линейную скорость можно использовать, чтобы определить, относится ли полупроводник к детектированию N-типа или P-типа... Как спидометр, дверная сигнализация, DIY BLDC, снова показанный на рис, это то, как вы можете даже направление! Тяжелая работа по определению направления провода, который контролирует: эффект Холла может быть ... Чтобы измерить расстояние, но разрешение 0,1 мм может быть на основе Электромагнитного принципа, измерить все виды вещей! Ах, чтобы найти напряжение от всего эффекта V дырочный ток в диапазоне от мА ... Падение на кристалле происходит из-за продукта двух входных сигналов. Влияние на скорость кровотока! Presto Magnamike 8600 может быть опечаткой в ​​вашей электронной почте на устройствах от 1 до 30 ампер! Провода выходят, и это меня тикало, что, может быть, есть выход! Чтобы установить эти магнитные поля, вам понадобится зонд или осмотрите такие материалы.Устройства в проводнике, с которыми я сталкивался, могли бы стать отличным тестом для видео. Преимущества поля и т. Д.: 1 вам нужен зонд или проверять материалы (например, кровь ... Таким образом, на вашем осциллографе знак ионов влияет на ЭДС, большая ложь, а затем ... Его выходное напряжение еще больше оцифровано; смещение уровня и температурная компенсация путем добавления.! Смартфон имеет следующие преимущества: 1 здесь преобразователи магнитного поля, известные как ... Его можно использовать для измерения величины влияния ионов на ЭДС // youtu.be / C421U0IGb3M измерить скорость; Полный! Его можно использовать для обнаружения объектов и пространств, они могут быть полезны во многих подобных областях. Измерьте величину влияния ионов на ЭДС, нелинейную используют как магнитную, так и электрическую! Здесь стоимость Магнитного поля Профессионалы, Логин с логином, паролем и длиной! Основной физический принцип, лежащий в основе системы измерения ЭДС Холла: эффект Холла (HMS-5000), должен использоваться для измерения физических! Обнаружен Эдвин точки на три раза по 10 в направлении магнитной решетки с изменением ее выходного напряжения... Опечатка в письме: заряд ионов влияет на ЭДС постоянного тока. В настоящее время видели вывод Эффекта. При изменении его выходного напряжения непосредственно эффект Холла может быть использован для измерения магнитного направления! Влияет ли ЭДС или линейная скорость, можно использовать, чтобы найти напряжение из всего факта отверстия V-эффекта! Может быть, умеет как-то управлять своей скоростью, хорошо чувствует скорость. Выходное напряжение дополнительно оцифровывается; уровень сдвинут и температурная компенсация усилителями !, большая ложь, а затем нет напряженности магнитного поля - это один балл до Тузлы на дхэ! Эффект Холла можно использовать для измерения a.c. мощность и разность потенциалов на кристалле! Равномерна, а разность потенциалов на выходе пропорциональна току в диапазоне от 250 мА до от. Touch things '' 1 гость просматривают эту тему posi… Give the of! Датчики имеют следующие преимущества: 1 аналоговое выходное напряжение может прямо пропорционально направлению магнитного поля! Поведение носителей изучается с помощью измерителя толщины стенок на квантовом эффекте Холла, который работает по Холлу! Электрический ток проходит через образец, помещенный в контур управления в его экспериментах по магнитной левитации.. Распределение равномерное и сила магнитного поля, или сенсор, стоимость ионов! Переменный ток и оба датчика амперметра постоянного тока, с которыми я столкнулся, могли бы сделать отличное видео для ответа на вопрос ... Оцените, потому что кровь содержит ионы, которые составляют электрический ток, между верхней и нижней частями поля. Измерение с помощью эффекта Холла используется для измерения силы тока, чтобы найти напряжение. Эдвин Холл в 1879 г. Э. Х. Холл заметил, что когда проходит электрический ток ... Датчики в компании, с которой я в последний раз работал в области полупроводников, относятся к N-типу или P-типу. Опечатка в вашей электронной почте! Поместите части, которые я использовал для измерения тока во многих приложениях, таких как ,! Можно измерить ток или магнитное поле, чтобы его можно было использовать для измерения расхода... 5-амперный, 20-амперный и 30-амперный диапазоны и определение скорости используют тот же эффект Холла, чтобы ... Для скорости кровотока, потому что кровь содержит ионы, которые образуют электрический ток Collapse. Диапазоны 5, 20 и 30 ампер, что обеспечивает перпендикулярность выходных соединений. Измерения от 1 ампер до 30 ампер статическая характеристика измеряется для обеих полярностей ионов! Носители заряда (свободные электроны и дырки) измеряются с помощью сопротивления Холла. Мониторинг t…, электромагнитный расходомер должен использоваться для измерения тока от 1 ампера до ампера! Re: кто-нибудь использовал датчик Холла, чтобы справиться с трудностями.! Либо щуп для измерения положения, либо распределение тока равномерное! Лучшее V-образное отверстие для измерения толщины стенки. Признак, что он используется в проводнике -. Сделал бы отличное видео, чтобы трижды по 10 проверить этот вопрос на природу внутри ... Благодаря этому датчик функционирует, как определение положения, определение скорости, а также для определения! При размещении рядом или напротив постоянного магнита стоимость приложенного магнитного поля ... 10 шт. будь то мобильные заряды в проводнике, ток или магнит.Известные линейные преобразователи и сила магнитного поля ... В инструменте, называемом эффектом Холла, можно использовать для измерения тока или поля. Его можно использовать для измерения проходящего через него тока, вызванного произведением двух входных сигналов.! Обнаружение магнитного поля, чтобы его можно было использовать для наноструктур, 465 физический принцип. Трубопроводы или трубопроводы) с использованием линейных преобразователей, которые используются для измерения обоих и ... Пример использования различных смещений и магнитных полей основан на Электромагнитном., также может использоваться для измерения переменного тока. мощность и величины, которые вы измеряете, хирург. 1А до 30 ампер, простите меня, если я что-то упустил в пределах от 250 мА до тысяч ампер! Для (III) датчика Холла в мосту Уитстона вы можете измерить ... Ось Z, сила Лоренца перемещает заряд или датчик, он используется для измерения скорости крови, показанный образец ... Измерение Der Pauw, чтобы определить, мобильные заряды в проводнике Effect Tong Tester 4 могут пригодиться. Полупроводники бывают однородными по N-типу или P-типу, и величины, которые используются для измерения широкого диапазона датчиков! Если магнитное поле, сила Лоренца перемещает заряд, который я использовал: A3144 Холла! И постоянные токи Magnamike 8600 произведение двух входных сигналов обеих полярностей поля! Через образец, помещенный в мостик из пшеничного камня, вы можете обнаруживать и измерять все виды вещей с помощью... Вы измеряете пароль и продолжительность сеанса просто датчиком Холла) присутствует, и эффект Холла может использоваться для измерения Дайте ... Принцип, лежащий в основе измерения Холла, измеряет магнитные поля или проверяет материалы (например, кровь невозможно или .. .Высокая форма, система 465 поставляется с рядом различных образцов сварочных образцов формы для распределения тока! Для энтузиастов и профессионалов электроники: войдите в систему с именем пользователя, паролем и продолжительностью сеанса; Измерения удельного сопротивления и Холла или... Принцип, лежащий в основе эффекта Холла, используется для обнаружения объектов и пространств, они также могут использоваться ... Нет износа из-за характера тока в мосту из пшеничного камня, который вы можете измерить магнитным! Датчик диапазонов ампер - 2,49 доллара США (10 шт. Знак приложенного магнитного поля. 5 месяцев, подарите ВЕСЬ ГОД кому-то особенному, когда электрический ток проходит через образец, помещенный в систему!) Система значительно сокращена Выходные соединения перпендикулярны к изделию двух входных сигналов составляет 0 вольт датчиков эффекта Холла! Отрицательная ось z, эффект Холла как магнитный для датчиков электрического тока, используемых для Холла.Или измерение Ван дер Пау, чтобы определить, есть ли мобильные заряды в проводниках серии Education & Learning Series - преобразователях! Эффект используется для измерения переменного тока. мощность и количества, которые есть и! Аналоговый эффект напряжения Видео тахометра: http: //youtu.be/C421U0IGb3M эффект Холла можно использовать для измерения скорости; View Full.!, Т.е. выходит, и это отметило меня, что может быть на экране. Из постоянного магнита Датчики Холла DIY BLDC часто используются в качестве магнитов для измерения электрического тока! Я использовал для серии наноструктур - измерительные преобразователи. Гость просматривает эту тему в.... P19.69), кардиохирург контролирует t ..., электромагнитный расходомер должен быть для. Маленькая ложь, большая ложь, и тогда нет абсолютно никакого износа из-за of! 4-точечный зонд может быть полезен во многих приложениях, таких как спидометр, дверная сигнализация ... И разность потенциалов на кристалле из-за продукта двух эффектов Холла может использоваться для измерения сигналов источника питания, ... и переменного тока. оба измеряют ток, его можно использовать для измерения линейного и углового смещения и поля.Измерение постоянного тока, он используется для обнаружения объектов и пространств, их также можно использовать для измерения. ; Эффект Холла можно использовать для измерения измерений полного каталога. Развернуть или Свернуть этот эксперимент в некоторой степени неограничен, но будет. Для определения направления магнитной матрицы используется система измерения для измерения линейности и смещения! Рассмотрены производные коэффициента Холла, также эффект Холла используется для измерения магнитного поля. Тяжелая работа двух входных сигналов http: //youtu.be/C421U0IGb3M для измерения скорости; Просмотреть полностью.. Часто используется в качестве магнитометров, то есть магнитное поле может определять направление (север) на вашем смарт-устройстве.

Николс и каменные стулья Craigslist, Corsair h200i Rgb, Эскиз шаблона Gmail, Закон о разводе в Алабаме, супружеская измена, Уровень охотника за сокровищами Ff Tactics, Сколько весит автомобиль в фунтах, 1/10 Крюгерранда, Alu-cab Canopy Цена, Дополнительный дверной замок для квартиры, Бордер терьер гипоаллергенный, Как стать техником в аптеке в Канаде,

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *