Управление нагрузкой 220в на тиристорных оптопарах: Управление нагрузкой 220 вольт БЕЗ реле!

Содержание

Управление мощной нагрузкой · Вадим Великодный

06 Jan 2017

На практике часто возникает необходимость управлять при помощи цифровой схемы (например, микроконтроллера) каким-то мощным электрическим прибором. Это может быть мощный светодиод, потребляющий большой ток, или прибор, питающийся от электрической сети. Рассмотрим типовые решения этой задачи.

Будем считать, что нам нужно только включать или выключать нагрузку с низкой частотой. Части схем, решающие эту задачу, называют ключами. ШИМ-регуляторы, диммеры и прочее рассматривать не будем (почти).

Условно можно выделить 3 группы методов:

  1. Управление нагрузкой постоянного тока.
    • Транзисторный ключ на биполярном транзисторе.
    • Транзисторный ключ на МОП-транзисторе (MOSFET).
    • Транзисторный ключ на IGBT.
  2. Управление нагрузкой переменного тока.
    • Тиристорный ключ.
    • Симисторный ключ.
  3. Универсальный метод.

Выбор способа управления зависит как от типа нагрузки, так и от вида применяемой цифровой логики. Если схема построена на ТТЛ-микросхемах, то следует помнить, что они управляются током, в отличие от КМОП, где управление осуществляется напряжением. Иногда это важно.

Простейший ключ

Простейший ключ на биполярном транзисторе проводимости n-p-n выглядит следующим образом.

Вход слева подключается к цифровой схеме. Если у нас цифровая схема построена на основе КМОП-логики с двухтактным («push-pull») выходом, то логическая «1» фактически означает подключение этого входа к питанию, а логический «0» — к земле.

Таким образом, при подаче «1» на вход нашей схемы ток от источника питания потечёт через резистор R1, базу и эмиттер на землю. При этом транзистор откроется (если, конечно, ток достаточно большой), и ток сможет идти через переход коллектор — эмиттер, а значит и через нагрузку.

Резистор R1 играет важную роль — он ограничивает ток через переход база — эмиттер.

Если бы его не было, ток не был бы ничем ограничен и просто испортил бы управляющую микросхему (ведь именно она связывает линию питания с транзистором).

Максимальный ток через один выход микроконтроллера обычно ограничен значением около 25 мА (для STM32). В интернете можно встретить утверждения, что микроконтроллеры AVR выдерживают ток в 200 мА, но это относится ко всем выводам в сумме. Предельное допустимое значение тока на один вывод примерно такое же — 20-40 мА.

Это, кстати, означает, что подключать светодиоды напрямую к выводам нельзя. Без токоограничивающих резисторов, микросхема просто сгорит, а с ними светодиодам не будет хватать тока, чтобы светить ярко.

Обратите внимание, что нагрузка (LOAD) подключена к коллектору, то есть «сверху». Если подключить её «снизу», у нас возникнет несколько проблем.

Допустим, мы хотим при помощи 5 В (типичное значение для цифровых схем) управлять нагрузкой в 12 В. Это значит, что на базе мы можем получить максимум 5 В.

А с учётом падения напряжения на переходе база — эмиттер, на эмиттере будет напряжение ещё меньше. Если падение напряжения на переходе равно 0,7 В,то получаем, что на нагрузку остаётся только 4,3 В, чего явно недостаточно. Если это, например, реле, оно просто не сработает. Напряжение не может быть выше, иначе тока через базу вообще не будет. Наличие падения напряжения на нагрузке также приведёт к уменьшению тока через базу.

Для расчёта сопротивления R1 нужно вспомнить соотношение для упрощённой модели транзистора:

\[I_к = \beta I_б.\]

Коэффициент \(\beta\) — это коэффициент усиления по току. Его ещё обозначают \(h_{21э}\) или \(h_{FE}\). У разных транзисторов он разный.

Зная мощность нагрузки \(P\) и напряжение питания \(V\), можно найти ток коллектора, а из него и ток базы:

\[I_б = \frac1{\beta} \frac{P}{V}.\]

По закону Ома получаем:

\[R_1 = \frac{V}{I_б}.\]

Коэффициент \(\beta\) не фиксированная величина, он может меняться даже для одного транзистора в зависимости от режима работы, поэтому лучше брать значение тока базы при расчёте чуть больше, чтобы был запас по току коллектора. Главное помнить, что ток базы не должен превышать предельно допустимое для микросхемы.

Также важно при выборе модели транзистора помнить о предельном токе коллектора и напряжении коллектор — эмиттер.

Ниже как пример приведены характеристики некоторых популярных транзисторов с проводимостью n-p-n.

Модель \(\beta\) \(\max\ I_{к}\) \(\max\ V_{кэ}\)
КТ315Г 50…350 100 мА 35 В
КТ3102Е 400…1000 100 мА 50 В
MJE13002 25…40 1,5 А 600 В
2SC4242 10 7 А 400 В

Модели выбраны случайно, просто это транзисторы, которые легко найти или откуда-то выпаять. Для ключа в рассматриваемой схеме, конечно, можно использовать любой n-p-n-транзистор, подходящий по параметрам и цене.

Доработка схемы

Если вход схемы подключен к push-pull выходу, то особой доработки не требуется. Рассмотрим случай, когда вход — это просто выключатель, который либо подтягивает базу к питанию, либо оставляет её «висеть в воздухе». Тогда для надёжного закрытия транзистора нужно добавить ещё один резистор, выравнивающий напряжение между базой и эмиттером.

Кроме того, нужно помнить, что если нагрузка индуктивная, то обязательно нужен защитный диод. Дело в том, что энергия, запасённая магнитным полем, не даёт мгновенно уменьшить ток до нуля при отключении ключа. А значит, на контактах нагрузки возникнет напряжение обратной полярности, которое легко может нарушить работу схемы или даже повредить её.

Совет касательно защитного диода универсальный и в равной степени относится и к другим видам ключей.

Если нагрузка резистивная, то диод не нужен.

В итоге усовершенствованная схема принимает следующий вид.

Резистор R2 обычно берут с сопротивлением, в 10 раз большим, чем сопротивление R1, чтобы образованный этими резисторами делитель не понижал слишком сильно напряжение между базой и эмиттером.

Для нагрузки в виде реле можно добавить ещё несколько усовершенствований. Оно обычно кратковременно потребляет большой ток только в момент переключения, когда тратится энергия на замыкание контакта. В остальное время ток через него можно (и нужно) ограничить резистором, так как удержание контакта требует меньше энергии.

Для этого можно применить схему, приведённую ниже.

В момент включения реле, пока конденсатор C1 не заряжен, через него идёт основной ток. Когда конденсатор зарядится (а к этому моменту реле перейдёт в режим удержания контакта), ток будет идти через резистор R2. Через него же будет разряжаться конденсатор после отключения реле.

Ёмкость C1 зависит от времени переключения реле. Можно взять, например, 10 мкФ.

С другой стороны, ёмкость будет ограничивать частоту переключения реле, хоть и на незначительную для практических целей величину.

Пример расчёта простой схемы

Пусть, например, требуется включать и выключать светодиод с помощью микроконтроллера. Тогда схема управления будет выглядеть следующим образом.

Пусть напряжение питания равно 5 В.

Характеристики (рабочий ток и падение напряжения) типичных светодиодов диаметром 5 мм можно приблизительно оценить по таблице.

Цвет \(I_{LED}\) \(V_{LED}\)
Красный 20 мА 1,9 В
Зеленый 20 мА 2,3 В
Желтый 20 мА 2,1 В
Синий (яркий) 75 мА 3,6 В
Белый (яркий) 75 мА 3,6 В

Пусть используется белый светодиод. В качестве транзисторного ключа используем КТ315Г — он подходит по максимальному току (100 мА) и напряжению (35 В). Будем считать, что его коэффициент передачи тока равен \(\beta = 50\) (наименьшее значение).

Итак, если падение напряжения на диоде равно \(V_{LED} = 3{,}6\,\textrm{В}\), а напряжение насыщения транзистора \(V_{CE} = 0{,}4\,\textrm{В}\) то напряжение на резисторе R2 будет равно \(V_{R2} = 5{,}0 — 3{,}6 — 0{,}4 = 1\,\textrm{В}\). Для рабочего тока светодиода \(I_{LED} = 0{,}075\,\textrm{А}\) получаем

\[R_2 = \frac{V_{R2}}{I_{LED}} = \frac{1}{0{,}075} \approx 15\,\textrm{Ом}.\]

Значение сопротивление было округлено, чтобы попасть в ряд E12.

Для тока \(I_{LED} = 0{,}075\,\textrm{А}\) управляющий ток должен быть в \(\beta = 50\) раз меньше:

\[I_б = \frac{I_{LED}}{\beta} \approx 1{,}5\,\textrm{мА}.\]

Падение напряжения на переходе эмиттер — база примем равным \(V_{EB} = 0{,}7\,\textrm{В}\).

Отсюда

\[R_1 = \frac{V — V_{EB}}{I_б} \approx 2{,}7\,\textrm{кОм}\]

Сопротивление округлялось в меньшую сторону, чтобы обеспечить запас по току.

Таким образом, мы нашли значения сопротивлений R1 и R2.

Транзистор Дарлингтона

Если нагрузка очень мощная, то ток через неё может достигать нескольких ампер. Для мощных транзисторов коэффициент \(\beta\) может быть недостаточным. (Тем более, как видно из таблицы, для мощных транзисторов он и так невелик.)

В этом случае можно применять каскад из двух транзисторов. Первый транзистор управляет током, который открывает второй транзистор. Такая схема включения называется схемой Дарлингтона.

В этой схеме коэффициенты \(\beta\) двух транзисторов умножаются, что позволяет получить очень большой коэффициент передачи тока.

Для повышения скорости выключения транзисторов можно у каждого соединить эмиттер и базу резистором.

Сопротивления должны быть достаточно большими, чтобы не влиять на ток база — эмиттер. Типичные значения — 5…10 кОм для напряжений 5…12 В.

Выпускаются транзисторы Дарлингтона в виде отдельного прибора. Примеры таких транзисторов приведены в таблице.

Модель \(\beta\) \(\max\ I_{к}\) \(\max\ V_{кэ}\)
КТ829В 750 8 А 60 В
BDX54C 750 8 А 100 В

В остальном работа ключа остаётся такой же.

Простейший ключ

В дальнейшем полевым транзистором мы будет называть конкретно MOSFET, то есть полевые транзисторы с изолированным затвором (они же МОП, они же МДП). Они удобны тем, что управляются исключительно напряжением: если напряжение на затворе больше порогового, то транзистор открывается. При этом управляющий ток через транзистор пока он открыт или закрыт не течёт. Это значительное преимущество перед биполярными транзисторами, у которых ток течёт всё время, пока открыт транзистор.

Также в дальнейшем мы будем использовать только n-канальные MOSFET (даже для двухтактных схем). Это связано с тем, что n-канальные транзисторы дешевле и имеют лучшие характеристики.

Простейшая схема ключа на MOSFET приведена ниже.

Опять же, нагрузка подключена «сверху», к стоку. Если подключить её «снизу», то схема не будет работать. Дело в том, что транзистор открывается, если напряжение между затвором и истоком превышает пороговое. При подключении «снизу» нагрузка будет давать дополнительное падение напряжения, и транзистор может не открыться или открыться не полностью.

Несмотря на то, что MOSFET управляется только напряжением и ток через затвор не идёт, затвор образует с подложкой паразитный конденсатор. Когда транзистор открывается или закрывается, этот конденсатор заряжается или разряжается через вход ключевой схемы. И если этот вход подключен к push-pull выходу микросхемы, через неё потечёт довольно большой ток, который может вывести её из строя.

При управлении типа push-pull схема разряда конденсатора образует, фактически, RC-цепочку, в которой максимальный ток разряда будет равен

\[I_{разр} = \frac{V}{R_1},\]

где \(V\) — напряжение, которым управляется транзистор.

Таким образом, достаточно будет поставить резистор на 100 Ом, чтобы ограничить ток заряда — разряда до 10 мА. Но чем больше сопротивление резистора, тем медленнее он будет открываться и закрываться, так как постоянная времени \(\tau = RC\) увеличится. Это важно, если транзистор часто переключается. Например, в ШИМ-регуляторе.

Основные параметры, на которые следует обращать внимание — это пороговое напряжение \(V_{th}\), максимальный ток через сток \(I_D\) и сопротивление сток — исток \(R_{DS}\) у открытого транзистора.

Ниже приведена таблица с примерами характеристик МОП-транзисторов.

Модель \(V_{th}\) \(\max\ I_D\) \(\max\ R_{DS}\)
2N7000 3 В 200 мА 5 Ом
IRFZ44N 4 В 35 А 0,0175 Ом
IRF630 4 В 9 А 0,4 Ом
IRL2505 2 В 74 А 0,008 Ом

Для \(V_{th}\) приведены максимальные значения. Дело в том, что у разных транзисторов даже из одной партии этот параметр может сильно отличаться. Но если максимальное значение равно, скажем, 3 В, то этот транзистор гарантированно можно использовать в цифровых схемах с напряжением питания 3,3 В или 5 В.

Сопротивление сток — исток у приведённых моделей транзисторов достаточно маленькое, но следует помнить, что при больших напряжениях управляемой нагрузки даже оно может привести к выделению значительной мощности в виде тепла.

Схема ускоренного включения

Как уже было сказано, если напряжение на затворе относительно истока превышает пороговое напряжение, то транзистор открывается и сопротивление сток — исток мало. Однако, напряжение при включении не может резко скакнуть до порогового. А при меньших значениях транзистор работает как сопротивление, рассеивая тепло. Если нагрузку приходится включать часто (например, в ШИМ-контроллере), то желательно как можно быстрее переводить транзистор из закрытого состояния в открытое и обратно.

Относительная медленность переключения транзистора связана опять же с паразитной ёмкостью затвора. Чтобы паразитный конденсатор зарядился как можно быстрее, нужно направить в него как можно больший ток. А так как у микроконтроллера есть ограничение на максимальный ток выходов, то направить этот ток можно с помощью вспомогательного биполярного транзистора.

Кроме заряда, паразитный конденсатор нужно ещё и разряжать. Поэтому оптимальной представляется двухтактная схема на комплементарных биполярных транзисторах (можно взять, например, КТ3102 и КТ3107).

Ещё раз обратите внимание на расположение нагрузки для n-канального транзистора — она расположена «сверху». Если расположить её между транзистором и землёй, из-за падения напряжения на нагрузке напряжение затвор — исток может оказаться меньше порогового, транзистор откроется не полностью и может перегреться и выйти из строя.

Драйвер полевого транзистора

Если всё же требуется подключать нагрузку к n-канальному транзистору между стоком и землёй, то решение есть. Можно использовать готовую микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор сверху.

Выпускаются и драйверы сразу верхнего и нижнего плеч (например, IR2151) для построения двухтактной схемы, но для простого включения нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять «висеть в воздухе», а требуется обязательно подтягивать к земле.

Рассмотрим схему драйвера верхнего плеча на примере IR2117.

Схема не сильно сложная, а использование драйвера позволяет наиболее эффективно использовать транзистор.

IGBT

Ещё один интересный класс полупроводниковых приборов, которые можно использовать в качестве ключа — это биполярные транзисторы с изолированным затвором (IGBT).

Они сочетают в себе преимущества как МОП-, так и биполярных транзисторов: управляются напряжением, имеют большие значения предельно допустимых напряжений и токов.

Управлять ключом на IGBT можно так же, как и ключом на MOSFET. Из-за того, что IGBT применяются больше в силовой электронике, они обычно используются вместе с драйверами.

Например, согласно даташиту, IR2117 можно использовать для управления IGBT.

Пример IGBT — IRG4BC30F.

Все предыдущие схемы отличало то, что нагрузка хоть и была мощной, но работала от постоянного тока. В схемах была чётко выраженные земля и линия питания (или две линии — для контроллера и нагрузки).

Для цепей переменного тока нужно использовать другие подходы. Самые распространённые — это использование тиристоров, симисторов и реле. Реле рассмотрим чуть позже, а пока поговорим о первых двух.

Тиристоры и симисторы

Тиристор — это полупроводниковый прибор, который может находится в двух состояниях:

  • открытом — пропускает ток, но только в одном направлении,
  • закрытом — не пропускает ток.

Так как тиристор пропускает ток только в одном направлении, для включения и выключения нагрузки он подходит не очень хорошо. Половину времени на каждый период переменного тока прибор простаивает. Тем не менее, тиристор можно использовать в диммере. Там он может применяться для управления мощностью, отсекая от волны питания кусочек требуемой мощности.

Симистор — это, фактически двунаправленный тиристор. А значит он позволяет пропускать не полуволны, а полную волну напряжения питания нагрузки.

Открыть симистор (или тиристор) можно двумя способами:

  • подать (хотя бы кратковременно) отпирающий ток на управляющий электрод;
  • подать достаточно высокое напряжение на его «рабочие» электроды.

Второй способ нам не подходит, так как напряжение питания у нас будет постоянной амплитуды.

После того, как симистор открылся, его можно закрыть поменяв полярность или снизив ток через него то величины, меньшей чем так называемый ток удержания. Но так как питание организовано переменным током, это автоматически произойдёт по окончании полупериода.

При выборе симистора важно учесть величину тока удержания (\(I_H\)). Если взять мощный симистор с большим током удержания, ток через нагрузку может оказаться слишком маленьким, и симистор просто не откроется.

Симисторный ключ

Для гальванической развязки цепей управления и питания лучше использовать оптопару или специальный симисторный драйвер. Например, MOC3023M или MOC3052.

Эти оптопары состоят из инфракрасного светодиода и фотосимистора. Этот фотосимистор можно использовать для управления мощным симисторным ключом.

В MOC3052 падение напряжения на светодиоде равно 3 В, а ток — 60 мА, поэтому при подключении к микроконтроллеру, возможно, придётся использовать дополнительный транзисторный ключ.

Встроенный симистор же рассчитан на напряжение до 600 В и ток до 1 А. Этого достаточно для управления мощными бытовыми приборами через второй силовой симистор.

Рассмотрим схему управления резистивной нагрузкой (например, лампой накаливания).

Таким образом, эта оптопара выступает в роли драйвера симистора.

Существуют и драйверы с детектором нуля — например, MOC3061. Они переключаются только в начале периода, что снижает помехи в электросети.

Резисторы R1 и R2 рассчитываются как обычно. Сопротивление же резистора R3 определяется исходя из пикового напряжения в сети питания и отпирающего тока силового симистора. Если взять слишком большое — симистор не откроется, слишком маленькое — ток будет течь напрасно. Резистор может потребоваться мощный.

Нелишним будет напомнить, что 230 В в электросети (текущий стандарт для России, Украины и многих других стран) — это значение действующего напряжения. Пиковое напряжение равно \(\sqrt2 \cdot 230 \approx 325\,\textrm{В}\).

Управление индуктивной нагрузкой

При управлении индуктивной нагрузкой, такой как электродвигатель, или при наличии помех в сети напряжение может стать достаточно большим, чтобы симистор самопроизвольно открылся. Для борьбы с этим явлением в схему необходимо добавить снаббер — это сглаживающий конденсатор и резистор параллельно симистору.

Снаббер не сильно улучшает ситуацию с выбросами, но с ним лучше, чем без него.

Керамический конденсатор должен быть рассчитан на напряжение, большее пикового в сети питания. Ещё раз вспомним, что для 230 В — это 325 В. Лучше брать с запасом.

Типичные значения: \(C_1 = 0{,}01\,\textrm{мкФ}\), \(R_4 = 33\,\textrm{Ом}\).

Есть также модели симисторов, которым не требуется снаббер. Например, BTA06-600C.

Примеры симисторов

Примеры симисторов приведены в таблице ниже. Здесь \(I_H\) — ток удержания, \(\max\ I_{T(RMS)}\) — максимальный ток, \(\max\ V_{DRM}\) — максимальное напряжение, \(I_{GT}\) — отпирающий ток.

Модель \(I_H\) \(\max\ I_{T(RMS)}\) \(\max\ V_{DRM}\) \(I_{GT}\)
BT134-600D 10 мА 4 А 600 В 5 мА
MAC97A8 10 мА 0,6 А 600 В 5 мА
Z0607 5 мА 0,8 А 600 В 5 мА
BTA06-600C 25 мА 6 А 600 В 50 мА

С точки зрения микроконтроллера, реле само является мощной нагрузкой, причём индуктивной. Поэтому для включения или выключения реле нужно использовать, например, транзисторный ключ. Схема подключения и также улучшение этой схемы было рассмотрено ранее.

Реле подкупают своей простотой и эффективностью. Например, реле HLS8-22F-5VDC — управляется напряжением 5 В и способно коммутировать нагрузку, потребляющую ток до 15 А.

Главное преимущество реле — простота использования — омрачается несколькими недостатками:

  • это механический прибор и контакты могу загрязниться или даже привариться друг к другу,
  • меньшая скорость переключения,
  • сравнительно большие токи для переключения,
  • контакты щёлкают.

Часть этих недостатков устранена в так называемых твердотельных реле. Это, фактически, полупроводниковые приборы с гальванической развязкой, содержащие внутри полноценную схему мощного ключа.

Таким образом, в арсенале у нас достаточно способов управления нагрузкой, чтобы решить практически любую задачу, которая может возникнуть перед радиолюбителем.

  1. Хоровиц П., Хилл У. Искусство схемотехники. Том 1. — М.: Мир, 1993.
  2. Управление мощной нагрузкой переменного тока
  3. Управление мощной нагрузкой постоянного тока. Часть 1
  4. Управление мощной нагрузкой постоянного тока. Часть 2
  5. Управление мощной нагрузкой постоянного тока. Часть 3
  6. Щелкаем реле правильно: коммутация мощных нагрузок
  7. Управление мощной нагрузкой переменного тока
  8. Управление MOSFET-ами #1
  9. Современные высоковольтные драйверы MOSFET- и IGBT-транзисторов
  10. Ключ на плечо! – особенности применения высоковольтных драйверов производства IR

Все схемы нарисованы в KiCAD. В последнее время для своих проектов использую именно его, очень удобно, рекомендую. С его помощью можно не только чертить схемы, но и проектировать печатные платы.

COSMO: оптические электронные компоненты. Оптосимисторы — Компоненты и технологии

Необходимость управления высоковольтными нагрузками с помощью микроконтроллеров
существует всегда, но как обеспечить совместимость уровней и полную гальваническую
развязку цепей? С этой задачей превосходно справляются оптосимисторы.
Компания COSMO предлагает широкий ряд продукции, способной решить
многие поставленные задачи на «отлично».

Оптоэлектронные компоненты COSMO

Корпорация Cosmo Electronic была образована
в 1981 году как компания по производству релейных
коммутационных элементов. За 20 с лишним лет своего существования на этом рынке корпорация Cosmo
освоила производство таких элементов, как твердотельные и миниатюрные герконовые реле, а также
оптопары и оптореле малой мощности, что позволило корпорации войти в число мировых лидеров
в этом секторе наряду с такими гигантами, как
Omron, Clare, Crydom, Aromat, Siemens.

Ассортимент продукции, выпускаемой компани-
ей COSMO, очень широк, это и оптопары, и оптореле, герконовые реле и светодиоды.

Головной офис корпорации находится в Тайбэе
(Тайвань). Cosmo является владельцем трех заводов,
которые обеспечивают производство всего спектра
продукции корпорации. Все заводы корпорации сертифицированы по стандартам ISO 9001 и ISO 9002.

Таблица 1. Оптосимисторы серии KMOC30xxxx

Оптосимисторы COSMO

Отдельную нишу в списке выпускаемой продукции компании COSMO занимают оптосимисторы.

Оптосимистор по сути представляет собой двунаправленный тиристор с оптическим управлением.

С его помощью можно непосредственно управлять
нагрузкой переменного тока.

Во избежание попадания выбросов напряжения
в силовые линии включение нагрузки лучше всего
производить в моменты пересечения волной переменного тока нуля. Для этого существуют оп-
тосимисторы, содержащие схему детектирования нулевого потенциала, которая блокирует внутренний симистор до следующего пересечения нуля.

Компания COSMO выпускает две серии
оптосимисторов KMOC и TLP с рабочими
напряжениями 400, 600 и 800 В переменного
тока (AC) со схемой детектирования нулевого напряжения и без нее. Изделия предназначены для широкого применения в различных устройствах коммутации. Электрическая прочность изоляции у серии KMOC — 5000 В AC, у серии KTLP — 2500 В AC, рабочий температурный диапазон у всех оптосимисторов — от –40 до +80 °С, температура
хранения — от –40 до +125 °С. Электрические характеристики оптосимисторов приведены в таблицах 1 и 2.

Таблица 2. Оптосимиторы серии KTLPxxxx

Особенности оптотриаков COSMO:

  • Выпускаются как со схемой детектирования
    нулевого потенциала, так и без нее.
  • Высокое напряжение изоляции:
    – 5000 Vrms для корпуса DIP;
    – 2500 Vrms для корпуса mimi flat.
  • Обратное напряжение выхода Vdrm=400,
    600 и 800 В.
  • Ток включения:
    – Ift = 5, 10 и 15 мА для корпуса DIP;
    – Ift = 5, 7 и 15 мА для корпуса mini flat.

Сферы применения:

  • соленоиды;
  • драйверы двигателей AC;
  • температурный контроль;
  • ЭМ-контакторы;
  • твердотельные реле;
  • устройства управления освещением.

На рис. 1 приведена типовая схема тиристорного драйвера, когда посредством ТТЛ-уровня происходит управление электродвигателем переменного тока. Гальваническая развязка обеспечивается оптосимистором.

Рис. 1. Тиристорный драйвер

Любая современная отопительная система,
главным нагревательным элементом которой
является дизельный котел, может содержать
в своем составе порядка десяти элементов гальванической развязки. На рис. 2 показано управление с помощью микроконтоллера периферийными устройствами котла — топливными насосами, нагревательными элементами,
двигателями камер сгорания и т. д. Во всех
этих случаях гальваническую развязку осуществляют оптосимисторы и оптопары.

Рис. 2. Устройство отопительной системы

На рис. 3 представлена функциональная схема микроволновой печи с грилем. Микроконтроллер посредством оптосимисторов управляет работой магнетрона и нагревательным
элементом гриля.

Рис. 3. Микроволновая печь с грилем

Корпуса

Оптосимисторы серии KMOC выпускаются в двух видах корпусов: с монтажом в отверстия DIP (рис. 4) и для поверхностного монтажа.

Рис. 4. Корпус DIP6

Серии оптосимисторов KTLP16xx и KTLP26xxx
выпускаются в компактных миниатюрных
корпусах Mini Flat (рис. 5). Это позволяет значительно сэкономить место на печатной плате, сокращая размеры конечного устройства.

Рис. 5. Корпус Mini Flat

Втаблице 3 представлены аналоги популярных
оптотиристоров других производителей.

Таблица 3. Аналоги оптосимисторов COSMO производства других производителей

Полупроводниковые оптоэлектронные приборы – часть 30

Так же как и для других оптопар, указываются максимально допустимые режимы во входной и выходной цепях, а также пара­метры изоляции выходной цепи от управляющей.

На рис. 9.1 показано семейство выходных вольт-амперных ха­рактеристик тиристорной оптопары. Параметром семейства является входной ток через излучающий диод.

Рнс. 9.1. Выходные харак­теристики тиристорной оп­топары

При некотором значении входного тока происходит «спрямление» характеристики, что соответствует включенному состоянию фототи­ристора.

Время включения оптопары зависит от входного тока. Для сни­жения времени включения входной ток должен увеличиваться (одна­ко он не должен превосходить максимально допустимого импульс­ного входного тока).

Рис. 9.3. Схема дистанцион­ного управления мощными электродвигателями

Рис. 9.2. Схема гальвани­ческой развязки цепн управ­ления от цепи питания реле „

Тиристорные оптопары наиболее целесообразно использовать для гальванической развязки логических цепей управления от высо­ковольтных цепей нагрузок большой мощности, для формирователей

мощных импульсов,’управления мощными тиристорами, в том числе симметричными, коммутирующими нагрузку в сети переменного то­ка, для устройства защиты вторичных источников питания.

На рис. 9.2 представлена схема гальванической развязки низко­вольтной цепи управления от цепи питания реле, коммутирующей силовые обмоткн машин и аппаратов. Такая схема может использо­ваться в системе телеуправления механизмами, расположенными во взрывоопасной шахте.

Одна из схем дистанционного управления мощными электродви­гателями показана на рис. 9.3. На схеме изображен дистанционный переключатель ДП, содержащий две обмотки: включающую В и от­бойную О, производящие соответственно включение либо выключе­ние мощного электродвигателя.

Команда, вырабатываемая управляющим устройством, не мо­жет быть передана непосредственно в цепь обмоток ДП в силу не­согласованности по напряжению питания, а также из-за наличия в цепи обмоток значительных индуктивных выбросов.

Использование в данной схеме тиристорной оптопары позволило устранить влияние коммутационных помех на вычислительное управ­ляющее устройство.

Схема работает следующим образом. При подаче входного сиг­нала на оптрон ОУ1 он включается и срабатывает обмотка В. Якорь обмотки В производит три операции: включает мощный двигатель, замыкает цепь обмотки О и размыкает цепь собственной обмотки В.

Ток через обмотку В прекращается, оптрон ОУ1 выключается. Кон­струкция механического коммутирования такова, что возврат якоря обмотки В не прерывает работу двигателя. Двигатель остается вклю­ченным до тех пор, пока не поступит входной сигнал на оптрои ОУ2.

Конденсаторы С1 и С2 шунтируют фототиристоры, защищая их от возможных всплесков напряжения на индуктивной нагрузке.

На схеме рис. 9.4 показан формирователь разнополярных прямо­угольных импульсов тока в диапазоне от 1 до 100 мА.

От устройства управления в зависимости от требуемой полярно­сти выходного импульса в первый или во второй канал посылается отрицательный запускающий импульс. Если сигнал поступил в пер­вый канал, включаются оптопары ОУ2 и ОУ7, на нагрузке R1S форми­руется передний фронт импульса. Одновременно происходит заряд

емкости С1. Рабочий импульс в нагрузке будет длиться до тех пор, пока не поступит управляющий сигнал в канал 3. Этот сигнал вклю­чает оптопары ОУ1, ОУ4, ОУ5.

Оптопары ОУ4 и ОУ5 включены встречно-параллельно и шунти­руют нагрузку RB, формируя срез (задний фронт) выходного им­пульса. При отпирании оптопары ОУ1 перезаряжается конденсатор С1, в результате чего создается противоток в основной цепи и опто­пары ОУ2, ОУ4, ОУ5, ОУ7 запираются.

В ряде схем для удовлетворения требований помехоустойчиво­сти и повышенного электрического сопротивления развязки цепей прибегают к использованию тиристорной оптопары для управления силовыми тиристорами и симметричными тиристорами. На рис. 9.5 показана схема управления симметричным тиристором, коммутирую­щим мощную индуктивную нагрузку.

Как известно, при размыкании цепи с индуктивной, нагрузкой возникают кратковременные, но значительные по амплитуде выбро­сы напряжения. Существуют различные способы подавления и сгла­живания этих выбросов, но избавиться от них полностью невозможно. Поэтому необходимо защищать от повышенных напряжений управ­ляющую цепь коммутирующего прибора как наиболее чувствитель­ную к перегрузкам. Функцию такой защиты в данной схеме выпол­няет тиристорная оптопара.

При приходе на базу транзистора 77 управляющего сигнала включается тиристориая оптопара, после чего на базе транзистора Т2 создается положительное смещение и он отпирается. На управ­ляющем электроде симметричного тнрнстора возникает положитель­ный сигнал, который переводит этот прибор в открытое состояние.

На рис. 9.6 показана схема строботрона — мощного импульсно­го источника света. Тиристор, управляемый тиристорной оптопарой, обеспечивает подачу на сетку лампы J11 запускающего высоковольт­ного импульса.

+27В *-ЗБВ ‘ +W00B

Рис. 9.6. Схема управления импульсным тиристором

Выработанный логическим устройством входной сигнал вклю­чает тиристорную оптопару, и конденсатор С1 заряжается от источ­ника питаняя. Ток заряда переводит тиристор Д1 в открытое сос­тояние. Через тиристор разряжается конденсатор С2, создавая на первичной обмотке трансформатора ТР1 импульс напряжения При попадании на сетку строботрона высоковольтного импульса со вто­ричной обмотки происходит мощная световая вспышка.

На рис. 9.7 показана схема управления симметричным тиристо­ром устройством на интегральных микросхемах. Симметричный ти­ристор Д1 включает электродвигатель, питающийся от сети перемен­ного тока 220 В.

Рис. 9.7. Схема управления электродвигателем

Команда, выработанная микропроцессором, поступает на входы двух встречно-параллельно включенных оптопар. С выходов этих оптопар попеременно поступают сигналы разной полярности на уп­равляющий электрод симметричного тиристора. По окончании вход­ного сигнала оптопары запираются, запирая и симметричный тири­стор.

На рис. 9.8 показана схема ключа для коммутации маломощной нагрузки в цепи переменного тока. В диагональ выпрямительного моста включена выходная цепь оптопары. При подаче управляюще­го сигнала на транзистор 77 оптопара переходит в открытое состоя­ние и через нагрузку течет переменный ток. При снятии управляюще­го сигнала оптопара запирается в момент прохождения выходного напряжения через нуль.

Рис. 9.9. Схема коммутации мощной нагрузки перемен­ного тока

Рис. 9.8. Схема коммутации малой нагрузки переменно­го тока

При мощной нагрузке используют схему, где тиристорная опто­пара коммутирует управляющую цепь мощного тиристора (рис. 9.9). Ток нагрузки такого ключа определяется предельным значением пря­мого тока тиристора. Резистор R2 ограничивает ток через выходную цепь оптопары.

Современные ЭВМ и системы автоматики содержат большое число вторичных источников электропитания. Серьезной проблемой является обеспечение эффективного контроля выходных напряжений источников, а также защита устройства от случайного повышения выходных напряжений.

Устройства контроля и защиты используются с низковольтными источниками постоянного напряжения. Интегральные микросхемы, составляющие основу современных ЭВМ, допускают всего лишь крат­ковременное повышение напряжение питания до 7 В (номинальное напряжение питания около 5 В). Устройство защиты должно отклю­чать источник питания за 30—50 мкс, если выходное напряжение превысит на 15—25 % номинальное значение.

Схема контроля напряжения источника питания изображена на рис. 9.10. Она включает в себя сбалансированный мост (Rl—R3, Д1, R8), в диагональ которого включен транзистор 77.

При изменениях контролируемого напряжения потенциал в точ­ке А не меняется благодаря включению в одну из ветвей моста ста­билитрона Д1.

Транзистор Т1 вырабатывает сигнал включения оптопары в тот. момент, когда напряжение поднимается выше установленного пре­дельно допустимого значения. [ Фототиристор оптопары разрывает цепь питания в момент соз­давшейся аварийной ситуации, защищая основное оборудование.

Для коммутации цифровых газоразрядных индикаторов кроме резисторных оптопар применяются также и тиристорные оптопары. Преимущество их состоит в том, что оии обладают памятью — сохраняют открытое состояние после снятия входного сигнала. Это обстоятельство позволяет использовать импульсный способ управле­ния, что дает существенную экономию энергии.

Рис. 9.10. Схема устройства контроля напряжения вторич­ного источника питания

Тирнсторные оптопары находят применение для управления электролюминесцентными индикаторами большой площади, которые требуют, высокого рабочего напряжения и большого тока. Этот прин­цип используется, в частности, при создании щитовых электроизме­рительных приборов с аналоговым представлением измеряемой ве­личины. Измеряемая величина в этих приборах преобразуется в циф­ровой код и через дешифратор управляет поджигом дискретных электролюминесцентных сегментов отсчетного устройства. Последо­вательное зажигание точек создает иллюзию движения светящейся стрелки.

Весьма эффективным является использование тиристорных оп­топар в схемах управления бленкерными знакоместами, которые в последнее время все шире используются в обзорных крупногабарит­ных информационных табло, устанавливаемых на вокзалах, в аэро­портах, стадионах, производственных цехах и других местах. Осно­вой бленкерного знакоместа является шарик, окрашенный наполо­вину в белый и наполовину в черный цвет и свободно вращающийся в электромагнитной катушке. Знакоместо состоит из 35 шариков, которые поворачиваются к наблюдателю белой либо черной поверх­ностью, отображая в совокупности ту или иную цифру или букву. Поворот шарика осуществляется за счет силы взаимодействия поля катушки и небольшого постоянного магнитика, запрессованного в ша­рик. Информационное табло может содержать до нескольких сотен знакомест.

На рис. 9.11 показана схема управления знакоместом. При по­ступлении на ключ первого столбца сигнала логической единицы на выход пропускается положительный рабочий импульс с амплитудой 27 В. Этот импульс попадает на первый столбец устройства отобра­жения и проходит в электромагнитную катушку той строки, кото­рая в этот момент оказывается подключенной к источнику через ключ строки. Подключение осуществляется через транзистор 77, управляемый тиристорной оптопарой, на которую командный сигнал

поступает от логического устройства. В момент прохождения через катушку электрического импульса вставленный в нее шарик пово – рачнваетси таким образом, что его белая сторона, обращенная к на­блюдателю, меняется на черную.

Т-Г Вх л

Рис. 9.11. Схема управления бленкерными знакоместами

Строчный, ключ 1

Cmo/i ЪиоВый

КЛЮЧ f

Вых 1

JV

8ых 35

СтвлВцоВый ключ 35

При стирании информации на входы соответствующих столбцо­вых ключей подаются сигналы логического нуля. Тогда через катуш­ки пропускаются отрицательные импульсы тока и шарики снова по­ворачиваются белой стороной к наблюдателю.

9.2. СПРАВОЧНЫЕ ДАННЫЕ

АО У ЮЗА, АОУЮЗБ, АОУЮЗВ, ЗОУЮЗА, ЗОУЮЗБ, ЗОУЮЗВ, ЗОУЮЗГ, ЗОУЮЗД

Оптопары тиристорные. Излучатель — арсенидогаллиевый диод, приемник — кремниевый фототиристор. Выпускаются в металло – стеклянном корпусе. Масса не более 2,0 г.

Входной ток срабатывания фототиристора при UBtvs= 10 В, не более:

Полупроводниковые оптоэлектронные приборы – часть 1 1

В. И, Иванов, А, И. Аксенов, А, М. Юшин. 1

СПРАВОЧНИК. 1

Полупроводниковые оптоэлектронные приборы – часть 2 9

Полупроводниковые оптоэлектронные приборы – часть 3 29

Полупроводниковые оптоэлектронные приборы – часть 4 46

Полупроводниковые оптоэлектронные приборы – часть 5 59

Полупроводниковые оптоэлектронные приборы – часть 6 68

Полупроводниковые оптоэлектронные приборы – часть 7 87

Полупроводниковые оптоэлектронные приборы – часть 8 97

0. с, 77

Полупроводниковые оптоэлектронные приборы – часть 16 383

Полупроводниковые оптоэлектронные приборы – часть 17 83

igpife. 90

Полупроводниковые оптоэлектронные приборы – часть 18 91

Полупроводниковые оптоэлектронные приборы – часть 19 397

Полупроводниковые оптоэлектронные приборы – часть 20 100

Полупроводниковые оптоэлектронные приборы – часть 21 99

Полупроводниковые оптоэлектронные приборы – часть 22 409

Полупроводниковые оптоэлектронные приборы – часть 23 116

Полупроводниковые оптоэлектронные приборы – часть 24 135

Полупроводниковые оптоэлектронные приборы – часть 25 144

Полупроводниковые оптоэлектронные приборы – часть 26 158

Полупроводниковые оптоэлектронные приборы – часть 27 182

Полупроводниковые оптоэлектронные приборы – часть 28 197

АОТ123А, 30Т123А.. 208

Полупроводниковые оптоэлектронные приборы – часть 29 444

Полупроводниковые оптоэлектронные приборы – часть 30 149

Полупроводниковые оптоэлектронные приборы – часть 1 460

Полупроводниковые оптоэлектронные приборы – часть 1 159

Полупроводниковые оптоэлектронные приборы – часть 1 168

©Э.. 171

Полупроводниковые оптоэлектронные приборы – часть 1 178

Полупроводниковые оптоэлектронные приборы – часть 1 187

Полупроводниковые оптоэлектронные приборы – часть 1 180

Полупроводниковые оптоэлектронные приборы – часть 1 490

ЗОУЮЗА, ЗОУЮЗБ, ЗОУЮЗВ, ЗОУЮЗГ, ЗОУЮЗД

Предельные эксплуатационные даииые

Входной постоянный или средний ток:

АОУЮЗА, АОУЮЗБ, АОУЮЗВ…………………………

ЗОУЮЗА, ЗОУЮЗБ, ЗОУЮЗВ, ЗОУЮЗГ, ЗОУЮЗД

Входной импульсный ток при среднем токе не более 2 мА, ти= Ю мкс ЗОУЮЗА, ЗОУЮЗБ, ЗОУЮЗВ, ЗОУЮЗГ, ЗОУЮЗД…………………………………………………………………………………. 500 мА

Входной максимальный ток помехи:

АОУЮЗА, АОУЮЗБ, АОУЮЗВ……. 0,5 мА

ЗОУЮЗА, ЗОУЮЗБ, ЗОУЮЗВ, ЗОУЮЗГ,

ЗОУЮЗД……………………………………………………………. 0,25 мА

Входное максимальное напряжение помехи ЗОУЮЗА,

Полупроводниковые оптоэлектронные приборы – часть 1 1

В. И, Иванов, А, И. Аксенов, А, М. Юшин 1

СПРАВОЧНИК 1

Полупроводниковые оптоэлектронные приборы – часть 2 9

Полупроводниковые оптоэлектронные приборы – часть 3 29

Полупроводниковые оптоэлектронные приборы – часть 4 46

Полупроводниковые оптоэлектронные приборы – часть 5 59

Полупроводниковые оптоэлектронные приборы – часть 6 68

Полупроводниковые оптоэлектронные приборы – часть 7 87

Полупроводниковые оптоэлектронные приборы – часть 8 97

0 101

Полупроводниковые оптоэлектронные приборы – часть 9 109

Полупроводниковые оптоэлектронные приборы – часть 10 124

fI_g_Ib toJ*hlc. с, 77

Полупроводниковые оптоэлектронные приборы – часть 16 383

Полупроводниковые оптоэлектронные приборы – часть 17 83

igpife 90

Полупроводниковые оптоэлектронные приборы – часть 18 91

Полупроводниковые оптоэлектронные приборы – часть 19 397

Полупроводниковые оптоэлектронные приборы – часть 20 100

Полупроводниковые оптоэлектронные приборы – часть 21 99

Полупроводниковые оптоэлектронные приборы – часть 22 409

Полупроводниковые оптоэлектронные приборы – часть 23 116

Полупроводниковые оптоэлектронные приборы – часть 24 135

Полупроводниковые оптоэлектронные приборы – часть 25 144

Полупроводниковые оптоэлектронные приборы – часть 26 158

Полупроводниковые оптоэлектронные приборы – часть 27 182

Полупроводниковые оптоэлектронные приборы – часть 28 197

АОТ123А, 30Т123А 208

Полупроводниковые оптоэлектронные приборы – часть 29 444

Полупроводниковые оптоэлектронные приборы – часть 30 149

Полупроводниковые оптоэлектронные приборы – часть 1 463

Полупроводниковые оптоэлектронные приборы – часть 1 159

Полупроводниковые оптоэлектронные приборы – часть 1 168

©Э 171

Полупроводниковые оптоэлектронные приборы – часть 1 178

Полупроводниковые оптоэлектронные приборы – часть 1 187

Полупроводниковые оптоэлектронные приборы – часть 1 180

Полупроводниковые оптоэлектронные приборы – часть 1 490

Выходная мощность, рассеиваемая в фототиристоре, ЗОУЮЗА, ЗОУЮЗБ, ЗОУЮЗВ, ЗОУЮЗГ, ЗОУЮЗД:

при ГОКР<50°С ……………………………………………………. 130 мВт

при Гокр=70°С……………………………………………………… 40 мВт

Примечание. Для АОУЮЗА, АОУЮЗБ подача обратного напряжения не допускается.

Управление симистором через оптопару

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

Падение напряжения при максимальном токе анода (VT или Uос).

Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

Обратное напряжение (VR(PM) или Uобр).

Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

Обратный ток (IR) — ток при определенном обратном напряжении.

Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

Постоянное отпирающее напряжение управления (VGT или UУ).

Ток управления (IGT).

Максимальный ток управления электрода IGM.

Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Оптосимисторы относится к виду оптронов с отличными электрическими параметрами. Они создают крайне надежную гальваническую развязку, выдерживающую напряжение порядка 7,5кВ, имеющуюся между подключенной управляемой нагрузкой и схемой управления.

Данные радиокомпоненты построены из арсенид-галлиевого ИК светодиода, имеющего связь с кремниевым двухканальным переключателем. В свою очередь этот переключатель может иметь в своем составе отпирающий элемент, который включается в момент перехода через ноль питающего переменного напряжения.

Оптосимисторы необычно полезны при осуществлении контроля за более мощными симисторами. Аналогичные оптосимисторы были спроектированы для реализации связи между нагрузкой, которая питается переменным напряжением 220 вольт и логикой с низким уровнем напряжения.

Оптосимистор, как правило, выпускаются в компактном DIP-корпусе, имеющий шесть контактов. Его внутренняя схема, параметры, а так же распиновка, показаны ниже.

Схема подключения активной нагрузки к оптосимистору

В этой схеме имеется два компонента, которые необходимо вычислить, но фактически подобные расчеты параметров выполняются не всегда. Но все, же приведем эти расчеты параметров для информации.

Расчет параметра резистора RD . Вычисление сопротивления данного резистора влияет от наименьшего прямого тока ИК светодиода, обеспечивающего открытие симистора. Таким образом,

Допустим, для схемы с транзисторным контролем (которое применяется довольно часто в схемах регуляторов температуры), имеющим питания 12В и напряжение на открытом транзисторе (Uкэ) 0,3 В; VDD = 11,7 B и следовательно диапазон If приблизительно равен 15мА для MOC3041.

Необходимо сделать If = 20 мА с учетом понижения эффективности свечения светодиода в течении срока службы (добавить 5 мА) получаем:

RD=(11,7В — 1,5В)/0,02А = 510 Ом.

Расчет параметра сопротивления R . Управляющий электрод оптосимистора может выдержать определенный максимальный ток. Увеличение данного параметра выводит из строя оптрон. Следовательно, нужно вычислить сопротивление, чтобы при наибольшем напряжении сети (к примеру, 220 В) ток не был больше максимально допустимого параметра.

Для примера возьмем максимально-допустимый ток в 1А, тогда сопротивление будет равно:

R=220 В * 1,44 / 1 А = 311 Ом.

Нужно иметь в виду, что слишком большое сопротивление данного резистора может оказать нарушение в стабильности включения оптосимистора.

Расчет параметра сопротивления Rg . Резистор Rg подключается, только если электрод симистора имеет повышенную чувствительность. Как правило, сопротивление Rg находится в диапазоне от 100 Ом до 5 кОм. Желательно применять 1 кОм.

В случае если в управляемой нагрузке есть индуктивная составляющая, то необходимо применять другую схему подключения с защитой силового симистора и оптосимистора.

Схема подключения индуктивной нагрузки к оптосимистору

Сигнал, поступающий от оптосимистора на управляющий электрод симистора, нужен только для его открывания. Но при большой частоте переключения коммутируемого напряжения, возникает большая вероятность спонтанного включения управляемого симистора, даже если отсутствует сигнал управления.

Факторами ложных срабатываний могут быть выбросы напряжения при включении ключа, подключенного к индуктивной нагрузке, импульсные помехи в линиях питания нагрузки. Действенный способ устранения данных неприятных моментов – применение в схеме снабберной (демпфирующей) RC – цепочки, которая подключается параллельно выходу ключевого блока.

Конденсатор в снабберной RC-цепи — металлопленочный с номиналом от 0,01 до 0,1 мкФ, сопротивление резистора составляет 20…500 Ом. Данные параметры элементов необходимо рассматривать исключительно в качестве приблизительных величин.

Схема управления нагрузкой на симисторе. Как переключать симистор батарейкой для управления переменным током. Какие накладываются ограничения при использовании симисторов

Посмотрело: 7647

Все знают, насколько ардуинщики гордятся миганием лампочками

Так как мигать светодиодами не интересно, речь пойдет про управление лампой накаливания на 220 вольт, включая управление её яркостью. Впрочем, материал относится и к некоторым другим типам нагрузки. Эта тема достаточно избита, но информация об особенностях, которые необходимо учесть, разрозненна по статьям и темам на форумах. Я постарался собрать её воедино и описать различия между схемами и обосновать выбор нужных компонентов.

Выбор управляемой нагрузки
Существует много различных типов ламп. Не все из них поддаются регулировке яркости. И, в зависимости от типа лампы, требуются разные способы управления. Про типы ламп есть хорошая . Я же буду рассматриваться только лампы, работающие от переменного тока. Для таких ламп существует три основных способа управления яркостью (диммирование по переднему фронту, по заднему фронту и синус-диммирование).
Иллюстрация в формате SVG, может не отображжаться в старых браузерах и, особенно, в IE
Отличаются они тем, какая часть периода переменного тока пропускается через лампу. О применимости этих методов можно прочитать . В этой статье речь пойдет только о RL диммере, так как это самая простая и распространенная схема. Она подходит для управления яркостью ламп накаливания (включая галогенные), в том числе подключенных через ферромагнитный (не электронный) трансформатор. Эта же схема может применяться для управления мощностью нагревательных элементов и электромоторов, а также для включения/выключения других электроприборов (без управления мощностью).
Выбор элементной базы
Различных вариантов схем управления нагрузкой в интернете много. Отличаются они по следующим параметрам:Первые два пункта определяются элементной базой. Очень часто для управления нагрузкой используют реле, как проверенный многолетним опытом элемент. Но, если вы хотите управлять яркостью лампы, её необходимо включать и выключать 100 раз в секунду. Реле не рассчитаны на такую нагрузку и быстро выйдут из строя, даже если смогут переключаться так часто. Если в схеме используется MOSFET, то его можно открывать и закрывать в любой момент. Нам нем можно построить и RL, и RC, и синус димер. Но так как он проводит ток только в одну сторону, понадобится два транзистора на канал. Кроме того, высоковольтные MOSFET относительно дороги. Самым простым и дешевым способом является использование симистора. Он проводит ток в обоих направлениях и сам закрывается, когда через него прекращает течь ток. Про то, как он работает можно прочитать в . Далее я буду полагаться на то, что вы это знаете.
Фазовая модуляция
Чтобы управлять яркостью лампы нам нужно подавать импульсы тока на затвор симистора в моменты, когда ток через симистор достигает определенной величины. В схемах без микроконтроллера для этого применяется настраиваемый делитель напряжения и динистор. Когда напряжение на симисторе превышает порог, при котором открывается динистор, ток проходит на затвор симистора и открывает его.
Если же управление ведется с микроконтроллера, то возможны два варианта:
  • Подавать импульсы равно в тот момент времени, когда нужно. Для этого придётся завести на микроконтроллер сигнал с детектора перехода напряжения через ноль

  • К затвору симистора подключить компаратор, на который завести сигнал с делителя напряжения и с аналогового выхода микроконтроллера

  • Первый способ хорош тем, что позволяет легко организовать гальваническую развязку высоковольтной части и микроконтроллера. О её важности будет сказано позже. Но любители arduino будут огорчены: чтобы лапа горела ровно, не вспыхивая и не погасая, импульсы нужно подавать вовремя. Для этого управлять выводом нужно из прерывания таймера, а моменты перехода напряжения через ноль фиксировать с помощью «input capture». Это «недокументированные» функции. Проблема решается отказом от библиотек arduino и внимательным чтением datashit»а на процессоры avr. Это не так сложно, как кажется.
    Второй способ управления симистором крайне прост в программном плане, но из-за отсутствия гальванической развязки я бы не стал его применять.
    Гальваническая развязка
    Самый простой способ управлять симистором — это подключить к затвору ножку микроконтроллера. Есть даже специальная серия симисторов BTA-600SW управляемых малыми токами.Но тогда контроллер и вся низковольтная часть не будет защищена от помех, гуляющих по бытовой сети. Некоторое из них могут быть достаточно мощными, чтобы сжечь микроконтроллер, другие будут вызывать сбои. Кроме того, сразу возникают проблемы со связью микроконтроллера с компьютером или другими микроконтроллерами: нужно будет делать развязку в линии связи или использовать дифференциальные линии, ведь, чтобы управлять симистором прямо с ноги микроконтроллера, нулевой потенциал для него должен совпадать с потенциалом нуля в бытовой сети. У компьютера или другого такого же микроконтроллера, подключенного в другой точке сети, нулевой потенциал почти наверняка будет другим. Результат будет плачевным.
    Простой способ обеспечить гальваническую развязку: использовать драйвер симистора MOC30XX. Эти микросхемы отличаются:
  • Расчетным напряжением. Если для сетей 110 вольт, есть для 220

  • Наличием детектора нуля

  • Током, открывающим драйвер

  • Драйвер с детектором нуля (MOC306X) переключается только в начале периода. Это обеспечивает отсутствие помех в электросети от симистора. Поэтому, если нет необходимости управлять выделяемой мощностью или управляемый прибор обладает большой инерционностью (например это нагревательный элемент в электроплитке), драйвер с детектором нуля будет оптимальным выбором. Но, если вы хотите управлять яркостью лампы освещения, необходимо использовать драйвер без детектора нуля (MOC305X) и самостоятельно открывать его в нужные моменты.
    Ток, необходимый для открытия важен, если вы хотите управлять несколькими нагрузками одновременно. У MOC3051 он 15 мА, у MOC3052 10мА. При этом микроконтроллеры stm могут пропускать через себя до 80-120 мА, а avr до 200 мА. Точные цифры нужно смотреть в соответствующих datashit»ах.
    Устойчивость к помехам/возможность коммутации индуктивной нагрузки
    В электросети могут быть помехи, вызывающие самопроизвольное открытие симистора или его повреждение. Источником помех может служить:
  • Нагрузка, управляемая симистором (обмотка мотора)

  • Фильтр (snubber), расположенный рядом с симистором и призванный его защищать

  • Внешняя помеха (грозовой разряд)

  • Помеха может быть как по напряжению, так и по току, причем более критичны скорости изменения соответствующих значений, чем их амплитуды. В datashit»ах соответствующие значения указаны как:
    V — максимальное напряжение, при котором может работать симистор. Максимальное пиковое напряжение не намного больше.
    I — Максимальный ток, который может пропускать через себя симистор. Максимальный пиковый ток как правило значительно больше.
    dV/dt — Максимальная скорость изменения напряжения на закрытом симисторе. При превышении этого значения он самопроизвольно откроется.
    dI/dt — Максимальная скорость изменения тока при открытии симистора. При превышении этого значения он сгорит из-за того, что не успеет полностью открыться.
    (dV/dt)c — Максимальная скорость изменения напряжения в момент закрытия симистора. Значительно меньше dV/dt. При превышении симистор продолжит проводить ток.
    (dI/dt)c — Максимальная скорость изменения тока в момент закрытия симистора. Значительно меньше dI/dt. При превышении симистор продолжит проводить ток.
    Подробно о природе этих ограничений и о том, как сделать фильтр, защищающий от превышения этих величин описано в . К немо можно только добавить, что существуют 3Q симисторы, у которых значения dV/dt и dI/dt выше, чем у обычных за счет невозможности работать в 4ом квадранте (что обычно не требуется).
    Выбор симистора
    Максимальный ток коммутации
    Максимальный ток коммутации ограничивается двумя параметрами: максимальным током, который может пропустить симистор и количеством тепла, которое вы можете от него отвести. С первым параметром все просто, он указан в datashit»е. Но если посмотреть внимательно, то при токе в 16 ампер на BTA16-600BW выделяется около 20 ватт. Такую грелку уже не получится засунуть в коробку выключателя без вентиляции.
    Минимальный ток коммутации
    Симистор сохраняет проводимость до тех пор, пока через него идёт ток. Минимально необходимый ток указан в datashit»е под именем latching current. Соответственно, слишком мощный симистор не сможет включать маломощную лампочку так как будет выключаться, как только с затвора пропадёт управляющий сигнал. Но так, как этот сигнал мы самостоятельно формируем микроконтроллером, то можно удерживать управляющий сигнал почти до самого конца полупериода, тем самым убрав ограничение на минимальную нагрузку. Однако, если не успеть снять сигнал, симистор не закроется и лампа не погаснет. При плохо подобранных константах лампы, работающие на не полной яркости периодически вспыхивают.
    Изоляция
    Симисторы в корпусе SOT-220 могут быть изолированными или не изолированными. Я сначала сделал ошибку и купил BT137, в результате радиаторы охлаждения оказались под напряжением, что в моем случае нежелательно. Симисторы с маркировкой BTA изолированы, с маркировкой BTB нет.
    Защита от перегрузки
    Не стоит полагаться на автоматические выключатели. Посмотрите на , при перегрузке в 1.4 раза автомат обязан выключиться не ранее , чем через час. А быстрое размыкание происходит только при перегрузке в 5 раз (для автоматов типа C). Это сделано для того, чтобы автомат не отключался при включении приборов, требующих при старте значительно больше энергии, чем при постоянной работе. Примером такого прибора является холодильник.
    Симистор нужно защитить отдельным предохранителем, либо контролировать ток через него и отключать его при перегрузке, давая остыть.
    Защита от короткого замыкания
    При перегорании лампы накаливания может образовываться искровой разряд, имеющий очень низкое сопротивление. В результате цепь фактически замыкается накоротко, что приводит к выгоранию симистора.2t. Задает количество теплоты, накопление которой в кристалле приведет к разрушению кристалла.
    dI/dt ограничивается индуктивностью проводки и внутренней ёмкостью симистора. Так как dI/dt достаточно велика (50 А/с для BTA16), может хватить индуктивности подводящей проводки, если она достаточно длинная. Можно подстраховаться и добавить небольшую индуктивность в виде нескольких витков провода вокруг сердечника.
    С превышением интеграла Джоуля можно бороться либо уменьшая время прохождения тока через симистор, либо ограничивая ток. Так как симистор не закроется, пока ток не перейдет через ноль, не вводя дополнительных размыкателей нельзя сделать время прохождения тока менее одного полупериода. В качестве такого размыкателя можно использовать:
  • Быстродействующий плавкий предохранитель. Обычный предохранитель не подойдет так как симистор сгорит до того, как он сработает. Но стоят такие предохранители дороже новых симисторов.

  • Геркон/реле. Если удастся найти такое, чтобы выдерживало кратковременные большие токи.

  • Можно пойти по другому пути. BTA16-600 может выдержать ток в 160 амер в течении одного периода. Если сопротивление замыкаемой цепи будет порядка 1.5 Ом, то полупериод он выдержит. Сопротивление проводки даст 0.5 Ом. Остается добавить в цепь сопротивление в 1 Ом. Схема станет менее эффективной и появится еще одна грелка, выделяющая при штатной работе до 16 Вт тепла (0.45 Вт при работе 100 ваттной лампы), зато симистор не сгорит, если успеть его вовремя выключить и позаботиться о хорошем охлаждении, чтобы оставался запас на нагрев во время КЗ.
    Из этого сопротивления можно извлечь дополнительную выгоду: измеряя падение напряжения на нем, можно узнавать ток, протекающий через симистор. Полученное значение можно использовать для того, чтобы определять короткое замыкание или перегрузку и отключать симистор.
    Заключение
    Я не претендую на абсолютную верность всего написанного. Статья писалась для того, чтобы упорядочить знания, прочитанные на просторах интернета и проверить, не забыл ли я чего. В частности раздел, касающийся защиты от перегрузок я еще не опробовал на практике. Если я где-то не прав, мне было бы интересно узнать об ошибках.
    В статье нет ни одной схемы: знакомые с темой и так знают их наизусть, а новичку придётся заглянуть в datashit к MOC3052 или в AN-3008 и, возможно, он заодно узнает что-то еще и не будет бездумно реализовывать готовую схему.

    Использование оптотиристоров

    Оптосимисторы МОС301х, МОС302х, МОС303х, МОС304х, МОС306х, МОС308х
    Оптосимисторы принадлежат к классу оптронов и обеспечивают очень хорошую гальваническую развязку (порядка 7500 В) между управляющей цепью и нагрузкой. Эти радиоэлементы состоят из инфракрасного светодиода, соединенного посредством оптического канала с двунаправленным кремниевым симистором. Последний может быть дополнен отпирающей схемой, срабатывающей при переходе через нуль питающего напряжения.
    Эти радиоэлементы особенно незаменимы при управлении более мощными симисторами, например при реализации реле высокого напряжения или большой мощности. Подобные оптопары были задуманы для осуществления связи между логическими схемами с малыми уровнями напряжений и нагрузкой, питаемой сетевым напряжением 220 В. Оптосимистор может размещаться в малогабаритном DIP-корпусе с шестью выводами, его цоколевка и внутренняя структура показаны на рис.1.

    В таблице приведена классификация оптосимисторов по величине прямого тока, через светодиод IFT, открывающего прибор, и максимального прямого повторяющегося напряжения, выдерживаемого симистором на выходе (VDRM). В таблице отмечено также и свойство симистора открываться при переходе через нуль напряжения питания. Для снижения помех предпочтительнее использовать симисторы, открывающиеся при переходе через нуль напряжения питания.

    Что касается элементов с обнаружением нуля напряжения питания, то их выходной каскад срабатывает при превышении напряжением питания некоторого порога, обычно это 5 В (максимум 20 В). Серии МОС301х и МОС302х чаще используются с резистивной нагрузкой или в случаях, когда напряжение питания нагрузки должно отключаться. Когда симистор находится в проводящем состоянии, максимальное падение напряжения на его выводах обычно равно 1,8В (максимум 3В) при токе до 100мА. Ток удержания (IH), поддерживающий проводимость выходного каскада оптосимистора, равен 100мкА, каким бы он ни был (отрицательным или положительным) за полупериод питающего напряжения.
    Ток утечки выходного каскада в закрытом состоянии (ID) варьируется в зависимости от модели оптосимистора. Для оптосимисторов с обнаружением нуля ток утечки может достигать 0,5мА, если светодиод находится под напряжением (протекает ток IF).
    У инфракрасного светодиода обратный ток утечки равен 0,05 мкА (максимум 100 мкА), и максимальное падение прямого напряжения 1,5В для всех моделей оптосимисторов. Максимально допустимое обратное напряжение светодиода 3 вольта для моделей МОС301х, МОС302х и МОС303х и 6 вольт для моделей МОС304х. МОСЗО6х и МОСЗО8х.
    Предельно допустимые характеристики
    Максимально допустимый ток через светодиод в непрерывном режиме — не более 60ма.
    Максимальный импульсный ток в проводящем состоянии переключателя выходного каскада — не более 1 А.
    Полная рассеиваемая мощность оптосимистора не должна превышать 250 мВт (максимум 120 мВт для светодиода и 150 мВт для выходного каскада при Т — 25˚С).

    Применение оптосимисторов

    На рис.2 а-д представлены различные схемы типичных применений оптосимисторов, отличающиеся друг от друга характером нагрузки и способами подключения нагрузки и питания.
    Сопротивление Rd
    Расчет сопротивления этого резистора зависит от минимального прямого тока инфракрасного светодиода, гарантирующего отпирание симистора. Следовательно, Rd = (+V — 1,5) / IF.
    Например, для схемы транзисторного управления оптосимистором c напряжением питания +5 В (рис.3) и напряжением на открытом транзисторе (Uкэ нас), равном 0.3 В, +V будет 4,7 В, и IF должен находиться в диапазоне между 15 и 50 ма для МОС3041. Следует принять IF — 20 мА с учетом снижения эффективности светодиода в тече¬ние срока службы (запас 5 мА), целиком обеспечивая работу оптопары с постепенным ослаблением силы тока. Таким образом, имеем:
    Rв = (4,7 — 1,5) / 0,02 = 160 Ом.
    Следует подобрать стандартное значение сопротивления, то есть 150 Ом для МОС3041 и сопротивление 100 Ом для МОС3020.
    Сопротивление R
    Резистор R необязательно включать, когда нагрузка чисто резистивная. Однако, если симистор защищен цепочкой RР — CР, чаще всего называемой искрогасящей, резистор R позволяет ограничить ток через управляющий электрод оптосимистора. Действительно, в случае индуктивной нагрузки проходящий через симистор ток и напряжение, приложенное к схеме, находятся в противофазе. Так как симистор перестает быть проводником, когда ток проходит через нуль, конденсатор защитной цепочки СР может разряжаться через оптосимистор. Тогда резистор R ограничивает этот ток разряда. Минимальное значение его сопротивления зависит от максимального напряжения конденсатора и максимально допустимого для оптосимистора тока, поэтому для напряжения питания 220 В:
    Rmin = 220 В х 1,41 / 1А — 311 Ом.
    С другой стороны, слишком большая величина R может привести к нарушению работы. Поэтому принимают R — 330 или 390 Ом.
    Сопротивление RG
    Резистор RG необходим только тогда, когда входное сопротивление управляющего электрода очень велико, то есть в случае чувствительного симистора. Значение резистора RG может быть в диапазоне от 100 до 500 Ом.
    Резисторы RG и R вводят задержку отпирания симистора, которая будет тем значительнее, чем выше сопротивления этих резисторов. Цепочка Ra — Сa
    Чтобы ограничить скорость изменения напряжения dV/dt на выходе оптосимистора, необходима snubber-цепочка (рис.2 г).
    Выбор значения сопротивления резистора Ra зависит от чувствительности симистора и напряжения Va, начиная с которого симистор должен срабатывать. Таким образом, имеем:
    R + Ra = Va / IG.
    Для симистора с управляющим током IG = 25мА и напряжением отпирания Va = 20В получим: R + Ra = 20 / 0,025 — 800 Ом
    или: Ra = 800 — 330 = 470 Ом.
    Для того чтобы переключение симистора происходило быстро, должно быть выполнено следующее условие: dV / dt = 311 / Ra х Ca.
    Для МОС3020 максимальное значение dV / dt — 10 В/мкс.
    Таким образом: Сa = 311 / (470 х 107) = 66 нФ.
    Выбираем: Сa = 68 нФ.
    Замечание.
    Что касается snubber-цепочки, то экспериментальные значения, как правило, предпочтительнее теоретических расчетов.
    Защита
    Настоятельно рекомендуется защищать симистор и оптосимистор при работе на индуктивную нагрузку или при часто воздействующих на сеть помехах.
    Для симистора искрогасящая RC-цепочка просто необходима. Для оптосимистора с обнаружением нуля, такой как МОС3041, — желательна. Сопротивление резистора R следует увеличить с 27 Ом до 330 Ом (за исключением случая, когда управляемый симистор малочувствительный).
    Если используется модель без обнаружения нуля, то snubber-цепочка Ra — Сa обязательна.

    Симистор («триак» по терминологии, принятой в США) — это двунаправленный симметричный тиристор. Симисторы очень удобны для систем ключевого регулирования в цепях переменного тока. Как следствие, они практически вытеснили тиристоры из бытовой техники (стиральные машины, пылесосы и т.д.).

    У симистора нет анода и катода. Его три вывода называются: УЭ (управляющий электрод), СЭУ (силовой электрод, расположенный ближе к УЭ), СЭ (силовой электрод у основания прибора) . Существуют также аналогичные зарубежные названия, принятые в триаках, соответственно, «G» (Gate — затвор), «Т1» (Main Terminal 1) и «Т2» (Main Terminal 2).

    Симистор, в зависимости от конструкции, может открываться как положительными, так и отрицательными импульсами на выводе УЭ. Ветви ВАХ симметричные, поэтому ток через силовые электроды может быть и втекающим, и вытекающим. Итого, различают четыре режима работы в квадрантах 1…4 (Рис. 2.105).

    Рис. 2.105. Режимы работы симисторов (триаков).

    Первыми были разработаны четырёх квадрантные симисторы или, по-другому, 4Q-TpnaKM. Они требуют для нормальной работы введения в схему демпферных ЛС-цепочек (100 Ом, 0.1 МК Ф), которые устанавливаются параллельно силовым электродам СЭУ и СЭ. Таким нехитрым способом снижается скорость нарастания напряжения через симистор и устраняются ложные срабатывания при повышенной температуре и значительной индуктивной или ёмкостной нагрузке.

    Технологические достижения последнего времени позволили создать трёхквадрантные симисторы или, по-другому, 3Q триаки. Они, в отличие от симисторов «4Q», работают в трёх из четырёх квадрантов и не требуют ЯС-цепочек. Типовые параметры 3Q-TpnaKOB Hi-Com BTA208…225 фирмы Philips: максимальное коммутируемое напряжение 600…800 В, ток силовой части 8…25 А, ток отпирания затвора (УЭ) 2…50 мА, малогабаритный SMD-корпус.

    Схемы подключения симисторов к MK можно условно разделить на две группы: без развязки от сети 220 В (Рис. 2.106, a…r) и с гальванической изоляцией (Рис. 2.107, а…л).

    Некоторые замечания. Типы указанных на схемах симисторов однообразны, в основном КУ208х, BTxxx, MACxxx. Это сделано специально, чтобы заострить внимание на схемотехнике низковольтной управляющей части, поскольку она ближе всего к MK. На практике можно использовать и другие типы симисторов, следя за их выходной мощностью и амплитудой управляющего тока.

    Демпферные цепочки в силовой части на схемах, как правило, отсутствуют. Это упрощение, чтобы не загромождать рисунки, поскольку предполагается, что сопротивление нагрузки R H носит чисто активный характер. В реальной жизни демпфирование необходимо для 4Q-триаков, если нагрузка имеет значительную индуктивную или ёмкостную составляющую.

    а) ВЫСОКИЙ уровень на выходе МК открывает транзистор VT1, через который включается симистор VS1. Варистор RU1 защищает симистор от всплесков напряжения, начиная с порога 470 В (разброс 423…517 В). Это актуально при индуктивном характере нагрузки jR H ;

    б) аналогично Рис. 2.106, а, но с другой полярностью сигнала на выходе MK и с транзистором VT1 другой структуры, который выполняет функцию инвертора напряжения. Благодаря низкому сопротивлению резистора R2, повышается помехоусточивость. Сопротивление резистора R2 выбирается по тем же критериям, что и для схем на тиристорах;

    Рис. 2.106. Схемы подключения симисторов к MK без гальванической изоляции.

    в) высоковольтный транзистор ГУ2замыкаетдиагональдиодного моста VD1 при НИЗКОМ уровне на линии MK. Транзистор VT1 в момент рестарта MK находится в открытом состоянии из-за резистора R1, при этом симистор VS1 закрывается и ток через нагрузку R H не протекает;

    г) прямое управление симистором VS1 с одного или нескольких выходов MK. Запараллеливание линий применяется при недостаточном токе управления (показано пунктиром). Ток через нагрузку R H не более 150 мА. Возможные замены: VS1 — MAC97A8, VD2— KC147A.

    а) симистор VS1 включается/выключается при наличии/отсутствии импульсов 50…100 кГц, генерируемых с выхода MK. Изолирующий трансформатор T1 наматывается на кольце из феррита N30 и содержит в обмотке I — 15 витков, в обмотке II — 45 витков провода ПЭВ-0.2;

    б) простая схема трансформаторной развязки. Симистор VS1 включается короткими импульсами с выхода MK. Ток управления зависит от коэффициента трансформации 77;

    Рис. 2.107. Схемы гальванической изоляции МК от симисторов.

    в) разделительный трансформатор T1 наматывается на ферритовом кольце M1000HM размерами K20xl2x6 и содержит в обмотке I — 60 витков, в обмотке II — 120 витков провода ПЭВ-0.2. Цепочка R3, C1 накапливает энергию для импульсной коммутации транзистора K77;

    г) если не требуется частое включение/выключение нагрузки, то для гальванической развязки можно использовать реле K1. Его контакты должны выдерживать без пробоя переменное напряжение 220 В. В некоторых схемах токоограничивающий резистор R3 закорачивают;

    д) контакты геркона SF1 замыкаются при протекании тока через катушку индуктивности L1, которая намотана на его корпус. Достоинство — сверхбольшое сопротивление изоляции;

    е) гальваническая развязка на транзисторной оптопаре VU1. Резистор R3 повышает помехоустойчивость, но может отсутствовать. Резистор Я2определяет порог открывания транзистора VT1. При использовании симисторов КУ208, TC106-10 сопротивление резистора Я2уменьшают до 30…75 кОм;

    ж) симистором VS1 управляет драйвер DA1 (по-старому, КР1182ПМ1), который обеспечивает плавное изменение тока в нагрузке R H в зависимости от напряжения на конденсаторе C1. Если транзистор оптопары W/закрыт, то конденсатор С1 заряжается от внутреннего ИОН микросхемы DA1 и в нагрузке устанавливается максимальное напряжение. Резистор R4 может отсутствовать при наличии резистора R3. Резистор R3 можно закоротить при наличии резистора R4\

    з) гальваническая развязка на опторезисторе VU1. Резистором R1 подбирается ток через своизлучатель VU1 и, соответственно, ток управления симистором VS1;

    и) применение двух оптотиристоров VU1, УУ2щ\я коммутации симистора VS1 в любой пупериод сетевого напряжения. Резистор Л2ограничивает ток управления симистора;

    к) питание входа УЭ симистора VS1 осуществляется от отдельной низковольтной обмотки промышленного трансформатора T1ТПП235-220/110-50;

    л) применение оптотиристора VU1 для управления симистором VS1 (замена КУ208Д1). Из двух токоограничивающих резисторов R2, R3 обычно оставляют один, второй замыкают перемычкой. Замена VD1 — мост КЦ407А или четыре отдельных диода КД226.

    Источник :
    Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2, :ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»).

    В следующих статьях будут устройства, которые должны управлять внешней нагрузкой. Под внешней нагрузкой я понимаю все, что прицеплено к ножкам микроконтроллера – светодиоды, лампочки, реле, двигатели, исполнительные устройства … ну Вы поняли. И как бы не была заезжена данная тема, но, чтобы избежать повторений в следующих статьях, я все-же рискну быть не оригинальным — Вы уж меня простите:). Я кратенько, в рекомендательной форме, покажу наиболее распространенные способы подключения нагрузки (если Вы что-то захотите добавить – буду только рад).
    Сразу договоримся, что речь идет о цифровом сигнале (микроконтроллер все-таки цифровое устройство) и не будем отходить от общей логики: 1 -включено, 0 -выключено. Начнем.

    Нагрузкой постоянного тока являются: светодиоды, лампы, реле, двигатели постоянного тока, сервоприводы, различные исполнительные устройства и т.д. Такая нагрузка наиболее просто (и наиболее часто) подключается к микроконтроллеру.

    1.1 Подключение нагрузки через резистор.
    Самый простой и, наверно, чаще всего используемый способ, если речь идет о светодиодах.

    Резистор нужен для того, чтобы ограничить ток протекающий, через ножку микроконтроллера до допустимых 20мА . Его называют балластным или гасящим. Примерно рассчитать величину резистора можно зная сопротивление нагрузки Rн.

    Rгасящий = (5v / 0.02A) – Rн = 250 – Rн

    Как видно, даже в самом худшем случае, когда сопротивление нагрузки равно нулю достаточно 250 Ом для того, что бы ток не превысил 20мА. А значит, если неохота чего-то там считать — ставьте 300 Ом и Вы защитите порт от перегрузки. Достоинство способа очевидно – простота.

    1.2 Подключение нагрузки при помощи биполярного транзистора.
    Если так случилась, что Ваша нагрузка потребляет более 20мА, то, ясное дело, резистор тут не поможет. Нужно как-то увеличить (читай усилить) ток. Что применяют для усиления сигнала? Правильно. Транзистор!

    Для усиления удобней применять n-p-n транзистор, включенный по схеме ОЭ . При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера. Резистор на базе – ограничительный. Может варьироваться в широких пределах (1-10 кОм), в любом случае транзистор будет работать в режиме насыщения. Транзистор может быть любой n-p-n транзистор. Коэффициент усиления, практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор-эмиттер (напряжение которым запитывается нагрузка). Еще имеет значение рассеиваемая мощность — чтоб не перегрелся.

    Из распространенных и легко доступных можно заюзать BC546, BC547, BC548, BC549 с любыми буквами (100мА), да и тот-же КТ315 сойдет (это у кого со старых запасов остались).
    — Даташит на биполярный транзистор BC547

    1.3 Подключение нагрузки при помощи полевого транзистора.
    Ну а если ток нашей нагрузки лежит в пределах десятка ампер? Биполярный транзистор применить не получиться, так как токи управления таким транзистором велики и скорей всего превысят 20мА. Выходом может служить или составной транзистор (читать ниже) или полевой транзистор (он же МОП, он же MOSFET). Полевой транзистор просто замечательная штука, так как он управляется не током, а потенциалом на затворе. Это делает возможным микроскопическим током на затворе управлять большими токами нагрузки.

    Для нас подойдет любой n-канальный полевой транзистор. Выбираем, как и биполярный, по току, напряжению и рассеиваемой мощности.

    При включении полевого транзистора нужно учесть ряд моментов:
    — так как затвор, фактически, является конденсатором, то в моменты переключения транзистора через него текут большие токи (кратковременно). Для того чтобы ограничить эти токи в затвор ставиться ограничивающий резистор.
    — транзистор управляется малыми токами и если выход микроконтроллера, к которому подключен затвор, окажется в высокоимпедансном Z-состоянии полевик начнет открываться-закрываться непредсказуемо, вылавливая помехи. Для устранения такого поведения ножку микроконтроллера нужно «прижать» к земле резистором порядка 10кОм.
    У полевого транзистора на фоне всех его положительных качеств есть недостаток. Платой за управление малым током является медлительность транзистора. ШИМ, конечно, он потянет, но на превышение допустимой частоты он Вам ответит перегревом.

    1.4 Подключение нагрузки при помощи составного транзистора Дарлингтона.
    Альтернативой применения полевого транзистора при сильноточной нагрузке является применение составного транзистора Дарлингтона. Внешне это такой-же транзистор, как скажем, биполярный, но внутри для управления мощным выходным транзистором используется предварительная усилительная схема. Это позволяет малыми токами управлять мощной нагрузкой. Применение транзистора Дарлингтона не так интересно, как применение сборки таких транзисторов. Есть такая замечательная микросхема как ULN2003. В ее составе аж 7 транзисторов Дарлингтона, причем каждый можно нагрузить током до 500мА, причем их можно включать параллельно для увеличения тока.

    Микросхема очень легко подключается к микроконтроллеру (просто ножка к ножке) имеет удобную разводку (вход напротив выхода) и не требует дополнительной обвязки. В результате такой удачной конструкции ULN2003 широко используется в радиолюбительской практике. Соответственно достать ее не составит труда.
    — Даташит на сборку Дарлингтонов ULN2003

    Если Вам нужно управлять устройствами переменного тока (чаще всего 220v), то тут все сложней, но не на много.

    2.1 Подключение нагрузки при помощи реле.
    Самым простым и, наверное, самым надежным есть подключение при помощи реле. Катушка реле, сама собой, является сильноточной нагрузкой, поэтому напрямую к микроконтроллеру ее не включишь. Реле можно подключить через транзистор полевой или биполярный или через туже ULN2003, если нужно несколько каналов.

    Достоинства такого способа большой коммутируемый ток (зависит от выбранного реле), гальваническая развязка. Недостатки: ограниченная скорость/частота включения и механический износ деталей.
    Что-то рекомендовать для применения не имеет смысла — реле много, выбирайте по нужным параметрам и цене.

    2.2 Подключение нагрузки при помощи симистора (триака).
    Если нужно управлять мощной нагрузкой переменного тока а особенно если нужно управлять мощностью выдаваемой на нагрузку (димеры), то Вам просто не обойтись без применения симистора (или триака). Симистор открывается коротким импульсом тока через управляющий электрод (причем как для отрицательной, так и для положительной полуволны напряжения). Закрывается симистор сам, в момент отсутствия напряжения на нем (при переходе напряжения через ноль). Вот тут начинаются сложности. Микроконтроллер должен контролировать момент перехода через ноль напряжения и в точно определенный момент подавать импульс для открытия симистора — это постоянная занятость контроллера. Еще одна сложность это отсутствие гальванической развязки у симистора. Приходится ее делать на отдельных элементах усложняя схему.


    Хотя современные симисторы управляются довольно малым током и их можно подключить напрямую (через ограничительный резистор) к микроконтроллеру, из соображений безопасности приходится их включать через оптические развязывающие приборы. Причем это касается не только цепей управления симистором, но и цепей контроля нуля.

    Довольно неоднозначный способ подключения нагрузки. Так как с одной стороны требует активного участия микроконтроллера и относительно сложного схемотехнического решения. С другой стороны позволяет очень гибко манипулировать нагрузкой. Еще один недостаток применения симисторов — большое количество цифрового шума, создаваемого при их работе — нужны цепи подавления.

    Симисторы довольно широко используются, а в некоторых областях просто незаменимы, поэтому достать их не составляет каких либо проблем. Очень часто в радиолюбительстве применяют симисторы типа BT138.

    Автор : elremont от 17-03-2014

    Это схема, в которой есть неизолированные металлические части под напряжением! Будьте осторожны и примите все меры предосторожности, чтобы избежать поражения электрическим током. Кроме того, обязательно используйте предохранитель с низким значением отсечки (мА) , поставив его на провод от аккумуляторной батареи до управляющего электрода. Вы имеете дело с 220В! Металлический лепесток на симисторе (T2) всегда ПОД НАПРЯЖЕНИЕМ. Тем из вас, кто имел мало опыта работы с электроникой, не стоит заниматься этим проектом. Как я говорю и в видео, вам необходимо удостоверится, где в розетке «фазовый» и где «нейтральный» контакт с помощью индикатора на 220 В! Маленькие контакты могут быть фазными, а большое лезвие всегда НЕЙТРАЛЬНО. Ничего не берите на веру. Всегда проверяйте отсутствие напряжения до прикосновения к контакту.
    Итак, это руководство для переключения симистора постоянным током. Большинство людей не понимают, что вы можете отдельным источником постоянного тока переключать симистор, как на этой схеме. Для простоты я использую BT136/600 и его распиновка такая: Т1, Т2 … Т2 пойдет к нагрузке, T1 пойдет на нейтраль и G это управление. Итак, что мы делаем, по цепи 220 В, провод идет в нагрузку, которой может быть все что угодно: свет, электронное устройство, а затем попадает на контакт T2 симистора. Контакт T2 переходит на T1 подключенный к нейтральному проводу, завершая цепь. Включить и выключить симистор вы можете с помощью отдельной батареи. При желании вы могли бы использовать понижающий трансформатор с электропитанием от той же линии, что у вас есть, чтобы получить постоянное напряжение для тока управления. Или вы можете использовать внешнюю сеть переменного тока, есть много вариантов получения постоянного тока для управления. Скажем, вы придумали схему, которая работает на постоянном токе, и вы хотите что то включить на переменном, так что это прекрасно подходит для этого. Хорошо, у меня есть 6-вольтовая батарея, я покажу вам ее через минуту. Берем минус и проверяем, что он присоединен к нейтральной шине. Это очень важно. Не надо делать этого в обратном направлении, проверьте, что эта отрицательная клемма на нейтрали. При помощи индикатора или тестера убедитесь, что провода к электрической розетке присоединены правильно. Итак минус на нейтраль, и хорошей идеей будет поставить предохранитель между минусом и нейтралью. В случае, если что либо замкнет в симисторе, и один из контактов замкнет на управляющий электрод, то вы можете получить 220 вольт, проходящие через батарейку. Так что ставьте предохранитель прямо здесь, на очень низкую сила тока. Лучше всего поставить на 50 миллиампер. Так что, если произойдет короткое замыкание, оно будет кратковременно и не катастрофично. Теперь берем наш плюс, он проходит через цепи коммутации и управления и на управляющий электрод симистора плюс поступает через токоограничивающий резистор. Этот симистор — BT136, с током управления максимум 35 мА, а напряжение, я думаю, максимум 12. Но я использую 6. Таким образом, вычислить сопротивление резистора очень просто, вы берете свое напряжение и делите его на ток который необходим, и вы получите сопротивление в Омвх. Я взял резистор 330 Ом, и эта батарея как я уже сказал, на 6.2 вольта. Я покажу прямо сейчас. У меня есть удлинитель подключенный к ночнику на 7 Вт, мощность этого симистора достаточно высока, вероятно, в 1000 или 1500 Вт. Убедитесь, что он стоит на радиаторе с термопастой, и все будет нормально. Нагрузка… я знаю, что это зеленая жила кабеля, но это не имеет значения. Вы проводите линию, идущую к нагрузке, в данном случае это 7 ваттная лампа. С другой стороны нагрузки подключен красный провод, хорошо. Это контакт T2, корпус это его часть, лепесток корпуса и средний контакт на этом симисторе это T2. T1 это первый контакт, он присоединен к нейтральной шине. Эта нейтральная шина соединена с нейтралью домовой проводки.Теперь берем 6 вольтовую батарею. Вы берете общий провод от нейтрали, и присоединяете его к минусу. У меня есть небольшой предохранитель он на 100 миллиампер, но лучше было бы поставить на 50, если ты собираешься это сделать. Поэтому убедитесь, что ставите на 50 с нейтральной стороны. Положительный полюс батарейки присоединяем к резистору, ведущему к управляющему электроду. Я поморгаю светом, просто прикасаясь к нейтральной шине, подключив ее к отрицательному полюсу на батарейке. Все готово к включению. Я все покажу. Мы замкнем цепь от батареи к управляющему электроду, и вы можете увидеть, что свет включается. И я проверил это… Все работает прекрасно, и я проверю разъем на лампе, и я получаю полное напряжение, что означает, что управление полностью открыло симистор. Так что это действительно хорошая схема для понимания работы симистора. Теперь вы можете включать устройства переменного тока. Как я уже говорил… Я оставлю это подключенным. Хорошо, что в итоге. В том случае, если в симисторе будет короткое замыкание, у нас фазовое напряжение будет пытаться идти в эту батарею. Поэтому поставьте предохранитель как можно меньше. Как только высокое напряжение попытается войти, если случится короткое замыкание, предохранитель перегорит, и батарея будет в порядке. Хорошо, я покажу вам еще работу с дрелью, и вы увидите, что питание это не проблема. Я присоединю штекер на секунду. Я отодвину камеру подальше, чтобы вы рассмотрели. Замечательно. Я прикоснусь… Выключено. Включено. Переключается от батарейки.
    _


    Схема управления нагрузкой на основе мощных оптодинисторов

    Автор Белов А. В.

    29.04.2008 г.

    В данной статье приводится несколько схемных решений и описываются алгоритмы позволяющие микропроцессору управлять внешней нагрузкой при помощи тиристорных ключей.

    Иногда необходимо, что бы микропроцессорное устройство управляло мощными электроприборами, получающими питание от сети переменного напряжения 220В. Например, нагревательными элементами, моторами, соленоидами, лампами уличного освещения и т.д. Для решения подобной задачи необходимо создать мощную схему управления, преобразующие сигналы стандартных логических уровней в сигналы управления цепями высокой мощности. Вторая проблема, которую нужно решить при создании подобных схем: это гальваническая развязка цепей микроконтроллера и управляемых им цепей 220В. Без такой развязки эксплуатация подобного устройства станет слишком небезопасной. Решение проблемы зависит от того, каким способом необходимо управлять нагрузкой. Если требуется просто ее включать и выключать, то с задачей может справиться небольшой транзисторный ключ, управляющий обмоткой электромагнитного реле. Если же нужно не просто включать и выключать, а еще и регулировать мощность, то без тиристорного ключа тут не обойтись.

    Рассмотрим несколько вариантов возможных решений. Один из таких вариантов приведен на рисунке 1.

    В схеме используется даже не тиристор, а мощный симистор TC106-10. Этот симистор позволяет коммутировать нагрузку до 10 ампер. Для справки: симистор отличается от тиристора тем, что он работает с обоими полупериодами переменного напряжения, то есть, в открытом состоянии он пропускает как положительную, так и отрицательную полуволны. Для гальванической развязки цепей микроконтроллера и силовых цепей нагрузки используется оптодинистор АОУ103Б. Для того, что бы не создавать лишней нагрузки на выход микроконтроллера для управления светодиодом фотодинистора используется ключ на транзисторе КТ361. Что бы отключить нагрузку от источника питания 220В микроконтроллер должен выставить на своем выходе (в данном случае на выходе PB4 сигнал логической единицы. При этом ключ VT1 закрывается, ток через светодиод фотодинистора не течет, и симистор тоже закрыт. Когда нужно включить нагрузку, микроконтроллер устанавливает на своем выходе логический ноль. Транзистор VT1 открывается, светодиод фотодинистора зажигается и освещает динистор. Динистор начинает открываться в каждом полупериоде напряжения. Через диодный мостик, обозначенный, как VD1 динистор подключен к управляющему электроду симистора VS1. Поэтому в каждом полупериоде семистор тоже открывается и на нагрузку поступает полное напряжение питания. Диодный мостик VD1 необходим потому, что динистр может работать лишь в одном направлении. Он открывается только тогда, когда на его верхнем по схеме выводе плюс а на нижнем минус. В обратном направление динистор не открывается. Если подключить динистор к симистору напрямую, то и симистор тоже сможет пропускать лишь одну из полуволн питающего напряжения. В качестве мостика VD1 можно применить любой маломощный мостик либо составить его из четырех диодов КД522Б. Светодиод HL1 служит просто для индикации включения нагрузки.

    На рисунке 2 приведен второй вариант схемы управления тиристором. Эта схема отличается от предыдущей отсутствием диодного мостика. Вместо этого в схеме используются сразу два оптосимистора U1 и U2. Светодиоды обеих фотодинисторов включены последовательно и управляются от микроконтроллера через эмиттерный повторитель на транзисторе VT1. Динисторы же включены встречно параллельно. При этом один из них работает при положительной полуволне, а второй при отрицательной. В остальном работа схемы аналогична предыдущему примеру. Отличие лишь в том, что для включения нагрузки микроконтроллер должен установить на своем выходе высокий логический уровень, а для выключения низкий. То есть, можно сказать, что схема на рис. 1 инвертирующая, а схема на рис. 2 неинвертирующая.

    В заключении нужно сказать, что развитие элементной базы дает нам новые возможности в постороении схем управления мощной нагрузкой в сети 220В. Теперь разработчик имеет в своем распоряжении такой новый элемент, как мощный оптодинистор, который с успехом заменяет пару: тиристор-оптодинистор и позволяет построить более простые и надежные схемы. Подробнее об этом читайте в статье «Управление оптодинистором».


     

    Плавная регулировка мощности

     

    Если необходимо не просто включить или выключить нагрузку, а плавно регулировать ее мощность, то приведенные так же подойдут для этого. Нужно только изменить алгоритм управления. Существует два метода плавной регулировки. Мы опишем их чуть ниже. Оба метода используют синхронизацию микроконтроллера с фазой колебаний переменного напряжения сети. Для синхронизации нам необходимо сформировать и подать на микроконтроллер сигнал, по которому он сможет определять начало и конец каждого полупериода. Схема блока питания, имеющего цепи формирующие подобный сигнал приведена в статье «Схема блока питания». Сигналы «+» и «-» сформированные этими цепями необходимо подать на вход встроенного компаратора. В нашем случае это выводы 12 и 13 (AIN0, AIN1).

     

    Метод фазового регулирования

    Это стандартный способ управления тиристором. Состоит он в выборе момента открытия тиристора относительно начала фазы текущего полупериода питающего напряжения. Этот процесс иллюстрирует следующий рисунок:

     

     

    Фазовый метод регулирования

     

    На рисунке приведена форма сигнала на нагрузке при разных значениях времени задержки. Алгоритмм регулирования состоит в том, что сначала контроллер ожидает начала очередного полупериода. Обнаружив начало полупериода, контроллер запускает внутренний таймер. По окончании задержки, формируемой таймером контроллер выдает запускающий сигнал на выход, управляющий тиристорным регулятором. Тиристор открывается и напряжение поступает на нагрузку. Важно, что бы управляющее напряжение было снято с тиристора до окончания текущего полупериода. В этом случае, как только сетевое напряжение достигнет нуля, тиристор закроется а с началом следующего полупериода процесс отсчета времени повторится снова. В зависимости от выбранной длительности задержки отдаваемая в нагрузку мощность будет различной. Так при малом времени задержки (t1) мощность максимальна. При t2 в нагрузку отдается ровно половина возможной мощности, а при t3 мощность минимальна.

     

    Метод исключения отдельных полупериодов

    Главным недостатком предыдущего метода является большой уровень электромагнитных помех, излучаемых тиристорным ключем в процессе работы. Подобная схема будет сильно мешать рядом работающему телевизору или радиоприемнику, создавая помехи на экране и по звуку. Большой уровень помех обусловлен тем, что включение тиристора происходит в момент, когда мгновенное значение сетевого напряжения находится вблизи его амплитуды. Крутые фронты достаточно большого уровня напряжения и создают большое количество помех. Выходом является второй метод регулирования. Он состоит в том, что включение тиристора всегда происходит в самом начале полупериода, когда напряжение переходит через ноль и, если полупериод пропускается в нагрузку, то весь полностью. Регулировка же мощности производится путем исключения отдельных полупериодов. Этот процесс показан на следующем рисунке:

     

     

    Метод исключения полупериода

     

    На рисунке мы видим, что все полупериоды с первого по пятый тиристор беспрепятственно открывается. Затем, во время прохождения шестого полупериода сигнал управления с тиристора снимается и напряжение на выход не поступает. В начале седьмого полупериода сигнал управления опять включается. Для реализации подобного метода разрабатываются целые схемы исключения полупериодов. Например, берется последовательность из десяти полупериодов. Для того, что бы получить мощность в 50%, пять полупериодов пропускают в нагрузку, а остальные пять не пропускают. Затем все повторяется, каждые 10 полупериодов. Причем не обязательно исключать полупериоды подряд. Можно разбросать включенные полупериоды по всему этому отрезку. Для получения 10% мощности из 10 придется оставить только один полупериод. А для 70% нужно оставить 7 а исключить три. Ну и так далее…

     

    Недостатком такого способа является то, что подобным образом затруднительно регулировать мощность свечения электрической лампы. Лампа будет заметно мерцать. Но для регулировки мощности нагревательного элемента этот способ является самым оптимальным.

     

    Последнее обновление ( 30.04.2008 г. )

     

     

    Управление оптодинистором

    Автор Белов А. В.

    30.04.2008 г.

    В этой статье описывается схема электронного ключа на оптодинисторе, позволяющая микроконтроллеру управлять мощной нагрузкой, питающейся от сети 220В.

     

    Данная схема является альтернативой схеме описанной в статье «Управление тиристором». В старом варианте схемы для коммутации нагрузки использовался мощный симистор, а для развязки управляемых цепей 220В и низковольтных цепей микроконтроллера использовался маломощный оптодинистор. В новом варианте схемы для управления нагрузкой используется мощный оптодинистор, который заменяет оба перечисленные выше устройства. Ниже приведена схема такого устройства:

    Схема блока питания

     

    Автор Белов А. В.

    30.04.2008 г.

     

    В этой статье рассматривается схема стабилизированного блока питания, которая может использоваться для питания простого микропроцессорного устройства.

     

    Как известно, для питания цифровых микросхем необходимо стабилизированное напряжения 5В. Заметим, что современные микроконтроллеры способны работать в широком диапазоне питающих напряжений. Обычно от 3 до 6 вольт. Главное требование, что бы напряжение было стабилизированное. То есть не менялось при изменении нагрузки. Однако, обычно любое микропроцессорное устройство кроме cамого микроконтроллера содержит ряд других микросхем, которые обычно более требовательны к напряжению питания. Поэтому правильнее всего, если нет каких нибудь специальных причин, выбирать напряжение питания +5В. Такое напряжение питания широко используется в электронной технике. Поэтому промышленность давно уже наладила производство специальных микросхем — стабилизаторов напряжения. Для большинства применений подойдет микросхема 7905 или ее отечественный аналог КРЕН5. Ниже на рисунке приведена схема блока питания, который расчитан на питание практически любого устройства на микроконтроллерах.

     

     

    Схема блока питания

     

    Трансформатор T1 понижает сетевое напряжение до требуемой величины (примерно 8…9 вольт). Выпрямитель VD1 выпрямляет его. Предварительный фильтр C1 сглаживает пульсации выпрямленного напряжения и в результате на вход стабилизатора DA1 поступает постоянное нестабилизированное напряжение примерно равное 12 В. С выхода стабилизатора стабилизированное напряжение 5В поступает на выход (на питание цифровых цепей микроконтроллерного устройства. Нестабилизированное напряжение +12В так же поступает для питания некоторых цепей микроконтроллерного устройства. Обычно это силовые цепи, не требующие стабилизации напряжения: светодиоды, реле и т.п. Подключение таких цепей до стабилизатора существенно разгружает микросхему DA1 облегчает ее тепловой режим, повышает надежность и увеличивает КПД. Дополнительный фильтр С2, С3 служит для подавления помех по питанию. Причем электролит C3 служит для подавления низкочастотных помех, а керамический конденсатор C2 подавляет высочастотные помехи.

     

    Кроме собственно цепей питания приведенная схема содержит специальные цепи, позволяющие получать сигнал, синхронный с частотой сетевого напряжения. Такой сигнал может подаваться на компаратор, входящий в состав многих микроконтроллеров и позволяет реализовать алгоритмы управления тиристорными либо оптодинисторными ключами для плавной регулировки мощности на нагрузке. В таких алгоритмах процессор отсчитывает необходимую задержку от начала текущего полупериода сетевого напряжения и по истечении этой задержки включает тиристор. В конце полупериода, когда мгновенное напряженияе переходит через ноль, тиристор закрывается и микроконтроллер отсчитывает очередную задержку. Изменяя время задержки можно изменять длительность импульсов, поступающих на нагрузку и тем самым изменять мощность, отдаваемую в эту нагрузку.

     

    Подробнее об этом можно прочитать в статье «Управление тиристором» и в статье «Управление оптодинистором».

     

    Подключение светодиодов

    Автор Белов А. В.

    01.05.2008 г.

     

    В этой статье рассказывается, как подключать индикаторы на одиночных светодиодах к микроконтроллеру.

     

    Ни одно устройство на основе микроконтроллера не обходится без световых индикаторов. В качестве одиночных светоизлучателей удобнее всего использовать светодиоды. Современные микроконтроллеры (в частности микроконтроллеры серии AVR) имеют достаточно мощные выходные схемы. Они рассчитаны на выходной ток до 40 мА. Этого вполне достаточно для непосредственного подключения одного маломощного светодиода. На следующем рисунке показано, как можно подключить светодиод к выходу микроконтроллеру.

     

     

    Непосредственное подключение светодиода

     

    Простой маломощный светодиодный индикатор — это самый распространенный способ индицирования. Именно такие индикаторы мы видим на подавляющем большинстве конструкций. Однако, иногда к микроконтроллеру необходимо подключить более мощные светодиоды. Это светодиоды повышенной яркости свечения или светодиоды большой площади излучения. В том случае, когда ток потребления светодиода превышает 40 мА, применяется электронный ключ на транзисторе. Ниже приводится схема подобного подключения.

     

     

    Подключение при помощи электронного ключа

     

    При использовании транзистора КТ315 можно подключать светодиод с током потребления до 100 мА. Если нужно подключить светодиод с еще большим током потребления, то необходимо подобрать другой, более мощный транзистор.

     

    Подключение кнопок

    Автор Белов А. В.

    01.05.2008 г.

     

    В данной статье освещаются вопросы подключения к микроконтроллеру различных кнопок и клавиш.

     

    Рис. 1.

     

    Практически ни одна микропроцессорная система не обходится без кнопок, клавиш, концевых контактов и тому подобных элементов коммутации. Любое подобное коммутационное устройство — это просто пара контактов, которые замыкаются при нажатии на клавишу (кнопку) или при другом механическом воздействии. Например, при срабатывании концевого выключателя управляемого механизма. Поэтому подключение любого вышеописанного устройства сводится к подключению к микроконтроллеру пары контактов. Микроконтроллеры серии AVR довольно неплохо приспособлены для работы именно с кнопками. Каждый из выводов каждого порта имеет специальные средства, облегчающие подключение внешних контактов.

     

    На рисунке 1 показан типовой способ подключение пары контактов к порту микроконтроллера. Рассмотрим подробнее принцип работы этой схемы. Но прежде мы должны вспомнить, что любой из выводов любого порта может работать в одном из двух режимов: либо как вход, либо как выход. Естественно, в нашем случае соответствующий вывод должен быть переведен в режим входа. В этом режиме имеется возможность программным путем при необходимости подключать к любой внешней линии внутренний резистор нагрузки. На рисунке 1 этот резистор обозначен R. Этот резистор специально введен для того, что бы работать с внешними контактами. При создании программы для всех входов, к которым подключены контакты, не забудьте предусмотреть команды, включающие этот резистор. Если же вход предназначен для других целей, то скорее всего резистор необходимо отключить. Электронный ключ, который программно включает и отключает внутренний резистор нагрузки условно показан на рисунке 1 и обозначен как K.

     

    И так, вывод порта запрограммирован как вход, внутренний резистор нагрузки включен. Если внешние контакты K1 разомкнуты, то на входе присутствует напряжение, близкое к напряжению питания, которое поступает через резистор R. При считывании информации из порта в данном разряде будет логическая единица. Если же контакты замкнуть, то линия порта будет замкнута на общий провод. Напряжение на входе станет равным нулю. При считывании информации в данном разряде порта появится ноль. Таким образом считывая информацию из порта и анализируя значение соответствующего разряда микроконтроллер всегда может определить, замкнуты контакты или нет. Если разряд равен нулю — контакты замкнуты, единице — разомкнуты.

     

    Указанным выше образом можно подключить отдельную пару контактов при желании ко всем выводам всех портов. Однако такой подход не назовешь рациональным. Кроме клавиш к портам микроконтроллера должны подключаться и другие устройства: индикаторы, реле, датчики, последовательные каналы связи и многое другое. Поэтому, для экономии выводов и для упрощения схемы применяют матрицы клавиш. Схема типичной матрицы из 16 клавиш приведена на рисунке 2.

     

    Рис. 2.

     

    Для подключения матрицы используется весь порт PB микроконтроллера и еще две линии порта PD. Как видно из схемы каждый из выводов порта PB подключен сразу к двум кнопкам. Например, вывод PB0 подключен к кнопке S1 и S9. Вывод PB1 к S2 и S10 и так далее. Второй контакт каждой кнопки подключен к одной из линий PD5 или PD6. В результате образуется матрица. Она напоминает решетку. Два вертикальных провода и восемь горизонтальных. В каждом пересечении этих проводов вставлено по кнопке.

     

    Как же работает эта матрица. Для правильной работы необходимо все выводы порта PB перевести в режим входов и включить для каждого из этих входов внутренний нагрузочный резистор. А два вывода порта PD (PD5 и PD6) нужно перевести в режим выходов. Для того, что бы считать состояние кнопок микроконтроллер должен сначала подать на выход PD6 сигнал логического нуля, а на выход PD5 сигнал логической единицы. Затем он должен прочитать байт из порта PB. Этот байт будет содержать информацию о состоянии кнопок S1…S8. Каждый бит будет отвечать за свою кнопку. Нулевой бит (PB0) за кнопку S1, первый бит (PB1) за кнопку S2 и т.д. Если кнопка нажата, то в соответствующем разряде будет ноль, если не нажата — единица. После анализа нажатия первой половины кнопок, микроконтроллер должен установить на выходе PD5 логический ноль, а на выходе PD6 — единицу. И опять считать байт из порта PB. Теперь этот байт будет содержать информацию о состоянии кнопок S9…S16. Опрашивая таким образом то первую то вторую половину кнопок, микроконтроллер может реагировать на нажатие каждой из кнопок отдельно.

     

    Описанная выше матрица может быть легко расширена. Можно взять не две вертикальные линии, а три, четыре и так далее. Для данного микроконтроллера максимально возможная матрица имеет размеры 7X8. Так как порт PD имеет лишь семь линий. Общее количество кнопок при этом будет равно 56.

    Последнее обновление ( 01.05.2008 г. )

     

    Управление ЖКИ (LCD) индикаторами

    Автор Белов А. В.

    02.05.2008 г.

    В данной статье рассматривается пример подключения жидкокристаллического индикатора (сокращенно ЖКИ или LCD) к микроконтроллеру.

     

    Сегодня на рынке электронных компонентов можно найти огромное количество индикаторов разных фирм и модификаций. Каждый индикатор имеет свои особенности, свою внутреннюю архитектуру и свой интерфейс для подключения к микроконтроллеру. Однако общие принципы подключения примерно одинаковы. Сразу отметим, что все ЖКИ можно разделить на индикаторы со встроенным контроллером и простые индикаторы без микроконтроллера. Индикаторы с микроконтроллером более предпочтительны для самостоятельного применения. Встроенный микроконтроллер уже содержит в себе сложные программы, выполняющие большинство операций по выводу изображения на индикатор и учитывающий все специфические особенности именно этой индикаторной панели. А интерфейс связи встроенного контроллера обычно совсем не сложный и позволяет легко подключить его к любому универсальному контроллеру. Возмем для примера микроконтроллер Российского производства МТ-10Т7-7. Это простой индикатор, дисплей которого представляет собой строку из десяти семисегментных знакомест. Напряжение питания такого индикатора от 3 до 5 вольт. Ток потребления 30 мкА. Габаритные размеры 66 X 31,5 X 9,5 мм. Схема подключения такого индикатора к микроконтроллеру приведена на рисунке 1.

     

     

    Рис. 1. Подключение ЖКИ к микроконтроллеру

    Для управления индикатором используется порт PB. Линии PB0…PB3 образуют шину данных/адреса. А линия PB4 используется для передачи на индикатор сигнала записи. Выход PB6 используется для выбора адрес/данные. Команды управления передаются на индикатор следующим образом. Сначала необходимо передать адрес разряда, куда мы хотим записать код очередного выводимого символа. Адрес состоит из одного четырехбитного двоичного числа. Нумерация разрядов ведется слева на право. Самый левый (старший) разряд имеет адрес 0 (00002). Следующий разряд имеет адрес 1 (00012). Последний, самый правый, десятый разряд имеет адрес 9 (10012). Для того, что бы записать адрес в контроллер индикатора необходимо, что бы на его A0 присутствовал сигнал логического нуля. Значение адреса выставляется на выходах PB0…PB3. А затем на выход PB4 кратковременно подается единичный сигнал, который поступает на вход WR1 индикатора. По фронту этого импульса адрес записывается в индикатор и запоминается в его внутренней памяти. Теперь, если в индикатор будет записан байт данных, он поступит именно по этому адресу.

     

    Байт данных определяет изображение знака, которое высветится в соответствующем разряде индикатора. Каждый бит этого байта отвечает за свой сегмент в семисегментном поле. Восьмой бит отвечает за высвечивание десятичной точки. Для передачи байта данных на входе A0, а значит и на выходе PB6 должен присутствовать сигнал логической единицы. Байт данных передается в индикатор за два приема. Сначала на выводах PB0…PB3 выставляется младший полубайт. По сигналу на WR1 он записывается в память индикатора. Затем, на тех же выходах (PB0…PB3) выставляется старший полубайт и тоже записывается по сигналу на WR1. После записи второго (старшего) полубайта изображение появляется в соответствующем разряде индикатора, а адрес во внутренней памяти индикатора автоматически увеличивается на единицу. Таким образом, для записи данных в следующий разряд индикатора уже не надо передавать в него адрес. Весь процесс записи адреса и данных в индикатор изображен на рисунке 2.

     

     

    Рис. 2. Диаграмма работы интерфейса индикатора

     

     

    На этом рисунке представлены два варианта работы с индикатором. Запись одного знакоместа и запись нескольких знакомест подряд. Переменный резистор R1 (см. схему на рис. 1) предназначен для регулировки контрастности дисплея. Для того, что бы изображение на индикаторе было хорошо видно, нужно выставить самую подходящую контрастность наблюдая изображение на экране индикатора. Для разной освещенности и разного угла зрения ручку регулятора придется выставлять в разные положения. Хорошо видное изображение в других при изменившихся условиях наблюдения может стать абсолютно не видимым. Что бы увидеть его нужно покрутить ручку регулятора в разные стороны.

     

    В заключении хочу отметить, что именно эти выводы порта для управления индикатором выбраны абсолютно произвольно. В данном случае автор руководствовался удобством разводки печатной платы. Вы же можете выбрать любые другие выводы и даже другой порт ввода вывода микроконтроллера.

    Последнее обновление ( 01.05.2008 г. )

     

    Подключение энкодера

    Автор Белов А. В.

    04.05.2008 г.

     

    Из этой статьи вы узнаете, что такое энкодер, чем он отличается от переменного резистора и как он помогает при помощи простого поворота ручки вводить информацию в микроконтроллер.

     

    В связи с тотальным переходом к микропроцессорному управлению бытовыми и другими электронными приборами изменились и органы регулировки, применяемые в этих приборах. Если раньше для того, что бы отрегулировать громкость радиоприемника или телевизора вы должны были просто покрутить соответствующую ручку, то теперь вы зачастую вынуждены пользоваться двумя кнопками: «Громкость +» и «Громкость -«. А если нужно регулировать не только громкость? Для многих пользователей это просто не удобно. К тому же страдает оперативность регулировки. Нажав кнопку уменьшения громкости нужно еще подождать какое то время, пока громкость доползет до нужного уровня. И все это время приходится страдать от громкого звука. Совместить преимущества традиционных регуляторов и при этом не потерять новые возможности, которые нам дают микроконтроллеры призвано новое устройство ввода информации, которое получило название энкодер. По внешнему виду и установочным размерам энкодер очень похож на обычный переменный резистор, который использовался в традиционных аналоговых устройствах. Но по внутреннему устройству он кардинально отличается. Энкодер так же, как и резистор имеет выступающую вперед ось, на которую можно надеть такую же самую ручку, какую обычно одевают на резистор. Вращение рукоятки энкодера приводит к вырабатыванию им последовательности импульсов, которые затем поступают на микроконтроллер и дают ему информацию о том, на сколько нужно уменьшить либо увеличить то либо иное значение. Например, насколько нужно увеличить или уменьшить громкость сигнала и т.п. Причем устройство энкодера таково, что микроконтроллер может различать не только величину, на которую нужно изменить параметр, но и направление этого изменения. Это позволяет, например, при вращении оси энкодера в одну сторону увеличивать громкость, а при вращении в другую — уменьшать.

     

    Рис. 1. Принцип работы энкодера

     

    Рассмотрим, как же устроен энкодер. На рисунке 1 показано устройство простого механического энкодера. Как видно из рисунка, основой энкодера является диск из изоляционного материалла закрепленный на оси, на которую и насаживается рукоятка для ее вращения. По периметру диска равномерно расположены специальные прорези. Прорези делят всю окружность на несколько (обысно 6-8) равных секторов. Причем ширина прорезей равна ширине промежутков между ними. Кроме того, имеется две группы контактов, которые установлены таким образом, что при вращении диска они то замыкаются попав в прорезь, то размыкаются в промежутке между прорезями. Очень важно расположение этих пар контактов относительно прорезей. Контакты расположены таким образом, что в тот момент, когда одна пара находится на краю какой либо прорези, вторая пара контактов находится ровно посредине между двумя соседними прорезями. Именно такое расположение и показано на рисунке. В результате реализуется следующий порядок замыкания/размыкания контактов:

    Замыкается первая группа контактов

    Замыкается вторая группа контактов

    Размыкается первая группа контактов

    Размыкается вторая группа контактов

    5. Все повторяется сначала.

     

     

    Рис. 2. Схема энкодера Рис. 3. Диаграмма работы

     

    На рисунке 2 приведена внутренняя электрическая схема простого механического энкодера. Энкодер имеет всего три вывода (что делает его еще больше похожим на переменный резистор). Нижний по схеме вывод — общий для обеих пар контактов. В результате, при вращении рукоятки энкодера на выходе мы получим две последовательности импульсов. При равномерном вращении в одну сторону это будут два меандра, сдвинутых по фазе на 90 градусов. Для наглядности этот процесс показан на рисунке 3. Как микроконтроллер определяет угол поворота оси энкодера надеюсь понятно. Он просто подсчитывает число импульсов. Причем можно считать импульсы приходящие от любой из группы контактов. Основной фокус — как определить направления вращения. Как раз тут и помогает последовательность замыкания и размыкания контактов. При вращении оси энкодера в одну из сторон каждый раз, когда первая группа контактов переходит из замкнутого состояния в разомкнутое, вторая группа контактов оказывается замкнута. Причем момент перехода первой группы приходится как раз на середину отрезка времени, когда вторая группа замкнута. То есть, дребезг уже закончился и все переходные процессы улеглись. При вращении в другую сторону порядок размыканий и замыканий сменяется на обратный. Поэтому в момент, когда первая группа контактов переходит из замкнутого состояния в разомкнутое, вторая группа всегда оказывается разомкнута. Именно по этому факту микроконтроллер и определяет направление вращения.

     

     

    Рис. 4. Схема подключения энкодера к микроконтроллеру

     

    На рисунке 4 показана схема подключения энкодера к микроконтроллеру. Контакты энкодера подключаются таким же образом, как подключается простая отдельная кнопка (см. статью «Подключение кнопок»). Линии порта PD2 и PD3 должны быть настроены как входы и внутренний нагрузочный резистор на обоих входах должен быть включен. Подробнее о настройке линий порта и внутренних нагрузочных резисторах читайте в упомянутой выше статье «Подключение кнопок». Общий вывод энкодера, как видно из схемы, подключается к общему проводу всего устройства.

     

    Программа обработки сигнала от энкодера предельно проста. Обратите внимание, что на схеме (рис. 4) для подключения энкодера выбраны линии PD2 и PD3. И это не случайно. В микроконтроллере ATtiny2313 альтернативной функцией этих выводов является функция входов внешнего прерывания INT0 и INT1. Для работы с энкодером как раз и используется одно из этиз прерываний. Например, можно использовать прерывание по внешнему входу INT0. То есть по входу PD2 (вывод 6). Из чего же состоит программа? Ну, во первых, сначала нужно разрешить прерывание по INT0. Причем необходимо выбрать такой режим, когда прерывание происходит по фрону (или спаду) импульса на этом входе. Ну а затем еще нужна простейшая подпрограммка обработки этого прерывания. Эта подпрограммка должна просто проверять значение линии порта PD3 и в зависимости от того, равно оно нули либо единице уменьшать либо увеличивать регулируемое значение.

     

    Рассмотрим это подробнее. Допустим, что мы выбрали режим прерывания по фронту импульса. Представим, что контроллер выполняет основную программу, не связанную с энкодером. В какой то момент пользователь вращает рукоятку энкодера, например, влево. Контакты начинают замыкаться и размыкаться. По фронту импульса на входе INT0 в микроконтроллере происходит вызов прерывания. Это значит, что работа основной программы временно прерывается и контроллер переходит к подпрограмме обработки прерывания. Эта подпрограмма читает информацию из порта PD и оценивает содержимое разряда PD3. Так как рукоятка энкодера была повернута (мы договорились) вправо, то в этом разряде микроконтроллер обнаружит логическую единицу. Обнаружив единицу подпрограмма обработки прерывания увеличивает значение специальной ячейки, где хранится код, соответствующий текущей громкости. Код увеличивается на единицу. После этого подпрограмма заканчивает свою работу. Микроконтроллер снова переходит к выполнению своей основной программы. Если вращение в ту же сторону продолжается, то по фронту следующего импульса на INT0 опять будет вызвано прерывание и значение громкости снова увеличится на единицу. И так до тех пор, пока не прикратится вращение рукоятки энкодера либо не переполнится значение громкости. Подпрограмма должна проверять это значение и не увеличивать громкость, если она достигла максимума.

     

    Если же ротор энкодера вращать в другую сторону, то та же процедура обработки прерывания, вызванная по фронту сигнала на входе NT0 обнаружит на входе PD3 значение логического нуля. Обнаружив этот ноль, подпрограмма должна уменьшить значение кода в ячейке громкости на единицу. Если вращение продолжается, то по фронту каждого импульса на входе INT0 будет вызываться это прерывание и каждый раз значение громкости будет уменьшаться. И в этом случае, программа должна контроллировать теперь уже минимальное значение громкости. И по достижении нуля, программа больше не должна производить процедуру вычитания.

     

    До сих пор мы говорили о простом механическом энкодере. Но наличие механических контактов всегда связано с такими явлениями, как дребезг, а так же помехи, вызванные плохим контактом в связи с засорением или износом. Все это приводит к низкой надежности работы механического энкодера. Поэтому в последнее время получают все болшее распространение оптоэлектрические энкодеры. В оптоэлектрическом энкодере вместо механических контактов используются оптопары: светодиод-фотодиод. Такой энкодер требует дополнительного внешнего питания, поэтому он имеет еще один вывод — вывод питания. Питаются такие энкодеры обычно от стабилизированного источника +5В и выдают на выходе сигналы, близкие к стандартным логическим уровням. В связи с этим, отпадает необходимость включать внутренние резисторы нагрузки для тех входов микроконтроллера, к которым подключен такой энкодер. В остальном, работа с оптоэлектронными энкодерами аналогична работе с простыми механическими моделями. К сожалению, использование оптоэлектронных энкодеров ограничено их высокой стоимостью.

     

     

    Последнее обновление (04.05.2008 г.)

     

    Практические примеры применения USB-AVR

     

    Проект USB-AVR пришелся по вкусу многим самодеятельным конструкторам из самых разных стран мира. Компания Objective development на своем сайте призывает всех, кто разработал свою собственную конструкция с использованием их технологии, присылать ее описание или ссылку на сайт с таким описанием и охотно размещает все эти ссылки на своем сайте.

     

    ТО. что проекте участвуют представители разных стран, привело к тому, что разные описания приводятся на разных языках. В основном на английском, немецком, итальянском. К сожалению, пока ни одного проекта на русском. Однако наш сайт планирует перевести описания самых интересных проектов.

     

    Список проектов, выполненных с применением USB-AVR находится по адресу http://www.obdev.at/products/avrusb/projects.html Список разделен на категории:

     

    Интерфейсы и адаптеры

     

    В этом разделе перечислены примеры адаптеров, преобразовывающих стандарт USB в другие стандартные виды интерфейсов. Приводятся следующие примеры:

    Преобразователь USB – uDMX. Стандарт uDMX является расширением стандарта DMX и отличается от последнего наличием питания. Канал DMX предназначен для управления световыми устройствами и различными сценическими эффектами.

    Миниатюрный адаптер I2C шины. Для примера используется совместно с датчиком температуры DS1621.

    USB – LPT адаптер.


    Рекомендуемые страницы:

    Схема выключателя на симисторе

    Для включения и отключения нагрузки (ламп накаливания, обмоток реле, электродвигателей и т.п.) зачастую используют тиристоры. Особенность этого вида полупроводниковых приборов и основное их отличие от транзисторов заключается в том, что они обладают двумя устойчивыми состояниями, без каких-либо промежуточных.

    Это состояние «включено», когда сопротивление полупроводникового прибора минимально, и состояние «выключено», когда сопротивление тиристора максимально. В идеале эти сопротивления приближаются к нулю или бесконечности.

    Для включения тиристора на его управляющий электрод достаточно хотя бы кратковременно подать управляющее напряжение. Отключить тиристор (запереть) можно кратковременным выключением питания тиристора, сменой полярности питающего напряжения либо уменьшением тока в нагрузке ниже тока удержания тиристора.

    Обычно включают и отключают тиристорные коммутаторы двумя кнопками. Значительно меньшее распространение получили однокнопочные схемы управления тиристорами.

    Здесь подробно рассмотрены методы однокнопочного управления тиристорными коммутаторами. Принцип работы тиристорных однокнопочных управляющих устройств основан на динамических зарядно-разрядных процессах в цепи управления тиристора [EW 4/01-299].

    Схема однокнопочного управления тиристором

    На рисунке 1 показана одна из простейших схем однокнопочного управления тиристорным коммутатором. В схеме (здесь и далее) используют кнопки без фиксации положения. В исходном состоянии нормально замкнутые контакты кнопки шунтируют цепь управления тиристором.

    Сопротивление тиристора максимально, ток через нагрузку не протекает. Диаграммы основных процессов, протекающих в схеме на рис. 1, рассмотрены на рис. 2.

    Для включения тиристора (ON) нажимают на кнопку SB1. При этом нагрузка оказывается подключенной к источнику питания через контакты кнопки SB1, а конденсатор С1 заряжается через резистор R1 от источника питания.

    Скорость заряда конденсатора определяется постоянной времени цепи R1C1 (см. диаграмму). После того как кнопку отпустят, конденсатор С1 разряжается на управляющий электрод тиристора. Если напряжение на нем равно или превышает напряжение включения тиристора, тиристор отпирается.

    Рис. 1. Принципиальная схема управления тиристором с помощью одной кнопки.

    Рис. 2. Диаграммы основных процессов, протекающих в схеме с тиристором.

    Отключить нагрузку (OFF) можно кратковременным нажатием на кнопку SB1. При этом конденсатор С1 не успевает зарядиться. Поскольку контакты кнопки шунтируют электроды тиристора (анод — катод), это равноценно отключению источника питания тиристора. В результате нагрузка будет отключена.

    Следовательно, для включения нагрузки необходимо с большей продолжительностью нажать на управляющую кнопку, для отключения — еще раз кратковременно нажать ту же кнопку.

    Простые силовые ключи на тиристорах

    На рис. 3 и 4 показаны варианты схемной идеи, представленной на рис. 1. На рис. 3 использована цепочка последовательно соединенных диодов VD1 и VD2 для ограничения максимального напряжения заряда конденсатора.

    Рис. 3. Вариант схемы управления тиристором одной кнопкой.

    Это позволило заметно снизить рабочее напряжение (до 1,5. 3 В) и емкость конденсатора С1. В следующей схеме (рис. 4) резистор R1 включен последовательно с нагрузкой, что позволяет создать двухполюсный коммутатор нагрузки. Сопротивление нагрузки должно быть намного ниже, чем сопротивление R1.

    Рис. 4. Схема электронного ключа на тиристоре с последовательным подключением нагрузки.

    Тиристорный коммутатор с двумя кнопками

    Тиристорное устройство управления нагрузкой (рис. 5) может быть использовано для включения и выключения нагрузки любой из нескольких последовательно включенных кнопок, работающих на разрыв цепи. Принцип действия тиристорного коммутатора заключается в следующем.

    При включении устройства напряжение, подаваемое на управляющий электрод тиристора, недостаточно для его включения. Тиристор, и, соответственно, нагрузка отключены. При нажатии на любую из кнопок SB1 — SBn (и удержании ее нажатой) конденсатор С1 заряжается через резистор R1 от источника питания. Цепь управления тиристора и сам тиристор при этом отключены.

    Рис. 5. Схема простого тиристорного коммутатора нагрузки с двумя кнопками.

    После отпускания кнопки и восстановления цепи питания тиристора накопленная конденсатором С1 энергия оказывается приложенной к управляющему электроду тиристора. В результате разряда конденсатора через управляющий электрод тиристор включается, подсоединяя тем самым нагрузку к цепи питания.

    Для отключения тиристора (и нагрузки) кратковременно нажимают на любую из кнопок SB1 — SBn. При этом конденсатор С1 не успевает зарядиться. В то же время цепь питания тиристора размыкается, тиристор запирается.

    Величина резистора R2 зависит от напряжения питания устройства: при напряжении 15 В его сопротивление — 10 кОм при 9 В — 3,3 кОм при 5 6-1,2 кОм.

    Схема с эквивалентом тиристора на транзисторах

    При использовании вместо тиристора его транзисторного аналога (рис. 6) величина этого резистора меняется, соответственно, от 240 кОм (15 В) до 16 кОм (9 В) и до 4,7 кОм (5 В).

    Рис. 6. Схема электронного коммутатора нагрузки с транзисторным эквивалентом тиристора.

    Аналог многокнопочного переключателя на тиристорах

    Тиристорное устройство, позволяющее создать аналог многокнопочного переключателя с зависимой фиксацией положения и использующее для управления кнопочные элементы, работающие без фиксации, показано на рис. 7. В схеме может быть использовано несколько тиристоров, однако, для упрощения схемы, на рисунке показано лишь два канала. Другие каналы коммутации могут быть подключены аналогично предыдущим.

    Рис. 7. Принципиальная схема аналога многокнопочного переключателя с использованием тиристоров.

    В исходном состоянии тиристоры заперты. При нажатии на кнопку управления, например, кнопку SB1, конденсатор С1 относительно большой емкости оказывается подключенным к источнику питания через диоды VD1 — VDm и сопротивления нагрузки всех каналов.

    В результате заряда конденсатора возникает импульс тока, приводящий к кратковременному замыканию анодов всех тиристоров через соответствующие диоды VD1 — VDm на общую шину.

    Любой из тиристоров, если он был включен, отключается. В то же время конденсатор накапливает энергию. После отпускания кнопки конденсатор разряжается на управляющий электрод тиристора, отпирая его.

    Для включения любого другого канала нажимают соответствующую кнопку. Происходит отключение (сброс) ранее задействованной нагрузки и включение новой нагрузки. В схеме предусмотрена кнопка SB0 общего отключения всех нагрузок.

    Многокнопочный переключатель с транзисторным аналогом тиристоров

    Вариант схемы, выполненный на транзисторных аналогах тиристоров и диодно-емкостных зарядных цепочках с использованием малогабаритных конденсаторов, показан на рис. 8, 9.

    Рис. 8. Схема эквивалентной замены тиристора транзисторами.

    В схеме предусмотрена светодиодная индикация включенного канала. В этой связи максимальный ток нагрузки каждого из каналов ограничен значением 20 мА.

    Рис. 9. Схема многокнопочного переключателя с транзисторным аналогом тиристоров.

    Устройства, аналогичные представленным на рис. 7 – 9, а также на рис. 10 – 12, можно использовать для систем выбора программ радио- и телеприемников.

    Недостатком схемных решений (рис. 7 – 9) является то, что в момент нажатия на любую из кнопок все нагрузки оказываются хотя бы на мгновение подключенными к источнику питания.

    Схемы многопозиционных переключателей

    На рис. 10 и 11 показан тиристорный коммутатор разрывного типа с неограниченным количеством последовательно включенных элементов.

    При нажатии на одну из кнопок управления цепь питания аналогов тиристоров размыкается по постоянному току. Конденсатор С1 оказывается включенным последовательно с аналогом тиристора.

    Рис. 10. Схема базового элемента для самодельного многопозиционного коммутатора нагрузки.

    Рис. 11. Принципиальная схема самодельного многопозиционного коммутатора нагрузки.

    Одновременно управляющее напряжение (нулевого уровня) через задействованную кнопку и резистор R2 (рис. 10) подается на управляющий электрод аналога тиристора.

    Поскольку в первые мгновения при нажатии кнопки последовательно с аналогом тиристора оказывается включенным полностью разряженный конденсатор, такое включение равносильно короткому замыканию в цепи питания соответствующего тиристора. Следовательно, тиристор отпирается, включая тем самым соответствующую нагрузку.

    При нажатии на любую другую кнопку ранее задействованный канал отключается, и включается другой канал. При длительном (порядка 2 сек) нажатии на любую из кнопок конденсатор С1 заряжается, что равнозначно размыканию цепи и приводит к запиранию всех тиристоров.

    Схема усовершенствованного электронного переключателя

    Рис. 12. Принципиальная схема тиристорного коммутатора для множества нагрузок.

    В ряду тиристорных коммутаторов наиболее совершенной представляется схема, показанная на рис. 12. При нажатии кнопки управления возникает бросок тока, эквивалентный короткому замыканию.

    Происходит отключение ранее задействованных тиристоров и включение тиристора, соответствующего нажатой кнопке. В схеме предусмотрена светодиодная индикация задействованного канала, а также кнопка общего сброса.

    Вместо конденсаторов большой емкости могут быть использованы диодно-конденсаторные цепочки (рис. 12). Принцип действия схемы сохраняется. В качестве нагрузки можно использовать низковольтные реле, например, РМК 11105 сопротивлением 350 Ом на рабочее напряжение 5 В.

    Резистор R1 ограничивает ток короткого замыкания и ток максимального потребления величиной 10. 12 мА. Количество каналов коммутации не ограничено.

    Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

    Симистор («триак» по терминологии, принятой в США) — это двунаправленный симметричный тиристор. Симисторы очень удобны для систем ключевого регулирования в цепях переменного тока. Как следствие, они практически вытеснили тиристоры из бытовой техники (стиральные машины, пылесосы и т.д.).

    У симистора нет анода и катода. Его три вывода называются: УЭ (управляющий электрод), СЭУ (силовой электрод, расположенный ближе к УЭ), СЭ (силовой электрод у основания прибора) [2-197]. Существуют также аналогичные зарубежные названия, принятые в триаках, соответственно, «G» (Gate — затвор), «Т1» (Main Terminal 1) и «Т2» (Main Terminal 2).

    Симистор, в зависимости от конструкции, может открываться как положительными, так и отрицательными импульсами на выводе УЭ. Ветви ВАХ симметричные, поэтому ток через силовые электроды может быть и втекающим, и вытекающим. Итого, различают четыре режима работы в квадрантах 1…4 (Рис. 2.105).

    Рис. 2.105. Режимы работы симисторов (триаков).

    Первыми были разработаны четырёх квадрантные симисторы или, по-другому, 4Q-TpnaKM. Они требуют для нормальной работы введения в схему демпферных ЛС-цепочек (100 Ом, 0.1 МК Ф), которые устанавливаются параллельно силовым электродам СЭУ и СЭ. Таким нехитрым способом снижается скорость нарастания напряжения через симистор и устраняются ложные срабатывания при повышенной температуре и значительной индуктивной или ёмкостной нагрузке.

    Технологические достижения последнего времени позволили создать трёхквадрантные симисторы или, по-другому, 3Q триаки. Они, в отличие от симисторов «4Q», работают в трёх из четырёх квадрантов и не требуют ЯС-цепочек. Типовые параметры 3Q-TpnaKOB Hi-Com BTA208…225 фирмы Philips: максимальное коммутируемое напряжение 600…800 В, ток силовой части 8…25 А, ток отпирания затвора (УЭ) 2…50 мА, малогабаритный SMD-корпус.

    Схемы подключения симисторов к MK можно условно разделить на две группы: без развязки от сети 220 В (Рис. 2.106, a…r) и с гальванической изоляцией (Рис. 2.107, а…л).

    Некоторые замечания. Типы указанных на схемах симисторов однообразны, в основном КУ208х, BTxxx, MACxxx. Это сделано специально, чтобы заострить внимание на схемотехнике низковольтной управляющей части, поскольку она ближе всего к MK. На практике можно использовать и другие типы симисторов, следя за их выходной мощностью и амплитудой управляющего тока.

    Демпферные цепочки в силовой части на схемах, как правило, отсутствуют. Это упрощение, чтобы не загромождать рисунки, поскольку предполагается, что сопротивление нагрузки RH носит чисто активный характер. В реальной жизни демпфирование необходимо для 4Q-триаков, если нагрузка имеет значительную индуктивную или ёмкостную составляющую.

    Рис. 2.106. Схемы подключения симисторов к MK без гальванической изоляции (начало):

    а) ВЫСОКИЙ уровень на выходе МК открывает транзистор VT1, через который включается симистор VS1. Варистор RU1 защищает симистор от всплесков напряжения, начиная с порога 470 В (разброс 423…517 В). Это актуально при индуктивном характере нагрузки jRH;

    б) аналогично Рис. 2.106, а, но с другой полярностью сигнала на выходе MK и с транзистором VT1 другой структуры, который выполняет функцию инвертора напряжения. Благодаря низкому сопротивлению резистора R2, повышается помехоусточивость. Сопротивление резистора R2 выбирается по тем же критериям, что и для схем на тиристорах;

    Рис. 2.106. Схемы подключения симисторов к MK без гальванической изоляции (окончание):

    в) высоковольтный транзистор ГУ2замыкаетдиагональдиодного моста VD1 при НИЗКОМ уровне на линии MK. Транзистор VT1 в момент рестарта MK находится в открытом состоянии из-за резистора R1, при этом симистор VS1 закрывается и ток через нагрузку RH не протекает;

    г) прямое управление симистором VS1 с одного или нескольких выходов MK. Запараллеливание линий применяется при недостаточном токе управления (показано пунктиром). Ток через нагрузку RH не более 150 мА. Возможные замены: VS1 — MAC97A8, VD2— KC147A.

    а) симистор VS1 включается/выключается при наличии/отсутствии импульсов 50…100 кГц, генерируемых с выхода MK. Изолирующий трансформатор T1 наматывается на кольце из феррита N30 и содержит в обмотке I — 15 витков, в обмотке II — 45 витков провода ПЭВ-0.2;

    б) простая схема трансформаторной развязки. Симистор VS1 включается короткими импульсами с выхода MK. Ток управления зависит от коэффициента трансформации 77;

    Рис. 2.107. Схемы гальванической изоляции МК от симисторов (продолжение):

    в) разделительный трансформатор T1 наматывается на ферритовом кольце M1000HM размерами K20xl2x6 и содержит в обмотке I — 60 витков, в обмотке II — 120 витков провода ПЭВ-0.2. Цепочка R3, C1 накапливает энергию для импульсной коммутации транзистора K77;

    г) если не требуется частое включение/выключение нагрузки, то для гальванической развязки можно использовать реле K1. Его контакты должны выдерживать без пробоя переменное напряжение 220 В. В некоторых схемах токоограничивающий резистор R3 закорачивают;

    д) контакты геркона SF1 замыкаются при протекании тока через катушку индуктивности L1, которая намотана на его корпус. Достоинство — сверхбольшое сопротивление изоляции;

    е) гальваническая развязка на транзисторной оптопаре VU1. Резистор R3 повышает помехоустойчивость, но может отсутствовать. Резистор Я2определяет порог открывания транзистора VT1. При использовании симисторов КУ208, TC106-10 сопротивление резистора Я2уменьшают до 30…75 кОм;

    ж) симистором VS1 управляет драйвер DA1 (по-старому, КР1182ПМ1), который обеспечивает плавное изменение тока в нагрузке RH в зависимости от напряжения на конденсаторе C1. Если транзистор оптопары W/закрыт, то конденсатор С1 заряжается от внутреннего ИОН микросхемы DA1 и в нагрузке устанавливается максимальное напряжение. Резистор R4 может отсутствовать при наличии резистора R3. Резистор R3 можно закоротить при наличии резистора R4

    з) гальваническая развязка на опторезисторе VU1. Резистором R1 подбирается ток через своизлучатель VU1 и, соответственно, ток управления симистором VS1;

    и) применение двух оптотиристоров VU1, УУ2щя коммутации симистора VS1 в любой пупериод сетевого напряжения. Резистор Л2ограничивает ток управления симистора;

    к) питание входа УЭ симистора VS1 осуществляется от отдельной низковольтной обмотки промышленного трансформатора T1ТПП235-220/110-50;

    л) применение оптотиристора VU1 для управления симистором VS1 (замена КУ208Д1). Из двух токоограничивающих резисторов R2, R3 обычно оставляют один, второй замыкают перемычкой. Замена VD1 — мост КЦ407А или четыре отдельных диода КД226.

    Источник: Рюмик, С. М., 1000 и одна микроконтроллерная схема. Вып. 2 / С. М. Рюмик. — М.:ЛР Додэка-ХХ1, 2011. — 400 с.: ил. + CD. — (Серия «Программируемые системы»).

    Учебное пособие для оптопары и приложение для оптопары

    Из наших руководств по трансформаторам мы знаем, что они могут не только обеспечивать понижающее (или повышающее) напряжение, но также обеспечивать «электрическую изоляцию» между более высоким напряжением на первичной стороне и более низким напряжением на вторичной стороне. .

    Другими словами, трансформаторы изолируют первичное входное напряжение от вторичного выходного напряжения с помощью электромагнитной связи, и это достигается с помощью магнитного потока, циркулирующего внутри их многослойного железного сердечника.

    Но мы также можем обеспечить электрическую изоляцию между входным источником и выходной нагрузкой, используя только свет, используя очень распространенный и ценный электронный компонент, называемый оптопарой .

    Базовая конструкция оптопары, также известной как оптоизолятор , состоит из светодиода, излучающего инфракрасный свет, и полупроводникового светочувствительного устройства, которое используется для обнаружения излучаемого инфракрасного луча. И светодиод, и фоточувствительное устройство заключены в светонепроницаемый корпус или корпус с металлическими ножками для электрических соединений, как показано на рисунке.

    Оптопара или оптоизолятор состоит из излучателя света, светодиода и светочувствительного приемника, который может быть одним фотодиодом, фототранзистором, фоторезистором, фото-тиристором или фототриаком с базовым режимом работы. оптопары очень просто понять.

    Оптопара на фототранзисторах


    Предположим, что устройство на фототранзисторе, как показано. Ток от источника сигнала проходит через входной светодиод, который излучает инфракрасный свет, интенсивность которого пропорциональна электрическому сигналу.

    Этот излучаемый свет падает на базу фототранзистора, заставляя его включаться и проводить аналогично нормальному биполярному транзистору.

    Базовое соединение фототранзистора может быть оставлено открытым (неподключенным) для максимальной чувствительности к энергии инфракрасного света светодиодов или подключено к земле через подходящий внешний высокоомный резистор для управления чувствительностью переключения, что делает его более стабильным и устойчивым к воздействию ложное срабатывание из-за внешних электрических помех или скачков напряжения.

    Когда ток, протекающий через светодиод, прерывается, излучаемый инфракрасным светом отключается, в результате чего фототранзистор перестает проводить. Фототранзистор можно использовать для переключения тока в выходной цепи. Спектральная характеристика светодиода и светочувствительного устройства близко согласована, поскольку они разделены прозрачной средой, такой как стекло, пластик или воздух. Поскольку нет прямого электрического соединения между входом и выходом оптопары, достигается гальваническая развязка до 10 кВ.

    Оптопары доступны в четырех основных типах, каждый из которых имеет источник инфракрасного светодиода, но с различными светочувствительными устройствами. Четыре оптопары называются: фототранзистор , фототранзистор , Photo-SCR и фототранзистор , как показано ниже.

    Типы оптопар

    Фототранзистор и фотодарлингтона предназначены в основном для использования в цепях постоянного тока, в то время как фото-тиристор и фототиристор позволяют управлять цепями переменного тока.Есть много других видов комбинаций источник-датчик, таких как светодиод-фотодиод, светодиод-лазер, пары лампа-фоторезистор, отражающие и щелевые оптопары.

    Простые самодельные оптопары могут быть сконструированы из отдельных компонентов. Светодиод и фототранзистор вставлены в жесткую пластиковую трубку или заключены в термоусаживаемую трубку, как показано. Преимущество этой самодельной оптопары заключается в том, что трубку можно обрезать до любой длины и даже согнуть по углам. Очевидно, что трубка с отражающей внутренней стороной будет более эффективной, чем темная черная трубка.

    Оптрон самодельный

    Применение оптопары

    Оптопары и оптоизоляторы

    могут использоваться сами по себе или для переключения ряда других более крупных электронных устройств, таких как транзисторы и симисторы, обеспечивая необходимую гальваническую развязку между управляющим сигналом более низкого напряжения, например, от Arduino или микроконтроллера. , и гораздо более высокий выходной сигнал напряжения или тока сети.

    Общие области применения оптопар включают микропроцессорное переключение входов / выходов, управление питанием постоянного и переменного тока, связь с ПК, изоляцию сигналов и регулировку источника питания, которые страдают от токовых контуров заземления и т. Д.Передаваемый электрический сигнал может быть аналоговым (линейным) или цифровым (импульсным).

    В этом приложении оптопара используется для обнаружения срабатывания переключателя или другого типа цифрового входного сигнала. Это полезно, если обнаруживаемый переключатель или сигнал находится в электрически зашумленной среде. Выход может использоваться для управления внешней схемой, светом или как вход для ПК или микропроцессора.

    Оптотранзисторный переключатель постоянного тока

    Здесь, в этом примере, подключенный извне резистор 270 кОм используется для управления чувствительностью области базы фототранзисторов.Номинал резистора может быть выбран в соответствии с выбранным фотоэлементом и требуемой чувствительностью переключения. Конденсатор предотвращает любые нежелательные всплески или переходные процессы от ложного срабатывания базы оптранзисторов.

    Помимо обнаружения сигналов и данных постоянного тока, также доступны опто-симисторные изоляторы, которые позволяют управлять оборудованием с питанием от переменного тока и сетевыми лампами. Симисторы с оптической связью, такие как MOC 3020, имеют номинальное напряжение около 400 вольт, что делает их идеальными для прямого подключения к сети и максимальным током около 100 мА.Для более мощных нагрузок можно использовать опто-симистор для подачи управляющего импульса на другой более мощный симистор через токоограничивающий резистор, как показано.

    Применение симисторного оптопара

    Этот тип конфигурации оптопары составляет основу очень простого твердотельного реле, которое можно использовать для управления любой нагрузкой с питанием от сети переменного тока, такой как лампы и двигатели. Также, в отличие от тиристора (SCR), симистор способен проводить обе половины сетевого цикла переменного тока с обнаружением перехода через нуль, позволяя нагрузке получать полную мощность без больших пусковых токов при переключении индуктивных нагрузок.

    Оптопары и Оптоизоляторы — отличные электронные устройства, которые позволяют управлять такими устройствами, как силовые транзисторы и симисторы, с выходного порта ПК, цифрового переключателя или с помощью низковольтного сигнала данных, например, от логического элемента. Основное преимущество оптопар — их высокая электрическая изоляция между входными и выходными клеммами, позволяющая относительно небольшим цифровым сигналам управлять очень большими переменными напряжениями, токами и мощностью.

    Оптопара может использоваться как с сигналами постоянного, так и переменного тока с оптопарами, использующими тиристор (тиристор) или симистор, поскольку устройство фотодетектирования в первую очередь предназначено для приложений управления мощностью переменного тока.Основным преимуществом фото-тиристоров и фототиристоров является полная изоляция от любых шумов или скачков напряжения, присутствующих в линии питания переменного тока, а также обнаружение перехода через ноль синусоидальной формы волны, что снижает коммутационные и пусковые токи, защищая любые используемые силовые полупроводники. от термического напряжения и ударов.

    Его типы и различные применения в цепях постоянного / переменного тока

    Оптрон — это электронный компонент, который передает электрические сигналы между двумя изолированными цепями. Оптопара также называется оптоизолятором, фотоэлементом или оптическим изолятором.

    Часто в цепях, особенно в цепях с низким напряжением или высокочувствительных к шуму цепях, оптопара используется для изоляции цепей, чтобы предотвратить вероятность электрических столкновений или исключить нежелательные шумы. На нынешнем коммерческом рынке мы можем купить оптопару с 10 кВ до 20 кВ выдерживаемым напряжением от входа к выходу, со спецификацией переходных напряжений 25 кВ / мкс.

    Внутренняя структура оптопары

    Это внутренняя структура оптрона.На левой стороне открыты контакты 1 и 2, это светодиод (светоизлучающий диод), светодиод излучает инфракрасный свет на светочувствительный транзистор на правой стороне. Фототранзистор переключает выходную схему своим коллектором и эмиттером, как и типичные транзисторы BJT. Яркость светодиода напрямую регулирует фототранзистор. Поскольку светодиод может управляться другой схемой, а фототранзистор может управлять другой схемой, то двумя независимыми схемами можно управлять с помощью оптопары.Кроме того, между фототранзистором и инфракрасным светодиодом пространство выполнено из прозрачного непроводящего материала; он электрически изолирует две разные цепи. Полое пространство между светодиодом и фототранзистором может быть выполнено из стекла, воздуха или прозрачного пластика, электрическая изоляция намного выше, обычно 10 кВ или выше.

    Типы оптопар

    Существует много различных типов оптопар. коммерчески доступны в зависимости от их потребностей и коммутационных возможностей.В зависимости от использования в основном доступны четыре типа оптопар.

    1. Оптрон, использующий фототранзистор .
    2. Оптрон, использующий фото транзистор Дарлингтона .
    3. Оптрон, использующий Photo TRIAC .
    4. Оптрон, использующий Photo SCR .

    Оптрон на фототранзисторах

    На верхнем изображении показана внутренняя конструкция оптопары на фототранзисторе.Тип транзистора может быть любым, будь то PNP или NPN .

    Фототранзистор

    может быть двух типов в зависимости от наличия выходного контакта. На втором изображении слева есть дополнительный вывод, который внутренне связан с базой транзистора. Этот вывод используется для управления чувствительностью фототранзистора . Часто вывод используется для соединения с землей или минусом с помощью резистора высокого номинала. В этой конфигурации можно эффективно контролировать ложное срабатывание из-за шума или электрических переходных процессов.

    Кроме того, перед использованием оптопары на основе фототранзистора пользователь должен знать максимальный номинал транзистора. PC816, PC817, LTV817, K847PH — несколько широко используемых оптопар на основе фототранзисторов. Фото — Оптопара на основе транзистора используется в изоляции цепей постоянного тока .

    Транзисторная оптопара Фото-Дарлингтона

    На верхнем изображении представлены два типа символа, показана внутренняя конструкция оптопары на базе Photo-Darlington .

    Транзистор Дарлингтона — это пара из двух транзисторов, в которой один транзистор управляет базой другого транзистора. В этой конфигурации транзистор Дарлингтона обеспечивает высокий коэффициент усиления. Как обычно, светодиод излучает инфракрасный светодиод и управляет базой парного транзистора.

    Оптопара этого типа также используется для изоляции в цепях постоянного тока. Шестой вывод, который внутренне соединен с базой транзистора, используется для управления чувствительностью транзистора, как обсуждалось ранее в описании фототранзистора. 4N32, 4N33, h31B1, h31B2, h31B3 — несколько примеров оптопары на основе фотодарлингтона.

    Оптопара Photo-TRIAC

    На верхнем изображении показана внутренняя конструкция оптрона TRIAC .

    TRIAC в основном используется там, где требуется управление или переключение на основе переменного тока. Светодиод может управляться с помощью постоянного тока, а TRIAC используется для управления переменным током. Оптопара и в этом случае обеспечивает отличную изоляцию.Вот одно приложение симистора. Примеры оптопары на основе фото-TRIAC: IL420 , 4N35 и т. Д. Являются примерами оптопары на основе TRIAC.

    Оптрон на основе фото-SCR

    SCR подставка для Кремниевый выпрямитель , SCR также называется Thyristor . На верхнем изображении показана внутренняя конструкция оптопары на основе Photo-SCR. Как и другие оптопары, светодиод излучает инфракрасное излучение.SCR регулируется яркостью светодиода. Оптопара на основе Photo-SCR, используемая в схемах, связанных с переменным током. Узнайте больше о тиристоре здесь.

    Несколько примеров оптопар на основе фото-SCR: — MOC3071, IL400, MOC3072 и т. Д.

    Применение оптопары

    Как обсуждалось ранее , несколько оптопар используется в цепи постоянного тока и несколько оптопар используется в операциях, связанных с переменным током. . Поскольку оптопара не допускает прямого электрического соединения между двумя сторонами, основное применение оптопары — изоляция двух цепей .

    При переключении другого приложения, как и в случае, когда для переключения приложения можно использовать транзистор, можно использовать оптопару. Его можно использовать в различных операциях, связанных с микроконтроллером, где требуются цифровые импульсы или аналоговая информация от схемы высокого напряжения, оптопара может использоваться для превосходной изоляции между этими двумя.

    Оптопара может использоваться для обнаружения переменного тока и операций, связанных с управлением постоянным током. Давайте посмотрим на несколько применений оптранзисторов.

    Оптопара для переключения цепи постоянного тока:

    В верхней схеме используется оптопара на основе фототранзистора .Он будет действовать как типичный транзисторный переключатель. В схеме использован недорогой оптрон на фототранзисторе PC817 . Инфракрасный светодиод будет управляться переключателем S1 . Когда переключатель будет включен, аккумуляторный источник 9 В будет подавать ток на светодиод через токоограничивающий резистор 10 кОм. Интенсивность регулируется резистором R1. Если мы изменим значение и уменьшим сопротивление, интенсивность светодиода будет высокой, а коэффициент усиления транзистора будет высоким.

    С другой стороны, транзистор представляет собой фототранзистор, управляемый внутренним инфракрасным светодиодом , когда светодиод излучает инфракрасный свет, фототранзистор контактирует, и VOUT будет равен 0, отключая нагрузку, подключенную к нему. Необходимо помнить, что по паспорту коллекторный ток транзистора составляет 50 мА. R2 обеспечивает VOUT 5v. R2 — это подтягивающий резистор.

    Вы можете увидеть переключение светодиода с помощью оптрона на видео ниже…

    В этой конфигурации оптопара на основе фототранзистора может использоваться с микроконтроллером для обнаружения импульсов или прерывания .

    Оптопара для определения напряжения переменного тока:

    Здесь показана еще одна схема для определения переменного напряжения . Инфракрасный светодиод управляется двумя резисторами 100 кОм. Два резистора по 100 кОм, используемые вместо одного резистора 200 кОм, предназначены для дополнительной безопасности в случае короткого замыкания. Светодиод подключается через линию розетки (L) и нейтраль (N). При нажатии S1 светодиод начинает излучать инфракрасный свет. Фототранзистор реагирует и преобразует VOUT с 5 В в 0 В.

    В этой конфигурации оптрон может быть подключен к цепи низкого напряжения, такой как блок микроконтроллера, где требуется определение напряжения переменного тока. На выходе будет прямоугольный импульс от высокого к низкому.

    На данный момент первая цепь используется для управления или переключения цепи постоянного тока, а вторая предназначена для обнаружения цепи переменного тока и управления или переключения цепи постоянного тока. Далее мы увидим управление цепью переменного тока с помощью цепи постоянного тока.

    Оптопара для управления цепью переменного тока с использованием постоянного напряжения:

    В верхней цепи Светодиод снова управляется батареей 9 В через резистор 10 кОм и состоянием переключателя.С другой стороны, используется оптрон на основе фото-TRIAC , который управляет ЛАМПОЙ переменного тока от розетки переменного тока 220 В. Резистор 68R используется для управления TRIAC BT136, который управляется фото-TRIAC внутри блока оптопары.

    Этот тип конфигурации используется для управления электроприборами с использованием схемы низкого напряжения . В верхней схеме используется IL420, который представляет собой оптопару на основе фото-TRIAC.

    Помимо этого типа схемы, в SMPS можно использовать оптопару для отправки информации о коротком замыкании или перегрузке по току на вторичной стороне первичной стороне.

    Если вы хотите увидеть микросхему оптопары в действии , проверьте следующие схемы:

    Управление / работа и управление нагрузками большой мощности с помощью микроконтроллеров

    Иногда мы хотим управлять большими нагрузками с помощью микроконтроллеров. Под большими нагрузками я подразумеваю двигатели, вентиляторы, блоки переменного тока, лампы и другие источники высокого напряжения и тока. Поскольку все мы знаем, что микроконтроллеры могут выводить / подавать напряжение от +3,3 до +5 вольт и от 25 мА до 40 мА через свои входные / выходные контакты.Этого напряжения и тока недостаточно для привода мощных двигателей, вентиляторов, лампочек и т. Д. Есть несколько методов и электронных компонентов, которые могут выдерживать гораздо большие нагрузки (токи / напряжения). Мы можем сопрягать эти компоненты с микроконтроллерами и управлять нагрузками большой мощности. В этом руководстве я расскажу об этих методах и об электронных компонентах, которые могут взаимодействовать с микроконтроллерами для работы с большими (ток-напряжение) нагрузками.

    Методы / методы управления большими нагрузками с помощью микроконтроллеров

    Мы можем использовать следующие электронные компоненты для управления нагрузками большой мощности с микроконтроллерами.
    • Транзисторы
    • оптрон
    • Реле
    • Мосфет
    • SSR (твердотельное реле)

    Верхний список начинается от электронного компонента управления малой мощностью (транзистор) до управления высокой мощностью (твердотельное реле SSR). Эти электронные компоненты могут взаимодействовать с микроконтроллерами любого производителя Altera, Atmel, Cypress Semiconductor, Maxim Integrated, EPSON Semiconductor, Freescale Semiconductor, Infineon, Intel, Microchip Technology, National Semiconductor, NXP Semiconductors, Panasonic, Parallax, Silicon Laboratories, Silicon Motion, Sony, STMicroelectronics, Texas Instruments, Toshiba.Я связал вышеуказанные компоненты во многих схемах с различными микроконтроллерами, например, Arduino, Pic, Stm32, 8051, Picaxe, Avr, Atmega, Arm и LPC и т. Д. Для управления мощными нагрузками. Вышеупомянутые компоненты могут использоваться с мини-компьютерами или платами для разработки, такими как платы BeagleBone, Raspberry Pi, Olimex и Xilinx FPGA.

    Управление большими нагрузками с помощью микроконтроллеров и транзисторов.

    Транзистор — это полупроводниковое устройство, используемое для переключения и усиления электронного сигнала и электронной энергии.Он имеет три терминала: База, Эмиттер и Коллектор. Небольшое напряжение, приложенное к базе, заставляет ток течь от коллектора к эмиттеру (npn) или от эмиттера к коллектору (pnp). Это два распространенных типа транзисторов PNP и NPN. В этом руководстве не рассматриваются электронные компоненты, а только показан метод, с помощью которого мы можем контролировать большие нагрузки.

    Транзистор для управления большой нагрузкой с микроконтроллером

    Обычно транзистор может выдерживать токи до 600 миллиампер и напряжение до 20 вольт.Рейтинги могут быть немного высокими или низкими. Максимальная мощность, с которой может работать транзистор, составляет от 12 до 18 Вт. Этой мощности достаточно для управления нагрузками, мощность которых падает ниже 18 Вт, такими как игрушечные двигатели постоянного тока, лампочки постоянного тока и т. Д. Но все же этой мощности недостаточно для управления нагрузками, которые потребляют постоянный ток в 1 ампер.

    Типичное соединение между транзистором и микроконтроллером показано слева. Маленький игрушечный мотор постоянного тока управляется микроконтроллером.В схеме использован транзистор NPN. Диодом на двигателе является обратный диод для защиты цепи от любой обратной ЭДС двигателем.

    Транзисторы могут быть скомпонованы вместе для получения высокого коэффициента усиления по току. Самая популярная конфигурация — это конфигурация Дарлингтона, в которой высокий коэффициент усиления по току достигается за счет небольшого переключателя напряжения. На рынке доступно множество коммерческих микросхем, которые содержат встроенные в них транзисторы. Такие как ULN2003 и ULN2803 содержат массив транзисторов Дарлингтона в стороне от них.

    Конфигурация схемы

    Дарлингтона и вывод микросхемы ULN2003 показаны с правой стороны.ULN2003 содержит 7 конфигураций Дарлингтона сбоку. Его легко использовать IC вместо того, чтобы создавать конфигурацию Дарлингтона самостоятельно. Ic занимает меньше места и требует меньше соединений.

    Конфигурация Дарлингтона в ULN2803

    Многие другие конфигурации могут быть выполнены с использованием транзисторов для усиления тока. Но для этого урока лучше всего подходит Дарлингтон. ULN2003 может управлять током 500 мА при 50 вольт. Таким образом, конфигурация Дарлингтона увеличивает мощность до 25 Вт.

    Некоторые проекты, которые я создал с использованием транзисторов и микроконтроллеров для управления нагрузками и т. Д. Проекты содержат бесплатный исходный код и принципиальные схемы.

    Управление большими нагрузками с помощью микроконтроллеров и оптопар.

    Оптопара / оптоизолятор или оптопара — это электронный компонент, который отделяет две цепи друг от друга с использованием света в качестве среды. Две цепи независимы, но могут управляться источником света. Небольшое напряжение, приложенное к одной стороне, активирует другую цепь.Оптопара состоит из светодиодного диода и фотоэлемента. Когда на светодиодный диод подается напряжение, он загорается, и свет падает на фотоэлемент. Сопротивление фотоэлемента уменьшается при получении света, поэтому он начинает проводить.

    Оптопара для управления большими нагрузками с микроконтроллером

    Слева показана общая схема оптопары с подключениями к микроконтроллеру. Мотор управляется микроконтроллером. Оптроны используются во многих схемах для изоляции одной цепи от другой.Таким образом исключается опасность высоких шипов. Если у них высокий всплеск, он только снесет оптопару, в оставшейся цепи останется в безопасности. Обычно он используется в высокоценных сердечниках схем. Чтобы изолировать их с помощью цепей регулирования высокого тока.

    Оптопары могут выдерживать большую мощность, чем транзисторы. Например, оптопара FOD3180, которая может выдерживать непрерывный ток 2 А и напряжение от 10 до 20 вольт. Оптопары постоянного тока могут управлять мощностью от 40 до 60 Вт.

    В отличие от транзисторов, которые не используются при коммутации нагрузок переменного тока.Оптопары могут использоваться для управления тяжелыми нагрузками переменного тока. Это будет обсуждаться в теме SSR (твердотельные реле).

    Некоторые проекты, которые я создал, используя оптопары и микроконтроллеры для управления нагрузками и т. Д. Проекты содержат бесплатный исходный код и принципиальные схемы.

    Управление большими нагрузками с помощью микроконтроллеров и реле.

    Распиновка реле

    Реле — это механические переключатели, которые размыкаются и замыкаются при подаче напряжения на указанные контакты.Реле состоит из катушки и NC (нормально замкнутого), NO (нормально разомкнутого) и общей линии. В идеальном состоянии (отсутствие питания) общий вывод закорочен с контактом NC (нормально замкнутый). Создание пути
    прохождения тока между общей и нормально закрытой линией. Но когда на катушку реле подается достаточное напряжение, общий контакт замыкается на нормально разомкнутый контакт. Создание пути прохождения тока между общим и нормально разомкнутым контактом. Путь представляет собой прямое механическое соединение между проводами. Слева показано 5-контактное реле.Реле поставляется во многих упаковках, таких как однополюсный, однополюсный, двухполюсный и двойной (DBDT), однополюсный, двойной желоб (SPST) и т. Д. Реле

    можно напрямую управлять с помощью выводов микроконтроллера. Маленькие реле на +3 В и +5 В могут напрямую управляться через контакты GPIO микроконтроллера (вход / выход общего назначения). Но для некоторых катушек реле требуется больший ток для переключения выходного канала. Чтобы обеспечить им достаточное напряжение, они выводятся через транзисторы. Реле выдерживают 10-15 ампер тока и 110-220 вольт.Мы можем легко управлять нагрузкой 500 Вт с помощью стандартных реле.


    Реле управления большими нагрузками с микроконтроллером и транзистором

    Реле управления большими нагрузками с микроконтроллером и uln2003

    На приведенных выше рисунках реле управляется одним транзистором и микросхемой uln2003, содержащей схему матрицы транзисторов Дарлингтона. Реле могут управлять нагрузками постоянного и переменного тока.Реле — это самый старый механический метод переключения тяжелых нагрузок, например ламп и вентиляторов.

    Некоторые проекты, которые я создал, используя реле и микроконтроллеры для управления большими токовыми нагрузками и т. Д. Проекты содержат бесплатный исходный код и принципиальные схемы.

    Управление большими нагрузками с помощью микроконтроллеров и полевых транзисторов.

    Термин MOSFET расшифровывается как Metal Oxide Semiconductor Field Effect Transistor. Чтобы понять МОП-транзисторы, нам сначала нужно понять полевые транзисторы (полевые транзисторы).Полевой транзистор (FET) — это тип транзистора, обычно используемый для усиления сигнала. Полевой транзистор может усиливать аналоговые или цифровые сигналы. Его также можно использовать для переключения нагрузок постоянного тока. В полевых транзисторах ток течет по полупроводниковому тракту, который называется канал . Полевые транзисторы существуют в двух основных классификациях. Они известны как переход FET (JFET) и металлооксидный полупроводник FET (MOSFET) . Мосфет имеет три контакта: затвор, сток и исток.Фет и Мосфет — большая тема, не могу объяснить это в этом посте. Ресурс доступен здесь FET и MOSFET

    FEt и mosfet для управления большими нагрузками с микроконтроллером

    Mosfet стал очень популярным в наши дни. Они используются в импульсных источниках питания, понижающих и повышающих преобразователях. МОП-транзисторы обладают большим потенциалом в управлении большими токами с помощью сигнала ШИМ (широтно-импульсной модуляции). Они используются в зарядных устройствах солнечных батарей Pwm или MPPT (отслеживание максимальной мощности). Mosfet может управлять нагрузкой более +1000 Вт.Так что, если вам нужно управлять нагрузкой 1000 Вт с микроконтроллером, то МОП-транзисторы — хороший выбор.

    Управление большими нагрузками с помощью микроконтроллеров и твердотельного реле (SSR)

    SSR означает твердотельное реле. Он выдерживает нагрузку в несколько тысяч ватт. Он может выдерживать ток от 300 до 500 ампер. SSR — это не обычное реле, которое похоже на механические переключатели. Небольшое напряжение на входе может вызвать протекание большой нагрузки (тока) из цепи.

    SSR с микроконтроллером для управления большими нагрузками

    Чтобы полностью понять работу ssr, мы должны сначала понять два электронных компонента.Эти компоненты являются строительным блоком SSR. Компоненты сами по себе развиваются из концепции работы транзисторов.
    • SCR (выпрямитель с кремниевым управлением)
    • TRIAC

    SCR против TRIAC

    SCR (кремниевый управляемый выпрямитель или тиристор) представляет собой полупроводниковое переключающее устройство с двумя выводами питания, называемыми анодом (A) и катодом (K), и одним выводом управления, называемым затвором (G). Если клемма K положительна по отношению к A, тиристор смещен в обратном направлении и блокирует протекание тока.Если клемма A положительна по отношению к K, SCR смещен в прямом направлении и будет блокировать ток, пока клемма G (затвор) не получит положительный импульс относительно K. Этот импульс запуска запустит SCR в проводимость, и ток будет переходите от A к K. SCR будет проводить с почти постоянным падением напряжения на нем — обычно 1,2 В постоянного тока. SCR будет продолжать работать после того, как триггерный импульс прекратится, пока ток через SCR не прекратится, после чего он вернется в состояние блокировки.

    Название Triac означает триодный (трехэлектродный) переключатель переменного тока. Это тиристорное устройство, похожее на тиристор, но отличается тем, что он может переключаться на проводимость в обоих направлениях в ответ на положительный или отрицательный сигнал затвора. Символы TRIAC и SCR показаны слева. SCR может работать как TRIAC, если мы присоединим к нему еще один SCR в противоположном направлении, и ворота будут объединены.

    SCR и TRAIC используются для управления нагрузками переменного тока. Они используются для контроля фаз электросети и т. Д.Они также могут работать на входе PWM. Они широко используются в цепях переменного тока для приглушенного света. Стандартные диммеры, доступные на рынке, состоят из SCR или TRIAC.

    SSR для переменного тока обычно состоит из оптоизолятора, управляющего симистором. SSR для постоянного тока обычно состоит из оптоизолятора, управляющего силовым полевым МОП-транзистором.

    Некоторые проекты, которые я создал, используя реле и микроконтроллеры для управления сильноточными нагрузками и т. Д. Проекты содержат бесплатный исходный код и принципиальные схемы.

    6-контактный DIP-выходной оптрон с драйвером симистора случайной фазы (250/400 В, пиковое напряжение)

    % PDF-1.4 % 1 0 объект > эндобдж 5 0 объект > эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 объект > ручей application / pdf

  • ffywgq
  • MOC3023M — 6-контактный выходной оптрон с драйвером симистора со случайной фазой DIP (пиковое напряжение 250/400 В)
  • Серии MOC301XM и MOC302XM представляют собой оптически изолированные драйверы симисторов. Эти устройства содержат инфракрасный излучающий диод на основе GaAs и кремниевый двусторонний переключатель, активируемый светом, который работает как симистор. Они предназначены для взаимодействия между электронным управлением и силовыми симисторами для управления резистивными и индуктивными нагрузками при работе 115 В переменного тока.
  • 2018-05-24T12: 50: 13 + 02: 00BroadVision, Inc.2018-05-24T12: 51: 43 + 02: 002018-05-24T12: 51: 43 + 02: 00Acrobat Distiller 18.0 (Windows) uuid: b7a8f509- d7b0-4e77-a817-0be998e6f404uuid: 899ef0ce-0dd4-4a5d-b407-6aab99b1c944Печать конечный поток эндобдж 6 0 объект > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 объект > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > ручей HWMsF ڽ WL # 7U2% 9J «r: 9 (!!?}

    Введение в оптопары — типы, работа и применение

    Оптоизоляторы или оптопары состоят из светоизлучающего устройства и светочувствительного устройства, заключенных в один корпус, но без электрического соединения между ними, а только из луча света.Излучателем света почти всегда является светодиод. Светочувствительное устройство может быть фотодиодом, фототранзистором или более эзотерическими устройствами, такими как тиристоры, симисторы и т. Д.

    В настоящее время во многих электронном оборудовании используется оптопара в цепи. Оптопара, или иногда называемый оптическим изолятором, позволяет двум цепям обмениваться сигналами, оставаясь при этом электрически изолированными. Обычно это достигается с помощью света для передачи сигнала. В стандартной схеме оптопары используется светодиод, светящий на фототранзистор — обычно это транзистор npn, а не pnp.Сигнал подается на светодиод, который затем светит на транзистор в ИС.

    Свет пропорционален сигналу, поэтому сигнал передается на фототранзистор. Оптические соединители также могут поставляться в нескольких модулях, таких как SCR, фотодиоды, TRIAC других полупроводниковых переключателей в качестве выхода, а также лампы накаливания, неоновые лампы или другие источники света.

    Чаще всего используется оптопара MOC3021 и комбинация диакритических светодиодов. Эта ИС сопрягается с микроконтроллером, и светодиод последовательно соединен с ИС, который светится, указывая на логический импульс высокого уровня от микроконтроллера, чтобы мы могли знать, что ток течет во внутреннем светодиоде опто-ИС.Когда задан высокий логический уровень, ток течет через светодиод от контакта 1 к 2. Таким образом, в этом процессе светодиодный индикатор попадает на DIAC, вызывая замыкание 6 и 4. Во время каждого полупериода ток протекает через затвор, последовательный резистор и через оптическую схему для основного тиристора / симистора, чтобы запустить нагрузку.

    Оптопара обычно используется в схемах импульсного источника питания во многих электронных устройствах. Он подключается между первичной и вторичной секциями источников питания. Применение или функция оптрона в цепи:

    1. Монитор высокого напряжения
    2. Выборка выходного напряжения для регулирования
    3. Микроконтроллер системы для включения / выключения питания
    4. Изоляция заземления

    Это принцип, используемый в оптических диаконах. Оптические диаки доступны в виде интегральных схем и могут быть реализованы с использованием простой схемы.

    Просто подайте небольшой импульс в нужный момент на светоизлучающий диод в упаковке. Свет, излучаемый светодиодом, активирует светочувствительные свойства диака, и включается питание. Изоляция между цепями малой и высокой мощности в этих оптически связанных устройствах обычно составляет несколько тысяч вольт.

    Описание штыря Opto-Diacs:

    Доступно 4 различных оптопара

    1. MOC3020

    Поставляется в 6-контактном DIP, показанном на рисунке:

    Принцип работы MOC3020:

    MOC3020 предназначен для взаимодействия между электронным управлением и силовым симистором для управления резистивной и индуктивной нагрузкой при работе с переменным током.Принцип, используемый в оптопарке, заключается в том, что МОС быстро доступны в виде интегральной схемы и не требуют очень сложной схемы для их работы. Просто подайте небольшой импульс в нужный момент светодиоду в упаковке. Свет, излучаемый светодиодом, активирует светочувствительные свойства диака, и включается питание. Изоляция между цепями малой и высокой мощности в этих оптически связанных устройствах обычно составляет несколько тысяч вольт.

    Характеристики MOC3020:
    • Выход драйвера фото-TRIAC 400 В
    • Источник инфракрасного излучения на арсенид-диоде галлия и оптически связанный драйвер кремниевого симистора
    • Высокая изоляция — 500 Впик
    • Выходной драйвер, рассчитанный на 220 В переменного тока
    • Стандартный 6-контактный пластиковый DIP
    • Прямая взаимозаменяемость с Motorola MOC3020, MOC3021 и MOC3022
    Типичные области применения MOC3020:
    • Электромагнитный клапан / управление клапаном
    • ПРА
    • Подключение микропроцессоров к периферийным устройствам 115/240 В перем. Тока
    • Блок управления двигателем
    • Диммеры для ламп накаливания
    Применение MOC3020:

    Схема, показанная ниже, представляет собой типичную схему, используемую для управления нагрузкой переменного тока с микроконтроллера, один светодиод может быть подключен последовательно к MOC3021, светодиод, чтобы указать, когда микроконтроллер дает высокий уровень, чтобы мы могли знать, что ток течет во внутреннем светодиоде оптрон.Идея состоит в том, чтобы использовать электрическую лампу, для активации которой требуется переменный ток сети, а не постоянное напряжение. Таким образом, мы пытаемся переключить лампу от сети переменного тока, и никакого внешнего источника питания не требуется. Чтобы переключить переменный ток на лампу, мы должны использовать оптоволоконный симистор, лампа и диак показаны на схеме ниже. Симистор называется переключателем, управляемым переменным током. Он имеет три вывода M1, M2 и затвор. Триак, ламповая нагрузка и напряжение питания подключены последовательно. Когда питание включено в положительном цикле, тогда ток течет через лампу, резисторы, диак и затвор и достигает источника питания, и тогда только лампа светится в течение этого полупериода непосредственно через клеммы M2 и M1 симистора.В отрицательном полупериоде повторяется то же самое. Таким образом, лампа светится в обоих циклах управляемым образом в зависимости от запускающих импульсов на оптоизоляторе, как показано на графике ниже. Если это подается на двигатель вместо лампы, мощность регулируется, что приводит к регулированию скорости.

    2. MOC3021

    MOC3021 — оптрон, предназначенный для запуска TRIACS. Используя это, мы можем запускать в любом месте цикла, поэтому можем называть их ненулевыми оптопарами.MOC3021 очень широко используются и могут быть довольно легко получены из многих источников. Он поставляется в 6-контактном DIP-корпусе, показанном на рисунке.

    MOC3021 (оптопара)

    Описание контакта:

    Контакт 1: Анод

    Контакт 2: Катод

    Контакт 3: Нет соединения (NC)

    Контакт 4: Главный вывод

    Контакт 5: Нет соединения (NC)

    Контакт 6: Главный вывод

    Характеристики:
    • Выход драйвера фототиактора 400 В
    • Источник инфракрасного излучения на арсенид-галлиевом диоде и оптически связанный кремниевый симистор
    • Высокая изоляция, 7500 В, пик.
    • Выходной драйвер
    • , рассчитанный на 220 В переменного тока
    • Стандартный 6-контактный пластиковый DIP

    MOC3021 имеет множество применений, таких как управление соленоидами / клапанами, балласты ламп, сопряжение микропроцессоров с периферийными устройствами 115/240 В переменного тока, управление двигателями и диммеры ламп накаливания.

    Применение MOC3021:

    Из приведенной ниже схемы наиболее часто используется оптопара MOC3021 с комбинацией светодиодов типа диак. Кроме того, при использовании этого с микроконтроллером, и один светодиод может быть подключен последовательно с MOC3021, светодиод, чтобы указать, когда микроконтроллер выдает высокий уровень, чтобы мы могли знать, что ток течет во внутреннем светодиоде оптопары. Когда задан высокий логический уровень, ток течет через светодиод от контакта 1 к 2. Таким образом, в этом процессе светодиодный свет падает на DIAC, вызывая замыкание 6 и 4.Во время каждого полупериода ток протекает через затвор, последовательный резистор и через оптическую схему для основного тиристора / симистора, чтобы запустить нагрузку.

    3. MCT2E

    Вот видео на оптопару MCT2E

    Оптопары серии MCT2E состоят из инфракрасного светодиода на арсениде галлия и кремниевого фототранзистора NPN. Они упакованы в 6-контактный DIP-корпус и доступны с широким шагом выводов.

    Контакт 1: анод.

    Контакт 2: Катод.

    Контакт 3: Нет соединения.

    Контакт 4: эмиттер.

    Контакт 5: коллектор.

    Контакт 6: База.

    Характеристики:
    • Испытательное напряжение изоляции 5000 ВСКЗ
    • Интерфейсы с общими логическими семействами
    • Емкость связи между входом и выходом <0,5 пФ
    • Стандартный двухрядный 6-контактный корпус
    • Соответствует директиве RoHS 2002/95 / EC

    Оптрон, обычно используемый в схемах импульсного источника питания, считывающем релейном приводе, промышленных элементах управления, цифровых логических входах и во многих электронных устройствах

    Применение MCT2E:

    Это комбинация 1 светодиода и транзистора.Вывод 6 транзистора обычно не используется, и когда свет падает на переход база-эмиттер, он переключается, и вывод 5 переходит в ноль.

    • Когда логический ноль подается на вход, свет не падает на транзистор, поэтому он не проводит, что дает логическую единицу на выходе.
    • Когда логическая 1 задана как вход, свет падает на транзистор, так что он проводит, что делает транзистор включенным и образует короткое замыкание, что делает выход логическим нулем, поскольку коллектор транзистора соединен с землей.

    4. MOC363

    Устройства MOC3063 состоят из излучающих инфракрасных диодов на основе арсенида галлия, оптически связанных с монолитными кремниевыми детекторами, выполняющими функции двухсторонних симисторных драйверов, пересекающих нулевое напряжение. Это также 6-контактный DIP, показанный на рисунке:

    .

    Описание контакта:

    Контакт 1: Анод

    Контакт 2: Катод

    Контакт 3: Нет соединения (NC)

    Контакт 4: Главный вывод

    Контакт 5: Нет соединения (NC)

    Контакт 6: Главный вывод

    Характеристики:
    • Упрощает логическое управление питанием 115/240 В переменного тока
    • Напряжение перехода через ноль
    • dv / dt 1500 В / мкс типично, гарантировано 600 В / мкс
    • Признано VDE
    • Сертификат Underwriters Laboratories (UL)
    Приложения:
    • Электромагнитный клапан / управление клапаном
    • Статические выключатели питания
    • Контроль температуры
    • Пускатели и приводы двигателей переменного тока
    • Органы управления освещением
    • Э.Контакторы М.
    • Твердотельное реле
    Работа MOC3063:

    Из схемы у нас есть оптопара MOC3063 с комбинацией типов светодиодов SCR. Кроме того, при использовании этого оптрона с микроконтроллером один светодиод можно подключить последовательно со светодиодом MOC3063, чтобы указать, когда микроконтроллер подает высокий уровень, чтобы мы могли знать, что ток течет во внутреннем светодиоде оптрона. Когда выдается высокий логический уровень, ток течет через светодиод от контактов 1 до 2.Светодиодный индикатор падает на SCR, заставляя 6 и 4 замыкаться только при переходе через ноль напряжения питания. Во время каждого полупериода ток протекает через затвор SCR, внешний последовательный резистор и через SCR для основного тиристора / симистора для запуска нагрузки в начале цикла питания, чтобы всегда работать.

    Вот видео подключения оптопары к TRIAC

    .

    MOC3021 Распиновка оптоизолятора с симисторным приводом, технические характеристики, эквивалент и лист данных

    MOC3021 Конфигурация контактов

    Номер контакта

    Имя контакта

    Описание

    1

    Анод (A)

    Анодный вывод ИК-светодиода.Подключен к логическому входу

    2

    Катод (C)

    Катодный вывод ИК-светодиода

    3

    NC

    Нет соединения — не может использоваться

    4

    Главный терминал симистора 1

    Один конец симистора, который присутствует внутри IC

    5

    NC

    Нет соединения — не может использоваться

    6

    Главный терминал симистора 2

    Другой конец симистора, который присутствует внутри IC

    MOC3021 Характеристики и характеристики
    • Оптоизолятор с драйвером симистора с нулевым переходом
    • Входное прямое напряжение диода светодиода: 1.15 В
    • Ток фиксации светодиода в прямом направлении: 15 мА
    • Напряжение на выходе TRIAC: 400 В (макс.)
    • Пиковый выходной ток TRIAC: 1A
    • Доступен как 6-контактный PDIP с суффиксом M и без него

    Примечание. Более подробную информацию можно найти в техническом описании MOC3021 , которое доступно для загрузки в конце этой страницы.

    MOC3021 Эквивалент

    MOC3043

    Альтернативы Оптроны

    MCT2E (ненулевой транзистор), MOC3041 (ненулевой кросс-триак), FOD3180 (высокоскоростной полевой МОП-транзистор),

    Где использовать MOC3021 Фототранзисторный оптрон

    MOC3021 — это оптрон с приводом от симистора с нулевым переходом, оптрон или оптоизолятор .Как мы знаем, термин «оптопара / оптоизолятор» означает то же самое, что мы используем свет для косвенного соединения с наборами схем. Особенностью MOC3021 является то, что он имеет способность перехода через ноль и управляется симистором.

    Так как выход управляется симистором, мы можем управлять нагрузкой до 400 В, а симистор может проводить в обоих направлениях, поэтому управление нагрузками переменного тока не будет проблемой. Кроме того, поскольку он обладает способностью переходить через нуль, при первом включении нагрузки переменного тока TRIAC начнет проводить ток только после того, как волна переменного тока достигнет 0 В, таким образом мы можем избежать прямого пикового напряжения на нагрузке и, таким образом, предотвратить ее повреждение. .Он также имеет приличное время нарастания и спада и, следовательно, может использоваться для управления выходным напряжением.

    Особенности MOC3021 делают его идеальным выбором для управления высоковольтными нагрузками переменного тока с помощью цифровых контроллеров, таких как MPU / MCU. Поскольку мощность регулируется, мы можем контролировать интенсивность света или скорость двигателя переменного тока. Так что, если вы ищете оптоизолятор для управления приложением переменного тока через постоянный ток, эта ИС может быть для вас правильным выбором.

    Как использовать MOC3021

    MOC3021 обычно используется для управления приборами переменного тока , такими как яркость лампы накаливания, скорость двигателя и т. Д.В любом случае оптрон не сможет управлять нагрузками напрямую из-за его ограниченного номинального тока. Обычно они подключаются к другому переключателю питания, например к симистору, в нашем случае, этот симистор будет обеспечивать ток, достаточный для управления нагрузкой, и будет управляться с помощью оптрона. Простая принципиальная схема, на которой лампа переменного тока управляется с помощью микроконтроллера, показана ниже.

    MOC3021 можно использовать для переключения нагрузок, просто включив или выключив светодиод, или мы также можем использовать сигналы ШИМ для переключения светодиода и, следовательно, TRIAC.Когда мы переключаем TRIAC с помощью сигналов PWM, то выходным напряжением на нагрузке можно управлять, таким образом контролируя скорость / яркость нагрузки.

    При переключении нагрузок переменного тока важно понимать скорость переключения оптопары. Эта скорость переключения зависит от амплитуды напряжения, которое регулируется симистором TRIAC, и рабочей температуры окружающей среды. График ниже даст вам хорошее представление о затраченном времени.

    Например, при температуре окружающей среды 30 градусов Цельсия скорость изменения напряжения во времени будет 9 В за единицу времени, где единицей времени является мкс.Таким образом, мы можем изменить 9 В за одну микросекунду.

    Приложения
    • Диммеры переменного тока
    • Светильники Strode
    • Регулировка скорости двигателя переменного тока
    • Цепи шумовой связи
    • Управление нагрузками переменного тока с помощью MCU / MPU
    • Регулятор мощности переменного / постоянного тока

    2D-Модель

    Коммутация нагрузки переменного тока с использованием симистора

    TRIAC (триод для переменного тока) — идеальный переключатель силовой электроники для использования для переключения приложений , потому что он может управлять потоком тока как в положительном, так и в отрицательном полупериоде переменного тока .Он также имеет преимущество в более низкой стоимости по сравнению с тиристорной схемой с задними контактами. Для управления током до 4 А, напряжением до 600 В и низким пусковым током я рекомендовал симистор, кроме того, тиристоры с задними контактами могут работать нормально.

    Управление высоковольтными устройствами с помощью оптически изолированного устройства силовой электроники дает преимущества управления напряжением. Эта простая схема TRAIC BT136 и оптрон MOC3021 могут управлять высоковольтными устройствами с микроконтроллера. Например, Arduino для управления лампочкой 230/220 В или любым устройством, работающим от высокого напряжения.Эта схема также может работать для приложений регулирования яркости и скорости с использованием сигнала ШИМ от Arduino.

    Поскольку TRIAC имеет двунаправленный клапан, эта схема используется для приложений переменного и постоянного тока.

    Работа TRIAC CIRCUIT

    Во время включения:
    Когда 5 В / 3,3 В подается от микроконтроллера на оптопару, устройства MOC3021 содержат инфракрасные излучающие диоды на основе арсенида галлия на выводах 1 и 2. Этот диод излучает инфракрасное излучение. зажигать и запускать оптически связанный светом активированный кремниевый двусторонний переключатель на контактах 6 и 4, который позволяет току течь между ними.Этот источник питания обеспечивает ток GATE для затвора TRIAC (вывод 3 TRIAC), а TRIAC проводит основной ток между выводами MT1 и MT2.

    В состоянии ВЫКЛЮЧЕНО:
    Когда 0 В подается между контактами 1 и 2 оптопары, контакты 6 и 4 действуют как разомкнутые переключатели и не допускают протекания тока между ними, так как нет тока GATE на TRIAC, он перестает проводить.

    Работа TRIAC CIRCUIT

    Во время включения:
    Когда 5 В / 3,3 В подается от микроконтроллера на оптопару, устройства MOC3021 содержат инфракрасные излучающие диоды на основе арсенида галлия на контактах 1 и 2.Этот диод излучает инфракрасный свет и запускает оптически связанный световой кремниевый двусторонний переключатель на контактах 6 и 4, который позволяет току течь между ними.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *