Токовые характеристики автоматических выключателей: Время-токовые характеристики автоматических выключателей и предохранителей

Содержание

Что такое время-токовые характеристики автоматических выключателей и зачем они нужны?

Любому автоматическому выключателю необходимо время на срабатывание. Оно может быть составлять сотые доли секунды, а может и несколько минут. Все зависит от тока, который будет протекать через автоматический выключатель. Если правильно выбрали кабель и автомат, то можете не бояться, что при повышенном токе изоляция на ваших проводах не расплавится, например за 30 секунд, которые необходимы, чтобы автоматический выключатель сработал от определенной перегрузки.

Есть такие интересные время-токовые характеристики автоматических выключателей – это такие красивые графики кривых зависимости времени срабатывания от величины тока. Они на автоматах обозначаются буквами B, C и D.

Эти буковки стоят перед значением номинала автомата. Ниже представлены обычные графики, по которым можно определить, через какое время нагрузка будет обесточена при повышенном токе или его скачке. В школу ходили? С графиками работать умеете? Тогда сразу разберетесь. По вертикальной оси стоит время в секундах. По горизонтальной шкале стоит отношение протекающего по проводам тока к номинальному току автомата I/In.

Что такое время-токовые характеристики автоматических выключателей и зачем они нужны?

Чем же различаются время-токовые характеристики автоматических выключателей "B", "C" и "D"? Все просто! Они различаются в значении величины отношения протекающего тока к номинальному току I/In.

№ пп Время-токовая характеристика автоматического выключателя Отношение протекающего тока к номинальному току I/In
1 B 3-5
2 C 5-10
3 D 10-20

Если все равно остались вопросы, то идем дальше разбираться вместе. Буду приводить все на конкретных примерах, так как это будет более понятно, чем если буду объяснять "на пальцах".

Допустим, есть у нас автоматический выключатель номиналом 10А с характеристикой В. Мы выбрали на 10А, так как проще будет считать, и они часто используются в быту.

Например, произошло ЧП. Жена попросила повесить ковер, а Вы когда сверлили, попали в провод, идущий от распредкоробки. Бабах! Вокруг тишина и темно. Здесь Вы просто сверлом закоротили жилы провода, и произошло короткое замыкание. Было такое? Признаюсь, что у меня в молодости такое было.

В данной ситуации автоматические выключатели с характеристикой В срабатывают практически мгновенно, когда ток в сети превысит значение номинала автомата в 3-5 раз. В нашем случае это ток лежит в пределах 30-50 ампер. Конечно при коротком замыкании ток увеличивается в сотни раз, но автомату с характеристикой В достаточно 3-5 кратного увеличения. Здесь приходит в действие электромагнитный расцепитель.

Смотрим графики ниже и видим, что при токе 50А автомат сработает через 0,01 секунду. Это получается отсюда. Ток при КЗ делим на номинальный ток автомата, т. е. 50А/10А=5. Теперь на горизонтальной шкале находим цифру 5 и ведем условную линию (на рисунке она выделена красным) вертикально вверх до пересечения с кривой. Ставим точку и от нее ведем условную горизонтальную линию до оси времени. У нас получилось ориентировочно 0,01 секунда. Аналогично при перегрузке сети током 15А у нас отношение составило 1,5 и время задержки на срабатывание составит 30 секунд. Здесь автомат отключится благодаря работе теплового расцепителя. Если сечение провода рассчитано правильно, то его изоляция таким током и за это время не успеет расплавиться. Вы защищены.

Выше мы рассмотрели нижнюю кривую, но на картинке их можно выделить 3 шт. Зачем все это? Давайте разберемся. Эти кривые предназначены для разных состояний автоматических выключателей: «холодного» (верхняя кривая) и «горячего» (нижняя кривая), а сам график составлен для температуры окружающей среды +30С. По пунктирной линии рассчитывается время отключения для автоматом номиналом не выше 32А.

Для холодного состояния автоматического выключателя с характеристикой В для вышеописанного примера, время задержки на срабатывание составит при токе 50А – 0,04 сек. и при токе 15А – 4000 сек. (примерно 67 мин.). На рисунке выше это показано синим цветом.

Еще учтите, что автоматы стоят в разных местах – в квартире, в подъезде, на улице и т.д. Например, зимой дома температура +25, в подъезде +16, на улице -25. Соответственно температура элементов расцепителя разная и ему нужно разное время, чтобы прогреться и заставить автомат сработать.

Еще здесь существуют поправочный коэффициент. Чем ниже температура окружающей среды, тем больший ток через себя будет пропускать автомат и наоборот. При одной и той же нагрузке в жарких и в холодных помещениях один и тот же автомат будет срабатывать при разных значениях тока. Это колебания не значительные и этот вопрос становится актуальным, когда автоматический выключатель сильно нагружен и работает на пределе своего номинала. Стоит повыситься окружающей температуре, как он сможет отключить нагрузку. Часто такой вопрос встает летом в жарких помещениях.

Теперь скажу несколько слов про время-токовые характеристики автоматических выключателей C и D. Суть их заключается в том, что все графики характеристик сдвинуты вправо, т.е. таким образом, увеличивается время их срабатывания. Автомат с характеристикой C при коротком замыкании сработает, когда ток в сети превысит номинальный ток самого автомата в 5-10 раз. Автомат с характеристикой D при коротком замыкании сработает, когда ток в сети превысит номинальный ток самого автомата в 10-20 раз.

Из графиков получаем (смотрим ниже). Для автоматического автомата на 10А характеристики C время срабатывания уже будет: при токе 50А примерно 0,02 сек. и при токе 15А примерно 40 сек. Это для горячего состояния автомата (красный цвет). Для холодного состояния (синий цвет) получаем: при токе 50А примерно 27 сек. и при токе 15А примерно 5000 сек. (83 мин.).

Для автоматического автомата на 10А характеристики D (смотрим графики ниже) время срабатывания уже будет: при токе 50А примерно 1,5 сек. и при токе 15А примерно 40 сек. Это для горячего состояния автомата (красный цвет). Для холодного состояния (синий цвет) получаем: при токе 50А примерно 30 сек. и при токе 15А примерно 6000 сек. (100 мин.).

Вот видите какая разница в значениях времени при перегрузке автоматов. Это тоже нужно знать и учитывать при их выборе.

Как правило, для квартир используют автоматические выключатели с характеристикой B, а на производстве - C и D. Хотя очень часто можно встретить в этажных щитках автоматы с параметром C. Еще автоматы с параметром B в продаже редко встречаются.

Также учтите, что каждый автомат может пропускать через себя ток больший номинального в 1,13 раз. Это видно из графика. Видите на горизонтальной оси значение 1,13 и если вести условную линию вертикально вверх, то она никогда не пересечет кривую времени. Следовательно, автомат при таком токе не сработает. Поэтому выбирайте кабель большего сечения, т.е. с запасом. Лучше перестрахуйтесь.

Смотрите для каких автоматических выключателей какой соответствует ток не отключения. Это тоже учитывайте при выборе автоматического выключателя по номиналу и кабеля.

№ пп Номинал автоматических выключателей, А Условный ток не отключения автоматических выключателей, А
1 10 11,3
2 16 18,08
3 20 22,6
4 25 28,25

Например, для нагрузки, потребляющей ток 25А вы выбрали кабель сечением 2,5мм2. Тут жена собралась готовить обед, попутно пить чай, размораживать мясо в микроволновке и еще принесла на кухню фен (который вы не учитывали в своих расчётах), чтобы волосы посушить. Таким образом, вместо 25А вы можете получить в сети 28А, и автомат тут не сработает, так как он сработает при токе 25А*1,13=28,25А. Из таблицы видно, что для такого тока уже нужен провод сечением минимум 3 мм2. Но у нас провод сечением 2,5 мм2 и поэтому он будет греться и плавиться изоляция.

Да еще возьмите на заметку, что многие производители лукавят при производстве кабеля. Делают его по ТУ (техническим условиям), при которых уменьшают сечение кабеля. Я придерживаюсь такого мнения в выборе кабеля и автоматических выключателей, что лучше все брать с разумным запасом, чем предполагаемая нагрузка.

Не забываем улыбаться:

А не пойти ли мне поработать? - подумал электрик.
И не пошел …

Время — токовые характеристики автоматов

2017-11-23 Статьи  

Время-токовая характеристика автоматического выключателя — это показатель, определяющий время срабатывания защитного устройства в зависимости от величины протекающего через него тока по отношению к номинальному току устройства.

Правильный выбор автомата по время-токовой характеристике позволяет избежать ложных срабатываний при подключении в сеть нагрузки, имеющей высокие пусковые токи. Например это происходит при подключении в сеть электродвигателя, который имеет большой пусковой ток, превышающий номинальный в 3-8 раз. Этого тока будет достаточно чтобы отключился автомат, имеющий характеристику срабатывания не предназначенную для такого типа нагрузок.

Также при правильном подборе автоматических выключателей по их время-токовым характеристикам соблюдается селективность (избирательность), то есть при повреждении какого-либо участка цепи сработает только тот автоматический выключатель, который обеспечивает защиту именно этого участка, а остальные автоматы не отключатся.

Я думаю все обращали внимание на буквенное обозначение рядом с номинальным током на корпусе модульного автоматического выключателя. Так вот эти буквы и указывают время-токовую характеристику, то есть чувствительность автомата.

Чаще всего встречаются автоматы с характеристиками B, C и D. Это стандартные типы характеристик, указанные в ГОСТ Р 50345-99. Кроме этих типов существуют еще типы A, K и Z, но встречаются они гораздо реже, а в жилых зданиях так и вовсе не используются. Различные типы рекомендовано использовать следующим образом:

  • А — Для размыкания цепей с большой протяженностью электропроводки и защиты полупроводниковых устройств
  • B — Для осветительных и розеточных групп общего назначения
  • C — Для осветительных цепей и электроустановок с умеренными пусковыми токами (двигателей и трансформаторов)
  • D
     — Для цепей с активно-индуктивной нагрузкой, а также защиты электродвигателей с большими пусковыми токами
  • K — Для индуктивных нагрузок
  • Z — Для электронных устройств

Время срабатывания электромагнитного расцепителя для каждой из характеристик выражается в значении величины протекающего тока по отношению к номинальному. Так для B это значение составляет от 3·In до 5·In (In — номинальный ток), то есть его расцепитель сработает при токе, превышающем номинальный в 3-5 раз. Для С пределы составляют уже от 5·In до 10·In, а для D — от 10·In до 20·In. Рассмотрим графики, отображающие время-токовые характеристики для типов B, C и D.

График время-токовой характеристики B


График время- токовой характеристики C


График время- токовой характеристики D

На оси Х отображается значение, показывающее отношение протекающего тока по отношению к номинальному (I/In). На оси Y — время срабатывания в секундах. График для каждой из кривой характеристик разделен на две линии, показывающие время срабатывания электромагнитной защиты (нижняя линия), отвечающей за отключение при коротких замыканиях и тепловой защиты (верхняя линия), отвечающей за отключение от перегрузок.

Верхняя кривая показывает холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата. Пунктирной линией показана верхняя граница время-токовой характеристики для автоматических выключателей с номинальным током In меньше или равно 32 A.

Так например если смотреть график для время-токовой характеристики С автоматический выключатель 16 А при токе 80 А (5·In) должен отключиться в горячем состоянии за 0,02 сек. В холодном состоянии при таком же токе автомат отключится за 11 сек. (если номинал автомата меньше или равен 32 A), если больше 32 А — то отключение произойдет через 25 сек. Если предел отключения будет равен 10·In, то в горячем состоянии отключение произойдет через 0,01 сек, а в холодном — за 0,03 сек.

Таким образом, график время-токовой характеристики позволяет определить правильно автоматический выключатель для конкретных условий эксплуатации. Теперь осталось только разобраться какие типы автоматов предпочтительно использовать в быту.

Понятно, что для городской квартиры, где нагрузка активная либо слабоиндуктивная, выбирать необходимо либо категорию B либо С. По тепловой защите временной интервал срабатывания B и С будет одинаковым, отличаться будет только время срабатывания электромагнитного расцепителя. Раньше повсеместно использовались автоматы с характеристикой С, да и по сей день в магазинах в основном продают именно этот тип, а про другие типы как-то забывают. Однако в настоящее время рекомендуется для линий освещения и розеточных групп применять тип B, имеющий большую чувствительность, а в качестве вводного автомата использовать С. Таким образом будет соблюдаться селективность и при аварийной ситуации отключаться будет именно групповой автомат, а не вводной, тем самым не будет обесточиваться полностью вся квартира.

Что такое время токовые характеристики автоматических выключателей

При нормальной работе электросети и всех приборов через автоматический выключатель протекает электрический ток. Однако если сила тока по каким-либо причинам превысила номинальные значения, происходит размыкание цепи из-за срабатывания расцепителей автоматического выключателя.

Характеристика срабатывания автоматического выключателя является очень важной характеристикой, которая описывает то, насколько время срабатывания автомата зависит от отношения силы тока, протекающего через автомат, к номинальному току автомата.

Данная характеристика сложна тем, что для ее выражения необходимо использование графиков. Автоматы с одним и тем же номиналом будут при разных превышениях тока по-разному отключаться в зависимости от типа кривой автомата (так иногда называется токовая характеристика), благодаря чему имеется возможность применять автоматы с разной характеристикой для разных типов нагрузки.

Тем самым, с одной стороны, осуществляется защитная токовая функция, а с другой стороны, обеспечивается минимальное количество ложных срабатываний – в этом и заключается важность данной характеристики.

В энергетических отраслях бывают ситуации, когда кратковременное увеличение тока не связано с появлением аварийного режима и защита не должно реагировать на такие изменения. Это же относится и к автоматам.

При включении какого-нибудь мотора, к примеру, дачного насоса или пылесоса, в линии происходит достаточно большой бросок тока, который в несколько раз превышает нормальный.

По логике работы, автомат, конечно же, должен отключиться. К примеру, мотор потребляет в пусковом режиме 12 А, а в рабочем – 5. Автомат стоит на 10 А, и от 12 его вырубит. Что в таком случае делать? Если например поставить на 16 А, тогда непонятно отключится он или нет если заклинит мотор или замкнет кабель.

Можно было бы решить эту проблему, если его поставить на меньший ток, но тогда он будет срабатывать от любого движения. Вот для этого и было придумано такое понятие для автомата, как его «время токовая характеристика».

Какие существуют время токовые характеристики автоматических выключателей и их отличие между собой

Как известно основными органами срабатывания автоматического выключателя являются тепловой и электромагнитный расцепитель.

Тепловой расцепитель представляет собой пластину из биметалла, изгибающуюся при нагреве протекающим током. Тем самым в действие приводится механизм расцепления, при длительной перегрузке срабатывая, с обратнозависимой выдержкой времени. Нагрев биметаллической пластинки и время срабатывание расцепителя напрямую зависят от уровня перегрузки.

Электромагнитный расцепитель является соленоидом с сердечником, магнитное поле соленоида при определенном токе втягивает сердечник, приводящий в действие механизм расцепления – происходит мгновенное срабатывание при КЗ, благодаря чему пострадавший участок сети не будет дожидаться прогревания теплового расцепителя (биметаллической пластины) в автомате.

Зависимость времени срабатывания автомата от силы тока, протекающего через автомат, как раз и определяется время токовой характеристикой автоматического выключателя.

Наверное, каждый замечал изображение латинских букв B, C, D на корпусах модульных автоматов. Так вот они характеризуют кратность уставки электромагнитного расцепителя к номиналу автомата, обозначая его время токовую характеристику.

Эти буквы указывают ток мгновенного срабатывания электромагнитного расцепителя автомата. Проще говоря, характеристика срабатывания автоматического выключателя показывает чувствительность автомата – наименьший ток при котором автомат отключится мгновенно.

Автоматы имеют несколько характеристик, самыми распространенными из которых являются:

  • - B — от 3 до 5 ×In;
  • - C — от 5 до 10 ×In;
  • - D — от 10 до 20 ×In.

Что означают цифры указанные выше?

Приведу небольшой пример. Допустим, есть два автомата одинаковой мощности (равные по номинальному току) но характеристики срабатывания (латинские буквы на автомате) разные: автоматы В16 и С16.

Диапазоны срабатывания электромагнитного расцепителя для В16 составляет 16*(3...5)=48...80А. Для С16 диапазон токов мгновенного срабатывания 16*(5...10)=80...160А.

При токе 100 А автомат В16 отключится практически мгновенно, в то время как С16 отключится не сразу а через несколько секунд от тепловой защиты (после того как нагреется его биметаллическая пластина).

В жилых зданиях и квартирах, где нагрузки чисто активные (без больших пусковых токов), а какие-нибудь мощные моторы включаются нечасто, самыми чувствительными и предпочтительными к применению являются автоматы с характеристикой B. На сегодняшний день очень распространена характеристика С, которую также можно использовать для жилых и административных зданий.

Что касается характеристики D, то она как раз годится для питания каких-либо электромоторов, больших двигателей и других устройств, где могут быть при их включении большие пусковые токи. Также через пониженную чувствительность при КЗ автоматы с характеристикой D могут быть рекомендованы для использования как вводные для повышения шансов селективности со стоящими ниже групповыми АВ при КЗ.

Согласитесь логично, что время срабатывания зависит от температуры автомата. Автомат отключится быстрее, если его тепловой орган (биметаллическая пластина) разогретый. И наоборот при первом включении когда биметалл автомата холодный время отключения будет больше.

Поэтому на графике верхняя кривая характеризует холодное состояние автомата, нижняя кривая характеризует горячее состояние автомата.

Пунктирной линией обозначен предельный ток срабатывания для автоматов до 32 А.

Что показано на графике время токовой характеристики

На примере 16-Амперного автомата, имеющего время токовую характеристику C, попробуем рассмотреть характеристики срабатывания автоматических выключателей.

На графике можно увидеть, как протекающий через автоматический выключатель ток влияет на зависимость времени его отключения. Кратность тока протекающего в цепи к номинальному току автомата (I/In) изображает ось Х, а время срабатывания, в секундах – ось У.

Выше говорилось, что в состав автомата входит электромагнитный и тепловой расцепитель. Поэтому график можно разделить на два участка. Крутая часть графика показывает защиту от перегрузки (работа теплового расцепителя), а более пологая часть защиту от КЗ (работа электромагнитного расцепителя).

Как видно на графике если к автомату С16 подключить нагрузку 23 А то он должен отключится за 40 сек. То есть при возникновении перегрузки на 45 % автомат отключится через 40 сек.

На токи большой величины, которые могут привести к повреждению изоляции электропроводки автомат способен реагировать мгновенно благодаря наличию электромагнитного расцепителя.

При прохождении через автомат С16 тока 5×In (80 А) он должен сработать через 0.02 сек (это если автомат горячий). В холодном состоянии, при такой нагрузке, он отключится в пределах 11 сек. и 25 сек. (для автоматов до 32 А и выше 32 А соответственно).

Если через автомат будет протекать ток равный 10×In, то он отключается за 0,03 секунды в холодном состоянии или меньше чем за 0,01 секунду в горячем.

К примеру, при коротком замыкании в цепи, которая защищена автоматом С16, и возникновении тока в 320 Ампер, диапазон времени отключения автомата будет составлять от 0,008 до 0,015 секунды. Это позволит снять питание с аварийной цепи и защитить от возгорания и полного разрушения сам автомат, закоротивший электроприбор и электропроводку.

Автоматы с какими характеристиками предпочтительнее использовать дома

В квартирах по возможности необходимо обязательно применять автоматы категории B, которые являются более чувствительными. Данный автомат отработает от перегрузки так же, как и автомат категории С. А вот о случае короткого замыкания?.

Если дом новый, имеет хорошее состояние электросети, подстанция находится рядом, а все соединения качественные, то ток при коротком замыкании может достигать таких величин, что его должно хватить на срабатывание даже вводного автомата.

Ток может оказаться малым при коротком замыкании, если дом является старым, а к нему идут плохие провода с огромным сопротивлением линии (особенно в сельских сетях, где большое сопротивление петли фаза-нуль) – в таком случае автомат категории C может не сработать вообще. Поэтому единственным выходом из этой ситуации является установка автоматов с характеристикой типа В.

Следовательно, время токовая характеристика типа В является определенно более предпочтительной, в особенности в дачной или сельской местности или в старом фонде.

В быту на вводной автомат вполне целесообразно ставить именно тип С, а на автоматы групповых линий для розеток и освещения – тип В. Таким образом будет соблюдена селективность, и где-нибудь в линии при коротком замыкании вводной автомат не будет отключаться и «гасить» всю квартиру.

Похожие материалы на сайте:

Понравилась статья - поделись с друзьями!

 

Время токовые характеристики автоматических выключателей

Автоматический выключатель (АВ) – защитное электротехническое устройство, срабатывающее при коротких замыканиях или превышении допустимой нагрузки по сети. Современный рынок заполнен аппаратами немецкого (АВВ, Siemens), французского (Schneider, Legrand), японского (Terasaky), российского (IEK) производства. Они различаются между собой конструкцией, качеством и ценой. Но время токовые характеристики автоматических выключателей от разных изготовителей соответствуют действующим нормам и стандартам. Этот показатель дает возможность подобрать АВ под конкретные условия.

Что показывает время токовая характеристика

В электрических системах при возникновении аварии отключение электропитания следует производить очень быстро, чтобы свести к минимуму негативные последствия. Человек неспособен достаточно быстро отреагировать. Поэтому устанавливаются автоматические выключатели.

Для энергетической сферы существует деление на системы постоянного и переменного напряжения. Оборудование классифицируется на низковольтное (до 1000 В), высоковольтное (более 1000 В). Соответственно применяются различные типы автоматов.

Во всех случаях АВ предназначен для разрывания цепи при различных токовых величинах короткого замыкания (КЗ) и перегрузках. Первые безошибочно отсекаются электромагнитным расцепителем мгновенно. Вторые протекают по цепи определенное время, без каких-либо последствий, а лишь потом сработает тепловая защита.

Современные автоматические защитные аппараты содержат три вида расцепителей:

  1. механический – эта ручка предназначена для включения, выключения автомата;
  2. электромагнитный – отсекает нагрузку КЗ;
  3. тепловой – предохраняет электрические цепи от перегрузки.

Рабочие параметры последних двух определяют время токовые характеристики для автоматических выключателей. Которые показывают зависимость времени отключения аппарата от соотношения между протекающим по нему током и его номинальным значением. Они сложны тем, что требуют графического выражения.

Благодаря тому, что автоматы с одинаковым номиналом имеют различные характеристики срабатывания, при одном и том же токовом значении их можно применять под разные типы нагрузки. Это обеспечивает минимальное число ложных отключений и защищает от токовых перегрузок.

Получается, что время токовая характеристика (ВТХ) показывает:

  1. диапазон срабатывания защиты от короткого замыкания (максимально-токовой), который определяется параметрами встроенной электромагнитной катушки;
  2. диапазон срабатывания при превышении нагрузки, определяемый встроенной биметаллической пластиной.

Общий вид ВТХ можно представить нижеприведенным графиком. Цифрой 1 отмечен участок срабатывания при определенном токовом соотношении теплового расцепителя, а цифрой 2 – время реакции электромагнитного.

Общий вид время токовой характеристики АВ

Распространенные виды характеристик

Характеристики срабатывания автоматических выключателей указываются буквами латинского алфавита на их корпусе: А, B, C, D, Z, К. Они показывают на отношение уставки электромагнитного расцепителя к номинальному току данного аппарата, то есть чувствительность.

Рассмотрим их детально в таблице.

Время токовые характеристики АВ типа B, C, D представлены на рисунке.

Время токовые характеристики выключателей по типу B, C, D

У автоматических выключателей разные технические характеристики. Правильный выбор автомата по токовой нагрузке и время токовой характеристике позволяет установить защитное устройство, реагирующее на перегрузки сети должным образом. Это избавит от ложных отключений. Для домашних условий оптимальным вариантом будет использование автоматов типа В и С.

Технические характеристики автоматических выключателей

Рассмотрим технические характеристики автоматических выключателей, установленные требованиями стандартов МЭК 60898‑1 и МЭК 60898‑2, ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011.

Вся информация, которую вы прочитаете ниже основана на материалах из книги Ю.В. Харечко [3], а также соответствующих ГОСТов.

Коммутационная износостойкость.

Коммутационная износостойкость представляет собой способность автоматического выключателя выполнять определенное число циклов оперирования, когда в его главной цепи протекает электрический ток, оставаясь после этого в предусмотренном состоянии.

При номинальном напряжении и токовой нагрузке в своей главной цепи, равной номинальному току, любой автоматический выключатель должен выдерживать не менее 4000 циклов электрического оперирования.

Под циклом оперирования понимают последовательность оперирований автоматического выключателя из одного положения в другое с возвратом в начальное положение. Каждый цикл оперирования состоит из замыкания главных контактов автоматического выключателя с последующим их размыканием.

После выполнения 4000 циклов включения номинальной электрической нагрузки с ее последующим отключением автоматический выключатель не должен быть чрезмерно изношенным, не должен иметь повреждений подвижных контактов главной цепи, а также ослабления электрических и механических соединений. Кроме того, не должна ухудшаться электрическая прочность изоляции автоматического выключателя, которую проверяют соответствующими испытаниями.

Номинальное рабочее напряжение (номинальное напряжение).

Под номинальным рабочим напряжением (номинальным напряжением) Uе понимают установленное изготовителем значение напряжения, при котором обеспечена работоспособность автоматического выключателя, особенно при коротком замыкании. Для одного автоматического выключателя может быть установлено несколько значений номинального напряжения, каждому из которых соответствует собственное значение номинальной коммутационной способности при коротком замыкании.

В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 установлены следующие предпочтительные значения номинального напряжения для различных видов автоматических выключателей:

  • для однополюсных – 120, 230, 230/400 В;
  • для двухполюсных – 120/240, 230, 400 В;
  • для трехполюсных и четырехполюсных – 240, 400 В.

Предпочтительные значения номинального напряжения, равные 120, 120/240 и 240 В, установлены стандартами для автоматических выключателей, предназначенных для использования в однофазных трехпроводных электрических системах переменного тока с номинальным напряжением 120/240 В.

Автоматические выключатели, имеющие значения номинального напряжения 230, 230/400 и 400 В, применяют в широко распространенных однофазных двухпроводных, трехфазных трехпроводных и четырехпроводных электрических системах переменного тока с номинальным напряжением 230 В, 400 и 230/400 В.

Помимо указанных выше в стандарте МЭК 60898-2 и ГОСТ IEC 60898-2-2011 установлены следующие предпочтительные значения номинального напряжения постоянного тока для универсальных автоматических выключателей:

для однополюсных – 125, 220 В;
для двухполюсных – 125/250, 220/440 В.

В обоих стандартах также сказано, что производитель должен указать в своей документации значение минимального напряжения, на которое рассчитан данный автоматический выключатель.

Номинальное напряжение изоляции Ui.

Номинальное напряжение изоляции Ui представляет собой установленное изготовителем напряжение, к которому отнесены напряжения испытания изоляции и расстояния утечки. Номинальное напряжение изоляции применяют для определения значений напряжения, используемых при испытании изоляции автоматического выключателя. Его также учитывают при установлении расстояний утечки автоматического выключателя. Когда отсутствуют другие указания, номинальное напряжение изоляции соответствует наибольшему номинальному напряжению автоматического выключателя. При этом значение наибольшего номинального напряжения автоматического выключателя не должно превышать значения его номинального напряжения изоляции.

Номинальный ток In.

Номинальный ток In – установленный изготовителем электрический ток, который автоматический выключатель способен проводить в продолжительном режиме при определенной контрольной температуре окружающего воздуха.

Под продолжительным режимом в стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 понимают такой режим, при котором главные контакты автоматического выключателя остаются замкнутыми, проводя установившийся электрический ток без прерывания в течение продолжительного времени (неделями, месяцами и даже годами).

Контрольной температурой окружающего воздуха называют такую температуру окружающего воздуха, при которой устанавливают время-токовую характеристику автоматического выключателя. Стандартная контрольная температура окружающего воздуха принята равной 30 °С.

В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 установлены следующие предпочтительные значения номинального тока: 6, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 А.

Номинальная частота.

Характеристика «номинальная частота» определяет промышленную частоту, для которой разработан автоматический выключатель и с которой согласованы другие его характеристики. Автоматический выключатель может иметь несколько значений номинальной частоты. Автоматические выключатели, соответствующие требованиям стандарта МЭК 60898-2 и ГОСТ IEC 60898-2-2011, могут также функционировать при постоянном токе. Стандартные значения номинальной частоты автоматических выключателей равны 50 и 60 Гц.

Характеристика расцепления.

Характеристика расцепления каждого автоматического выключателя, с одной стороны, должна обеспечивать надежную защиту проводников электрических цепей от сверхтока. С другой стороны, она не должна допускать в стандартных условиях эксплуатации расцепления автоматического выключателя при протекании в его главной цепи электрического тока, равного номинальному току. Характеристика расцепления автоматического выключателя должна быть стабильной во время его эксплуатации и находиться в пределах соответствующей стандартной время-токовой зоны1.

Примечание 1: Эта характеристика автоматического выключателя в п. 8.6.1 ГОСТ IEC 60898-1-2020 названа нормальной время-токовой характеристикой, а п. 8.6.1 ГОСТ IEC 60898-2-2011 – стандартной время-токовой характеристикой. Однако время-токовая характеристика любого автоматического выключателя имеет вид кривой. В стандартах установлены граничные значения, в пределах которых должны находиться характеристики расцепления всех автоматических выключателей, т. е. в них заданы время-токовые зоны, которые находятся между граничными время-токовыми кривыми. Поэтому рассматриваемую характеристику логичнее поименовать стандартной время-токовой зоной. В п. 8.6.1 стандартов МЭК 60898‑1 и МЭК 60898-2 она названа именно так – «standard time-current zone».

Примечание 1 от Харечко Ю.В. из книги [3]

Основные параметры стандартных время-токовых зон представлены в таблицах 7 стандартов МЭК 60898‑1 и МЭК 60898‑2. Время-токовая характеристика любого качественного автоматического выключателя должна находиться в пределах его стандартной время-токовой зоны.

Ток мгновенного расцепления.

Под током мгновенного расцепления понимают минимальный электрический ток, вызывающий автоматическое срабатывание автоматического выключателя без выдержки времени.

В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 для каждого типа мгновенного расцепления установлены следующие стандартные диапазоны токов мгновенного расцепления1:

тип В – свыше 3 In до 5 In;
тип С – свыше 5 In до 10 In;
тип D – свыше 10 In до 20 In2.

Примечание 1: В стандарте МЭК 60898‑1 эта характеристика имеет наименование «стандартный диапазон мгновенного расцепления» («standard range of instantaneous tripping»). Однако это название нельзя признать удачным. Мгновенное расцепление не может иметь какой-либо диапазон. Оно либо происходит, либо нет. В требованиях стандарта МЭК 60898‑1 и ГОСТ Р 50345 речь идет о диапазонах, в которых находятся минимальные электрические токи, вызывающие мгновенное расцепление автоматических выключателей, т. е. стандарты устанавливают диапазоны, в которых должны находиться токи мгновенного расцепления. Поэтому рассматриваемую характеристику автоматического выключателя в международном стандарте более правильно назвать стандартным диапазоном токов мгновенного расцепления, как она названа в п. 5.3.5 ГОСТ IEC 60898-1-2020.

Примечание 1 от Харечко Ю.В. из книги [3]

Примечание 2: В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 указано, что для специальных автоматических выключателей, имеющих тип мгновенного расцепления D, верхняя граница может быть увеличена до 50 In.

Примечание 1 от Харечко Ю.В. из книги [3]

Для универсальных автоматических выключателей требованиями стандарта МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 предусмотрены только два типа мгновенного расцепления – B и C. При этом для постоянного тока даны иные, чем для переменного тока, стандартные диапазоны токов мгновенного расцепления.

тип В – свыше 4 In до 7 In;
тип С – свыше 7 In до 15 In.

Если в главной цепи автоматического выключателя протекает электрический ток, величина которого равна нижней границе стандартного диапазона токов мгновенного расцепления (3 In, 5 In, 10 In переменного тока, а для универсальных автоматических выключателей также 4 In и 7 In постоянного тока), то автоматический выключатель должен расцепиться за промежуток времени более 0,1 с, но менее 45 с или 90 с (тип мгновенного расцепления B), 15 с или 30 с (тип мгновенного расцепления C) и 4 с или 8 с (тип мгновенного расцепления D) соответственно при номинальном токе до 32 А включительно и более 32 А, т. е. нижняя граница стандартного диапазона токов мгновенного расцепления не является током мгновенного расцепления.

При протекании в главной цепи автоматического выключателя электрического тока, равного верхней границе стандартного диапазона токов мгновенного расцепления (5 In, 10 In, 20 In переменного тока или 7 In, 15 In постоянного тока), он должен расцепиться за промежуток времени менее 0,1 с, т. е. верхняя граница стандартного диапазона токов мгновенного расцепления представляет собой максимально допустимое значение тока мгновенного расцепления. Любой сверхток, превышающий верхнюю границу стандартного диапазона токов мгновенного расцепления, тем более
должен вызывать мгновенное расцепление автоматического выключателя.

В том случае, если значение электрического тока, протекающего в главной цепи автоматического выключателя, находится между нижней и верхней границами стандартного диапазона токов мгновенного расцепления, он может расцепиться либо с незначительной выдержкой времени (несколько секунд), либо без выдержки времени (менее 0,1 с). Фактическое время срабатывания конкретного автоматического выключателя определяется его индивидуальной время-токовой характеристикой. Ток мгновенного расцепления автоматического выключателя также определяется его индивидуальной время-токовой характеристикой.

Стандарт МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 классифицируют автоматические выключатели согласно их токам мгновенного расцепления по типам B, С и D, т. е. все автоматические выключатели подразделяют на три типа мгновенного расцепления: тип B, тип С и тип D. Конкретному типу мгновенного расцепления соответствует собственный стандартный диапазон токов мгновенного расцепления, а также собственная стандартная время-токовая зона. Для универсальных автоматических выключателей стандартом МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 предусмотрены два типа мгновенного расцепления B и С.

Импульсное выдерживаемае напряжение.

Под импульсным выдерживаемым напряжением понимают наибольшее пиковое значение импульсного напряжения предписанной формы и полярности, которое не вызывает пробоя изоляции при установленных условиях. Номинальное импульсное выдерживаемое напряжение Uimp автоматического выключателя должно быть равным или превышать стандартные значения номинального импульсного выдерживаемого напряжения, которые установлены в таблицах 3 стандарта МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 в зависимости от номинального напряжения электроустановки (см. табл. 1).

Таблица 1. Стандартные значения номинального импульсного выдерживаемого напряжения
Номинальное импульсное выдерживаемое напряжение (Uimp), кВ Номинальное напряжение электроустановки, В
Трехфазные системы Однофазная система с заземленной средней точкой
2,5 120/240
4 230/400, 250/440 120/240, 240

Предельная отключающая способность при коротком замыкании Icu.

Под предельной отключающей способностью при коротком замыкании Icu1 понимают отключающую способность, для которой предписанные условия соответственно установленной последовательности испытаний не предусматривают способности автоматического выключателя проводить в течение условного времени электрический ток, равный 0,85 его тока нерасцепления.

Примечание 1: В ГОСТ IEC 60898-1-2020 рассматриваемая характеристика автоматического выключателя имеет наименование «предельная наибольшая отключающая способность». В стандарте МЭК 60898‑1 эта характеристика названа иначе – «предельная отключающая способность при коротком замыкании» («ultimate short-circuit breaking capacity»). В национальных стандартах, распространяющихся на автоматические выключатели, вместо термина «предельная наибольшая отключающая способность» следует использовать термин «предельная отключающая способность при коротком замыкании». В требованиях стандарта МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 не используют рассматриваемый термин.

Примечание 1 от Харечко Ю.В. из книги [3]

Номинальная коммутационная способность при коротком замыкании Icn.

Номинальная коммутационная способность при коротком замыкании Icn1 представляет собой значение предельной отключающей способности при коротком замыкании, установленное изготовителем для автоматического выключателя.

Примечание 1: В ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011 рассматриваемая характеристика автоматического выключателя имеет наименование «номинальная наибольшая отключающая способность». В стандартах МЭК 60898‑1 и МЭК 60898‑2 эта характеристика названа иначе – «номинальная способность при коротком замыкании» («rated short-circuit capacity»). При этом под способностью при коротком замыкании (short-circuit capacity) в международных стандартах понимают (включающую и отключающую) способность при коротком замыкании (short-circuit (making and breaking) capacity), т. е. коммутационную способность автоматического выключателя при коротком замыкании. Для устранения расхождений в наименованиях одной и той же характеристики автоматического выключателя в международных и национальных нормативных документах целесообразно использовать термин «номинальная коммутационная способность при коротком замыкании».

Примечание 1 от Харечко Ю.В. из книги [3]

Характеристика «номинальная коммутационная способность при коротком замыкании» определяет максимальный ток короткого замыкания, который автоматический выключатель должен гарантированно включить, проводить определенное время и отключить при заданных стандартом условиях, например, при установленном в стандарте диапазоне коэффициентов мощности (см. таблицу 17 ГОСТ IEC 60898-1-2020). Автоматический выключатель тем более должен отключить любой ток короткого замыкания, значение которого не превышает его номинальной коммутационной способности при коротком замыкании.

Для понимания характера поведения автоматического выключателя после отключения им максимального тока короткого замыкания обратимся к требованиям, изложенным в п. 9.12.11.4.3 стандартов1. Каждый автоматический выключатель должен обеспечить одно отключение испытательной электрической цепи с ожидаемым током короткого замыкания, равным номинальной коммутационной способности при коротком замыкании, а также одно включение с последующим автоматическим отключением электрической цепи, в которой протекает указанный испытательный ток.

Примечание 1: В стандартах МЭК 60898‑1 и МЭК 60898‑2 этот пункт назван «Испытание при номинальной способности при коротком замыкании (Icn)», в ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011 − «Испытание при номинальной наибольшей отключающей способности (Icn)». Этот пункт в международных и национальных стандартах целесообразно назвать иначе: «Испытание при номинальной коммутационной способности при коротком замыкании (Icn)».

Примечание 1 от Харечко Ю.В. из книги [3]

После проведения этого испытания качественный автоматический выключатель не должен иметь повреждений, ухудшающих его эксплуатационные свойства, а также должен выдержать установленные стандартом испытания на электрическую прочность и проверку характеристики расцепления.

Рассматриваемую характеристику автоматического выключателя используют для согласования ее численного значения с токами короткого замыкания в электроустановке здания. Значение номинальной коммутационной способности при коротком замыкании должно превышать или быть равным максимальному току короткого замыкания в месте установки автоматического выключателя.

Для автоматических выключателей бытового назначения в стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 установлены следующие значения номинальной коммутационной способности при коротком замыкании:

  • в диапазоне сверхтока до 10 000 А включительно – стандартные значения номинальной коммутационной способности при коротком замыкании, равные 1500, 3000, 4500, 6000, 10 000 А;
  • в диапазоне сверхтока свыше 10 000 А до 25 000 А включительно – предпочтительное значение номинальной коммутационной способности при коротком замыкании, равное 20 000 А.

Указанные значения номинальной коммутационной способности при коротком замыкании имеют и универсальные автоматические выключатели.

Включающая и отключающая способность при коротком замыкании.

Включающую и отключающую способность при коротком замыкании2 автоматического выключателя оценивают в стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 по действующему значению переменной составляющей ожидаемого тока3, который он предназначен включать, проводить в течение его времени размыкания и отключать при определенных условиях.

Примечание 2: В ГОСТ IEC 60898-1-2020 рассматриваемая характеристика автоматического выключателя имеет наименование «наибольшая включающая и отключающая способность». В стандарте МЭК 60898‑1 эта характеристика названа иначе – «(включающая и отключающая) способность при коротком замыкании» («short-circuit (making and breaking) capacity»). В национальных стандартах, распространяющихся на автоматические выключатели, вместо термина «наибольшая включающая и отключающая способность» следует использовать термин «включающая и отключающая способность при коротком замыкании». В стандарте МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 не используют рассматриваемый термин.

Примечание 2 от Харечко Ю.В. из книги [3]

Примечание 3: Ожидаемый ток – электрический ток, который будет протекать в электрической цепи, если каждый полюс коммутационного устройства заменить проводником с пренебрежимо малым полным сопротивлением.

Примечание 3 от Харечко Ю.В. из книги [3]

Время отключения и время дуги.

Для отключения сверхтока автоматическому выключателю требуется определенное время – время отключения, которое представляет собой интервал времени между началом времени размыкания и концом времени дуги. Началом времени размыкания считают момент, когда электрический ток в главной цепи автоматического выключателя достигнет уровня срабатывания его расцепителя сверхтока. Концом времени дуги является момент гашения электрических дуг во всех полюсах автоматического выключателя. Поэтому время отключения однополюсного автоматического выключателя приблизительно равно сумме времени размыкания и времени дуги в полюсе, а многополюсного автоматического выключателя – сумме времени размыкания и времени дуги в многополюсном автоматическом выключателе.

Рабочая отключающая способность при коротком замыкании Ics.

Номинальной коммутационной способности при коротком замыкании автоматического выключателя соответствует определенная рабочая отключающая способность при коротком замыкании Ics1 – отключающая способность, для которой предписанные условия соответственно установленной последовательности испытаний предусматривают способность автоматического выключателя проводить в течение условного времени электрический ток, равный 0,85 его тока нерасцепления.

Примечание 1: В ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011 рассматриваемая характеристика автоматического выключателя имеет наименование «рабочая наибольшая отключающая способность». В стандартах МЭК 60898‑1 и МЭК 60898‑2 эта характеристика названа иначе – «рабочая отключающая способность при коротком замыкании» («service short-circuit breaking capacity»). Для устранения расхождений в наименованиях одной и той же характеристики автоматического выключателя в национальных нормативных документах вместо термина «рабочая наибольшая отключающая способность» следует использовать термин «рабочая отключающая способность при коротком замыкании».

Примечание 1 от Харечко Ю.В. из книги [3]

В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 между номинальной коммутационной способностью при коротком замыкании автоматического выключателя и его рабочей отключающей способностью при коротком замыкании установлены соотношения, представленные в табл. 2. Указанная информация приведена в таблицах 18 стандартов, в которых соотношение между рабочей отключающей способностью и номинальной коммутационной способностью задано посредством коэффициента, равного К = Ics/Icn.

Таблица 2. Соотношения между номинальной коммутационной способностью при коротком замыкании и рабочей отключающей способностью при коротком замыкании

Номинальная коммутационная способность при коротком замыкании IcnРабочая отключающая способность при коротком замыкании Ics
Icn ≤ 6000 АIcs = Icn
6000 А < Icn ≤ 10 000 АIcs = 0,75 Icn, но не менее 6000 А
Icn > 10 000 АIcs = 0,5 Icn, но не менее 7500 А

Рабочая отключающая способность при коротком замыкании значительно меньше номинальной коммутационной способности при коротком замыкании (при Icn > 6000 А). Поэтому каждый автоматический выключатель способен отключить электрический ток, равный рабочей отключающей способности при коротком замыкании, бóльшее число раз, чем электрический ток, равный номинальной коммутационной способности при коротком замыкании.

Однополюсный и двухполюсный автоматические выключатели должны обеспечить два отключения испытательной электрической цепи с ожидаемым током короткого замыкания в ней, равным рабочей отключающей способности при коротком замыкании, и одно включение указанной электрической цепи с последующим ее автоматическим отключением. Трехполюсный и четырехполюсный автоматические выключатели должны обеспечить одно отключение электрической цепи, в которой протекает указанный испытательный ток, а также два ее включения с последующим автоматическим отключением.

Однополюсный и двухполюсный универсальные автоматические выключатели должны обеспечить одно отключение электрической цепи с ожидаемым постоянным током короткого замыкания в ней, равным рабочей отключающей способности при коротком замыкании, а также два ее включения с последующим автоматическим отключением.

После проведения указанного испытания качественный автоматический выключатель не должен иметь повреждений, ухудшающих его эксплуатационные свойства. Автоматический выключатель также должен выдержать предписанные стандартами испытания на электрическую прочность и проверку его характеристики расцепления.

В требованиях подраздела 533.3 «Выбор устройств для защиты электропроводок от коротких замыканий» стандарта МЭК 60364‑5‑53 сказано, что, когда стандарт на защитное устройство определяет и рабочую отключающую способность при коротком замыкании, и номинальную предельную отключающую способность при коротком замыкании, допустимо выбирать защитное устройство на основе предельной отключающей способности при коротком замыкании для максимальных характеристик короткого замыкания.

Однако условия эксплуатации могут сделать желательным выбор защитного устройства по рабочей отключающей способности при коротком замыкании, например, когда защитное устройство устанавливают на вводе низковольтной электроустановки. Аналогичное требование, сформулированное с терминологическими ошибками, имеется в ГОСТ Р 50571.5.53-2013, который разработан на основе стандарта МЭК 60364‑5‑53:2002. Поэтому при согласовании характеристик автоматических выключателей с характеристиками электрических цепей в электроустановке здания значения их рабочих отключающих способностей при коротком замыкании целесообразно выбирать так, чтобы они превышали или были равными максимальным токам короткого замыкания в местах их установки.

Характеристика I2t.

Характеристика I2t представляет собой кривую, отражающую максимальные значения I2t автоматического выключателя как функцию ожидаемого тока в указанных условиях эксплуатации. Эта характеристика позволяет оценить способность автоматического выключателя ограничивать ожидаемый сверхток в защищаемых им электрических цепях. Некоторые виды электрооборудования, например устройства дифференциального тока без встроенной защиты от сверхтока, имеют ограничения по значению характеристики I2t. Поэтому при проектировании электроустановок зданий с помощью рассматриваемой характеристики проводят проверку возможности использования автоматических выключателей для обеспечения защиты подобного электрооборудования от токов короткого замыкания.

Значения характеристики I2t для конкретных электрических токов – так называемый «интеграл Джоуля» – интеграл квадрата силы тока по данному интервалу времени (t0, t1) – определяют по следующей формуле:

В стандарте EN 60898‑1 рассматриваемая характеристика положена в основу классификации автоматических выключателей, устанавливающей способность автоматических выключателей ограничивать ожидаемые сверхтоки в защищаемых ими электрических цепях. Автоматические выключатели подразделяют на три класса ограничения энергии.

Класс ограничения электроэнергии.

Характеристика «класс ограничения электроэнергии» и значения характеристики I2t, по которым автоматические выключатели могут быть отнесены к определенному классу, не предусмотрены ни в стандарте МЭК 60898‑1, ни в ГОСТ IEC 60898-1-2020. Однако в обоих стандартах отмечается, что в дополнение к характеристике I2t, обеспеченной производителем, автоматические выключатели могут быть классифицированы согласно их характеристике I2t. По требованию производитель должен сделать доступным характеристику I2t. Он может указать классификацию I2t и соответственно маркировать автоматические выключатели.

В табл. 3 представлены максимальные значения характеристики I2t автоматических выключателей по классам ограничения электроэнергии, значения которых заимствованы из изменения А11, внесенного в стандарт EN 60898 в 1994 г.

Таблица 3. Предельные значения характеристики I2t для автоматических выключателей, А2с
Номинальная коммутационная способность при коротком замыкании, А Класс ограничения электроэнергии
1 2 3
Тип мгновенного расцепления автоматического выключателя
B и C В С В С
Номинальный ток до 16 А включительно
3000 Предельные значения не установлены 31000 37000 15000 18000
4500 60000 75000 25000 30000
6000 100000 120000 35000 42000
10000 240000 290000 70000 84000
Номинальный ток свыше 16 А до 32 А включительно*
3000 Предельные значения не установлены 40000 50000 18000 22000
4500 80000 100000 32000 39000
6000 130000 160000 45000 55000
10000 310000 370000 90000 110000
* Для автоматических выключателей с номинальным током 40 А могут быть применены максимальные значения, равные 120 % от указанных в таблице. Такие автоматические выключатели могут быть маркированы символом соответствующего класса ограничения электроэнергии.

Автоматические выключатели, имеющие класс ограничения электроэнергии 2 и 3, представляют собой токоограничивающие автоматические выключатели, характеризующиеся малым временем отключения, в течение которого ток короткого замыкания не успевает достичь своего пикового значения. Применение токоограничивающих автоматических выключателей в электроустановках зданий позволяет уменьшить негативное воздействие токов короткого замыкания на низковольтное электрооборудование и, прежде всего, на проводники электрических цепей.

Современные автоматические выключатели бытового назначения, имеющие номинальный ток до 40 А и типы мгновенного расцепления B и C, как правило, представляют собой токоограничивающие автоматические выключатели и соответствуют третьему классу ограничения электроэнергии.

В стандарте МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 дополнительно установлена следующая классификация универсальных автоматических выключателей по постоянной времени:

  • автоматические выключатели, пригодные для электрических цепей постоянного тока с постоянной времени T ≤ 4 мс;
  • автоматические выключатели, пригодные для электрических цепей постоянного тока с постоянной времени T ≤ 15 мс.

В ГОСТ IEC 60898-2-2011 приведено следующее пояснение: «Очевидно, что токи короткого замыкания не превышают значения 1500 А в тех установках, где в силу присоединенных нагрузок постоянная времени при нормальной эксплуатации может быть не более 15 мс. В электроустановках со значениями токов короткого замыкания свыше 1500 А постоянная времени T = 4 мс считается достаточной».

Список использованной литературы

  1. ГОСТ IEC 60898-1-2020
  2. ГОСТ IEC 60898-2-2011
  3. Харечко Ю.В. Краткий терминологический словарь по низковольтным электроустановкам. Часть 5// Приложение к журналу «Библиотека инженера по охране труда». – 2017. – № 2. – 160 c

Время-токовые характеристики автоматических выключателей

Многие, наверное, замечали, что на корпусах модельных защитных выключателей указаны буквы латинского алфавита – B, C или D. Они обозначают време-токовую характеристику или ток мгновенного расцепления данного устройства.

В соответствии с пунктом 3.5.17 ГОСТа Р 50345-99, ток мгновенного расцепления – это минимальные показатели электротока, при котором устройство отключается без электромагнитной защиты, то есть без выдержки времени.

Пунктом 5.3.5 того же ГОСТа установлено, что существует три вида данной характеристики:

1.B– от 3 In до 5 In.

2.C – от 5 In до 10 In.

3.D – от 10 In до 20 In.

In– это номинальный показатель предохранительного элемента.

Рассмотрим эти виды многоцелевого расцепления на примере модульного коммутационного устройства ВА 47-29.

Время-токовая характеристика типа B

На графике приведена зависимость времени срабатывания защитного устройства от величины протекающего электротока. На оси Х указана кратность тока к номинальному электротоку коммутатора. По оси Y– время разъединение (секунд).

График имеет две линии, которые описывают разброс разъединение электромагнитного и теплового расцепителя устройства. Верхняя линия – это холодное состояние автомата после срабатывания, а нижняя – горячее.

Важно! Характеристики большинства автоматов изображаются при температуре 30 градусов по Цельсию.

На представленных характеристиках, пунктирной линией отмечен верхний предел для прибора с номинальным электротоком меньше 32 Ампер.

Анализ графика показывает:

1.Если через коммутационный прибор будет проходить электрический ток в 3 In, то максимальное время его отключения в горячем состоянии составляет 0,02 секунды. В холодном состоянии время срабатывания:

  • для автоматов менее 32 А – 35 сек.;
  • для автоматов более 32 А – 80 сек.

2.Если через автомат будет проходить электроток в 5 In, то максимальное время разъединения в горячем состоянии – 0,01 секунды, а в холодном – 0,04.

Автоматические выключатели вида B используются преимущественно для защиты потребителей с активным типом нагрузки – цепи освещения, электрические обогреватели и печи.

В магазинах количество подобных устройств довольно ограничено. Хотя для организации питания групп розеток и освещения целесообразно использовать именно такие рубильники, а не тип С. Именно в таком случае удастся соблюсти селективность при коротком замыкании.

Время-токовая характеристика типа C

График время-токовой характеристики вида С:

1.Если через предохранительный коммутатор будет протекать ток в 5 In, то максимальное время отключения в горячем состоянии составит 0,02 секунды. В холодном состоянии наибольшее время разъединение :

  • для выключателей менее 32 А – 11 сек.;
  • для выключателей более 32 А – 25 сек.

2.Если через защитное коммутационное устройство будет протекать электроток в 10 In, то максимальное время срабатывания в горячем состоянии – 0,01 секунды, а в холодном – 0,03 секунды.

Данный тип автоматов используется в основном для защиты моторов с небольшими пусковыми токами и трансформаторов. Их также можно применять для запитывания цепей освещения. Они широко используются в жилом фонде.

Время-токовая характеристика типа D

График время-токовой характеристики типа D:

1.Если через з предохранительный автомат будет протекать ток в 10 In, то максимальное время отключения в горячем состоянии составит 0,02 секунды. В холодном состоянии максимальное время срабатывания :

  • для выключателей менее 32 А – 3 сек.;
  • для выключателей более 32 А – 7 сек..

2.Если через защитный коммутатор будет протекать электроток в 20 In, то наибольшее время срабатывания в горячем состоянии – 0,009 секунды, а в холодном – 0,02 секунды.

Коммутаторы вида D используются для защиты двигателей с тяжелым и частым пуском.

Изменение характеристик расцепления автоматов

Как упоминалось в начале статьи, все характеристики предохранительных автоматов приводятся при температуре окружающей среды в 30 градусов по Цельсию. Для того, чтобы узнать время срабатывания механических коммутаторов при других температурах, следует учитывать такие поправочные коэффициенты:

1.Kt – температурный коэффициент окружающего воздуха. На графике ниже можно проанализировать его значения. Чем выше температура воздуха, тем ниже значение данного коэффициента, а значит и снижается номинальный ток выключателя, то есть его нагрузочная способности. Или, иначе, чем холодней, тем меньше нагрузочная способность. По этойпричине в жарких помещениях возможно срабатывания автоматов даже без роста нагрузки.

2.Kn– коэффициент учета количества установленных автоматов в ряд. Когда в одном ряду уставлено несколько защитных автоматов, то они передают часть своего тепла остальным выключателям. На графике ниже представлена зависимость конвекции тепла от количества автоматов. Чем больше устройств в ряду, тем меньше их нагрузочная способность.

Для того, чтобы рассчитать электроток, в соответствии с температурой окружающей среды, нужно номинальный ток механического коммутатора умножить на приведенные выше коэффициенты.

Теперь рассмотри пример использования коэффициентов на практике. Допустим, распределительный щиток установлен на улице и к нему подключено 4 автомата:

  • вводной автомат типа ВА 47-29 С40 – 1 штука;
  • групповой автомат типа ВА 47-20 С16 – 3 штуки.

Температура окружающей среды – минус 10 градусов по Цельсию.

Находим поправочные коэффициенты для автомата ВА 47-29 С16:

1.Kt=1,1.

2.Kn=0,82.

Рассчитываем номинальный ток:

In=16*1,1*0,82=14,43 Ампер.

Следовательно, чтобы определить предельное время отключения защитного автомата типа С нужно использовать не соотношение I/In (I/16), а I/In* (I/14,43).

Условный ток неотключение и условный ток отключения

Каждый автомат имеет условный ток неотключения, который рассчитывается как 1,13 In. При таком токе защитное устройство не сработает.

Возьмем уже знакомый нам выключатель ВА 47-29 С16. При протекании через него электротока 1,13 In=18,08 Ампер он никогда не сработает.

Также существует такое понятие, как условный ток отключения. Он всегда равняется 1,45 In. При таком токе в холодном состоянии выключатель не будет отключатся в течение часа.

Например, выключатель ВА 47-29 С16 при прохождении тока 1,45In = 23,2 Ампер в горячем состоянии отключится через 50 секунд, а в холодном – через час.

Только представьте, что автомат номинальным током в 16 Ампер сможет держать нагрузку в 23 Ампер в течение 60 минут. За это время 1,5-миллиметровый кабель может выгореть и расправится.

Основные типы характеристик автоматических выключателей: время-токовые параметры


Покупая электрический автомат в распределительный щит, нас интересует время его срабатывания в аварийной ситуации. В зависимости от значений протекающего тока оно может находиться в пределах от сотых доли секунды до нескольких минут. Все эти сведения заключаются в одном из важных параметров АВ – время-токовой характеристике. Если мы грамотно выбрали кабель и выключатель, то можем не переживать, что при повышенных значениях тока изоляция на проводах не поплывет, допустим, за 20 секунд, которые нужны для срабатывания защиты от перегрузки.

Коротко о типах время-токовых характеристик автоматических выключателей и их назначении

 


Все мы без исключения видели буквы на корпусе рядом с цифровыми значениями номинального рабочего тока. Чаще всего встречаются обозначения в виде литер B, C и D, есть еще A, K и Z, но в частных домовладениях их не используют. Соответственно существуют рекомендации по их применению:
  • A – для защиты линий большой протяженности, а также приборов на полупроводниках.
  • B – предназначены для использования в розеточных и осветительных цепях, где пусковые значения тока минимальны.
  • C – используются в роли защиты для общей цепи и электроаппаратов с умеренными пусковыми нагрузками.
  • D – технические характеристики этих автоматических выключателей позволяют им работать с высокими пусковыми токами электродвигателей, а также в цепях с активно-индуктивной нагрузкой.
  • K – только для линий с индуктивной нагрузкой.
  • Z – для защиты электронного оборудования.

Точно выяснить время токовые параметры автомата можно по графикам, в которых представлена зависимость времени срабатывания от величины тока. По ним определяют, через какой промежуток времени будут обесточены потребители при повышенном токе или его скачках. Если вы разбираетесь в графиках, то сразу же поймете, почему отключается автоматический выключатель и в чем причина.

Категории «B», «C» и «D»: в чем отличия?

Поскольку автоматы этих типов в основном используются в жилых зданиях, то и речь пойдет именно о них. Собственно, отличие только одно, и оно заключается в различных значениях величины отношения протекающего тока к номинальному току I/In.

Время-токовая характеристика (ВТХ)

Отношение протекающего тока к номинальному току I/In

B

3-5

C

5-10

D

10-20

 

Если еще не все прояснилось, будем разбираться дальше уже на практических примерах. Уверяю, так будет понятнее, чем «жевать» сухую теорию.

Пример использования токовременной характеристики автоматического выключателя класса «В»

Предположим, стоит у нас в распределительном щите автомат на 10А с параметрами класса «B». Мы не случайно выбрали 10А, во-первых, ими часто пользуются в домашних электрических сетях, а во-вторых, так проще производить расчеты.

 

Итак, случилось ЧП…

Решил как-то мой приятель Витька Штуцер повесить у себя дома книжные полки. Начал сверлить стену перфоратором и бац – вокруг темень и тишина. Здесь не нужно быть мастером экстра-класса, чтобы понять – сверло замкнуло жилы проводки и произошло КЗ. Думаю, у многих была похожая ситуация.

В этом случае, когда величина тока в сети превысит номинальное значение защиты в 3-5 раз, автомат с время-токовой характеристикой категории «B» сработает моментально. В нашем варианте величина тока будет находиться в пределах 30-50А. При КЗ ток увеличивается в сотни раз, но нашему электромагнитному расцепителю будет достаточно и 3-5 кратного превышения нормы, чтобы разорвать цепь.

Смотрим графики

… и что видим? При достижении величины тока в 50А автоматический выключатель сработает через 0,01 сек. Теперь смотрим, откуда это взялось:

  • Ток короткого замыкания разделим на рабочий ток автомата – 50А/10А = 5.
  • На горизонтальной оси от цифры «5» проведем вверх вертикальную линию (красного цвета) до пересечения с первой кривой.
  • От точки пересечения с кривой проведем горизонтальную линию до вертикальной оси времени. Получаем примерно 0,01 секунда.

Аналогичным образом можно определить, что при перегрузке в 15А отношение составит 1,5 и время до срабатывания автомата– 30 сек. Здесь уже цепь будет разорвана за счет работы теплового расцепителя. Когда сечение провода правильно подобрано, то изоляция за такой промежуток времени расплавиться не успеет.

Три кривых время-токовой характеристики автоматического выключателя: особенности графика

На графике представлены три кривые, со значением одной из них мы вкратце ознакомились выше. Настало время разобраться, зачем они вообще нужны:

  1. Верхняя кривая – для «холодного» состояния автомата.
  2. Пунктирная кривая – для расчета времени отключения автоматов с номиналом не выше 32А.
  3. Нижняя кривая – для «горячего» состояния.

Сам график составлен с учетом того, что окружающая температура находится в пределах +30℃. Для вышеприведенного примера автоматический выключатель категории «B» в холодном состоянии при токе 50А сделает задержку на срабатывание 0,04 секунды, а при токе 15А – 4000 секунд (около 67 минут). На графике эти ситуации обозначены синим цветом.

 

Что еще нужно учесть

Автоматы могут стоять и в квартире, и в подъезде, и на улице. Везде температура окружающей среды будет разной. Допустим, зимой в квартире будет +20℃, в парадной воздух нагреется до +15℃, а на улице мороз все -25℃. Температура деталей расцепителя во всех случаях различна, а это значит, что время срабатывания автомата на холоде и в тепле будет разным.

Нельзя упускать из вида и поправочный коэффициент. Его суть – чем выше окружающая температура, тем меньший ток пропускает автоматический выключатель и наоборот. Один и тот же автомат при одинаковых нагрузках, но установленный в холодном и теплом помещении сработает при разных значениях тока. Хоть разница и незначительна, но она становится актуальной, когда защита работает на пределе своего номинала или сильно перегружена.

Особо часто проблема встает в полный рост летом или в жарких помещениях. Как только температура вырастет, автомат может сразу же отключить линию.

Несколько слов о время-токовых характеристиках автоматических выключателей «C» и «D»

Графиковые кривые этих категорий сдвинуты вправо, другими словами, время срабатывания автоматов увеличено:

  • Защита с характеристикой «C» отключит нагрузку при КЗ, когда ток в сети будет больше номинала выключателя в 5-10 раз.
  • Автомат с характеристикой «D» сработает при КЗ в случае, когда ток в сети превысит его номинал в 10-20 раз.

Судя по графику, выключатель на 10А категории «C» при токе 50А сработает за 0,02 секунды, а при токе 15А – за 40 секунд. Это в «горячем» режиме, обозначенным красным цветом. В «холодном» режиме (синий цвет) при токе 50А получим около 27 секунд, а при 15А – 5000 секунд (около 83 минут).

Аналогичный график выключателя с характеристиками «D» показывает, что в «горячем» состоянии (красная линия) при токе 50А время срабатывания будет уже около 1,5 сек, а при 15А – 40 сек. В «холодном» режиме работы автомата имеем: при токе 50А нагрузка будет отключена через 30 секунд, а при 15А – 6000 секунд или около 100 мин. Все эти детали нужно принимать во внимание при покупке автоматических выключателей.

Токи условного нерасцепления или какой ток может пропустить автомат

Любой выключатель в состоянии пропускать ток больший от номинального в 1,13 раз (1,13•In). Если взглянуть на график, то это легко определить, проведя вертикальную линию от цифры 1,13. Она никогда не пересечется с кривой времени, т.е. автоматический выключатель при таком токе не сработает. А чтобы перестраховаться, нужно воспользоваться проводом большего сечения. Из таблицы можно определить какому автомату какой ток не отключения соответствует:

Номинальный ток автомата, А

Условный ток нерасцепления автоматического выключателя, А

Площадь сечения медных жил, мм².

10

11,3

1,5

16

18,08

2,5

20

22,6

4

25

28,25

4-6

Допустим, для нагрузки с потреблением тока 25А мы взяли провод сечением 2,5 мм². И вот однажды мы решили печь в духовке пироги и одновременно размораживать мясо в микроволновке, а кроме этого уже работают холодильник и вытяжка. В итоге в сети получаем где-то 28А, но автомат не сработает, потому что 25*1,13=28,25А. По таблице мы видим, что здесь уже нужно сечение провода 4 мм². А поскольку имеем 2,5 мм², то такой кабель будет греться.

Учтите, что некоторые производители кабельной продукции откровенно халтурят, делая кабеля меньшего сечения, чем заявлено. Поэтому при выборе автоматов и провода стоит покупать их с небольшим запасом от предполагаемой нагрузки.
 

 



Основные характеристики выключателя

Основные характеристики автоматического выключателя:

  • Его номинальное напряжение Ue
  • Его номинальный ток In
  • Диапазон регулировки уровня тока срабатывания для защиты от перегрузки (Ir [1] или Irth [1] ) и для защиты от короткого замыкания (Im) [1]
  • Его номинальный ток отключения при коротком замыкании (Icu для промышленных выключателей; Icn для выключателей бытового типа).

Номинальное рабочее напряжение (Ue)

Это напряжение, при котором автоматический выключатель рассчитан на работу в нормальных (невозмущенных) условиях.

Автоматическому выключателю также присваиваются другие значения напряжения, соответствующие возмущенным условиям, как указано в разделе «Другие характеристики автоматического выключателя».

Номинальный ток (In)

Это максимальное значение тока, которое автоматический выключатель, оснащенный указанным реле максимального тока, может выдерживать неопределенное время при температуре окружающей среды, указанной производителем, без превышения установленных температурных пределов токоведущих частей.

Пример

Автоматический выключатель, рассчитанный на In = 125 A для температуры окружающей среды 40 ° C, будет оснащен соответствующим образом откалиброванным реле максимального тока (настроено на 125 A). Однако тот же автоматический выключатель может использоваться при более высоких значениях температуры окружающей среды, если он соответствующим образом «понижен». Таким образом, автоматический выключатель при температуре окружающей среды 50 ° C может выдерживать только 117 А в течение неограниченного периода времени или, опять же, только 109 А при 60 ° C, при соблюдении указанного температурного предела.

Таким образом, снижение номинальных характеристик автоматического выключателя достигается за счет уменьшения уставки тока срабатывания его реле перегрузки и соответствующей маркировки выключателя.Использование отключающего устройства электронного типа, разработанного, чтобы выдерживать высокие температуры, позволяет автоматическим выключателям (со сниженными номинальными характеристиками) работать при температуре окружающей среды 60 ° C (или даже 70 ° C).

Примечание: In для автоматических выключателей (в IEC 60947-2) обычно равно Iu для распределительного устройства, Iu - это номинальный непрерывный ток.

Типоразмер рамы

Автоматическому выключателю, который может быть оснащен расцепителями максимального тока с различными диапазонами настройки уровня тока, присваивается номинал, который соответствует максимальному устройству отключения с настройкой уровня тока, которое может быть установлено.

Пример

Автоматический выключатель Compact NSX630N может быть оснащен 11 электронными расцепителями от 150 до 630 А. Номинальный ток автоматического выключателя составляет 630 А.

Уставка тока срабатывания реле перегрузки (Irth или Ir)

Помимо небольших автоматических выключателей, которые очень легко заменяются, промышленные автоматические выключатели оснащены съемными, т. Е. Заменяемыми, реле максимального тока. Кроме того, чтобы адаптировать автоматический выключатель к требованиям цепи, которую он контролирует, и избежать необходимости прокладки кабелей слишком большого размера, реле отключения обычно регулируются.Уставка тока срабатывания Ir или Irth (обычно используются оба обозначения) - это ток, при превышении которого автоматический выключатель сработает. Он также представляет собой максимальный ток, который автоматический выключатель может выдерживать без отключения. Это значение должно быть больше максимального тока нагрузки IB, но меньше максимально допустимого тока в цепи Iz (см. Главу «Размеры и защита проводов»).

Реле теплового срабатывания обычно регулируются в пределах от 0,7 до 1,0 от In, но когда для этого используются электронные устройства, диапазон регулировки больше; обычно 0.4 к 1 разу В.

Пример

(см. рис. h37)

Выключатель NSX630N, оборудованный реле максимального тока Micrologic 6.3E на 400 А, установленным на 0,9, будет иметь уставку тока срабатывания:

Ir = 400 x 0,9 = 360 А

Примечание: Для автоматических выключателей, оборудованных нерегулируемыми реле максимального тока, Ir = In. Пример: для автоматического выключателя iC60N на 20 А,

Ir = In = 20 А.

Рис. H37 - Пример автоматического выключателя Compact NSX630N с номиналом 400 А от Micrologic, настроенным на 0.9, чтобы получить Ir = 360 A

Уставка тока срабатывания реле короткого замыкания (Im)

Реле отключения при коротком замыкании (мгновенного действия или с небольшой выдержкой времени) предназначены для быстрого отключения выключателя при возникновении высоких значений тока повреждения. Их порог срабатывания Im равен:

  • Либо фиксируется стандартами для отечественных автоматических выключателей, например IEC 60898 или
  • Указано производителем для автоматических выключателей промышленного типа в соответствии с соответствующими стандартами, в частности, IEC 60947-2.

Для последних автоматических выключателей существует большое количество отключающих устройств, которые позволяют пользователю адаптировать защитные характеристики автоматического выключателя к конкретным требованиям нагрузки (см. Рис. h38, Рис. h39 и Рис. h40).

Рис. H38 - Диапазоны тока отключения устройств защиты от перегрузки и короткого замыкания для выключателей низкого напряжения

Тип реле защиты Защита от перегрузки
Защита от короткого замыкания
Бытовые выключатели IEC 60898 Термомагнитный Ir = In Низкое значение
тип B
3 In ≤ Im ≤ 5 In
Стандартная настройка
тип C
5 In ≤ Im ≤ 10 In
Цепь высокой уставки
тип D
10 In ≤ Im ≤ 20 In [a]
Модульные промышленные автоматические выключатели [b] Термомагнитный Ir = In
фиксированный
Низкая настройка
тип B или Z
3.2 In ≤ фиксированный ≤ 4,8 дюйма
Стандартная настройка
тип C
7 In ≤ фиксированный ≤ 10 In
Высокая уставка
тип D или K
10 In ≤ фиксированная ≤ 14 In
Автоматические выключатели промышленные [b]

IEC 60947-2

Термомагнитный Ir = фиксированный Фиксированное: Im = от 7 до 10 дюймов
Регулируемый:
0,7 In ≤ Ir ≤ In
Регулируемый:
  • Низкое значение: от 2 до 5 дюймов
  • Стандартная настройка: от 5 до 10 дюймов
Электронный Длительная задержка
0. 1 2 Для промышленного использования стандарты IEC не определяют значения. Вышеуказанные значения даны только как общеупотребительные.

Рис. H39 - Кривая отключения термомагнитного выключателя

Ir : Уставка тока срабатывания реле перегрузки (тепловая или с большой задержкой)
Im : Уставка тока срабатывания реле короткого замыкания (магнитная или короткая задержка)
Ii : Мгновенное срабатывание реле короткого замыкания- текущая настройка.
Icu : Отключающая способность

Рис. H40 - Кривая отключения автоматического выключателя с усовершенствованным электронным расцепителем

Автоматический выключатель с изоляцией

Автоматический выключатель пригоден для разъединения цепи, если он соответствует всем условиям, предписанным для разъединителя (при его номинальном напряжении) в соответствующем стандарте. В таком случае он называется выключателем-разъединителем и маркируется на его лицевой стороне символом

К этой категории относятся все распределительные устройства Acti 9, Compact NSX и Masterpact LV линейки Schneider Electric.

Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Отключающая способность низковольтного выключателя по току короткого замыкания связана (приблизительно) с cos φ петли тока короткого замыкания. Стандартные значения для этого отношения установлены в некоторых стандартах.

Номинальный ток отключения при коротком замыкании выключателя - это наивысшее (ожидаемое) значение тока, которое выключатель способен отключать без повреждения. Величина тока, указанная в стандартах, представляет собой действующее значение переменной составляющей тока короткого замыкания, т.е.е. переходная составляющая постоянного тока (которая всегда присутствует в наихудшем случае короткого замыкания) предполагается равной нулю для расчета стандартизованного значения. Это номинальное значение (Icu) для промышленных выключателей и (Icn) для выключателей бытового типа обычно выражается в кА (действующее значение).

Icu (номинальная предельная отключающая способность sc) и Ics (номинальная рабочая отключающая способность sc) определены в IEC 60947-2 вместе с таблицей, связывающей Ics с Icu для различных категорий использования A (мгновенное отключение) и B (с выдержкой времени). отключение), как описано в разделе Другие характеристики автоматического выключателя.

Испытания для подтверждения номинальных значений н.у. Отключающая способность автоматических выключателей регулируется стандартами и включает:

  • Рабочие последовательности, состоящие из последовательности операций, т.е. замыкание и размыкание при коротком замыкании
  • Сдвиг фаз тока и напряжения. Когда ток находится в фазе с напряжением питания (cosφ для цепи = 1), прерывание тока легче, чем при любом другом коэффициенте мощности. Прерывание тока при малых значениях запаздывания cosφ значительно труднее; схема с нулевым коэффициентом мощности (теоретически) является наиболее обременительным случаем.

На практике все токи короткого замыкания в энергосистеме имеют (более или менее) отстающие коэффициенты мощности, и стандарты основаны на значениях, которые обычно считаются репрезентативными для большинства энергосистем. Как правило, чем выше уровень тока повреждения (при заданном напряжении), тем ниже коэффициент мощности петли тока повреждения, например, вблизи генераторов или больших трансформаторов.

На рисунке h41 ниже, взятом из IEC 60947-2, приведены стандартизованные значения cos φ для промышленных автоматических выключателей в соответствии с их номинальным значением Icu.

  • После последовательности включения - выдержки времени - включения / выключения для проверки емкости Icu выключателя проводятся дальнейшие тесты, чтобы убедиться, что:
    • Устойчивость к диэлектрику
    • Отключение (изоляция) исполнения и
    • Проверка не нарушила правильную работу защиты от перегрузки.

Рис. H41 - Icu, связанное с коэффициентом мощности (cosφ) цепи тока короткого замыкания (IEC 60947-2)

Icu cosφ
6 кА 0. 1 2 3 Установочные значения уровня тока, которые относятся к токовым тепловым и «мгновенным» магнитным расцепителям для защиты от перегрузки и короткого замыкания.

Характеристики кривых срабатывания и координации автоматического выключателя

Рисунок 1: Упрощенная временная кривая тока. Фото: TestGuy

Время-токовые кривые используются для отображения времени, необходимого для отключения автоматического выключателя при заданном уровне перегрузки по току.

Время-текущие кривые обычно отображаются в виде графика журнала. Цифры вдоль горизонтальной оси кривой представляют номинальный постоянный ток (In) для автоматического выключателя, цифры вдоль вертикальной оси представляют время в секундах.

Чтобы определить, сколько времени потребуется выключателю для отключения: найдите текущее значение, кратное (In), внизу графика. Затем нарисуйте вертикальную линию до точки, где она пересекает кривую, а затем проведите горизонтальную линию с левой стороны графика, чтобы найти время поездки.

Общее время отключения автоматического выключателя - это сумма времени срабатывания выключателя, времени отключения, времени механического срабатывания и времени дуги.

Кривые

разработаны с использованием заранее определенных характеристик, таких как работа при температуре окружающей среды 40 ° C, поэтому имейте в виду, что фактические условия эксплуатации автоматического выключателя могут вызвать отклонения в его характеристиках.

Большинство кривых имеют информационное окно, в котором будет указано, к какому выключателю применяется кривая.Это информационное окно может также содержать важные примечания от производителя, такие как допустимое отклонение от времени поездки.

Пример кривой тока времени автоматического выключателя в реальном мире с основными моментами. Фото: TestGuy


Защита от перегрузки

Верхняя часть кривой время-ток показывает тепловую реакцию выключателя, изогнутая линия указывает номинальную производительность автоматического выключателя.

В термомагнитных выключателях тепловая перегрузка возникает, когда биметаллический проводник внутри автоматического выключателя отклоняется после нагрева током нагрузки, освобождая рабочий механизм и размыкая контакты.

Чем больше перегрузка, тем быстрее биметаллическая полоса нагревается и отклоняется для устранения перегрузки. Это так называемая обратная временная кривая.

Долговременная функция

В электронных автоматических выключателях функция длительного выдерживания (L) имитирует эффект термического биметаллического элемента. Номинальная точка срабатывания, в которой электронный расцепитель определяет перегрузку, составляет примерно 10% от выбранного номинального тока. После срабатывания автоматический выключатель сработает по истечении времени, заданного настройкой длительной задержки.


Защита от короткого замыкания

Нижняя часть кривой время-ток отображает реакцию автоматического выключателя на короткое замыкание. В термомагнитных выключателях в месте срабатывания при значительных токах сверхвысокой величины срабатывает магнитный якорь внутри автоматического выключателя, который отключает механизм.

Функция мгновенного действия

В электронных автоматических выключателях функция мгновенного действия (I) имитирует магнитную характеристику термомагнитного выключателя.Это достигается с помощью микропроцессора, который много раз в секунду берет выборки из формы волны переменного тока для вычисления истинного среднеквадратичного значения тока нагрузки. Мгновенное отключение происходит без преднамеренной задержки по времени.

Рисунок 3: Комбинированная кривая LSIG. Фото: TestGuy.

Кратковременная функция

Некоторые электронные автоматические выключатели могут быть оснащены функцией короткого замыкания (S), которая дает автоматическому выключателю задержку перед срабатыванием значительного перегрузки по току.Это позволяет осуществлять избирательную координацию между защитными устройствами, чтобы гарантировать, что только устройство, ближайшее к месту повреждения, будет отключено, не затрагивая другие цепи (см. Координацию автоматического выключателя ниже) .

Характеристика I 2 t функции короткого времени определяет тип задержки. I 2 t IN приведет к обратнозависимой задержке, которая напоминает временные / токовые характеристики предохранителей. Это похоже на функцию длительного времени, за исключением более быстрой задержки.I 2 t OUT обеспечивает постоянную задержку, обычно 0,5 секунды или меньше, как указано на кривой время-ток.

Функция блокировки зоны

Автоматические выключатели, оборудованные блокировкой зон по короткой задержке без сигнала ограничения от нижестоящего устройства, будут иметь минимальную временную полосу, применяемую независимо от настройки, это иногда называется максимальной неограниченной задержкой.

Когда мгновенная функция отключена, используется коррекция кратковременной задержки для мгновенного отключения автоматических выключателей в случае значительного короткого замыкания.Это называется кратковременной стойкостью и отображается на кривой срабатывания как абсолютное значение в амперах.

Связано: Основные принципы селективной блокировки зон (ZSI)


Защита от замыканий на землю

Как и функция защиты от замыканий на землю, элемент защиты от замыкания на землю (G) состоит из установки срабатывания и задержки. Когда происходит замыкание фазы на землю, сумма фазных токов перестает быть равной, поскольку ток замыкания на землю возвращается через шину заземления.В 4-проводной системе четвертый трансформатор тока устанавливается на нейтральную шину для обнаружения этого дисбаланса.

Когда происходит дисбаланс тока, автоматический выключатель срабатывает, если величина превышает уставку срабатывания замыкания на землю. Если выключатель остается включенным в течение времени, заданного задержкой замыкания на землю, автоматический выключатель сработает. Защита от замыкания на землю иногда поставляется с функцией I 2 t, которая работает по тому же принципу, что и кратковременная задержка.

Пример 4-проводной системы защиты от замыканий на землю.Фото: TestGuy.

Защита от замыкания на землю требует наименьшего количества энергии для отключения автоматического выключателя, часто со значениями отключения, установленными значительно ниже уставки срабатывания длительного срабатывания. При проверке функции перегрузки или короткого замыкания автоматического выключателя защиту от замыкания на землю необходимо отключить или «убрать с дороги» для срабатывания других функций.

Использование испытательного комплекта изготовителя или изменение проводки входа трансформатора тока нейтрали является предпочтительным методом испытания первичной инжекции на выключателе низкого напряжения с защитой от замыкания на землю, в противном случае два полюса могут быть соединены последовательно для обеспечения сбалансированных вторичных токов на расцепитель. .

Связано: Системы защиты от замыканий на землю: основы тестирования производительности


Координация автоматического выключателя

Время-токовые кривые необходимы для правильного согласования автоматических выключателей. В случае неисправности должен срабатывать только ближайший к неисправности автоматический выключатель, не затрагивая другие цепи.

В приведенном ниже примере три автоматических выключателя скоординированы таким образом, чтобы время отключения каждого выключателя было больше времени отключения выключателя (ей), расположенного ниже по цепи, независимо от величины повреждения.

Упрощенный пример координации отключения выключателя. Фото: TestGuy.

Автоматический выключатель CB-3 настроен на отключение, если перегрузка 2000A или выше происходит в течение 0,080 секунды . Автоматический выключатель CB-2 сработает, если перегрузка сохраняется в течение 0,200 секунд, и автоматический выключатель CB-1 , если неисправность сохраняется в течение 20 секунд .

Если происходит отказ после выключателя CB-3 , он срабатывает первым и сбрасывает неисправность.Автоматические выключатели CB-2 и CB-1 будут продолжать обеспечивать питание цепи.

Каждая функция расцепителя должна быть скоординирована для предотвращения ложных срабатываний. Если автоматический выключатель питает часть оборудования с большими пусковыми токами, например, значение мгновенного срабатывания должно быть установлено выше, чем значение кратковременного срабатывания, чтобы предотвратить отключение, когда оборудование находится под напряжением.

Связано: Объяснение исследований по координации электроэнергетической системы


Артикул:

Комментарии

Войдите или зарегистрируйтесь, чтобы комментировать.

Основные параметры и характеристики автоматических выключателей

К характеристикам автоматических выключателей в основном относятся: номинальное напряжение Ue; номинальный ток In; диапазон уставок тока срабатывания защиты от перегрузки (Ir или Irth) и защиты от короткого замыкания (Im); номинальный ток отключения при коротком замыкании (промышленный выключатель Icu; бытовой выключатель Icn)) Подождите.

Номинальное рабочее напряжение (Ue): это напряжение, при котором автоматический выключатель работает в нормальных (непрерывных) условиях.

Номинальный ток (In): это максимальное значение тока, которое автоматический выключатель, оборудованный специальным реле максимального тока, может выдерживать неопределенно долго при температуре окружающей среды, указанной производителем, и не будет превышать температурный предел, указанный токоведущим компонентом.

Значение уставки тока срабатывания реле короткого замыкания (Im): реле срабатывания короткого замыкания (мгновенное или с короткой задержкой) используется для быстрого отключения автоматического выключателя при возникновении высокого значения тока короткого замыкания и его предела срабатывания Im.

Номинальная отключающая способность при коротком замыкании (Icu или Icn): Номинальный ток отключения при коротком замыкании автоматического выключателя - это максимальное (ожидаемое) значение тока, которое автоматический выключатель может отключить без повреждения. Текущее значение, указанное в стандарте, представляет собой среднеквадратическое значение переменной составляющей тока повреждения. При расчете стандартного значения переходная составляющая постоянного тока (всегда возникающая при наихудшем случае короткого замыкания) принимается равной нулю. Номинальные характеристики промышленных автоматических выключателей (Icu) и бытовых выключателей (Icn) обычно выражаются в кА (действующее значение).

Отключающая способность при коротком замыкании (Ics): Номинальная отключающая способность автоматического выключателя делится на два типа: номинальная предельная отключающая способность при коротком замыкании и номинальная рабочая отключающая способность при коротком замыкании. В национальном стандарте «Низковольтные распределительные устройства и оборудование управления низковольтными автоматическими выключателями» (GB14048.2–94) приводятся следующие пояснения номинальной предельной отключающей способности при коротком замыкании и номинальной рабочей отключающей способности при коротком замыкании автоматических выключателей:

Номинальная предельная отключающая способность автоматического выключателя при коротком замыкании: В соответствии с условиями, указанными в предписанных экспериментальных процедурах, за исключением отключающей способности автоматического выключателя, чтобы продолжать выдерживать свою номинальную токовую нагрузку;

Номинальная рабочая отключающая способность автоматического выключателя при коротком замыкании: В соответствии с условиями, указанными в предписанных экспериментальных процедурах, включая отключающую способность автоматического выключателя, чтобы продолжать выдерживать свою номинальную нагрузочную способность;

Процедура испытания номинальной предельной отключающей способности при коротком замыкании - O-t-CO.

Конкретный тест: отрегулируйте ток линии до ожидаемого значения тока короткого замыкания (например, 380 В, 50 кА), но тестовая кнопка не замкнута, тестируемый автоматический выключатель находится в замкнутом положении, нажмите тестовую кнопку , автоматический выключатель пропускает ток короткого замыкания 50 кА, автоматический выключатель отключается немедленно (размыкание обозначается буквой O), автоматический выключатель должен быть исправен и может быть снова включен. t - время перерыва, обычно 3 мин. В это время линия все еще находится в состоянии горячего резервирования, и автоматический выключатель снова включается (замыкается, обозначается как C), а затем размыкается (O).(Тестирование заключается в проверке максимальной электрической и термической устойчивости автоматического выключателя по току). Эта процедура называется СО. Если автоматический выключатель может быть полностью отключен, его предельная отключающая способность при коротком замыкании определяется.

Процедура испытания номинальной рабочей отключающей способности при коротком замыкании (Icn) автоматического выключателя: O — t — CO — t — CO. У него на один СО больше, чем при испытании Icn. После испытания автоматический выключатель может полностью выключить и погасить дугу, и считается, что его номинальная отключающая способность при коротком замыкании соответствует требованиям.

Следовательно, можно видеть, что номинальная предельная отключающая способность при коротком замыкании Icn означает, что низковольтный автоматический выключатель может нормально работать после отключения максимального трехфазного тока короткого замыкания на выходе автоматического выключателя и его отключения. ток короткого замыкания снова. Что касается того, может ли это быть нормальным в будущем Включение и выключение автоматического выключателя не гарантируется; а номинальная рабочая отключающая способность при коротком замыкании Ics означает, что автоматический выключатель может нормально отключаться много раз, когда максимальный трехфазный ток короткого замыкания возникает на его выходе.

Стандарт IEC947-2 «Низковольтные распределительные устройства и управляющее оборудование, низковольтные автоматические выключатели» предусматривает: Автоматический выключатель типа A (относится только к выключателю с длительной задержкой при перегрузке, переходным выключателем при коротком замыкании) Ics может составлять 25%, 50%, 75% и 100%. Ics автоматических выключателей класса B (выключатели с трехступенчатой ​​защитой от перегрузки с длительной задержкой, коротким замыканием с задержкой короткого замыкания и переходным коротким замыканием) могут составлять 50%, 75% и 100% от Ics. Следовательно, можно видеть, что номинальная рабочая отключающая способность при коротком замыкании - это значение тока отключения, меньшее, чем номинальный предельный ток отключения при коротком замыкании.

Независимо от типа автоматического выключателя, он имеет два важных технических индикатора: Icu и Ics. Однако, как автоматический выключатель, используемый в ответвлениях, он может соответствовать только номинальной предельной отключающей способности при коротком замыкании. Более распространенное предубеждение состоит в том, что лучше брать большую, а не принимать правильную, думая, что большая страховка. Однако, если он слишком большой, это приведет к ненужным отходам (автоматический выключатель того же типа, типа H с высоким выключателем, в 1,3–1,8 раза дороже, чем выключатель обычного типа S).Следовательно, автоматическому выключателю в ответвлении не нужно вслепую следить за своим индексом отключающей способности при коротком замыкании. Автоматический выключатель, используемый в основной линии, должен не только соответствовать требованиям номинальной предельной отключающей способности при коротком замыкании, но также должен соответствовать требованиям номинальной рабочей отключающей способности при коротком замыкании. Если для измерения отключающей способности используется только номинальная предельная отключающая способность при коротком замыкании Icu, вне зависимости от того, квалифицирована она или нет, это принесет небезопасные скрытые опасности для пользователей.

Свободное отключение автоматического выключателя: в любой момент во время процесса включения автоматического выключателя, если действие защиты включает цепь отключения, автоматический выключатель может быть надежно полностью отключен, что называется свободным отключением. Автоматический выключатель со свободным срабатыванием обеспечивает быстрое отключение автоматического выключателя при включении и коротком замыкании автоматического выключателя, что позволяет избежать расширения масштабов аварии.

Общие сведения о кривых отключения - c3controls

Введение

Кривые отключения, также известные как кривые времени и тока, могут быть пугающей темой.Цель этой короткой статьи - познакомить вас с концепцией кривых срабатывания и объяснить, как их читать и понимать.

Что такое UL?

Underwriters Laboratories (UL) была основана в 1894 году как Бюро андеррайтеров по электротехнике, бюро Национального совета андеррайтеров. UL была основана в первую очередь для проведения независимых испытаний и сертификации электротехнической продукции на пожарную безопасность. Эти продукты включают устройства защиты цепей, обсуждаемые в этой статье.

Устройства защиты цепей

Защита цепей используется для защиты проводов и электрического оборудования от повреждений в случае электрической перегрузки, короткого замыкания или замыкания на землю. Грозы, перегрузка розеток или внезапный скачок напряжения могут привести к возникновению опасной ситуации, которая может привести к пожару, повреждению оборудования или травмам. Защита цепи предназначена для устранения этого риска до того, как он возникнет, путем отключения питания цепи.

Что такое кривая отключения?

Проще говоря, кривая срабатывания - это графическое представление ожидаемого поведения устройства защиты цепи. Устройства защиты цепей бывают разных видов, включая предохранители, миниатюрные автоматические выключатели, автоматические выключатели в литом корпусе, дополнительные устройства защиты, автоматические выключатели для защиты двигателя, реле перегрузки, электронные предохранители и воздушные автоматические выключатели.

Кривые отключения отображают время отключения устройств максимального тока в зависимости от заданного уровня тока.Они предоставляются производителями устройств защиты цепей, чтобы помочь пользователям выбрать устройства, которые обеспечивают надлежащую защиту и производительность оборудования, избегая при этом ложных срабатываний.

Различные типы кривых срабатывания

Зачем нужны разные кривые срабатывания?

Автоматические выключатели должны срабатывать достаточно быстро, чтобы избежать отказа оборудования или проводки, но не настолько быстро, чтобы вызывать ложные или ложные срабатывания.

Во избежание ложных срабатываний автоматические выключатели должны иметь соответствующие размеры для компенсации пускового тока.NEMA определяет мгновенный пиковый бросок тока как мгновенный переходный процесс тока, который возникает сразу (в пределах половины цикла переменного тока) после замыкания контакта .

Пусковой ток - это то, что заставляет свет в доме тускнеть, когда запускается двигатель, например, на сушилке для одежды или пылесосе.

На рисунке 2 (ниже) показан пример пускового тока для двигателя переменного тока.

Как видно из графика, пусковой ток, вызванный включением двигателя, составляет 30 А. Он намного выше, чем рабочий или установившийся ток.Пусковой ток достигает пика, а затем начинает спадать по мере раскрутки двигателя.

Нам нужны разные кривые отключения, чтобы сбалансировать правильную величину максимальной токовой защиты и оптимальную работу машины. Выбор автоматического выключателя с кривой срабатывания, которая срабатывает слишком рано, может привести к ложному срабатыванию. Выбор автоматического выключателя, который срабатывает слишком поздно, может привести к катастрофическому повреждению машины и кабелей.

Как работает MCB?

Чтобы понять кривую отключения, полезно понять, как работает миниатюрный автоматический выключатель или устройство защиты от перегрузки по току.На рисунке 3 ниже показан вид изнутри миниатюрного автоматического выключателя (MCB).

Как с биметаллической полосой (2), так и с магнитной катушкой / соленоидом (6), миниатюрный автоматический выключатель может представлять собой два отдельных типа устройства защиты цепи в одном. Биметаллическая полоса обеспечивает защиту от перегрузки в ответ на меньшие сверхтоки, обычно в 10 раз превышающие рабочий ток. Металлическая полоса состоит из двух сформированных вместе полос разных металлов, которые расширяются с разной скоростью при нагревании.В случае перегрузки биметаллическая полоса изгибается, и это движение приводит в действие механизм отключения и размыкает (размыкает) цепь. Полоса преобразует изменение температуры в механическое смещение.

Магнитная катушка или соленоид (6) реагирует на быстрые, более высокие токи перегрузки, вызванные короткими замыканиями, обычно более чем в 10 раз превышающими рабочий ток - до десятков или сотен тысяч ампер. Сильный ток вызывает магнитное поле, создаваемое катушкой, быстро перемещая внутренний поршень (в течение микросекунд), чтобы сработать исполнительный механизм и разорвать цепь.

Кривая отключения

Рисунок 4 (ниже) представляет собой график кривой отключения.

  • Ось X представляет кратный рабочий ток автоматического выключателя.
  • Ось Y представляет время отключения. Логарифмическая шкала используется для отображения времени от 0,001 секунды до 10,000 секунд (2,77 часа) при кратном рабочем токе.

На рисунке 5 (ниже) показана кривая отключения B, наложенная на график. Три основных компонента кривой отключения:

  1. Кривая отключения по температуре.Это кривая срабатывания биметаллической ленты, которая рассчитана на более медленные сверхтоки, чтобы учесть ускорение / запуск, как описано выше.
  2. Кривая магнитного срабатывания. Это кривая срабатывания катушки или соленоида. Он разработан, чтобы быстро реагировать на большие перегрузки по току, например, на короткое замыкание.
  3. Идеальная кривая срабатывания. Эта кривая показывает желаемую кривую срабатывания биметаллической полосы. Из-за органической природы биметаллической полосы и меняющихся условий окружающей среды трудно точно предсказать точную точку срабатывания.

Как кривая срабатывания связана с фактическим выключателем?

На рисунке 6 (ниже) показано, как внутренние компоненты MCB соотносятся с кривой отключения.

В верхней части диаграммы показана кривая теплового отключения биметаллической ленты. Он говорит нам, что при 1,5-кратном номинальном токе самое быстрое срабатывание автоматического выключателя составляет сорок секунд (1). Сорок секунд при 2-кратном номинальном токе - это самое медленное срабатывание автоматического выключателя (2).

Нижняя часть таблицы предназначена для магнитного отключения катушки / соленоида; 0.02–2,5 секунды при 3-кратном номинальном токе - это самое быстрое срабатывание автоматического выключателя (3). Такая же продолжительность, от 0,02 до 2,5 секунд, при 5-кратном номинальном токе, является наибольшей продолжительностью срабатывания автоматического выключателя (4).

Зона, заштрихованная между ними, - это зона отключения.

ВАЖНО: Кривые отключения представляют собой прогнозируемое поведение автоматического выключателя в холодном состоянии (температура окружающей среды). Холодное состояние - это когда биметаллическая полоса находится в пределах указанной для выключателя рабочей температуры окружающей среды.Если выключатель недавно испытал тепловое срабатывание и не остыл до температуры окружающей среды, он может сработать раньше.

Собираем все вместе

На Рисунке 7 (ниже) эти концепции представлены в более ясной картине.

Обратите особое внимание на Зону срабатывания, в которой выключатель может сработать или не сработать. Думайте об этом как о кошачьем районе Шредингера. В пределах зоны до тех пор, пока не произойдет событие перегрузки по току, мы не знаем точно, когда / если выключатель сработает (кот Шредингера = мертв) или выключатель не сработает (кот Шредингера = жив).

Теперь, когда мы собрали все вместе, становится ясно, что выбор автоматического выключателя на 10А, кривая B может привести к ложным срабатываниям, поскольку выключатель входит в зону отключения при 30А. (См. Рис. 8 ниже.) D Прерыватели кривой - наиболее распространенный выбор для электродвигателей, хотя иногда можно выбрать прерыватель кривой С для приложений, которые имеют смешанные нагрузки в одной цепи.

Три наиболее распространенных кривых срабатывания для миниатюрных автоматических выключателей - это B, C и D. Поместив все три на одну диаграмму (рисунок 9, ниже), мы можем увидеть, насколько тепловые части кривых похожи друг на друга, но есть различия в том, как работает магнитная характеристика (катушка / соленоид) и, следовательно, автоматический выключатель.

Вкратце:

Защита цепей используется для защиты проводов и электрического оборудования от повреждений в случае электрической перегрузки, короткого замыкания или замыкания на землю. Грозы, перегрузка розеток или внезапный скачок напряжения могут привести к возникновению опасной ситуации, которая может привести к пожару, повреждению оборудования или травмам. Защита цепи предназначена для устранения этого риска до того, как он возникнет, путем отключения питания цепи.

  • Устройства защиты цепей включают предохранители, автоматические выключатели, автоматические выключатели в литом корпусе, дополнительные устройства защиты, автоматические выключатели для защиты двигателя, реле перегрузки, электронные предохранители и воздушные автоматические выключатели.
  • Кривые отключения предсказывают поведение устройств защиты цепей как в более медленных, меньших условиях перегрузки по току, так и в более высоких и более быстрых условиях перегрузки по току.
  • Выбор правильной кривой срабатывания для вашего приложения обеспечивает надежную защиту цепи, ограничивая при этом ложные срабатывания или ложные срабатывания.

Этот документ представляет собой краткий обзор кривых срабатывания. Он не претендует на окончательный ответ по этой теме. Есть еще много чего, что нужно изучить, в том числе другие типы кривых срабатывания и координации выключателя. Изучив основы, можно уверенно подходить к этим темам.

Заявление об отказе от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется при том понимании, что авторы и издатели не участвуют в предоставлении технических или других профессиональных консультаций или услуг.Инженерная практика определяется обстоятельствами конкретного объекта, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может принять во внимание все соответствующие факторы и желаемые результаты. Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако возможно, что некоторая информация в этих официальных документах является неполной, неверной или неприменимой к определенным обстоятельствам или условиям.Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования информации, содержащейся в этом техническом документе, или действий на ее основе.

Различия и сходства между выключателями кривой K и D

Сравнение характеристик теплового и магнитного отключения


Миниатюрный автоматический выключатель (MCB) - это сбрасываемое защитное устройство, которое предотвращает возгорание электрических цепей и нанесение ущерба персоналу и имуществу. Это устройство, предназначенное для изоляции цепи во время перегрузки по току без использования плавкого элемента.

Есть два типа событий перегрузки по току; тепловая перегрузка и короткое замыкание.

  • Тепловая перегрузка: Тепловая перегрузка - это медленная и небольшая перегрузка по току, которая вызывает постепенное повышение допустимой нагрузки и температуры цепи. Этот тип события характеризуется небольшим увеличением нагрузки (допустимой токовой нагрузки) в цепи и прерывается тепловым расцепителем автоматического выключателя.
  • Короткое замыкание: Короткое замыкание - это сильная перегрузка по току, которая приводит к увеличению допустимой нагрузки цепи.Этот тип события характеризуется резким увеличением нагрузки (допустимой нагрузки) в цепи и прерывается магнитным расцепителем выключателя.

Отключающие характеристики MCB графически представлены в виде диаграммы срабатывания. На диаграмме показана реакция теплового и магнитного отключающих элементов на различные ситуации перегрузки и короткого замыкания.

Компоненты кривой срабатывания

  • Область температур: Область кривой отключения, представляющая характеристики отключения биметаллического расцепителя.
    • Зона отключения имеет наклон из-за постепенной перегрузки, нагрева и изгиба термоэлемента с течением времени.
  • Магнитная область: Область кривой отключения, представляющая характеристики отключения магнитного расцепителя
    • Зона отключения не имеет наклона из-за мгновенного действия магнитного элемента во время короткого замыкания.

Примеры интерпретации кривых срабатывания - считывание кривых срабатывания

Пример 1: Характеристика теплового отключения

  • 10A B Прерыватель кривой
  • Тепловая перегрузка при 20 А

Чтобы определить время, за которое выключатель отключится при нагрузке 20 А

  • Найдите 20A в нижней части кривой - выключатель на 20A при двукратном токе составляет 20A
  • Следуйте по линии допустимой нагрузки до области срабатывания "время" кривой

Выключатель сработает при тепловой перегрузке от 10 до 100 секунд.Гарантируется, что выключатель не сработает раньше, чем через 10 секунд, и сработает не более 100 секунд. Прерыватель может сработать в любое время от 10 до 100 секунд.

Пример 2: Характеристика магнитного отключения

  • 10A B Прерыватель кривой
  • Короткое замыкание на 70 А

Для определения времени, за которое выключатель отключится при коротком замыкании 70.

  • Найдите 70A в нижней части кривой - прерыватель 10A @ 7X ток равен 70A
  • Обратите внимание на «время» в нижнем левом углу оси диаграммы.

Автоматический выключатель сработает при коротком замыкании между ними.001 и 01 секунды. Гарантируется, что выключатель сработает не позднее, чем за 0,01 секунды при любом коротком замыкании, равном 70А.

Общие кривые срабатывания MCB


Существует несколько типов кривых MCB, которые производители предоставляют для защиты цепей в различных приложениях. Наиболее распространены кривые B, C и D. Один производитель MCB также производит кривые K и Z.

  • Прерыватели кривой B: Срабатывание при токе, превышающем номинальный ток в 3-5 раз в случае короткого замыкания.Автоматические выключатели с кривой B следует применять там, где нагрузки являются резистивными и не имеют пускового тока. Идеальное применение - освещение или электронные схемы.

  • Прерыватели кривой C: Отключение при 6–10-кратном номинальном токе в случае короткого замыкания. Автоматические выключатели с кривой C следует применять там, где нагрузки имеют небольшой пусковой ток при запуске. Идеальное применение - это схема с небольшой трансформаторной нагрузкой.

  • Прерыватели кривой D: Срабатывание при 10-15-кратном номинальном токе.Автоматические выключатели с кривой D следует применять там, где нагрузки имеют высокий уровень пускового тока при запуске. Идеальное применение - это схема с моторной нагрузкой.

Автоматические выключатели с кривой K –vs- Автоматические выключатели с кривой D

Прерыватели кривых K и D предназначены для двигателей, в которых допустимая токовая нагрузка увеличивается быстро и мгновенно во время «пуска». Обе кривые могут «преодолевать» кратковременный скачок тока и предотвращать ложное срабатывание, обеспечивая защиту цепи.

Кривые автоматических выключателей K и D имеют практически идентичные характеристики отключения.Характеристики срабатывания магнитного элемента идентичны для двух кривых, а характеристики срабатывания теплового элемента немного отличаются.

E-T-A Характеристики теплового отключения по кривой D и характеристики теплового отключения по кривой K


Пример:

  • Прерыватель кривых 10A D
  • Тепловая перегрузка при 20 А

Для определения времени, за которое выключатель отключится при нагрузке 20 А.

  • Найдите 20A в нижней части кривой - прерыватель 10A при 2X токе равен 20A
  • Следуйте по линии допустимой нагрузки до области срабатывания "время" кривой

Выключатель сработает при тепловой перегрузке от 10 до 100 секунд.Гарантируется, что выключатель не сработает раньше, чем через 10 секунд, и сработает не более 100 секунд. Прерыватель может сработать в любое время от 10 до 100 секунд.

Давайте теперь сравним это с автоматическим выключателем на 10 А с температурной перегрузкой 20 А.

Прерыватель кривой K срабатывает при тепловой перегрузке от 6 до 350 секунд. Гарантируется, что выключатель не сработает раньше, чем через 6 секунд, и отключение не займет больше 350 секунд. Прерыватель может сработать в любое время от 6 до 350 секунд.

E-T-A Характеристики магнитного отключения по кривой D в сравнении с характеристиками магнитного отключения по кривой K


Пример:

  • Прерыватель кривой 10A K и прерыватель кривой 10A D
  • Короткое замыкание на 100 А

Оба выключателя имеют элемент, который срабатывает от 10 до 15 номинального тока. Оба выключателя сработают при коротком замыкании в интервале от 0,001 до 0,01 секунды. И оба выключателя гарантированно сработают не позднее.01 секунда для любого короткого замыкания, равного 100А или больше.

Анализ кривых K и D


  • Магнитный элемент: Магнитный элемент MCB кривой K и кривой D идентичен. Оба выключателя прерывают короткое замыкание при токе, в 10 раз превышающем номинальный (или больший), не позднее, чем за 0,01 секунды.
  • Минимальное отключение теплового элемента: MCB с кривой D отключит перегрузку при двукратном номинальном токе за 10 секунд или больше. MCB с кривой K отключит перегрузку при двукратном номинальном токе за 6 секунд или больше.Кривая D отстает на 4 секунды по сравнению с кривой K. Дополнительные 4 секунды дают схеме больше времени для «прохождения» высокого броска при запуске и предотвращения ложных срабатываний.
  • Полоса пропускания теплового элемента: Полоса пропускания отключения по кривой K при двукратном номинальном токе составляет от 6 до 350 секунд. Полоса срабатывания кривой D при 2-кратном номинальном токе составляет от 10 до 100 секунд. Различия между полосами пропускания демонстрируют точность калибровки и контроля качества.Прерыватель кривой D от E-T-A имеет гораздо меньшую полосу допуска и требует более высокого уровня регулировки во время производства и проверки контроля качества.

Эксплуатационные характеристики автоматических выключателей


BS 7671 определяет автоматический выключатель как

Механическое устройство, способное производить и переносить токи при нормальных условиях цепи, а также могут отключать токи при указанные ненормальные условия цепи, такие как короткое замыкание
Производители предоставляют данные о производительности для всех автоматических выключателей и выражается через ff.
  • Номинальный ток (IN) - это номинальный длительный ток. выключателя
  • Номинальные значения тока автоматических выключателей (MCB) различаются. от 2 А до 125 А
Номинальное напряжение
  • Значение напряжения, при котором автоматический выключатель замыкается. даны характеристики схемы.
  • Также учитываются пути утечки и пробой диэлектрика. указанное выше номинального напряжения.
Кривые время-токовые характеристики
  • Показывает взаимосвязь между временем отключения и значение перегрузки по току.Другая информация, полученная из кривых время / ток - значения тока, при которых будет срабатывать магнитное и тепловое срабатывание. механизмы.
MCB
имеет 3 различные временные и токовые характеристики.
  • Б тип - средний ток отключения, равный 4-кратному номинальному току
  • С тип - средний ток отключения, равный 7,5 номинальному току
  • D тип - средний ток отключения, равный 12,5 номинальному току
Время-токовые кривые автоматического выключателя
Источник: SWSI Miller Australia

При выборе автоматического выключателя необходимо учитывать с учетом следующих факторов:

  • максимум потребность груза
  • ток несущая способность кабеля цепи
  • тип необходимого автоматического выключателя (B, C или D), в зависимости от характеристик нагрузки
  • рама размер выключателя
  • окружающий температура в месте установки
  • проспект ток короткого замыкания в месте установки
  • г. необходимость в резервной защите.

Источники:

  1. Институт Юго-Западного Сиднея - Миллер
  2. Schneider Electric
  3. BS 7671

Функции и номинальные характеристики автоматического выключателя - все, что нужно знать об автоматическом выключателе.

Автоматический выключатель - это устройство, обеспечивающее контроль и защиту в сети. Он способен создавать, выдерживать и отключать рабочие токи, а также токи короткого замыкания.


Автоматический выключатель должен выдерживать и выдерживать следующие токи: нормальный ток, ток перегрузки или тепловой ток и ток короткого замыкания.

Таким образом, автоматический выключатель должен пропускать ток в нормальном состоянии и должен быть способен отключать ток, включать ток как в нормальном, так и в аварийном состоянии. Кроме того, он должен выдерживать ток короткого замыкания не менее 1-3 сек. Ток короткого замыкания может варьироваться от 1 кА (1000 ампер) до более высокого значения в соответствии с конструкцией.

Обязательные номинальные характеристики автоматического выключателя

  1. Номинальное напряжение
  2. Номинальный уровень изоляции.
  3. Номинальный нормальный ток.
  4. Номинальный кратковременный выдерживаемый ток.
  5. Номинальный выдерживаемый пиковый ток.
  6. Номинальная продолжительность короткого замыкания.
  7. Номинальное напряжение питания для размыкающих и замыкающих устройств и вспомогательных цепей
  8. Номинальная частота
  9. Номинальный ток отключения при коротком замыкании
  10. Номинальное переходное восстанавливающееся напряжение
  11. Номинальный ток включения при коротком замыкании
  12. Номинальная рабочая последовательность
  13. Номинальные временные величины.
Стандартный воздушный выключатель (ACB)

Особые номинальные характеристики автоматического выключателя

Эти характеристики не являются обязательными, но могут быть запрошены для конкретных приложений:

  1. номинальный ток отключения вне фазы
  2. номинальный ток отключения заряда кабеля
  3. номинальный ток отключения заряда линии,
  4. номинальный ток отключения конденсаторной батареи,
  5. номинальный ток отключения встречно-задней батареи,
  6. номинальный пусковой ток включения конденсаторной батареи,
  7. номинальный малый индуктивный ток отключения.

Определение - общая характеристика выключателя

Номинальное напряжение автоматического выключателя:
Номинальное напряжение - это максимальное действующее значение. значение напряжения, которое оборудование может выдерживать при нормальной работе. Оно всегда больше рабочего напряжения.

Номинальный уровень изоляции:
Уровень изоляции характеризуется двумя значениями - выдерживаемая импульсная волна (1,2 / 50 мкс) , выдерживаемое напряжение промышленной частоты в течение 1 минуты .
Номинальный нормальный ток:
Если выключатель всегда включен, ток нагрузки должен проходить через него в соответствии с максимальным значением температуры, зависящим от материалов и типа соединений. IEC устанавливает максимально допустимое превышение температуры различных материалов, используемых при температуре окружающего воздуха не выше 40 ° C

Номинальный кратковременный выдерживаемый ток Isc

Это стандартное действующее значение максимально допустимого тока короткого замыкания в сети в течение 1 или 3 секунд.

Ssc: мощность короткого замыкания (в МВА)
U: рабочее напряжение (в кВ)
Isc: ток короткого замыкания (в кА)

Номинальный выдерживаемый пиковый ток и рабочий ток

Ток включения - это максимальное значение, которое автоматический выключатель способен включить и поддерживать в установке, находящейся в состоянии короткого замыкания. Он должен быть больше или равен номинальному кратковременному выдерживаемому пиковому току. Isc - максимальное значение номинального тока короткого замыкания для номинального напряжения автоматических выключателей.Пиковое значение кратковременного выдерживаемого тока равно:
2,5 • Isc для 50 Гц
2,6 • Isc для 60 Гц
2,7 • Isc для специальных приложений.

Номинальный ток отключения при коротком замыкании автоматического выключателя:

Номинальный ток отключения при коротком замыкании - это наибольшее значение тока, которое автоматический выключатель должен быть способен отключать при его номинальном напряжении.
Характеризуется двумя значениями:
1. Среднеквадратичное значение.значение номинального тока отключения при коротком замыкании; 2. процент апериодической составляющей, соответствующей продолжительности отключения выключателя, к которой мы добавляем полупериод номинальной частоты.
Полупериод соответствует минимальному времени срабатывания устройства защиты от перегрузки по току, которое составляет 10 мс при 50 Гц.

Номинальное переходное восстанавливающееся напряжение (TRV) автоматического выключателя

Это напряжение, которое появляется на выводах полюса выключателя после отключения тока.Форма волны восстанавливающегося напряжения зависит от реальной конфигурации схемы. Автоматический выключатель должен быть способен отключать заданный ток для всех восстановительных напряжений, значение которых остается ниже номинального TRV.

Расчетный межфазный ток отключения автоматического выключателя

Когда автоматический выключатель разомкнут и проводники не синхронизированы, напряжение на клеммах может увеличиваться в сумме напряжений в проводниках (противостояние фаз).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *