Тиристоры силовые: Выбор силовых тиристоров. Их виды, особенности и нюансы / Публикации / Элек.ру

Содержание

Выбор силовых тиристоров. Их виды, особенности и нюансы / Публикации / Элек.ру

Большое значение при проектировании преобразовательных устройств имеет правильный выбор типа силовых тиристоров. В процессе расчетов проектировщик должен учитывать множество различных причин, влияющих на нормальную работу преобразователя:

  • возникновение недопустимых перенапряжений при коммутации;
  • наличие недопустимых перегрузок по току при внешних и внутренних коротких замыканиях;
  • недостаточно мощный сигнал управления и т. д.;
  • наличие помех в цепи управления тиристором.

Игнорирование хотя бы одной из этих причин исключает нормальную работу преобразователя. Несмотря на важность этого вопроса, единых методических указаний по выбору силовых полупроводниковых приборов не существует. Мы постараемся предоставить справочную информацию, которая, возможно, поможет сориентироваться во всем многообразии видов приборов.

Силовые полупроводниковые тиристоры

Предназначены для применения в выпрямителях, инверторах, импульсных регуляторах, преобразователях постоянного и переменного тока, системах возбуждения генераторов и других цепях постоянного и переменного тока. В зависимости от типа прибора тиристоры могут применяться в широтно-импульсных системах пуска и регулирования скорости городского электроподвижного состава, сварочном оборудовании, для комплектования преобразовательных устройств линий электропередачи постоянного тока, для работы в бесконтактной коммутационной и регулирующей аппаратуре и других устройствах.

Тиристоры низкочастотные

Тиристоры Т-253-800, Т-253-1000 допускают воздействие синусоидальной вибрации в диапазоне частот 1-100 Гц с ускорением 49 м/с2 и многократные удары длительностью 2-15 мс с ускорением 147 м/с2.

Тиристоры быстродействующие

Тиристоры ТБ-133-250, ТБ-143-400 применяются в первую очередь в тех силовых установках, где требуются малые времена включения и выключения, а также высокие критические скорости нарастания напряжения в закрытом состоянии и тока в открытом состоянии. Эти тиристоры имеют повышенную нагрузочную способность при высоких частотах.

Промышленные области применения основных типов силовых тиристоров:

  • тиристоры Т-161, Т-171 используются в электротехнических и радиоэлектронных устройствах общего назначения в целях постоянного и переменного тока;
  • тиристоры Т-123, Т-133, Т-143, Т-153, Т-173 предназначены для применения в управляемых и полууправляемых выпрямителях на тяговых подстанциях, в регуляторах переменного тока, в софт-стартерах, в мощных электроприводах для синхронных электродвигателей, в преобразователях для электро-дуговых печей, в высокомощных компенсаторах реактивной мощности;
  • тиристоры ТБ-233, ТБ-333, ТБ-243, ТБ-453, ТБ-173 используются в электросварочных индукторах нагрева и плавки, в электротранспорте, в электроприводах переменного тока, в источниках бесперебойного питания, в силовых установках, требующих малого времени выключения и включения тиристоров;
  • тиристоры ТБИ-233, ТБИ-343, ТБИ-353, ТБИ-173 предназначены для применения в преобразователях тиристорного частотно-регулируемого электропривода, а также в преобразователях другого назначения, в которых используется преобразование электроэнергии по повышенной частоте (до 10 кГц).

Диоды и тиристоры

Главная » Диоды, тиристоры, силовые приборы

                     

ДИОДЫ

ТИРИСТОРЫ

СИЛОВЫЕ МОДУЛИ

МАРКИРОВКА

Условные обозначения и классы

Рекомендуемые замены снятых с производства изделий

 

Несмотря на интенсивное развитие микроэлектроники, силовые полупроводниковые приборы, в частности диоды и тиристоры, находят широкое применение в радиоэлектронной аппаратуре. Полупроводниковые управляемые диоды - тиристоры обладают высокими эксплуатационными свойствами: малыми удельными габаритами и массой, высокими КПД и быстродействием, продолжительным сроком работы, значительными допустимыми напряжениями и токами, возможностью импульсного управления. на основе тиристоров разработаны экономичные, надежные малогабаритные управляемые вторичные источники электропитания, широко используемые в электроприводах, автоматике, робототехнике, системах управления и во многих других случаях, когда требуется регулируемое постоянное или переменное напряжение неизменной или регулируемой частоты.

ДИОДЫ

Силовые полупроводниковые диоды предназначены для применения в преобразователях электроэнергии, а также в цепях постоянного и переменного тока различных силовых установок. Исходя из типа приборов, диоды могут применяться в качестве выпрямительных и для защиты от коммутационных перенапряжений, в системах возбуждения мощных турбогенераторов и синхронных компенсаторов, в низковольтных выпрямителях сварки и гальванического оборудования, в автомобильных и тракторных электрогенераторах
.

Диоды низкочастотные (штыревое исполнение)

Диоды Д 161-200, Д161-250, Д161-320, Д171-400 предназначены для применения в электротехнических и радиоэлектронных устройствах в цепях постоянного и переменного тока частотой до 500 Гц. Диоды допускают воздействие вибрационных нагрузок в диапазоне частот 1-100 Гц и многократные удары длительностью 2-15 мс с ускорением 147 м/с2. Это диоды прямой полярности, при этом анодом диодов является медное основание, катодом - гибкий вывод.

Диоды низкочастотные (таблеточное исполнение)Диоды Д 133-400, Д133-500, Д133-800, Д143-630, Д143-800, Д143-1000, Д253-1600
предназначены для применения  в цепях постоянного и переменного тока частотой до 500 Гц в электротехнических устройствах общего назначения. Диоды устойчивы к воздействию синусоидальной вибрации в диапазоне частот 1-100 Гц с ускорением 49м/с2 и одиночных ударов длительностью 50 мс с ускорением 39,2 м/с2. Анодом и катодом являются плоские основания, при этом полярность определяется с помощью символа полярности, нанесенного на корпус диода.

Диоды низкочастотные лавинные предназначены для применения в устройствах общего назначения  частотой до 500 Гц. Диоды допускают воздействие вибрационных нагрузок в диапазоне частот 1-100 Гц с ускорением 49м/с2,  многократных ударов длительностью 2-15 мс с ускорением 147 м/с2 и одиночных ударов длительностью 50 мс с ускорением 39,2 м/с2.  Диоды ДЛ 161-200, ДЛ 171-320 имеют штыревое исполнение. Анодом диодов является медное основание, катодом - гибкий вывод. Диоды ДЛ 123-320, ДЛ133-500 имеют таблеточное исполнение. Анодом и катодом являются плоские основания, при этом полярность определяется с помощью символа полярности, нанесенного на корпус диода.

Диоды быстровосстанавливающиеся (частотные)Диоды ДЧ 261-250 и ДЧ 261-320 (штыревое исполнение), диоды ДЧ  243-500, 253-1000 и др. (таблеточное исполнение) применяются в статических преобразователях электроэнергии, а также в других цепях постоянного и переменного тока частоты 2000 Гц и выше, в различных силовых установках, в которых требуются малые времена обратного восстановления и малые заряды восстановления. Эти диоды отличаются высокой нагрузочной способностью по току при высоких частотах.

Промышленные  области применения основных типов силовых диодов:

- диоды Д 161, Д171 предназначены для применения в неуправляемых и полууправляемых выпрямительных мостах, в маломощной сварочной аппаратуре.

- диоды Д 123, Д133, Д143, Д153, Д173 используются в мощных электроприводах постоянного тока в промышленности и транспорте, в мощных сварочных аппаратах.

- диоды ДЛ161, ДЛ171, ДЛ123, ДЛ133, ДЛ143, ДЛ153, ДЛ173 предназначены для применения в выпрямителях для электролиза и гальваники, в источниках постоянного тока, в неуправляемых и полууправляемых выпрямительных мостах.
- диоды ДЧ261, ДЧ133, ДЧ143, ДЧ153 используются в мощных электроприводах постоянного тока в промышленности и транспорте, в выпрямителях для электрометаллургии, в инверторах, в преобразователях частоты для транспорта, в источниках бесперебойного питания.

ТИРИСТОРЫСиловые полупроводниковые тиристоры предназначены для применения в выпрямителях, инверторах, импульсных регуляторах, преобразователях постоянного и переменного тока, системах возбуждения генераторов и других цепях постоянного и переменного тока

В зависимости от типа прибора тиристоры могут применяться в широтно-импульсных системах пуска и регулирования скорости городского электроподвижного состава, сварочном оборудовании, для комплектования преобразовательных устройств линий электропередачи постоянного тока, для работы в бесконтактной коммутационной и регулирующей аппаратуре и других устройствах.

 Тиристоры низкочастотные

 (например, тиристоры Т 253-800, Т253-1000) допускают воздействие синусоидальной вибрации в диапазоне частот 1-100 Гц с ускорением 49м/с2 и многократные удары длительностью 2-15 мс с ускорением 147 м/с2.

Тиристоры быстродействующие (например,  тиристоры ТБ 133-250, ТБ 143-400) применяются в первую очередь в тех силовых установках, где требуются малые времена включения и выключения, а также высокие критические скорости нарастания напряжения в закрытом состоянии и тока в открытом состоянии. Эти тиристоры имеют повышенную нагрузочную способность при высоких частотах.

 

Промышленные  области применения основных типов силовых тиристоров:

- тиристоры Т 161, Т171 используются в электротехнических и радиоэлектронных устройствах общего назначения в целях постоянного и переменного тока.

- тиристоры Т 123, Т133, Т143, Т153, Т 173 предназначены для применения в управляемых и полууправляемых выпрямителях на тяговых подстанциях, в регуляторах переменного тока, в софт-стартерах, в мощных электроприводах для синхронных электродвигателей, в преобразователях для электродуговых печей, в высокомощных  компесаторах реактивной мощности.

- тиристоры ТБ233, ТБ333, ТБ243, ТБ453, ТБ173 используются в электросварочных индукторах нагрева и плавки, в электротранспорте, в электроприводах переменного тока, в источниках бесперебойного питания, в силовых установках, требующих малого времени выключения и включения тиристоров.

- тиристоры ТБИ233, ТБИ343, ТБИ353, ТБИ173 предназначены для применения в преобразователях тиристорного частотно-регулируемого электропривода, а также в преобразователях другого назначения, в которых используется преобразование электроэнергии по повышенной частоте (до 10 кГц).

Сервис объявлений OLX: сайт объявлений в Украине

16 000 грн.

Договорная

Сокаль Сегодня 06:27

Киев, Голосеевский Сегодня 06:27

Терноватый Кут Сегодня 06:26

Запорожье, Хортицкий Сегодня 06:26

Запорожье, Коммунарский Сегодня 06:26

Херсон Сегодня 06:26

Мощные высоковольтные тиристоры для импульсных применений, производства ЗАО «Протон-Электротекс»

  • Главная
  • Статьи
  • Мощные высоковольтные тиристоры для импульсных применений, производства ЗАО «Протон-Электротекс»

Черников А.А., Гончаренко В. П., Мизинцев А. В., Сурма А. М., Титушкин Д. А.

АО «Протон – Электротекс», OOO  НИИЭФА ЭНЕРГО

 

 Разработка полупроводниковых ключей, способных коммутировать короткие импульсы тока амплитудой от десятков до сотен килоампер, актуальна для развития импульсных источников питания мощной электрофизической аппаратуры. Импульсные тиристоры широко применяются в качестве таких ключей [1].

Заказчики предъявляют к мощным импульсным тиристорам ряд специфических технических требований [2-5], которым не может удовлетворить обычный серийный тиристор. К таким требованиям, в частности, относятся:

  1. Коммутация импульсов тока со скоростью нарастания свыше 1000 А/мкс. Типичные требования – 2000 -10000 А/мкс.
  2. Коммутация коротких импульсов тока высокой амплитуды. Отношение амплитуды тока в коммутируемом импульсе к величине среднего тока тиристора может достигать числа 100 и более.
  3. Синхронное включение тиристоров в составе последовательной сборки при коммутации импульсов тока с высокой скоростью нарастания.

При коммутации импульсов со скоростью нарастания тока (di/dt) свыше 1000 А/мкс, возникают существенные затруднения, связанные с неодновременным включением тиристорного элемента по всей площади.

Кардинальным решением этой проблемы является использование тиристоров с ячеистой «многоэмиттерной» топологией, применяемой для Gate Turn-Off thyristors (GTO) и Integrated Gate Commutated Thyristors (IGCT) [6], т.к. вследствие малого поперечного размера каждой эмиттерной ячейки такой тиристор включается практически одновременно по всей площади. Однако, для такого прибора, значительная часть площади (50% и более) используется для размещения области управления (gate) и не участвует в проведении тока, что сильно снижает допустимую амплитуду импульса тока.

Другим решением является применение специального импульсного прибора Реверсивно Включаемого Динистора (РВД) [7]. Включение такого прибора также происходит по всей площади, что позволяет достигать наибольших на сегодняшний день для полупроводниковых ключей амплитуд импульсного тока [8]. Недостатком является весьма сложная аппаратура, необходимая для запуска РВД, по своей стоимости сопоставимая со стоимостью основного ключа.

Таким образом актуален поиск конструктивно-технологических решений, позволяющих увеличить допустимый импульсный ток «традиционного» импульсного тиристора. Ниже рассмотрен комплекс технических решений, позволивший создать импульсный тиристор, способный коммутировать импульсы тока с экстремально высокой амплитудой в важном для практических применений диапазоне длительности 100-1000 мкс.

 

Особенности конструкции и технологии изготовления

 Полупроводниковые слои.

Низколегированная p-база. В полупроводниковом элементе реализована относительно низколегированная p-база (слоевое сопротивление под n-эмиттером 500-1000 Ом/квадрат). При этом диффузионные процессы ее формирования оптимизированы таким образом, чтобы получить максимальное «встроенное тянущее электрическое поле» в пределах этого слоя. Это позволяет минимизировать время пролета p-базы электронами, инжектированными из n-эмиттера и получить минимальные значения времени задержки включения. Следовательно, при каскадном включении (вспомогательный тиристор – основной тиристор), становится минимальным время, когда ток проводит только вспомогательный тиристор, что существенно увеличивает di/dt – стойкость.

Соответственно, имеется возможность кардинально снизить разброс задержек включения  тиристоров в последовательной сборке.

На рис. 1 приведена типичная зависимость времени задержки включения для экспериментального тиристора от значения исходного блокирующего напряжения.

Рис. 1. Типичная зависимость времени задержки включения от анодного напряжения. Скорость нарастания тока управления 2А/мкс, скорость нарастания анодного  тока 5000 А/мкс.

 

Видно, что время задержки включения не только мало по своей абсолютной величине, но, вдобавок, монотонно уменьшается при увеличении анодного напряжения, что объясняется уменьшением времени пролета носителей заряда через базовые слои тиристора при увеличении исходного анодного напряжения.

Такая зависимость времмени задержки включения приводит к «конвергенции» разброса времени включения при работе тиристоров в последовательном соединении. Разброс времен включения отдельных тиристоров в последовательной сборке приводит к перераспределению напряжений между тиристорами на начальном этапе включения: на тиристорах с меньшими значениями tdon анодное напряжение уменьшается, а на тиристорах с большими значениями tdon  - увеличивается.

При этом, значения tdon при работе в последовательной сборке, в соответствии с зависимостью от напряжения (см. рис. 1) будут уменьшаться или увеличиваться, по сравнению со значением, измеренным на отдельных тиристорах. Таким образом, при работе тиристоров в последовательном соединении происходит некоторое сужение диапазона разброса значений задержек включения по сравнению с таковым, измеренным на отдельных тиристорах, составляющих сборку.

Исследования [9] показали, что, при типичной для импульсных тиристороров «Протон – Электротекс» «негативной» зависимости tdon от анодного напряжения,  диапазон разброса значений tdon при работе в последовательном столбе сужается примерно в два раза.

 

P-эмиттер с контролируемой эффективностью. В полупроводниковом элементе «традиционного» силового тиристора обычно выдерживается отношение толщины n-базы (Wn) и значения амбиполярной диффузионной длины электронно-дырочных пар в этом слое (L) не менее 3 (Wn/L>3). Это соотношение обусловлено необходимостью иметь вполне определенный (на уровне ~0.8 при высоком напряжении) коэффициент усиления по току p-n-p транзистора в составе четырехслойной тиристорной структуры для обеспечения требуемых значений блокирующих напряжений и du/dt – стойкости. При этом, однако, во включенном состоянии, распределение по толщине структуры концентрации избыточных электронно-дырочных пар существенно неоднородно, а, следовательно, неоднородно и распределение напряженности электрического поля (см. рис. 2).

В импульсных тиристорах производства «Протон-Электротекс» для поддержания требуемого значения коэффициента усиления по току p-n-p транзистора применяется p-эмиттер специальной конструкции – так называемый полупрозрачный эмиттер (transparent emitter). Используемые диффузионные технологии его формирования вместе с низкотемпературной технологией формирования анодного омического контакта (синтеринг) позволяют с высокой степенью воспроизводимости регулировать его коэффициент инжекции и добиться его малого разброса по площади силовой полупроводниковой структуры.

Применение p-эмиттера с контролируемой эффективностью позволяет уменьшить соотношение Wn/L до 1 и менее. В результате получаем более равномерное распределение напряженности электрического поля по толщине структуры (см. рис. 2).

Т.к. объемная плотность мощности потерь является произведением напряженности электрического поля на плотность тока, то для структуры с p-эмиттером контролируемой эффективности имеем меньшую локальную плотность мощности потерь (и плотность энергии потерь), чем для структуры традиционного тиристора при идентичном падении напряжения. Для коротких импульсов тока, когда процессы тепловыделения можно считать адиабатическими, это приводит к примерно на 20% меньшему локальному перегреву для структуры с p-эмиттером контролируемой эффективности.

Таким образом энергия, применение этого конструктивно-технологического решения позволяет в сравнении с «традиционным» тиристором, обладающим идентичной ВАХ во включенном состоянии, получить до 20% преимущества по допустимой энергии потерь при коммутации коротких импульсов тока с высокой амплитудой.

а).

б).

Рис. 2. Распределения концентрации избыточных электронно-дырочных пар (а) и напряженности электрического поля (б) по толщине кремниевой тиристорной структуры с эмиттером контролируемой эффективности (1) и структуре «традиционного тиристора» (2). Тиристорные структуры во включенном состоянии, проводят ток плотностью 2000 А/см2, имеют при этом идентичное падение напряжения 5.0 В.

 

Топология

Управляющий электрод с высокой степенью разветвления, позволяет безопасно коммутировать импульсы тока с высокой скоростью нарастания и осуществлять быстрое включение тиристорной структуры по всей активной площади.

Применяемые топологии и достижимые импульсные характеристики приведены в Табл 1. Для тиристорных элементов каждого диаметра разработаны и применяются по два варианта топологии: с «максимальным» и с «оптимальным» разветвлением. Вариант с максимальным разветвлением предназначен для коммутации импульсов тока с наибольшей скоростью нарастания, однако из-за больших потерь площади на размещение управляющего электрода уступает второму варианту по допустимой амплитуте импульсов тока при длительности этих импульсов более 200…300 мкс. Вариант с «оптимальным» разветвлением оптимизирован для коммутации импульсов тока максимальной амплитуды при длительностях свыше 300 мкс. Эта топология рассчитана таким образом, чтобы при коммутации импульсов тока со скоростью нарастания 3-8 кА/мкс разброс плотности энергии потерь и температуры перегрева по площади полупроводниковой структуры был незначительным.

В качестве примера на рис. 3 приведены расчетные зависимости плотности тока от времени для точек тиристорной структуры, расположенных на разном удалении от границы разветвленного управляющего электрода, при коммутации импульса тока со скоростью нарастания 4,5 кА/мкс и амплитудой 250 кА. Зависимости приведены для тиристора 28 класса с диаметром элемента 100 мм.

Рис. 3. Расчетные зависимости плотности тока от времени для точек тиристорной структуры, расположенных на разном удалении от границы разветвленного управляющего электрода, при коммутации импульса тока со скоростью нарастания 4.5 кА/мкс и амплитудой 250 кА. Тип тиристора: диаметр элемента 100 мм, UDRM=URRM=2800В.

 

Из рисунка видно, что плотность тока в процессе распространения включенного состояния не превышает максимума, который соответствует максимальному значению анодного тока.

Зависимость от времени разности температур между наиболее нагретой (х=0) и наиболее холодной (удаленной от управляющего электрода X5) точками приведена на рис. 4. Видно, что максимальная разница температуры между горячей и холодной точками не превышает 18°С. Она достигается в момент времени полного включения всей площади полупроводниковой структуры и далее уменьшается с тесением времени. В момент достижения абсолютного максимума температуры (400 мкс) разница температуры снижается примерно до 10°С. При этом следует иметь в виду, что температура абсолютного максимума эквивалентной структуры, включающейся одновременно по всей площади (например РВД) будет лежать между температурами горячей и холодной точек тиристора.

Следовательно  локальный перегрев тиристорной структуры относительно РВД в приведенном режиме не превысит 5-7°С.

Рис.4. Зависимость от времени разности температур между наиболее нагретой (х=0) и наиболее холодной (удаленной от управляющего электрода X5) точками тиристорной структуры.

 

«Распределенный» вспомогательный тиристор. Конструкция современного тиристора с большой площадью кремниевого элемента как правило содержит разветвленный управляющий электрод (РУЭ) и вспомогательный (усилительный) тиристор (ВТ), катод которого соединен с РУЭ, а анод – общий с основной тиристорной структурой. Назначение ВТ – сформировать «усиленный» импульс тока управления, подающийся на РУЭ, который имеет значительную длину периметра. Обычно структура ВТ формируется в виде достаточно узкого кольца, шириной около 1 мм, окружающего основной управляющий электрод тиристора. Для функционирования тиристора в обычных режимах этого достаточно, т.к. после включения основного тиристора по периметру РУЭ происходит быстрый «перехват» анодного тока и ВТ либо отключается, либо плотность тока в нем снижается до «безопасных» пределов.

Однако, при коммутации импульсов тока со скоростью нарастания свыше 1000 А/мкс, как показали исследования, снижение плотности тока, протекающего через ВТ происходит достаточно медленно, а амлитуда тока может достигать значительных величин.

Чтобы «разгрузить» структуру ВТ, т.е уменьшить плотность протекающего через него тока, на импульсных тиристорах «Протон-Электротекс» применяется т.н. распределенный ВТ, представляющий из себя «полноценную тиристорную структуру, площадью около 0,5 кв.см для элементов диаметром 56 мм и около 1-2 кв. см. для элементов диаметром 80-100 мм (рис. 5). Исследования показали, что применение подобной структуры ВТ позволяет снизить локальный перегрев этой структуры до величины, меньшей, чем максимальный перегрев основной структуры.

Рис.5. Кремниевый элемент импульсного тиристора с «распределенным» ВТ и «мелкой» катодной шунтировкой.

 

«Мелкая» катодная шунтировка. Применена распределенная катодная шунтировка n-эмиттера с размером элементарного шунта около 100 мкм. Типичная величина амбиполярной диффузионной длины электронно-дырочных пар в n-базе составляет около 400 мкм. Таким образом, применив такую шунтировку, удается получить равномерное распределение концентрации избыточных-электронно-дырочных пар без локальных «провалов» под местами расположения катодных шунтов и, следовательно, использовать всю активную площадь тиристорной структуры для проведения тока.

 

Контакты

Контакт анода полупроводниковой структуры с молибденовым диском-термокомпенсатором осуществляется с помощью технологии низкотемпературного спекания на слой мелкодисперсной серебряной пасты (синтеринг) [10]. Эта технология представляет собой процесс низкотемпературного (около 250С) спекания серебряной пасты практически в монолитное серебро. В применении к импульсным тиристорам дает следующие преимущества.

- Процесс идет при 250С, а традиционно применяемый для соединения с молибденовым диском процесс сплавления (вакуумной пайки на силумин) – при около 700°С. Поэтому после синтеринга получаем в «пакете» кремний-молибден значительно меньшие остаточные деформации и внутренние механические напряжения. В результате – повышение ресурса по циклостойкости [11-12] (а для режимов коммутации токов с требуемой амплитудой это архиважно, т.к. пропускание каждого импульса тока сопровождается очень жестким термоциклом как раз для соединения кремний-молибден, т.к. кремний разогревается более, чем до 200°С, а молибденовый диск за исключением неглубокого слоя, прилегающего к кремнию, остается холодным.

- При традиционном процессе сплавления поверхностные слои кремниевой структуры растворяются силумином. При этом становится невозможным гарантировать идентичность свойств анодного эмиттера на площади структуры (даже в случае, если это традиционный не «полупрозрачный» p-эмиттер). В результате для традиционной технологии имеем повышенный разброс плотности тока по площади структуры. Технология синтеринга этот недостаток исключает [13].

- В традиционном процессе сплавления чрезвычайно сложно добиться равномерного остывания по всей площади структуры (особенно, если эта площадь большая). В результате, процесс кристаллизации силумина в соединительном шве начинается, обычно, с периферии и, затем распростаняется в направлении центра дискообразного пакета кремний-молибден. Это приводит к неравномерности толщины шва по диаметру, см. рис. 6.

Рис. 6. Неравномерность толщины «сплавного» шва по диаметру, возникающая из-за неравномерного остывания при кристаллизации силумина

 

Наличие такой неоднородности толщины шва мало влияет на свойства анодного контакта, однако может серъезно ухудшить катодный (прижимной) контакт.

В технологии синтеринга высокая равномерность толщины шва гарантирована.

 

Прижимной катодный контакт. Для обеспечения надежного прижимного катодного контакта применяется катодная прокладка из молибдена со специальным покрытием. Выбор сделан в результате длительных и объемных исследований разных вариантов материалов и покрытий. Применяемая прокладка обеспечивает высокую циклостойкость контакта, малое электрическое и тепловое сопротивление, отсутствие деградации при длительной эксплуатации, в том числе при коммутации большого числа (свыше 100000) импульсов тока высокой амплитуды. Рассмотренные выше конструктивно-технологические решения известны и, по отдельности, применяются для улучшения импульсных свойств тиристоров рядом фирм – производителей. Однако, только совокупность этих технических решений, примененная с учетом современных технологических возможностей, позволила «Протон-Электротекс» организовать серийное производство импульсных тиристоров с уникальным набором характеристик. В качестве примера ниже приведены результаты испытаний экспериментального импульсного ключа на базе последовательной сборки тиристоров 28 класса с диаметром полупроводникового элемента 100 мм [14].

 

Экспериментальный ключ на импульсных тиристоразх.

 Экспериментальные импульсные тиристоры, с повторяющимся импульсным блокирующим напряжением 2800В были изготовлены с применением описанных выше технических решений.

Тиристоры имели кремниевый элемент диаметром 100 мм, который изготавливался на пластинах нейтроннолегированного кремния с удельным сопротивлением 120 Ом*см, толщиной 580 мкм. Топология управляющего электрода показана в табл. 1 (п.5). Эта топология обеспечивает оптимальное время включения тиристора по всей площади при коммутации импульсов, близких по форме к полуволне синусоиды, длительностью 300-1000 мкс. При этом потери площади на размещение области управления минимизированы и составляют всего около 14%, активная площадь тиристорного элемента составляет около 55 см2. Тиристоры имели таблеточную конструкцию корпуса.

Экспериментальный тиристорный ключ состоял из 10 тиристоров в последовательной сборке, рис 7., и вспомогательной сборке из встречнопараллельных диодов.

Рис. 7. Экспериментальный тиристорный ключ.

 

 Испытания проводились в разрядном R-L-C контуре, рис. 8 при начальном напряжении на конденсаторах 24 кВ. Форма импульсов тока и напряжения при разряде показана на рис. 9. При испытаниях ключ устойчиво коммутирует импульсы тока с амплитудой до 250 кА и скоростью нарастания около 4.5 кА/мкс.


Рис. 8. Испытательный стенд с разрядным контуром.

 

Рис. 9. Анодный ток и напряжение на тиристорном ключе.

 

Таблица 1

Топологии разветвленного управляющего электрода

Диам. эл-та, мм

Вид топологии

Допустимая di/dt, А/мкс

Тип. время полного включения, мкс

I2t, А2с

1

56

4000 (Трапециедальный импульс длительностью 100мкс по основанию, амплитуда 10 кА)

40…60

3,0E6 (UDRM=2800 В)

1,8E6

(UDRM=4400 В)

Tj=25C, 10мс, полуволна синусоиды

2

56

6000 (Трапециедальный импульс длительностью 100мкс по основанию, амплитуда 10 кА)

20…30

2,3E6 (UDRM=2800 В)

1,4E6

(UDRM=4400 В)

Tj=25C, 10мс, полуволна синусоиды

3

80

6000

(Трапециедальный импульс длительностью 100мкс по основанию, амплитуда 20 кА)

40…60

17,0E6 (UDRM=2800 В)

10,0E6

(UDRM=4400 В)

Tj=25C, 10мс, полуволна синусоиды

4

80

10000

(Трапециедальный импульс длительностью 100мкс по основанию, амплитуда 20 кА)

20…30

10,0E6 (UDRM=2800 В)

6,0E6

(UDRM=4400 В)

Tj=25C, 10мс, полуволна синусоиды

5

100

10000

(Трапециедальный импульс длительностью 100мкс по основанию, амплитуда 20 кА)

40…60

37,0E6 (UDRM=2800 В)

24,0E6

(UDRM=4400 В)

Tj=25C, 10мс, полуволна синусоиды

6

100

15000

(Трапециедальный импульс длительностью 100мкс по основанию, амплитуда 20 кА)

20…30

26,0E6 (UDRM=2800 В)

16,0E6

(UDRM=4400 В)

Tj=25C, 10мс, полуволна синусоиды

 

ЛИТЕРАТУРА

 

[1]   M.E.Savage "Final Results From the High-Current, High-Action Closing Switch Test Program at Sandia National Laboratories", IEEE Transactions on Plasma Science, vol. 28, no. 5, pp. 1451-1455, Oct. 2000.

[2]   H. Singh and C. R. Hummer “High action thyristors for pulse power applications”, in 12th IEEE Pulse Power Conference, June 1999.

[3]   S. Ikeda and T. Araki, “ The di/dt capability of thyristors”, Proc. IEEE, no. 8, pp. 1301-1305, 1967.

[4]   S.S. Asina, A.M. Surma, “A new design-technology technique for optimization of high power pulse thuristor characteristics”, in ELECTRIMACS Conference, Saint-Nazaire, Sept. 1996, pp. 485-490.

[5]   W.H. Tobin, “Effect of gate configuration on thyristor plasma properties”, in IEE IAS Conference Record, IEE IAS Annual Meeting, 1978.

[6]   Linder S., Klaka S. et al., "A New Range of Reverse Co

Вернуться назад

Мощные силовые диоды и тиристоры таблеточной конструкции

Рисунок.

При создании выпрямителей на большие токи используется параллельное соединение до 10 и более силовых диодов или силовых тиристоров и необходим низкий разброс прямого напряжения диодов Up или прямого напряжения в открытом состоянии силовых тиристоров UT, а также стабильность их значений в процессе эксплуатации приборов.

Однако при пробое одного из параллельно-соединенных приборов через него протекает большой ток короткого замыкания (К.З.).

Самым опасным является пробой прибора при высоком обратном напряжении в области фаски полупроводниковой структуры, так как большой ток К.З. локализуется в малом объеме и возникает высокотемпературная плазма, которая под давлением устремляется к тонким манжетам корпуса, проплавляет их и выходит наружу. Это может привести к возгоранию выпрямителя или взрыву в цехах со взрывоопасной атмосферой.

В 2000 году на нашем предприятии была разработана конструкция силового диода с высокой термодинамической устойчивостью корпуса, основанная на применении специальных защитных колец, которые препятствуют проникновению высокотемпературной плазмы к тонким манжетам корпуса прибора. На базе этой конструкции созданы силовые диоды типа Д553 и лавинные диоды типа ДЛ553 на токи до 2500 А и напряжение до 4200 В с высокой ТДУ корпуса (см. табл. 1).

Таблица 1.

Таблица 1

Испытания образцов силовых диодов с предварительно созданным К.З. на фаске были проведены на стендах ВИТ (г. Запорожье, Украина), а затем и в Ульяновском испытательном центре электрооборудования (г. Ульяновск, Россия). Результаты показали, что данные образцы выдержали токи К.З. свыше 80 кА без разрушения корпуса.

В дальнейшем появились силовые тиристоры типов Т553 и Т653 на токи до 1250 А и напряжения до 3400 В с высокой ТДУ (см. табл. 2).

Таблица 2.

В 2005 году разработаны еще более мощные силовые диоды, лавинные диоды и силовые тиристоры типов Д573, Д673, ДЛ573, ДЛ673 и Т573 с более высоким уровнем ТДУ (см. табл. 1). При этом была усовершенствована система защиты корпуса от плазмы и достигнут уровень токов ТДУ до 140 кА, а защитный показатель устойчивости корпуса составил свыше IC2×t = 40×106 A2·c.

Параллельно с разработкой термодинамически-устойчивой конструкции приборов проводились исследования, позволившие предложить решения, которые не только уменьшили разброс прямого напряжения диодов UF и напряжения в открытом состоянии силовых тиристоров UТ, но и повысили уровень стабильности их значений.

Благодаря подбору контактных покрытий и усовершенствованию технологии изготовления удалось достичь высокой стабильности, воспроизводимости и низкого уровня значений UF и UТ на приборах.

Исследование стабильности UF проводилось методом ускоренного старения и окисления контактных соединений лавинных диодов при температуре 150-160 °C в течение 3000 часов с периодическим замером величины UF при токе 6280 А через каждые 500 часов. Замеры UF показали, что в течение всего времени испытаний его значение на каждом силовом диоде испытуемой партии практически не изменилось.

Высокая воспроизводимость и малый разброс значений UF позволили поставлять заказчикам для выпрямителей с параллельным соединением приборов в ветвях лавинные диоды ДЛ553-2000, имеющие разброс значений UF±0,01 В. Таким образом, обеспечен разброс тока, который протекает через каждый диод при параллельном включении их в ветви, не превышающий 10%.

Аналогичные исследования стабильности UТ на силовых тиристорах проводились при температуре нагрева, равной 125 °C. При этом получена высокая стабильность значения UТ на каждом из испытываемых приборов.

В процессе разработки силовых диодов, лавинных диодов и силовых тиристоров велись исследования по повышению стабильности обратной ВАХ и ВАХ в закрытом состоянии тиристоров. Положительные результаты были достигнуты за счет снижения напряжения электрического поля на поверхности фаски, оптимального профиля фаски и стабильного пассивирующего компаунда для защиты фаски диодных и тиристорных структур. Стабильность ВАХ также оценивалась путем длительного отжига при максимальной рабочей температуре силовых диодов и силовых тиристоров.

Что такое силовые тиристоры и для чего они нужны

Автор Алексей Воронцов На чтение 5 мин. Просмотров 134 Опубликовано

Тиристорами являются приборы полупроводникового типа, регулирующие коммутации больших блоков. Они коммутируют электроцепь во время подачи сигнала, что делает его очень схожим с транзистором. Устройство обладает тремя выводами. Один из них управляет, а остальные формируют путь направления течения тока. Изделия в отличие от транзисторов открываются полностью скачкообразным способом, и даже в условиях отсутствующего тока не закрываются.

Технические характеристики

Силовой тиристор состоит из катода (обеспечивает контакт с n-слоем), анода (обеспечивает контакт с р-слоем) и управляющего электрода и обладает структурой из четырех слоев р-n-р-n. Этот мощный электронный ключ коммутирует электроцепь с током до 5кА и напряжением до 5кВ и частотой непревосходящей отметки в 1 кГц. Если вас заинтересовала тема данной статьи и вы хотите узнать подробнее о том, что такое силовые тиристоры https://gk-absolut1.ru/catalog/tiristory/. В литературе по специальности его называют еще и однооперационным тиристором, поскольку принцип действия тиристора направлен только на обеспечение включения. Выключение может происходить исключительно во время понижения силы тока практически до нулевой отметки. Ток проводится только в одном направлении если устройство включено, а если выключено, то оно выдерживает напряжение в обоих направлениях.

Виды и классифицирование

Классификация выполняется на основании разных параметров

По количеству выводов они могут быть:

  • Динисторы – только два вывода;
  • Триодные – три вывода. Могут управляться катодом или анодом;
  • Тетроидные – четыре вывода;
  • С большим числом полупроводниковых областей, которые чередуются.

Силовые тиристоры различаются скоростью действия, методом управления, направленностью электротока и прочими характеристиками. К важнейшим типам относят:

  • Тиристор-диод – встречно параллельный включенный диод;
  • Динистор (диоидный тиристор) – электроток проводится только при достижении обусловленной величины напряжения;
  • Запираемый;
  • Симисторы (более известные как симметричные тиристоры) –популярные и востребованные виды, которые включаются во время подачи напряжения любой полярности.
  • Быстродействующие инверторные – период необходимый для того, чтобы они включились, не превышает 5-50 миллисекунд;
  • С полевым управлением по электроду;
  • Управляемые световым потоком или оптотиристор.

По возможности обратной проводимости различают:

  • Проводящие – с небольшими значениями обратного напряжения;
  • Непроводящие – в закрытом виде значения обратного и прямого напряжения являются равными;
  • С ненормируемым значением – могут применяться только там, где обратное напряжение нельзя допустить;
  • Сисмисторы – пропускающие электроток в любом направлении.

Защита и ограничения возможностей тиристоров

Тиристоры воздействуют непосредственно на трансформацию стремительности прямого электротокатка. Для них типичен обратный ток и резкое падение показателей скорости обязательно приводят к увеличению возможности регистрации перенапряжения. Кроме того, перенапряжение может возникнуть и во время пропадания напряжения в различных точках всей системы. Поэтом они нуждаются в надежной защите, которая обеспечивается схемами ЦФТП (цепь формирования траектории переключения). Они защищают в условиях несоответствующих значений. Иногда могут использоваться и варисторы, которые подключаются к точкам вывода.

Независимо для чего нужен тиристор, он требует к себе особого отношения и соблюдения некоторых правил безопасности. В первую очередь это касается скорости модификации уровня напряжения между анодами и электротоком.

Как проверить функциональность устройства?

Проверка необходима не только, когда прибор не работает или функционирует неправильно, но и во время покупки тиристора. Процедура выполняется довольно легко при помощи обычно тестера. К аноду поводится положительный щуп, а к катоду, соответственно, отрицательный. Используемая величина должна быть равна разрешению проверяемого тиристора. На управляющий электрод ненадолго подается сигнал на открытие и если на устройстве возникли огоньки, то оно нефункционально.

Устройства способны функционировать в цепях постоянного или переменного тока. При постоянном, выключение может происходить естественным образом, которое происходит во время подключения к цепи постоянного тока тогда, когда его значение достигает нуля или в принудительном порядке.

В условиях использования в цепи переменного тока, включение может привести к включению/отключению электроцепи или к изменению значений электротока, поскольку его можно регулировать во время подачи.

Область применения

Основные технические характеристики тиристоров определяют возможности их использования. Силовые ключи, которые являются переключателями переменного тока, очень широко применяются для различных приборов. Они потребляются мало мощности во время работы, которая рассеивается в местах переключения. Если устройства выключены, то риски потери мощности минимальны и, чаще всего, полностью исключены, так как напряжение отсутствует. Даже когда они работают, объем настолько мал, что это почти незаметно.

Пороговые тиристоры чаще всего встречаются в фазовых регуляторах или релаксационных генераторах, поскольку обладают способностью пускать электроток при достижении обусловленного значения силы напряжения. Запирающие виды аппаратов употребляются в приборах, в которых нужно обеспечить прерывание цепи напряжения во время выключения самой конструкции.

Устройства характеризуются высоким КПД, надежностью, мощносными свойствами, незначительными массогабаритными параметрами. Это не только расширяет спектр его возможного применения, но и позволяют заметно сэкономить на энергопотребление электроресурсов. Таким образом, тиристоры нашли свое применение в различных областях промышленности, добывающих отраслях, машино- и приборостроении, разработке средств связи и многое другое.

Силовые тиристоры нашли свое место во всех сферах современной жизни и их можно обнаружить в самом маленьком карманном электронном устройстве и в огромных, габаритных и мощных заводских станках. Они можно сказать, определили технологический скачок в развитии современных электроприборов различного назначения.

Тиристоры силовые - Энциклопедия по машиностроению XXL

При больших токах нагревателей, превышающих номинальный ток тиристоров, силовые элементы включают в первичную цепь понижающих трансформаторов (рис. 7).  [c.477]

Тиристорные выпрямительные блоки Вп1 якорной цепи Вп2 цепи возбуждения питаются через понижающие трансформаторы. Управление тиристорами силового блока Вп1 осуществляется системой фазового управления СФУ в функции сигналов на ев входе. Эталонное напряжение (сигнал) подается на задающую обмотку магнитного усилителя СМУР через блок-контакты К1 и К2 в зависимости от положения рукоятки командоаппарата л состояния логического переключающего устройства ЛПУ, которое включает реле PI и Р2 и с их помощью включает контакторы реверса. Суммирующий магнитный усилитель логика  [c.154]


Не реже одного раза в год тщательно проверяют затяжку гаек и болтов на зажимах Выход , Сеть . Сигнал , а также крепление тиристоров, силовых диодов и предохранителей. Одновременно убеждаются в исправном состоянии всех паек у элементов блоков управления электрозащитных установок.  [c.120]

Тиристоры силовые, технические данные 42—44 Ток  [c.283]

Тепловые сети 163 Термометры 154 Термосифонные фильтры 184 Тиристоры силовые 366 Токи, измерение 189  [c.439]

При нарушении нормального протекания процесса ЭХО или неполадках в цепи МЭП с датчиков тока ДТ на систему автоматического регулирования САР поступают сигналы, вследствие чего СУТ закрывает тиристоры. Силовой контактор К выключается системой защиты и сигнализации СЗС, что приводит к отключению самого ИП от сети. Таким образом, в ИП предусмотрено двойное отключение от сети и от силового трансформатора, что гарантирует нормальную работу электрической части оборудования.  [c.292]

Схемное решение применяемых станций катодной защиты отличается простотой и надежностью. Это регулируемые защитные установки на основе полупроводниковых выпрямителей (регулируемый трансформатор, неуправляемый диодный мост), аналогичные вариантам, указанным в [9]. С учетом небольшой мощности используются только однофазные схемы. Применение преобразователей с более сложными схемами на основе тиристоров, силовых транзисторов на действующих газопроводах в настоящее время для компании неоправданно.  [c.12]

Регулирование преобразователей на кремниевых вентилях осуществляется с помощью систем управления, которые могут быть ручными и автоматическими. В общем случае система управления вырабатывает, распределяет, сдвигает во времени или меняет частоту последовательностей импульсов отпирания тиристоров силовых устройств. Средства построения систем управления в значительной степени определяют эффективность преобразователей на кремниевых вентилях. Особенно это стало заметно в последнее время, когда наметился разрыв между возможностями силовых схем и систем управления. Дальнейшее развитие преобразователей невозможно без качественного повышения технического уровня систем управления.  [c.22]

До последнего времени привод угольных комбайнов в СССР осуществлялся исключительно нерегулируемыми асинхронными двигателями с короткозамкнутым ротором, обладающими рядом недостатков. В настоящее время наметилась возможность перехода к регулируемому приводу угольных комбайнов Б условиях работы с резко переменной нагрузкой. Нашей промышленностью был освоен выпуск силовых тиристоров—кремниевых выпрямителей, позволивших осуществить регулируемый привод органов резания комбайнов в системе управляемый выпрямитель — двигатель постоянного тока [30].  [c.121]


Рассмотрим, например, процесс формирования управляющих импульсов для тиристора 4 силового выпрямителя. В момент естественной коммутации, определяемой по напряжению U , ФСИ выдает синхронизирующие сигналы на ФСУ, с выхода которого синхронизирующие импульсы Ua , Ua поступают на ФПИ. В резуль-  [c.78]

Образец нагревается при пропускании электрического тока с помощью силового трансформатора, вариатора 6 по программе 9, вычерченной на бумаге барабана 7 регулирующего устройства 3. В качестве регулирующего устройства используют серийно выпускаемый прибор РУ. Важным элементом в этой схеме является приставка 5 (ПРТ) регулирования температуры, включающая полупроводниковую схему и управляющая работой тиристоров 4.  [c.23]

Регулятор типа ВРТ-3 предназначен для прецизионного регулирования температуры и состоит из четырех основных частей измерительного блока типа И-102, регулирующего блока типа Р-111, входящих в состав регулятора ВРТ-2, а также блока управления тиристорами БУТ-01 и силового тиристорного блока БТ-01, составляющих усилитель У-252 (рис. 32),  [c.79]

И-102 — измерительный блок Р-И1 — регулирующий блок БУТ-01 — блок управления тиристорами БТ-01 — блок силовой тиристорный Тр — трансформатор ИУ — нагревательное устройство  [c.80]

Тиристоры Т1—Тб получают питание от сети переменного тока через силовой трансформатор Тр. Каждый тиристор управляется импульсами с фазовой системы управления в У (блок управления). На входе БУ осуществляется сложение постоянного напряжения и напряжения с БПН. Постоянное напряжение поступает с выхода У ПТ, на который подается сигнал управления U и сигнал с тахогенератора ТГ. С помощью ВТО обеспечивается нелинейная обратная связь по ЭДС двигателя с целью ограничения максимальной силы тока. Питание обмоток возбуждения двигателя и тахогенератора (ОВД, ОВТ) осуществляется от отдельного выпрямителя. Для уменьшения уравнительных токов установлены два дросселя.  [c.121]

При позиционном регулировании тиристоры используют в роли ключа. При импульсном регулировании на управляющие электроды подается меняющий скважность регулирования сигнал с частотой срабатывания регулятора. При непрерывном регулировании БУ вырабатывает сигнал, определяющий угол открывания тиристоров в течение одного периода. Схема встречно-параллельного включения тиристорных силовых элементов при трех нагревательных секциях (НС) температурной камеры приведена на рис. 6.  [c.477]

Преобразователь имеет защиты от перегрузок по току, от внутренних и внешних коротких замыканий, от опрокидывания инвертора при превышении напряжения на силовых тиристорах инвертора более 450 В амплитудного значения, от прекращения подачи охлаждающей воды, а также электрическую блокировку, не допускающую включение при открытых дверцах.  [c.120]

Т — силовой трансформатор VSI— VS2 — блок силовых тиристоров А, А2 — блоки управления тиристорами QFI — QF2 автоматические выключатели М —  [c.123]

В последнее время все большее распространение получают сварочные выпрямители с тиристорным и транзисторным управлением. Силовая схема данного выпрямителя представляет собой неуправляемый сварочный трансформатор в сочетании с управляемым блоком выпрямления, собранным по мостовой схеме из управляемых диодов — тиристоров или транзисторов. Формирование ВВАХ источника питания осуществляется посредством фазового управления работой блока выпрямления тиристорного выпрямителя и частотно- или широтно-импульсного управления работой вышеназванного блока транзисторного выпрямителя. При этом для тиристорного выпрямителя возможно управление как во вторичной цепи сварочного трансформатора, так и в первичной.  [c.128]

Источники с постовыми полупроводниковыми устройствами могут быть выполнены с использованием силовых вентилей — тиристоров и транзисторов. Различают постовые выпрямительные блоки, подключенные к общему источнику переменного тока, и постовые регуляторы, питающиеся от выводов постоянного тока многопостового выпрямителя. Источник с постовыми выпрямительными блоками имеет общий понижающий трансформатор. Наличие в постовом блоке обратных связей по напряжению и току позволяет сформировать как жесткие стабилизированные, так и крутопадающие характеристики, т.е. такие источники питания могут использоваться для ручной и механизированной сварки, а также как универсальные. На рис. 5.19 приведена схема четырех-  [c.135]


VSI— VS2 — блок силовых тиристоров  [c.122]
Рис. 2.17. Схематическое устройство кремниевого кристалла с пятислойной структурой для силового тиристора на основе л-Si (р = 500 0м см) с двумя прямыми фасками aj, а 2
Описание технологии. До внедрения предложения регулятор напряжения системы регулирования имел относительно низкую точность стабилизации высокочастотного напряжения 1%. Это приводило к изменениям температуры нагрева кузнечных заготовок в диапазоне до 25° С и приводило к разбросу технологических параметров заготовок сокращению сроков службы штампов. В силовом блоке регулятора применялось воздушное охлаждение, что снижало надежность работы тиристоров силового блока и всего регулятора в целом. Выходной ток при этом составлял не более 74 А. В узле обратной связи регулятора в качестве функционального преобразователя использовалась электронная лампа (прямоканальный диод 4Ц14С), которая имела ограниченный срок службы — месяц при трехсменной работе, т. е. для бесперебойной работы системы необходимо было иметь запасные лампы. Лампа чувствительна к вибрации (что особенно важно в условиях кузнечного цеха) и существенно увеличивала инерционность всей системы регулирования.  [c.77]

Описание технологии. Для более рационального использоиания оборудовакия изменен состав силовой схемы (см. рисунок) путем исключения работы двухмашинного агрегата. При этом функции ВГ передаются одному из линейных генераторов. Данное предложение дает экономию электроэнергии, необходимую для прокрутки на холостом ходу двухмашинного агрегата, и исключает из работы следующее электрооборудование двигатель синхронный СДС-14-49-6 — 800 кВт, генератор постоянного тока П-151-8К — 630 кВт (1 шт.) ячейка высоковольтная (1 компл.) преобразователь тиристорный ТЕ-8-320-4Д (1 компл.) тиристор силовой 1 С-3-75 кВа (I шт.) двигатель асинхронный Л02-22-4-10 кВт (1 шт.).  [c.254]

Разрабатывают выпрямители с использованием в выпрямляющих силовых обмотках управляемых вентилей-тиристоров. Схема управления тиристорами обеспечивает необходимый вид внешней характеристики, широкий диапазон регулирования силы сварочного тока и стабильность его при колебаниях наиражения питающей сети (ВД-304).  [c.133]

ГО метода распределения их по силовым тиристорам позволяют существенно снизить затраты мощности на управление, значительно упростить и повысить надежность СУВ. Другим достоинством рассмотренной СУВ, как было показано выше, является нечувствительность ее к несим-метрии питающей сети, что ведет к снижению необходимой длительности пачек управляющих импульсов и потерь в тиристорах выпрямителя.  [c.79]

Сетевая катодная станция реверсивная автоматическая СКСР-1200 предназначена для защиты магистральных трубопроводов от коррозии, вызываемой знакопеременными блуждающими токами. Принцип работы — автоматическое поддержание заданного значения потенциала сооружение — земля путем фазочувствитель-ного регулирования величины выпрямленного тока силовыми тиристорами.  [c.131]

Системы нагружения и нагрева включают аппаратуру и приборы задачи программ РУ-5-02 (7), приборы измерения программируемых параметров ЭПП-09 и ЭТП-209, снабженные реохордами обратной связи (3), а также усилительную аппаратуру с исполнительными элементами — тиристоры ВКДУ-150, вариатор РНО-250, силовой трансформатор ОСУ-20 (4) и электродвигатель постоянного тока ПБСТ-ЗЗ (5).  [c.227]

Силовыми элементами могут служить электромагнитные контакторы и реле — при позиционном и импульсном регулировании, а также магнитные усилители и полупроводниковые управляемые элементы (транзисторы, тиристоры, симисторы) — при всех видах регулирования.  [c.477]

Датчиками температуры (Д) являются два термопреобразователя сопротивления, установленные в верхней и нижней зонах рабочего пространства криокамеры. Измерительное устройство (И) каждого канала представляет собой мост, в одно из плеч которого включен переменный резистор (задатчик 3), а в другое — датчик. Снимаемый с диагонали моста сигнал, пропорциональный разности заданного и текущего значений температур, после усиления в усилителе (У) воздействует на силовой элемент СЭ) — тиристор.  [c.483]

Систему управления инвертором функционально и конструктивно можно разделить на три части задающий генератор, каскады предварительного усиления и оконечный каскад (выходная панель). Принцип работы задающего генератора основывается на заряде емкости через переменное сопротивление и разряде ее через динистор. В качестве переменного сопротивления используется переход коллектор — эмиттер строенного транзистора. Деление частоты задающего генератора и предварительное формирование импульсов управления осуществляются на логических элементах и блокинг-генерато-рах. Оконечные каскады обоих каналов управления собраны на силовых тиристорах. Нагрузка оконечных каскадов (управляющие переходы тиристоров инвертора) подключается через трансформаторы. Трансформаторы выполнены на ферритовых сердечниках. Каждому плечу инвертора соответствует один трансформатор. Первичная обмотка трансформатора намотана секциями, между которыми намотаны вторичные обмотки. Импульсы управления имеют передний фронт не более 2 мкс при амплитуде импульсов 3—3,5 А. Система управления инвертором, кроме оконечных каскадов, выполнена отдельным блоком. В этом же блоке расположены цепи защиты преобразователя от аварийных режимов.  [c.215]


Блок-схема установки приведена на рис. 5.1. В установке применено пропорциональное регулирование нагревом и нагружением. Системы нагружения и нагрева включают аппаратуру и приборы задачи программ—нагрузок (или дефорлгаций), температуры, компенсации свободной термической деформации — РУ-5-01 (2), приборы измерения программируемых параметров, снабженные реохордами обратной связи КСП-4 2, 3) а также усилительную аппаратуру 9 с исполнительными элементами — тиристоры ВКДУ-150 (4), вариатор РНО-250 (5), силовой трансформатор ОСУ-20 (6) и электродвигатель 7.  [c.114]

Т — собственно трансформатор а — угол включения тиристора X — угол работы тиристора fg — начало периода колебаний питающего напряжения / , /3 — время начала пропускания тока тиристами 2 — время окончания пропускания тока тиристорами и — окончание периода колебаний питающего напряжения i/2— питающее напряжение / — напряжение нагрузки /2 — сила тока нагрузки БФУ — блок фазового управления БЗ — блок задания — активная нагрузка ySl—yS2 — блок силовых тиристоров  [c.122]

Регулятор может устанавливаться как в первичной, так и во вторичной цепи трансформатора, поэтому его коммутирующие элементы VS я VS 2 должны иметь достаточную мощность. В этом качестве чаще всего используются силовые управляемые вентили — тиристоры. В состав регулятора входят также блок фазового управления (БФУ), формирующий импульсные сигналы для включения тиристоров, и блок задания (БЗ), с помощью которого настраива-  [c.122]

Подсистема исполнения содержит в системах создания силы и крутящего момента блоки тиристоров, реверсивные исполнительные двигатели постоянного тока, источники питания обмоток возбуждения, силовые трансформаторы ТР-1 и вариаторы РНО-250-5, С помощью вариатора можно изменить частоту вращения исполнительного двигателя при неизменном управляющем сигнале и, следовательно, обеспечить возможность регулирования минимальной и максимальной скорости привода подвижных захватов в широких пределах. В качестве исполнительных двигателей для систем создания силы и крутящего момента использованы соответственно электродвигатель постоянного тока П-11 (мощность 0,7 кВт) и серводвигатель постоянного тока СД-621 (мощность 0,23 кВт). В подсистеме создания внутреннего давления исполнительный блок состоит из управляющего двигателя, регулятора давления и насосной станции НСВД-2500. Подсистема исполнения программного регулирования температуры собрана на базе высокоточного регулятора температуры ВРТ-3 и нагревателя, помещенного во внутреннюю полость образца. Нагреватель представляет собой спираль, навитую на керамический стержень.  [c.152]

ГО что ведущие мировые производители приборов силовой электроники и прежде всего, мощных полевых транзисторов, тиристоров, биполярных транзисторов с изолированным затвором (JGBT-приборов), сделали ставку на использование в качестве базовой именно технологии прямого соединения пластин. При этом речь идет о широком использовании в промышленном производстве исходных кремниевых пластин диаметром 200 мм. Аналогичная ситуация складывается и в производстве низковольтных и маломощных высокочастотных У СБИС на основе структур кремния на диэлектрике. Подтверждением этому является го, что по имеющимся прогнозам в 2000 г. предполагалось поставить на мировой рынок около 2 млн штук структур кремния на диэлектрике циаметром 200 мм (этой цифрой оценивалась реальная потребность в гаких структурах). При этом 80 % от этого количества планировалось произвести методом прямого соединения пластин.  [c.83]

Известно, что значительную часть в общем выпуске полупроводниковой продукции составляют дискретные приборы (диоды, транзисторы, тиристоры) для нужд силовой промыхпленной электроники и мощной преобразовательной техники.  [c.157]


Дискретные тиристоры Power Semiconductors - Littelfuse

Тиристорные ограничители напряжения


для защиты цепей

A Тиристор - это любой полупроводниковый переключатель с бистабильным действием в зависимости от регенеративной обратной связи p-n-p-n. Тиристоры обычно представляют собой двух- или трехконтактные устройства для однонаправленных или двунаправленных схем.

Тиристоры могут иметь разные формы, но все они имеют определенные общие черты:

  • Это твердотельные переключатели с нормально разомкнутыми цепями (очень высокий импеданс)
  • Они способны выдерживать номинальное напряжение блокировки / выключенного состояния до момента срабатывания триггера во включенном состоянии.
  • При переключении во включенное состояние они становятся цепью тока с низким импедансом до тех пор, пока основной ток не остановится или не упадет ниже минимального уровня удержания.
  • После того, как тиристор переведен в рабочее состояние, ток триггера может быть отключен без выключения устройства.

Тиристоры используются для управления потоком электрических токов в приложениях, включая:

  • Бытовая техника - освещение, отопление, контроль температуры, активация сигнализации, скорость вентилятора
  • Электроинструменты - для контролируемых действий, таких как скорость двигателя, событие скрепления, зарядка аккумулятора
  • Наружное оборудование - разбрызгиватели воды, зажигание от газового двигателя, электронные дисплеи, освещение площадей, спортивный инвентарь, физическая подготовка

Характеристики:

  • Номинальное напряжение и сила тока
  • Защита от однонаправленных и двунаправленных переходных напряжений
  • Автоматически срабатывает "выключено" на заданные периоды времени
  • Соответствует RoHS
  • Переходы, пассивированные стеклом
  • Высокое напряжение до 1000 В
  • Высокая устойчивость к скачкам напряжения до 950

Тиристор


Описание продукта

Чувствительные симисторы

Чувствительные затворные симисторы

Littelfuse представляют собой двунаправленные кремниевые переключатели переменного тока, которые обеспечивают гарантированные уровни тока срабатывания затвора в квадрантах I, II, III и IV.Взаимодействие с микропроцессорами или другим оборудованием с запуском по однополярному затвору стало возможным благодаря чувствительным затворным симисторам. Могут быть указаны токи срабатывания затвора 3 мА, 5 мА, 10 мА или 20 мА.

Чувствительные затворные симисторы способны управлять токами нагрузки переменного тока от 0,8 А до 8 А (среднеквадратичное значение) и выдерживают рабочее напряжение от 400 В до 600 В.

Стандартные симисторы

Littelfuse - это двунаправленные переключатели переменного тока, способные управлять нагрузкой с нуля.От 8 до 35 А (среднеквадратичное значение) при IGT 10 мА, 25 мА и 50 мА в рабочих квадрантах I, II и III.

Симисторы

полезны в двухполупериодных приложениях переменного тока для управления мощностью переменного тока посредством переключения полного цикла или фазового управления током в нагрузочном элементе. Эти симисторы рассчитаны на блокировку напряжения в состоянии «ВЫКЛ.» От 400 В минимум с некоторыми изделиями, способными работать на 1000 В. Типичные области применения включают управление скоростью двигателя, управление нагревателем и лампой накаливания.

Quadrac

Устройства

Quadrac, первоначально разработанные Littelfuse, представляют собой симисторы и альтернативные симисторы с триггером DIAC, установленным внутри одного корпуса.Эти устройства экономят пользователю расходы и время сборки на покупку дискретного DIAC и сборку вместе с симистором со стробированием.

Quadrac предлагается с номинальной мощностью от 4 до 15 А и напряжением от 400 до 600 В.

Симисторы переменного тока

Альтернативный симистор специально разработан для приложений, требующих переключения высокоиндуктивных нагрузок. Конструкция этого специального чипа фактически обеспечивает ту же производительность, что и два тиристора (SCR), подключенных обратно параллельно (спина к спине).

Эта новая конструкция микросхемы обеспечивает эквивалент двух электрически разделенных структур SCR, обеспечивая улучшенные характеристики du / dt, сохраняя при этом преимущества однокристального устройства.

Littelfuse производит альтернативный симистор от 6 А до 40 А с номинальным напряжением блокировки от 400 В до 1000 В. Альтернативные симисторы предлагаются в корпусах TO-220, TO-218 и TO-218X с изолированной и неизолированной версиями.

Чувствительные тиристоры

Чувствительные затворные тиристоры

Littelfuse - это выпрямители с кремниевым управлением, представляющие лучшие по конструкции, характеристикам и технологиям упаковки для приложений с низким и средним током.

Анодные токи от 0,8 до 10 А (среднеквадратичное значение) могут контролироваться чувствительными тиристорами затвора с токами возбуждения затвора в диапазоне от 12 мкА до 500 мкА. Чувствительные тиристоры затвора идеально подходят для взаимодействия с интегральными схемами или в приложениях, где существуют требования к высокой токовой нагрузке и ограниченные возможности управления током затвора. Примеры включают цепи зажигания, средства управления двигателем и фиксацию постоянного тока для сигналов тревоги в детекторах дыма. Доступны тиристоры с чувствительным затвором с номинальным напряжением до 600 В.

SCR

Продукты

Littelfuse SCR представляют собой полуволновые выпрямители с кремниевым управлением, которые представляют собой новейшие разработки в области дизайна и производительности.

Допустимый ток нагрузки составляет от 1 А до 70 А среднеквадратического значения, а напряжения от 400 В до 1000 В могут быть указаны для удовлетворения различных потребностей приложений.

Благодаря возможности однонаправленного переключения, тиристор используется в цепях, где требуются высокие импульсные токи или блокирующее действие. Его также можно использовать для цепей полуволнового типа, где требуется действие выпрямления, управляемое затвором. Применения включают ломы в источниках питания, вспышках камер, дымовых пожарных извещателях, средствах управления двигателем, зарядных устройствах и зажигании двигателя.

Доступны номинальные значения импульсного тока от 30 А в упаковке TO-92 до 950 А в упаковке TO-218X.

Выпрямители

Компания

Littelfuse производит выпрямители с действующим значением от 15 А до 25 А с номинальным напряжением от 400 В до 1000 В. Благодаря электрически изолированному корпусу TO-220 эти выпрямители могут использоваться в схемах с общим анодом или общим катодом, используя только один тип детали, тем самым упрощая потребности в запасах.

DIAC

DIAC - это триггерные устройства, используемые в схемах управления фазой для подачи стробирующих импульсов на симистор или тиристор.Это двунаправленные кремниевые устройства, запускаемые напряжением, размещенные в стеклянных корпусах с аксиальными выводами DO-35 и корпусах DO-214 для поверхностного монтажа.

Выбор напряжения DIAC от 27 В до 70 В обеспечивает синхронизацию импульсов запуска в положительной и отрицательной точках переключения, чтобы минимизировать постоянную составляющую в цепи нагрузки.

Некоторые приложения включают триггеры затвора для управления освещением, диммеры, силовые импульсные цепи, опорные напряжения в цепях питания переменного тока и триггеры симистора в регуляторах скорости двигателя.

SIDAC

SIDAC представляют собой уникальный набор тиристорных качеств. SIDAC - это двунаправленный переключатель, срабатывающий по напряжению. Некоторые характеристики этого устройства включают нормальную точку переключения от 95 В до 330 В, диапазон отрицательного сопротивления, характеристики фиксации при включении и низкое падение напряжения в открытом состоянии.

Возможность одноциклового импульсного тока до 20 А делает SIDAC идеальным продуктом для сброса заряженных конденсаторов через катушку индуктивности с целью генерации импульсов высокого напряжения.Приложения включают управление освещением, пускатели натриевых ламп высокого давления, генераторы мощности и источники питания высокого напряжения.

Тиристорные устройства защиты от перенапряжения (TSPD) Интернет-магазин

Дополнительная информация о силовых тиристорах ...

Что такое силовой тиристор?

Тиристор или кремниевый выпрямитель (SCR) - это твердотельный компонент, который используется для переключения и управления потоком электрического тока. Из-за прочности тиристоров они часто используются в приложениях с большими токами.Тиристоры начнут проводить ток, когда они получат определенное напряжение на своем выводе затвора, и продолжат проводить ток даже после того, как это напряжение будет снято с вывода затвора. Поэтому тиристоры используются в качестве регуляторов тока благодаря этим характеристикам, а также широкому диапазону номинальной мощности.

Типы силовых тиристоров

Существует много различных типов силовых тиристоров. В Future Electronics мы храним многие из наиболее распространенных типов, классифицируемых по напряжению в открытом состоянии, напряжению в закрытом состоянии, току в рабочем состоянии, току в закрытом состоянии, максимальному току срабатывания затвора, типу упаковки и максимальному действующему току в открытом состоянии.Параметрические фильтры на нашем веб-сайте могут помочь уточнить результаты поиска в зависимости от требуемых характеристик.

Наиболее распространенные значения для напряжения в открытом состоянии - 1,55 В и 1,6 В. Мы также предлагаем силовые тиристоры с напряжением в открытом состоянии до 1,75 кВ. Напряжение в закрытом состоянии может находиться в диапазоне от 30 В до 2200 В, при этом 600 В является наиболее распространенным значением.

Силовые тиристоры от Future Electronics

Future Electronics предлагает широкий выбор тиристоров полной мощности от нескольких производителей при поиске мощных тиристоров для тиристорной схемы симистора или для любых схем или приложений, для которых может потребоваться силовой тиристор.Просто выберите один из технических атрибутов силового тиристора ниже, и результаты поиска будут быстро сужены в соответствии с потребностями вашего конкретного применения силового тиристора.

Если у вас есть предпочтительный бренд, мы работаем с несколькими. Вы можете легко уточнить результаты поиска мощных тиристоров, щелкнув нужную марку мощных тиристоров ниже в нашем списке производителей.

Приложения для силовых тиристоров:

Силовые тиристоры используются в приложениях, где присутствуют высокие напряжения и токи.Обычно они используются для управления переменным током. Силовые тиристоры также могут использоваться в качестве элементов управления для фазных регуляторов.

Выбор правильного силового тиристора:

Когда вы ищете подходящие силовые тиристоры, с помощью параметрического поиска FutureElectronics.com вы можете фильтровать результаты по различным атрибутам: по напряжению в рабочем состоянии (800 мВ, 1,55 В , 1,6 В), напряжение в закрытом состоянии (30 В, 400 В, 600 В, 800 В,…) и максимальный ток срабатывания затвора (от 1 мкА до 150 А) и многие другие.

Вы сможете найти подходящие высокомощные тиристоры для ваших тиристорных схем симистора или для приложений, требующих силовых тиристорных схем.

Силовые тиристоры в упаковке, готовой к производству, или количество для НИОКР

Если количество силовых тиристоров, которое вам требуется, меньше, чем полная катушка, мы предлагаем покупателям многие из наших силовых тиристоров в ламповых или отдельных количествах, которые помогут вам избежать ненужный излишек.

Кроме того, Future Electronics предлагает клиентам уникальную программу таможенных складских запасов, которая предназначена для устранения потенциальных проблем, которые могут возникнуть из-за непредсказуемых поставок продуктов, содержащих необработанные металлы, и продуктов с длительным или нестабильным сроком поставки.Поговорите с ближайшим к вам отделением Future Electronics и узнайте больше о том, как избежать возможного дефицита.

MITSUBISHI ELECTRIC Semiconductors & Devices: Информация о продукте

Сыграв центральную роль в модернизации силовой электроники в 1960-х годах, тиристоры большой емкости теперь работают с более высокими напряжениями и токами. В 1980-х годах он превратился из тиристора с обратной блокировкой без функции самовыключения в тиристор GTO (выключение затвора), который переключается из состояния ВКЛ в состояние ВЫКЛ, подавая отрицательный сигнал затвора даже в цепи постоянного тока.Кроме того, тиристор GCT (Gate Commutated Turn Off), который унаследовал базовую структуру тиристора GTO и значительно уменьшил импеданс затвора, обеспечил высокую скорость работы и высокую производительность отключения. Мы производим продукцию высокой мощности, такую ​​как тиристоры GCT, тиристоры GTO и тиристоры сверхвысокого напряжения, которые имеют многолетний опыт работы в этой области.

  • Тиристоры GCT 6,000-6,500V / 400-6,000A
  • Тиристоры
  • GTO: 2500-4,500 В / 1000-4000 А
  • Тиристор сверхвысокого напряжения - 12000 В / 1500 А

В частности, тиристорный блок SGCT (отключение с симметричным затвором) представляет собой тиристор GCT с блокировкой обратного напряжения.Комбинируя оптимально спроектированные драйверы затвора, достигаются превосходные характеристики тиристора SGCT, что способствует сокращению периода проектирования системы.

  • Реализация типа блокировки высоковольтного обратного хода: Номинальное напряжение: прямое / 6500 В, обратное / 6500 В.
  • Унаследовал низкую характеристику напряжения, присущую тиристорам.
  • Подходит для высоковольтных выключателей, инверторов источника тока.

Высоковольтный инвертор / Преобразователи частоты / SVG (Генератор статического переменного тока) / BTB (Переключатели переменного / постоянного тока / Тяговая силовая установка


Товар Номинальный ток Номинальное напряжение
2.5кВ 4,5 кВ 5,0 кВ 6.0 кВ 6.5 кВ 12кВ
GCT SGCT Тиристорный блок 400A
800A
1500A
GCT Тиристор 6000A
GTO Тиристор 1000A
2000A
3000A
4000A
Тиристор 1500A

См. Технические характеристики тиристоров

Что такое тиристор? Типы тиристоров и их применение

Что такое тиристор? Типы тиристоров и их применение

Тиристоры - интересный класс полупроводниковых приборов.Они имеют аналогичные характеристики с другими твердотельными компонентами из кремния, такими как диоды и транзисторы. Поэтому отличить тиристоры от диодов и транзисторов может быть сложно. Чтобы усложнить задачу, на рынке доступны различные типы тиристоров.

В некоторых случаях то, что отличает тиристоры друг от друга, может быть всего лишь крошечной деталью.

Также, в зависимости от производителя, данный тиристор может называться другим именем.

Для успешного применения тиристоров при проектировании схем важно знать их уникальные характеристики, ограничения и их взаимосвязь со схемой.Вот почему мы тратим время на то, чтобы разобраться во всем этом, чтобы вы могли лучше понять, какой тиристор лучше всего подходит для вашего приложения.

Что такое тиристор?

А Тиристор - это четырехслойный прибор с чередующимися полупроводниками P-типа и N-типа (P-N-P-N).

В своей основной форме тиристор имеет три вывода: анод (положительный вывод), катод (отрицательный вывод) и затвор (контрольный вывод). Затвор управляет потоком тока между анодом и катодом.

Основная функция тиристора - регулировать электрическую мощность и ток, действуя как переключатель. Для такого небольшого и легкого компонента он обеспечивает адекватную защиту цепей с большими напряжениями и токами (до 6000 В, 4500 А).

Он привлекателен в качестве выпрямителя, поскольку может быстро переключаться из состояния проводимости тока в состояние непроводимости.

Кроме того, его стоимость обслуживания невысока, и при правильных условиях он остается работоспособным в течение длительного времени без возникновения неисправностей.

Тиристоры используются в самых разных электрических цепях, от простых охранных сигнализаций до линий электропередачи.

Как работают тиристоры?

Тиристор со структурой P-N-P-N имеет три перехода: PN, NP и PN. Если анод является положительным выводом по отношению к катоду, внешние переходы, PN и PN смещены в прямом направлении, а центральный переход NP с обратным смещением. Следовательно, переход NP блокирует прохождение положительного тока от анода к катоду.Говорят, что тиристор находится в состоянии прямой блокировки . Точно так же прохождение отрицательного тока блокируется внешними PN-переходами. Тиристор находится в состоянии обратной блокировки .

Другое состояние, в котором может находиться тиристор, - это состояние прямой проводимости , при котором он получает достаточный сигнал для включения и начинает проводить.

Давайте на минутку выделим уникальные свойства, которые тиристоры привносят в схему, углубившись в природу сигнала и отклик тиристора.

Щелкните здесь, чтобы купить тиристоры или другие устройства защиты цепей от MDE Semiconductor.

Наши двухконтактные тиристоры серии P разработаны для телекоммуникационной отрасли. Эти продукты обеспечивают защиту в соответствии с FCC Part 68, UL 1459, Bellcore 1089. ITU-TK, 20 & K. 21

MDE Semiconductor уделяет особое внимание решениям по защите цепей.

Краткое описание включения тиристора

Когда на вывод затвора подается достаточный положительный сигнальный ток или импульс, он переводит тиристор в проводящее состояние. Ток течет от анода к катоду и будет продолжать течь, даже когда сигнал затвора удален. Говорят, что тиристор «зафиксирован».

Чтобы разблокировать тиристор, необходимо выполнить сброс схемы путем уменьшения анодно-катодного тока ниже порогового значения, известного как ток удержания.

Включение тиристора на уровне полупроводникового материала

Структура PNPN тиристора может быть интерпретирована как два транзистора, соединенные вместе. То есть ток коллектора от транзистора NPN питает базу транзистора PNP. Точно так же ток коллектора от транзистора PNP питает базу транзистора NPN.

Для фиксации тиристора и начала проведения тока сумма общей базы

коэффициенты усиления по току двух транзисторов должны превышать единицу.

Когда на затвор подается положительный ток или кратковременный импульс, который в достаточной степени увеличивает коэффициент усиления контура до единицы, происходит регенерация. Это означает, что импульс заставляет транзистор NPN проводить ток, который, в свою очередь, смещает транзистор PNP в проводимость. Если

начальный пусковой ток на затворе удаляется, тиристор остается во включенном состоянии, пока ток через тиристор достаточно высок, чтобы соответствовать критериям единичного усиления.Это ток фиксации .

Тиристор может включиться также из-за лавинного пробоя блокировочного перехода. Чтобы тиристор включился при нулевом токе затвора, приложенный ток должен достигнуть напряжения отключения тиристора. Это нежелательно, так как поломка приводит к повреждению устройства. Для нормальной работы тиристор выбирается так, чтобы его напряжение отключения было больше, чем наибольшее напряжение, которое будет испытываться от источника питания.Таким образом, включение тиристора может произойти только после того, как на затвор будет подан преднамеренный импульс, за исключением случаев, когда тиристор специально разработан для работы в режиме отключения. (См. Типы тиристоров с возможностью управляемого отключения ниже).

Тиристор выключения

Чтобы выключить тиристор, который зафиксирован (включен / включен), ток через него должен измениться так, чтобы коэффициент усиления контура был ниже единицы.Выключение начинается, когда ток становится ниже удерживающего.

Тиристоры различных типов и их применение

Тиристоры

можно классифицировать в зависимости от характера их поведения при включении и выключении, а также их характеристик напряжения и тока: Различные классы:

  1. Тиристоры с возможностью включения (однонаправленное управление)
  2. Тиристоры с возможностью отключения (однонаправленное управление)
  3. Двунаправленное управление

  1. Тиристоры с возможностью включения (однонаправленное управление)

  1. Кремниевый выпрямитель (SCR)

SCR

- наиболее известные тиристоры.Как объяснено в общем описании тиристоров выше, тиристор остается зафиксированным даже при снятии тока затвора. Чтобы разблокировать, необходимо снять ток между анодом и катодом или сбросить анод до отрицательного напряжения относительно катода. Эта характеристика идеальна для регулирования фазы. Когда анодный ток становится равным нулю, тиристор перестает проводить и блокирует обратное напряжение.

SCR используются в схемах переключения, приводах двигателей постоянного тока, статических переключателях переменного / постоянного тока и инвертирующих схемах.

  1. Тиристор обратного тока (RCT)

Тиристоры обычно пропускают ток только в прямом направлении, но блокируют токи в обратном направлении. Однако RCT состоит из SCR, интегрированного с обратным диодом, который устраняет нежелательную индуктивность контура и снижает переходные процессы обратного напряжения. RCT обеспечивает электрическую проводимость в обратном направлении с улучшенной коммутацией.

RCT используются в инверторах и приводах постоянного тока для мощных прерывателей.

  1. Светоактивированный кремниевый выпрямитель (LASCR)

Они также известны как тиристоры с управляемым светом (LTT). Для этих устройств, когда легкие частицы попадают на обратно смещенный переход, количество электронно-дырочных пар в тиристоре увеличивается. Если сила света больше критического значения, тиристор включится. LASCR обеспечивает полную электрическую изоляцию между источником света и переключающим устройством преобразователя мощности.

LASCR используются в передающем оборудовании HVDC, компенсаторах реактивной мощности и генераторах импульсов большой мощности.

  1. Тиристоры с возможностью отключения (однонаправленное управление)

Традиционные тиристоры, такие как тиристоры, включаются при подаче достаточного импульса затвора. Чтобы выключить их, необходимо отключить главный ток. Это неудобно в схемах преобразования постоянного тока в переменный и постоянного в постоянный, где ток, естественно, не становится нулевым.

  1. Затвор отключающий тиристор (ГТО)

GTO отличается от стандартного тиристора тем, что его можно отключить, подав отрицательный ток (напряжение) на затвор, не требуя снятия тока между анодом и катодом (принудительная коммутация). Это означает, что GTO можно выключить стробирующим сигналом с отрицательной полярностью, что делает его полностью управляемым переключателем. Его также называют коммутатором, управляемым воротами, или GCS. Время выключения GTO примерно в десять раз меньше, чем у эквивалентного SCR.

GTO

с возможностью обратной блокировки, сравнимой с их номинальным напряжением в прямом направлении, называются симметричными GTO. Асимметричные GTO не обладают значительной возможностью блокировки обратного напряжения. GTO с обратной проводкой состоят из GTO, интегрированного с встречно-параллельным диодом. Асимметричные GTO - самая популярная разновидность на рынке.

GTO используются в приводах двигателей постоянного и переменного тока, мощных инверторах и стабилизаторах переменного тока.

  1. МОП отключающий тиристор (МТО)

MTO представляет собой комбинацию GTO и MOSFET для улучшения отключающей способности GTO.GTO требует подачи большого тока отключения затвора, пиковая амплитуда которого составляет около 20-35% от анодно-катодного тока (ток, который необходимо контролировать). MTO имеет два управляющих терминала, затвор включения и затвор выключения, также называемый затвором MOSFET.

Чтобы включить MTO, приложенный импульс затвора достаточной величины вызывает фиксацию тиристора (аналогично SCR и GTO).

Для выключения MTO на затвор MOSFET подается импульс напряжения.MOSFET включается, замыкая эмиттер и базу NPN-транзистора, тем самым останавливая фиксацию. Это гораздо более быстрый процесс, чем GTO (примерно 1-2 мкс), и в этом случае большой отрицательный импульс, приложенный к затвору GTO, направлен на извлечение достаточного тока из базы NPN-транзистора. Кроме того, более быстрое время (MTO) устраняет потери, связанные с текущей передачей.

MTO используются в высоковольтных системах до 20 МВА, моторных приводах, гибких линиях передачи переменного тока (FACT) и инверторах источников напряжения для высокой мощности.

  1. Эмиттер выключения тиристоров (ЭТО)

Как и MTO, ETO имеет два вывода, нормальный затвор и второй затвор, соединенные последовательно с полевым МОП-транзистором.

Чтобы включить ETO, на оба логических элемента подается положительное напряжение, что приводит к включению NMOS и выключению PMOS. Когда в нормальный затвор подается положительный ток, ETO включается.

Для выключения, когда на затвор полевого МОП-транзистора подается сигнал отрицательного напряжения, NMOS отключается и передает весь ток от катода.Процесс фиксации останавливается, и ETO выключается.

ETO

применяются в инверторах источников напряжения для высокой мощности, гибких линиях передачи переменного тока (FACT) и статических синхронных компенсаторах (STATCOM).

  1. Двунаправленное управление

Обсуждаемые до сих пор тиристоры были однонаправленными и используются в качестве выпрямителей, преобразователей постоянного тока в постоянный и инверторов. Чтобы использовать эти тиристоры для управления напряжением переменного тока, два тиристора необходимо соединить встречно параллельно, в результате чего получатся две отдельные схемы управления, которые потребуют большего количества проводных соединений.Двунаправленные тиристоры, которые могут проводить ток в обоих направлениях при срабатывании триггера, были разработаны специально для решения этой проблемы.

  1. Триод переменного тока (TRIAC)

Тиристоры

- вторые по распространенности тиристоры после тиристоров. Они могут управлять обеими половинами переменного сигнала, тем самым более эффективно используя доступную мощность. Однако симметричные преобразователи частоты обычно используются только для приложений с низким энергопотреблением из-за присущей им несимметричной конструкции.В приложениях с высокой мощностью симисторы имеют некоторые недостатки при переключении при разных напряжениях затвора в течение каждого полупериода. Это создает дополнительные гармоники, которые вызывают дисбаланс в системе и влияют на характеристики ЭМС.

Маломощные триаки используются в качестве регуляторов света, регуляторов скорости для электрических вентиляторов и других электродвигателей, а также в компьютерных схемах управления бытовой техникой.

  1. Диод переменного тока (DIAC)

DIACS - это устройства с низким энергопотреблением, которые в основном используются вместе с TRIACS (размещены последовательно с выводом затвора TRIAC).

Так как TRIAC по своей природе несимметричны, DIAC предотвращает прохождение любого тока через затвор TRIAC до тех пор, пока DIAC не достигнет своего триггерного напряжения в любом направлении. Это гарантирует, что TRIACS, используемые в переключателях переменного тока, срабатывают равномерно в любом направлении.

DIAC находятся в диммерах для ламп.

  1. Кремниевый диод переменного тока (SIDAC)

SIDAC электрически ведет себя так же, как DIAC.Основное различие между ними состоит в том, что SIDAC имеют более высокое напряжение отключения и большую мощность, чем DIAC. SIDAC - это пятиуровневое устройство, которое можно использовать непосредственно в качестве переключателя, а не в качестве триггера для другого коммутационного устройства (например, DIAC для TRIACS).

Если приложенное напряжение соответствует или превышает напряжение отключения, SIDAC начинает проводить ток. Он остается в этом проводящем состоянии даже при изменении приложенного напряжения до тех пор, пока ток не станет ниже его номинального тока удержания.SIDAC возвращается в непроводящее состояние, чтобы повторить цикл.

SIDAC

используются в релаксационных генераторах и других устройствах специального назначения.

Щелкните здесь, чтобы купить тиристоры или другие устройства защиты цепей от MDE Semiconductor.

Наши двухконтактные тиристоры серии P разработаны для телекоммуникационной отрасли. Эти продукты обеспечивают защиту в соответствии с FCC Part 68, UL 1459, Bellcore 1089.ITU-TK, 20 и K. 21

Тиристоры | Выпрямители с кремниевым управлением

Тиристоры - это четырехслойные полупроводниковые устройства, также известные как кремниевый управляемый выпрямитель (SCR). Они похожи на быстрый статический переключатель и подходят для управления большой мощностью, они также могут управлять скоростью двигателей постоянного тока. Вы можете узнать больше в нашем полном руководстве по тиристорам.

Как работают тиристоры?

Тиристоры обычно состоят из трех электродов: анода (положительный полюс), катода (отрицательный полюс) и затвора.(Также можно получить тиристоры с двумя или четырьмя выводами). Затвор является основным управляющим выводом, в то время как основной ток протекает между анодом и катодом. Тиристоры изготовлены из материалов N-типа и P-типа. Материал N-типа формируется путем легирования элемента электронами для увеличения количества электронов с отрицательным зарядом. Материал P-типа также получают путем легирования, хотя образующиеся в результате электроны, несущие заряд, заряжаются положительно. Путем чередования слоев материала P- и N-типа образуется полупроводниковый тиристорный прибор.Тиристоры используются для создания цепи фиксации. Тиристоры можно включить с помощью затвора. Затем он отключается, когда напряжение на аноде-катоде снова падает до нуля.

Типы тиристоров

  • Кремниевый управляемый выпрямитель (SCR) - Основная цель SCR - функционировать как переключатель, который может включать или выключать малые или большие количества энергии.
  • Кремниевый управляемый переключатель (SCS) - Кремниевый управляемый переключатель (SCS) - это устройство, подобное SCR, но оно предназначено для выключения, когда положительный импульс напряжения / входного тока подается на дополнительный «анодный затвор».
  • Симистор - Симистор получил свое название от триода для переменного тока Симисторы похожи на тиристоры, но он проводит в обоих направлениях (двунаправленное устройство). Это означает, что он может переключать переменный и постоянный токи. Для этого требуются модули управления цепью зажигания.
  • Четырехслойный диод - Четырехслойный диод имеет 2 контакта и аналогичен чувствительному к напряжению переключателю. Когда напряжение между двумя контактами превышает напряжение пробоя, он включается, в противном случае - выключается.
  • Diac - Diac - это сочетание слов «диод» и «переключатель переменного тока», он похож на четырехслойный диод, но может проводить в обоих направлениях, что означает, что он может контактировать как с переменным, так и с постоянным током.
Применение тиристоров

Тиристоры обычно используются во многих повседневных применениях, таких как:

  • Регулировка скорости двигателя
  • Системы контроля давления
  • Диммеры
  • Регуляторы уровня жидкости

Тиристоры - обзор | Темы ScienceDirect

Характеристики переключения GTO немного отличаются от характеристик обычного тиристора, и по этой причине необходимо дать некоторые дополнительные пояснения.Характеристики включения GTO такие же, как у обычного тиристора, но их характеристики отключения значительно отличаются. Для понимания динамического поведения выключения GTO будет использована схема на рис. 10.41. Цепь питания представляет собой преобразователь постоянного тока (прерыватель), где GTO используется как полупроводниковый переключатель, который включается и выключается таким образом, чтобы прерывать входное напряжение V в , подавая его на клеммы R – L нагрузка. Это означает, что при включении и выключении GTO на клеммах нагрузки генерируется импульсное напряжение.К выводам GTO подключена схема защиты (демпфер), состоящая из элементов D s , R s и C s . Эта схема обеспечивает защиту переключателя GTO от возможных перенапряжений на анодных и катодных выводах.

Рисунок 10.41. Схема питания DC – DC преобразователя (прерывателя) ГТО.

Через клеммы нагрузки установлен диод свободного хода, необходимый для протекания тока через индуктор при выключении GTO. L L и L S - паразитные индуктивности нагрузки и схем защиты соответственно.Эти индуктивности вызваны проводкой и подключениями силовой цепи. Схема демпфера снижает уровень напряжения dv / dt на выводах GTO (при переключении в состояние выключения), но улучшает характеристики переключения при выключении. Демпферная емкость C s заряжается до входного напряжения V в перед включением GTO. Конденсатор C s заряжается через входной источник V в и цепь цепи R – L – L L –L s –D s –C s .Когда GTO находится в состоянии проводимости, емкость C s разряжается через демпферное сопротивление R s и GTO, потребляя большую часть своей мощности на сопротивлении R s . Когда GTO выключается, емкость снова заряжается до входного напряжения через контур цепи R – L – L L –L s –D s –C s с помощью резонансного тока (из-за емкость цепи и собственная индуктивность), что приводит к уменьшению значения dv / dt на клеммах GTO.

На рис. 10.42 представлены динамические характеристики переключения ГТО. Характеристики отключения ГТО отличаются от характеристик обычного тиристора (см. Рис. 3.6). Как показано на рис. 10.42, когда на GTO подается отрицательный ток затвора, анодный ток i A начинает уменьшаться после времени задержки t s (время хранения). В дальнейшем анодному току требуется определенный интервал времени t f (время спада), чтобы упасть с 0,9 до 0,1I A . Однако во время выключения GTO, когда его ток падает, а его напряжение растет, анодный ток имеет тенденцию течь через схему защиты и, следовательно, создавать через паразитную индуктивность L s пик напряжения. (V AK (пик) ), показанный на рис.10,42. Пик высокого напряжения слишком опасен, поскольку может вызвать локальный перегрев внутри полупроводникового прибора, который будет иметь катастрофические последствия (второй пробой). По этой причине всегда следует проявлять осторожность, чтобы уменьшить паразитную индуктивность L s цепи защиты. После пика напряжения V AK (пик) , анодное напряжение GTO повышается, создавая еще один пик напряжения (V AK (max) , рис. 10.42), который является результатом резонансного контура L s –C s схемы защиты, заканчивая затем до напряжения источника, В на .В течение периода перенапряжения анодный ток i A , как показано на рис. 10.42, не достигает нулевого значения, но создает хвост I tail , который длится в течение временного интервала t tail . Задержка может быть уменьшена за счет уменьшения емкости конденсатора цепи защиты C с . При уменьшении времени t tail , потери мощности при выключении GTO также уменьшаются, и, следовательно, преобразователь демонстрирует более высокий КПД по мощности. Выбор C s должен быть сделан после компромисса между хвостовым временным интервалом и потерями в схеме защиты.Увеличивая скорость нарастания тока затвора, время перехода при выключении GTO уменьшается. Что касается рис. 10.42, время перехода при выключении GTO определяется следующим образом: t off = t s + t f + t tail .

Рисунок 10.42. Осциллограммы динамического переключения GTO.

Выпрямитель с кремниевым управлением

SCR »Примечания по электронике

Тиристоры из кремния Управляемые выпрямители, тиристоры представляют собой полупроводниковые устройства, которые могут действовать как электронные переключатели, иногда управляющие цепями с высоким уровнем напряжения и тока.


Triac, Diac, SCR Учебное пособие Включает:
Основы тиристоров Конструкция тиристорного устройства Работа тиристора Затвор отключающий тиристор, ГТО Характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Diac


Тиристоры или кремниевые выпрямители (SCR), как их иногда называют, могут показаться необычными электронными компонентами во многих отношениях, но они особенно полезны для управления силовыми цепями.

Как таковые, эти электронные компоненты используются во многих приложениях управления мощностью, часто там, где уровни тока и напряжения относительно высоки. Тиристоры также могут использоваться в приложениях с низким энергопотреблением, включая управление освещением, а также для защиты источников питания и многих других приложений. Тиристоры просты в использовании и дешевы, что делает их идеальным вариантом для многих схем.

Идея тиристора не нова. Идея устройства была впервые выдвинута в 1950 году Уильямом Шокли, одним из изобретателей транзистора.Хотя некоторые более поздние исследования устройства были предприняты другими несколькими годами позже, они стали доступны только в начале 1960-х годов. После появления тиристоров они вскоре стали популярными для электронных схем переключения и питания.

Сильноточный тиристор / SCR

Что такое тиристор?

Тиристор можно рассматривать как довольно необычную форму электронного компонента, поскольку он состоит из четырех слоев кремния с различным легированием, а не из трех слоев обычных биполярных транзисторов.

В то время как обычные биполярные транзисторы могут иметь структуру pnp или npn с электродами, называемыми коллектор, база и эмиттер, тиристор имеет структуру pnpn с внешними слоями с их электродами, называемыми анодом (n-типа) и катодом (p -тип). Управляющий вывод SCR называется затвором, и он подключен к слою p-типа, который примыкает к катодному слою.

Основная структура тиристора / SCR

Тиристоры обычно изготавливаются из кремния, хотя теоретически могут использоваться и другие типы полупроводников.Первая причина использования кремния для тиисторов заключается в том, что кремний является идеальным выбором из-за его общих свойств. Он способен выдерживать напряжение и токи, необходимые для приложений большой мощности. Кроме того, он обладает хорошими тепловыми свойствами. Вторая важная причина заключается в том, что кремниевая технология хорошо зарекомендовала себя и широко используется для различных полупроводниковых устройств. В результате производители полупроводников могут очень дешево и легко использовать их для своих электронных компонентов.

Применение тиристоров

Тиристоры, или кремниевые выпрямители, тиристоры используются во многих областях электроники, где они находят применение во множестве различных приложений.Некоторые из наиболее распространенных приложений для них описаны ниже:

  • Регулятор мощности переменного тока (включая фонари, двигатели и т. Д.).
  • Электронная коммутация переменного тока.
  • Лом для защиты от перенапряжения для источников питания.
  • Элементы управления в контроллерах, запускаемых по углу фазы.
  • В фотовспышках, где они действуют как электронный выключатель для разряда накопленного напряжения через лампу-вспышку, а затем отключают его в нужное время.

Тиристоры способны переключать высокие напряжения и выдерживать обратные напряжения, что делает их идеальными для электронных коммутационных приложений, особенно в сценариях переменного тока.

Открытие тиристоров

Идея тиристора была впервые описана Шокли в 1950 году. Он упоминался как биполярный транзистор с p-n крючком-коллектором. Механизм операции был дополнительно проанализирован в 1952 году Эберсом.

Затем в 1956 году Молл исследовал механизм переключения тиристора.Разработка продолжалась, и об устройстве стало больше известно, так что первые выпрямители с кремниевым управлением стали доступны в начале 1960-х годов, когда они начали приобретать значительный уровень популярности для переключения мощности.

Когда GE выпустила свои устройства, они использовали термин кремниевый управляемый выпрямитель, или SCR, потому что он работал только в одном направлении и был управляемым. Они использовали название SCR как торговую марку для своей продукции.

Как работает тиристор?

Принцип работы тиристора отличается от работы других устройств.Обычно через устройство не протекает ток. Однако, если к устройству подключен источник питания, и на затвор подается небольшой ток, устройство будет «срабатывать» и проводить. Он будет оставаться в проводящем состоянии до тех пор, пока не будет отключен источник питания.

Чтобы увидеть, как работает тиристор, стоит взглянуть на эквивалентную схему тиристора. Для пояснения схему тиристора можно рассматривать как два встречных транзистора. Первый транзистор с эмиттером, подключенным к катоду тиристора, является транзистором NPN, тогда как второй транзистор с эмиттером, подключенным к аноду тиристора, SCR является транзистором PNP.Затвор подключен к базе транзистора NPN, как показано ниже.

Эквивалентная схема тиристора

Когда на тиристор подается напряжение, ток не течет, потому что ни один из транзисторов не проводит ток. Однако, если на затвор будет подано напряжение, это вызовет протекание тока в базе, и это заставит TR2 включиться. Когда TR2 включен, это опускает базу TR1, вызывая включение этого транзистора, и, в свою очередь, проталкивает ток через базу TR2, что означает, что устройство останется включенным, даже если напряжение затвора будет снято.

Обозначения и основные сведения о тиристорах

Тиристорный или кремниевый управляемый выпрямитель, SCR, представляет собой полупроводниковое устройство, которое имеет ряд необычных характеристик. Он имеет три вывода: анод, катод и затвор, отражающий термоэлектронный клапан / вакуумную трубку. Как и следовало ожидать, затвор является управляющим выводом, в то время как основной ток протекает между анодом и катодом.

Как можно понять из обозначения схемы, показанной ниже, это устройство является «односторонним устройством», отсюда и название GE - кремниевый управляемый выпрямитель.Поэтому, когда устройство используется с переменным током, оно будет работать максимум половину цикла.

В работе тиристор или тиристор изначально не работают. Требуется определенный уровень тока, чтобы течь в ворота, чтобы "выстрелить". После срабатывания тиристор будет оставаться в проводящем состоянии до тех пор, пока напряжение на аноде и катоде не будет снято - это, очевидно, происходит в конце полупериода, в течение которого тиристор проводит. Следующий полупериод будет заблокирован в результате действия выпрямителя.Затем потребуется ток в цепи затвора, чтобы снова запустить тиристор. Таким образом, тиристор можно использовать как электронный переключатель.

Кремниевый управляемый выпрямитель, тиристор или символ тиристора, используемый для принципиальных схем или схем, стремится подчеркнуть характеристики выпрямителя, одновременно показывая управляющий вентиль. В результате символ тиристора представляет собой традиционный символ диода с входом управляющего затвора рядом с переходом.

Обозначение тиристора или схемы тиристора
Примечание по схемам и конструкции тиристоров:

Тиристоры или тиристоры имеют характеристику, заключающуюся в том, что, когда затвор получает ток срабатывания, он запускает тиристор, позволяя току течь до тех пор, пока не будет снято напряжение между анодом и катодом.Это позволяет тиристору переключать высокие напряжения и токи, хотя это только половина цикла. Цепи могут приглушать свет, управлять двигателями и вообще переключать высокие напряжения и токи.

Подробнее о Схемы и конструкция тиристоров

Характеристики тиристора

Чтобы выбрать правильное тиристорное устройство для любой схемы, необходимо изучить спецификации и убедиться, что устройство имеет правильные характеристики для предполагаемой схемы или применения.

Тиристоры - довольно уникальные компоненты, и их характеристики и параметры таблицы отличаются от других более широко используемых электронных компонентов, таких как биполярные транзисторы и полевые транзисторы JFET, полевые МОП-транзисторы и т. Д.

Другие типы тиристоров или тиристоров

Существует ряд тиристоров разных типов - это варианты базового компонента, но они предлагают разные возможности, которые могут использоваться в различных случаях и могут быть полезны для определенных схем.

  • Тиристор с обратной проводимостью, RCT: Хотя тиристоры обычно блокируют ток в обратном направлении, существует одна форма, называемая тиристором с обратной проводимостью, который имеет встроенный обратный диод для обеспечения проводимости в обратном направлении, хотя нет контроля в этом направлении.

    Внутри тиристора с обратной проводимостью само устройство и диод не проводят одновременно. Это означает, что они не производят тепло одновременно. В результате они могут быть объединены и охлаждены вместе.

    RCT может использоваться там, где в противном случае потребовался бы обратный диод или диод свободного хода. Тиристоры с обратной проводимостью часто используются в преобразователях частоты и инверторах.

  • Тиристор с автоматическим выключением, GATT: GATT используется в случаях, когда необходимо быстрое выключение.Чтобы помочь в этом процессе, иногда может применяться отрицательное напряжение затвора. Помимо снижения анодного катодного напряжения. Это обратное напряжение затвора помогает истощить неосновные носители, хранящиеся в базовой области n-типа, и гарантирует, что переход затвор-катод не будет смещен в прямом направлении.

    Структура GATT аналогична структуре стандартного тиристора, за исключением того, что часто используются узкие катодные полоски, чтобы позволить затвору иметь больший контроль, поскольку он находится ближе к центру катода.

  • Тиристор отключения затвора, GTO: GTO иногда также называют выключателем затвора. Это устройство необычно в семействе тиристоров, потому что его можно выключить, просто приложив отрицательное напряжение к затвору - нет необходимости снимать напряжение анода с катода. См. Дальнейшую страницу в этой серии с более полным описанием GTO.
  • Асимметричный тиристор: Это устройство используется в цепях, где тиристор не воспринимает обратное напряжение и, следовательно, выпрямитель не требуется.В результате можно сделать второй переход, часто называемый J2 (см. Стр. О структуре устройства), можно сделать намного тоньше. Результирующая n-базовая область обеспечивает уменьшенный V на , а также улучшенное время включения и выключения.

Тиристоры широко используются во многих областях электроники, выступая в качестве электронных переключателей. Тиристорные схемы можно использовать во многих энергетических приложениях, поскольку эти электронные компоненты могут очень легко коммутировать большие токи.В дополнение к этому они очень дешевы и широко доступны.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *