Тесла схема: Небольшая катушка Тесла своими руками

Содержание

Делаем простой тесла генератор , катушка Теслы своими руками

 Сегодня я собираюсь показать вам, как я построить простую катушку Тесла! Вы могли видеть такую катушку в каком то магическом шоу или телевизионном фильме . Если мы будем игнорировать мистическую составляющую  вокруг катушки Тесла, это просто высоковольтный резонансный трансформатор который работает без сердечника. Так, чтобы не заскучать от скачка теории давайте перейдем к практике.

Схема данного устройства очень простая - показана на рисунке .

Для создания нам нужны следующие компоненты :

- источник питания, 9-21V , это может быть любой блок питания 

- маленький радиатор

- транзистор 13009 или 13007, или почти любые транзисторы NPN с аналогичными параметрами

- переменный резистор 50kohm

- 180Ohm резистор

- катушка с проводом  0,1-0,3, я использовал 0.19mm,, около 200 метров.

Для намотки нужен  каркас , это может быть любой диэлектический материал -  цилиндр примерно 5 см и длиной 20 см. В моем случае это часть 1-1 / 2 дюйма ПВХ трубы из строительного магазина .

Начнем с самой сложной части - вторичной обмотки. Он имеет 500-1500 мотков катушки , мой около 1000 оборотов. Закрепить начало провода с выводом и начать наматывать основной слой - для ускорения процесса можно это делать шуруповертом .Так же желательно вспрыснуть уже намотаную катушку лаком .

Первичная катушка намного проще, я положил бумажную ленту липкой стороной наружу, в случае, чтобы сохранить способность передвигать позицию  и намотайте ее на 10 витков провода.

Вся схема собрана на макетной плате. Будьте осторожны при пайке переменного резистора! 9/10 катушки не работает из-за неправильно припаянного резистора . Подключение первичных и вторичных обмоток тоже не легкий процесс ,  т.к изоляция последних имеет специальное покрытие , которое должно быть зачищено перед пайкой .

Таким образом, мы сделали катушку Теслы . Перед тем, как включить питание в первый раз, поместите переменный резистор в среднем положении и поставите лампочку вблизи катушки, и тогда вы сможете увидеть эффект беспроводной передачи энергии .

Включите питание, и медленно поворачивайте переменный резистор. Это довольно слабая катушка, но каким-либо образом бытдьте осторожны и не размещайте  рядом  электронные устройства: такие как сотовые телефоны, компьютеры и т.д.  с рабочей зоной  катушки .

Спасибо за внимание 

Так же не забываем о экономии при покупке товаров на Алиєкспресс с помощью кэшбэка 

Для веб администраторов и владельцев пабликов  главная страница ePN

Для пользователей покупающих на Алиэкспресс с быстрым выводом % главная страница ePN Cashback

Удобный плагин кэшбеэка браузерный плагин ePN Cashback

Миниатюрная и простая катушка Тесла своими руками

Здравствуйте, уважаемые читатели и самоделкины!
Наверняка почти каждый из Вас много раз слышал про знаменитую катушку Тесла, но никак не доходили руки до ее сборки. Возможно многие считают, что это весьма сложное устройство.
В данной статье, автор YouTube канала «KJDOT» расскажет Вам, как изготовить это устройство в миниатюре.

Эта самоделка очень проста в изготовлении, и с ней справится даже школьник.

Материалы.
— Медные провода 0,25 и 1,2 мм диаметром
— Транзистор 2N2222A
— Резистор 22КОм
— Батарейка 9 В (крона)
— Разъем для батареи
— Припой
— Полиэтиленовая трубка, кусочек фанеры
— Изоляционная лента
— Наждачная бумага.



Инструменты, использованные автором.
— Клеевой пистолет
— Паяльник
— Ножовка, кусачки, ножницы.

Процесс изготовления.
Итак, автор предлагает для начала ознакомиться со схемой устройства.

В качестве корпуса катушки автор будет использовать полиэтиленовую трубку, также подойдет и ПВХ труба. Ее внешний диаметр должен быть около 20 мм. На одном краю трубки он зафиксировал изоляционной лентой край эмалированного провода диаметром 0,25 мм, и начал намотку. Это будет вторичная, высоковольтная обмотка.

Всего потребуется сделать 200 витков, важно укладывать их плотно друг к другу, не допуская перехлестов и пропусков. Также недопустимы разрывы. Последние витки также фиксируются изоляционной лентой.


Излишек длины трубки автор обрезает ножовкой.

Для изготовления первичной обмотки нужен провод диаметром 1,2 мм. Его края зачищаются наждачной бумагой, или ножом. Количество витков обмотки — четыре.

Итак, катушка приклеивается к небольшой дощечке при помощи горячего клея.


Затем на катушку надевается первичная обмотка, и фиксируется в ее нижней части. Также к основанию приклеивается транзистор.


Коллектор транзистора припаивается к одному из выводов первичной обмотки.

К базе транзистора припаивается один вывод высоковольтной обмотки. Второй останется свободным.


Ножки резистора укорачиваются, и он припаивается между базой транзистора, и вторым выводом первичной обмотки.

Теперь остается припаять отрицательный провод питания к коллектору, а положительный — ко второму выводу первичной обмотки. Все места пайки желательно тщательно заизолировать. Горячий клей вполне справится с этой задачей.

Можно подключать батарейку к клеммам, и начинать испытания. Люминесцентная лампа засветилась. Также светится и светодиод, припаянный к небольшой катушке.

А вот так это выглядит в темноте.

Благодарю автора за простую, и легкую для повторения схему катушки Тесла!
Повторите и Вы это простое устройство! Будьте внимательны, Вы имеете дело с высокими напряжениями!
Всем хорошего настроения, удачи, и интересных идей!

Авторское видео можно найти здесь.


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

схема катушки, спайка и включение

Сегодня мы узнаем, как сделать катушку Тесла своими руками. Возможно, вы знаете об этом устройстве из компьютерных игр, кино, или шоу с применением эффектов этой мини катушки. Если убрать всю мистику, связанную с катушками Тесла и оставить лишь научные факты, то мы получим просто высоковольтный резонансный трансформатор, работающий без сердечника в домашних условиях. Чтобы не умереть со скуки от сухой теории, давайте перейдём сразу к практике.

Шаг 1: Схема

Схема катушки Тесла очень проста и нам нужно всего несколько компонентов:

Также нам понадобится рамка для вторичной катушки, это может быть любой диэлектрический цилиндр диаметром примерно 5 см и длиной 20 см. В моем проекте я использовал трубку ПВХ.

Шаг 2: Катушки

Давайте начнём с самой сложной части — вторичной катушки. Для её изготовления нужно намотать от 500 до 1500 витков, моя была примерно на 1000 витков. Закрепите начало провода и начните наматывать, вам не нужно считать точное количество витков — просто умножьте диаметр провода на количество витков, которое вы собираетесь сделать — это и будет длина вашей обмотки. Когда закончите обмотку, закрепите конец провода скотчем, или лучше парой капель лака.

Первичная будет намного проще — я наклеил бумажную пленку липкой стороной наружу (для возможности передвигать её) и намотал на неё 10 витков обычного повода, покрытого ПВХ.

Шаг 3: Спайка

Следующим шагом будет спайка. Делайте всё по схеме. Макетную плату использовать не обязательно. Будьте аккуратны при припаивании потенциометра — 9 из 10 не работают из-за того, что его припаяли неправильно! Соедините первичную и вторичную катушку, последняя имела специальную изоляцию, которую я перед спаиванием снял.

Шаг 4: Включение

Итак, когда всё готово, поверните потенциометр в среднее положение и положите рядом с трансформатором Тесла лампочку. Подайте питание и медленно крутите потенциометр. Катушка очень слаба, поэтому вам не стоит опасаться удара током — ваша кожа защитит вас. Тем не менее, будьте аккуратны и не ложите электронику (смартфоны, ноутбуки и т.д.) рядом с работающим трансформатором. Помните, что высоковольтные искры — это плазма, а она очень горячая, так что её нельзя трогать. Если катушка Тесла не работает, попробуйте перевернуть провода на первичной катушке, это обычно помогает. Также вы можете попытаться добавить или убрать пару витков из нее.

Шаг 5: Итог

Давайте поговорим о том, как можно улучшить наше устройство.

Первое, что можно сделать — увеличить вольтаж, при использовании этой схемы, я не рекомендую выходить за пределы 25V. Вторым шагом можно поиграть с первичной катушкой. Логика проста: меньше витков — больше ток, что равносильно большей мощности. Я остановился на 5 витках, также можно подвигать первичную катушку относительно вторичной.

Катушка Тесла. Устройство и виды. Работа и применение

Одним из знаменитых изобретений Николы Тесла была катушка Тесла. Это изобретение представляет собой резонансный трансформатор, который образует высокочастотное повышенное напряжение. В 1896 году на изобретение выдан патент, который имел название аппарата для образования электрического тока высокого потенциала и частоты.

Разновидности

Со времен Николы Тесла появилось много различных видов трансформаторов Тесла. Рассмотрим распространенные основные виды таких трансформаторов, как катушка Тесла.

SGTC – катушка, работающая на искровом разряде, имеет классическое устройство, используемое самим Теслой. В этой конструкции элементом коммутации является разрядник. У маломощных устройств разрядник выполнен в виде двух отрезков толстого проводника, находящихся на определенном расстоянии. В устройствах большей мощности используются вращающиеся разрядники сложной конструкции с применением электродвигателей. Такие трансформаторы производят при необходимости получения стримера большой длины, без каких-либо эффектов.

VTTC – катушка на основе электронной лампы, которая является коммутирующим элементом. Подобные трансформаторы способны функционировать в постоянном режиме и выдавать разряды большой толщины. Такой тип питания обычно применяют для создания катушек высокой частоты. Они создают эффект стримера в виде факела.

SSTC – катушка, в конструкции которой в качестве ключа используется полупроводниковый элемент в виде мощного транзистора. Такой вид трансформаторов также способен функционировать в постоянном режиме. Внешняя форма стримеров от такого устройства бывает самой различной. Управление с полупроводниковым ключом более простое, существуют такие катушки Тесла, которые умеют играть музыку.

DRSSTC – трансформатор, имеющий два контура резонанса. Роль ключей играют также полупроводниковые компоненты. Это наиболее сложный в настройке и управлении трансформатор, однако, он используется для создания впечатляющих эффектов. При этом большой резонанс получается в первом контуре. Во втором контуре образуется наиболее яркие толстые и длинные стримеры в виде молний.

Устройство и работа

Элементарный трансформатор Тесла включает в себя две катушки, тороид, конденсатор, разрядник, защитное кольцо и заземление.

Тороид выполняет несколько функций:
  • Снижение частоты резонанса, особенно для вида катушки Тесла с полупроводниковыми ключами.Полупроводниковые элементы плохо функционируют на повышенных частотах.
  • Накапливание энергии перед возникновением электрической дуги. Чем больше размер тороида, тем больше энергии накоплено. В момент пробоя воздуха тороид выдает эту накопленную энергию в электрическую дугу, при этом увеличивая ее.
  • Образование электростатического поля, отталкивающего дугу от вторичной обмотки. Часть этой функции исполняет вторичная обмотка. Однако тороид помогает ей в этом. Поэтому электрическая дуга не бьет во вторичную обмотку по кратчайшему пути.

Обычно наружный диаметр тороида в два раза больше диаметра вторичной обмотки. Тороиды производят из алюминиевой гофры и других материалов.

Вторичная обмотка трансформатора Тесла является основным элементом конструкции. Обычно длина обмотки относится к ее диаметру 5 : 1. Диаметр проводника для катушки выбирают из расчета, чтобы разместилось около 1000 витков, которые должны располагаться плотно между собой. Витки обмотки покрывают несколькими слоями лака или эпоксидной смолы. В качестве каркаса выбирают ПВХ-трубы, которые можно купить в строительном магазине.

Защитное кольцо служит для предохранения от выхода из строя электронных элементов в случае попадания электрической дуги в первичную обмотку. Защитное кольцо устанавливается, если размер стримера (электрической дуги) больше длины вторичной катушки. Это кольцо выполнено в виде медного незамкнутого проводника, заземленного отдельным проводом на общее заземление.

Первичная обмотка чаще всего выполняется из медной трубки, применяемой в кондиционерах. Сопротивление первичной обмотки должно быть небольшим, так как по ней будет проходить большая сила тока. Трубку чаще всего выбирают толщиной 6 мм. Также можно использовать для намотки проводники большого сечения. Первичная обмотка является своеобразным элементом подстройки в таких катушках Тесла, в которых первый контур резонансный. Поэтому место подключения питания выполняют с учетом его перемещения, с помощью которого меняют частоту резонанса первого контура.

Форма первичной обмотки может быть различной: конической, плоской или цилиндрической.

Катушка Тесла должна иметь заземление. Если его не будет, то стримеры будут бить в саму катушку, для замыкания тока.

Колебательный контур образован конденсатором совместно с первичной обмоткой. В этот контур также подключен разрядник, который является нелинейным элементом. Во вторичной обмотке также образован контур колебаний, в котором конденсатором выступает емкость тороида и межвитковая емкость катушки. Чаще всего для предохранения от электрического пробоя вторичную обмотку покрывают лаком или эпоксидной смолой.

В результате катушка Тесла, или другими словами трансформатор, состоит из двух контуров колебаний, связанных между собой. Это и придает трансформатору Тесла необычные свойства, и является основным отличительным качеством от обычных трансформаторов.

При достижении напряжения пробоя между электродами разрядника, образуется электрический лавинообразный пробой газа. При этом происходит разряд конденсатора на катушку через разрядник. Вследствие этого цепь контура колебаний, который состоит из конденсатора и первичной обмотки, остается замкнутой на разрядник. В этой цепи возникают колебания высокой частоты. Во вторичной цепи образуются резонансные колебания, в результате чего возникает высокое напряжение.

Во всех видах катушки Тесла главным элементом являются контуры: первичный и вторичный. Однако генератор колебаний высокой частоты может отличаться по конструкции.

Катушка Тесла по сути дела состоит из двух катушек, не имеющих металлического сердечника. Коэффициент трансформации катушки Тесла в несколько десятков раз выше отношения числа витков обеих обмоток. Поэтому выходное напряжение трансформатора достигает нескольких миллионов вольт, что и обеспечивает мощные электрические разряды длиной в несколько метров. Важным условием является образование контура колебаний первичной обмоткой и конденсатором, вхождение в резонанс этого контура с вторичной обмоткой.

Виды эффектов от катушки Тесла

  • Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
  • Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
  • Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
  • Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.

Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.

Малоизвестные эффекты катушки Тесла

Некоторые люди считают трансформатор Тесла каким-то особенным устройством, обладающим исключительными свойствами. Также есть мнение, что такое устройство способно стать генератором энергии и вечным двигателем.

Иногда говорят, что при помощи такого трансформатора можно передавать электрическую энергию на значительные расстояния, не используя провода, а также создать антигравитацию. Такие свойства не подтверждены и не проверены наукой, но Тесла говорил о скорой доступности таких способностей для человека.

В медицине при длительном воздействии токов высокой частоты и напряжения могут образоваться хронические заболевания и другие отрицательные явления. Также нахождение человека в поле высокого напряжения негативно сказывается на его здоровье. Можно отравиться газами, выделяемыми при функционировании трансформатора без вентиляции.

Применение
  • Величина напряжения на выходе катушки Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.
  • Катушка Тесла нашла применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.
  • Катушка Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.
  • Иногда такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.

Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх. В настоящее время катушка Тесла не нашла широкого применения на практике в быту.

Катушка Тесла на будущее

В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей.

Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.

Похожие темы

Катушка ⚠️ Тесла своими руками в домашних условиях схема

В мире много изобретений, которые мы по праву считаем гениальными. Но лишь некоторые из них заставляют нас замирать от восторга, любуясь необычными визуальными эффектами, которые они создают. Катушка Тесла — одно из таких приспособлений.

Что такое катушка Теслы 

Создатель прибора, физик-изобретатель Никола Тесла славился своей любовью к грандиозным демонстрациям научных открытий. Однако этот прибор он создал не для того, чтобы поразить современников. Его цель была более амбициозной. Тесла грезил о вечном двигателе. 

Чтобы понять задумку ученого, разберемся с устройством прибора и принципом его работы.  

Устройство и принцип работы

Катушка Теслы представляет собой «аппарат для производства электрических токов высокой частоты и потенциала», как в сентябре 1896 года презентовал его сам Никола. По своей сути — это резонансный трансформатор, который создает электрический ток высокой частоты.

 Трансформатор Теслы состоит из следующих элементов:

  1. Первичная обмотка. Представляет собой цилиндр или конус, также может быть горизонтальной плоскостью. Располагается она внизу устройства, к ней подводятся провода питания. Чтобы катушка производила стримеры (разряды молний), первичная обмотка должна быть обязательно заземлена. Главное условие — обмотка должна иметь низкое сопротивление, чтобы ток легко проходил по ней. Для первичной обмотки используют провода с большим размером сечения.
  2. Вторичная обмотка. Для вторичной обмотки применяют медную проволоку на 800-1000 витков, покрытую эмалью. Важное условие — чтобы витки проволоки плотно прилегали друг к другу и не расплетались. Для вторичной обмотки используют провода меньшего сечения.
  3. Тороид. Эта деталь изобретения Теслы призвана уменьшать резонансную частоту, накапливать энергию и увеличивать рабочее поле прибора. Важно, чтобы наружный диаметр тороида в два раза превосходил значение диаметра вторичной обмотки.
  4. Кольцо защиты. Это незамкнутый виток медного провода, превышающий толщину первичной обмотки, который нужен, если длина стримера больше длины вторичной обмотки. Он служит для защиты первичной обмотки от повреждения ее стримерами. Обязательно нужно заземлить защиту кабелем к земле.
  5. Заземление. Важная часть прибора. Если заземление будет недостаточным, стримеры будут ударять в катушку.
  6. Источник питания. Еще одна составляющая, без которой изобретение Теслы работать не будет.

Принцип работы трансформатора основывается на существовании двух взаимосвязанных магнитных полей. Взаимодействие этих полей производит ионизирующий эффект, благодаря которому мы и видим разряды молний. Одно магнитное поле возникает, когда первичную обмотку подключают к внешнему источнику, второе — когда энергия через магнитное поле начнет передаваться ко вторичной обмотке. При этом все устройства, находящиеся в поле действия катушки, получают заряд энергии беспроводным путем. Ученый мечтал о передаче электричества на Земле таким способом, причем его изобретение позиционировалось как прототип вечного двигателя, когда энергия с одной катушки передается на другую, не ослабевая со временем.

Как рассчитать катушку Николы Теслы

Расчет в обязательном порядке необходимо производить, если речь идет о создании трансформатора Теслы промышленного масштаба.

Источник: battlecase.ru

Чтобы создать катушку Теслы для домашних опытов и наглядной демонстрации стримеров, делать такие сложные математические расчеты нет необходимости.

Что нужно для изготовления

Для изготовления трансформатора Теслы в домашних условиях понадобятся следующие детали:

  1. Каркас для первичной обмотки, который можно создать из медной трубки толщиной 5-6 мм. Диаметр каркаса должен быть на 2-3 сантиметра больше диаметра вторичной обмотки.
  2. Каркас для вторичной обмотки диаметром 4-7 см и длиной 15-30 см, обычно изготавливается из ПВХ, который можно купить в любом строительном магазине.
  3. 200 метров медного эмалированного провода диаметром от 0,1 мм до 0,3 мм. 
  4. Алюминиевая гофра и гвоздь для создания и закрепления тороида.
  5. Транзистор (подойдут MJE13006-13009).
  6. Небольшая плата (изготавливается из ДСП).
  7. Несколько резисторов 5,75 килоом 0,25 Вт.
  8. Кулер для охлаждения прибора (можно использовать компьютерный).

Как самостоятельно сделать катушку в домашних условиях

Чтобы собрать прибор Тесла своими руками, нужно:

  1. Отрезать 15-30 см трубы диаметром 4-7 см для корпуса вторичной обмотки.
  2. Намотать на нее эмалированную медную проволоку. Витки необходимо располагать плотно друг к другу. В верхней части трубы вывести конец провода через стенку, чтобы он возвышался над ней на 2 см.
  3. Вырезать платформу. Для этих целей можно использовать обычный лист ДСП.
  4. Для изготовления первой катушки надо взять трубку из меди диаметром 6 мм, согнуть ее в 3-4 витка и прикрепить к каркасу. Если трубка будет меньшего диаметра, сделать нужно больше витков. 
  5. Вторую катушку крепим на корпусе рядом с первой.
  6. Для изготовления тороида проще всего использовать алюминиевую гофру и обычный гвоздь для ее крепления на торчащем конце проволоки.
  7. Важно помнить про защитное кольцо.
  8. Дальше нужно соединить транзистор по схеме и прикрепить конструкцию к кулеру, который будет охлаждать установку.
  9. Последний шаг заключается в подводке питания к получившемуся прибору.

Схема простейшей модели на 12 вольт

Источник: sdelaitak24.ru

Включение, проверка и регулировка

Собранный по данной инструкции трансформатор Николы Теслы обязательно нужно проверить и отрегулировать. Прежде чем включать катушку, рекомендуется убрать подальше все электрические приборы, включая мобильный телефон и часы.

Первое включение трансформатора нужно проводить со всеми мерами предосторожности:

  1. Переменный резистор выставить в среднее положение. 
  2. Обратите внимание, появились ли разряды молнии. Если их не видно, поднесите к катушке любую лампочку.
  3. Если лампочка светится, значит прибор собран правильно. Если же лампочка не загорелась, нужно поменять полярность соединения первичной катушки.

При помощи различных положений резистора, можно выбрать необходимый режим яркости.

Важно следить, чтобы транзистор не перегревался. Лучше если охладитель будет включен во все время работы катушки.

Если прибор не работает, надо искать проблемы в конструкции. Скорее всего, неверно подобран диаметр тороида. Но прежде чем его менять, стоит проверить катушки на целостность Для этих целей оптимально использование амперметра и вольтметра. 

Меры безопасности при изготовлении

Самое главное при изготовлении прибора Теслы — надежная изоляция обмоток друг от друга, иначе может случиться пробитие. Важно помнить, что на вторичной обмотке напряжение такое сильное, что поражение током приведет к неизбежной смерти при ее пробое. Ведь катушка Тесла продуцирует силу тока 500-850 А. А максимальное значение, при которой у человека остается шанс на выживание — всего 10 А. На вторичной обмотке лучше сделать изоляцию между слоями витков, так как глубокая царапина на проволоке может спровоцировать опасный для человека мощный разряд. 

В любом случае всегда нужно помнить о безопасности при работе с электричеством.

Трансформатор, созданный великим сербским ученым, — сложная, но интересная тема для изучения. Чтобы полностью разобраться в ней, потребуется не один час времени. Если из-за углубленных занятий физикой, у вас просядут оценки по другим дисциплинам, смело обращайтесь за помощью на образовательный ресурс Феникс.Хелп, где на помощь всегда рады прийти знающие эксперты.

асинхронный, синхронный или на постоянных магнитах?

Можно ли буксировать электромобили? Зависит от типа двигателя. Да, бывают разные. Если вы только собираетесь покупать электрокар, то знайте: до полной разрядки его лучше не доводить. И вот почему

Автомобили с двигателями внутреннего сгорания допускают буксировку. Если у вас механическая коробка передач, то это самое простое дело: ставите нейтраль в коробке передач или выжимаете сцепление – и ваш мотор оказывается физически отключен от колес, а машина превращается в обычную телегу: тяни не хочу.

С автоматами чуть сложнее, в них полного разрыва связи между колесами и мотором не предусмотрено. Но и они в режиме N позволяют буксировать машину на короткие расстояния и с невысокой скоростью.

Однако в инструкциях к электромобилям вы прочтете, что буксировка или не допускается вовсе, или, как в случае с современными моделями Tesla, допускается со скоростью не более 5 км/ч на расстояние не более 10 метров: иными словами, вы в праве только оттолкать сломанную машину на обочину.

А может ли быть иначе? Да, старые модели Tesla такое позволяли. Как и GM EV1 – легенда электрокаров 90-х годов прошлого века. Так в чем же дело? В типе электрических двигателей. Или, если уж говорить совсем правильно, электрических машин, так как в электромобилях эти устройства служат не только двигателями, но и генераторами. И на современных типах электрокаров встречается три типа таких устройств. Но для начала немного истории.

В 1821 году британский ученый Майкл Фарадей в своей статье впервые описал основные принципы преобразования электроэнергии в движение. Фарадей уже знал, что электрический ток, проходя через проволоку, создает магнитное поле. Закрученный в катушку, такой провод становится электромагнитом.

Он также знал, что противоположные полюса магнитов притягиваются, а одинаковые – отталкиваются. В электромагнитах же полярность зависит от направления движения тока, то есть ее можно быстро менять. И вот что придумал Фарадей. Берем магнит, который движется к другому. В последний момент полярность меняется, но рядом расположен третий магнит, к которому можно тянуться. Затем четвертый, пятый. Эти разнополярные магниты выстроены в линию. И если ее закольцевать, движение будет идти по кругу до тех пор, пока сквозь электромагниты идет ток и пока его направление не перестает меняться.

Чтобы понять, как это действует, представьте, что у вас в руках два школьных магнита в форме подковы или буквы U – помните, были такие. Если их повернуть друг к другу взаимоотталкивающимися полюсами, то они будут стремиться сделать полуоборот, чтобы снова друг к другу притянуться. А теперь представьте, что их полюса постоянно меняются местами: тогда они станут вертеться друг относительно друга. Это и есть электродвигатель.

Так впервые был описан принцип действия всех электромоторов в целом и самого древнего в частности: того, который работает от постоянного тока и использует с одной стороны постоянные магниты из намагниченного сплава, а с другой – переменные электромагниты. Это наш первый герой: мотор-генератор постоянного тока на перманентных магнитах.

Изобретения Фарадея были развиты его полседователями, в частности изобретателем электрической лампочки Томасом Эдисоном. Эдисон усовершенствовал генераторы постоянного тока и стал пионером в электрификации Нью-Йорка. В 1884 году на пороге его кабинета появился молодой сербский инженер. Звали иммигранта Никола Тесла.

Тесла предложил улучшить конструкцию Эдисона и попросил за работу 50 тысяч долларов – баснословная в те времена сумма. По легенде Эдисон согласился, но когда Тесла действительно существенно улучшил существующую модель, любимец Америки просто кинул безвестного сербского эмигранта.

Тесла рассердился и отправился к главному конкуренту, адепту переменного тока Джорджу Вестингаузу. Так началась «Война токов», окончательно проигранная постоянным током только в 2007 году, когда Нью-Йорк последним из городов перешел на ток переменный.

Генераторы Эдисона вырабатывали электричество с напряжением, близким к потребительскому: 100-200 вольт. Это удобно для домов, но его сложно передавать на большие расстояния из-за сопротивления проводов. Тут было два решения: увеличивать диаметр кабелей или повышать напряжение. Первый вариант позволял делать линии длинной 1,5 километра. Да, совсем немного. Второй вариант был невозможен из-за отсутствия в те годы эффективных способов повышения напряжения постоянного тока.

Однако еще в 1876 году русский ученый Павел Яблочков изобрел трансформатор, меняющий напряжение переменного тока. Подача энергии на большие расстояния перестала быть проблемой.

Но была другая проблема. Лампочкам Эдисона все равно от какого тока питаться: постоянного или переменного. А вот с электродвигателями сложнее: они в те годы требовали только постоянного. В 1888 году Тесла запатентовал в США асинхронный электрический двигатель переменного тока. Он же изобрел и синхронный генератор, впоследствии использованный и как двигатель. Это второй и третий герои нашей статьи.

Так поговорим же о них поподробнее

Если в детстве вам доводилось разбирать игрушечные электрические машинки, то вы должны помнить устройство их простейших двигателей. Для остальных напомним. Все применяемые в электромобилях моторы состоят из двух частей: неподвижного статора и вращающегося ротора.

В игрушечных машинах на статоре стоят постоянные магниты, а на роторе – электрические переменные. При вращении на них через специальные щетки подается постоянный ток от батареек, и их последовательное включение и обеспечивает движение.

Похожая конструкция встречается практически у всех электромобилей. С одним отличием: на роторе там стоят постоянные магниты, а на статоре, напротив, электрические и переменные. Так в том числе можно избавиться от щеток: одного из немногих элементов электродвигателя, который подвержен износу.

Преимущество моторов на постоянных машинах в том, что они легкие, компактные, мощные, эффективные, работают от вырабатываемого аккумуляторами постоянного тока… так, стоп! А какие недостатки?

Недостаток прост. Таким моторам не хватает тяги. Так перейдем же к асинхронным инверсионным моторам переменного тока.

Бородатый анекдот про умирающего мастера заваривать чай, который делился своим секретом словами «не жалейте заварки» – это прям притча про компанию Tesla. Вопреки расхожему мнению, ее основал не Илон Маск (он позже стал главным инвестором и владельцем), а Мартин Эберхард и его партнер Марк Тарпенинг.

Эти двое придумали немыслимое. Создать не тихоходный, эффективный и относительно дешевый электрокар, а дорогой, быстрый и клевый. Маск же первым идею оценил и быстро прибрал ее к рукам.

Имя компании Tesla не случайно. Одной из ее технических революций стало использование асинхронного двигателя без постоянных магнитов, работающего на переменном токе – того самого, который изобрел Никола Тесла. Эта конструкция дороже как сама по себе, так и благодаря необходимости в установке преобразователя постоянного тока от батареи в переменный для электродвигателя. Успешное решение данной задачи и стало первым из множества теперь уже легендарных прорывов «Теслы».

Благодаря мощному асинхронному мотору электрокары Tesla с самого начала были очень динамичным, что стало ключевой причиной роста их популярности. В таком моторе переменный ток в обмотке статора создает вращающееся магнитное поле. Оно вызывает индукцию в роторе, заставляя его вращаться чуть медленнее, чем вращение самого поля – поэтому двигатель и называется асинхронным. Если скорости вращения синхронизируются, поле перестает создавать в роторе индукцию, и он начинает замедляться, рассинхронизируясь обратно. Важно заметить, что собственно на ротор никакого электричества напрямую не подается.

Итак, есть еще третий тип электрического двигателя, который встречается в современных электромобилях: синхронный на электромагнитах. Он похож по устройству на двигатели с постоянными магнитами на роторе, только эти магниты – электрические. На них подается постоянный ток, так что полярность магнитов ротора остается неизменной. А вот полярность магнитов статора, напротив, меняется, что и обеспечивает вращение.

Такие синхронные моторы на электромагнитах славятся своей способностью обеспечивать стабильность оборотов и ставятся, обычно, на всякие установки вроде насосов. А еще… на электрокар Renault Zoe. Зачем? Честно сказать, найти быстрый ответ на этот вопрос не получилось. Можем лишь предположить, что это связано с лучшей способностью такого двигателя служить генератором, рекуперируя энергию торможения. Мотор на Zoe не самый мощный, а мощным генератором он быть обязан.

Так что же лучше? Большинство автоконцернов выбирает моторы на постоянных магнитах: они эффективнее. Tesla в первые годы настаивала на асинхронных моторах. Но потом… сделала ставку на двух моторную полнопривродную схему, в которой асинхронный мотор обеспечивает динамику, а двигатель на постоянных магнитах гарантирует низкий расход энергии при небольших нагрузках. И только Renault… ну вы поняли.

А теперь о том, что ждет нас дальше. При буксировке даже обесточенный двигатель на постоянных магнитах тут же начинает работать как генератор, что чревато перегревом и возгоранием энергосистемы электромобиля. В синхронных моторах Renault оставшейся магнетизм в роторе также способен вызвать индукцию в катушках статора, ну и пошло поехало – генерация тока, перегрев, пожар.

И только асинхронные двигатели, когда их статоры не под напряжением, не являются генераторами: их можно буксировать.

Так вот, современная тенденция такова. Моторы на постоянных магнитах становятся все мощнее и тяговитее, оставаясь самыми эффективными. Производители постепенно переходят на них. Но придумать, как машины с ними безопасно буксировать инженерам еще предстоит. Пока они декларируют принцип «Наши электромобили не ломаются и в буксировке не нуждаются». Но звучит не больно убедительно.

Трансформатор Тесла своими руками, простейшая схема

В начале ХХ века электротехника развивалась бешеными темпами. Промышленность и быт получили такое количество электрических технических инноваций, что этого им хватило для дальнейшего развития еще на двести лет вперед. И если постараться выяснить, кому мы обязаны таким революционным рывком в области приручения электрической энергии, то учебники физики назовут десяток имен, безусловно, повлиявших на ход эволюции. Но ни один из учебников не может толком объяснить, почему до сих пор умалчиваются достижения Николы Теслы и кем был на самом деле этот загадочный человек.

Содержание:

  1. Кто вы, мистер Тесла?
  2. Принцип действия аппарата
  3. Конструкция трансформатора Тесла
  4. Схемы трансформатора Тесла
  5. Для чего нужен трансформатор Тесла?

Кто вы, мистер Тесла?

Тесла — это новая цивилизация. Ученый был невыгоден правящей элите, невыгоден и сейчас. Он настолько опередил свое время, что до сих пор его изобретения и эксперименты не всегда находят объяснение с точки зрения современнейшей науки. Он заставлял светиться ночное небо над всем Нью-Йорком, над Атлантическим океаном и над Антарктидой, он превращал ночь в белый день, в это время волосы и кончики пальцев у прохожих светились необычным плазменным светом, из-под копыт лошадей высекались метровые искры.

Теслу боялись, он мог запросто поставить крест на монополии по продаже энергии, а если бы захотел, то мог бы сдвинуть с трона всех Рокфеллеров и Ротшильдов вместе взятых. Но он упрямо продолжал эксперименты, до тех пор, пока не погиб при таинственных обстоятельствах, а его архивы были выкрадены и местонахождение их до сих пор неизвестно.

Принцип действия аппарата

О гении Николы Тесла современные ученые могут судить только по десятку изобретений, не попавших под масонскую инквизицию. Если вдуматься в суть его экспериментов, то можно только представить, какой массой энергии мог запросто управлять этот человек. Все современные электростанции вместе взятые не способны выдать такой электрический потенциал, которым владел один единственный ученый, имея в распоряжении самые примитивные устройства, одно из которых мы соберем сегодня.

Трансформатор Тесла своими руками простейшая схема и ошеломляющий эффект от его применения, только даст понятие о том, какими методиками манипулировал ученый и, если честно, в очередной раз поставит в тупик современную науку. С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы — это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первички на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам.

Конструкция трансформатора Тесла

Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году. Устройство выглядит невероятно просто и состоит из:

  • первичной катушки, выполненной из провода сечением не менее 6 мм², около 5-7 витков;
  • вторичной катушки, намотанной на диэлектрик, это провод диаметром до 0,3 мм, 700-1000 витков;
  • разрядника;
  • конденсатора;
  • излучателя искрового свечения.

Главное отличие трансформатора Теслы от всех остальных приборов — в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами:

  1. Генератор колебаний частоты, построенный на основе разрядника, искрового промежутка.
  2. Генератор колебания на лампах.
  3.  На транзисторах.
  4. Генераторы двойного резонанса — самые мощные приборы.

Мы же соберем прибор для получения энергии эфира самым простым способом — на полупроводниковых транзисторах. Для этого нам будет необходимо запастись простейшим комплектом материалов и инструментов:

  • медным проводом толщиной 0,40-0,45 мм;
  • 9-сантиметровой пластиковой трубой, около полуметра длиной;
  • 11-сантиметровой пластиковой трубой, длиной 3-5 см;
  • толстым, миллиметровым медным проводом с хорошей изоляцией, 7-10 витков;
  • транзистор D13007;
  • радиатор для транзистора;
  • переменник на 50 кОм;
  • постоянный резистор на 0,25 Вт и 75 Ом.

Схемы трансформатора Тесла

Устройство собирается по одной из прилагаемых схем, номиналы могут меняться, поскольку от них зависит эффективность работы устройства. Сперва наматывается около тысячи витков эмалированного тонкого провода на пластиковый сердечник, получаем вторичную обмотку. Витки лакируются или покрываются скотчем. Количество витков первичной обмотки подбирается опытным путем, но в среднем, это 5-7 витков. Далее устройство подключается согласно схеме.

Для получения эффектных разрядов достаточно поэкспериментировать с формой терминала, излучателя искрового свечения, а о том, что устройство при включении уже работает, можно судить по светящимся неоновым лампам, находящихся в радиусе полуметра от прибора, по самостоятельно включающихся радиолампах и, конечно, по плазменным вспышкам и молниям на конце излучателя.

Для чего нужен трансформатор Тесла?

Игрушка? Ничего подобного. По этому принципу Тесла собирался построить глобальную систему беспроводной передачи энергии, использующую энергию эфира. Для реализации такой схемы необходимо два мощных трансформатора, установленных в разных концах Земли, работающих с одинаковой резонансной частотой.

В этом случае полностью отпадает необходимость в медных проводах, электростанциях, счетах об оплате услуг монопольных поставщиков электроэнергии, поскольку любой человек в любой точке планеты мог бы пользоваться электричеством совершенно беспрепятственно и бесплатно. Естественно, что такая система не окупится никогда, поскольку платить за электричество не нужно. А раз так, то и инвесторы не спешат становиться в очередь на реализацию патента Николы Теслы № 645 576.

Как работает катушка Тесла

Катушка Тесла хорошо известна тем, что вырабатывает чрезвычайно высокое напряжение. В этом разделе мы объясним, как катушка oneTesla 10 дюймов может достигать напряжения более четверти миллиона вольт с использованием связанных резонансных цепей. Мы будем опираться на основы, чтобы дать вам подробное объяснение того, что происходит.

Содержание:

Ток, магнитные поля и индукция

Начнем с основ электромагнетизма.Одно из уравнений Максвелла, закон Ампера, говорит нам, что ток, протекающий по проводу, создает вокруг него магнитное поле.

Если мы хотим использовать это магическое поле в своих интересах, как мы это делаем в электромагните, мы скручиваем провод. Магнитные поля от отдельных витков складываются в центре.

Постоянный ток создает статическое магнитное поле. Что происходит, если мы пропускаем через провод изменяющийся ток? Другое уравнение Максвелла, закон индукции Фарадея, говорит нам, что магнитное поле, изменяющееся во времени, индуцирует на проводе напряжение, пропорциональное скорости изменения магнитного поля:

Если ток внезапно отключается, закон Фарадея сообщает нам, что произойдет резкий скачок напряжения.Если через катушку протекает осциллирующий ток, он индуцирует в ней колеблющееся магнитное поле. Это, в свою очередь, индуцирует на катушке напряжение, которое стремится противодействовать току возбуждения. Интуитивно понятно, что магнитное поле является «упорным», вызывая напряжение, которое препятствует любому изменению поля.

Трансформаторы

Трансформатор использует закон индукции для повышения или понижения напряжения переменного тока. Он состоит из двух витков проволоки вокруг сердечника. Сердечник - это мягкое железо или феррит, материалы, которые легко намагничиваются и размагничиваются.

Колебательный ток в первичной обмотке создает колеблющееся магнитное поле в сердечнике. Ядро концентрирует поле, гарантируя, что большая его часть проходит через вторичный. Когда магнитное поле колеблется, оно индуцирует колебательный ток во вторичной катушке. Напряжение на каждом витке провода одинаковое, поэтому общее напряжение на катушках пропорционально количеству витков:

Поскольку энергия сохраняется, ток на стороне трансформатора с более высоким напряжением меньше в той же пропорции.

Катушка Тесла - это очень мощный трансформатор. Давайте вкратце рассмотрим, что было бы, если бы это был идеальный трансформатор. Первичная обмотка имеет шесть витков, а вторичная - около 1800 витков. На первичную обмотку подается напряжение 340 В, поэтому вторичная будет иметь напряжение 340 В x 300 = 102 кВ. Это много! Но не совсем четверть миллиона. Кроме того, поскольку катушка Тесла имеет воздушный сердечник и катушки расположены относительно далеко друг от друга, только небольшая часть магнитного поля, создаваемого первичной обмоткой, фактически связана с вторичной обмоткой.Чтобы лучше понять, что происходит, нам нужно ввести резонансные контуры.

Резонансные цепи

Резонансный контур подобен камертону: он имеет очень сильный амплитудный отклик на одной конкретной частоте, называемой резонансной или собственной частотой. В случае камертона зубцы сильно вибрируют при возбуждении с частотой, определяемой его размерами и свойствами материала. Резонансный контур достигает самых высоких напряжений при работе на собственной частоте, которая определяется стоимостью его компонентов.

В резонансных цепях используются конденсаторы и катушки индуктивности, поэтому они также известны как LC-цепи. Они также известны как «резервуарные контуры» из-за присутствующих элементов накопления энергии.

Конденсаторы хранят энергию в виде электрического поля между двумя пластинами, разделенными изолятором, известным как диэлектрик. Размер конденсатора зависит от размера пластин, расстояния между ними и свойств диэлектрика. Интересно, что верхняя нагрузка на катушку Тесла действует как однопластинчатый конденсатор, а земля, окружающая катушку, действует как противодействующая пластина.Емкость верхней нагрузки определяется ее размерами и близостью к другим объектам.

Катушки индуктивности накапливают энергию в виде магнитного поля вокруг провода или в середине петли из провода. Первичный индуктор в катушке oneTesla 10 ”состоит из шести витков провода AWG14, а вторичный - примерно 1800 витков провода AWG36.

LC-цепь может иметь катушку индуктивности и конденсатор, включенные последовательно или параллельно. Здесь мы используем последовательные LC-схемы, например:

Рассмотрим, что происходит, когда вы не управляете схемой (предположим, что источник переменного тока на приведенном выше рисунке заменен проводом), а начинаете с заряженного конденсатора.Конденсатор хочет разрядиться, поэтому заряд течет по цепи через катушку индуктивности к другой пластине. При этом внутри индуктора создается магнитное поле. Когда заряд на каждой пластине конденсатора равен нулю, ток перестает течь. Но в этот момент индуктор имеет энергию, накопленную в магнитном поле, которое имеет тенденцию противодействовать изменениям. Магнитное поле схлопывается, вызывая продолжающийся ток в том же направлении, тем самым перезаряжая конденсатор и возобновляя цикл в противоположном направлении.

Резонансная частота LC-контура или частота, при которой энергия циклически меняется между конденсатором и катушкой индуктивности, как описано выше, составляет:

Привод цепи на ее резонансную частоту добавляет энергию в течение каждого цикла. Обеспечивая последовательность своевременных толчков, мы можем создавать чрезвычайно высокие напряжения! В катушке Тесла вспыхивает искра и разряжает цепь, когда напряжение становится достаточно высоким.

DRSSTC

Катушка oneTesla 10 ”использует топологию двойного резонанса, отсюда и название твердотельная катушка Тесла с двойным резонансом, или DRSSTC.В DRSSTC цепь, управляющая вторичной LC-цепью, представляет собой другую LC-цепь, настроенную на ту же резонансную частоту. На следующей диаграмме L pri и L sec являются первичной и вторичной индукторами соответственно. Они слабо связаны, связывая примерно одну десятую своего магнитного поля.

Есть несколько причин, по которым в катушках Тесла не используется магнитный сердечник. Прежде всего, напряжения в катушке Тесла настолько высоки, что сердечник быстро насыщается, а это означает, что он больше не будет намагничиваться после определенной точки.Кроме того, большинство материалов создают сопротивление и нагреваются в магнитном поле, которое быстро переключается, как в случае катушки. Высокое напряжение, создаваемое катушкой, также может вызвать дугу в сердечнике. Но что наиболее важно, очень важно, чтобы первичная и вторичная катушки были слабо связаны, чтобы вторичная обмотка не нагружалась первичной обмоткой.

Полумост

Как нам провести праймериз? Мы используем источник постоянного напряжения и подаем напряжение попеременно на первичную обмотку.

Переключатели, которые мы используем для подачи постоянного напряжения в переменном направлении через первичную обмотку, - это IGBT, сокращение от биполярных транзисторов с изолированным затвором. IGBT - это транзистор, способный управлять очень высокими напряжениями и токами. Это его схематическое обозначение:

.

Его клеммы обозначены как коллектор, затвор и эмиттер как пережиток электронных ламп до эры транзисторов. Упрощенная модель IGBT представляет собой нормально разомкнутый переключатель, который замыкается при приложении положительного напряжения затвора (VGE).На следующей схеме полумоста S1 и S2 представляют IGBT. Они поочередно включаются и выключаются, что переключает полярность шины /2 V через первичную обмотку L и первичную обмотку C , первичную индуктивность и конденсатор. Катушка oneTesla 10 ”питается от шины напряжением 340 В постоянного тока, которое мы получаем от выпрямленного и удвоенного линейного напряжения.

На плате управления мы получаем напряжение на шине из преобразованного и удвоенного линейного напряжения. Подробнее об этой части схемы мы поговорим позже.

Коммутация при нулевом токе

Когда IGBT полностью включены (переключатели замкнуты), они почти идеальные проводники. Когда они полностью выключены (переключатели полностью разомкнуты), они почти идеальные изоляторы. Однако, когда они находятся в переходном состоянии между полностью открытыми и полностью закрытыми или наоборот, они ведут себя как резисторы. Напомним, что количество мощности, рассеиваемой в цепи, равно P = VI.Если мы попытаемся переключить IGBT при большом токе в цепи, он сильно нагреется! Мы должны синхронизировать переключение IGBT с естественным переходом через ноль первичной LC-цепи. На плате oneTesla мы добиваемся переключения при нулевом токе, измеряя первичный ток и используя логику управления, чтобы гарантировать, что транзисторы переключаются в правильное время.

Привод ворот

БТИЗ - далеко не идеальные переключатели. Мы хотим, чтобы они переключались быстро, чтобы минимизировать время, в течение которого они обладают сопротивлением и рассеивают мощность.Проблема с быстрым переключением затворов заключается в том, что они имеют значительную внутреннюю емкость, и требуется большой заряд, чтобы заполнить эту емкость и достичь напряжения включения на затворе (напряжение конденсатора определяется как V = Q / C ).

Чтобы зарядить CGE за максимально короткое время, мы хотим использовать короткий сильноточный импульс. ИС привода затвора предназначены именно для этого. Мы используем микросхемы UCC3732x, которые могут подавать короткие импульсы до 9А. Логическая схема, предшествующая драйверам затворов, даже близко не способна обеспечить достаточный ток для быстрого включения затворов, поэтому драйверы затворов являются важными компонентами.Наконец, нам нужно изолировать драйверы затвора от IGBT с помощью трансформаторов управления затвором (GDT). Для включения каждого IGBT необходимо приложить напряжение затвора между его затвором и эмиттером. Это легко сделать с нижним (нижним) IGBT - его эмиттер всегда находится на земле, а это означает, что на его затворе нужно только поднять напряжение до +15 В. С верхним (верхним) IGBT все не так просто, потому что его эмиттер связан с коллектором нижнего IBGT, узлом, который колеблется между 0 и V , шина /2 (что в нашем случае составляет 170 В. ).Это означает, что нам нужно подвести затвор верхнего IGBT к шине V /2 + 15 В, чтобы включить его.

К счастью, есть простой способ обойти это! Мы можем управлять первичной обмоткой трансформатора 1: 1: 1 с помощью (биполярного) управляющего сигнала, полученного от двухтактной пары UCC. Более конкретно, мы управляем первичной обмоткой трансформатора с разницей выходов инвертирующего и неинвертирующего драйвера затвора. Это гарантирует, что в половине случаев этот сигнал будет положительным, а в половине случаев - отрицательным.Благодаря действию трансформатора, напряжение на каждой вторичной обмотке GDT гарантированно повторяет напряжение на первичной обмотке, независимо от того, где мы соединяем концы. Это означает, что мы можем просто подключить вторичную обмотку через затвор и эмиттер каждого IGBT и гарантировать, что напряжение V ge всегда будет колебаться между 0 и 15 В (независимо от потенциала эмиттера).

Выпрямитель и удвоитель

Полумост в oneTesla приводится в действие удваивающим выпрямителем, как показано на схеме выше.Этот выпрямитель поочередно заряжает каждый конденсатор в чередующихся полупериодах входного переменного тока, что приводит к удвоению напряжения источника на нагрузке. В положительной части цикла верхний диод проводит и заряжает верхний конденсатор.

В отрицательной части цикла нижний диод проводит и заряжает нижний конденсатор. Напряжение на нагрузке - это сумма напряжений на каждом конденсаторе.

Logic
Как упоминалось ранее, управляющая логика необходима для определения первичного тока и предотвращения включения и выключения IGBT, пока через них проходит ток. Давайте рассмотрим приведенную выше схему слева направо. (Обратите внимание, что номера деталей на схеме не соответствуют номерам на плате, но мы используем их здесь только в пояснительных целях. Для получения полной информации см. Файлы Eagle, доступные по адресу http://onetesla.com/downloads. схематический.)

Трансформатор тока снижает первичный ток до безопасного уровня для использования в логической части платы. R1 - это резистор мощностью 5 Вт, который нагружает трансформатор и ограничивает ток. D1 начинает проводить, когда сигнал превышает 5,7 В, что представляет собой напряжение шины плюс прямое падение напряжения на диоде, что эффективно предотвращает превышение сигналом 5,7 В. D2 начинает проводить, когда сигнал составляет -0,7 В. Вместе D1 и D2 представляют собой защитные диоды, которые ограничивают сигнал и предотвращают повреждение логических микросхем, если сигнал от трансформатора тока слишком высокий.Далее, G1 и G2 - это инверторы, которые выравнивают сигнал для последующих ИС.

Оптический приемник выдает 5 В или 0 В в зависимости от сигнала от прерывателя. R1, R2 и R3 образуют сеть резисторов, которая гарантирует, что катушка может быть запущена в работу только сигналом прерывателя при запуске, в отсутствие формы сигнала обратной связи. Когда катушка только запускается, сигнал обратной связи отсутствует, но сигнал прерывателя проходит через UCC. Когда катушка работает, сигнал обратной связи доминирует в верхней части пути прохождения сигнала.

Инвертированный сигнал прерывателя и прямоугольная волна из возведенного в квадрат сигнала первичного тока затем подаются в триггер D-типа, который выполняет логику, определяющую, когда драйверы затвора получают сигнал. Они включаются только при переходе через ноль, а также при наличии сигнала от прерывателя. D-триггер ведет себя согласно следующей таблице истинности:

В нашей схеме \ PRE и D вытянуты высоко. Инвертированный сигнал прерывателя, который подается в \ CLR, устанавливает высокий уровень \ Q, когда прерыватель включен.Когда прерыватель выключается, \ Q остается на высоком уровне до следующего спада CLK (который синхронизируется с переходами через ноль первичного тока), после чего он переключается на низкий уровень.

Инвертирующий драйвер затвора включается, когда IN высокий, а EN низкий. Драйвер неинвертирующего затвора включается, когда IN высокий, а EN высокий.

Прерыватель
Прерыватель oneTesla - это устройство на основе микроконтроллера, которое преобразует входящий поток MIDI-команд в поток импульсов для катушки Тесла.Эти импульсы включают или выключают всю катушку, тем самым контролируя как мощность, так и воспроизводя музыку.

MIDI-команды принимаются через входной MIDI-разъем. В соответствии со спецификациями MIDI оптоизолятор 4N25 обеспечивает изоляцию, необходимую для устранения контуров заземления. Когда микроконтроллер получает команду включения ноты, он начинает выводить поток импульсов с частотой ноты. Длина этих импульсов указывается в справочной таблице в прошивке. Прерыватель использует отдельные MIDI-каналы для одновременного воспроизведения нескольких нот - для воспроизведения двух каналов программа просто генерирует последовательности импульсов, соответствующие каждому каналу, а затем выполняет логическую функцию ИЛИ над последовательностями импульсов перед их выводом.Ограничение максимальной ширины импульса гарантирует, что в результирующем потоке не будет слишком длинных импульсов.

Регулятор мощности линейно масштабирует ширину импульса в зависимости от положения потенциометра. Хотя это не дает линейной длины искры, у него есть преимущество предсказуемого масштабирования энергопотребления катушки, что было бы потеряно, если бы кривые масштабирования были настроены для линейного роста искры.

Так как же он делает музыку?

Звук - это волна давления.Его высота определяется частотой волны. Мы можем издавать звук разными способами: обычные динамики вызывают вибрацию мембраны, а катушки Тесла используют расширение и сжатие воздуха из-за нагрева от плазмы.

Резонансная частота вторичной обмотки составляет около 230 кГц, что намного выше звукового диапазона. Мы можем использовать всплески искр с частотой 230 кГц, чтобы создать волны давления на звуковой частоте. Вспышка искр загорается на каждом пике звукового сигнала. Быстрое зажигание искр происходит быстрее, чем ваш глаз может различить, поэтому он выглядит непрерывным, но на самом деле искра формируется и гаснет с интервалами звуковой частоты.Этот метод модуляции известен как модуляция плотности импульсов (PDM) или модуляция с повторением импульсов (PRM).

Ток в первичной обмотке продолжает увеличиваться, пока мост приводится в движение. Важно сделать импульсы достаточно короткими, чтобы IGBT не перегревались. За один цикл ток на первичной обмотке за короткое время может достигать сотен ампер. Из-за тепловых причин максимальный рабочий цикл моста составляет примерно 10%. В прошивке прерывателя есть справочная таблица частот и времени включения, которые определяются эмпирически путем изменения ширины импульса и наблюдения за характеристиками искры.

PBS: Tesla - Master of Lightning: Катушка Тесла

Чтобы исследовать электрическую сферу высоких частот и высокого напряжения, Тесла изобрел устройство, которое раздвинуло границы понимания электричества.В то время ни один из типичных компонентов схемы не был неизвестен, но ее конструкция и работа вместе дали уникальные результаты - не в последнюю очередь благодаря мастерским усовершенствованиям Tesla в конструкции ключевых элементов, в частности специального трансформатора или катушки, которая находится в сердце производительности схемы.

Такое устройство впервые появилось в патенте США № 454 622 Теслы (1891 г.) для использования в новых, более эффективных системах освещения. В своей базовой форме схема требует источника питания, большого конденсатора, самой катушки (трансформатора) и регулируемых электродов искрового разрядника.Для чего нужны эти компоненты и для чего они нужны?

Генераторы

Конденсаторы (или конденсаторы) и индуктивности (или катушки), электрически говоря, несколько противоположны в работе. В то время как ток в конденсаторе быстро нарастает по мере его зарядки, напряжение падает. В индукторе напряжение ощущается немедленно, в то время как ток замедляется, поскольку он работает против магнитного поля, создаваемого его собственным проходом в катушке.Если размеры катушки и конденсатора выбраны и выбраны для работы с точно противоположным временным интервалом - с пиком напряжения в катушке так же, как оно достигает минимума в конденсаторе, - тогда схема может никогда не достичь электрически тихого, стабильного состояния. Немного похоже на плескание воды в ванне, можно заставить ток и напряжение гоняться друг за другом взад и вперед, от конца к концу цепи. (Такой генератор часто называют контуром резервуара .)

Искровые разрядники

Чтобы заставить свой генератор «звенеть», Тесла использовал внезапные разряды, искры, через регулируемый зазор между двумя электродами.Напряжение на конденсаторе растет до тех пор, пока не достигнет уровня, при котором воздух в зазоре разрушается как изолятор. (Прецизионные винты устанавливают зазор зазора, так что больший или меньший зазор выбирает большее или меньшее напряжение пробоя.)

Начальный импульс очень мощный - вся энергия, накопленная в течение нескольких микросекунд, высвобождается в порыве, и этот импульс сам преобразуется в несколько более высокое напряжение при переходе от первичных обмоток катушки к вторичным обмоткам.Это, конечно, завершает лишь один цикл работы схемы. Воздушный зазор восстанавливается как изолятор, и конденсатор начинает заряжаться, пока снова не достигнет значения пробоя. Весь процесс может повторяться много тысяч раз в секунду.

Вторичная обмотка трансформатора тоже довольно особенная, она разработана Tesla для быстрой реакции на внезапный всплеск энергии и, что наиболее важно, для концентрации напряжения на одном конце в виде стоячей волны .Его длина рассчитывается таким образом, чтобы гребни волн, достигая конца и отражаясь назад, встречались и точно усиливали волны позади них. Чистый эффект - волна, пик напряжения, который кажется неподвижным.

Приложения

Если, как это произошло на практике, Тесла сделал антенну из высоковольтного конца своей вторичной обмотки, она превратилась в мощный радиопередатчик. Фактически, в первые десятилетия развития радио большинство практичных радиоприемников использовали катушки Тесла в своих передающих антеннах.Сам Тесла использовал большие или меньшие версии своего изобретения для исследования флуоресценции, рентгеновских лучей, радио, беспроводной связи, биологических эффектов и даже электромагнитной природы Земли и ее атмосферы.

Сегодня такие устройства часто используются в высоковольтных лабораториях, а энтузиасты-любители по всему миру строят устройства меньшего размера для создания искрящихся потоковых электрических дисплеев - нетрудно достичь четверти миллиона вольт. (Один из самых первых ускорителей частиц, разработанный Рольфом Видеро в 1928 году, генерировал высокое напряжение в катушке Тесла.Катушка стала обычным явлением в электронике, она используется для подачи высокого напряжения на переднюю часть кинескопов телевизора в форме, известной как обратный трансформатор.

Внутри лаборатории Указатель

Беспроводное электричество? Как работает катушка Тесла

Среди своих многочисленных инноваций Никола Тесла мечтал создать способ подачи энергии в мир без прокладки проводов по всему миру.Изобретатель был близок к этому, когда его эксперименты «безумного ученого» с электричеством привели к созданию катушки Тесла.

Катушка Тесла, первая система, которая могла передавать электричество без проводов, была поистине революционным изобретением. Ранние радиоантенны и телеграфия использовали изобретение, но вариации катушки также могут делать вещи, которые просто классные - например, стрелять молниями, посылать электрические токи через тело и создавать электронные ветры.

Тесла разработал катушку в 1891 году, до того, как обычные трансформаторы с железным сердечником стали использоваться для питания таких устройств, как системы освещения и телефонные цепи.Эти обычные трансформаторы не могут выдерживать высокую частоту и высокое напряжение, которые могут выдерживать более свободные катушки в изобретении Теслы. Концепция катушки на самом деле довольно проста и использует электромагнитную силу и резонанс. Используя медную проволоку и стеклянные бутылки, электрик-любитель может построить катушку Тесла, которая может вырабатывать четверть миллиона вольт. [Инфографика: Как работает катушка Тесла]

Установка

Катушка Тесла состоит из двух частей: первичной катушки и вторичной катушки, каждая со своим собственным конденсатором.(Конденсаторы хранят электрическую энергию так же, как батареи.) Две катушки и конденсаторы соединены искровым разрядником - воздушным зазором между двумя электродами, который генерирует электрическую искру. Внешний источник, подключенный к трансформатору, питает всю систему. По сути, катушка Тесла - это две разомкнутые электрические цепи, подключенные к искровому разряднику.

Катушка Тесла требует источника питания высокого напряжения. Обычный источник питания, питаемый через трансформатор, может производить ток необходимой мощности (не менее тысячи вольт).

В этом случае трансформатор может преобразовывать низкое напряжение основного источника питания в высокое напряжение.

Как катушки Тесла генерируют электрические поля высокого напряжения. (Изображение предоставлено Россом Торо, художником по инфографике)

Как это работает

Источник питания подключен к первичной катушке. Конденсатор первичной катушки действует как губка и впитывает заряд. Сама первичная обмотка должна выдерживать большие заряды и сильные скачки тока, поэтому обмотка обычно изготавливается из меди, которая является хорошим проводником электричества.В конце концов, конденсатор накапливает такой заряд, что нарушает сопротивление воздуха в искровом промежутке. Затем, подобно выдавливанию намокшей губки, ток течет из конденсатора по первичной катушке и создает магнитное поле.

Огромное количество энергии заставляет магнитное поле быстро разрушаться и генерировать электрический ток во вторичной катушке. Напряжение, пронизывающее воздух между двумя катушками, создает искры в искровом промежутке. Энергия колеблется между двумя катушками несколько сотен раз в секунду и накапливается во вторичной катушке и конденсаторе.В конце концов, заряд вторичного конденсатора становится настолько высоким, что он вырывается в результате впечатляющего всплеска электрического тока.

Результирующее высокочастотное напряжение может осветить люминесцентные лампы на расстоянии нескольких футов без подключения электрического провода. [Фото: Историческая лаборатория Николы Теслы в Уорденклиффе]

В идеально спроектированной катушке Тесла, когда вторичная катушка достигает своего максимального заряда, весь процесс должен начаться заново, и устройство должно стать самоподдерживающимся.Однако на практике этого не происходит. Нагретый воздух в искровом промежутке отводит часть электричества от вторичной катушки обратно в промежуток, поэтому в конечном итоге в катушке Тесла закончится энергия. Вот почему катушку необходимо подключить к внешнему источнику питания.

Принцип, лежащий в основе катушки Тесла, заключается в достижении явления, называемого резонансом. Это происходит, когда первичная обмотка направляет ток во вторичную обмотку как раз в нужное время, чтобы максимизировать энергию, передаваемую вторичной обмотке.Думайте об этом как о времени, когда нужно подтолкнуть кого-то на качели, чтобы заставить их взлететь как можно выше.

Установка катушки Тесла с регулируемым поворотным искровым разрядником дает оператору больше контроля над напряжением производимого ею тока. Вот как катушки могут создавать сумасшедшие молнии и даже могут быть настроены для воспроизведения музыки, приуроченной к всплескам тока.

В то время как катушка Тесла больше не имеет практического применения, изобретение Теслы полностью изменило понимание и использование электричества.Радиоприемники и телевизоры до сих пор используют вариации катушки Тесла.

Следуйте за Келли Дикерсон в Twitter . Следуйте за нами @livescience , Facebook и Google+ . Оригинальная статья о Live Science .

Принцип работы, схема и приложения

Мир беспроводных технологий уже здесь! Бесчисленные беспроводные приложения, такие как освещение с беспроводным питанием, беспроводные умные дома, беспроводные зарядные устройства и т. Д., Развиваются благодаря беспроводным технологиям.В 1891 году самое известное открытие катушки Тесла было изобретено изобретателем Никола Тесла. Тесла был одержим беспроводной передачей энергии, что привело к изобретению катушки Тесла. Эта катушка не требует сложной схемы, поэтому она является частью нашей повседневной жизни, такой как дистанционное управление, смартфоны, компьютеры, рентгеновские лучи, неоновые и флуоресцентные лампы и так далее.


Что такое катушка Тесла?

Определение: Катушка Тесла - это радиочастотный генератор, который управляет двойным резонансным трансформатором с воздушным сердечником для получения высокого напряжения с низким током.

Тесла-катушка

Чтобы лучше понять, давайте определим, что такое радиочастотный генератор. В первую очередь, мы знаем, что электронный генератор - это устройство, которое генерирует электрические сигналы либо синусоидальной, либо прямоугольной формы. Этот электронный генератор генерирует сигналы в радиочастотном диапазоне от 20 кГц до 100 ГГц, известный как радиочастотный генератор.


Принцип работы катушки Тесла

Эта катушка способна создавать выходное напряжение до нескольких миллионов вольт в зависимости от размера катушки.Катушка Тесла работает по принципу достижения состояния, называемого резонансом. Здесь первичная обмотка излучает огромное количество тока во вторичную обмотку, чтобы управлять вторичной цепью с максимальной энергией. Точно настроенная схема помогает направлять ток из первичной во вторичную цепь с настроенной резонансной частотой.

Схема катушки Тесла

Эта катушка состоит из двух основных частей - первичной катушки и вторичной катушки, причем каждая катушка имеет свой собственный конденсатор. Искровой разрядник соединяет катушки и конденсаторы.Функция искрового промежутка заключается в генерации искры для возбуждения системы. Принципиальная схема катушки Тесла

Работа катушки Тесла

В этой катушке используется специальный трансформатор, называемый резонансным трансформатором, радиочастотным трансформатором или колебательным трансформатором.

Первичная катушка подключена к источнику питания, а вторичная катушка трансформатора слабо соединена, чтобы обеспечить ее резонанс. Конденсатор, подключенный параллельно схеме трансформатора, действует как схема настройки или схема LC для генерации сигналов с определенной частотой.

Первичная обмотка трансформатора, иначе называемая резонансным трансформатором, повышается для генерирования очень высоких уровней напряжения в диапазоне от 2 кВ до 30 кВ, которое, в свою очередь, заряжает конденсатор. При накоплении огромного количества заряда в конденсаторе, в конечном итоге, пробивается воздух искрового промежутка. Конденсатор испускает огромное количество тока через катушку Тесла (L1, L2), которая, в свою очередь, генерирует высокое напряжение на выходе.

Частота колебаний

Комбинация конденсатора и первичной обмотки «L1» схемы образует настроенную схему.Эта настроенная схема гарантирует, что как первичная, так и вторичная цепи точно настроены для резонанса на одной и той же частоте. Резонансные частоты первичного 'f1' и вторичного контуров 'f2' и равны,

f1 = 1 / 2π L1C1 и f2 = 1 / 2π L2C2

Поскольку вторичный контур не может быть отрегулирован, подвижный отвод на «L1» используется для настройки первичного контура до тех пор, пока оба контура не будут резонировать на одной и той же частоте.Следовательно, частота первичной обмотки такая же, как и вторичной.

f = 1 / 2π√L1C1 = 1 / 2π L2C2

Условие для первичного и вторичного резонанса на одной и той же частоте:

L1C1 = выход L2C2

Напряжение в резонансном трансформаторе не зависит от отношения числа витков, как в обычном трансформаторе. Как только цикл начинается и лонжерон срабатывает, энергия первичной цепи накапливается в первичном конденсаторе «С1», а напряжение, при котором искра гаснет, составляет «V1».

W1 = 1 / 2C1V1 2

Аналогично, энергия во вторичной катушке определяется как,

W2 = 1 / 2C2V2 2

Предполагая, что потери энергии нет, W2 = W1. Упрощая приведенное выше уравнение, мы получаем

V2 = V1√C1 / C2 = V1√L2 / L1

В приведенном выше уравнении пиковое напряжение может быть достигнуто, когда пробой воздуха не происходит. Пиковое напряжение - это напряжение, при котором воздух разрушается и начинает проводить.

Преимущества / недостатки катушки Тесла

Преимущества:

  • Позволяет равномерно распределять напряжение по катушкам обмотки.
  • Повышает напряжение в медленном темпе и, следовательно, без повреждений.
  • Отличная производительность.
  • Использование трехфазных выпрямителей для более высоких мощностей может обеспечить колоссальное распределение нагрузки.

Недостатки:

  • Катушка Тесла представляет несколько опасностей для здоровья из-за высокочастотного излучения высокого напряжения, которое включает ожог кожи, повреждение нервной системы и сердца.
  • Влечет за собой высокие затраты на покупку большого сглаживающего конденсатора постоянного тока.
  • Построение цепи занимает много времени, так как она должна быть идеальной для резонанса.

Применение катушки Тесла

В настоящее время этим катушкам не требуются большие сложные схемы для выработки высокого напряжения. Тем не менее, небольшие катушки Тесла находят свое применение в целом ряде секторов.

  • Сварка алюминия
  • Эти катушки используются в автомобилях для зажигания свечей зажигания
  • Созданные вентиляторы катушек Тесла, используемые для создания искусственного освещения, звуков, подобных музыке Катушки Тесла в индустрии развлечений и образования используются в качестве аттракционов на ярмарках электроники и научных музеях
  • Высоковакуумные системы и зажигалки
  • Детекторы утечки вакуумной системы

Часто задаваемые вопросы

1).Что делают катушки Тесла?

Эта катушка представляет собой радиочастотный генератор, который приводит в действие резонансный трансформатор для генерации высокого напряжения при низком токе.

2). Может ли катушка Тесла заряжать телефон?

В наши дни смартфоны выпускаются со встроенной беспроводной зарядкой, в которой используется принцип катушки Тесла.

3). Катушка Тесла опасна?

Катушка и ее оборудование очень опасны, поскольку они создают очень высокие напряжения и токи, которые не могут быть обеспечены человеческим телом

4).Почему катушки тесла создают музыку?

Обычно эта катушка превращает воздух вокруг себя в плазму, которая изменяет громкость и заставляет волны распространяться во всех направлениях, создавая звук / музыку. Это происходит на высокой частоте от 20 до 100 кГц.

5). Как Tesla передавала электричество по беспроводной сети?

Искровой разрядник используется для соединения конденсаторов и двух катушек. Поскольку мощность подается через трансформатор, он вырабатывает необходимый ток и питает всю цепь.

Таким образом, это все об обзоре катушки Тесла, которую можно использовать для выработки электроэнергии высокого напряжения, низкого тока и высокой частоты. Катушка Тесла может передавать электричество по беспроводной сети на расстояние до нескольких километров. Мы позаботились о том, чтобы эта статья дала читателю представление о работе катушки Тесла, ее преимуществах и недостатках, а также о ее применении. Поистине, его изобретение беспроводной передачи электроэнергии изменило способ общения в мире.

Настенный соединитель | Тесла

Tesla Wall Connector - это эффективное и удобное решение для домашней зарядки, которое позволяет подключить автомобиль на ночь и начать свой день полностью заряженным.Чтобы приобрести настенный соединитель, посетите интернет-магазин Tesla.

  • Настенный соединитель - Характеристики
  • Пошаговое руководство по установке
  • Дополнительные ресурсы


  • Настенный соединитель - Характеристики

    • Дальность действия до 44 миль (77 км) за час зарядки
    • Совместим с Model S, Model 3, Model X и Model Y
    • Выходная мощность до 11,5 кВт / 48 А
    • Настраиваемые уровни мощности для ряда автоматических выключателей
    • Совместимость с любой домашней электросистемой
    • Разделение питания (до четырех настенных разъемов)
    • подключение к Wi-Fi (2.4 ГГц 802.11 b / g / n)
    • Допущено для установки внутри и снаружи помещений
    • Легкий кабель длиной 18 футов (2,6 м)
    • Лицевая панель из закаленного белого стекла

    Заказать сейчас

    Для максимально быстрой зарядки в домашних условиях установите настенный разъем с автоматическим выключателем, который соответствует возможностям бортового зарядного устройства вашего автомобиля. Чтобы просмотреть максимальную силу тока вашего Tesla, коснитесь значка молнии на сенсорном экране.

    Для особых ситуаций с питанием или когда мощность может быть ограничена, Wall Connector также может быть установлен с автоматическими выключателями с меньшим током для поддержки практически любой существующей электрической системы.

    В приведенной ниже таблице указаны скорости зарядки для каждого варианта уровня мощности.

    Настенный соединитель
    Технические характеристики
    Скорость зарядки
    Максимальный запас хода в милях за час зарядки
    Автоматический выключатель
    (ампер)
    Максимальная мощность
    (ампер)
    Мощность при 240 В
    (киловатт)
    Модель S
    (миль / ч)
    Модель 3 *
    (миль / ч)
    Модель X
    (миль / ч)
    Модель Y
    (миль / ч)
    60 48 11.5 кВт 34 44 30 42
    50 40 9,6 кВт 29 37 25 36
    40 32 7,7 кВт 23 30 20 29
    30 24 5,7 кВт 17 22 14 21
    20 16 3.8 кВт 11 15 8 14
    15 12 2,8 кВт 7 11 5 10
    Настенный соединитель
    Технические характеристики
    Скорость зарядки
    Максимальный запас хода в милях за час зарядки
    Автоматический выключатель
    (ампер)
    Максимальная мощность
    (ампер)
    Мощность при 240 В
    (киловатт)
    Модель S
    (миль / ч)
    Модель 3
    (миль / ч)
    Модель X
    (миль / ч)
    Модель Y
    (миль / ч)
    60 48 11.5 кВт 34 44 30 42
    50 40 9,6 кВт 29 37 25 36
    40 32 7,7 кВт 23 30 20 29
    30 24 5,7 кВт 17 22 14 21
    20 16 3.8 кВт 11 15 8 14
    15 12 2,8 кВт 7 11 5 10

    * Максимальная скорость зарядки для стандартной модели 3 составляет 32 А (7,7 кВт) - до 30 миль в час.

    Пошаговое руководство по установке

    Клиент должен выполнить четыре шага, чтобы установить новый настенный соединитель.

    1. Найти электрика
    Введите свой почтовый индекс в инструмент «Найти электрика», чтобы найти установщика в вашем регионе или услуги по установке Tesla (доступны в определенных регионах).

    2. Запросить ценовое предложение
    Многие электрики теперь предлагают расценки в Интернете или по электронной почте, что упрощает получение нескольких оценок и выбор лучшего установщика для вашей жизненной ситуации.

    3. Закажите настенный соединитель
    Если вы планируете нанять независимого электрика, купить настенный соединитель Tesla онлайн.

    Если вы планируете установку с помощью установщиков Tesla, Wall Connector будет включен в ваше предложение, и никаких дополнительных действий с вашей стороны не потребуется.

    Примечание. Wall Connector автоматически регистрируется владельцем, когда он совершает покупку через Интернет.

    4. Планирование установки
    Отправьте электронное письмо с подтверждением отгрузки заказа настенного соединителя своему электрику и назначьте дату установки напрямую. Если Tesla будет устанавливать ваш Wall Connector, мы свяжемся с вами, чтобы назначить встречу с вами, как только будет получено разрешение.

    Порекомендуйте своему электрику посетить страницу поддержки настенных соединителей для получения дополнительной информации о том, как установить настенный соединитель.

    Дополнительные ресурсы

    Если у вас возникнут дополнительные вопросы, обратитесь в службу поддержки.

    Tesla тестирует схемы для немецкого энергетического рынка.

    ФРАНКФУРТ (Рейтер) - Илон Маск, похоже, открывает новый фронт в европейской битве за превосходство электромобилей: мощность за рулем.

    ФОТО ФАЙЛА: Логотип Tesla можно увидеть в филиале в Берне, Швейцария, 25 марта 2020 года.REUTERS / Arnd Wiegmann

    Tesla TSLA.O Маска недавно приобрела лицензию, которая позволит автомобилестроителю торговать электроэнергией в Западной Европе. Компания также опрашивает клиентов в Германии на предмет возможного использования электроэнергии Tesla в их автомобилях.

    Такие шаги, по словам консультантов и руководителей энергетической отрасли, могут подготовить почву для компании - возможно, с одним или несколькими партнерами - для того, чтобы взяться за устоявшиеся коммунальные предприятия в Германии, крупнейшем энергетическом рынке Европы и сердце автомобильной промышленности.

    Tesla отказалась комментировать свои планы на энергетический рынок.

    Энергетика и торговля могут помочь Tesla снизить эксплуатационные расходы на ее автомобили в то время, когда конкурирующие автопроизводители, в том числе немецкий BMW BMWG.DE, Audi NSUG.DE, Porsche [PSCH.UL] и Mercedes DAIGn.DE, выпускают новые автомобили. электрические модели.

    Это может также усилить конкуренцию с такими коммунальными предприятиями, как Vattenfall [VATN.UL] и EnBW EBKG.DE, которые тоже инвестируют в услуги электрической мобильности, но которые, как и его аналоги, RWE RWEG.DE и E.ON EONGn.DE обременены расходами на ликвидацию ископаемого топлива и атомных электростанций.

    Tesla уже продает солнечные панели и аккумуляторную систему хранения Powerwall для домов, но теперь, похоже, рассматривает возможность продажи электроэнергии напрямую потребителям и использования домашних систем хранения для обслуживания сети.

    В июне компания стала участником парижской биржи электроэнергии EPEX Spot, платформы, используемой для торговли большей частью внутридневной трансграничной электроэнергии из Западной Европы.

    Месяц спустя он опросил немецких потребителей об их интересе к энергетическим услугам.

    «Что побудило бы вас отказаться от существующего поставщика энергии?», - говорится в исследовании, согласно копии, увиденной Reuters.

    «Купили бы вы фотоэлектрическую систему Tesla и домашнее хранилище (Tesla Powerwall), если бы вы могли перейти на специально разработанный тариф на электроэнергию Tesla?», - добавили в нем.

    Tesla также спросила потенциальных потребителей энергии, позволят ли они компании контролировать, когда автомобили будут заряжаться.

    Это может позволить совпадать с тарифами на электроэнергию по низким тарифам в непиковые часы, говорят консультанты и руководители отрасли.

    Это также может открыть для Tesla возможность использовать энергию, запасаемую потребителями, чтобы помочь сбалансировать энергосистему, что становится все более важной услугой в Германии, поскольку она становится все более зависимой от непостоянной энергии ветра и солнца.

    Компании, предлагающие аналогичные услуги в Германии, включают принадлежащую Shell RDSa.L sonnen, оператор виртуальной электростанции Next Kraftwerke и агрегатор электроэнергии Lichtblick.

    ВОЗОБНОВЛЯЕМАЯ ЭНЕРГИЯ

    Интерес Tesla к возобновляемым источникам энергии стал одним из факторов, которые побудили компанию выбрать землю Бранденбург вокруг Берлина в качестве места для строительства нового завода, сообщил Reuters человек, знакомый с обсуждениями компании.

    В первой половине этого года около 65% электроэнергии в сети Бранденбурга было произведено из возобновляемых источников, в основном ветра. Но, как и в других районах на севере страны, он часто тратит энергию, потому что сети Германии ограничены в том, сколько зеленой энергии они могут транспортировать на большие расстояния.

    Gigafactory 4 Tesla в Бранденбурге потребует 100 мегаватт (МВт) мощности и до 400 МВт, если также будет запущено производство аккумуляторных элементов, по словам оператора сети передачи 50Hertz.

    Tesla еще далека от накопления достаточного количества аккумуляторных батарей для обеспечения частотного регулирования в масштабе энергосистемы, говорят такие специалисты, как коммунальное предприятие Axpo. Но за последние месяцы компания сделала несколько шагов по расширению своей энергетической деятельности.

    По сообщению газеты Telegraph, в мае компания подала заявку на получение лицензии на поставку электроэнергии в Великобритании.Он также использует платформу для вывода пользователей своей солнечной системы и аккумуляторной батареи Powerwall на рынок электроэнергии в Австралии.

    «Следующий и очевидный шаг для Tesla - это начать производство, особенно возобновляемой энергии», - сказал консультант Бертольд Ханнес, имеющий 30-летний опыт консультирования по вопросам энергетики.

    «Tesla могла бы использовать свои собственные объекты, например, крыши заводов или места зарядных станций, и в качестве альтернативы или дополнительно она могла бы участвовать в солнечных станциях или ветряных парках», - сказал он.

    Германия была пионером на рынке солнечной энергии и находится в процессе создания политической основы, которая упростит децентрализованное производство и поставку электроэнергии.

    «Долгосрочный план Tesla определенно включает более широкое решение проблемы энергетической отрасли, хотя сомнительно, достаточно ли она инвестирует в данный момент в эту область», - сказал бывший член руководства Tesla, отказавшийся называть свое имя.

    Томас Дезер, портфельный менеджер Union Investment, сказал, что маловероятно, что Tesla войдет в немецкий бизнес по распределению электроэнергии самостоятельно - «но она могла бы сделать это с компетентным партнером из энергетической отрасли.

    Репортаж Веры Экерт, Кристофа Стейтца, Тома Кекенхоффа и Эдварда Тейлора; Написано Эдвардом Тейлором; Редакция Кармел Кримминз и Марк Поттер

    Не тратьте огромные деньги на установку зарядки для вашего нового электромобиля

    Размер вашей коробки выключателя и обслуживание решат, сколько будет стоить добавление электрического ... [+] автомобильного зарядного устройства.

    Гетти

    Ранее я написал руководство, которое поможет вам решить, какой диапазон электромобилей вам подходит, особенно с Tesla Model 3.После того, как вы получите свой автомобиль, вы хотите установить для него домашнюю зарядку там, где вы его припарковали (например, в гараже или подъездной дорожке). Если вы не можете установить зарядку вообще, потому что вы паркуетесь на улице или в гараже квартиры. , тогда вы столкнетесь с проблемой. Если вы можете зарядить в своем офисе (часто бесплатно), это прекрасно, хотя и не без других проблем. Если вы не можете сделать то же самое, я сейчас не рекомендую покупать электромобиль, по крайней мере, на данный момент.

    Но вы можете обнаружить, что, когда вы позвоните электрику и попросите установить хорошую зарядную станцию ​​второго уровня со схемой на 50 ампер, они представят очень дорогую оценку - возможно, 5000 долларов или больше - потому что вам нужно будет модернизировать электрическую сеть в вашем доме. .В старых домах часто есть только 100 ампер сети, и электрические коды не позволяют вам превышать установленную квоту устройств и нагрузок на них. Не вдаваясь в полную формулу, если вы получаете устройства на 240 В на 80 А на панели 100 А, вы, вероятно, превысите лимит. Если у вас есть сушилка на 30 ампер, электрическая духовка на 30 ампер, кондиционер, насос для бассейна или другое подобное устройство, вы легко можете превысить лимит. Ваш электрик скажет вам, что вам нужно предоставить новую услугу от энергетической компании (обычно 200 ампер), а также полностью новую силовую панель.Вдобавок к этому им потребуется провести линию мощностью от 40 до 50 ампер до места парковки и установить розетку на 50 ампер (дешево) или проводной настенный EVSE («зарядное устройство»).

    Если у вас более новая услуга, не бойтесь, вам не нужно менять панель, и вы можете просто добавить новую схему. Если провод не такой длинный, покупка вилки может стоить не так дорого. К сожалению, многие видят более дорогую оценку. Как от этого уйти? Ответ заключается в том, что , хотя и неплохо иметь достаточно мощности, чтобы перезарядить автомобиль с нуля до полной за одну ночь, на самом деле вам не нужно столько .

    Зарядка на первом уровне

    Средняя машина проезжает всего 40 миль в день. Зарядное устройство Level One (которое обычно поставляется практически с любым электромобилем) подключается к специальной стандартной домашней вилке и может обеспечить ток 12 ампер. Это означает, что он сможет доставить 40 миль за 8-часовую ночную зарядку. Большинство людей проводят дома на машине в среднем более 8 часов. Так что, как правило, даже при очень медленной зарядке вы не отставаете. В те дни, когда вы больше ездите, вы не сможете полностью зарядиться, но если вы не будете проводить долгие дни несколько дней подряд, вы в конечном итоге вернетесь.(Насколько быстро зависит от того, нужно ли ограничивать зарядку только непиковым временем работы электричества.)

    (Если вы один из тех, кто преодолевает 100-километровую поездку, это не сработает для вас, и вам, возможно, придется укусить пулю и получить новое электрическое обслуживание. Но большинство людей не заходят так далеко.)

    Конечно, прибавляя 50 миль / ночь, иногда не хватает. Для многих это будет всего несколько раз в год. Тогда вам могут помочь быстрые зарядные устройства, такие как нагнетатели Tesla.Это нормально, если это не обычное явление. Другие решения могут включать зарядку на работе. Если вы не едете на работу или вам нужно проехать 20 миль или меньше, это решение, вероятно, вам подойдет - и оно может быть даже бесплатным, если у вас есть специальная розетка на парковочном месте. Он должен быть посвящен - ничего другого на этом автоматическом выключателе.

    Один слева - это стандартная розетка на 15 ампер. Тот, что справа, может предложить 20 ампер

    Общественное достояние

    В некоторых случаях на специальной вилке может быть выключатель на 20 А и провод 12AWG.В этом случае в вилке может уже быть Т-образный паз, в котором указано, что она составляет 20 ампер. Купите вилку на 20 ампер (которую продает Tesla и некоторые другие зарядные устройства), и вы увидите 50 миль или больше за 8 часов ночи, и вы наверняка догоните себя со средним уровнем езды.

    На первый взгляд, когда вы прочитаете, что зарядка автомобиля с пробегом в 250 миль на Первом Уровне может занять более за два дня , вы подумаете, что Первый уровень - это нелепо, но на самом деле, чем больше батарея, тем больше она может раскачиваться и вниз и по-прежнему оставляете вам достаточно возможностей для вождения.Это маленький аккумуляторный автомобиль, который абсолютно необходимо заряжать каждую ночь. Автомобиль с большим аккумулятором - нет.

    Следует отметить, что в очень холодном климате эта медленная зарядка может не сработать из-за необходимости нагревать батареи и большего расхода энергии при вождении на холоде.

    Зарядка медленнее, уровень два

    Цепь второго уровня работает при удвоенном напряжении и обычно при более высоком токе. Фактически, вы можете установить их, рассчитанные на ток до 80 ампер. Однако большинству людей это не нужно.Вы будете очень довольны тем, что хватит, чтобы восстановить около 60% заряда батареи, потому что ваш типичный дневной цикл должен составлять от 20% до 80%. На 240-мильном Tesla Model 3 вы можете получить это за 8 часов всего с 5 кВт, что вы получаете от вилки на 30 ампер, той же, что работает в вашей сушилке. (На любой вилке автомобиль заряжается на 80% от полного тока, в данном случае на 24 ампера.) Такая схема полностью восстановит вас практически в любой день, когда вы едете, особенно если у вас дома более 8 часов. Вам действительно не нужно быстрее.Тесла обычного диапазона не может потреблять более 32 ампер в любом случае (например, схема на 40 ампер), но вам просто не нужно даже это. Если вы можете его получить, вы, конечно, должны его взять, но вам не следует тратить тысячи, чтобы получить дополнительный импульс.

    Ваш электрик может сказать вам, что вам нужна новая панель для вилки на 50 ампер, но вы можете вставить 30 или 20 ампер без новой панели, что может сэкономить вам состояние.

    Это зарядное устройство уровня 2 на 20 ампер будет восстанавливать около 14 миль за каждый час, который вы заряжаете, или около 110 миль за 8 часов ночи.Для большинства людей этого более чем достаточно - опять же, помните, что средняя машина проезжает 40 миль в день. Вы найдете несколько дней или несколько дней, когда вы не насытитесь, но вы можете найти только пару дней в году, для которых требуется нагнетатель. Опять же, вы не хотите медлить, но если это сэкономит вам 3000 долларов, чтобы перейти на 20 ампер вместо 50, то сделайте это. Попросите электрика установить вилку «6-20» на 240 В при 20 А. Он использует горизонтальный штифт (например, 20а на фото выше), но с другой стороны.Купите этот адаптер для своей машины.

    Если у вас действительно выделенная вилка (это единственное, что есть в выключателе), то во многих случаях электрик может за небольшие деньги заменить обычную розетку на 120 В на розетку на 240 В для удвоенной скорости зарядки, заменить вилку и выключатель, если проводка рассчитана на более высокое напряжение. Спросите об этом - он почти наверняка выдержит максимальную нагрузку на вашу панель. (В то время как в США обычные розетки работают от 120 В, а большая часть остального мира работает от 220 В, дома в США могут устанавливать розетки на 240 В, и для этого существует устоявшийся стандарт.)

    Совместное использование с сушилкой

    В большинстве домов есть электрическая розетка на 30 ампер для вашей сушилки. Вам может быть легко перейти на сушилку на природном газе, особенно если вы настроены на новую сушилку. Они стоят немного дороже, но они стоят немного дешевле в эксплуатации и, таким образом, экономят деньги в долгосрочной перспективе. Они также стоят одинаково днем ​​и ночью. Вам действительно нужно установить газопровод в прачечной. Добавление этого может стоить реальных денег - или быть дешевым - в зависимости от того, насколько далеко это еще предстоит.Возможно, вы даже сможете продать свою электрическую сушилку кому-нибудь из Craigslist.

    Если вы сделаете это, вы снимете нагрузку на 30 ампер со своего дома, и теперь вы можете добавить линию на 30 ампер для своего автомобиля без необходимости обновления обслуживания. В некоторых случаях электрик может просто проложить линию от того места, где находится (была) вилка электрической сушилки, до места, где находится ваша машина. Этой мощности более чем достаточно для ваших нужд, и хотя новая газовая сушилка не бесплатна, она может быть самым дешевым вариантом из всех.

    Вы также можете купить устройство под названием «Dryer Buddy» примерно за 350 долларов, которое позволяет подключать машину и сушилку к одной розетке, если ваша машина припаркована рядом с сушилкой.Это устройство просто видит, когда сушилка включена, и отключает зарядку автомобиля, когда она включена. Это тоже относительно дешевое решение. Если вы не включите сушильную машину после полуночи, вы даже не заметите, что у нее общая розетка.

    Умное зарядное устройство

    По правде говоря, хотя электрический кодекс требует, чтобы ваш дом был в состоянии справиться со всем, что включается одновременно, - сушилкой, духовкой, кондиционером и автомобилем - на самом деле вам никогда не нужно этого делать. Если бы автомобильные зарядные устройства были умными, они бы поставлялись со схемами, которые определяют, когда другие устройства включены, и уменьшают или прекращают зарядку автомобиля, когда это происходит, что является очень редким событием.Такие зарядные устройства позволили бы установить автомобильную зарядку без обновления сервиса. К сожалению, их еще нет. В Канаде есть устройство под названием DCC-9, которое можно вставить в вашу электрическую коробку и отключить питание зарядного устройства, когда включены другие устройства. К сожалению, это стоит около 1000 долларов, когда это то, что должно поставляться в комплекте с зарядным устройством почти бесплатно. Но это может быть намного дешевле, чем обновление услуги. Когда-нибудь эта технология может стать дешевле и проще в установке. Устройство с открытым исходным кодом, известное как SmartEVSE, может это сделать, но требует более продвинутых знаний по настройке.

    А как насчет высокого класса?

    Этот совет предназначен для тех, у кого дома есть сеть на 100 ампер. Если у вас более крупный сервис, например, на 200 ампер, нет причин не устанавливать хорошую схему на вилку на 50 ампер, известную как вилка 14-50 - ту же, что используют большие дома на колесах. Вы не можете использовать все это, но вы можете купить электромобиль большего размера в будущем, и вы можете даже купить два электромобиля и пожелать получить 60 или более ампер. Цена на провод большего диаметра, чем вам нужно, может лишь незначительно добавить к цене вашей установки.Настенные соединители Tesla имеют приятную особенность, которая позволяет им «шлейфовать» и распределять мощность между двумя из них, когда у вас есть два Tesla.

    Даже если вы выберете одну из описанных более дешевых вилок, например 6-20, вам следует подвести к ней более толстый провод, способный выдержать ток 30, 40 или 50 ампер. Цена. Если вы это сделаете, и позже вы обновите домашнюю службу, вам не нужно будет перепрограммировать эту схему, чтобы получить максимальную мощность.

    Конечно, могут быть и другие причины для повышения качества обслуживания в вашем доме.Это немного безопаснее, и в нем есть место для других расширений, которые вы можете сделать в будущем, например, большего количества автомобилей, кондиционирования воздуха, гидромассажной ванны и прочего. Все эти причины могут оправдать модернизацию - основной целью этой статьи было выяснить, когда машина сама по себе не нуждается в этом.

    Кстати, если ваш работодатель дает вам бесплатную зарядку на работе, то, конечно, воспользуйтесь этой привилегией. Это может означать немного меньшее удобство при парковке или может означать место премиум-класса. Даже в этом случае у вас все равно должен быть дома хотя бы первый уровень, так как это дешево.Это будет держать вас в тонусе в выходные и праздничные дни.

    При зарядке

    Ваша энергетическая компания может предложить вам выставление счетов за электроэнергию по времени использования. Это означает, что вместо того, чтобы платить фиксированную ставку в течение всего дня, вы платите более высокие ставки в часы пик (обычно во второй половине дня и ранними вечерами) и более низкие ставки в непиковые часы (ночью, а иногда и утром). использование в непиковое время. Если вы заряжаете машину ночью, вы именно этим и занимаетесь, и это большая победа для автовладельцев.Фактически, в Калифорнии и некоторых других местах владельцы электромобилей могут запросить специальный тариф «сверхвысокого времени использования», который даже дешевле в ночное время и доступен только для электромобилей. Хорошая новость: если вы получаете эту ставку, то ночью вы платите очень низкую цену за машину. Плохая новость заключается в том, что дневная норма довольно высока, и тогда вам стоит избегать таких вещей, как использование сушилки. Если вы много кондиционируете, это может не быть победой, но обычно так оно и есть.

    Другой недостаток заключается в том, что вы не заряжаете свою машину во время пика, так что, если у вас есть только первый уровень, в дне будет меньше часов, когда вы сможете восстановиться.Если вы можете заряжать 24 часа в сутки, даже Level One может добавить много энергии в день в те дни, когда машина остается дома.

    Прочтите / оставьте комментарии здесь

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *