Терморезистор в блоке питания компьютера: Для чего нужен термистор, терморезистор в блоке питания компьютера

Содержание

Терморезисторы.

Обозначение на схеме, разновидности, применение

В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы – электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.

Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике – познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.

На принципиальных схемах терморезистор обозначается вот так.

В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или .

Основная характеристика терморезистора – это его ТКС. ТКС – это температурный коэффициент сопротивления. Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.

У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.

На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.

Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.

Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор – контролирует температуру ключевых транзисторов.

Второй. Это так называемый NTC-термистор (JNR10S080L). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.

Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.

Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.

Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его "потроха". Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.

Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.

Прямой и косвенный нагрев.

По способу нагрева терморезисторы делят на две группы:

  • Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).

  • Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.

NTC-термисторы и позисторы.

По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

Давайте разберёмся, какая между ними разница.

NTC-термисторы.

Своё название NTC-термисторы получили от сокращения NTC – Negative Temperature Coefficient, или "Отрицательный Коэффициент Сопротивления". Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается. Кстати, вот так обозначается NTC-термистор на схеме.


Обозначение термистора на схеме

Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.

На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР'а, только там он был серо-зелёного цвета.

На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.

Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.

Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.

Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 - VD4).

При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его. После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить "плавный запуск" электроприбора и уберечь от пробоя диоды выпрямителя.

Понятно, что пока импульсный блок питания включен, NTC-термистор находится в "подогретом" состоянии.

Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.

Далее на фото наглядный пример – сгоревший NTC-термистор 5D-11, который был установлен в зарядном устройстве ИКАР-506. Он ограничивал пусковой ток при включении.

Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.

Позисторы. PTC-термисторы.

Термисторы, сопротивление которых при нагреве растёт, называют позисторами. Они же PTC-термисторы (PTC - Positive Temperature Coefficient, "Положительный Коэффициент Сопротивления").

Стоит отметить, что позисторы получили менее широкое распространение, чем NTC-термисторы.

Условное обозначение позистора на схеме.

Позисторы легко обнаружить на плате любого цветного CRT-телевизора (с кинескопом). Там он установлен в цепи размагничивания. В природе встречаются как двухвыводные позисторы, так и трёхвыводные.

На фото представитель двухвыводного позистора, который применяется в цепи размагничивания кинескопа.

Внутри корпуса между выводами-пружинами установлено рабочее тело позистора. По сути это и есть сам позистор. Внешне выглядит как таблетка с напылением контактного слоя по бокам.

Как я уже говорил, позисторы используются для размагничивания кинескопа, а точнее его маски. Из-за магнитного поля Земли или влияния внешних магнитов маска намагничивается, и цветное изображение на экране кинескопа искажается, появляются пятна.

Наверное, каждый помнит характерный звук "бдзынь", когда включается телевизор - это и есть тот момент, когда работает петля размагничивания.

Кроме двухвыводных позисторов широко применяются трёхвыводные позисторы. Вот такие.

Далее на фото трёхвыводный позистор СТ-15-3.

Отличие их от двухвыводных заключается в том, что они состоят из двух позисторов-"таблеток", которые установлены в одном корпусе. На вид эти "таблетки" абсолютно одинаковые. Но это не так. Кроме того, что одна таблетка чуть меньше другой, так ещё и сопротивление их в холодном состоянии (при комнатной температуре) разное. У одной таблетки сопротивление около 1,3 ~ 3,6 кОм, а у другой всего лишь 18 ~ 24 Ом.

Трёхвыводные позисторы также применяются в цепи размагничивания кинескопа, как и двухвыводные, но только схема их включения немного иная. Если вдруг позистор выходит из строя, а такое бывает довольно часто, то на экране телевизора появляются пятна с неестественным отображением цвета.

Более детально о применении позисторов в цепи размагничивания кинескопов я уже рассказывал здесь.

Так же, как и NTC-термисторы, позисторы используются в качестве устройств защиты. Одна из разновидностей позистора - это самовосстанавливающийся предохранитель.

SMD-терморезисторы.

С активным внедрением SMT-монтажа, производители стали выпускать миниатюрные терморезисторы, адаптированные и под него. Размеры их корпуса, как правило, соответствуют стандартным типоразмерам (0402, 0603, 0805, 1206), которые имеют чип резисторы и конденсаторы. Маркировка на них не наносится, что затрудняет их идентификацию. По внешнему виду SMD-терморезисторы очень похожи на керамические SMD-конденсаторы.

Встроенные терморезисторы.

В электронике активно применяются и встроенные терморезисторы. Если у вас паяльная станция с контролем температуры жала, то в нагревательный элемент встроен тонкоплёночный терморезистор. Также терморезисторы встраиваются и в фен термовоздушных паяльных станций, но там он является отдельным элементом.

Стоит отметить, что в электронике наряду с терморезисторами активно применяются термопредохранители и термореле (например, типа KSD), которые также легко обнаружить в электронных приборах.

Теперь, когда мы познакомились с терморезисторами, пора узнать об их параметрах.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Учебно-практический центр "Эксперт" - Учебно-практический центр "Эксперт"

Импульсные источники питания завоевывают все большее жизненное пространство. Надежность их растет, и те недостатки, которые характерны для импульсных преобразователей энергии, с лихвой компенсируются их несомненными преимуществами. Сейчас они начинают применяться уже в тех областях, где традиционно использовались линейные источники питания.

Один из недостатков импульсных преобразователей энергии это то, что они являются источником высокочастотных помех, проникающих в первичную сеть переменного тока. Это, в свою очередь, может приводить к нестабильной работе другого оборудования, подключенного к той же фазе первичной сети, что и импульсный источник. В связис этим, абсолютно любой блок питания должен иметь в своем составе входные помехоподавляющие цепи, обеспечивающие его защиту от помехиз первичной сети, а также защиту первичной сети от высокочастотных помех импульсного источника. Кроме того, эти цепи могут выполнять функции по защите от высоких напряжений и больших токов.

Переменный ток сети на первом этапе преобразования должен быть выпрямлен с помощью диодного моста. На этот диодный мост переменный ток подается через сетевой выключатель, сетевой предохранитель, терморезистор с отрицательным температурным коэффициентом сопротивления (ТКС) и помехоподавляющий фильтр. В подавляющем большинстве источников питания построение входных цепей одинаково, и такая типовая схема входных цепей приводится на рис. 1.

Рис. 1

Терморезистор с отрицательным ТКС служит для ограничения броска зарядного тока через конденсатор С5 в момент включения источника питания. При включении блока питания в начальный момент времени через диодный мост протекает максимальный зарядный ток конденсатора С5, и этим током может быть выведен из строя один (или более) диод выпрямителя. Так какв холодном состоянии сопротивление терморезистора составляет несколько Ом, ток через выпрямительные диоды моста ограничивается на безопасном для них уровне. Через некоторый промежуток времени в результате протекания через терморезистор зарядного тока С5, он нагревается, его сопротивление уменьшается до долей Ома и большене влияетна работу схемы.

Такое решение проблемы ограничения броска зарядного тока при помощи элемента с нелинейной вольт – амперной характеристикой используется достаточно часто, так как схема при этом получается наиболее простой и дешевой по сравнению с другими вариантами. Кроме того, она обеспечивает минимальные потери и высокую надежность, что и обуславливаетее применение практически во всех блоках питания. Ограничительный терморезистор, как и всякий нагреваемый элемент, обладает тепловой инерцией. Это означает, что для того, чтобы он восстановил свои ограничительные свойства, после выключения блока питания из сети должно пройти некоторое время (порядка нескольких минут), то есть он должен остыть. При этом следующее включение блока питания произойдет так жес ограничением броска зарядного тока. И это является дополнительным условием, из-за которого настоятельно рекомендуется выждать одну-две минуты перед следующим включением источника питания после его выключения, хотя на практике часто встречаются ситуации, при которых необходимо выключить источник питания и тут же снова включить его.

Терморезисторы довольно часто выходят из строя при пробоях силового транзистора, пробоях диодов выпрямителя. Неисправности терморезисторов довольно очевидны, так как они перегорают обычно с физическими нарушениями корпуса, т. е. корпус элемента разламывается и на нем видны следы копоти. При перегорании терморезистора специалист, производящий ремонт, может применить несколько вариантов решения проблемы:

     — Заменить терморезистор на аналогичный — это наиболее оптимальное решение.

   — Заменить терморезистор обычным резистором малого сопротивления (несколько Ом) и большой мощности (порядка 5 Вт) —в этом случае такой резистор будет осуществлять ограничение тока через выпрямитель в течение всей работы блока питания, однако будет выделять довольно большое количество тепла.

    — Заменить терморезистор несколькими витками нихромовой проволоки — такой элемент будет выполнять общее ограничение тока, а витки будут способствовать плавному нарастанию тока. Однако стоит отметить, что такое решение нельзя назвать оптимальным, и лучше воздержаться от его применения.

   — Замена терморезистора перемычкой — такой способ ремонта не рекомендуется применять (а некоторые специалисты и категорически предупреждают от замены терморезистра перемычкой), однако в некоторых ситуациях это приходится делать. К тому же, если при ремонте пришлось заменить диоды выпрямителя и поставить более мощные (например, КД226), то, как показывает практика, зарядный ток для таких диодов не страшени схема вполне работоспособна без терморезистора.

Следует отметить, что ограничительный терморезистор некоторые производители размещают между «-» диодного моста и общим проводом первичной части (рис. 2).

Рис. 2

В некоторых источниках питания терморезисторы не используются,а применяются ограничительные резисторы большой мощности (обычно белого цвета и имеющие форму параллепипеда). Эти резисторы имеют номинал сопротивления, равный несколько Ом и мощность5 –10 Вт.Как уже отмечалось ранее, такой резистор обеспечивает ограничение тока не тольков момент включения, а постоянно при работе источника питания. Поэтому на резисторе рассеивается достаточно большая мощность, и он очень сильно нагревается.

Сетевой плавкий предохранитель FU1 предназначен для защиты питающей сети от перегрузок, которые возникают при неисправностях сетевого выпрямителя или силового транзистора. Конструктивное изменение положения предохранителя при ремонте нежелательно, так как это может приводить к появлению сетевых электромагнитных помех.

Входной помехоподавляющий фильтр обладает свойством двунаправленного помехоподавления, то есть предотвращает проникновение высокочастотных импульсных помех из сетив блок питания и, наоборот, из блока питания в сеть.Эти импульсные помехи могут иметь значительную амплитуду. Сетевые помехи имеют в основном промышленную основу и создаются аппаратурой дуговой и контактной сварки, силовой пускорегулирующей аппаратурой, приводными электродвигателями, медицинской аппаратурой и т. д. Генерируемые блоком питания помехи обусловлены, главным образом, импульсным режимом работы силового транзистора и выпрямительных диодов. Помехи, генерируемые и силовой сетью и блоком питания можно разделить на два типа: симметричные и несимметричные.

Симметричная (дифференциальная) помеха — напряжение между проводами питания. Эта помеха измеряется между двумя полюсами шин питания.

Несимметричная (синфазная) помеха — напряжение между каждым проводом и корпусом блока питания (рис. 3).

Рис. 3

Для анализа работы помехоподавляющего фильтра рассмотрим случай, когда симметричная помеха воздействует на схему блока питания.

ЭДС помехи приложена к входу источника питания между фазным и нулевым проводом со стороны сети. Конденсатор С1 представляет собой очень большое сопротивление для питающего тока сетевой частоты (50Гц), и поэтому этот ток через конденсатор С1 не ответвляется.Для импульсного высокочастотного тока помехи этот конденсатор, напротив, имеет очень малое сопротивление, и поэтому большая часть тока помехи замыкается через него.

Однако одного конденсатора С1 оказывается недостаточно для полного подавления помехи. Поэтому далее включается двухобмоточный дроссель Т1 (нейтрализующий трансформатор), обмотки I иII которого имеют одинаковое число витков и намотанына одном сердечнике. Направление намотки обеих обмоток согласное. Из этого следует, что полезный ток сетевой частоты, протекающий по обмоткам I иII в противоположных направлениях, будет создавать в сердечнике Т1 два равных встречно-направленных магнитных потока, взаимно компенсирующих друг друга. Поэтому независимо от величины потребляемого от сети тока сердечник Т1 не будет намагничиваться, а значит, индуктивность обеих обмоток будет максимальна. Несмотря на это,из-за того, что питающий полезный ток имеет низкую сетевую частоту, обмотки Т1 не будут оказывать ему сколько-нибудь значительного сопротивления. Высокочастотный же ток помехи будет задерживаться этим дросселем. При этом, благодаря трансформаторному исполнению, индуктивность каждой из обмоток Т1 возрастает на величину взаимной индуктивности. Это объясняется тем, что магнитные потоки от высокочастотного тока помехи точно также взаимно компенсируются, как и токи сетевой частоты. Поэтому сердечник Т1 не намагничивается,а магнитная проницаемость его максимальна. Если бы вместо Т1 в каждый провод включался бы обычный дроссель, то протекающий ток намагничивал бы сердечники этих дросселей, в результате чего их магнитная проницаемость была бы меньше, даже при том же количестве витков.

Далее уже остаточная энергия помехи подавляется конденсатором С4, который замыкает через себя оставшуюся часть тока высокочастотной помехи, прошедшую через Т1.

Однако основное назначение конденсатора С4 иное. Диодный выпрямитель (D1-D4) также является генератором высокочастотных помех, что связано с импульсным характером тока через выпрямитель. Величина помех в основном зависит от свойств полупроводниковых диодов выпрямителя (крутизны вольтамперной характеристики, инерционности).

Процесс восстановления обратного сопротивления диодов при переключении не является мгновенным, и при смене полярности приложенного напряжения через диоды протекают импульсные обратные токи, обусловленные рассасыванием избыточных носителей. Эти импульсные токи и являются помехами, генерируемыми сетевым выпрямителем. Конденсатор С4, включенный в диагональ диодного моста, замыкает через себя токи этих импульсных помех, препятствуя их проникновениюв питающую сеть и нагрузку блока питания.

Конденсаторы С2 и СЗ — обязательные элементы и предотвращают проникновение несимметричных импульсных помех в питающую сеть. Такие же конденсаторы могут устанавливаться и до дросселя, образуя таким образом симметричный фильтр (рис. 4)

Рис. 4

Для предотвращения проникновения несимметричных помех из силового преобразователя в нагрузку через общий провод вторичной стороны в некоторых блоках питания этот общий провод не имеет гальванической связи с корпусом блока питания, а подключенк нему через дополнительный фильтрующий конденсатор малой емкости. При таком включении большая часть тока импульсной помехи замыкается через этот конденсатор внутри схемы блока питания. На рис. 5 таким конденсатором является С6 (4.7n/3kV).

Рис. 5

Следует отметить, что для разрядки конденсаторов сетевого фильтра после выключения блока питания из сетина выходе сетевого фильтра может включаться высокоомный резистор R1 на рис. 4. Включение такого резистора обусловлено требованиями техники безопасности при ремонте блока питания.

В современной схемотехнике во многих блоках питания по сетевому входу включается также варистор или динистор. Варистор — это нелинейный элемент, сопротивление которого зависит от приложенногок нему напряжения. Поэтому, пока сетевое напряжение не выходитза пределы допустимого, сопротивление варистора велико (десятки МОм), и он не влияетна работу схемы. При перенапряжениив сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми. Сам варистор при этом обычно выходит из строя, что очень легко заметить —он чернеет,на окружающих его элементах — копоть и обычно варистор раскалывается. Достаточно часто для защиты источника питания от работы при повышенных напряжениях сети используется зенеровский диод, обозначаемый на схемах ZNR. Принцип работы его практически не отличается,т. е. если к нему прикладывается напряжение выше уровня его пробивного напряжения, то он «пробивается» и также выжигает плавкий предохранитель.

Маркировка варистора или зенеровского диода является достаточно простой. На корпусе тремя цифрами указывается номинал пробивного напряжения. Например, число 301 соответствует пробивному напряжению 300В (30×101), число 271 – напряжению 270В (27×101) и т. д.

В случае неисправного варистора или зенеровского диода установка нового предохранителя и повторное включение источника питания опять приводит к перегоранию предохранителя. Замену варистора или диода желательно производить на аналогичное изделие. Установка прибора с меньшим пробивным напряжением часто приводит его «пробою» при включении источника питания, т. к. именно в момент включения наблюдается большой скачок напряжения. Если установить прибор с большим значением пробивного напряжения, то в момент включения он не будет выходить из строя, однако и защищать источник питания он буде хуже. Возможен и такой способ решения проблемы, как полное удаление варистора (зенеровского диода) из схемы. Источник питания при этом будет запускаться без проблем, и предохранитель будет оставаться целым, однако, как, наверное, всем понятно, защита от повышенного напряжения сети будет отсутствовать. Такой способ решения проблемы стоит применять только в том случае, если вы увереныв хорошем качестве питающего напряжения и нет возможности найти аналогичную замену неисправному прибору.

 

Регулятор скорости вращения вентилятора

Снижение шумов системного блока заметно облегчает работу оператора персонального компьютера. Утомление приводит к сокращению времени продуктивной работы и увеличению количества ошибок. Одними из источников шума являются вентиляторы. При использовании системного блока в течении двух-трех лет шум становится заметнее из-за износа вентиляторов. Со временем увеличивается риск остановки вентилятора, что приведет к перегреву охлаждаемого устройства, входящего в состав персонального компьютера.

К отрицательным свойствам охлаждения с помощью вентиляторов относится увеличение потребления электроэнергии увеличивающее нагрузку на блок питания. Экономия расхода электроэнергии, потребляемой вентилятором, особенно важна для ноутбуков работающих от батареи. Для снижения недостатков применения вентиляторов разработан регулятор, работа и самостоятельное изготовление которого изложено в этой статье.

При включении компьютера на несколько минут регулятор вращения позволяет исключить работу вентилятора. Также регулятор позволяет уменьшить шум, особенно в холодное время года, увеличить срок службы вентиляторов и уменьшить потребление электроэнергии. В момент включения компьютера блок питания испытывает максимальную перегрузку, вызванную зарядкой конденсаторов и многими другими причинами.

Исключить ложное срабатывание защиты и увеличить срок службы блока питания позволит поочередное подключение нагрузок к блоку питания после включения в сеть 220 вольт. Одной из нагрузок являются вентиляторы. Включение их через некоторое время после других устройств, входящих в состав персонального компьютера, позволяет снизить ударную перегрузку блока питания. Простое схемное решение регулятора требует мало времени на сборку. Схема позволяет управлять одним или несколькими вентиляторами одновременно.

Работа регулятора

Параметры:

  • Напряжение питания…………………………12 В
  • Температура включения вентилятора ……36 &ordmС +/-5 &ordmС

Структурная схема регулятора скорости вращения вентилятора

При включении системного блока персонального компьютера температура охлаждаемого объекта равна температуре воздуха. При температуре ниже 36 &ordmС вентилятор отключен от питания. При нагреве терморезистора RK1 до температуры около 36 &ordmС вентилятор подключается к питанию. Если компьютер выключался на короткое время после длительной работы, то температура охлаждаемого объекта выше 36 &ordmС и вентилятор включится сразу после подачи питания на регулятор, напряжение на вентиляторе будет пропорционально температуре датчика RK2.

По прошествии некоторого времени температура охлаждаемого объекта увеличивается и одновременно изменяется сопротивление терморезисторов RK1 и RK2. Если охлаждение будет достаточно эффективным, то температура охлаждаемого объекта и датчиков температуры снизится, и вентилятор будет отключен от питания. При недостаточном охлаждении температура возрастет, изменится сопротивление терморезистора RK2, что вызовет увеличение напряжения на вентиляторе пропорциональное температуре. Увеличиться воздушный поток, направленный на охлаждаемый объект.

Электрическая схема вместе с вентилятором образуют регулятор температуры охлаждаемого объекта. Регулятор состоит из двух звеньев: релейного непрямого действия и непрерывного прямого действия. В состав звена релейного действия входит симистор VS1. Каждое звено воспринимает сигнал от своего чувствительного элемента – терморезистора.

Электрическая схема

Схема подключается к напряжению питания 12 вольт с помощью разъема XS2. Ток потребляемый вентилятором проходит по цепи контакт 1 розетки XS2, контакты 2 розетки XS1 и вилки XP1, терморезистор RK2, контакты 1 вилки XS1 и розетки XP1, вентилятор М1 и симистор VS1. Вентилятор подключается к питанию при открывании симистора. Для открывания симистора величина напряжения на управляющем электроде должна быть около 0,7 вольт. Напряжение на управляющем электроде зависит от сопротивлений R1, R2, RK1 и RK3. Резистор R1 и терморезисторы RK1 и RK3 соединены по схеме параллельного включения.

Электрическая схема регулятора скорости вращения вентилятора

Напряжение на управляющем электроде симистора определяет делитель, состоящий из сопротивления резистора R2 и сопротивления параллельно включенных R1, RK1, RK3. При уменьшении сопротивления терморезисторов RK1 и RK3 напряжение на управляющем электроде увеличивается и симистор открывается. В течении трех-пяти секунд ток питания вентилятора течет не только через терморезистор RK2, но и через конденсатор С1.

После открывания симистора происходит заряд конденсатора, в первый момент времени через конденсатор течет максимальный ток и напряжение на вентиляторе близко к напряжению питания схемы. Конденсатор заряжается током, текущим через вентилятор с течением времени ток текущий заряжающийся конденсатор уменьшается. Ток вентилятора становится пропорционален сопротивлению терморезистора RK2. Увеличенное напряжение питания вентилятора при включении необходимо для уверенного запуска вентилятора.

Вентилятор, отработавший некоторое время “не раскручивается” при пониженном напряжении. При увеличении температуры сопротивление терморезистора RK2 уменьшается, обороты вентилятора увеличиваются, при снижении температуры обороты вентилятора уменьшаются. При уменьшении температуры ниже 36 С снизится напряжение на управляющем электроде симистора ниже 0,7 вольт и симистор закроется и вентилятор остановится. Ток проходящий по цепи М1, RK2 ниже тока удержания симистора в открытом состоянии, работа симистора в таком режиме позволяет организовать звено релейного действия регулятора.

Компоненты схемы

В схеме регулятора применены выводные компоненты для монтажа проводом.

Позиционное
обозначение
Наименование
Конденсаторы
С1 Конденсатор 4700 мкФ, 25 В ф. Hitano
   
Резисторы С2-23-0,25
R1 2,7 кОм ± 5%
R2 180 Ом ± 5%
   
Терморезисторы
RK1, RK3 КМТ-1 82 кОм ± 20 %
RK2 ММТ-12 100 Ом ± 20 %
   
Особые компоненты
VS1 Симистор BTA216Х-600Е ф. NXP
   
Модули
XP1 Вилка WF-4
XS1 Розетка HU-4
XS2 Розетка HU-3

Электролитический конденсатор можно применить емкостью 2200 мкФ, 3300 мкФ, 4700 мкФ или 6800 мкФ и рассчитанный на работу при напряжении не менее 16 вольт. Емкость конденсатора устанавливает время работы вентилятора под напряжением питания схемы регулятора. Рабочее напряжение и емкость конденсатора ограничены размерами свободного пространства внутри корпуса системного блока.

Терморезисторы могут быть любого другого типа, имеющего отрицательный температурный коэффициент, другими словами при повышении температуры сопротивление терморезистора должно уменьшаться. Сопротивление RK1 и RK3 не обязательно 82 кОм. Проведение настройки схемы позволяет применить в схеме регулятора терморезисторы другого сопротивления. Сопротивление терморезистора RK2 должно находиться в диапазоне 75-150 Ом.

Расположение выводов корпуса симистора BTA216X

Примененный симистор обладает многократным запасом по току, что исключает нагрев. Симистор имеет пластмассовый корпус, позволяющий выполнить крепление винтом к металлическим поверхностям системного блока без дополнительной изоляции. Симистор BTA216Х-600Е можно заменить на другой аналогичного типа. При замене симистора придется изменить сопротивления R1 и R2 и предусмотреть электрическую изоляцию между корпусом симистора и поверхностью на которую устанавливается симистор.

Настройка регулятора

Для проверки работоспособности и настройки регулятора следует предварительно собрать схему на макетной плате. К схеме регулятора подсоединяется любой имеющийся вентилятор, предназначенный для применения в системном блоке персонального компьютера. Терморезисторы RK1 и RK3 располагаются вплотную, их выводы соединяются скручиванием, пропаиваются и соединяются с другими элементами регулятора в соответствии со схемой. При включении питания 12 вольт вентилятор не должен работать.

Терморезисторы RK1 и RK3 нужно нагреть, взяв пальцами. Спустя одну-две минуты температура терморезисторов сравняется с температурой руки. Вентилятор должен включиться. Если включение вентилятора не произошло нужно увеличить сопротивление резистора R2 до 200 Ом или более. Возможно, для сопротивления R2 придется применить два соединенных последовательно резистора 180 Ом и 10 Ом. Если при включении питания вентилятор работает, то сопротивление резистора R2 следует уменьшить. Для облегчения настройки контролируется напряжение на управляющем электроде симистора.

При нагреве терморезисторов RK1 и RK3 напряжение на управляющем электроде должно увеличиваться. Вентилятор начнет работать приоткрывании симистора. Различные экземпляры симисторов открываются при различных напряжениях, находящихся в диапазоне 0,55—0,75 вольт.

Напряжение блока питания, использованного при макетировании схемы, скорее всего, будет немного отличаться от напряжения питания схемы, размещаемой в системном блоке. После монтажа схемы внутри системного блока подбор резистора R2 вероятно придется повторить, так как напряжение блока питания компьютера редко точно равно 12 вольт. Как правило, это напряжение имеет величину 11,7—11,3 вольт. Приведенная настройка позволяет установить уровень срабатывания звена релейного действия с точностью ±5 &ordmС. При желании схему можно настроить на другую температуру.

Сборка схемы

Для сборки схемы регулятора не требуется печатная плата. Терморезисторы приклеиваются с помощью эпоксидной смолы к охлаждаемому объекту, например к радиатору процессора, радиатору, расположенному внутри блока питания, процессору видеоплаты. В случае видеоплаты вилка XP1 приклеивается к видеоплате. Наличие в схеме разъемного соединения облегчает монтаж схемы регулятора и замену охлаждаемого блока. Элементы схемы можно закрепить на задней стенке системного блока или внутри корпуса блока питания.

Соединение компонентов схемы

Симистор крепится к корпусу с помощью винта. Конденсатор закрепляется с помощью хомута. Корпус конденсатора изолируется от элементов конструкции системного блока и крепежа. Резисторы закреплены пайкой на выводах симистора обладающих достаточной жесткостью. Розетка XP2 подключается к вилке FAN , находящейся на материнской плате или к разъемам, идущим от блока питания. Провода питания от розетки XP2 и идущие от розетки XP1 попарно скручиваются. Применение дополнительного охлаждения полезно при установке в системный блок двух CD-ROMов, трех-четырех жестких дисков и при других значительных нагрузках блока питания.

Справочные данные:
Терморезисторы
Симистор BTA216

Платон Константинович Денисов, г. Симферополь
[email protected]

ВКЛЮЧИТЬ - ВЫКЛЮЧИТЬ. ПРОСТЫЕ СОВЕТЫ, КОТОРЫМИ НЕ СТОИТ ПРЕНЕБРЕГАТЬ

Первое и необходимое условие для нормальной работы компьютера - полноценное питание. Поскольку в блоках питания компьютера вилки выполнены по европейским стандартам (с толстыми ножками и контактом "земля"), необходимо купить переходник и сетевой фильтр типа Pilot на 4-5 розеток. Это избавит вас от многих проблем и неприятностей, например от "сгоревших" узлов компьютера при подключении к отечественным розеткам. Вдобавок сетевые фильтры обеспечивают и некоторую защиту от перепадов напряжения.

Как и для бытовой техники, для компьютера хороший электрический контакт - залог его здоровья и долголетия. Если при включении слышны звуки, видны искры разрядов, вилка нагревается - то либо она неисправна, либо розетку и что-то нужно заменить. Не стоит говорить о том, что ремонт компьютера обойдется дороже, чем замена вилки или всего шнура.

Итак, перед вами компьютер - системный блок, клавиатура, принтер, монитор, мышка, кабели и документация. Необходимо собрать все в единую электрическую систему, подсоединив кабели к соответствующим разъемам. Прежде всего установите переключатели 220V/127V на блоках питания в положение 220V. Если переключатель будет в положении 127V, а напряжение сети 220V - блок питания выйдет из строя.

Выключатели блоков питания должны стоять в положении OFF (выключено). Подключите вилки их кабелей к сетевому фильтру и установите переключатель на нем также в положение OFF. Затем вставьте вилку сетевого фильтра в розетку. Теперь на фильтре можно поставить выключатель в положение ON (включено). Загорается индикатор сети на сетевом фильтре. Если порядок включения узлов компьютера не оговорен, первым включите системный блок, затем монитор и принтер.

И еще несколько советов, очень простых и очевидных (потому, видимо, ими часто пренебрегают с большим риском для себя):

- не устанавливайте компьютер вблизи нагревательных приборов, батарей и т. п.; аппарат рассчитан на работу в определенных температурных условиях, вентилятор в нем охлаждает узлы и детали; охлаждаться горячим воздухом ему совершенно не на пользу;

- не кладите на компьютер листы бумаги, салфетки, скрепки, кнопки: бумага становится экраном, закрывающим решетки, и препятствует конвекции; скрепки норовят провалиться внутрь и замкнуть цепь;

- не принимайте пищу на рабочем месте; создатели компьютера вовсе не рассчитывали, что на клавиатуру будет проливаться сладкий кофе или чай, застывать пленкой, которая мешает хорошему контакту.

И несколько слов о порядке выключения компьютера. Если в документации не оговорено особо, то порядок выключения компьютера - обратный включению: первым выключается питание внешних устройств и последним - системного блока.

При выключении питания системного блока на материнской плате вырабатывается сигнал RESET, что приводит к установке процессора и всех интегральных микросхем в исходное состояние. Последними в него возвращаются блок питания и терморезистор - ограничитель броска тока при включении блока питания. Он нагрелся и теперь остывает. Не стоит испытывать терморезистор на прочность, и поэтому повторно включайте блок питания только через 30 секунд после выключения.

И еще одно напоминание, совсем уже очевидное: не забудьте программы, с которыми вы работали, и получить разрешение на выключение.

Управление вентилятором блока питания компьютера

Не так давно попался в руки блок питания Enhance P520N от домашнего компьютера. Помимо основной платы блока питания, в ней обнаружилась еще небольшое устройство. Это был терморегулятор скорости вращения вентилятора. Схема простенькая, содержит всего два транзистора, четыре резистора, диод и конденсатор. Схема устройства показана на рисунке 1.

Данный регулятор можно применять не только для блоков питания, но и в усилителях мощности низкой частоты, сварочных аппаратах, мощных преобразователях, регуляторах мощности и т.д. Зачем зря жужжать, если все ПП (полупроводниковые приборы) холодные. Диод VD1, стоящий на плате и в указанной схеме по всей вероятности нужен только в конкретном ИИП, поэтому его можно убрать. На плате стоит диод 1N4002. Первый транзистор можно заменить на отечественный — КТ3102. Импортный транзистор C1384 по документации рассчитан на ток коллектора 1А, напряжение коллектор-эмиттер 60В, постоянная рассеиваемая мощность коллектора 1 ватт. Можно попробовать заменить на наш КТ814 с любой буквой или на КТ972. Электролитический конденсатор должен быть на напряжение 16 вольт.

Начальную скорость вращения вентилятора выбирают изменением величины сопротивления резистора R1. Схема работает следующим образом. Когда температура внутри контролируемого объема или непосредственно теплоотвода ПП невысокая, то транзистор VT2 призакрыт и вентилятор имеет не большую скорость вращения. При увеличении температуры начинает уменьшаться сопротивление терморезистора Rt, что в свою очередь приведет к уменьшению напряжения на базе VT1, начнет уменьшаться и ток коллектора этого транзистора. Уменьшение тока через первый транзистор приведет к увеличению тока база-эмиттер второго транзистора VT2 (уменьшится шунтирующее действие транзистора VT1 на переход база-эмиттер VT2). Транзистор VT2 начнет открываться, напряжение на вентиляторе начнет возрастать, Скорость его вращения увеличится.
Для большей универсальности в схему можно ввести стабилизатор напряжения, например, КР142ЕН8Б. У этой микросхемы максимальное входное напряжение во всем диапазоне температур равно 35 вольт.
Вид платы показан на фото 1, а рисунок печатной платы на рисунке 2.

В случае применения поверхностного монтажа, плату можно будет закрепить непосредственно на контролируемом теплоотводе для ПП, сделав в ней соответствующее отверстие для винта крепления.

Недавно зашёл в гости к знакомому, а он сидит и разбирает старые блоки питания от компьютеров – хочет посмотреть, что там у них внутри. Руки по локоть грязные, пыль столбом стоит, но при этом стол аккуратно застелен газеткой. Похоже, что этот день закончится генеральной уборкой кабинета …

Я появился как раз в тот момент, когда «вскрытие показало», что использовать трансформаторы для аккумуляторной «зарядки» не получится. И весь интерес сразу переключился на вентиляторы с платой управления и, естественно, тут же возник вопрос «а нельзя ли это куда-нибудь применить?» Ну, положим, применить-то можно, а для чего? Цель какая.

Посидели немного, попили кофе, обсудили варианты применения. В общем, сошлись на том, что я забираю вентиляторы для экспериментов, а там видно будет.

В долгий ящик это дело откладывать не стал, вечером занялся проверкой.

Платы управления разные (маркировка GDP-002 94V-0 на рис.1 и 3BS00195 на рис.2), но, судя по тому, что обе собраны на одинаковых микросхемах LM358, имеют по 2 транзистора (один NPN структуры, другой PNP) и по 2 питающих провода, то схемы не должны сильно отличаться. Правда, у одной есть терморезистор, а у другой его нет – из платы просто торчит жёлтый провод, обозначенный как «ОРР» (возможно, он когда-то шёл к терморезистору). Выводы питания тоже подписаны, но с ними можно и по цвету разобраться (чёрный – «минус», другой – «плюс»).

Сначала к лабораторному блоку питания была подключена плата с терморезистором. Вентилятор начал вращаться примерно при 10 В, шума почти нет, скорость вращения небольшая, поток воздуха слабый. При 12 В обороты увеличились ненамного, шум оставался примерно таким же. При проверке напряжения питания двигателя тестер показал 5 В.

Затем к терморезистору было поднесён горячий паяльник. Через несколько секунд обороты вентилятора резко увеличились и он заметно зашумел – напряжение на двигателе стало почти 12 В. При удаления паяльника и спустя 20-30 секунд, обороты резко падают до минимального значения. Получается, что у этой схемы нет плавной регулировки оборотов.

Далее к блоку питания была подключена другая плата. Вентилятор запустился при 5,5 В, скорость вращения небольшая, шума нет. При питании 12 В обороты увеличились ненамного, шум слабый, напряжение на проводах вентилятора 5 В.

При замыкании желтого проводника на «минус» питания схемы ничего не происходит, а замыкание на «плюс» заставляет запускаться вентилятор на максимальных оборотах (напряжение на двигателе около 12 В).

Для проверки возможности плавной регулировки оборотов, жёлтый провод был подпаян к движку переменного резистора сопротивлением 10 кОм, а его крайние выводы к «минусу» и к «плюсу» питания (рис.3). При напряжении на движке около +8,0 В двигатель начинает увеличивать обороты и уже при +8,5 В достигает максимума.

С этой платы была срисована схема (рис.4). На месте резистора R2 стоит стабилитрон на такое же напряжение, как и ZD1 (6,2 В).

Принцип работы схемы несложен – пока напряжения на инверсных входах компараторов ниже напряжений на их прямых входах, компараторы имеют «высокий уровень» на выходах и это держит транзистор Q1 в закрытом состоянии, а Q2 в открытом. В коллекторе Q2 стоит резистор такого сопротивления, что при распределении потенциалов между резистором и двигателем, на последнем «падает» 5 В. Это напряжение является опорным для компаратора ОР1.1. При повышении входного напряжения (точка «ОРР») до уровня, когда потенциал на инверсном входе ОР1.1 становится больше уровня на его прямом входе, он должен переключиться «в ноль» и открыть транзистор Q1, но этого не происходит, так как при открывании Q1 тут же повышается уровень опорного напряжения и возникает некоторое неустойчивое состояние с приоткрытым транзистором.

Для визуализации происходящих процессов были сняты напряжения в некоторых точках схемы (применялась программа SpectraPLUS и звуковая карта с открытыми входами, сигналы брались через делители на 10).

На рисунке 5 на верхнем графике показано изменение напряжения в точке «ОРР» с +7,5 В до +10 В, «полочкой» длительностью около 10 секунд и последующим спадом, а в правом канале – соответствующее по времени напряжение на двигателе вентилятора (выводы «CN1»). На рисунке 6 более подробно «увеличен по времени» участок длительностью около 20 секунд, начиная с 9 секунды записи и на нём видно, насколько рост выходного напряжения не пропорционален росту входного сигнала.

На рисунке 7 показано соответствие уровня на выходе компаратора ОР1.1 (верхний график) к уровню на выходе «CN1». Первые 2,5 секунды – плата управления обесточена, затем на неё подаётся питание и напряжение в точке «ОРР» начинает плавно увеличиваться (не показано). Примерно на 12 секунде компаратор ОР1.1 начинает срабатывать (понижается уровень постоянного напряжения и размытая линия на нём говорит о наличии пульсаций), напряжение на выходе «CN1» в этот момент растёт и на 17 секунде компаратор срабатывает уже полностью.

При проверке плат на лабораторном источнике питания выяснилось, что их режимы работы несколько меняются в зависимости от изменения питающего напряжения, т.е. «плавает» порог срабатывания.

Обе платы управления имеют небольшой выходной ток – на максимальном выходном напряжении он ограничен параметрами транзисторов PNP структуры, на минимальном – сопротивлениями резисторов в делителе напряжении. Судить о возможной нагрузке можно по тому, что на плате 3BS00195 установлен транзистор 2SA1270 (30 В; 0,5 А; 0,5 Вт), а на плате GDP-002 94V-0 стоит 2SB1116 (50 В; 1 А; 0,75 Вт).

Если немного изменить схему, показанную на рисунке 4 (применить большее напряжение питания, увеличить сопротивление резистора R9 и заменить стабилитроны на меньшее напряжение стабилизации), то можно расширить границы выходных напряжений. Такой вариант с пределами +2,6…+20 В был проверен, но он оказался плох тем, что при некоторых средних выходных напряжениях транзистор Q1 начинает достаточно сильно греться, так как на нём выделяется повышенная мощность. Здесь требуется его замена на более мощный (возможно, что и с радиатором).

Итак, с принципом работы плат управления более-менее понятно – одна, с маркировкой 3BS00195, имеет дискретный режим работы с получением на выходе минимального или максимального напряжения, а вторая, с маркировкой GDP-002 94V-0, имеет возможность для плавной регулировки, но управляющее напряжение находится на относительно небольшом участке возможных значений. Впрочем, этот участок можно сместить, изменив сопротивления резисторов R11 и R10, напряжения стабилизации стабилитронов и сопротивление R9.

Несложно превратить схему в простой "выключатель", подающий напряжение в нагрузку или снимающий его. Для этого достаточно убрать транзистор Q2 и правый вывод резистора R5 припаять к VCC (+12 В). Теперь компаратор ОР1.1 будет срабатывать при напряжении +6,2 В на его инверсном входе.

Что ж, теперь самое время подумать, куда их можно применить.

И, естественно, первое, что приходит на ум – это использовать их по прямому назначению – терморегулирование. Например, можно включать и выключать «вытяжку» в теплице или оранжерее.

Вторая мысль – используя фотодатчик и светодиодную ленту, можно управлять освещением (входной двери, коридора, просто вечернее или ночное дежурное освещение) (рис.8).

Можно использовать как сигнализатор чего либо. Если уменьшить минимальное выходное напряжение (или перевести в компараторный режим) и управлять схемой от контактных датчиков, то при подключении на выход звукового оповещателя «Иволга» (ток потребления 30 мА) может получиться простейшая охранная сигнализация для гаража или подворья (рис.9). Или, допустим, сигнализатор переполнения ёмкости с жидкостью.

Конечно, последние варианты сигнализаций можно собрать и без применения платы управления, а использовать только БП, контакты и оповещатель, но так ведь интересней!

И напоследок был проверен вариант «светомузыки-мигалки». Плата переведена в режим «компаратор» с порогом срабатывания около 0,6 В (рис.10, красным крестом показаны детали, которые следует удалить и место разрыва соединения, правый вывод R5 подключен к плюсовой шине питания). Сигнал управления формировался RC фильтром низкой частоты и выпрямлялся с удвоением (элементы, помеченные штрихом «`»). Источником сигнала был ЦАП с выходным напряжением около 1…2 В. Светодиод HL1 – отрезок светодиодной ленты с напряжением питания 12 В. Схема получилась, конечно, грубая – без компрессора или автоматической регулировки уровня, но принцип рабочий – НЧ сигналы отрабатывает хорошо (в приложении к тексту есть ссылка на видео файл с работой «светомузыки-мигалки» (mp4, 19 MB), но без музыкальный ряда (Ночной Патруль – Одиночество 1999 год)).

В общем, сразу так всего и не придумаешь. Пойду, порадую товарища.

Андрей Гольцов, г. Искитим

Недавно зашёл в гости к знакомому, а он сидит и разбирает старые блоки питания от компьютеров – хочет посмотреть, что там у них внутри. Руки по локоть грязные, пыль столбом стоит, но при этом стол аккуратно застелен газеткой. Похоже, что этот день закончится генеральной уборкой кабинета …

Я появился как раз в тот момент, когда «вскрытие показало», что использовать трансформаторы для аккумуляторной «зарядки» не получится. И весь интерес сразу переключился на вентиляторы с платой управления и, естественно, тут же возник вопрос «а нельзя ли это куда-нибудь применить?» Ну, положим, применить-то можно, а для чего? Цель какая.

Посидели немного, попили кофе, обсудили варианты применения. В общем, сошлись на том, что я забираю вентиляторы для экспериментов, а там видно будет.

В долгий ящик это дело откладывать не стал, вечером занялся проверкой.

Платы управления разные (маркировка GDP-002 94V-0 на рис.1 и 3BS00195 на рис.2), но, судя по тому, что обе собраны на одинаковых микросхемах LM358, имеют по 2 транзистора (один NPN структуры, другой PNP) и по 2 питающих провода, то схемы не должны сильно отличаться. Правда, у одной есть терморезистор, а у другой его нет – из платы просто торчит жёлтый провод, обозначенный как «ОРР» (возможно, он когда-то шёл к терморезистору). Выводы питания тоже подписаны, но с ними можно и по цвету разобраться (чёрный – «минус», другой – «плюс»).

Сначала к лабораторному блоку питания была подключена плата с терморезистором. Вентилятор начал вращаться примерно при 10 В, шума почти нет, скорость вращения небольшая, поток воздуха слабый. При 12 В обороты увеличились ненамного, шум оставался примерно таким же. При проверке напряжения питания двигателя тестер показал 5 В.

Затем к терморезистору было поднесён горячий паяльник. Через несколько секунд обороты вентилятора резко увеличились и он заметно зашумел – напряжение на двигателе стало почти 12 В. При удаления паяльника и спустя 20-30 секунд, обороты резко падают до минимального значения. Получается, что у этой схемы нет плавной регулировки оборотов.

Далее к блоку питания была подключена другая плата. Вентилятор запустился при 5,5 В, скорость вращения небольшая, шума нет. При питании 12 В обороты увеличились ненамного, шум слабый, напряжение на проводах вентилятора 5 В.

При замыкании желтого проводника на «минус» питания схемы ничего не происходит, а замыкание на «плюс» заставляет запускаться вентилятор на максимальных оборотах (напряжение на двигателе около 12 В).

Для проверки возможности плавной регулировки оборотов, жёлтый провод был подпаян к движку переменного резистора сопротивлением 10 кОм, а его крайние выводы к «минусу» и к «плюсу» питания (рис.3). При напряжении на движке около +8,0 В двигатель начинает увеличивать обороты и уже при +8,5 В достигает максимума.

С этой платы была срисована схема (рис.4). На месте резистора R2 стоит стабилитрон на такое же напряжение, как и ZD1 (6,2 В).

Принцип работы схемы несложен – пока напряжения на инверсных входах компараторов ниже напряжений на их прямых входах, компараторы имеют «высокий уровень» на выходах и это держит транзистор Q1 в закрытом состоянии, а Q2 в открытом. В коллекторе Q2 стоит резистор такого сопротивления, что при распределении потенциалов между резистором и двигателем, на последнем «падает» 5 В. Это напряжение является опорным для компаратора ОР1.1. При повышении входного напряжения (точка «ОРР») до уровня, когда потенциал на инверсном входе ОР1.1 становится больше уровня на его прямом входе, он должен переключиться «в ноль» и открыть транзистор Q1, но этого не происходит, так как при открывании Q1 тут же повышается уровень опорного напряжения и возникает некоторое неустойчивое состояние с приоткрытым транзистором.

Для визуализации происходящих процессов были сняты напряжения в некоторых точках схемы (применялась программа SpectraPLUS и звуковая карта с открытыми входами, сигналы брались через делители на 10).

На рисунке 5 на верхнем графике показано изменение напряжения в точке «ОРР» с +7,5 В до +10 В, «полочкой» длительностью около 10 секунд и последующим спадом, а в правом канале – соответствующее по времени напряжение на двигателе вентилятора (выводы «CN1»). На рисунке 6 более подробно «увеличен по времени» участок длительностью около 20 секунд, начиная с 9 секунды записи и на нём видно, насколько рост выходного напряжения не пропорционален росту входного сигнала.

На рисунке 7 показано соответствие уровня на выходе компаратора ОР1.1 (верхний график) к уровню на выходе «CN1». Первые 2,5 секунды – плата управления обесточена, затем на неё подаётся питание и напряжение в точке «ОРР» начинает плавно увеличиваться (не показано). Примерно на 12 секунде компаратор ОР1.1 начинает срабатывать (понижается уровень постоянного напряжения и размытая линия на нём говорит о наличии пульсаций), напряжение на выходе «CN1» в этот момент растёт и на 17 секунде компаратор срабатывает уже полностью.

При проверке плат на лабораторном источнике питания выяснилось, что их режимы работы несколько меняются в зависимости от изменения питающего напряжения, т.е. «плавает» порог срабатывания.

Обе платы управления имеют небольшой выходной ток – на максимальном выходном напряжении он ограничен параметрами транзисторов PNP структуры, на минимальном – сопротивлениями резисторов в делителе напряжении. Судить о возможной нагрузке можно по тому, что на плате 3BS00195 установлен транзистор 2SA1270 (30 В; 0,5 А; 0,5 Вт), а на плате GDP-002 94V-0 стоит 2SB1116 (50 В; 1 А; 0,75 Вт).

Если немного изменить схему, показанную на рисунке 4 (применить большее напряжение питания, увеличить сопротивление резистора R9 и заменить стабилитроны на меньшее напряжение стабилизации), то можно расширить границы выходных напряжений. Такой вариант с пределами +2,6…+20 В был проверен, но он оказался плох тем, что при некоторых средних выходных напряжениях транзистор Q1 начинает достаточно сильно греться, так как на нём выделяется повышенная мощность. Здесь требуется его замена на более мощный (возможно, что и с радиатором).

Итак, с принципом работы плат управления более-менее понятно – одна, с маркировкой 3BS00195, имеет дискретный режим работы с получением на выходе минимального или максимального напряжения, а вторая, с маркировкой GDP-002 94V-0, имеет возможность для плавной регулировки, но управляющее напряжение находится на относительно небольшом участке возможных значений. Впрочем, этот участок можно сместить, изменив сопротивления резисторов R11 и R10, напряжения стабилизации стабилитронов и сопротивление R9.

Несложно превратить схему в простой "выключатель", подающий напряжение в нагрузку или снимающий его. Для этого достаточно убрать транзистор Q2 и правый вывод резистора R5 припаять к VCC (+12 В). Теперь компаратор ОР1.1 будет срабатывать при напряжении +6,2 В на его инверсном входе.

Что ж, теперь самое время подумать, куда их можно применить.

И, естественно, первое, что приходит на ум – это использовать их по прямому назначению – терморегулирование. Например, можно включать и выключать «вытяжку» в теплице или оранжерее.

Вторая мысль – используя фотодатчик и светодиодную ленту, можно управлять освещением (входной двери, коридора, просто вечернее или ночное дежурное освещение) (рис.8).

Можно использовать как сигнализатор чего либо. Если уменьшить минимальное выходное напряжение (или перевести в компараторный режим) и управлять схемой от контактных датчиков, то при подключении на выход звукового оповещателя «Иволга» (ток потребления 30 мА) может получиться простейшая охранная сигнализация для гаража или подворья (рис.9). Или, допустим, сигнализатор переполнения ёмкости с жидкостью.

Конечно, последние варианты сигнализаций можно собрать и без применения платы управления, а использовать только БП, контакты и оповещатель, но так ведь интересней!

И напоследок был проверен вариант «светомузыки-мигалки». Плата переведена в режим «компаратор» с порогом срабатывания около 0,6 В (рис.10, красным крестом показаны детали, которые следует удалить и место разрыва соединения, правый вывод R5 подключен к плюсовой шине питания). Сигнал управления формировался RC фильтром низкой частоты и выпрямлялся с удвоением (элементы, помеченные штрихом «`»). Источником сигнала был ЦАП с выходным напряжением около 1…2 В. Светодиод HL1 – отрезок светодиодной ленты с напряжением питания 12 В. Схема получилась, конечно, грубая – без компрессора или автоматической регулировки уровня, но принцип рабочий – НЧ сигналы отрабатывает хорошо (в приложении к тексту есть ссылка на видео файл с работой «светомузыки-мигалки» (mp4, 19 MB), но без музыкальный ряда (Ночной Патруль – Одиночество 1999 год)).

В общем, сразу так всего и не придумаешь. Пойду, порадую товарища.

Андрей Гольцов, г. Искитим

Методы снижения пусковых токов импульсных источников питания

18 мая 2020

Александр Русу (г. Одесса)

Одна из главных проблем использования импульсных источников питания в светодиодных осветительных системах – ограничение пусковых токов, способных вывести эти системы из строя. Модульные решения, предусматриваюшие ограничение этих токов, предлагает компания MEAN WELL, а дискретные – для малосерийной продукции или индивидуальной разработки – сам автор статьи.

Маломощные импульсные источники питания (ИП) всегда пользовались стабильным спросом на рынке электроники – в системах промышленной автоматики, контроля доступа, пожарной безопасности и многих других. В последнее время этот список пополнился устройствами интернета вещей, умного дома и домашней автоматизации.

До недавнего времени использование ИП, независимо от того, являлись ли они универсальными блоками общего применения или разрабатывались для конкретного устройства, не вызывало особых технических проблем, но с началом эпохи светодиодного освещения ситуация изменилась не в лучшую сторону. Активное использование недорогих 12-вольтовых светодиодных лент увеличило число ИП в системах освещения, в результате чего стали появляться сбои в системах электроснабжения, вплоть до выхода оборудования из строя.

Суть проблемы заключается в значительной величине пускового тока (Inrush Current), возникающего в момент подключения блока питания к сети. Несмотря на то, что в каждом ИП приняты меры для его ограничения, все равно в большинстве устройств его величина может в десятки раз превышать ток, потребляемый при максимальной нагрузке. В результате одновременное включение нескольких ИП может приводить к срабатыванию защиты от короткого замыкания и вынуждает устанавливать автоматические выключатели либо с большим током, либо с большим временем срабатывания. Кроме того, при частом включении осветительных приборов резко уменьшается срок службы коммутирующих устройств – выключателей или реле, поскольку из-за чрезвычайно большого коммутируемого тока у них быстро прогорают контакты.

Хотя эта проблема не нова, до недавнего времени каких-либо готовых, а главное – доступных решений практически не было. Это и послужило поводом рассмотреть имеющиеся на рынке устройства для уменьшения пусковых токов, а также несколько доступных способов самостоятельного устранения этой проблемы. 

Технические характеристики источников питания

На сегодняшний день создать ИП мощностью до 1 кВт не является сложной технической задачей. Доступность элементной базы и большое количество наработок в этой области позволяют в сжатые сроки наладить производство источников питания на основе известных компонентов и по известным рекомендациям. Неудивительно, что схемотехника, технические характеристики и внешний вид недорогих выпрямительных устройств как ведущих мировых производителей, так и малоизвестных компаний очень схожи.

Одними из недорогих источников питания, часто используемыми для питания светодиодных лент, являются модули серии LRS производства компании MEAN WELL (рисунок 1). При разработке данной линейки были использованы как последние достижения в области производства импульсных источников питания, так и самая современная элементная база, что позволило вывести ИП семейства LRS на современный технический уровень и обеспечить хорошее соотношение «цена/качество».

Рис. 1. Выпрямитель из семейства LRS

Ключевыми особенностями семейства LRS (таблица 1) являются возможность работы в универсальном диапазоне входных напряжений (85…264 B AC), компактный размер (высота профиля 1U – 30 мм), высокий КПД (до 91,2%) и малое потребление при отключении нагрузки (0,2…0,75 Вт). ИП семейства LRS имеют множество сертификатов, среди которых IEC/EN 60335-1 (PD3) и IEC/EN61558-1, 2-16. Все источники питания LRS проходят тестирование при 100% нагрузки и имеют трехлетнюю гарантию.

Таблица 1. Основные технические характеристики выпрямителей семейства LRS

Наименование Номинальная  выходная мощность, Вт Выходное напряжение, В Входное напряжение В AC Потребляемый ток при 230 В АС, А Стартовый ток при 230 В АС, А
LRS-35 35 5…48 85…264 0,42 45
LRS-50 50 3,3…48 85…264 0,56 45
LRS-75 75 5…48 85…264 0,85 65
LRS-100 100 3,3…48 85…264 1,2 50
LRS-150 150 12…48 85…132/170…264 1,7 60
LRS-150F 150 5…48 85…264 1,7 60
LRS-200 200 3,3…48 90…132/180…264 2,2 60
LRS-350 350 3,3…48 90…132/180…264 3,4 60

Одной из специфических особенностей светодиодного освещения является возможность установки оборудования в специализированных электрических шкафах, поэтому наряду с ИП в перфорированных корпусах на практике может возникнуть реальная потребность в модулях с форм-фактором, рассчитанном на установку на DIN-рейку. В этом случае следует обратить внимание на семейство HDR производства компании MEAN WELL, выпускаемое в малогабаритных пластмассовых корпусах (рисунок 2).

Рис. 2. Внешний вид выпрямителей семейства HDR производства MEAN WELL

Несмотря на то, что выпрямители HDR изначально были спроектированы для использования в автоматизированных системах управления и имеют изоляцию с электрической прочностью вплоть до Class II, сфера их применения не ограничивается питанием только промышленных контроллеров. Благодаря широкому диапазону входных напряжений, хорошему уровню электробезопасности, высокому КПД и малому энергопотреблению при отключении нагрузки (не более 0,3 Вт) эти модули (таблица 2) можно с успехом применить в самых разнообразных приложениях, начиная от питания элементов сложных технологических линий и заканчивая тем же светодиодным освещением.

Таблица 2. Основные технические характеристики выпрямителей семейства HDR

Наименование Максимальная выходная мощность, Вт Выходное напряжение, В Входное напряжение, В AC Потребляемый ток при 230 В АС, А Стартовый ток при 230 В АС, А
HDR-15 15 5…48 85…264 0,25 45
HDR-30 36 5…48 85…264 0,48 25
HDR-60 60 5…48 85…264 0,8 60
HDR-100 100 12…48 85…264 1,6 70
HDR-150 150 12…48 85…264 1,6 70

Анализируя данные таблиц 1 и 2, можно увидеть, что у всех рассмотренных ИП пусковой ток в десятки раз превышает ток, потребляемый при максимальной нагрузке. Причем чем меньше мощность источника питания, тем больше это соотношение. Например, для самой маломощной из рассмотренных моделей – ИП HDR-15 пусковой ток (45 А), согласно технической документации, в 180 раз превышает максимальное значение во время работы (0,25 А). Для мощных выпрямителей это соотношение хоть и немного меньше, но все равно является достаточно большим. Абсолютный рекорд по величине пускового тока (70 А) принадлежит моделям HDR-150. При таком пусковом токе в момент включения устройства хоть и кратковременно, но будет потребляться около 15 кВт, что достаточно много даже для промышленного оборудования.

Ситуацию не спасает и введение в ИП корректора коэффициента мощности (ККМ). Если проанализировать технические характеристики модулей семейства RSP производства MEAN WELL (рисунок 3), отличающихся от рассмотренных выше выпрямителей LRS наличием активного корректора коэффициента мощности, то окажется, что их пусковые токи также превышают номинальные значения в 15…70 раз (таблица 3). Это, конечно, меньше, чем в модулях без ККМ, однако все равно много, даже несмотря на высокий коэффициент мощности (не менее 0,93).

Рис. 3. Выпрямитель семейства RSP производства MEAN WELL

Таблица 3. Основные технические характеристики выпрямителей семейства RSP

Наименование Максимальная выходная мощность, Вт Выходное напряжение, В Входное напряжение, В АС Потребляемый ток при 230 В АС, А Стартовый ток при 230 В АС, А
RSP-75 75 3,3…48 85…264 0,5 35
RSP-100 100 3,3…48 85…264 0,55 30
RSP-150 150 3,3…48 85…264 0,8 45
RSP-200 200 2,5…48 88…264 1,1 40
RSP-320 320 2,5…12 88…264 1,5 40
RSP-500 500 3,3…48 85…264 2,65 40

Причины появления пусковых токов

На сегодняшний день большинство ИП изготавливается по схеме с бестрансформаторным входом. Ключевыми элементами данной схемы являются выпрямитель, реализуемый чаще всего по мостовой схеме, и входной сглаживающий конденсатор (рисунок 4).

Рис. 4. Типовая схема входной цепи выпрямительного устройства с бестрансформаторным входом

До включения блока питания конденсатор C1 полностью разряжен и напряжение на нем равно нулю, в то время как в рабочем режиме оно достигает амплитудного значения напряжения сети, равного, при входном напряжении 220 В, около 310 В. Поскольку напряжение на конденсаторе измениться мгновенно не может, то в момент включения схемы обязательно должен произойти бросок тока из-за необходимости заряда конденсатора фильтра.

Максимальное значение пускового тока зависит не только от электрических характеристик элементов схемы, но и от момента включения ее в сеть. Наихудшим случаем считается подключение к сети в моменты, когда ее напряжение равно амплитудным значениям. В этом случае к диодам выпрямителя VD1…VD4 прикладывается прямое напряжение около 310 В, и их ток ограничивается лишь активными сопротивлениями кристаллов, соединительных проводников и внутренним последовательным сопротивлением конденсатора. Очевидно, что если не принимать никаких мер, то начальное значение пускового тока может превысить 100 А даже при небольшой емкости конденсатора C1.

Несмотря на то, что выпрямительные полупроводниковые диоды VD1…VD4 обычно выдерживают подобные перегрузки, столь высокое значение тока может значительно сократить срок их службы и вывести из строя. Для предотвращения этого пусковой ток даже в маломощных схемах обычно ограничивается с помощью резистора, сопротивление которого выбирается таким, чтобы ток через диоды выпрямителя в самом худшем случае не превышал максимально допустимое значение для данного режима работы.

Однако последовательное включение сопротивления приводит к увеличению потерь, величина которых может оказаться недопустимо большой. Для исключения этого в выпрямителях вместо резистора чаще всего устанавливают термистор с отрицательным температурным коэффициентом сопротивления. В момент включения, когда сопротивление термистора велико, пусковой ток мал. После запуска источника питания ток, протекающий через термистор, разогревает его, что приводит к снижению его сопротивления и, как следствие, к уменьшению влияния на работу схемы. Несмотря на простоту, у такого способа есть один серьезный недостаток – при частой коммутации, например, когда ИП включается сразу после выключения, термистор не успевает остыть и ограничение пускового тока происходит не так эффективно.

Таким образом, в импульсных ИП, построенных по классическим схемам, пусковой ток ограничивается лишь на уровне, обеспечивающем безопасный режим работы выпрямительных диодов, поскольку использование иного решения приведет или к уменьшению КПД системы в целом, или к ее существенному удорожанию. Очевидно, что проблему пусковых токов в большинстве случаев необходимо решать другими способами.

Методы ограничения пусковых токов

При анализе схемотехники импульсных выпрямительных устройств с бестрансформаторным входом становится понятно, что одним из наилучших методов уменьшения пусковых токов является кратковременное увеличение сопротивления входной цепи в момент включения. Именно по такому пути пошла компания MEAN WELL, представив на рынке серию ограничителей пусковых токов семейства ICL (рисунок 5).

Рис. 5. Ограничители пусковых токов производства компании MEAN WELL

На сегодняшний день MEAN WELL предлагает своим клиентам четыре модели ограничителей с максимальным пусковым током 23 А (ICL-16R/L) и 48 А (ICL-28R/L), предназначенные для установки на DIN-рейку (модели с суффиксом R) или на шасси (модели с суффиксом L). Основными элементами модулей являются мощные токоограничивающие резисторы, реле и схема управления (рисунок 6). В момент включения контакты реле разомкнуты, и входной ток выпрямительных устройств протекает через резистор с сопротивлением R. Через некоторое время, определяемое схемой управления, на обмотку реле подается напряжение, и его контакты замыкают токоограничивающий резистор, подключая выпрямительные устройства непосредственно к сети.

Рис. 6. Структурная схема ограничителей ICL

Время срабатывания реле определяется схемой управления и составляет 300 мс для моделей ICL-16R/L и 150 мс для ICL-28R/L (таблица 4), что равно, соответственно, 15 и 7,5 периодам изменения напряжения сети с частотой 50 Гц. Этого времени вполне достаточного для заряда конденсаторов входных фильтров, поскольку в большинстве случаев напряжение на них достигает необходимой величины в течение 1…3 периодов (20…60 мс).

Таблица 4. Основные технические характеристики ограничителей ICL

Параметры Наименование
ICL-16R/L ICL-28R/L
Входное напряжение, В AC 180…264 180…264
Ограничение пускового тока, А 23 48
Максимальный выходной ток (продолжительный), А 16 28
Потребляемая мощность при 264 В, Вт < 1,5 < 2
Длительность ограничения тока, мс 300 ± 50 150 ± 50
Диапазон рабочих температур, °С -30…70 -30…70

Ключевым преимуществом ограничителей ICL является возможность работы с несколькими ИП (рисунок 7). Действительно, при наличии последовательно включенного резистора максимальный ток в цепи не может превысить определенное значение даже при коротком замыкании выхода ограничителя. В этом случае максимальное количество подключаемых источников питания ограничивается максимально допустимым током контактов реле, равным 16 А для ICL-16R/L и 28 А для ICL-28R/L. Таким образом, пусковой ток в системе с использованием ограничителей тока будет превышать ток при полной нагрузке не более чем в два раза.

Рис. 7. Типовая схема включения ограничителей ICL

Еще одним преимуществом такого решения является его универсальность, поскольку проблема пусковых токов существует не только у импульсных ИП. Например, такая же проблема может возникнуть при включении мощных трансформаторов. И хоть в этом случае причина появления пускового тока имеет иную физическую природу (наличие остаточной намагниченности ферромагнитного материала магнитопровода), тем не менее, ее теоретически можно также решить с помощью ограничителей пусковых токов производства компании MEAN WELL.

Особенности самостоятельного изготовления ограничителей пусковых токов

Как и любая продукция компании MEAN WELL, ограничители пусковых токов серии ICL отличаются высоким качеством. Однако они все еще являются новинкой на рынке и их доступность некоторое время будет недостаточной для широкого использования. Тем не менее, простота метода ограничения пусковых токов позволяет изготовить такое устройство самостоятельно из компонентов, имеющихся в любом радиомагазине.

Один из вариантов такого решения показан на рисунке 8. В качестве токоограничивающих резисторов были использованы два соединенных параллельно 5-ваттных проволочных резистора R3 и R4, замыкаемые с помощью контактов реле K1. Элементы R1, R2, VD1, VD2, C1 являются простейшим стабилизированным источником питания, предназначенным для включения реле. Время срабатывания системы зависит от скорости заряда конденсатора C1 и при данных номиналах компонентов приблизительно равно 0,5 с, что вполне достаточно для заряда конденсаторов фильтров подсоединенных выпрямительных устройств. Максимальное значение пускового тока определяется сопротивлением резисторов R3 и R4. При использовании элементов с сопротивлением 47 Ом ток в момент включения системы не должен превышать 12 А во всем диапазоне рабочих напряжений.

Рис. 8. Принципиальная схема и внешний вид самостоятельно изготовленного ограничителя тока

Для надежного срабатывания реле, способного коммутировать токи более 1 А, необходимо около 0,5 Вт мощности, поэтому чем больше напряжение обмотки, тем меньше энергопотребление системы, ведь формирование напряжения для обмотки реле производится простейшей схемой на основе резистивного делителя, КПД которого катастрофически падает с уменьшением коэффициента передачи. В данной схеме было использовано стандартное реле SRD-24VDC-SL-C с обмоткой, рассчитанной на напряжение 24 В, поэтому потребляемая мощность данной схемы достаточно высока – около 4 Вт.

Для уменьшения энергопотребления можно заменить резисторы R1 и R2 на конденсатор, имеющий на частоте 50 Гц аналогичное сопротивление. Однако наилучшим решением в данной ситуации будет использование специализированных маломощных источников питания, которые не только сформируют нужное напряжение с малыми потерями, но и обеспечат работоспособность схемы в широком диапазоне входных напряжений.

Небольшое количество компонентов позволило поместить данную схему в компактном корпусе KLS24-JG4-01, рассчитанном на установку на DIN-рейку. Практические испытания схемы с пятью подключенными к выходу ИП мощностью от 50…150 Вт показали хорошее ограничение пусковых токов, проявляющееся в отсутствии срабатываний защиты от коротких замыканий, которая до этого активизировалась в среднем при каждом третьем включении.

Основным недостатком рассмотренной выше схемы является высокое энергопотребление, проявляющееся в достаточно сильном нагреве корпуса во время работы. Поэтому было решено применить более простой способ питания реле напряжением, формируемым непосредственно выпрямительным устройством (рисунок 9). Использование такого подхода позволило, во-первых, значительно упростить схему, а во-вторых, максимально уменьшить пусковой ток, ведь при таком подходе реле сработает уже после запуска источника питания, то есть, когда заряд конденсатора фильтра гарантированно закончится.

Рис. 9. Принципиальная схема и внешний вид ограничителя тока с питанием реле от выпрямительного устройства

В новой схеме в качестве токоограничивающих резисторов были использованы два параллельно соединенных резистора сопротивлением 1 кОм и мощностью 3 Вт. При таких номиналах максимальное значение пускового тока не будет превышать 2 A. Очевидно также, что для этой схемы рабочее напряжение реле должно быть равно выходному напряжению выпрямительного устройства, в данном случае – 12 В.

Поскольку столь высокое сопротивление во входной цепи теоретически может привести к нестабильной работе блока питания, для проверки работоспособности системы была собрана экспериментальная установка на основе импульсного ИП мощностью 60 Вт (рисунок 10). Для измерения тока был использован резистивный шунт с сопротивлением 0,1 Ом, включенный последовательно с выпрямительным устройством. Напряжение сети контролировалось с помощью штатного делителя напряжения с коэффициентом передачи 1:10, встроенного в щуп цифрового осциллографа SIGLENT SDS 1072CML+.

Рис. 10. Принципиальная схема измерительной установки

Согласно технической документации на выпрямительное устройство, его ток в момент включения не должен превышать 45 А. Но, поскольку фактическое значение пускового тока сильно зависит от момента включения (по отношению к началу периода сети), то включить систему при максимуме напряжения сети без использования специализированного оборудования достаточно тяжело. Тем не менее, на рисунке 11 показаны осциллограммы, полученные при включении системы менее чем за 1 мс до момента достижения амплитудного напряжения сети. Как видно из результатов измерений, величина пускового тока составила приблизительно 25 А, что почти в 17 раз больше амплитудного значения тока, потребляемого при выходном токе 5 А (амплитудное значение входного тока при этом равно 1,5 А), составляющем более 80% от максимальной нагрузки (рисунок 12).

Рис. 11. Диаграммы напряжения сети (фиолетовый канал) и потребляемого тока (желтый канал) в момент включения выпрямительного устройства при отсутствии ограничителя пусковых токов

Рис. 12. Диаграммы напряжения сети (фиолетовый канал) и потребляемого тока (желтый канал) при работе выпрямительного устройства в режиме 80% мощности

После подключения ограничителя пусковой ток уменьшился до нескольких ампер (рисунок 13), при этом видно, что заряд конденсатора фильтра теперь занимает значительно больше времени. Однако это не влияет на стабильность запуска системы, поскольку к моменту включения импульсного преобразователя выпрямительного устройства количества энергии в конденсаторе фильтра хватит для поддержания выходного напряжения в течение нескольких сотен миллисекунд, что вполне достаточно для включения реле.

Рис. 13. Диаграммы напряжения сети (фиолетовый канал) и потребляемого тока (желтый канал) в момент включения выпрямительного устройства с ограничителем пусковых токов

Очевидно, что при таком подходе к ограничению входного тока самой сложной ситуацией для системы будет режим перегрузки по току ИП. В этом случае выходного напряжения блока питания может оказаться недостаточно для срабатывания реле, и токоограничивающие резисторы останутся включенными до момента устранения перегрузки. Однако благодаря тому, что большинство ИП имеет встроенную защиту от перегрузки по току, при срабатывании которой они переходят в прерывистый («икающий») режим работы, входной ток при этом значительно снижается (рисунок 14) и мощность, выделяемая на токоограничивающих резисторах, не достигает опасных значений. Так, после часа работы системы в режиме короткого замыкания ИП температура перегрева корпусов резисторов R1 и R2, измеренная контактным способом с помощью термопары, не превысила 60°С.

Рис. 14. Диаграммы тока, потребляемого выпрямительным устройством в режиме короткого замыкания выхода

Несмотря на то, что увеличение сопротивления токоограничивающих резисторов позволяет полностью исключить возникновение экстратоков в момент включения, сильно увеличивать их сопротивление не нужно. При большом сопротивлении этих компонентов и возможной аварии во входной цепи выпрямительного устройства, например, при пробое входных диодов, встроенная плавкая вставка не сработает, и к токоограничивающим резисторам будет постоянно приложено все напряжение сети, что, скорее всего, приведет к их перегреву, а возможно – к возгоранию. Поэтому пусковой ток в системе должен быть, с одной стороны, не особо большим, по причинам, изложенным в начале статьи, а с другой – не особо малым, чтобы обеспечить надежную работу защит при аварии выпрямительных устройств. По этой же причине температуру корпусов токоограничивающих резисторов лучше всего контролировать термопредохранителем, разрывающим цепь при перегреве.

Как и все рассмотренные перед этим способы, схема, изображенная на рисунке 9, может ограничивать ток как одного, так и нескольких ИП. В последнем случае реле можно подключить как к одному блоку питания, так и к нескольким, объединив их, например, по схеме монтажного ИЛИ. 

Заключение

Проблема пусковых токов выпрямительных устройств не нова. Отрадно осознавать, что ведущие мировые производители источников питания начали выпускать на рынок профессиональные решения, позволяющие минимизировать значение этого параметра. При этом вполне возможно, что в ближайшем будущем наряду с традиционными ИП общего назначения появятся специализированные семейства для осветительного оборудования, в которых данная защита уже будет интегрирована, а следовательно, системы светодиодного освещения станут еще проще и надежнее.

•••

Наши информационные каналы

Схема работы блока питания компьютера

Во всех современных компьютерах используются блоки питания стандарта ATX. Ранее использовались блоки питания стандарта AT, в них не было возможности удаленного запуска компьютера и некоторых схемотехнических решений. Введение нового стандарта было связано и с выпуском новых материнских плат. Компьютерная техника стремительно развивалась и развивается, поэтому возникла необходимость улучшения и расширения материнских плат. С 2001 года и был введен этот стандарт.

Давайте рассмотрим, как устроен компьютерный блок питания ATX.

Расположение элементов на плате

Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.

Чтобы вы поняли, о чем пойдет речь дальше, ознакомьтесь со структурной схемой боока питания.

А вот схема электрическая принципиальная, разбитая на блоки.

На входе блока питания стоит фильтр электромагнитных помех из дросселя и ёмкости (1 блок). В дешевых блоках питания его может не быть. Фильтр нужен для подавления помех в электропитающей сети возникших в результате работы импульсного источника питания.

Все импульсные блоки питания могут ухудшать параметры электропитающей сети, в ней появляются нежелательные помехи и гармоники, которые мешают работе радиопередающих устройств и прочего. Поэтому наличие входного фильтра крайне желательно, но товарищи из Китая так не считают, поэтому экономят на всём. Ниже вы видите блок питания без входного дросселя.

Дальше сетевое напряжение поступает на выпрямительный диодный мост, через предохранитель и терморезистор (NTC), последний нужен для зарядки фильтрующих конденсаторов. После диодного моста установлен еще один фильтр, обычно это пара больших электролитических конденсаторов, будьте внимательны, на их выводах присутствует большое напряжение. Даже если блок питания выключен из сети следует предварительно их разрядить резистором или лампой накаливания, прежде чем трогать руками плату.

После сглаживающего фильтра напряжение поступает на схему импульсного блока питания она сложная на первый взгляд, но в ней нет ничего лишнего. В первую очередь запитывается источник дежурного напряжения (2 блок), он может быть выполнен по автогенераторной схеме, а может быть и на ШИМ-контроллере. Обычно – схема импульсного преобразователя на одном транзисторе (однотактный преобразователь), на выходе, после трансформатора, устанавливают линейный преобразователь напряжения (КРЕНку).

Типовая схема с ШИМ-контроллером выглядит примерно так:

Вот увеличенная версия схемы каскада из приведенного примера. Транзистор стоит в автогенераторной схеме, частота работы которой зависит от трансформатора и конденсаторов в его обвязке, выходное напряжение от номинала стабилитрона (в нашем случае 9В) который играет роль обратной связи или порогового элемента который шунтирует базу транзистора при достижении определенного напряжения. Оно дополнительно стабилизируется до уровня 5В, линейным интегральным стабилизатором последовательного типа L7805.

Дежурное напряжение нужно не только для формирования сигнала включения (PS_ON), но и для питания ШИМ-контроллера (блок 3). Компьютерные блоки пиатния ATX чаще всего построены на TL494 микросхеме или её аналогах. Этот блок отвечает за управление силовыми транзисторами (4 блок), стабилизацию напряжения (с помощью обратной связи), защиту от КЗ. Вообще 494 – это культовая микросхема используется в импульсной технике очень часто, её можно встретить и в мощных блоках питания для светодиодных лент. Вот её распиновка.

На приведенном примере силовые транзисторы (2SC4242) из 4 блока включаются через «раскачку» выполненную на двух ключах (2SC945) и трансформаторе. Ключи могут быть любыми, как и остальные элементы обвязки – это зависит от конкретной схемы и производителя. Обе пары ключей нагружены на первичные обмотки соответствующих трансформаторов. Раскачка нужна, поскольку для управления биполярными транзисторами нужен приличный ток.

Последний каскад – выходные выпрямители и фильтры, там расположены отводы от обмоток трансформаторов, диодные сборки Шоттки, дроссель групповой фильтрации и сглаживающие конденсаторы. Компьютерный блок питания выдаёт целый ряд напряжений для функционирования узлов материнской платы, питания устройств ввода-вывода, питания HDD и оптических приводов: +3.3В, +5В, +12В, -12В, -5В. От выходной цепи запитан и охлаждающий кулер.

Диодные сборки представляют собой пару диодов соединенных в общей точки (общий катод или общий анод). Это быстродействующие диоды с малым падением напряжения.

Дополнительные функции

Продвинутые модели компьютерных блоков питания могут дополнительно оснащаться платой контроля оборотов кулера, которая подстраивает их под соответствующую температуру, когда вы нагружаете блок питания, кулер крутится быстрее. Такие модели более комфортны в использовании, поскольку создают меньше шума при малых нагрузках.

В дешевых источниках питания кулер подключен напрямую к линии 12В и работает на полную мощность постоянно, это усиливает его износ, в результате чего шум станет еще больше.

Если ваш блок питания имеет хороший запас по мощности, а материнская плата и комплектующие довольно скромные по потреблению – можно перепаять кулер на линию 5В или 7В припаяв его между проводами +12В и +5В. Плюс кулера к желтому проводу, а минус к красному. Это снизит уровень шума, но не стоит так делать, если блок питания нагружен полностью.

Еще более дорогие модели оснащены активным корректором коэффициента мощности, как уже было сказано, он нужен для уменьшения влияния источника питания на питающую сеть. Он формирует нужные напряжения на входных каскадах ИП, при этом сохраняя изначальную форму питающего напряжения. Достаточно сложное устройство и в пределах этой статьи подробнее рассказывать о нем не имеет смысла. Ряд эпюр отображает примерный смысл использования корректора.

Проверка работоспособности

К компьютеру ИП подключается через стандартизированный разъём, он универсален в большинстве блоков, за исключением специализированных источников питания, которые могут использовать ту же клеммную колодку, но с иной распиновкой, давайте рассмотрим стандартный разъём и назначение его выводов. У него 20 выводов, на современных материнских платах подключается дополнительных 4 вывода.

Кроме основного 20-24 контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода. Все их распиновки вы видите на картинке ниже.

Конструкция всех разъёмов таков, чтобы вы случайно не вставили его «вверх ногами», это приведет к выходу из строя оборудования. Главное, что стоит запомнить: красный провод – это 5В, Жёлтый – 12В, Оранжевый – 3.3В, Зеленый – PS_ON – 3. 5В, Фиолетовый – 5В, это основные которые приходится проверять до и после ремонта.

Помимо общей мощности блока питания большую роль играет мощность, а вернее ток каждой из линий, обычно они указываются на наклейке на корпусе блока. Эта информация станет очень кстати, если вы собрались запускать свой блок питания ATX без компьютера для питания других устройств.

При проверке блока желательно его отключить от материнской платы, это предотвратит превышение напряжений выше номинальных (если блок всё же не исправен). Но на холостом ходу запускать его не рекомендуют, это может привести к проблемам и поломке. Да и напряжения на холостом ходу могут быть в норме, но под нагрузкой значительно проседать.

В качественных блоках питания установлена защита, которая отключает схему при отклонении от нормальных напряжений, такие экземпляры вообще не включатся без нагрузки. Далее мы подробно рассмотрим, как включать блок питания без компьютера и какую можно повесить нагрузку.

Использование блока питания без компьютера

Если вы вставите вилку в розетку и включите тумблер на задней панели блока, напряжений на выводах не будет, но должно появиться напряжение на зеленом проводе (от 3 до 5В), и фиолетовом (5В). Это значит, что источник дежурного питания в норме, и можно пробовать запускать блок питания.

На самом деле всё достаточно просто, нужно замкнуть зеленый провод на землю (любой из черных проводов). Здесь всё зависит от того как вы будете использовать блок питания, если для проверки, то можно это сделать пинцетом или скрепкой. Если он будет включен постоянно или вы будете выключать его пол линии 220В, то скрепка, вставленная между зеленым и черным проводом рабочее решение.

Другой вариант – это установить кнопку с фиксацией или тумблер между этими же проводами.

Чтобы напряжения блока питания были в норме при его проверке нужно установить нагрузочный блок, можно его сделать из набора резисторов по такой схеме. Но обратите внимание на величину резисторов, по каждому из них будет протекать большой ток, по линии 3.3 вольта порядка 5 Ампер, по линии 5 вольт – 3 Ампера, по линии 12В – 0.8 Ампер, а это от 10 до 15Вт общей мощности по каждой линии.

Резисторы нужно подбирать соответствующие, но не всегда их можно найти в продаже, особенно в небольших городах, где малый выбор радиодеталей. В других вариантах схемы нагрузки, токи еще больше.

Один из вариантов исполнения подобной схемы:

Другой вариант использовать лампы накаливания или галогеновые лампы, на 12В подойдут от автомобиля их можно использовать и на линиях с 3.3 и 5В, стоит только подобрать нужные мощности. Еще лучше найти автомобильные или мотоциклетные 6В лампы накаливания и подключить несколько штук параллельно. Сейчас продаются 12В светодиодные лампы большой мощности. Для 12В линии можно использовать светодиодные ленты.

Если вы планируете использовать компьютерный блок питания, например, для питания светодиодной ленты, будет лучше, если вы немного нагрузите линии 5В и 3.3В.

Заключение

Блоки питания ATX отлично подходят для питания радиолюбительских конструкций и как источник для домашней лаборатории. Они достаточно мощные (от 250, а современные от 350Вт), при этом можно найти на вторичном рынке за копейки, также подойдут и старые модели AT, для их запуска нужно лишь замкнуть два провода, которые раньше шли на кнопку системного блока, сигнала PS_On на них нет.

Если вы собрались ремонтировать или восстанавливать подобную технику, не забывайте о правилах безопасной работы с электричеством, о том, что на плате есть сетевое напряжение и конденсаторы могут оставаться заряженными долгое время.

Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы. При наличии базовых знаний электроники их можно переделать в мощное зарядное для автомобильных аккумуляторов или в лабораторный блок питания. Для этого изменяют цепи обратной связи, дорабатывают источник дежурного напряжения и цепи запуска блока.

Во всех современных компьютерах используются блоки питания стандарта ATX. Ранее использовались блоки питания стандарта AT, в них не было возможности удаленного запуска компьютера и некоторых схемотехнических решений. Введение нового стандарта было связано и с выпуском новых материнских плат. Компьютерная техника стремительно развивалась и развивается, поэтому возникла необходимость улучшения и расширения материнских плат. С 2001 года и был введен этот стандарт.

Давайте рассмотрим, как устроен компьютерный блок питания ATX.

Расположение элементов на плате

Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.

Чтобы вы поняли, о чем пойдет речь дальше, ознакомьтесь со структурной схемой боока питания.

А вот схема электрическая принципиальная, разбитая на блоки.

На входе блока питания стоит фильтр электромагнитных помех из дросселя и ёмкости (1 блок). В дешевых блоках питания его может не быть. Фильтр нужен для подавления помех в электропитающей сети возникших в результате работы импульсного источника питания.

Все импульсные блоки питания могут ухудшать параметры электропитающей сети, в ней появляются нежелательные помехи и гармоники, которые мешают работе радиопередающих устройств и прочего. Поэтому наличие входного фильтра крайне желательно, но товарищи из Китая так не считают, поэтому экономят на всём. Ниже вы видите блок питания без входного дросселя.

Дальше сетевое напряжение поступает на выпрямительный диодный мост, через предохранитель и терморезистор (NTC), последний нужен для зарядки фильтрующих конденсаторов. После диодного моста установлен еще один фильтр, обычно это пара больших электролитических конденсаторов, будьте внимательны, на их выводах присутствует большое напряжение. Даже если блок питания выключен из сети следует предварительно их разрядить резистором или лампой накаливания, прежде чем трогать руками плату.

После сглаживающего фильтра напряжение поступает на схему импульсного блока питания она сложная на первый взгляд, но в ней нет ничего лишнего. В первую очередь запитывается источник дежурного напряжения (2 блок), он может быть выполнен по автогенераторной схеме, а может быть и на ШИМ-контроллере. Обычно – схема импульсного преобразователя на одном транзисторе (однотактный преобразователь), на выходе, после трансформатора, устанавливают линейный преобразователь напряжения (КРЕНку).

Типовая схема с ШИМ-контроллером выглядит примерно так:

Вот увеличенная версия схемы каскада из приведенного примера. Транзистор стоит в автогенераторной схеме, частота работы которой зависит от трансформатора и конденсаторов в его обвязке, выходное напряжение от номинала стабилитрона (в нашем случае 9В) который играет роль обратной связи или порогового элемента который шунтирует базу транзистора при достижении определенного напряжения. Оно дополнительно стабилизируется до уровня 5В, линейным интегральным стабилизатором последовательного типа L7805.

Дежурное напряжение нужно не только для формирования сигнала включения (PS_ON), но и для питания ШИМ-контроллера (блок 3). Компьютерные блоки пиатния ATX чаще всего построены на TL494 микросхеме или её аналогах. Этот блок отвечает за управление силовыми транзисторами (4 блок), стабилизацию напряжения (с помощью обратной связи), защиту от КЗ. Вообще 494 – это культовая микросхема используется в импульсной технике очень часто, её можно встретить и в мощных блоках питания для светодиодных лент. Вот её распиновка.

На приведенном примере силовые транзисторы (2SC4242) из 4 блока включаются через «раскачку» выполненную на двух ключах (2SC945) и трансформаторе. Ключи могут быть любыми, как и остальные элементы обвязки – это зависит от конкретной схемы и производителя. Обе пары ключей нагружены на первичные обмотки соответствующих трансформаторов. Раскачка нужна, поскольку для управления биполярными транзисторами нужен приличный ток.

Последний каскад – выходные выпрямители и фильтры, там расположены отводы от обмоток трансформаторов, диодные сборки Шоттки, дроссель групповой фильтрации и сглаживающие конденсаторы. Компьютерный блок питания выдаёт целый ряд напряжений для функционирования узлов материнской платы, питания устройств ввода-вывода, питания HDD и оптических приводов: +3.3В, +5В, +12В, -12В, -5В. От выходной цепи запитан и охлаждающий кулер.

Диодные сборки представляют собой пару диодов соединенных в общей точки (общий катод или общий анод). Это быстродействующие диоды с малым падением напряжения.

Дополнительные функции

Продвинутые модели компьютерных блоков питания могут дополнительно оснащаться платой контроля оборотов кулера, которая подстраивает их под соответствующую температуру, когда вы нагружаете блок питания, кулер крутится быстрее. Такие модели более комфортны в использовании, поскольку создают меньше шума при малых нагрузках.

В дешевых источниках питания кулер подключен напрямую к линии 12В и работает на полную мощность постоянно, это усиливает его износ, в результате чего шум станет еще больше.

Если ваш блок питания имеет хороший запас по мощности, а материнская плата и комплектующие довольно скромные по потреблению – можно перепаять кулер на линию 5В или 7В припаяв его между проводами +12В и +5В. Плюс кулера к желтому проводу, а минус к красному. Это снизит уровень шума, но не стоит так делать, если блок питания нагружен полностью.

Еще более дорогие модели оснащены активным корректором коэффициента мощности, как уже было сказано, он нужен для уменьшения влияния источника питания на питающую сеть. Он формирует нужные напряжения на входных каскадах ИП, при этом сохраняя изначальную форму питающего напряжения. Достаточно сложное устройство и в пределах этой статьи подробнее рассказывать о нем не имеет смысла. Ряд эпюр отображает примерный смысл использования корректора.

Проверка работоспособности

К компьютеру ИП подключается через стандартизированный разъём, он универсален в большинстве блоков, за исключением специализированных источников питания, которые могут использовать ту же клеммную колодку, но с иной распиновкой, давайте рассмотрим стандартный разъём и назначение его выводов. У него 20 выводов, на современных материнских платах подключается дополнительных 4 вывода.

Кроме основного 20-24 контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода. Все их распиновки вы видите на картинке ниже.

Конструкция всех разъёмов таков, чтобы вы случайно не вставили его «вверх ногами», это приведет к выходу из строя оборудования. Главное, что стоит запомнить: красный провод – это 5В, Жёлтый – 12В, Оранжевый – 3.3В, Зеленый – PS_ON – 3. 5В, Фиолетовый – 5В, это основные которые приходится проверять до и после ремонта.

Помимо общей мощности блока питания большую роль играет мощность, а вернее ток каждой из линий, обычно они указываются на наклейке на корпусе блока. Эта информация станет очень кстати, если вы собрались запускать свой блок питания ATX без компьютера для питания других устройств.

При проверке блока желательно его отключить от материнской платы, это предотвратит превышение напряжений выше номинальных (если блок всё же не исправен). Но на холостом ходу запускать его не рекомендуют, это может привести к проблемам и поломке. Да и напряжения на холостом ходу могут быть в норме, но под нагрузкой значительно проседать.

В качественных блоках питания установлена защита, которая отключает схему при отклонении от нормальных напряжений, такие экземпляры вообще не включатся без нагрузки. Далее мы подробно рассмотрим, как включать блок питания без компьютера и какую можно повесить нагрузку.

Использование блока питания без компьютера

Если вы вставите вилку в розетку и включите тумблер на задней панели блока, напряжений на выводах не будет, но должно появиться напряжение на зеленом проводе (от 3 до 5В), и фиолетовом (5В). Это значит, что источник дежурного питания в норме, и можно пробовать запускать блок питания.

На самом деле всё достаточно просто, нужно замкнуть зеленый провод на землю (любой из черных проводов). Здесь всё зависит от того как вы будете использовать блок питания, если для проверки, то можно это сделать пинцетом или скрепкой. Если он будет включен постоянно или вы будете выключать его пол линии 220В, то скрепка, вставленная между зеленым и черным проводом рабочее решение.

Другой вариант – это установить кнопку с фиксацией или тумблер между этими же проводами.

Чтобы напряжения блока питания были в норме при его проверке нужно установить нагрузочный блок, можно его сделать из набора резисторов по такой схеме. Но обратите внимание на величину резисторов, по каждому из них будет протекать большой ток, по линии 3.3 вольта порядка 5 Ампер, по линии 5 вольт – 3 Ампера, по линии 12В – 0.8 Ампер, а это от 10 до 15Вт общей мощности по каждой линии.

Резисторы нужно подбирать соответствующие, но не всегда их можно найти в продаже, особенно в небольших городах, где малый выбор радиодеталей. В других вариантах схемы нагрузки, токи еще больше.

Один из вариантов исполнения подобной схемы:

Другой вариант использовать лампы накаливания или галогеновые лампы, на 12В подойдут от автомобиля их можно использовать и на линиях с 3.3 и 5В, стоит только подобрать нужные мощности. Еще лучше найти автомобильные или мотоциклетные 6В лампы накаливания и подключить несколько штук параллельно. Сейчас продаются 12В светодиодные лампы большой мощности. Для 12В линии можно использовать светодиодные ленты.

Если вы планируете использовать компьютерный блок питания, например, для питания светодиодной ленты, будет лучше, если вы немного нагрузите линии 5В и 3.3В.

Заключение

Блоки питания ATX отлично подходят для питания радиолюбительских конструкций и как источник для домашней лаборатории. Они достаточно мощные (от 250, а современные от 350Вт), при этом можно найти на вторичном рынке за копейки, также подойдут и старые модели AT, для их запуска нужно лишь замкнуть два провода, которые раньше шли на кнопку системного блока, сигнала PS_On на них нет.

Если вы собрались ремонтировать или восстанавливать подобную технику, не забывайте о правилах безопасной работы с электричеством, о том, что на плате есть сетевое напряжение и конденсаторы могут оставаться заряженными долгое время.

Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы. При наличии базовых знаний электроники их можно переделать в мощное зарядное для автомобильных аккумуляторов или в лабораторный блок питания. Для этого изменяют цепи обратной связи, дорабатывают источник дежурного напряжения и цепи запуска блока.

Принцип работы импульсного блока питания

Один из самых важных блоков персонального компьютера – это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 – 60 герц. Импортные блоки на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

Узел управления. Является "мозгом" блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

Выходные выпрямители. С помощью выпрямителя происходит выпрямление – преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель.

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Как говорится: "No comment ".

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 ("230/115"). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110. 127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220. 230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост. При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180. 220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра.

Характерные неисправности выпрямителя, это выход из строя одного из диодов "моста" (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни ! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

Определение термистора

Домашняя страница: Термины по аппаратному обеспечению: Определение термистора

Термистор (сокращение от «терморезистор») - это тип резистора, который используется для измерения температуры. Хотя типичные резисторы предназначены для поддержания постоянного сопротивления независимо от температуры, сопротивление термистора значительно изменяется при изменении температуры. После калибровки термистора изменения электрического сопротивления можно точно перевести в изменения температуры.

Термисторы

обычно используются в компьютерах для контроля температуры окружающей среды внутренних компонентов. Например, термисторы могут использоваться для регистрации температуры около ЦП, слотов оперативной памяти и источника питания. Эти термисторы обычно встроены в материнскую плату компьютера. Фактическая температура таких компонентов, как процессор и модули памяти, обычно измеряется диодом, встроенным в микросхему.

Компьютеры используют информацию, записанную термисторами, для предотвращения перегрева.Например, если процессор работает на пределе своих возможностей в течение длительного периода времени, температура может постепенно увеличиваться. В этом случае компьютер может увеличить скорость внутренних вентиляторов, чтобы увеличить поток воздуха и охладить компьютер. В экстремальных обстоятельствах, например, когда ноутбук используется на улице в жаркий день, вентиляторы могут не поддерживать безопасную температуру компьютера. Если термисторы зафиксируют опасно высокую температуру, компьютер может выключиться, чтобы избежать перегрева и повреждения оборудования.

Обновлено: 24 июня 2011 г.

https://techterms.com/definition/thermistor

TechTerms - Компьютерный словарь технических терминов

Эта страница содержит техническое определение термистора. Он объясняет в компьютерной терминологии, что означает термистор, и является одним из многих терминов, связанных с оборудованием в словаре TechTerms.

Все определения на веб-сайте TechTerms составлены так, чтобы быть технически точными, но также простыми для понимания. Если вы найдете это определение термистора полезным, вы можете сослаться на него, используя приведенные выше ссылки для цитирования.Если вы считаете, что термин следует обновить или добавить в словарь TechTerms, отправьте электронное письмо в TechTerms!

Подпишитесь на рассылку TechTerms, чтобы получать избранные термины и тесты прямо в свой почтовый ящик. Вы можете получать электронную почту ежедневно или еженедельно.

Подписаться

THERMISTOR BASICS - длинноволновая электроника

Диапазон температур: Приблизительный общий диапазон температур, в котором можно использовать датчик определенного типа. В заданном диапазоне температур одни датчики работают лучше, чем другие.

Относительная стоимость: Относительная стоимость при сравнении этих датчиков друг с другом. Например, термисторы недороги по сравнению с RTD, отчасти потому, что предпочтительным материалом для RTD является платина.

Постоянная времени: Приблизительное время, необходимое для перехода от одного значения температуры к другому. Это время в секундах, которое требуется термистору для достижения 63,2% разницы температур от начального до окончательного показания.

Стабильность: Способность контроллера поддерживать постоянную температуру на основе обратной связи датчика по температуре.

Чувствительность: Степень реакции на изменение температуры.

Какие формы термисторов доступны?
Термисторы

бывают разных форм - диск, микросхема, бусинка или стержень, и могут быть установлены на поверхность или встроены в систему. Они могут быть залиты эпоксидной смолой, стеклом, обожженным фенолом или окрашены. Наилучшая форма часто зависит от контролируемого материала, например твердого вещества, жидкости или газа.

Например, шариковый термистор идеально подходит для встраивания в устройство, а стержень, диск или цилиндрическая головка лучше всего подходят для оптических поверхностей.Микросхема термистора обычно устанавливается на печатной плате (PCB). Существует много, много различных форм термисторов, например:


Рисунок 3: Типы термисторов

Выберите форму, обеспечивающую максимальный контакт поверхности с устройством, температура которого отслеживается. Независимо от типа термистора, подключение к контролируемому устройству должно выполняться с помощью пасты с высокой теплопроводностью или эпоксидного клея. Обычно важно, чтобы эта паста или клей не проводили электричество.

Как термистор работает в управляемой системе?

В основном термистор используется для измерения температуры устройства. В системе с контролируемой температурой термистор - это небольшая, но важная часть более крупной системы. Контроллер температуры контролирует температуру термистора. Затем он сообщает нагревателю или охладителю, когда включать или выключать, чтобы поддерживать температуру датчика.

На схеме ниже, иллюстрирующей пример системы, есть три основных компонента, используемых для регулирования температуры устройства: датчик температуры, регулятор температуры и устройство Пельтье (обозначенное здесь как TEC или термоэлектрический охладитель).Головка датчика прикрепляется к охлаждающей пластине, которая должна поддерживать определенную температуру для охлаждения устройства, а провода присоединяются к контроллеру температуры. Контроллер температуры также имеет электронное соединение с устройством Пельтье, которое нагревает и охлаждает целевое устройство. Радиатор прикреплен к устройству Пельтье для отвода тепла.


Рисунок 4: Система с термисторным управлением
Работа датчика температуры заключается в отправке обратной связи по температуре на контроллер температуры.Через датчик проходит небольшой ток, называемый током смещения, который посылается контроллером температуры. Контроллер не может считывать сопротивление, поэтому он должен преобразовывать изменения сопротивления в изменения напряжения, используя источник тока для подачи тока смещения через термистор для создания управляющего напряжения.

Контроллер температуры - это мозг этой операции. Он берет информацию датчика, сравнивает ее с тем, что необходимо охлаждаемому блоку (так называемая уставка), и регулирует ток через устройство Пельтье, чтобы изменить температуру в соответствии с уставкой.

Расположение термистора в системе влияет как на стабильность, так и на точность системы управления. Для лучшей стабильности термистор необходимо разместить как можно ближе к термоэлектрическому или резистивному нагревателю. Для обеспечения максимальной точности термистор должен располагаться рядом с устройством, требующим регулирования температуры. В идеале термистор встроен в устройство, но его также можно прикрепить с помощью теплопроводящей пасты или клея. Даже если устройство встраивается, воздушные зазоры следует устранять с помощью термопасты или клея.

На рисунке ниже показаны два термистора, один из которых подключен непосредственно к устройству, а другой удален или удален от устройства. Если датчик расположен слишком далеко от устройства, время теплового запаздывания значительно снижает точность измерения температуры, а размещение термистора слишком далеко от устройства Пельтье снижает стабильность.


Рисунок 5: Размещение термистора

На следующем рисунке график показывает разницу в показаниях температуры, снятых обоими термисторами.Термистор, прикрепленный к устройству, быстро реагировал на изменение тепловой нагрузки и регистрировал точные температуры. Удаленный термистор тоже среагировал, но не так быстро. Что еще более важно, показания отклоняются чуть более чем на полградуса. Эта разница может быть очень значительной, когда требуются точные температуры.


Рисунок 6: График отклика положения термистора

После выбора размещения датчика необходимо настроить остальную часть системы.Это включает определение сопротивления базового термистора, тока смещения для датчика и заданной температуры нагрузки на контроллере температуры.

Какое сопротивление термистора и ток смещения следует использовать?
Термисторы

классифицируются по величине сопротивления, измеренной при комнатной температуре, которая считается 25 ° C. Устройство, температуру которого необходимо поддерживать, имеет определенные технические характеристики для оптимального использования, определенные производителем.Их необходимо определить перед выбором датчика. Поэтому важно знать следующее:

Каковы максимальная и минимальная температура для устройства?
Термисторы идеально подходят для измерения температуры в одной точке в пределах 50 ° C от окружающей среды. Если температура слишком высокая или низкая, термистор не будет работать. Хотя есть исключения, большинство термисторов лучше всего работают в диапазоне от -55 ° C до + 114 ° C.

Поскольку термисторы являются нелинейными, что означает, что зависимости температуры от сопротивления отображаются на графике в виде кривой, а не прямой линии, очень высокие или очень низкие температуры не регистрируются правильно.Например, при очень небольших изменениях очень высоких температур будут регистрироваться незначительные изменения сопротивления, что не приведет к точным изменениям напряжения.

Каков оптимальный диапазон термисторов?
В зависимости от тока смещения от контроллера каждый термистор имеет оптимальный полезный диапазон, то есть диапазон температур, в котором точно регистрируются небольшие изменения температуры.

В таблице ниже показаны наиболее эффективные диапазоны температур для термисторов с длиной волны при двух наиболее распространенных токах смещения.


Рисунок 7: Таблица выбора термистора

Лучше всего выбирать термистор, где заданная температура находится в середине диапазона. Чувствительность термистора зависит от температуры. Например, термистор может быть более чувствительным при более низких температурах, чем при более высоких температурах, как в случае с термистором 10 кОм TCS10K5 компании Wavelength. С TCS10K5 чувствительность составляет 162 мВ на градус Цельсия в диапазоне от 0 ° C до 1 ° C, и 43 мВ / ° C между 25 ° C и 26 ° C и 14 мВ ° C между 49 ° C и 50 °. С.

Каковы верхний и нижний пределы напряжения на входе датчика терморегулятора?
Пределы напряжения обратной связи датчика с регулятором температуры указываются производителем. В идеале следует выбрать комбинацию термистора и тока смещения, которая создает напряжение в пределах диапазона, разрешенного регулятором температуры.

Напряжение связано с сопротивлением по закону Ома. Это уравнение используется для определения необходимого тока смещения.Закон Ома гласит, что ток через проводник между двумя точками прямо пропорционален разности потенциалов между двумя точками и для этого тока смещения записывается как:

В = I Смещение x R

Где:
В - напряжение в вольтах (В)
I BIAS - ток в амперах или амперах (A)
I BIAS означает постоянный ток
R - сопротивление в Ом (Ом)

Контроллер вырабатывает ток смещения для преобразования сопротивления термистора в измеряемое напряжение.Контроллер будет принимать только определенный диапазон напряжения. Например, если диапазон контроллера составляет от 0 до 5 В, напряжение термистора должно быть не ниже 0,25 В, чтобы электрические шумы нижнего уровня не мешали считыванию, и не выше 5 В для считывания.

Предположим, что используется вышеупомянутый контроллер и термистор 100 кОм, такой как TCS651 от Wavelength, а температура, которую устройство должно поддерживать, составляет 20 ° C. Согласно техническому описанию TCS651, сопротивление составляет 126700 Ом при 20 ° C.Чтобы определить, может ли термистор работать с контроллером, нам нужно знать полезный диапазон токов смещения. Используя закон Ома для определения I BIAS , мы знаем следующее:

V / R = I Смещение

0,25 / 126700 = 2 мкА - нижний предел диапазона
5,0 / 126700 = 39,5 мкА - верхний предел

Да, этот термистор будет работать, если ток смещения регулятора температуры может быть установлен в диапазоне от 2 мкА до 39,5 мкА.

При выборе термистора и тока смещения лучше всего выбирать такой, при котором развиваемое напряжение находится в середине диапазона.На входе обратной связи контроллера должно подаваться напряжение, которое определяется сопротивлением термистора.

Так как люди легче всего относятся к температуре, сопротивление часто нужно менять на температуру. Наиболее точная модель, используемая для преобразования сопротивления термистора в температуру, называется уравнением Стейнхарта-Харта.

Что такое уравнение Стейнхарта-Харта?

Уравнение Стейнхарта-Харта - это модель, которая была разработана в то время, когда компьютеры не были повсеместными и большинство математических вычислений выполнялось с использованием логарифмических правил и других математических средств, таких как таблицы трансцендентных функций.Уравнение было разработано как простой метод более простого и точного моделирования температур термисторов.

Уравнение Стейнхарта-Харта:

1 / T = A + B (lnR) + C (lnR) 2 + D (lnR) 3 + E (lnR) 4…

Где:
T - температура в Кельвинах (K, Кельвин = Цельсий + 273,15)
R - сопротивление при T, в Ом (Ом)
A, B, C, D и E - коэффициенты Стейнхарта-Харта, которые меняются в зависимости от типа используемого термистора и диапазона измеряемой температуры.
ln - это натуральное бревно, или бревно до основания Napierian 2.7 1828

Члены могут повторяться бесконечно, но, поскольку ошибка настолько мала, уравнение усекается после кубического члена, а член в квадрате удаляется, поэтому используется стандартное уравнение Стейнхарта-Харта:

1 / Т = А + В (lnR) + C (lnR) 3

Одно из удовольствий компьютерных программ состоит в том, что уравнения, на решение которых потребовались бы дни, если не недели, выполняются за считанные секунды. Введите «Калькулятор уравнения Стейнхарта-Харта» в любой поисковой системе, и будут возвращены страницы со ссылками на онлайн-калькуляторы.

Как используется уравнение Стейнхарта-Харта?

Это уравнение позволяет более точно рассчитать фактическое сопротивление термистора в зависимости от температуры. Чем более узкий диапазон температур, тем точнее будет расчет сопротивления. Большинство производителей термисторов предоставляют коэффициенты A, B и C для типичного диапазона температур.

Кто такие Стейнхарт и Харт?

Джон С. Стейнхарт и Стэнли Р. Харт впервые разработали и опубликовали уравнение Стейнхарта-Харта в статье под названием «Калибровочные кривые для термисторов» в 1968 году, когда они были исследователями в Вашингтонском институте Карнеги.Стейнхарт стал профессором геологии и геофизики и морских исследований в Университете Висконсин-Мэдисон, а Стэнли Р. Харт стал старшим научным сотрудником океанографического института Вудс-Хоул.

Заключение

Термисторы - это терморезисторы, сопротивление которых изменяется при изменении температуры. Они очень чувствительны и реагируют на очень небольшие изменения температуры. Их лучше всего использовать, когда необходимо поддерживать определенную температуру, а также при мониторинге температуры в пределах 50 ° C от окружающей среды.

Термисторы

, как часть системы контроля температуры, являются лучшим способом измерения и контроля нагрева и охлаждения устройства Пельтье. Их способность регулировать с минутными приращениями обеспечивает максимальную общую стабильность системы. Термисторы могут быть встроены или монтированы на поверхности устройства, требующего контроля температуры. В зависимости от типа они могут измерять жидкости, газы или твердые тела.

Wavelength поставляет различные термисторы с шариковыми и цилиндрическими головками. Чтобы просмотреть текущий выбор, щелкните здесь.

Как использовать термисторы NTC для ограничения пускового тока | Примечание по применению

Во время включения электронного устройства, такого как импульсный источник питания (SMPS) или инвертор, устройство заряжается мгновенным аномальным током с высоким пиком. Это называется пусковым током, и без защиты он может вывести из строя полупроводниковое устройство или оказать вредное влияние на срок службы сглаживающего конденсатора. Термисторы NTC используются в качестве ICL (ограничителей пускового тока) для простой и эффективной защиты цепей электрических и электронных устройств от пусковых токов.

Преимущества термисторов NTC

Термисторы

NTC - это терморезисторы, в которых используется специальная полупроводниковая керамика с отрицательным температурным коэффициентом (NTC). Они обладают высоким сопротивлением при комнатной температуре, и когда они находятся под напряжением, они выделяют тепло сами по себе, и сопротивление падает с ростом их температуры. Благодаря этому свойству они используются в качестве устройств защиты по току для электрических и электронных устройств, которые легко и эффективно ограничивают аномальные токи, включая пусковой ток во время включения.Термисторы NTC, используемые в качестве устройств защиты по току, также называют силовыми термисторами.

Для ограничения пусковых токов можно использовать фиксированное сопротивление или термистор NTC.
Однако постоянный резистор всегда вызывает потерю мощности и снижение производительности. Термистор NTC ограничивает пусковой ток своим высоким начальным сопротивлением, а затем его температура повышается из-за подачи питания, а его сопротивление падает до нескольких процентов от его уровня при комнатной температуре, таким образом достигая потерь мощности, которые ниже, чем при фиксированном резисторе. использовал.Другими словами, эффект ограничения пусковых токов, полученный при использовании термистора NTC, больше, чем эффект, полученный при использовании постоянного резистора с сопоставимыми начальными потерями мощности.
Ниже приведены подробные сведения о примерах применения термисторов NTC для ограничения пускового тока.

Примеры применения термисторов NTC для ограничения пускового тока

Применение: ограничение пускового тока в импульсном источнике питания

Различные импульсные источники питания (SMPS) - небольшие, легкие и высокопроизводительные - часто используются в качестве источников питания электронных устройств.Во время включения SMPS устройство заряжается пусковым током с высоким пиком для зарядки сглаживающего конденсатора. Поскольку этот бросок тока может отрицательно сказаться на сроке службы конденсатора, повредить контакты переключателя питания или разрушить выпрямительный диод, необходимо принять меры противодействия.

Как показано на рисунке ниже, ограничение пускового тока SMPS путем установки термистора NTC широко используется как способ создания недорогой и простой схемы для ограничения пусковых токов в источниках питания.Тот же результат может быть достигнут, даже если термистор NTC подключен после выпрямительной цепи.

Рисунок 1 Ограничение пускового тока в импульсном блоке питания

Применение: ограничение пускового тока в силовом модуле AC-DC

Встроенный блок питания с компактно интегрированными различными силовыми цепями и периферийными цепями называется силовым модулем. Модуль питания AC-DC - это источник питания, созданный путем объединения схемы выпрямителя AC-DC и преобразователя DC-DC, и с небольшим количеством внешних частей он может реализовать компактную оптимизированную систему питания.Пусковой ток, подаваемый на входные и выходные конденсаторы во время включения, можно эффективно ограничить, вставив термистор NTC (силовой термистор).

Рисунок 2 Ограничение пускового тока в модуле питания AC-DC

Применение: ограничение пускового тока в преобразователе постоянного тока

В цепи питания постоянного тока преобразователя постоянного тока и т.п. термистор NTC используется в качестве термистора мощности и эффективно ограничивает пусковой ток, которым заряжаются входные и выходные конденсаторы во время включения.Сопротивление термистора NTC становится очень низким после подачи питания на него, что приводит к снижению потерь мощности по сравнению с использованием фиксированного сопротивления.

Рисунок 3 Ограничение пускового тока в преобразователе постоянного тока в постоянный

Применение: ограничение пускового тока в промышленном инверторе

Асинхронные двигатели

часто используются для вентиляторов, насосов, кондиционеров и прочего оборудования на заводах, крупных объектах, офисных зданиях и т. Д. Асинхронный двигатель прост по конструкции и стабилен, однако его скорость вращения зависит от частоты.Инверторы нужны для управления скоростью вращения. Двигатели, оснащенные инверторами, известны как приводы с регулируемой скоростью (VSD), которые могут значительно снизить энергопотребление.
Система инвертора состоит из части преобразователя, части инвертора и конденсатора промежуточного контура (сглаживающего конденсатора), который размещается после части преобразователя. Во время включения устройство заряжается пусковым током, пик которого в несколько раз больше, чем у установившегося тока, для зарядки конденсатора промежуточного контура.Этот бросок тока может отрицательно сказаться на сроке службы конденсатора постоянного тока или разрушить полупроводниковое устройство. Для защиты от пускового тока подключаются термисторы NTC (силовые термисторы).

Рисунок 4 Ограничение пускового тока в промышленном инверторе (трехфазный)

Рисунок 5 Ограничение пускового тока в промышленном инверторе (однофазный)

Связанные страницы

  • ■ Портал продуктов для ограничителей пускового тока NTC

    Термистор NTC может использовать высокое значение сопротивления при низкой температуре для ограничения пускового тока при включении.Термисторы NTC способны выдерживать более высокие пусковые токи, чем постоянные резисторы при том же потреблении энергии.

Термисторы / Измерение температуры с помощью термисторов NTC

Филип Кейн

Термисторы (терморезисторы) - это переменные резисторы, зависящие от температуры. Существует два типа термисторов: положительный температурный коэффициент (PTC) и отрицательный температурный коэффициент (NTC). При повышении температуры сопротивление термистора PTC увеличивается, а сопротивление термистора NTC уменьшается.Они показывают противоположную реакцию при понижении температуры.

Оба типа термисторов используются в различных областях применения. Однако здесь основное внимание будет уделено использованию термисторов NTC для измерения температуры в приложениях на основе микроконтроллеров.

Технические характеристики термистора
Следующие параметры термистора NTC можно найти в паспорте производителя.

  • Сопротивление
    Это сопротивление термистора при температуре, указанной производителем, часто 25 ° C.

  • Допуск
    Указывает, насколько сопротивление может отличаться от указанного значения. Обычно выражается в процентах (например, 1%, 10% и т. Д.). Например, если указанное сопротивление при 25 ° C для термистора с допуском 10% составляет 10000 Ом, то измеренное сопротивление при этой температуре может находиться в диапазоне от 9000 Ом до 11000 Ом.

  • Константа B (или бета)
    Значение, представляющее взаимосвязь между сопротивлением и температурой в заданном диапазоне температур.Например, «3380 25/50» означает постоянную бета 3380 в диапазоне температур от 25 ° C до 50 ° C.

  • Допуск на бета-константу
    Допуск на бета-константу в процентах.

  • Диапазон рабочих температур
    Минимальная и максимальная рабочая температура термистора.

  • Температурная постоянная времени
    Когда температура изменяется, время, необходимое для достижения 63% разницы между старой и новой температурами.

  • Константа теплового рассеяния
    Термисторы подвержены самонагреву при прохождении тока.Это количество энергии, необходимое для повышения температуры термистора на 1 ° C. Он указывается в милливаттах на градус Цельсия (мВт / ° C). Обычно рассеиваемая мощность должна быть низкой, чтобы предотвратить самонагревание.

  • Максимально допустимая мощность
    Максимальная рассеиваемая мощность. Он указывается в ваттах (Вт). Превышение этой спецификации приведет к повреждению термистора.

  • Таблица температур сопротивления
    Таблица значений сопротивления и соответствующих температур в диапазоне рабочих температур термистора.Термисторы работают в относительно ограниченном диапазоне температур, обычно от -50 до 300 ° C в зависимости от типа конструкции и покрытия.

Реакция термистора на температуру

Как и в случае с любым резистором, вы можете использовать настройку омметра на мультиметре для измерения сопротивления термистора. Значение сопротивления, отображаемое на вашем мультиметре, должно соответствовать температуре окружающей среды рядом с термистором. Сопротивление изменится в ответ на изменение температуры.

Список деталей Полный комплект с Arduino

Список деталей без Arduino

Рис. 1. Сопротивление термистора изменяется в зависимости от температуры.

На рис. 2 показан отклик термистора NTC в диапазоне от -40 ° C до 60 ° C. Из рисунка видно, что термисторы обладают высокой чувствительностью. Небольшое изменение температуры вызывает большое изменение сопротивления. Также обратите внимание, что реакция этого термистора не линейна. То есть изменение сопротивления при заданном изменении температуры не является постоянным в диапазоне температур термистора.

Рисунок 2: Кривая температурного сопротивления термистора от -40 ° C до 60 ° C

Паспорт производителя включает список значений сопротивления термистора и соответствующих температур во всем диапазоне.Одно из решений, позволяющих справиться с этой нелинейной реакцией, - это включить в код справочную таблицу, содержащую эти данные о термостойкости. После вычисления сопротивления (будет описано позже) ваш код ищет в таблице соответствующую температуру.

Линеаризирующий отклик термистора

На аппаратной стороне вы можете линеаризовать отклик термистора, разместив постоянный резистор параллельно или последовательно с ним. Это улучшение будет происходить за счет некоторой точности.Сопротивление резистора должно быть равно сопротивлению термистора в середине интересующего температурного диапазона.

Термистор - комбинация параллельных резисторов

На Рисунке 3 показана S-образная кривая температурного сопротивления, полученная путем размещения резистора 10 кОм параллельно с термистором, сопротивление которого составляет 10 кОм при 25 ° C. Это делает область кривой между 0 ° C и 50 ° C довольно линейной. Обратите внимание, что максимальная линейность составляет около средней точки, которая находится при 25 ° C.

Рис. 3. Кривая температурного сопротивления комбинации термистора и параллельного резистора.

Термистор - комбинация последовательных резисторов (делитель напряжения)

Обычно микроконтроллеры собирают аналоговые данные через аналого-цифровой преобразователь (АЦП). Вы не можете напрямую прочитать сопротивление термистора с помощью АЦП. Последовательная комбинация термистора и резистора, показанная на рисунке 4, представляет собой простое решение в виде делителя напряжения.

Рисунок 4: Термисторный делитель напряжения.

Для расчета выходного напряжения делителя напряжения используется следующая формула:

Vo = Vs * (R0 / (Rt + R0))

Линеаризованная кривая температура-напряжение на рисунке 5 показывает изменение выходного напряжения Vo делителя напряжения в ответ на изменение температуры. Напряжение источника Vs составляет 5 вольт, сопротивление термистора Rt составляет 10 кОм при 25 ° C, а сопротивление последовательного резистора R0 составляет 10 кОм. Подобно указанной выше комбинации параллельного резистора и термистора, эта комбинация имеет максимальную линейность около средней точки кривой, которая находится при 25 ° C.

Рисунок 5: График зависимости температуры от напряжения.

Обратите внимание, что, поскольку Vs и R0 постоянны, выходное напряжение определяется Rt. Другими словами, делитель напряжения преобразует сопротивление термистора (и, следовательно, температуру) в напряжение. Идеально подходит для ввода в АЦП микроконтроллера.

Преобразование данных АЦП в температуру путем определения сначала сопротивления термистора

Чтобы преобразовать данные АЦП в температуру, сначала найдите сопротивление термистора, а затем используйте его для определения температуры.

Вы можете изменить приведенное выше уравнение делителя напряжения, чтобы найти сопротивление термистора Rt:

Rt = R0 * ((Vs / Vo) - 1)

Если опорное напряжение АЦП (Vref) и напряжение источника делителя напряжения (Vs) одинаковы, то верно следующее:

adcMax / adcVal = Vs / Vo

То есть отношение входного напряжения делителя напряжения к выходному напряжению такое же, как отношение значения полного диапазона АЦП (adcMax) к значению, возвращаемому АЦП (adcVal).Если вы используете 10-битный АЦП, тогда adcMax равно 1023.

Рисунок 6: Схема делителя напряжения и АЦП с общим опорным напряжением.

Теперь вы можете заменить соотношение напряжений соотношением значений АЦП в уравнении, которое нужно решить для Rt:

Rt = R0 * ((adcMax / adcVal) - 1)

Например, предположим, что термистор с сопротивлением 10 кОм при 25 ° C, 10-битный АЦП и adcVal = 366.

Rt = 10,000 * ((1023/366) - 1)
= 10,000 * (2,03)
= 17,951 Ом

После вычисления значения Rt вы можете использовать справочную таблицу, содержащую данные температурного сопротивления для вашего термистора, чтобы найти соответствующую температуру.Расчетное сопротивление термистора в приведенном выше примере соответствует температуре примерно 10 ° C.

9 18,670
10 17,926
11 17,214

Лист технических данных производителя может не включать все значения температурного сопротивления для термистора, или у вас может не хватить памяти для включения всех значений в справочную таблицу. В любом случае вам нужно будет включить код для интерполяции между перечисленными значениями.

Прямое вычисление температуры

В качестве альтернативы для расчета температуры можно использовать уравнение, которое аппроксимирует кривую температурной характеристики термистора.3

Производитель может или не может предоставить значения для коэффициентов A, B и C. В противном случае они могут быть получены с использованием данных измерения термостойкости. Однако это выходит за рамки данной статьи. Вместо этого мы будем использовать более простое уравнение параметра бета (или B), показанное ниже. Хотя оно не так точно, как уравнение Стейнхарта-Харта, оно все же дает хорошие результаты в более узком температурном диапазоне.

1 / T = 1 / T0 + 1 / B * ln (R / R0)

Переменная T - это температура окружающей среды в Кельвинах, T0 - обычно комнатная температура, также в Кельвинах (25 ° C = 298.15K), B - постоянная бета, R - сопротивление термистора при температуре окружающей среды (такое же, как Rt выше), а R0 - сопротивление термистора при температуре T0. Значения T0, B и R0 можно найти в паспорте производителя. Вы можете рассчитать значение R, как описано ранее для Rt.

Если напряжение источника делителя напряжения и Vref одинаковы, вам не нужно знать R0 или находить R для расчета температуры. Помните, что вы можете записать уравнение для сопротивления термистора через отношение значений АЦП:

R = R0 * ((adcMax / adcVal) - 1)

, тогда:

1 / T = 1 / T0 + 1 / B * ln (R0 * ((adcMax / adcVal) - 1) / R0)

R0 отменяет, что оставляет:

1 / T = 1 / T0 + 1 / B * ln ((adcMax / adcVal) - 1)

Возьмите результат, обратный результату, чтобы получить температуру в Кельвинах.

Например, предположим, что цепь термисторного делителя напряжения подключена к 10-битному АЦП. Константа бета для термистора составляет 3380, сопротивление термистора (R0) при 25 ° C составляет 10 кОм, а АЦП возвращает значение 366.

1 / T = 1 / 298,15 + 1/3380 * ln ((1023/366) - 1)
1 / T = 0,003527
T = 283,52K - 273,15K = 10,37 ° C

Пример: простой регистратор температуры на базе Arduino

На рисунке 7 показан простой регистратор температуры, состоящий из Arduino Uno SBC и термисторного делителя напряжения (справа).Выход делителя напряжения подключен к внутреннему 10-битному АЦП Arduino через один из аналоговых выводов. Arduino получает значение АЦП, вычисляет температуру и отправляет ее на последовательный монитор для отображения.

Рисунок 7: Схема регистратора температуры Arduino.

В следующем эскизе Arduino используется уравнение параметра B для расчета температуры. Функция getTemp выполняет большую часть работы. Он считывает аналоговый вывод несколько раз и усредняет значения АЦП. Затем он вычисляет температуру в градусах Кельвина, преобразует ее в градусы Цельсия и Фаренгейта и возвращает все три значения в основной цикл.Основной цикл многократно вызывает getTemp с двухсекундной задержкой между вызовами. Он отправляет значения температуры, возвращаемые getTemp, на последовательный монитор.

Рисунок 8: Снимок экрана с выходными данными регистратора температуры.

Загрузите пример кода здесь.

недействительным getTemp (float * t)
{

    // Преобразует входной сигнал термисторного делителя напряжения в значение температуры.
    // Делитель напряжения состоит из термистора Rt и последовательного резистора R0.
    // Значение R0 равно сопротивлению термистора при T0.// Вы должны установить следующие константы:
    // adcMax (значение полного диапазона АЦП)
    // analogPin (аналоговый входной контакт Arduino)
    // invBeta (инверсия значения бета термистора, предоставленного производителем).
    // Используйте с этим модулем эталонное напряжение Arduino по умолчанию (5 В или 3,3 В).
    //

  const int analogPin = 0; // заменяем 0 аналоговым выводом
  const float invBeta = 1.00 / 3380.00; // заменяем "Beta" на beta термистора

  const float adcMax = 1023.00;
  const float invT0 = 1,00 / 298,15; // комнатная температура в Кельвинах

  int adcVal, i, numSamples = 5;
  поплавок K, C, F;

  adcVal = 0;
  для (i = 0; i
 Ошибка измерения  и разрешение АЦП  

Существует ряд факторов, которые могут способствовать ошибке измерения. Например, термистор и последовательные резисторы могут отличаться от своих номинальных значений (в указанных пределах допуска), или может быть ошибка из-за самонагрева термистора, или шумная электрическая среда может привести к колебаниям на входе АЦП [6].

Ниже приведены несколько предложений по уменьшению погрешности измерения. Это предполагает, что вы используете уравнение параметра B.

Разрешение АЦП

В лучшем случае температура в приведенном выше примере является точной с точностью до 0,1 ° C. Это связано с ограничением из-за разрешения АЦП.

АЦП не чувствителен к изменениям напряжения между шагами. Для 10-битного АЦП наименьшее изменение напряжения, которое можно измерить, составляет Vref / 1023. Это разрешение АЦП по напряжению.Если Vref составляет 5 В, разрешение по напряжению составляет 4,89 мВ. Предполагая, что T0 составляет 25 ° C, наименьшее изменение температуры, которое может быть обнаружено при 25 ° C, составляет ± 0,1 ° C. Это температурное разрешение при 25 ° C. Это означает, что изменение младшего бита вызовет скачок отображаемой температуры на 0,1 ° C. Этот скачок связан с разрешением АЦП, а не с ошибкой измерения.

АЦП Выход Температура
511
512
513
0111111111
1000000000
1000000001
24.95 ° C
25,05 ° C
25,15 ° C

Если вам нужно лучшее разрешение, существуют методы (например, передискретизация [1]), которые вы можете использовать для увеличения эффективного разрешения АЦП вашего микроконтроллера или вы можете использовать внешний АЦП. с более высоким разрешением.

Ссылки

  1. AVR121: Повышение разрешения АЦП за счет передискретизации
    http://www.atmel.com/Images/doc8003.pdf
  2. Как найти выражение для бета-версии
    http://www.zen22142.zen.co.uk / ronj / tyf.html
  3. Измерение температуры с помощью термистора и Arduino
    http://web.cecs.pdx.edu/~eas199/B/howto/thermistorArduino/thermistorArduino.pdf
  4. Термистор
    https://ru.wikipedia.org/wiki/Термистор
  5. Учебное пособие по термистору
    http://www.radio-electronics.com/info/data/resistor/thermistor/thermistor.php
  6. Понимание и минимизация ошибок преобразования АЦП
    http://www.st.com/content/ccc/resource/technical/document/application_note/9d/56/66/74/4e/97/48/93/CD00004444.pdf / files / CD00004444.pdf / jcr: content / translations / en.CD00004444.pdf

Если у вас есть история об электронике, которой вы хотите поделиться, отправьте ее по адресу [адрес электронной почты защищен].
Почти два десятилетия Фил Кейн был техническим писателем в индустрии программного обеспечения и иногда писал статьи для журналов для любителей электроники. Он имеет степень бакалавра электронных технологий и информатику. Фил всю жизнь интересовался наукой, электроникой и исследованием космоса.Ему нравится конструировать и конструировать электронные устройства, и он очень хотел бы однажды увидеть хотя бы одно из этих устройств на пути к Луне или Марсу. Цепь ограничителя пускового тока

с использованием термистора NTC

Это статья из серии наших статей, в которых мы обсуждали пусковой ток. Мы уже рассмотрели основы пускового тока и различные типы схем защиты от пускового тока в наших предыдущих статьях. Наиболее распространенный метод защиты от пускового тока - использование термистора NTC , поэтому в этой статье мы обсудим больше о термисторе NTC и о том, как его использовать для предотвращения пускового тока в ваших конструкциях.Этот тип цепи ограничителя пускового тока NTC обычно можно найти в блоках питания, таких как преобразователи переменного тока в постоянный или схемы SMPS. Наряду с защитой от бросков тока разработчики также включают в свои конструкции многие другие типы схем защиты; мы уже рассмотрели различные схемы защиты, такие как:

Простая экономичная схема защиты от пускового тока

Хотя NTC - широко используемый метод борьбы с пусковым током, возникающим из-за высокой входной емкости нагрузки.Более традиционный и простой способ состоит в том, чтобы подключить постоянный резистор последовательно между нагрузкой и входным источником питания . Давайте быстро рассмотрим этот метод, чтобы понять его недостатки, которые привели к популярности NTC. Рассмотрим изображение ниже, на котором резистор подключен последовательно между источником питания и нагрузкой.

Вышеупомянутая схема может быть найдена в недорогом SMPS или модуле источника питания . Это нормальный и самый дешевый способ борьбы с пусковым током.Поскольку резистор используется в качестве основного компонента для управления входом, он действует как ограничитель пускового тока, но это неправильный способ подключения сильноточной нагрузки к источнику питания. Почему?

Очевидно, что резистор блокирует пусковой ток, но также препятствует нормальному протеканию тока во время нормального состояния цепи. Следовательно, поскольку номинал резистора фиксирован, постоянный ток, протекающий через резистор, рассеивает огромное количество энергии, таким образом, это повлияет на общий КПД схемы .

Хуже всего то, что если цепь нагрузки потребляет огромное количество энергии, ток, протекающий через резистор, будет увеличиваться, рассеиваемая мощность на этом резисторе также увеличится, а эффективность в конечном итоге снизится. Чем больше мощности необходимо рассеивать на резисторе, тем больше требуется резистор большей мощности для удовлетворения требований к мощности. Не говоря уже о том, что теперь ясно, что включение резистора в качестве ограничителя пускового тока в цепи большой мощности - не лучший выбор.

Но что, если специальный тип резистора, который мог бы обеспечить высокое сопротивление во время запуска схемы и обеспечить низкое сопротивление при нормальном состоянии схемы, эффективность, очевидно, увеличится, а рассеиваемая мощность будет очень минимальной. Это именно то, что делает NTC. NTC обеспечивает высокое сопротивление при запуске и низкое сопротивление при нормальном состоянии цепи.

Как использовать NTC для пускового тока

Как мы обсуждали ранее, NTC - это особый тип резистивного компонента, который обеспечивает высокое сопротивление во время запуска, но низкое сопротивление во время нормального состояния цепи.

NTC означает отрицательный температурный коэффициент. Он имеет прямую зависимость между температурой и сопротивлением. Если температура немного повысится, сопротивление значительно снизится. Это полезная функция для , ограничивающая пусковой ток . Во время первой ситуации включения питания, когда нагрузка получает питание от источника питания в первый раз, NTC действует как высокое сопротивление при нормальной температуре окружающей среды, тем самым эффективно блокируя пусковой ток в цепи.

Через очень короткое время, когда через NTC протекает большой ток, внутренняя температура NTC немного повышается и в конечном итоге влияет на сопротивление. Сопротивление уменьшается значительно и проходит прямой путь с нагрузкой и источником питания. Поскольку в нормальном рабочем состоянии сопротивление низкое, рассеиваемая мощность будет ниже, а эффективность также улучшится.

NTC Цепь ограничителя пускового тока

Обычно, когда емкостная нагрузка большой емкости подключена к источнику питания, NTC добавляется между положительными линиями блока питания.

Но в случае блока питания переменного тока или SMPS, NTC подключается на горячей линии перед диодом мостового выпрямителя. Мы уже сделали несколько SMPS или схем питания, которые используют NTC и ограничитель пускового тока.

Выбор правильного значения NTC

Расчет для при выборе ограничителя пускового тока заключается в определении пикового напряжения и пикового тока. Поскольку NTC является резистором, закона Ома достаточно, чтобы учесть значение сопротивления NTC.

Согласно закону Ома, R = V / I, и это верно и для этого случая. Сопротивление NTC = пиковое напряжение / пиковый пусковой ток. Например, при 230 В переменного тока среднеквадратическое напряжение может составлять 300 В. При этом среднеквадратичном напряжении и блоке 30 А пиковых пусковых токов требуется 10 Ом NTC.

Тестирование цепи ограничителя пускового тока NTC

Чтобы оценить влияние пускового тока, к блоку питания подключают емкостную нагрузку. Тестирование выполняется на макетной плате вместе с NTC 10 Ом.Схема показана на изображении ниже.

Резистор R1 используется как шунтирующий резистор для расчета пикового тока . Когда ток протекает через резистор, происходит падение напряжения. К этому резистору подключен дополнительный осциллограф для проверки падения напряжения на резисторе, как показано ниже

.

Падение напряжения можно снова определить с помощью закона Ома, где ток = напряжение / сопротивление. В нашем случае мы использовали резистор 1 Ом, поэтому при протекании тока через этот резистор 1 А будет падение напряжения на 1 В.NTC подключается к положительной линии цепи.

Резистор R2 - нагрузочный резистор, выдаваемый для быстрой разрядки конденсатора. Конденсатор представляет собой конденсатор общего назначения 100 мкФ 50 В. Поскольку пусковой ток протекает очень быстро и в течение короткого времени, используется функция триггера осциллографа.

После тестирования цепи без NTC пиковый ток, протекающий через резистор, показан на изображении ниже

Поскольку осциллограф настроен на 1 В на деление, пиковое напряжение равно 4.2В. Поэтому записывается пиковый ток 4,2 А. Это пусковой ток, когда блок питания 9 В подключен к конденсатору 100 мкФ 50 В.

Итак, чтобы заблокировать это, NTC 10 Ом подключается через положительный вывод цепи. Результат показан на изображении ниже -

.

Настройки осциллографа остались прежними, а напряжение источника равно 9 В, как и раньше, но пиковый бросок тока значительно снизился до почти 500 мА.

В подробном видео эффекта пускового тока с NTC или без него можно увидеть на видео ниже.Следовательно, с помощью NTC можно эффективно подавить пусковой ток на огромной емкостной нагрузке. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев или воспользуйтесь нашим форумом, чтобы задать другие технические вопросы.

Термисторы, датчик термистора NTC и PTC, термистор 10 кОм

Обеспечивая точное и чувствительное измерение и контроль температуры, выберите обширный каталог долговечных термисторов Allied Electronics и создайте эффективные схемы с контролем температуры.

Все термисторы, представленные в нашем ассортименте, изготовлены из материалов высочайшего качества известными поставщиками термисторов, такими как Vishay Dale, Honeywell и Amphenol Advanced Sensors. В нашем ассортименте есть бесчисленное количество типов, таких как токоограничивающие, высокочувствительные, суровые условия, а также герметичные термисторы, поэтому, независимо от вашего проекта или области применения, мы можем помочь.

У нас есть много различных типов термисторов, поэтому используйте функции поиска, чтобы ограничить поиск компонентов по функциям, производителю, типу и т. Д.Если вам нужна дополнительная информация о температурных термисторах, их функциях и использовании, прокрутите вниз. Хотите узнать больше? Свяжитесь с нами или посетите наш экспертный центр, чтобы получить ответы на все ваши вопросы.

Что такое термистор?

Термочувствительные резисторы, термисторы - это компоненты, которые, обнаружив изменение температуры, сопротивляются протекающему через них току, пропорциональному изменению температуры.

Обычно они используются для измерения изменений температуры. Когда температура вокруг термистора изменяется, полупроводниковые материалы внутри них изменяют напряжение, протекающее через компонент.Это считывается контроллером температуры, а генерируемые данные используются для информирования о функциях других компонентов в цепи.

Как работают различные термисторные датчики температуры?

Термисторные датчики температуры работают в соответствии с материалами, из которых они изготовлены - они изменяют масштаб сопротивления пропорционально изменению температуры. Каждый термистор изготовлен из полупроводниковых оксидов металлов, спрессованных в форму (например, бусинки, цилиндра или диска), которые покрыты водонепроницаемым материалом, обычно стеклом или эпоксидной смолой.

По мере нагревания этих оксидов их электрическое сопротивление увеличивается или уменьшается. Это зависит от различных типов термисторов, в которых они используются, из которых два:

Термисторы NTC - Термисторы с отрицательным температурным коэффициентом (NTC) уменьшают свое электрическое сопротивление по мере увеличения измеряемой температуры и наоборот. Они часто используются для измерения температуры, будь то в системах отопления, автомобильных датчиках температуры или для ограничения токов в цепях питания до безопасных уровней.

Термисторы PTC - Сопротивление термисторов с положительным температурным коэффициентом (PTC) увеличивается с увеличением температуры. Они часто используются в саморегулирующихся нагревателях - при понижении температуры к нагревательному элементу прикладывается больший ток, что увеличивает температуру окружающей среды. Они также могут защищать от сверхтоков, действуя как самовосстанавливающийся предохранитель, который останавливает ток, пока температура корпуса термистора не упадет до безопасного уровня.

В чем разница между термистором и резистивным датчиком температуры (RTD)?

Хотя они похожи на датчики температуры, между термисторами и RTD есть некоторые ключевые различия, которые определяют их правильное использование.

Термисторные датчики температуры менее дороги, более долговечны, обычно обеспечивают более точный диапазон измерения температуры и могут гораздо быстрее изменять свое сопротивление в соответствии с колебаниями температуры, чем датчики RTD.

Однако их диапазоны измерения температуры намного ниже, чем у RTD, и корреляция их сопротивления изменению температуры нелинейна. Решение этой проблемы может быть сложным, но необходимо учитывать, чтобы точно считывать данные термистора.Компоненты термистора также могут выделять тепло, что может привести к ошибочным показаниям.

RTD, с другой стороны, сделаны из металла, что означает, что они могут работать в гораздо более высоких диапазонах температур, чем термисторы, и их сопротивление температурной корреляции является линейным. Однако они больше и дороже, а также менее чувствительны, изменяя сопротивление на меньшее количество Ом на градус, чем термисторы.

Какие области применения термисторов?

Термисторные датчики температуры, используемые во многих промышленных, производственных или электронных приложениях, где необходимо измерять или реагировать на температуру газа, жидкости или поверхности, являются чрезвычайно распространенными компонентами.

Они используются в производстве пищевых продуктов, где необходимо контролировать температуру, чтобы смягчить состояние пищевых продуктов или санитарную среду. В химическом и нефтехимическом производстве некоррозионные термисторы играют большую роль в безопасном производстве различных жидкостей. В аэрокосмической отрасли, связи, электронике и медицине они приносят пользу как точному производству оборудования, так и обеспечивают возможность измерения температуры в самих продуктах.

И в повседневной жизни они гарантируют, что духовки, системы отопления, кондиционеры и пожарная сигнализация могут работать правильно, а температуру в двигателях транспортных средств можно контролировать.

Почему стоит доверять Allied Electronics как дистрибьютору термисторов?

Приобретая термисторы у Allied Electronics, вы получаете выгоду от почти столетнего опыта в области распределения электрических компонентов.

Мы являемся одним из крупнейших авторизованных дистрибьюторов в Северной Америке и имеем тесные партнерские отношения с широким спектром поставщиков компонентов, такими как Omron Automation, EPCOS, AVX и Sensata. Это означает, что у нас почти наверняка есть термистор, необходимый для решения поставленной задачи.

Найдите наш ассортимент по сопротивлению - просмотрите термисторы NTC, термисторы PTC или компоненты ICL и PPTC - и просмотрите их по допускам, типу заделки и многому другому. Просто используйте меню слева, чтобы сузить выбор.

Если у нас нет необходимых терморезисторов, свяжитесь с нашими специалистами, и они будут рады помочь. Посетите наш экспертный центр, чтобы узнать больше.

Apple не произвела революцию в источниках питания; новых транзисторов сделал

Новая биография Стив Джобс содержит замечательное заявление о блоке питания Apple II и его разработчике Роде Холте: [1]
Вместо обычного линейного источника питания Холт построил тот, который используется в осциллографах.Он включал и выключал питание не шестьдесят раз в секунду, а тысячи раз; это позволило ему сохранять энергию в течение гораздо меньшего времени и, следовательно, отбрасывать меньше тепла. «Этот импульсный источник питания был столь же революционным, как и материнская плата Apple II», - сказал позже Джобс. «Род не получил большого признания за это в учебниках истории, но он должен. Каждый компьютер теперь использует импульсные блоки питания, и все они копируют дизайн Рода Холта».
Мне показалось удивительным то, что в компьютерах теперь используются блоки питания, основанные на дизайне Apple II, поэтому я провел небольшое расследование.Оказывается, блок питания Apple не был революционным ни в концепции использования импульсного блока питания для компьютеров, ни в конкретной конструкции блока питания. Современные компьютерные блоки питания совершенно разные и не копируют дизайн Рода Холта. Оказывается, Стив Джобс делал свое обычное заявление о том, что все воруют революционные технологии Apple, что полностью противоречит действительности.

История импульсных блоков питания оказывается довольно интересной.Хотя большинство людей рассматривают блок питания как скучную металлическую коробку, на самом деле за этим стоит много технологических разработок. Фактически произошла революция в источниках питания в конце 1960-х - середине 1970-х годов, когда импульсные источники питания пришли на смену простым, но неэффективным линейным источникам питания, но это произошло за несколько лет до выхода Apple II в 1977 году. Для этой революции следует перейти к достижениям в полупроводниковой технологии, в частности, к усовершенствованию переключающих транзисторов, а затем и к инновационным ИС для управления импульсными источниками питания.[2]

Некоторые сведения об источниках питания

В стандартном настольном компьютере источник питания преобразует сетевое напряжение переменного тока в постоянное, обеспечивая несколько тщательно регулируемых низких напряжений при высоких токах. Источники питания могут быть построены различными способами, но линейные и импульсные источники питания - это два метода, относящиеся к этому обсуждению. (См. Примечания для получения дополнительной информации об устаревших технологиях, таких как большие механические мотор-генераторные системы [3] и феррорезонансные трансформаторы [4] [5].)

Типичный линейный источник питания использует громоздкий силовой трансформатор для преобразования 120 В переменного тока в низкое напряжение переменного тока, преобразует его в постоянное напряжение низкого напряжения с помощью диодного моста, а затем использует линейный регулятор для понижения напряжения до желаемого уровня.Линейный стабилизатор - это недорогой, простой в использовании компонент на основе транзистора, который преобразует избыточное напряжение в отходящее тепло для получения стабильного выходного сигнала. Линейные источники питания почти несложно спроектировать и изготовить. [6] Однако одним большим недостатком является то, что они обычно расходуют около 50-65% энергии в виде тепла [7], часто требуя больших металлических радиаторов или вентиляторов для отвода тепла. Второй недостаток - они большие и тяжелые. С другой стороны, компоненты (кроме трансформатора) в линейных источниках питания должны работать только с низким напряжением, а выход очень стабильный и бесшумный.

Импульсный источник питания работает по совершенно другому принципу: быстрое включение и выключение питания, а не превращение избыточной мощности в тепло. В импульсном источнике питания входная линия переменного тока преобразуется в высоковольтный постоянный ток, а затем источник питания включает и выключает постоянный ток тысячи раз в секунду, тщательно контролируя время переключения, чтобы выходное напряжение в среднем составляло желаемое значение. Теоретически энергия не тратится зря, хотя на практике КПД составляет 80% -90%.Импульсные источники питания намного эффективнее, выделяют гораздо меньше тепла и намного меньше и легче линейных источников питания. Основным недостатком импульсного источника питания является то, что он значительно сложнее, чем линейный источник питания, и его гораздо труднее спроектировать [8]. Кроме того, он предъявляет гораздо более высокие требования к компонентам, требуя транзисторов, которые могут эффективно включаться и выключаться на высокой скорости при большой мощности. Переключатели, катушки индуктивности и конденсаторы в импульсном источнике питания могут быть расположены в нескольких различных схемах (или топологиях) с такими названиями, как понижающий, повышающий, обратный, прямой, двухтактный, полуволновой и полноволновой.[9]

История импульсных источников питания до 1977 года

Принципы импульсных источников питания были известны с 1930-х годов [6] и строились из дискретных компонентов в 1950-х. [10] В 1958 году в компьютере IBM 704 использовался примитивный импульсный стабилизатор на основе электронных ламп. [11] Компания Pioneer Magnetics начала производство импульсных источников питания в 1958 году [12] (а спустя десятилетия внесла ключевое новшество в блоки питания для ПК [13]). Компания General Electric опубликовала первый проект импульсного источника питания в 1959 году.[14] В 1960-х годах аэрокосмическая промышленность и НАСА [15] были основной движущей силой разработки импульсных источников питания, поскольку преимущества небольшого размера и высокой эффективности компенсировали высокую стоимость. [16] Например, НАСА использовало переключатели питания для спутников [17] [18], таких как Telstar в 1962 году. [19]

Компьютерная промышленность начала использовать импульсные блоки питания в конце 1960-х годов, и их популярность неуклонно росла. Примеры включают миникомпьютер PDP-11/20 в 1969 году [20] Honeywell h416R в 1970 году [21] и миникомпьютер Hewlett-Packard 2100A в 1971 году.[22] [23] К 1971 году компании, использующие импульсные регуляторы, «читали как« Кто есть кто »компьютерной индустрии: IBM, Honeywell, Univac, DEC, Burroughs и RCA, и это лишь некоторые из них» [21]. В 1974 году HP использовала импульсный источник питания для миникомпьютера 21MX, [24] Data General для Nova 2/4, [25] Texas Instruments для 960B, [26] и Interdata для своих мини-компьютеров. [27] В 1975 году HP использовала автономный импульсный источник питания в терминале с дисплеем HP2640A, [28] Matsushita для своего миникомпьютера управления трафиком [29] и IBM для своего подобного пишущей машинке Selectric Composer [29] и портативного компьютера IBM 5100. .[30] К 1976 году Data General использовала импульсные блоки питания для половины своих систем, Hitachi и Ferranti использовали их [29], настольный компьютер Hewlett-Packard 9825A [31] и калькулятор 9815A [32] использовали их, а decsystem 20 [33] - большой импульсный блок питания. К 1976 году в жилых комнатах появились импульсные источники питания, питающие цветные телевизионные приемники. [34] [35]

Импульсные блоки питания также стали популярными продуктами для производителей блоков питания, начиная с конца 1960-х годов.В 1967 году RO Associates представила первый импульсный источник питания 20 кГц [36], который, как они утверждают, также был первым коммерчески успешным импульсным источником питания [37]. NEMIC начала разработку стандартизированных импульсных источников питания в Японии в 1970 году [38]. К 1972 году большинство производителей блоков питания предлагали импульсные блоки питания или собирались предложить их. [5] [39] [40] [41] [42] HP продала линейку импульсных блоков питания мощностью 300 Вт в 1973 году [43], а также компактный импульсный источник питания мощностью 500 Вт [44] и импульсный блок питания мощностью 110 Вт [45] в 1975 году.К 1975 году импульсные блоки питания составляли 8% рынка блоков питания и быстро росли благодаря улучшенным компонентам и желанию использовать блоки питания меньшего размера для таких продуктов, как микрокомпьютеры. [46]

Импульсные источники питания были представлены в журналах по электронике той эпохи, как в рекламных объявлениях, так и в статьях. Electronic Design рекомендовал импульсные источники питания в 1964 году для повышения эффективности [47]. На обложке журнала Electronics World за октябрь 1971 года был представлен импульсный блок питания мощностью 500 Вт и статья «Блок питания импульсного регулятора».В длинной статье о блоках питания в Computer Design в 1972 году подробно обсуждались импульсные блоки питания и растущее использование импульсных блоков питания в компьютерах, хотя в ней упоминается, что некоторые компании все еще скептически относились к импульсным источникам питания [5]. В 1973 г. в журнале Electronic Engineering была опубликована подробная статья «Импульсные источники питания: зачем и как» [42]. В 1976 году обложка журнала Electronic Design [48] была озаглавлена ​​«Внезапно переключиться стало проще», описывая новые ИС контроллера импульсного источника питания, Electronics опубликовала длинную статью об импульсных источниках питания [29] Powertec разместила двухстраничную рекламу преимуществ своих импульсных источников питания с крылатой фразой «Большой переключатель - это переключатели» [49], а журнал Byte объявил о импульсных источниках питания Boschert для микрокомпьютеров.[50]

Ключевым разработчиком импульсных блоков питания был Роберт Бошерт, который бросил свою работу и в 1970 году начал собирать блоки питания на своем кухонном столе [51]. Он сосредоточился на упрощении импульсных источников питания, чтобы сделать их экономически конкурентоспособными по сравнению с линейными источниками питания, и к 1974 году он начал массовое производство недорогих источников питания для принтеров [51] [52], за которым последовала недорогая коммутация мощностью 80 Вт. Электроснабжение в 1976 г. [50] К 1977 году Boschert Inc выросла до компании с 650 сотрудниками [51], которая производила блоки питания для спутников и истребителей F-14 [53], а затем блоки питания для таких компаний, как HP [54] и Sun.Люди часто думают, что настоящее время - уникальное время для технологических стартапов, но Бошерт показывает, что стартапы на кухонном столе происходили даже 40 лет назад.

Развитие импульсных источников питания в 1970-х годах было в значительной степени обусловлено новыми компонентами. [55] Номинальное напряжение переключаемых транзисторов часто было ограничивающим фактором [5], поэтому появление в конце 1960-х - начале 1970-х годов высокоэффективных, высокоскоростных и мощных транзисторов по низкой цене значительно увеличило популярность импульсных источников питания.[5] [6] [21] [16] Технология транзисторов развивалась так быстро, что коммерческий источник питания мощностью 500 Вт, представленный на обложке Electronics World в 1971 году, не мог быть построен с транзисторами всего 18 месяцев назад [21]. Как только силовые транзисторы смогут выдерживать сотни вольт, источники питания смогут отказаться от тяжелого силового трансформатора с частотой 60 Гц и работать в автономном режиме непосредственно от сетевого напряжения. Более высокие скорости переключения транзисторов позволили использовать более эффективные и гораздо меньшие блоки питания. Введение интегральных схем для управления импульсными источниками питания в 1976 году широко рассматривается как начало эры импульсных источников питания за счет их радикального упрощения.[10] [56]

К началу 1970-х годов стало ясно, что происходит революция. Производитель блоков питания Уолт Хиршберг заявил в 1973 году, что «революция в конструкции блоков питания, происходящая в настоящее время, не будет завершена до тех пор, пока трансформатор на 60 Гц не будет почти полностью заменен» [57]. В 1977 году во влиятельной книге по источникам питания говорилось, что " считалось, что импульсные регуляторы совершают революцию в отрасли электроснабжения »[58].

Apple II и его блок питания

Персональный компьютер Apple II был представлен в 1977 году.Одной из его особенностей был компактный импульсный блок питания без вентилятора, который обеспечивал мощность 38 Вт при 5, 12, -5 и -12 вольт. Блок питания Холта Apple II имеет очень простую конструкцию с автономной топологией обратноходового преобразователя. [59]

Стив Джобс сказал, что теперь каждый компьютер копирует революционный дизайн Рода Холта [1]. Но революционен ли этот дизайн? Был ли он сорван с любого другого компьютера?

Как показано выше, ко времени выпуска Apple II на многих компьютерах использовались импульсные блоки питания.Конструкция не является особенно революционной, поскольку аналогичные простые автономные обратноходовые преобразователи продавались Boschert [50] [60] и другими компаниями. В долгосрочной перспективе создание схемы управления из дискретных компонентов, как это сделала Apple, было тупиковой технологией, поскольку будущее импульсных источников питания было за ИС контроллеров ШИМ [2]. Удивительно, что Apple продолжала использовать дискретные генераторы в источниках питания даже через Macintosh Classic, так как контроллеры IC были представлены в 1975 году. [48] Apple действительно перешла на контроллеры IC, например, в Performa [61] и iMac.[62]

Блок питания, который Род Холт разработал для Apple, был достаточно инновационным, чтобы получить патент [63], поэтому я подробно изучил патент, чтобы увидеть, есть ли какие-нибудь менее очевидные революционные особенности. В патенте описаны два механизма защиты источника питания от сбоев. Первый (пункт 1) - это механизм безопасного запуска генератора через вход переменного тока. Второй механизм (пункт 8) возвращает избыточную энергию от трансформатора к источнику питания (особенно при отсутствии нагрузки) через зажимную обмотку на трансформаторе и диод.

Это блок питания AA11040-B для Apple II Plus. [59] Питание переменного тока поступает слева, фильтруется, проходит через большой переключающий транзистор к обратноходовому трансформатору в середине, выпрямляется диодами справа (на радиаторах), а затем фильтруется конденсаторами справа. Схема управления находится внизу. Фотография использована с разрешения kjfloop, Copyright 2007.

Механизм запуска переменного тока не использовался Apple II, [59] но использовался Apple II Plus, [64] Apple III, [65] Lisa, [66] Macintosh, [67] и Mac 128K через Classic.[68] Я не смог найти никаких источников питания сторонних производителей, которые использовали бы этот механизм, [69] за исключением блока питания телевизора 1978 года, [70] и он стал устаревшим контроллерами IC, так что этот механизм, похоже, не повлиял на компьютерный блок питания.

Второй механизм в патенте Холта, зажимная обмотка и диод для возврата мощности в обратном преобразователе, использовался в различных источниках питания до середины 1980-х годов, а затем исчез. Некоторые примеры - источник питания Boschert OL25 (1978), [60] Apple III (1980), [65] Документация по источникам питания Apple (1982 г.), [59] Жесткий диск Tandy (1982 г.), [71] Тэнди 2000 (1983), [72] [73] Яблочная Лиза (1983), [66] Apple Macintosh (1984 г.), [67] Commodore Model B128 (1984), [74] Тэнди 6000 (1985), [75] а также От Mac Plus (1986) до Mac Classic (1990).[68] Эта обмотка с обратным зажимом, по-видимому, была популярна в Motorola в 1980-х годах, она фигурирует в техническом описании микросхемы контроллера MC34060 [76], руководстве конструктора 1983 года [77] (где обмотка описывалась как обычная, но необязательная) и в примечании к применению 1984 года. . [78]

Является ли этот зажим обратного хода намоткой на инновации Холта, которые сорвали другие компании? Я так и думал, пока не нашел книгу по источникам питания 1976 года, в которой подробно описывалась эта обмотка [35], которая испортила мой рассказ. (Также обратите внимание, что в прямых преобразователях (в отличие от обратных преобразователей) эта зажимная обмотка использовалась еще в 1956 году [79] [80] [81], поэтому ее применение в обратном преобразователе в любом случае не кажется большим скачком. .)

Одним из вызывающих недоумение аспектов обсуждения источников питания в книге Steve Jobs [1] является утверждение, что источник питания Apple II «похож на те, что используются в осциллографах», поскольку осциллографы - лишь одно небольшое применение для переключения источников питания. Это заявление, по-видимому, возникло из-за того, что Холт ранее разработал импульсный источник питания для осциллографов [82], но нет другой связи между источником питания Apple и источниками питания осциллографов.

Наибольшее влияние Apple II на индустрию блоков питания оказала Astec - гонконгская компания, производившая блоки питания.До выхода Apple II Astec была малоизвестным производителем импульсных инверторов постоянного тока. Но к 1982 году Astec стала ведущим в мире производителем импульсных источников питания, почти полностью опираясь на бизнес Apple, и удерживала первое место в течение ряда лет. [83] [84] В 1999 году Astec была приобретена компанией Emerson [85], которая в настоящее время является второй по величине компанией в области энергоснабжения после Delta Electronics. [86]

Малоизвестный факт об источнике питания Apple II заключается в том, что он был первоначально собран калифорнийскими домохозяйками среднего класса как сдельная.[83] Однако по мере роста спроса строительство источника питания было передано Astec, хотя оно стоило на 7 долларов больше. К 1983 году Astec производила 30 000 блоков питания Apple в месяц. [83]

Блоки питания post-Apple

В 1981 году был выпущен IBM PC, который оказал долгосрочное влияние на конструкции блоков питания компьютеров. Блоки питания для оригинального ПК IBM 5150 производились компаниями Astec и Zenith. [83] В этом источнике питания мощностью 63,5 Вт используется обратная схема, управляемая микросхемой контроллера источника питания NE5560.[87]

Я буду подробно сравнивать блок питания для ПК IBM 5150 с блоком питания Apple II, чтобы показать их общие черты и различия. Оба они представляют собой автономные источники питания с обратным ходом и несколькими выходами, но это почти все, что у них общего. Несмотря на то, что в блоке питания ПК используется контроллер IC, а в Apple II используются дискретные компоненты, в блоке питания ПК используется примерно в два раза больше компонентов, чем в блоке питания Apple II. В то время как в блоке питания Apple II используется генератор переменной частоты, построенный на транзисторах, в блоке питания ПК используется генератор ШИМ фиксированной частоты, обеспечиваемый микросхемой контроллера NE5560.В ПК используются оптоизоляторы для обеспечения обратной связи по напряжению с контроллером, а в Apple II используется небольшой трансформатор. Apple II напрямую управляет силовым транзистором, в то время как ПК использует управляющий трансформатор. ПК проверяет все четыре выхода мощности на соответствие нижнему и верхнему пределам напряжения, чтобы убедиться, что питание хорошее, и выключает контроллер, если какое-либо напряжение выходит за пределы спецификации. Apple II вместо этого использует лом SCR на выходе 12 В, если это напряжение слишком высокое. В то время как трансформатор обратного хода ПК имеет одну первичную обмотку, Apple II использует дополнительную первичную обмотку зажима для возврата мощности, а также другую первичную обмотку для обратной связи.ПК обеспечивает линейное регулирование от источников питания 12 В и -5 В, а Apple II - нет. В ПК используется вентилятор, а в Apple II - нет. Понятно, что блок питания IBM 5150 не «сдирает» конструкцию блоков питания Apple II, поскольку между ними почти нет ничего общего. А позже конструкции блоков питания стали еще более разными.

Блок питания IBM PC AT стал де-факто стандартом для блоков питания компьютеров. В 1995 году Intel представила спецификацию материнской платы ATX [88], а блок питания ATX (вместе с вариантами) стал стандартом для блоков питания настольных компьютеров, при этом компоненты и конструкции часто ориентированы именно на рынок ATX.[89]

Компьютерные системы питания стали более сложными с появлением в 1995 году модуля регулятора напряжения (VRM) для Pentium Pro, который требовал более низкого напряжения при более высоком токе, чем источник питания мог обеспечить напрямую. Для обеспечения этого питания Intel представила VRM - импульсный стабилизатор постоянного тока, установленный рядом с процессором, который снижает 12 вольт от источника питания до низкого напряжения, используемого процессором [90]. (Если вы разгоняете свой компьютер, именно VRM позволяет поднять напряжение.) Кроме того, видеокарты могут иметь собственный VRM для питания высокопроизводительного графического чипа. Быстрому процессору может потребоваться 130 Вт от VRM. Сравнение этого с половиной ватта мощности, используемой процессором Apple II 6502 [91], показывает огромный рост энергопотребления современных процессоров. Один только современный процессорный чип может использовать более чем в два раза мощность всего компьютера IBM 5150 или в три раза больше, чем Apple II.

Поразительный рост компьютерной индустрии привел к тому, что потребление энергии компьютерами стало причиной беспокойства об окружающей среде, что привело к появлению инициатив и нормативных актов, направленных на повышение эффективности источников питания.[92] В США сертификация Energy Star и 80 PLUS [93] подталкивает производителей к производству более эффективных «зеленых» источников питания. Эти источники питания обеспечивают большую эффективность с помощью различных методов: более эффективное резервное питание, более эффективные схемы запуска, резонансные схемы (также известные как мягкое переключение и ZCT или ZVT), которые снижают потери мощности в переключающих транзисторах за счет отсутствия питания протекает через них, когда они выключаются, и схемы «активного зажима» для замены переключающих диодов более эффективными транзисторными схемами.[94] Усовершенствования в технологии MOSFET-транзисторов и высоковольтных кремниевых выпрямителей за последнее десятилетие также привели к повышению эффективности. [92]

Источники питания могут более эффективно использовать мощность сети переменного тока с помощью метода коррекции коэффициента мощности (PFC). [95] Активная коррекция коэффициента мощности добавляет еще одну схему переключения перед основной схемой источника питания. Специальная микросхема контроллера PFC переключает его с частотой до 250 кГц, аккуратно извлекая плавное количество энергии из источника питания для создания постоянного высокого напряжения, которое затем подается в обычную схему импульсного источника питания.[13] [96] PFC также иллюстрирует, как блоки питания превратились в товар с очень тонкой маржой, где доллар - это большие деньги. Активная коррекция коэффициента мощности считается особенностью высокопроизводительных источников питания, но ее фактическая стоимость составляет всего около 1,50 доллара США [97].

На протяжении многих лет для блоков питания IBM PC использовалось множество различных микросхем контроллеров, конструкций и топологий, как для поддержки различных уровней мощности, так и для использования преимуществ новых технологий. [98] Микросхемы контроллеров, такие как NE5560 и SG3524, были популярны в ранних ПК IBM.[99] Микросхема TL494 стала очень популярной в конфигурации полумоста, [99] самой популярной конструкции в 1990-х. [100] Серия UC3842 также была популярна для конфигураций прямого преобразователя. [99] Стремление к повышению эффективности сделало двойные прямые преобразователи более популярными [101], а коррекция коэффициента мощности (PFC) сделала контроллер CM6800 очень популярным [102], поскольку одна микросхема управляет обеими цепями. В последнее время стали более распространены прямые преобразователи, которые генерируют только 12 В, с использованием преобразователей постоянного тока для получения очень стабильных 3.Выходы 3 В и 5 В. [94] Более подробную информацию о современных источниках питания можно получить из многих источников. [103] [104] [98] [105]

В этом типичном блоке питания XT мощностью 150 Вт используется популярная полумостовая конструкция. Фильтр переменного тока на входе справа. Слева от него находится схема управления / драйвера: микросхема TL494 вверху управляет маленьким желтым приводным трансформатором внизу, который управляет двумя переключающими транзисторами на радиаторах внизу. Слева от него находится больший желтый главный трансформатор с вторичными диодами и регулятором на радиаторах и выходной фильтром слева.Этот полумостовой блок питания полностью отличается от конструкции Apple II с обратной связью. Право на фотографию принадлежит larrymoencurly, использовано с разрешения.

Современные компьютеры содержат удивительный набор импульсных источников питания и регуляторов. Современный источник питания может содержать переключающую схему PFC, переключающий обратноходовой источник питания для резервного питания, переключающий прямой преобразователь для выработки 12 вольт, переключающий преобразователь постоянного тока в постоянный для генерации 5 вольт и переключающий преобразователь постоянного тока в постоянный ток для генерации 3 .3 вольта, [94] поэтому блок питания ATX можно рассматривать как пять различных импульсных блоков питания в одной коробке. Кроме того, на материнской плате есть импульсный регулятор VRM для питания процессора, а на видеокарте есть еще один VRM, всего семь коммутируемых источников питания в типичном настольном компьютере.

Технология импульсных источников питания продолжает развиваться. Одно из разработок - цифровое управление и цифровое управление питанием. [106] Вместо использования аналоговых схем управления микросхемы цифрового контроллера оцифровывают управляющие входы и используют программные алгоритмы для управления выходами.Таким образом, проектирование контроллера источника питания становится вопросом программирования в такой же степени, как и проектирования аппаратного обеспечения. Цифровое управление питанием позволяет источникам питания обмениваться данными с остальной системой для повышения эффективности и ведения журналов. Хотя сейчас эти цифровые технологии в основном используются для серверов, я ожидаю, что в конечном итоге они перейдут на настольные компьютеры.

Подводя итог, можно сказать, что исходный блок питания для ПК IBM 5150 почти во всех отношениях отличался от блока питания Apple II, за исключением того, что оба блока питания были обратноходовыми.Более современные блоки питания не имеют ничего общего с Apple II. Абсурдно утверждать, что блоки питания копируют дизайн Apple.

Известные конструкторы импульсных источников питания

Стив Джобс сказал, что Род Холт должен быть более известен тем, что разработал блок питания для Apple II: «Род не получил большого признания за это в учебниках истории, но он должен» [1]. Но даже в лучшем случае разработчики блоков питания не известны за пределами очень небольшого сообщества. Роберт Бошерт был занесен в Зал славы электронной инженерии Electronic Design в 2009 году за работу в области энергоснабжения.[51] Роберт Маммано получил награду за заслуги перед компанией Power Electronics Technology в 2005 году за начало производства ИС для контроллеров с ШИМ [10]. В 2008 году Руди Севернс получил награду за заслуги перед компанией Power Electronics Technology за свои инновации в импульсных источниках питания. [107] Но никто из этих людей даже не известен в Википедии. Другим крупным новаторам в этой области уделяется еще меньше внимания. [108] Я неоднократно сталкивался с работой Эллиота Джозефсона, который проектировал спутниковые системы питания в начале 1960-х годов [18], имеет множество патентов на источники питания, включая Tandy 6000 [75], и даже номер его патента напечатан на Apple II Plus. и платы источника питания Osborne 1 [59], но он, похоже, полностью не распознан.

Ирония в комментарии Стива Джобса о том, что Роду Холту не уделяют должного внимания, заключается в том, что работа Рода Холта описана в десятках книг и статей об Apple, от Revenge of the Nerds, в 1982 году [109] до лучших работ 2011 года. продавая биографию Стива Джобса, что делает Рода Холта самым известным дизайнером блоков питания за всю историю.

Заключение

Источники питания - это не скучные металлические коробки, как думает большинство людей; у них много интересной истории, во многом обусловленной усовершенствованием транзисторов, которые сделали импульсные источники питания практичными для компьютеров в начале 1970-х годов.Совсем недавно стандарты эффективности, такие как 80 PLUS, вынудили источники питания стать более эффективными, что привело к появлению новых конструкций. Apple II продавал огромное количество импульсных блоков питания, но его конструкция блока питания была технологическим тупиком, который не был «сорван» другими компьютерами.

Если вас интересуют источники питания, вам также может понравиться моя статья «Крошечный, дешевый и опасный: внутри (поддельного) зарядного устройства для iPhone».

Примечания и ссылки

Я потратил слишком много времени на изучение источников питания, анализ схем и копание в старых журналах по электронике.Вот мои заметки и ссылки на случай, если они кому-то пригодятся. Мне было бы интересно услышать от разработчиков источников питания, которые имели непосредственный опыт разработки источников питания в 1970-х и 1980-х годах.

[1] Стив Джобс , Уолтер Исааксон, 2011. Дизайн блока питания Рода Холта для Apple II обсуждается на странице 74. Обратите внимание, что описание импульсного блока питания в этой книге довольно искажено.

[2] ШИМ: от одного чипа к гигантской отрасли, Джин Хефтман, Power Electronics Technology, стр 48-53, октябрь 2005 г.

[3] Предварительное планирование площадки: компьютер Cray-1 (1975) В Cray-1 использовались два мотор-генератора мощностью 200 л.с. (150 кВт) для преобразования входного переменного тока 250 А 460 В в регулируемую мощность 208 В, 400 Гц; каждый мотор-генератор был примерно 3900 фунтов. Мощность 208 В, 400 Гц подавалась на 36 отдельных источников питания, в которых использовались двенадцатифазные трансформаторы, но не было внутренних регуляторов. Эти блоки питания образуют 12 верстаков вокруг компьютера Cray. Фотографии силовых компонентов Cray можно найти в Справочном руководстве по аппаратному обеспечению Cray-1 серии S (1981).Эта высокочастотная установка двигатель-генератор может показаться странной, но в IBM 370 использовалась аналогичная установка, см. Объявление: IBM System / 370 Model 145.

[4] Во многих более крупных компьютерах для регулирования использовались феррорезонансные трансформаторы. Например, в блоке питания компьютера IBM 1401 использовался феррорезонансный регулятор мощностью 1250 Вт, см. Справочное руководство, 1401 Data Processing System (1961), стр. 13. В HP 3000 Series 64/68/70 также использовались феррорезонансные трансформаторы, см. Руководство по установке компьютеров Series 64/68/70 (1986), стр. 2-3.DEC использовала феррорезонансные и линейные источники питания почти исключительно в начале 1970-х годов, в том числе для PDP-8 / A (рисунок в «Выбор источника питания вырисовывается в сложных конструкциях», Electronics , Oct 1976, volume 49, p111).

[5] «Источники питания для компьютеров и периферийных устройств», Computer Design , июль 1972 г., стр. 55-65. В этой длинной статье о блоках питания много говорится об импульсных блоках питания. Он описывает понижающую (последовательную), повышающую (шунтирующую), двухтактную (инверторную) и полную мостовую топологии.В статье говорится, что номинальное напряжение переключающего транзистора является ограничивающим параметром во многих приложениях, но «высоковольтные высокоскоростные транзисторы становятся все более доступными по низкой цене, что является важным фактором более широкого использования источников импульсных стабилизаторов». В нем делается вывод, что «Доступность высоковольтных, высокомощных переключающих транзисторов по умеренным ценам дает дополнительный импульс использованию высокоэффективных импульсных обычных [sic] источников питания. В этом году ожидается существенное увеличение их использования."

В статье также говорится: «Одной из наиболее спорных тем является продолжающаяся дискуссия о ценности импульсных источников питания для компьютерных приложений в сравнении с обычными последовательными транзисторными регуляторами». Это подтверждается некоторыми комментариями поставщиков. Одним из скептиков была компания Elexon Power Systems, которая «не считает импульсные регуляторы« ответом ». Они планируют раскрыть совершенно новый подход к источникам питания в ближайшем будущем ». Другой был Modular Power Inc, который «не рекомендовал переключать регуляторы, за исключением случаев, когда малый размер, легкий вес и высокая эффективность являются основными соображениями, как в портативном и бортовом оборудовании.«Sola Basic Industries» заявила, что «их инженеры очень скептически относятся к долговременной надежности импульсных стабилизаторов в практических конструкциях массового производства и прогнозируют проблемы с отказом транзисторов».

Раздел статьи, посвященный комментариям производителей, дает представление о технологиях в отрасли электроснабжения в 1972 году: Hewlett Packard »указывает, что сегодня большое влияние оказывает доступность высокоскоростных, сильноточных и недорогих транзисторов, ускоряемая нынешней тенденцией к импульсным стабилизаторам.Компания широко использует переключатели в полном спектре конструкций с высокой мощностью ». Lambda Electronics «широко использует импульсные регуляторы на выходную мощность более 100 Вт», которые предназначены для предотвращения охлаждения вентилятором. Компания Analog Devices предложила прецизионные расходные материалы, в которых для повышения эффективности используются методы переключения. RO Associates «считает, что рост числа импульсных источников питания является серьезным изменением в области проектирования источников питания». Они предлагали миниатюрные источники на 20 кГц и недорогие источники на 60 кГц. Sola Basic Industries »прогнозирует, что производители мини-компьютеров будут использовать больше бестрансформаторных импульсных регуляторов в 1972 году для повышения эффективности и уменьшения размера и веса." Trio Laboratories «указывает на то, что производители компьютеров и периферийных устройств обращаются к переходным типам, потому что цены сейчас более конкурентоспособны, а приложения требуют меньшего размера».

[6] Практическая конструкция импульсного источника питания, Марти Браун, 1990, стр. 17.

[7] См. Раздел комментариев для подробного обсуждения эффективности линейного источника питания.

[8] Поваренная книга по источникам питания , Марти Браун, 2001. На странице 5 обсуждается относительное время разработки для различных технологий электропитания: линейный регулятор занимает 1 неделю общего времени разработки, а импульсный стабилизатор с ШИМ требует 8 человеко-месяцев.

[9] Сводка различных топологий находится в обзорах SMPS и топологиях источников питания. Подробности см. В Microchip AN 1114: Топологии SMPS и Топологии импульсных источников питания

[10] Лауреат премии за выслугу лет Роберт Маммано, Power Electronics Technology , сентябрь 2005 г., стр. 48-51. В этой статье Silicon General SG1524 (1975) описывается как ИС, открывшая эру импульсных регуляторов и импульсных источников питания.

[11] Справочное руководство по проектированию заказчиков IBM: Блок питания 736, Блок питания 741, Блок распределения питания 746 (1958), стр. 60-17.Блок питания для компьютера 704 состоит из трех шкафов размером с холодильник, заполненных электронными лампами, предохранителями, реле, механическими таймерами и трансформаторами, потребляющими мощность 90,8 кВА. Он использовал несколько методов регулирования, включая трансформаторы с насыщаемым реактором и опорное напряжение на основе термисторов. Выходы постоянного тока регулировались переключающим механизмом тиратрона с частотой 60 Гц. Тиратроны - это переключающие вакуумные лампы, которые управляют выходным напряжением (подобно триакам в обычном диммерном переключателе). Это можно рассматривать как импульсный источник питания (см. Источники питания, импульсные регуляторы, инверторы и преобразователи , Irving Gottlieb, pp 186-188).

[12] В своей рекламе Pioneer Magnetics заявляет, что они разработали свой первый импульсный источник питания в 1958 году. Например, см. Electronic Design , V27, p216.

[13] Источник питания с коэффициентом мощности Unity, патент 4677366. Pioneer Magnetics подала этот патент в 1986 году на активную коррекцию коэффициента мощности. См. Также статью Pioneer Magnetics «Почему PFC? страница.

[14] Один из первых импульсных источников питания был описан в «Транзисторный преобразователь-усилитель мощности», Д. А. Пейнтер, General Electric Co., Solid-State Circuits Conference , 1959, p90-91. Также см. Соответствующий патент 1960 г. 3067378 «Транзисторный преобразователь».

[15] Исследование бездиссипативного преобразователя постоянного тока в преобразователь постоянного тока, Центр космических полетов Годдарда, 1964. Этот обзор транзисторных преобразователей постоянного тока показывает около 20 различных схем переключения, известных в начале 1960-х годов. Обратный преобразователь заметно отсутствует. Многие другие отчеты НАСА о преобразователях энергии за этот период доступны на сервере технических отчетов НАСА.

[16] Подробная история импульсных источников питания представлена ​​в S.J. M.Phil Уоткинса. дипломная работа Автоматическое тестирование импульсных источников питания, в главе История и развитие импульсных источников питания до 1987 г.

[17] История развития импульсных источников питания, TDK Power Electronics World. Это дает очень краткую историю импульсных источников питания. В TDK также есть удивительно подробное обсуждение импульсных источников питания в комической форме: TDK Power Electronics World.

[18] «Спутниковый источник питания с регулируемой шириной импульса», Electronics , февраль 1962 г., стр. 47-49. В этой статье Эллиота Джозефсона из Lockheed описывается ШИМ-преобразователь постоянного тока с постоянной частотой для спутников. См. Также патент 3219907 Устройство преобразования мощности.

[19] Система электропитания космического корабля, Telstar, 1963. Спутник Telstar получал энергию от солнечных батарей, сохраняя энергию в никель-кадмиевых батареях. Эффективность была критической для спутника, поэтому использовался импульсный стабилизатор напряжения постоянного тока с понижающим преобразователем, преобразующим переменное напряжение батареи в стабильное -16 В постоянного тока при мощности до 32 Вт при КПД до 92%.Поскольку спутнику требовался широкий диапазон напряжений, до 1770 вольт для ВЧ усилителя, были использованы дополнительные преобразователи. Регулируемый постоянный ток преобразовывался в переменный, подавался на трансформаторы и выпрямлялся для получения необходимых напряжений.

[20] В некоторых моделях PDP, таких как PDP-11/20, использовался источник питания H720 (см. Руководство по PDP, 1969). Этот источник питания подробно описан в Руководстве по блоку питания и монтажной коробке H720 (1970). В источнике питания весом 25 фунтов используется силовой трансформатор для генерации 25 В постоянного тока, а затем импульсные регуляторы (понижающий преобразователь) для генерации 230 Вт регулируемого напряжения +5 и -15 вольт.Поскольку транзисторы той эпохи не могли работать с высоким напряжением, напряжение постоянного тока пришлось снизить до 25 вольт с помощью большого силового трансформатора.

[21] «Источник питания импульсного регулятора», Electronics World v86 October 1971, p43-47. Эта длинная статья об импульсных источниках питания была размещена на обложке журнала Electronics World . Статью стоит поискать хотя бы для изображения импульсного источника питания самолета F-111, которое выглядит настолько сложным, что я почти ожидал, что он посадит самолет.Импульсные источники питания, обсуждаемые в этой статье, сочетают в себе импульсный инвертор DC-DC с трансформатором для изоляции с отдельным понижающим или повышающим импульсным стабилизатором. В результате в статье утверждается, что импульсные блоки питания всегда будут дороже линейных блоков питания из-за двух каскадов. Однако современные блоки питания сочетают в себе оба этапа. В статье рассматриваются различные источники питания, в том числе импульсный блок питания мощностью 250 Вт, используемый в Honeywell h416R. В статье говорится, что импульсные блоки питания для стабилизаторов достигли совершеннолетия благодаря новым достижениям в области быстродействующих и мощных транзисторов.На обложке изображен импульсный блок питания мощностью 500 Вт, который, согласно статье, не мог быть построен с транзисторами, доступными всего полтора года назад.

[22] Источник питания Bantam для миникомпьютера, Hewlett-Packard Journal , октябрь 1971 г. Подробная информация о схемах в патенте «Высокоэффективный источник питания» 3,852,655. Это автономный источник питания мощностью 492 Вт, использующий инверторы, за которыми следуют импульсные стабилизаторы на 20 В.

[23] HP2100A был представлен в 1971 году с импульсным источником питания (см. Основные характеристики HP2100A).Утверждается, что он имеет первый импульсный источник питания в миникомпьютере 25 лет работы в режиме реального времени, но PDP-11/20 был раньше.

[24] Компьютерная система питания для тяжелых условий эксплуатации, стр. 21, Hewlett-Packard Journal , октябрь 1974 г. В миникомпьютере 21MX использовался автономный переключающий пререгулятор мощностью 300 Вт для выработки регулируемого 160 В постоянного тока, который подавался на переключающие преобразователи постоянного тока в постоянный.

[25] Общее техническое руководство по данным Nova 2, 1974. В Nova 2/4 использовался импульсный стабилизатор для генерации 5 В и 15 В, в то время как в более крупном 2/10 использовался трансформатор постоянного напряжения.В руководстве говорится: «При более высоких токовых потерях, связанных с компьютером, потери [от линейных регуляторов] могут стать чрезмерными, и по этой причине часто используется импульсный стабилизатор, как в NOVA 2/4».

[26] Модель 960B / 980B для обслуживания компьютеров Модель: источник питания В блоке питания миникомпьютера Texas Instruments 960B использовался импульсный стабилизатор для источника питания 5 В мощностью 150 Вт и линейные регуляторы для других напряжений. Импульсный стабилизатор состоит из двух параллельных понижающих преобразователей, работающих на частоте 60 кГц и использующих переключающие транзисторы 2N5302 NPN (введены в 1969 году).Поскольку транзисторы рассчитаны на максимальное напряжение 60 В, в блоке питания используется трансформатор для понижения напряжения до 35 В, которое подается на регулятор.

[27] Руководство по эксплуатации импульсных регулируемых источников питания M49-024 и M49-026, Interdata, 1974. Эти автономные полумостовые источники питания обеспечивали мощность 120 Вт или 250 Вт и использовались миникомпьютерами Interdata. В генераторе переключения используются микросхемы таймера 555 и 556.

[28] Блок питания 2640A, Hewlett-Packard Journal , июнь 1975 г., стр. 15.«Импульсный источник питания был выбран из-за его эффективности и занимаемой площади». Также техническая информация о терминале данных. Другой интересный момент - его корпус, отлитый из структурной пены (p23), который очень похож на пластиковый корпус Apple II (см. Стр. 73 из Steve Jobs ), сделанный парой лет назад.

[29] «В сложных конструкциях большое значение имеет выбор источников питания», Электроника , октябрь 1976 г., том 49. с107-114. В этой длинной статье подробно рассматриваются источники питания, включая импульсные источники питания.Обратите внимание, что Selectric Composer сильно отличается от популярной пишущей машинки Selectric.

[30] Информационное руководство по обслуживанию портативного компьютера IBM 5100. IBM 5100 был портативным компьютером весом 50 фунтов, который использовал BASIC и APL, а также включал монитор и ленточный накопитель. Источник питания описан на стр. 4-61 как небольшой, высокомощный, высокочастотный импульсный импульсный стабилизатор, обеспечивающий 5 В, -5 В, 8,5 В, 12 В и -12 В.

[31] Настольный компьютер HP 9825A 1976 года использовал импульсный стабилизатор для источника питания 5 В.Он также использовал формованный корпус из пеноматериала, предшествующий Apple II; см. 98925A Product Design, Hewlett-Packard Journal , июнь 1976 г., стр. 5.

[32] Калькулятор среднего уровня обеспечивает большую мощность при меньших затратах, В журнале Hewlett-Packard Journal , июнь 1976 г. обсуждается импульсный источник питания 5 В, используемый в калькуляторе 9815A.

[33] Блок питания DEC H7420 описан в Decsystem 20 Power Supply System Description (1976). Он содержит 5 импульсных регуляторов для обеспечения нескольких напряжений и обеспечивает мощность около 700 Вт.В источнике питания используется большой трансформатор для снижения линейного напряжения до 25 В постоянного тока, которое передается на отдельные импульсные регуляторы, которые используют понижающую топологию для получения желаемого напряжения (+5, -5, +15 или +20).

Миникомпьютер Decsystem 20 представлял собой большую систему, состоящую из трех шкафов размером с холодильник. Потребовалось внушительное трехфазное питание мощностью 21,6 кВт, которое регулируется комбинацией импульсных и линейных регуляторов. Он содержал семь источников питания H7420 и около 33 отдельных импульсных регуляторов, а также линейный регулятор для ЦП, который использовал -12 В постоянного тока при 490 А.

[34] Импульсные источники питания для телевизионных приемников стали набирать обороты примерно в 1975–1976 годах. Philips представила TDA2640 для телевизионных импульсных источников питания в 1975 году. Philips опубликовала книгу «Импульсные источники питания в телевизионных приемниках в 1976 году. с любительским радио, как обсуждалось в Wireless World, v82, p52, 1976.

[35] «Электронное управление мощностью и цифровые методы», Texas Instruments, 1976.В этой книге подробно рассматриваются импульсные источники питания.

В главе IV «Системы инвертора / преобразователя» описан простой источник обратноходового питания мощностью 120 Вт, использующий силовой транзистор BUY70B, управляемый тиристором. Следует отметить, что в этой схеме используется дополнительная первичная обмотка с диодом для возврата неиспользованной энергии источнику.

В главе V «Импульсные источники питания» описывается конструкция импульсного источника питания 5 В 800 Вт на основе автономного импульсного шунтирующего регулятора, за которым следует преобразователь постоянного тока в постоянный.Он также описывает довольно простой обратноходовой источник питания с несколькими выходами, управляемый SN76549, разработанный для цветного телевидения с большим экраном.

[36] Вехи развития силовой электроники, Ассоциация производителей источников энергии.

[37] В 1967 году RO Associates представила первый успешный импульсный источник питания, импульсный источник питания 20 кГц, 50 Вт, модель 210 (см. «RO сначала в импульсные источники питания», Electronic Business , Volume 9, 1983, p36 .) К 1976 году они претендовали на лидерство в производстве импульсных блоков питания.В их патенте 1969 года 3564384 «Высокоэффективный источник питания» описан полумостовой импульсный источник питания, который удивительно похож на источники питания ATX, популярные в 1990-х годах, за исключением схем усилителя, управляющих ШИМ, а не повсеместной микросхемы контроллера TL494.

[38] Компания Nippon Electronic Memory Industry Co (NEMIC, которая в итоге стала частью TDK-Lambda) начала разработку стандартизированных импульсных источников питания в 1970 году. История корпорации ТДК-Лямбда.

[39] «Я прогнозирую, что большинство компаний, после нескольких неудачных попыток в области источников питания, к концу 1972 года предложат ряд импульсных источников питания с приемлемыми характеристиками и ограничениями радиопомех.", стр. 46, Электронная инженерия , том 44, 1972.

[40] Производитель блоков питания Coutant построил блок питания под названием Minic, используя «относительно новую технику импульсного стабилизатора». Инструментальная практика для АСУ ТП и автоматизации , Том 25, стр. 471, 1971 г.

[41] «Импульсные источники питания выходят на рынок», стр. 71, Electronics & Power , февраль 1972 г. Первый «бестрансформаторный» импульсный источник питания появился на рынке Великобритании в 1972 году, APT SSU1050, который представлял собой регулируемый импульсный источник питания мощностью 500 Вт с использованием полумостовой топологии.Этот 70-фунтовый блок питания считался легким по сравнению с линейными блоками питания.

[42] В этой статье подробно рассказывается о импульсных источниках питания и описываются преимущества автономных источников питания. В нем описан миниатюрный импульсный источник питания полумоста MG5-20, созданный Advance Electronics. В статье говорится: «Широкое применение микроэлектронных устройств подчеркнуло огромное количество обычных источников питания. Переключающие преобразователи теперь стали жизнеспособными и предлагают заметную экономию в объеме и весе." «Импульсные источники питания: почему и как», Малкольм Берчалл, технический директор, подразделение источников питания, Advance Electronics Ltd. Electronic Engineering , Volume 45, Sept 1973, p73-75.

[43] Высокоэффективные модульные источники питания с использованием импульсных регуляторов, Hewlett-Packard Journal , декабрь 1973 г., стр. 15-20. Серия 62600 обеспечивает мощность 300 Вт при использовании автономного импульсного источника питания с полумостовой топологией. Ключевым моментом было внедрение транзисторов на 400 В, 5 А с субмикросекундным временем переключения.«Полный импульсный регулируемый источник питания мощностью 300 Вт едва ли больше, чем просто силовой трансформатор эквивалентного источника с последовательным регулированием, и он весит меньше - 14,5 фунтов против 18 фунтов трансформатора».

[44] Сильноточный источник питания для систем, которые широко используют 5-вольтовую логику ИС, Hewlett-Packard Journal , апрель 1975 г., стр. 14-19. Импульсный источник питания 62605M мощностью 500 Вт для OEM-производителей, размер и вес которых составляет 1/3 и 1/5 от линейных источников питания. Использует автономную полумостовую топологию.

[45] Модульные источники питания: модели 63005C и 63315D: в этом источнике питания мощностью 110 Вт и 5 В используется топология автономного прямого преобразователя и конвекционное охлаждение без вентилятора.

[46] «Проникновение коммутационных источников питания на рынок источников питания США вырастет с 8% в 1975 году до 19% к 1980 году. Это растущее проникновение соответствует общемировой тенденции и представляет собой очень высокие темпы роста». Для такого прогнозируемого роста было указано несколько причин, в том числе «доступность более качественных компонентов, снижение [...] общей стоимости и появление продуктов меньшего размера (таких как микрокомпьютеры), которые делают желательными блоки питания меньшего размера». Электроника, Том 49. 1976. Стр. 112, врезка «Что насчет будущего?»

[47] Сеймур Левин, "Импульсные регуляторы питания для повышения эффективности"."Electronic Design, 22 июня 1964 г. В этой статье описывается, как импульсные регуляторы могут повысить эффективность с менее чем 40 процентов до более чем 90 процентов с существенной экономией в размере, весе и стоимости.

[48] На обложке документа Electronic Design 13 от 21 июня 1976 г. написано: «Внезапно переключение стало проще. Импульсные источники питания могут быть сконструированы с использованием на 20-50 дискретных компонентов меньше, чем раньше. Одна ИС выполняет все функции управления, необходимые для двухтактный выходной дизайн.ИС называется регулирующим широтно-импульсным модулятором. Чтобы узнать, предпочитаете ли вы переключение, перейдите на страницу 125 ». На странице 125 есть статья« Управление импульсным источником питания с помощью одной схемы LSI », в которой описаны ИС импульсных источников питания SG1524 и TL497.

[49] В 1976 году Powertec запустила двухстраничную рекламу, описывающую преимущества импульсных источников питания, под названием «Большой переход к коммутаторам». В этой рекламе описывались преимущества блоков питания: с удвоенной эффективностью они выделяли 1/9 тепла.У них были 1/4 размера и веса. Это обеспечило повышенную надежность, работало в условиях обесточивания и могло выдерживать гораздо более длительные перебои в подаче электроэнергии. Powertec продала линейку импульсных блоков питания мощностью до 800 Вт. Они предложили импульсные источники питания для систем с дополнительной памятью, компьютерных мэйнфреймов, телефонных систем, дисплеев, настольных приборов и систем сбора данных. Страницы 130-131, Электроника v49, 1976.

[50] Byte magazine, p100 В июне 1976 года был анонсирован новый импульсный блок питания Boschert OL80, обеспечивающий 80 Вт при двухфунтовом блоке питания по сравнению с 16 фунтами для менее мощного линейного блока питания.Это также было объявлено в Microcomputer Digest, февраль 1976 г., стр. 12.

[51] Роберт Бошерт: человек многих шляп меняет мир источников питания: он начал продавать импульсные источники питания в 1974 году, сосредоточившись на том, чтобы сделать импульсные источники питания простыми и недорогими. В заголовке говорится, что «Роберт Бошерт изобрел импульсный источник питания», что должно быть ошибкой редактора. В статье более обоснованно утверждается, что Бошерт изобрел недорогие импульсные источники питания для массового использования. В 1974 году он произвел в больших объемах недорогой импульсный источник питания.

[52] Руководство по техническому обслуживанию коммуникационного терминала Diablo Systems HyTerm модели 1610/1620 показаны двухтактный источник питания Boschert 1976 года и полумостовой источник питания LH Research 1979 года.

[53] Опыт Boschert с F-14 и спутниками рекламировался в рекламе Electronic Design , V25, 1977, где также упоминалось серийное производство для Diablo и Qume.

[54] Необычный импульсный источник питания использовался в компьютере HP 1000 A600 (см. Техническую и справочную документацию) (1983).Блок питания 440 Вт обеспечивал стандартные выходы 5 В, 12 В и -12 В, а также выход переменного тока 25 кГц 39 В, который использовался для распределения мощности на другие карты в системе, где она регулировалась. В автономном двухтактном источнике питания, разработанном Boschert, использовалась специальная микросхема HP IC, чем-то напоминающая TL494.

[55] В 1971 году для поддержки автономных импульсных источников питания были представлены многочисленные линейки переключающих транзисторов 450 В, такие как серия SVT450, серия 40850 - 4085 от RCA и серия 700V SVT7000.

[56] ШИМ: от одного чипа к гигантской отрасли, Power Electronics Technology , октябрь 2005 г. В этой статье описывается история создания ИС управления источником питания, от SG1524 в 1975 году до индустрии с многомиллиардным оборотом.

[57] «Революция в конструкции источников питания, происходящая в настоящее время, не будет завершена до тех пор, пока трансформатор на 60 Гц не будет почти полностью заменен», - Вальтер Хиршберг, ACDC Electronics Inc., Калифорния. «Новые компоненты вызывают революцию в источниках питания», p49, Canadian Electronics Engineering , v 17, 1973.

[58] Импульсный и линейный источник питания, конструкция преобразователя питания , Pressman 1977 «Импульсные регуляторы, которые совершают революцию в отрасли электроснабжения из-за их низких внутренних потерь, небольшого размера, веса и стоимости, конкурентоспособной по сравнению с традиционными последовательными или линейными источниками питания».

[59] Несколько источников питания Apple описаны в документе Apple Products Information Pkg: Astec Power Supplies (1982). Блок питания Apple II Astec AA11040 - это простой дискретный блок питания с обратным ходом и несколькими выходами.В нем используется переключающий транзистор 2SC1358. Выход 5 В сравнивается с стабилитроном и обратной связью управления и изолируется через трансформатор с двумя первичными обмотками и одной вторичной. В нем используется зажимная обмотка обратного диода.

AA11040-B (1980) имеет существенные модификации схемы обратной связи и управления. В нем используется переключающий транзистор 2SC1875 и источник опорного напряжения TL431. AA11040-B, по-видимому, использовался для Apple II + и Apple IIe (см. Форум hardwaresecrets.com).Шелкография на печатной плате источника питания говорит о том, что она защищена патентом 4323961, который, как оказалось, является «автономным источником питания постоянного тока с обратным ходом», разработанным Эллиотом Джозефсоном и переданным Astec. Схема в этом патенте в основном представляет собой немного упрощенный AA11040-B. Изолирующий трансформатор обратной связи имеет одну первичную и две вторичные обмотки, противоположные AA11040. Этот патент также напечатан на плате источника питания Osborne 1 (см. Разборку Osborne 1), которая также использует 2SC1875.

В Apple III Astec AA11190 используется фиксирующая обмотка обратного диода, но не схема запуска переменного тока Холта.Используется переключающий транзистор 2SC1358; схема обратной связи / управления очень похожа на AA11040-B. В источнике питания дисковода Apple III Profile AA11770 использовалась фиксирующая обмотка обратного диода, переключающий транзистор 2SC1875; опять же, схема обратной связи / управления очень похожа на AA11040-B. AA11771 аналогичен, но добавляет еще один TL431 для выхода AC ON.

Интересно, что в этом документе Apple перепечатывает десять страниц «Руководства по источникам питания постоянного тока» HP (версия 1978 года, используемая Apple), чтобы предоставить справочную информацию о импульсных источниках питания.

[60] Обратные преобразователи: твердотельное решение для недорогого импульсного источника питания, Electronics , декабрь 1978 г. В этой статье Роберта Бошерта описывается источник питания Boschert OL25, который представляет собой очень простой дискретно-компонентный источник обратноходового питания мощностью 25 Вт с 4 выходами. Он включает в себя зажимную обмотку обратного диода. Он использует источник опорного напряжения TL430 и оптоизолятор для обратной связи с выхода 5 В. В нем используется переключающий транзистор MJE13004.

[61] В Macintosh Performa 6320 использовалась микросхема контроллера SMPS AS3842, как видно на этом рисунке.AS3842 - это версия контроллера тока UC3842 от Astec, который был очень популярен для преобразователей прямого канала.

[62] Детали блока питания для iMac найти сложно, и используются разные блоки питания, но, если собрать воедино различные источники, iMac G5, похоже, использует контроллер PFC TDA4863, пять силовых МОП-транзисторов 20N60C3, ШИМ-контроллер SG3845, напряжение TL431. ссылки и контроль мощности с помощью WT7515 и LM339. Также используется 5-контактный встроенный коммутатор TOP245, вероятно, для питания в режиме ожидания.

[63] Источник питания постоянного тока, №4130862. который был подан в феврале 1978 г. и выдан в декабре 1978 г. Блок питания, указанный в патенте, имеет некоторые существенные отличия от блока питания Apple II, созданного Astec. Большая часть управляющей логики находится на первичной стороне в патенте и вторичной стороне в фактическом источнике питания. Кроме того, в патенте обратная связь является оптической, и в ее источнике питания используется трансформатор. Блок питания Apple II не использует обратную связь по переменному току, описанную в патенте.

[64] Подробное обсуждение блока питания Apple II Plus можно найти на сайте applefritter.com. В описании источник питания ошибочно называется топологией прямого преобразователя, но это топология обратного хода. Неудобно, что это обсуждение не соответствует схемам блока питания Apple II Plus, которые я нашел. Заметные различия: в схеме используется трансформатор для обеспечения обратной связи, в то время как в обсуждении используется оптоизолятор. Кроме того, обсуждаемый источник питания использует вход переменного тока для запуска колебаний транзистора, а схема - нет.

[65] Яблоко III (1982 г.). Этот блок питания Apple III (050-0057-A) практически полностью отличается от блока питания Apple III AA11190. Это дискретный источник питания обратного хода с переключающим транзистором MJ8503, управляемым тиристором, зажимной обмоткой обратного хода и 4 выходами. Он использует схему запуска переменного тока Холта. Обратная связь переключения контролирует выход -5 В с операционным усилителем 741 и подключается через трансформатор. Он использует линейный регулятор на выходе -5 В.

[66] Яблочная Лиза (1983).Еще один дискретный источник питания с обратным ходом, но значительно более сложный, чем Apple II, с такими функциями, как резервное питание, дистанционное включение через симистор и выход +33 В. Для переключения в нем используется силовой транзистор MJ8505 NPN, управляемый тиристором. Он использует схему запуска переменного тока Холта. Обратная связь по переключению контролирует напряжение + 5 В (по сравнению с линейно регулируемым выходом -5 В) и подключается через трансформатор.

[67] Блок питания Macintosh. Этот источник питания с обратным ходом использует обмотку диодных зажимов и схему запуска переменного тока Холта.В нем используется переключающий транзистор 2SC2335, управляемый дискретным генератором. Коммутационная обратная связь контролирует выход +12 В с помощью стабилитронов и операционного усилителя LM324 и подключается через оптоизолятор.

[68] Схема Mac 128K, Обсуждение Mac Plus. Этот источник питания с обратным ходом использует обмотку диодных зажимов и схему запуска переменного тока Холта. В нем используется переключающий транзистор 2SC2810, управляемый дискретными компонентами. Обратная связь по переключению контролирует выход 12 В и подключается через оптоизолятор.Интересно, что в этом документе утверждается, что блок питания, как известно, был склонен к сбоям из-за того, что в нем не использовался вентилятор. Блок питания Mac Classic выглядит идентичным.

[69] TEAM ST-230WHF 230 Вт импульсный источник питания. Эта схема - единственный компьютерный блок питания стороннего производителя, который я обнаружил, который подает необработанный переменный ток в схему привода (см. R2), но я уверен, что это всего лишь ошибка чертежа. R2 должен подключаться к выходу диодного моста, а не к входу. Сравните с R3 в почти идентичной схеме привода в этом блоке питания ATX.

[70] Микропроцессоры и микрокомпьютеры и импульсные источники питания , Брайан Норрис, Texas Instruments, McGraw-Hill Company, 1978 г. В этой книге описываются импульсные источники питания для телевизоров, которые используют сигнал переменного тока для запуска колебаний.

[71] Блок питания жесткого диска Tandy (Astec AA11101). В этом обратноходовом источнике питания мощностью 180 Вт используется обмотка с зажимом диода. В нем используется переключающий транзистор 2SC1325A. В генераторе используются дискретные компоненты. Обратная связь от шины 5 В сравнивается с опорным напряжением TL431, а обратная связь использует трансформатор для изоляции.

[72] Блок питания Tandy 2000 (1983 г.). Этот источник питания с обратным ходом мощностью 95 Вт использует микросхему контроллера MC34060, переключающий транзистор MJE12005 и имеет обмотку с зажимом обратного хода. Он использует MC3425 для контроля напряжения, имеет линейный регулятор для выхода -12 В и обеспечивает обратную связь на основе выхода 5 В по сравнению с опорным сигналом TL431, проходящим через оптоизолятор. На выходе 12 В используется стабилизатор магнитного усилителя.

[73] В «Искусстве электроники» подробно обсуждается блок питания Tandy 2000 (стр. 362).

[74] Модель Commodore B128. В этом источнике питания обратного хода используется обмотка с зажимом диода. В нем используется переключающий транзистор MJE8501, управляемый дискретными компонентами, а обратная связь переключения контролирует выход 5 В с помощью опорного сигнала TL430 и изолирующего трансформатора. Выходы 12 В и -12 В используют линейные регуляторы.

[75] Tandy 6000 (Astec AA11082). В этом обратноходовом источнике питания мощностью 140 Вт используется обмотка с зажимом диода. Схема представляет собой довольно сложную дискретную схему, поскольку в ней используется повышающая схема, описанная в патенте Astec 4326244, также разработанном Эллиотом Джозефсоном.В нем используется переключающий транзистор 2SC1325A. У него немного необычный выход 24 В. Один выход 12 В линейно регулируется LM317, а выход -12 В управляется линейным регулятором MC7912, но другой выход 12 В не имеет дополнительной регулировки. Обратная связь осуществляется с выхода 5 В с использованием источника напряжения TL431 и развязывающего трансформатора. Здесь есть красивая фотография блока питания.

[76] Документация на микросхему контроллера MC34060 (1982 г.).

[77] Руководство разработчика по переключению цепей и компонентов источника питания, The Switchmode Guide , Motorola Semiconductors Inc., Паб. № SG79, 1983. R J. Haver. Для обратного преобразователя фиксирующая обмотка описывается как дополнительная, но «обычно присутствует, чтобы позволить энергии, накопленной в реактивном сопротивлении утечки, безопасно вернуться в линию вместо того, чтобы лавина переключающего транзистора».

[78] «Обеспечение надежной работы силовых полевых МОП-транзисторов», примечание к приложению Motorola 929, (1984) показывает источник питания с обратным ходом, использующий MC34060 с фиксирующей обмоткой и диодом. Его можно скачать с datasheets.org.uk.

[79] Для получения дополнительной информации о форвард-конвертерах см. История прямого преобразователя, Switching Power Magazine , vol.1, No. 1, pp. 20-22, июл 2000 г.

[80] Первый импульсный преобразователь с диодной обмоткой был запатентован в 1956 году компанией Philips, патент 2,920,259 «Преобразователь постоянного тока».

[81] Другим патентом, показывающим обмотку с возвратной энергией с диодом, является патент Hewlett-Packard от 1967 года 3313998. Импульсно-регуляторный источник питания с цепью возврата энергии

[82] Маленькое королевство: частная история Apple Computer Майкл Мориц (1984) говорит, что Холт проработал в компании на Среднем Западе почти десять лет и помог разработать недорогой осциллограф (стр. 164).Стив Джобс, «Путешествие - награда», Джеффри Янг, 1988 г., утверждает, что Холт разработал импульсный источник питания для осциллографа за десять лет до прихода в Apple (стр. 118). Учитывая состояние импульсных источников питания в то время, это почти наверняка ошибка.

[83] «Коммутационные блоки растут в чреве компьютеров», Электронный бизнес , том 9, июнь 1983 г., стр. 120-126. В этой статье подробно описывается бизнес-сторона импульсных источников питания. В то время как Astec была ведущим производителем импульсных блоков питания, Lambda была ведущим производителем блоков питания переменного и постоянного тока, поскольку продавала большие количества как линейных, так и импульсных источников питания.

[84] «Стандарты: переключение вовремя для поставок», Electronic Business Today , vol 11, p74, 1985. В этой статье говорится, что Astec является ведущим в мире производителем блоков питания и лидером в области импульсных блоков питания. Astec выросла почти исключительно на поставках блоков питания Apple. В этой статье также упоминаются компании-поставщики электроэнергии из «большой пятерки»: ACDC, Astec, Boschert, Lambda и Power One.

[85] Astec становится 100% дочерней компанией Emerson Electric, Business Wire , 7 апреля 1999 г.

[86] Отраслевой отчет о крупнейших энергоснабжающих компаниях по состоянию на 2011 год - Power Electronics Industry News, v 189, март 2011 г., консультанты по микротехнике. Также, Энергетическая промышленность продолжает марш к консолидации, Power Electronics Technology, май 2007 обсуждает различные консолидации.

[87] Документация SAMS по фотофакту для IBM 5150 содержит подробную схему источника питания.

[88] В Википедии представлен обзор стандарта ATX. Официальная спецификация ATX находится в формфакторах.орг.

[89] ON Semiconductor имеет эталонные образцы блоков питания ATX, как и Fairchild. Некоторые ИС, разработанные специально для приложений ATX, - это SG6105 Power Supply Supervisor + Regulator + PWM, NCP1910 High Performance Combo Controller for ATX Power Supplies, ISL6506 Multiple Linear Power Controller with ACPI Control Interfaces, и SPX1580 Ultra Low Dropout Voltage Regulator.

[90] Корпорация Intel представила рекомендацию о коммутационном преобразователе постоянного тока рядом с процессором в документе Intel AP-523 Pentium Pro Processor Power Distribution Guidelines, в котором приведены подробные спецификации модуля регулятора напряжения (VRM).Подробная информация об образце VRM приведена в разделе «Заправка мегапроцессора - обзор конструкции преобразователя постоянного тока в постоянный ток» с использованием UC3886 и UC3910. Более свежие спецификации VMR содержатся в Рекомендациях по проектированию Intel Voltage Regulator Module (VRM) и Enterprise Voltage Regulator-Down (EVRD) 11 (2009).

[91] В таблице данных микропроцессоров R650X и R651X указано типичное значение рассеиваемой мощности 500 мВт.

[92] Технологии преобразования энергии для компьютерных, сетевых и телекоммуникационных систем питания - прошлое, настоящее и будущее, М.М. Йованович, Лаборатория силовой электроники Delta, Международная конференция по преобразованию энергии и приводам (IPCDC), Санкт-Петербург, Россия, 8-9 июня 2011 г.

[93] Программа 80 Plus описана в разделе «Сертифицированные источники питания и производители 80 PLUS», где описаны различные уровни 80 PLUS: бронзовый, серебряный, золотой, платиновый и титановый. Базовый уровень требует КПД не менее 80% при различных нагрузках, а более высокие уровни требуют все более высокого КПД. Первые блоки питания 80 PLUS вышли в 2005 году.

[94] Несколько случайных примеров источников питания, которые сначала генерируют всего 12 В и используют преобразователи постоянного тока для генерации выходных сигналов 5 В и 3,3 В: Эталонный дизайн высокоэффективного блока питания ATX 255 Вт от ON Semiconductor (80 Plus Silver), NZXT HALE82 power обзор блока питания, обзор блока питания SilverStone Nightjar.

[95] Источники питания используют только часть электроэнергии, подаваемой по линиям электропередач; это дает им плохой «коэффициент мощности», который тратит энергию и увеличивает нагрузку на нижние линии.Вы можете ожидать, что эта проблема возникает из-за быстрого включения и выключения импульсных источников питания. Однако плохой коэффициент мощности на самом деле возникает из-за начального выпрямления переменного и постоянного тока, которое использует только пики входного переменного напряжения.

[96] Основы коррекции коэффициента мощности (PFC), инструкция по применению 42047, Fairchild Semiconductor, 2004.

[97] Правильный выбор размеров и разработка эффективных источников питания утверждает, что активная коррекция коэффициента мощности добавляет около 1,50 доллара к стоимости источника питания мощностью 400 Вт, активный фиксатор добавляет 75 центов, а синхронное выпрямление добавляет 75 центов.

[98] Многие источники схем электроснабжения доступны в Интернете. Некоторые андизм danyk.wz.cz, а также smps.us. Несколько сайтов, которые предоставляют загрузку схем источников питания, - это eserviceinfo.com и elektrotany.com.

[99] Информацию о типовой конструкции блока питания ПК см. В FAQ по SMPS. В разделах «Описание Боба» и «Комментарии Стива» обсуждаются типичные блоки питания для ПК на 200 Вт, использующие микросхему TL494 и конструкцию полумоста.

[100] В тезисе 1991 г. говорится, что TL494 все еще использовался в большинстве импульсных блоков питания ПК (по состоянию на 1991 г.).Разработка импульсного источника питания 100 кГц (1991 г.). Мыс Техникон Тезисы и диссертации. Документ 138.

[101] Введение в двухтранзисторную прямую топологию для источников питания с эффективностью 80 PLUS, EE Times, 2007.

[102] hardwaresecrets.com заявляет, что CM6800 является самым популярным контроллером PFC / PWM. Это замена ML4800 и ML4824. CM6802 - более «зеленый» контроллер в том же семействе.

[103] Анатомия импульсных источников питания, Габриэль Торрес, Hardware Secrets, 2006.В этом учебном пособии очень подробно описывается работа и внутреннее устройство блоков питания ПК с подробными изображениями реальных внутренних устройств блока питания. Если вы хотите точно знать, что делает каждый конденсатор и транзистор в блоке питания, прочтите эту статью.

[104] Презентация источника питания ON Semiconductor's Inside представляет собой подробное математическое руководство по работе современных источников питания.

[105] Справочное руководство по источнику питания SWITCHMODE, ON Semiconductor. Это руководство содержит большое количество информации по источникам питания, топологиям и множеству примеров реализации.

[106] Некоторые ссылки на цифровое управление питанием: «Дизайнеры обсуждают достоинства цифрового управления питанием», EE Times , декабрь 2006 г. Глобальный рынок ИС для цифрового управления питанием к 2017 году достигнет 1,0 миллиарда долларов. Системный контроллер цифровой ШИМ TI UCD9248. Эталонная схема цифрового питания переменного / постоянного тока с универсальным входом и коррекцией коэффициента мощности, EDN , апрель 2009 г.

[107] Руди Севернс, лауреат премии за выслугу лет, Power Electronics Technology , сентябрь 2008 г., стр. 40-43.

[108] Куда ушли все гуру ?, Power Electronics Technology , 2007. В этой статье обсуждается вклад многих новаторов в области источников питания, включая Сола Гиндоффа, Дика Вайза, Уолта Хиршберга, Роберта Окада, Роберта Бошерта, Стива Голдмана, Аллена Розенштейна, Уолли Херсома , Фил Кётч, Яг Чопра, Уолли Херсом, Патрицио Винчиарелли и Марти Шлехт.

[109] История разработки Холтом источника питания для Apple II впервые появилась в статье Пола Чиотти Revenge of the Nerds (не имеющей отношения к фильму) в журнале California в 1982 году.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *