Таблица зависимости тока от сечения провода: Соотношение сечения провода и силы тока

Содержание

Соотношение сечения провода и силы тока

При проектировании схемы любой электрической установки и монтаже, выбор сечения проводов и кабелей является обязательным этапом. Чтобы правильно подобрать силовой провод нужного сечения, необходимо учитывать величину максимального потребления.

Сечения проводов измеряется в квадратных милиметрах или "квадратах". Каждый "квадрат" алюминиевого провода способен пропустить через себя в течение длительного времени нагреваясь до допустимых пределов максимум – только 4 ампера, а медный провода 10 ампер тока. Соответственно, если какой-то электропотребитель потребляет мощность равную 4 киловаттам (4000 Ватт), то при напряжении 220 вольт сила тока будет равна 4000/220=18,18 ампер и для его питания достаточно подвести к нему электричество медным проводом сечением 18,18/10=1,818 квадрата. Правда в этом случае провод будет работать на пределе своих возможностей, поэтому следует взять запас по сечению в размере не менее 15%. Получим 2,091 квадрата. И теперь подберем ближайший провод стандартного сечения. Т.е. к этому потребителю мы должны вести проводку медным проводом сечением 2 квадратных миллиметра именуемого нагрузкой тока. Значения токов легко определить, зная паспортную мощность потребителей по формуле: I = Р/220. Алюминиевый провод будет соответственно в 2,5 раза толще.

Из расчета достаточной механической прочности открытая силовая проводка обычно выполняется проводом с сечением не менее 4 кв. мм. Если требуется с большей точностью знать длительно допустимую токовую нагрузку для медных проводов и кабелей, то можно воспользоваться таблицами.

Медные жилы проводов и кабелей

Алюминиевые жилы проводов и кабелей

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами к примеру кабель МКЭШВнг

Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами

Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной,

найритовой или резиновой оболочке, бронированных и небронированных

* Токи относятся к кабелям и проводам с нулевой жилой и без нее.

Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных

Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по данной таблице как для трехжильных кабелей, но с коэффициентом 0,92.

Сечение токопроводящей жилы, мм. Напряжение, 220 В Напряжение, 380 В
ток, А мощность, кВт ток, А мощность, кВт
1,5 19 4,1 16 10,5
2,5 27 5,9 25 16,5
4 38 8,3 30 19,8
6 46 10,1 40 26,4
10 70 15,4 50 33,0
16 85 18,7 75 49,5
25 115 25,3 90 59,4
35 135 29,7 115 75,9
50 175 38,5 145 95,7
70 215 47,3 180 118,8
95 260 57,2 220 145,2
120 300 66,0 260 171,6
Сечение токопроводящей жилы, мм. Напряжение, 220 В Напряжение, 380 В
ток, А мощность, кВт ток, А мощность, кВт
2,5 20 4,4 19 12,5
4 28 6,1 23 15,1
6 36 7,9 30 19,8
10 50 11,0 39 25,7
16 60 13,2 55 36,3
25 85 18,7 70 46,2
35 100 22,0 85 56,1
50 135 29,7 110 72,6
70 165 36,3 140 92,4
95 200 44,0 170 112,2
120 230 50,6 200 132,0
Сечение токопроводящей жилы, мм. Открыто Ток, А, для проводов проложенных в одной трубе
Двух одножильных Трех одножильных Четырех одножильных Одного двухжильного Одного трехжильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,2 20 18 16 15 16 14,5
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
16 100 85 80 75 80 70
25 140 115 100 90 100 85
35 170 135 125 115 125 100
50 215 185 170 150 160 135
70 270 225 210 185 195 175
95 330 275 255 225 245 215
120 385 315 290 260 295 250
150 440 360 330
185 510
240 605
300 695
400 830
Сечение токопроводящей жилы, мм.
Открыто Ток, А, для проводов проложенных в одной трубе
Двух одножильных Трех одножильных Четырех одножильных Одного двухжильного Одного трехжильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38
16 75 60 60 55 60 55
25
105 85 80 70 75 65
35 130 100 95 85 95 75
50 165 140 130 120 125 105
70 210 175 165 140 150 135
95 255 215 200 175 190 165
120 295 245 220 200 230 190
150 340 275 255
185 390
240 465
300 535
400 645
Сечение токопроводящей жилы, мм. Ток*, А, для проводов и кабелей
одножильных двухжильных трехжильных
при прокладке
в воздухе в воздухе в земле в воздухе в земле
1,5 23 19 33 19 27
2,5 30 27 44 25 38
4 41 38 55 35 49
6 50 50 70 42 60
10 80 70 105 55 90
16
100 90 135 75 115
25 140 115 175 95 150
35 170 140 210 120 180
50 215 175 265 145 225
70 270 215 320 180 275
95 325 260 385 220 330
120 385 300 445 260 385
150 440 350 505 305 435
185 510 405 570 350 500
240 605
Сечение токопроводящей жилы, мм. Ток, А, для проводов и кабелей
одножильных двухжильных трехжильных
при прокладке
в воздухе в воздухе в земле в воздухе в земле
2,5 23 21 34 19 29
4 31 29 42 27 38
6 38 38 55 32 46
10 60 55 80 42 70
16 75 70 105 60 90
25 105 90 135 75 115
35 130 105 160 90 140
50 165 135 205 110 175
70 210 165 245 140 210
95 250 200 295 170 255
120 295 230 340 200 295
150 340 270 390 235 335
185 390 310 440 270 385
240 465
Сводная таблица сечений проводов, тока, мощности и характеристик нагрузки
Сечение медных жил проводов и кабелей, кв.мм Допустимый длительный ток нагрузки для проводов и кабелей, А Номинальный ток автомата защиты, А Предельный ток автомата защиты, А Максимальная мощность однофазной нагрузки при U=220 B Характеристика примерной однофазной бытовой нагрузки
1,5 19 10 16 4,1 группа освещения и сигнализации
2,5 27 16 20 5,9 розеточные группы и электрические полы
4 38 25 32 8,3 водонагреватели и кондиционеры
6 46 32 40 10,1 электрические плиты и духовые шкафы
10 70 50 63 15,4 вводные питающие линии

В таблице приведены данные на основе ПУЭ, для выбора сечений кабельно-проводниковой продукции, а также номинальных и максимально возможных токов автоматов защиты, для однофазной бытовой нагрузки чаще всего применяемой в быту.

Наименьшие допустимые сечения кабелей и проводов электрических сетей в жилых зданиях
Наименование линий Наименьшее сечение кабелей и проводов с медными жилами, кв.мм
Линии групповых сетей 1,5
Линии от этажных до квартирных щитков и к расчетному счетчику 2,5
Линии распределительной сети (стояки) для питания квартир 4

Надеемся данная информация была полезна для Вас. Мы же напоминаем что у нас Вы можете купить кабель МКЭКШВнг отличного качества по низкой цене.

Использование полезной работы электрического тока, уже является чем-то обыденным, незаменимым и само собой разумеющимся. Действительно, с тех пор, когда были получены первые токи от первой батарейки, великим ученым Алессандро Вольтом, в далеком 1800 году, прошло всего-то два столетия. Однако теперь сеть проводов, электрических соединений буквально пронизывает все и вся на поверхности земли и в наших домах. Если всю эту сеть нескончаемых проводов представить себе со стороны, то это будет подобно нервной или кровеносной системе в нашем организме. Роль всех этих проводов для современного общества, пожалуй, не менее значима, чем функция одной из вышеупомянутых систем живого организма. Что же, раз это так важно и серьезно, то при выборе проводов и кабелей, для создания нашей собственной коммуникативной электрической сети стоит подходить с особым вниманием и придирчивостью. Дабы она работала стабильно, без сбоев и отказов. Что же в себя включает данный выбор проводов и кабелей? Во-первых, это определиться с применяемым для проводки материалом, будь то медь или алюминий. Во-вторых, определиться с количеством жил в проводнике, 2 или 3. В-третьих, необходимо подобрать сечения жил исходя из тока, которые будет проходить по проводам, то есть исходя из мощности нагрузки. В-четвертых, выбрать провод исходя из расчетного значения, ближайшее большее сечение по типоряду относительного расчетного. О мелочах и того можно говорить намного больше сказанного, поэтому пока остановимся на этом, и попытаемся все же раскрыть тему нашей статьи о расчете и выборе провода или кабеля исходя из мощности нагрузки.

Чем отличается кабель от провода

Прежде чем перейти к основному содержимому, нам необходимо понять, что же мы все-таки хотим рассчитать, сечение провода или кабеля, в чем различия одного от другого!? Не смотря на то, что обыватель применяет эти два слова как синонимы, подразумевая под этим что-то свое, но если быть дотошными, то разница все же имеется.
Так провод это одна токопроводящая жила, будь то моножила или набор проводников, изолированная в диэлектрик, в оболочку. А вот кабель, это уже несколько таких проводов, объединенных в единое целое, в своей защитной и изоляционной оболочке. Для того, чтобы вам было лучше понятно, что к чему, взгляните на картинку.

Так вот, теперь мы в курсе, что рассчитывать нам необходимо именно сечение провода, то есть одного токопроводящего элемента, а второй будет уже уходить от нагрузки, обратно к питанию. Однако мы порой и сами забываемся не лучше Вашего, так что если вы нас подловите на том, что где-то все же встретится слово кабель, то не сочтите уж за невежество, стереотипы делают свое дело.

Какой провод, кабель выбрать для прокладки проводки (моножилу или многожильный)

При монтаже электропроводки обычно применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ. В этом списке встречаются как гибкие кабели, так и с моножилой. Здесь мы хотели бы сказать вам одну вещь. Если ваша проводка не будет шевелиться, то есть это не удлинитель, не место сгиба которое постоянно меняет свое положение, то предпочтительно использовать моножилу. Вы спросите почему? Все просто! Не смотря на то, насколько хорошо не были бы уложены в защитную изоляционною оплетку проводники, под нее все же попадет воздух, в котором содержится кислород. Происходит окисление поверхности меди. В итоге, если проводников много, то площадь окисления намного больше, а значит токопроводящее сечение «тает» на много больше. Да, это процесс длительный, но и мы не думаем, что вы собрались менять проводку часто. Чем больше она проработает, тем лучше. Особенно это эффект окисления будет сильно проявляться у краев реза кабеля, в помещениях с перепадом температуры и при повышенной влажности. Так что мы вам настоятельно рекомендуем использовать моножилу! Сечение моножилы кабеля или провода изменится со временем незначительно, а это так важно, при наших дальнейших расчетах.

Выбираем провод (кабель) из меди или алюминия (документ ПЭУ)

В СССР большинство жилых домов оснащались алюминиевой проводкой, это было своеобразной нормой, стандартом и даже догмой. Нет, это совсем не значит, что страна была бедная, и не хватало на меди. Даже в некоторых случая наоборот. Но видимо проектировщики электрических сетей решили, что экономически можно много сэкономить, если применять алюминий, а не медь. Действительно, темпы строительства были огромнейшие, достаточно вспомнить хрущевки, в которых все еще живет половина страны, а значит эффект от такой экономии был значительным. В этом можно не сомневаться. Тем не менее, сегодня другие реалии, и алюминиевую проводку в новых жилых помещениях не применяют, только медную. Это исходит из норм ПУЭ пункт 7.1.34 "В зданиях следует применять кабели и провода с медными жилами…". (До 2001 г. по имеющемуся заделу строительства допускается использование проводов и кабелей с алюминиевыми жилами) Так вот, мы вам настоятельно не рекомендуем экспериментировать и пробовать алюминий. Минусы его очевидны. Алюминиевые скрутки невозможно пропаять, так же очень трудно сварить, в итоге контакты в распределительных коробках могут со временем нарушиться. Алюминий очень хрупкий, два-три изгиба и провод отпал. Будут постоянные проблемы с подключением его к розеткам, выключателем. Опять же если говорить о проводимой мощности, то медный провод с тем же сечением для алюминия 2,5мм.кв. допускает длительный ток в 19А, а для меди в 25А. Здесь разница больше чем 1 КВт.
Так что еще раз повторимся – только медь! Далее мы и будем уже исходить из того, что сечение рассчитываем для медного провода, но в таблицах приведем значения и для алюминия. Мало ли что.

Сколько примерно потребляют бытовые приборы, и как это отразиться на выборе, расчете сечения кабеля

Итак, мы уже определились с маркировкой кабеля, что это должна быть моножила, также с тем, что это должна быть медь, да и про подводимую мощность кабеля мы тоже «заикнулись» не просто так. Ведь именно исходя из показателя проводимой мощности, будет рассчитываться провод, кабель на его применяемое сечение. Здесь все логично, прежде чем что-то рассчитать, надо исходить из начальных условий задачи. Этому нас научили еще в школе, исходные данные определяют основные пути решения. Что же, тоже самое можно сказать про расчет сечения медного провода, для расчета его сечения необходимо знать с какими токами или мощностями он будет работать. А для того чтобы нам знать токи и мощности, мы сразу должны знать, что именно будет подключено в нашей квартире, где лампочка, а где телевизор. Где компьютер, а куда мы включим зарядное устройство для телефона. Нет, конечно, со временем исходя из жизненных обстоятельств, что-то может поменяться, но нет кардинально, то есть примерная суммарная потребляемая мощность для всех наших помещений останется прежняя. Лучше всего сделать так, нарисовать план квартиры и там расставить и развешать все электроприборы, которые вам встретятся и которые запланированы. Скажем так.

Здесь неплохо было сориентироваться, сколько какой прибор потребляет. Именно для этого мы и приведем для вас таблицу ниже.

Онлайн калькулятор для определения силы тока по потребляемой мощности
Потребляемая мощность, Вт:
Напряжение питания, В:

Подытожим данный абзац, мы должны представлять какие токи, мощности подводимые проводами и кабелями, должны быть обеспечены, для того, чтобы рассчитать необходимое нам сечение и выбрать подходящее. Об этом как раз далее.

Как рассчитать диаметр (сечение) провода (кабеля) исходя из силы тока, потребляемой мощности (медный и алюминиевый)

Вот мы добрались и до сути нашей статьи. Однако всё, что было выше, упускать нельзя, а значит и мы умолчать не могли.
Если попытаться изложить мысль логично и по-простому, то через каждое условное сечение проводника может пройти ток определенной силы. Заключение это вполне логичное и теперь лишь осталось узнать эти соотношения и соотнести для разных диаметров провода, исходя из его типоряда. Также нельзя умолчать, что здесь, при расчете сечения по току, в «игру вступает» и температура. Да, это новая составляющая – температура. Именно она способна повлиять на сечение. Как и почему, давайте разбираться.
Все мы знаем о броуновском движении. О постоянном смещении ионов в кристаллической решетке. Все это происходит во всех материалах, в том числе и в проводниках. Чем выше температура, тем больше будут эти колебания ионов внутри материала. А мы знаем, что ток это направленное движение частиц. Так вот, направленное движение частиц будет сталкиваться в кристаллической решетке с ионами, что приведет к повышению сопротивления для тока. Чем выше температура, тем выше электрическое сопротивление проводника. Поэтому по умолчанию, сечение провода для определенного тока принимается при комнатной температуре, то есть при 18 градусах Цельсия. Именно при этой температуре приведены все справочные значения в таблицах, в том числе и наших.
Не смотря на то, что алюминиевые провода мы не рассматриваем в качестве проводов для электропроводки, по крайней мере, в квартире, тем не менее, они много где применяются. Скажем для проводки на улице. Именно поэтому мы также приведем значения зависимостей сечения и тока и для алюминиевых проводов.
Итак, для меди и алюминия будут следующие показатели зависимости сечения провода (кабеля) от тока (мощности). Смотрите таблицу.

Таблица проводников под допустимый максимальный ток для их использования в проводке

С 2001 года алюминиевые провода для проводки в квартирах не применяются. (ПЭУ)

Да, здесь как заметил наш читатель, мы фактически не привели расчета, а лишь предоставили справочные данные, сведенные в таблицу, на основании этих расчетов. Но смеем вас замерить, что для расчетов необходимо перелопатить множество формул, и показателей. Начиная от температуры, удельного сопротивления, плотности тока и тому подобных. Поэтому такие расчеты мы оставим для спецов. При этом необходимо заметить, что и они не являются окончательными, так как могут незначительно разнится, в зависимости от стандарта на материал и запаса провода по току, применяемого в разных странах.
А вот о чем мы еще хотели бы сказать, так это о переводе сечения провода в диаметр. Это необходимо когда имеется провод, но по каким-то причинам маркировки на нем нет. В этом случае по диаметру провода можно вычислить сечения и наоборот из сечения диаметр.

Как рассчитать зависимость диаметра токопроводящей жилы (провода, кабеля) от его сечения (площади)

Этот абзац больше относится к курсу школы по геометрии алгебре, когда необходимо найти площадь круга исходя из его диаметра. Именно такая задача стоит перед тем, кто хочет перевести диаметр в сечение. Делается это очень просто.

Сечение равно по формуле – S=0,7853*D 2, где D и есть диаметр окружности, а S это площадь. Также справедливо будет утверждение S=ПИ*R 2 , где R – радиус

Общепринятые сечения медных проводов для проводки в квартире по сечению

Мы с вами много говорили о наименованиях, о материалах, об индивидуальных особенностях и даже о температуре, но упустили из вида жизненные обстоятельства. Так если вы нанимаете электрика для того, чтобы он провел вам проводку в комнатах вашей квартиры или дома, то обычно принимаются следующие значения. Для освещения сечения провода берется в 1,5 мм 2, а для розеток в 2,5 мм 2.
Если проводка предназначена для подключения бойлеров, нагревателей, плит, то здесь уже рассчитывается сечение провода (кабеля) индивидуально.

Выбор сечения провода исходя из количества коммуникаций в доме (квартире) (типовые схемы проводки)

О чем еще хотелось сказать, так это о том, что лучше использовать несколько независимых линий питания для каждого из помещений в комнате или квартире. Тем самым вы не будете применять провод с сечением 10 мм 2 для всей квартиры, приброшенный во все комнаты, от которого идут отводы. Такой провод будет приходить на вводный автомат, а затем от него, в соответствии с мощностью потребляемой нагрузки будут разведены выбранные сечения проводов, для каждого из помещений.

Типовая принципиальная схема электропроводки для квартиры или дома с электрической плитой (с указанием сечения кабеля для электроприборов)

Подводя итог о выборе сечения провода (кабеля) в зависимости от силы тока (мощности)

Если вы прочитали всю нашу статью, и все наши выкладки, то наверняка уже осознали насколько сложно и одновременно просто выбрать алюминиевый или медный провод, по сечению исходя из токовой нагрузки и мощности. Да, расчет сечения потребует знания множества формул, поправок на материал и температуру, при этом если воспользоваться справочными таблицами, которые мы и привели, то все просто и понятно.
Что же, кроме выбора сечения провода необходимо будет правильно соединить между собой провода, использовать соответствующие автоматы, УЗО, розетки и выключатели. Не забывать про особенности схемы подключения проводки в квартире. Все это скажется на выборе сечения провода в вашем конкретном случае. И только в этом случае, когда вы учтете все факторы, воспользуетесь справочными материалами, правильно смонтируете все элементы, можно будет говорить о том, что все сделано как надо!

Видео о подборе сечения проводник в зависимости от тока (А)

Основные принципы по выбоу сечения, исходя из тока питания еще раз рассмотрены в этом видео.

В теории и практике, выбору площади поперечного сечения провода по току (толщине) уделяется особое внимание. В данной статье, анализируя справочные данные, познакомимся с понятием «площадь сечения».

Расчет сечения проводов.

В науке не используется понятие «толщина» провода. В литературных источниках используется терминология – диаметр и площадь сечения. Применимо к практике, толщина провода характеризуется площадью сечения.

Довольно легко рассчитывается на практике сечение провода. Площадь сечения вычисляется с помощью формулы, предварительно измерив его диаметр (можно измерить с помощью штангенциркуля):

S = π (D/2)2 ,

  • S – площадь сечения провода, мм
  • D- диаметр токопроводящей жилы провода. Измерить его можно с помощью штангенциркуля.

Более удобный вид формулы площади сечения провода:

Небольшая поправка – является округленным коэффициентом. Точная расчетная формула:

В электропроводке и электромонтаже в 90 % случаях применяется медный провод. Медный провод по сравнению с алюминиевым проводом, имеет ряд преимуществ. Он более удобен в монтаже, при такой же силе токе имеет меньшую толщину, более долговечен. Но чем больше диаметр (площадь сечения), тем выше цена медного провода. Поэтому, несмотря на все преимущества, если сила тока превышает значение 50 Ампер, чаще всего используют алюминиевый провод. В конкретном случае используется провод, имеющий алюминиевую жилу 10 мм и более.

В квадратных миллиметрах измеряют площадь сечения проводов. Наиболее чаще всего на практике (в бытовой электрике), встречаются такие площади сечения: 0,75; 1,5; 2,5; 4 мм .

Существует иная система измерения площади сечения (толщины провода) – система AWG, которая используется, в основном в США. Ниже приведена таблица сечений проводов по системе AWG, а так же перевод из AWG в мм .

Рекомендовано прочитать статью про выбор сечения провода для постоянного тока. В статье приведены теоретические данные и рассуждения о падении напряжения, о сопротивлении проводов для разных сечений. Теоретические данные сориентируют, какое сечение провода по току наиболее оптимально, для разных допустимых падений напряжения. Также на реальном примере объекта, в статье о падении напряжения на трехфазных кабельных линиях большой длины, приведены формулы, а также рекомендации о том, как уменьшить потери. Потери на проводе прямо пропорциональны току и длине провода. И являются обратно пропорциональными сопротивлению.

Выделяют, три основные принципа, при выборе сечения провода.

1. Для прохождения электрического тока, площадь сечения провода (толщина провода), должна быть достаточной. Понятие достаточно означает, что когда проходит максимально возможный, в данном случае, электрический ток, нагрев провода будет допустимый (не более 600С).

2. Достаточное сечение провода, что бы падение напряжения не превышало допустимого значения. В основном это относится к длинным кабельным линиям (десятки, сотни метров) и токам большой величины.

3. Поперечное сечение провода, а также его защитная изоляция, должна обеспечивать механическую прочность и надежность.

Для питания, например люстры, используют в основном лампочки с суммарной потребляемой мощностью 100 Вт (ток чуть более 0,5 А).

Выбирая толщину провода, необходимо ориентироваться на максимальную рабочую температуру. Если температура будет превышена, провод и изоляция на нем будут плавиться и соответственно это приведет к разрушению самого провода. Максимальный рабочий ток для провода с определенным сечением ограничивается только максимально его рабочей температурой. И временем, которое сможет проработать провод в таких условиях.

Далее приведена таблица сечения проводов, при помощи которой в зависимости от силы тока, можно подобрать площадь сечения медных проводов. Исходные данные – площадь сечения проводника.

Максимальный ток для разной толщины медных проводов. Таблица 1.

Сечение токопроводящей жилы, мм 2

Ток, А, для проводов, проложенных

Площадь сечения проводов и кабелей в зависимости от силы тока, расчет необходимого сечения кабеля

Грамотный подбор кабеля для восстановления или прокладки электропроводки гарантирует безупречную работу системы. Приборы будут получать питание в полноценном объеме.

Не случится перегрева изоляции с последующими разрушительными последствиями. Разумный расчет сечения провода по мощности избавит и от угроз воспламенения, и от лишних затрат на покупку недешевого провода.

Давайте разберемся в алгоритме расчетов.

Упрощенно кабель можно сравнить с трубопроводом, транспортирующим газ или воду. Точно так же по его жиле перемещается поток, параметры которого ограничены размером данного токоведущего канала. Следствием неверного подбора его сечения являются два распространенных ошибочных варианта:

  • Слишком узкий токоведущий канал, из-за которого в разы возрастает плотность тока. Рост плотности тока влечет за собой перегрев изоляции, затем ее оплавление. В результате оплавления по минимуму появятся «слабые» места для регулярных утечек, по максимуму пожар.
  • Излишне широкая жила, что, в сущности, совсем неплохо. Причем, наличие простора для транспортировки электро-потока весьма положительно отражается на функционале и эксплуатационных сроках проводки. Однако карман владельца облегчится на сумму, примерно вдвое превышающую по факту требующиеся деньги.

Первый из ошибочных вариантов представляет собой откровенную опасность, в лучшем случае повлечет увеличение оплаты за электроэнергию. Второй вариант не опасен, но крайне нежелателен.

«Протоптанные» пути вычислений

Все существующие расчетные способы опираются на выведенный Омом закон, согласно которому сила тока, помноженная на напряжение, равняется мощности. Бытовое напряжение – величина постоянная, равная в однофазной сети стандартным 220 В.

Значит, в легендарной формуле остаются лишь две переменные: это ток с мощностью. «Плясать» в расчетах можно и нужно от одной из них. Через расчетные значения тока и предполагаемой нагрузки в таблицах ПУЭ найдем требующийся размер сечения.

Обратите внимание, что сечение кабеля рассчитывают для силовых линий, т.е. для проводов к розеткам. Линии освещения априори прокладывают кабелем с традиционной величиной площади сечения 1,5 мм².

Если в обустраиваемом помещении нет мощного диско-прожектора или люстры, требующей питания в 3,3кВт и больше, то увеличивать площадь сечения жилы осветительного кабеля не имеет смысла. А вот розеточный вопрос – дело сугубо индивидуальное, т.к. подключать к одной линии могут такие неравнозначные тандемы, как фен с водонагревателем или электрочайник с микроволновкой.

Тем, кто планирует нагрузить силовую линию электрической варочной поверхностью, бойлером, стиральной машиной и подобной «прожорливой» техникой, желательно распределить всю нагрузку на несколько розеточных групп.

Если технической возможности разбить нагрузку на группы нет, бывалые электрики рекомендуют без затей прокладывать кабель с медной жилой сечением 4-6 мм².

Почему с медной токоведущей сердцевиной? Потому что строгим кодексом ПУЭ прокладка кабеля с алюминиевой «начинкой» в жилье и в активно используемых бытовых помещениях запрещена.

Сопротивление у электротехнической меди гораздо меньше, тока она пропускает больше и не греется при этом, как алюминий. Алюминиевые провода используются при устройстве наружных воздушных сетей, кое-где они еще остались в старых домах.

Обратите внимание! Площадь сечения и диаметр жилы кабеля – вещи разные. Первая обозначается в квадратных мм, второй просто в мм. Главное не перепутать!

Для поиска табличных значений мощности и допустимой силы тока можно пользоваться обоими показателями. Если в таблице указан размер площади сечения в мм², а нам известен только диаметр в мм, площадь нужно найти по следующей формуле:

Расчет размера сечения по нагрузке

Простейший способ подбора кабеля с нужным размером — расчет сечения провода по суммарной мощности всех подключаемых к линии агрегатов.

Алгоритм расчетных действий следующий:

  • для начала определимся с агрегатами, которые предположительно могут использоваться нами одновременно. Например, в период работы бойлера нам вдруг захочется включить кофемолку, фен и стиралку;
  • затем согласно данным техпаспортов или согласно приблизительным сведениям из приведенной ниже таблицы банально суммируем мощность одновременно работающих по нашим планам бытовых агрегатов;
  • предположим, что в сумме у нас вышло 9,2 кВт, но конкретно этого значения в таблицах ПУЭ нет. Значит, придется округлить в безопасную большую сторону – т.е. взять ближайшее значение с некоторым превышением мощности. Это будет 10,1 кВт и соответствующее ему значение сечения 6 мм².

Все округления «направляем» в сторону увеличения. В принципе суммировать можно и силу тока, указанную в техпаспортах. Расчеты и округления по току производятся аналогичным образом.

Как рассчитать сечение по току?

Табличные значения не могут учесть индивидуальных особенностей устройства и эксплуатации сети. Специфика у таблиц среднестатистическая.

Не приведены в них параметры максимально допустимых для конкретного кабеля токов, а ведь они отличаются у продукции с разными марками. Весьма поверхностно затронут в таблицах тип прокладки.

Дотошным мастерам, отвергающим легкий путь поиска по таблицам, лучше воспользоваться способом расчетаразмера сечения провода по току. Точнее по его плотности.

Начнем с освоения азов: запомним на практике выведенный интервал 6 — 10. Это значения, полученные электриками многолетним «опытным путем». В указанных пределах варьирует сила тока, протекающего по 1 мм² медной жилы. Т.е.

кабель с медной сердцевиной сечением 1 мм² без перегрева и оплавления изоляции предоставляет возможность току от 6 до 10 А спокойно достигать ожидающего его агрегата-потребителя.

Разберемся, откуда взялась и что означает обозначенная интервальная вилка.

Согласно кодексу электрических законов ПУЭ 40% отводится кабелю на неопасный для его оболочки перегрев, значит:

  • 6 А, распределенные на 1 мм² токоведущей сердцевины, являются нормальной рабочей плотностью тока. В данных условиях проводник работать может бесконечно долго без каких-либо ограничений по времени;
  • 10 А, распределенные на 1 мм² медной жилы, протекать по проводнику могут краткосрочно. Например, при включении прибора.

Потоку энергии 12 А в медном миллиметровом канале будет изначально «тесно». От тесноты и толкучки электронов увеличится плотность тока. Следом повысится температура медной составляющей, что неизменно отразиться на состоянии изоляционной оболочки.

Обратите внимание, что для кабеля с алюминиевой токоведущей жилой плотность тока отображает интервал 4 – 6 Ампер, приходящийся на 1 мм² проводника.

Выяснили, что предельная величина плотности тока для проводника из электротехнической меди 10 А на площадь сечения 1 мм², а нормальные 6 А. Следовательно:

  • кабель с жилой сечением 2,5 мм² сможет транспортировать ток в 25 А всего лишь несколько десятых секунды во время включения техники;
  • он же бесконечно долго сможет передавать ток в 15А.

Приведенные выше значения плотности тока действительны для открытой проводки.

Если кабель прокладывается в стене, в металлической гильзе или в пластиковом кабель канале, указанную величину плотности тока нужно помножить на поправочный коэффициент 0,8.

Запомните и еще одну тонкость в организации открытого типа проводки. Из соображений механической прочности кабель с сечением меньше 4 мм² в открытых схемах не используют.

Изучение схемы расчета

Суперсложных вычислений снова не будет, расчет провода по предстоящей нагрузке предельно прост.

  • Сначала найдем предельно допустимую нагрузку. Для этого суммируем мощность приборов, которые предполагаем одновременно подключать к линии. Сложим, например, мощность стиральной машины 2000 Вт, фена 1000 Вт и произвольно какого-либо обогревателя 1500 Вт. Получили мы 4500 Вт или 4,5 кВт.
  • Затем делим наш результат на стандартную величину напряжения бытовой сети 220 В. Мы получили 20,45…А, округляем до целого числа, как положено, в большую сторону.
  • Далее вводим поправочный коэффициент, если в нем есть необходимость. Значение с коэффициентом будет равно 16,8, округленно 17 А, без коэффициента 21 А.
  • Вспоминаем о том, что рассчитывали рабочие параметры мощности, а нужно еще учесть предельно допустимое значение. Для этого вычисленную нами силу тока умножаем на 1,4, ведь поправка на тепловое воздействие 40%. Получили: 23,8 А и 29,4 А соответственно.
  • Значит, в нашем примере для безопасной работы открытой проводки потребуется кабель с сечением более 3 мм², а для скрытого варианта 2,5 мм².

Не забудем о том, что в силу разнообразных обстоятельств порой включаем одновременно больше агрегатов, чем рассчитывали. Что есть еще лампочки и прочие приборы, незначительно потребляющие энергию. Запасемся некоторым резервом сечения на случай увеличения парка бытовой техники и с расчетами отправимся за важной покупкой.

Видео-руководство для точных расчетов

Следуя жестким рекомендациям ПУЭ, покупать для обустройства личной собственности будем кабельную продукцию с «литерными группами» NYM и ВВГ в маркировке. Именно они не вызывают нареканий и придирок со стороны электриков и пожарников. Вариант NYM – аналог отечественных изделий ВВГ.

Лучше всего, если отечественный кабель будет сопровождать индекс НГ, это означает, что проводка будет пожароустойчивой. Если предполагается прокладывать линию за перегородкой, между лагами или над подвесным потолком, купите изделия с низким дымовыделением. У них будет индекс LS.

Вот таким нехитрым способом рассчитывается сечение токопроводящей жилы кабеля. Сведения о принципах вычислений помогут рационально подобрать данный важный элемент электросети. Необходимый и достаточный размер токоведущей сердцевины обеспечит питанием домашнюю технику и не станет причиной возгорания проводки.

Таблица соответствия сечения кабеля току и мощности

Большое значение в электротехнике имеет такая величина, как поперечное сечение провода и нагрузка. Без этого параметра невозможно проведение каких-либо расчетов, особенно, связанных с прокладкой кабельных линий.

Ускорить необходимые вычисления помогает таблица зависимости мощности от сечения провода, применяемая при проектировании электротехнического оборудования.

Правильные расчеты обеспечивают нормальную работу приборов и установок, способствуют надежной и долговременной эксплуатации проводов и кабелей.

Правила расчетов площади сечения

На практике расчеты сечения любого провода не представляют какой-либо сложности. Достаточно всего лишь вычислить сечение кабеля по диаметру с помощью штангенциркуля, а затем полученное значение использовать в формуле: S = π (D/2)2, в которой S является площадью сечения, число π составляет 3,14, а D представляет собой измеренный диаметр жилы.

В настоящее время используются преимущественно медные провода. По сравнению с алюминиевыми, они более удобны в монтаже, долговечны, имеют значительно меньшую толщину, при одинаковой силе тока.

Однако, при увеличении площади сечения стоимость медных проводов начинает возрастать, и все преимущества постепенно теряются. Поэтому при значении силы тока более 50-ти ампер практикуется применение кабелей с алюминиевыми жилами. Для измерения сечения проводов используются квадратные миллиметры.

Наиболее распространенными показателями, применяемыми на практике, являются площади 0,75; 1,5; 2,5; 4,0 мм2.

Таблица сечения кабеля по диаметру жилы

Основным принципом расчетов служит достаточность площади сечения, для нормального протекания через него электрического тока. То есть, допустимый ток не должен нагревать проводник до температуры свыше 60 градусов.

Падение напряжения не должно превышать допустимого значения. Этот принцип особенно актуален для ЛЭП большой протяженности и высокой силы тока.

Обеспечение механической прочности и надежности провода осуществляется за счет оптимальной толщины провода и защитной изоляции.

Сечение провода по току и мощности

Прежде чем рассматривать соотношение сечения и мощности, следует остановиться на показателе, известном, как максимальная рабочая температура. Данный параметр обязательно учитывается при выборе толщины кабеля.

Если этот показатель превышает свое допустимое значение, то из-за сильного нагрева металл жилы и изоляция расплавятся и разрушатся. Таким образом, происходит ограничение рабочего тока для конкретного провода его максимальной рабочей температурой.

Важным фактором является время, в течение которого кабель сможет функционировать в подобных условиях.

Основное влияние на устойчивую и долговечную работу провода оказывает потребляемая мощность и сила тока.

Для быстроты и удобства расчетов были разработаны специальные таблицы, позволяющие подобрать необходимое сечение в соответствии с предполагаемыми условиями эксплуатации.

Например, при мощности 5 кВт и силе тока в 27,3 А, площадь сечения проводника составит 4.0 мм2. Точно так же подбирается сечение кабелей и проводов при наличии других показателей.

Необходимо учитывать и влияние окружающей среды. При температуре воздуха, на 20 градусов превышающей нормативную, рекомендуется выбор большего сечения, следующего по порядку.

То же самое касается наличия нескольких кабелей, содержащихся в одном жгуте или значения рабочего тока, приближающегося к максимальному.

В конечном итоге, таблица зависимости мощности от сечения провода позволит выбрать подходящие параметры на случай возможного увеличения нагрузки в перспективе, а также при наличии больших пусковых токов и существенных перепадов температур.

Читать также:  Внешнее освещение загородного дома

Формулы для расчета сечения кабеля

Качество проведения электромонтажных работ оказывает воздействие на безопасность целого здания. Определяющим фактором при проведении таких работ является показатель сечения кабеля. Для осуществления расчета нужно выяснить характеристики всех подключенных потребителей электричества. Необходимо провести расчет сечения кабеля по мощности. Таблица нужна, чтобы посмотреть требуемые показатели.

Качественный и подходящий кабель обеспечивает безопасную и долговечную работу любой сети

Расчет сечения кабеля по мощности: таблица с важными характеристиками

Оптимальная площадь сечения кабеля позволяет протекать максимальному количеству тока и при этом не нагревается.

Выполняя проект электропроводки, важно найти правильное значение для диаметра провода, который бы подходил под определенные условия потребляемой мощности.

Чтобы выполнить вычисления, требуется определить показатель общего тока. При этом нужно выяснить мощность всего оборудования, которое подключено к кабелю.

Такая таблица поможет подобрать оптимальные параметры

Перед работой вычисляется сечение провода и нагрузка. Таблица поможет найти эти значения. Для стандартной сети 220 вольт, примерное значение тока рассчитывается так, I(ток)=(Р1+Р2+….+Рn)/220, Pn – мощность. Например, оптимальный ток для алюминиевого провода – 8 А/мм, а для медного – 10 А/мм.

Расчет по нагрузке

Даже определив нужное значение, можно произвести определенные поправки по нагрузке. Ведь нечасто все приборы работают одновременно в сети. Чтобы данные были более точными, необходимо значение сечения умножить на Кс (поправочный коэффициент). В случае, если будет включаться всё оборудование в одно и то же время, то данный коэф-т не применяется.

Чтобы выполнить вычисления правильно применяют таблицу расчетов сечения кабеля по мощности. Нужно учитывать, что существует два типа данного параметра: реактивная и активная.

Так проводится расчет с учетом нагрузки

В электрических сетях протекает ток переменного типа, показатель которого может меняться. Активная мощность нужна, чтобы рассчитать среднее показатели. Активную мощность имеют электрические нагреватели и лампы накаливания.

Если в сети присутствуют электромоторы и трансформаторы, то могут возникать некоторые отклонения. При этом и формируется реактивная мощность. При расчетах показатель реактивной нагрузки отражается в виде коэффициента (cosф).

Особенности потребления тока

Полезная информация! В быту среднее значение cosф равняется 0,8. А у компьютера такой показатель равен 0,6-0,7.

Расчет по длине

Вычисления параметров по длине необходимы при возведении производственных линий, когда кабель подвергается мощным нагрузкам. Для расчетов применяют таблицу сечения кабеля по мощности и току. При перемещении тока по магистралям проявляются потери мощности, которые зависят от сопротивления, появляющегося в цепи.

По техническим параметрам, самое большое значение падения напряжения не должно быть больше пяти процентов.

Применение таблицы помогает узнать значение сечения кабеля по длине

Использование таблицы сечения проводов по мощности

На практике для проведения подсчетов применяется таблица. Расчет сечения кабеля по мощности осуществляется с учетом показанной зависимости параметров тока и мощности от сечения. Существуют специальные стандарты возведения электроустановок, где можно посмотреть информацию по нужным измерениям. В таблице представлены распространенные значения.

Узнать точный показатель можно, используя различные параметры

Чтобы подобрать кабель под определенную нагрузку, необходимо провести некоторые расчеты:

  • рассчитать показатель силы тока;
  • округлить до наибольшего показателя, используя таблицу;
  • подобрать ближайший стандартный параметр.

Читать также:  Нормы браковки канатных и цепных стропов

Статья по теме:

Как повесить люстру на натяжной потолок. Видео пошагового монтажа позволит всю работу произвести самостоятельно без обращения к специалистам. Что нужно подготовить для работы и как избежать ошибок мы и расскажем в статье.

Формула расчетов мощности по току и напряжению

Если уже имеются какие-то кабели в наличии, то чтобы узнать нужное значение, следует применить штангенциркуль. При этом измеряется сечение и рассчитывается площадь. Так как кабель имеет округлую форму, то расчет производится для площади окружности и выглядит так: S(площадь)= π(3,14)R(радиус)2. Можно правильно определить, используя таблицу, сечение медного провода по мощности.

Стандартные формулы для определения силы тока

Важная информация! Большинство производителей уменьшают размер сечения для экономии материала.

Поэтому, совершая покупку, воспользуйтесь штангенциркулем и самостоятельно промеряйте провод, а затем рассчитайте площадь. Это позволит избежать проблем с превышением нагрузки.

Если провод состоит из нескольких скрученных элементов, то нужно промерить сечение одного элемента и перемножить на их количество.

Варианты кабеля для разных назначений

Какие есть примеры?

Определенная схема позволит вам сделать правильный выбор сечения кабеля для своей квартиры. Прежде всего, спланируйте места, в которых будут размещаться источники света и розетки.

Также следует выяснить, какая техника будет подключаться к каждой группе. Это позволит составить план подсоединения всех элементов, а также рассчитать длину проводки.

Не забывайте прибавлять по 2 см на стыки проводов.

Определение сечения провода с учетом разных видов нагрузки

Применяя полученные значения, по формулам вычисляется значение силы тока и по таблице определяется сечение. Например, требуется узнать сечение провода для бытового прибора, мощность которого 2400 Вт. Считаем: I = 2400/220 = 10,91 А. После округления остается 11 А.

Схемы прокладки кабелей

Чтобы определить точный показатель площади сечения применяются разные коэффициенты. Особенно данные значения актуальны для сети 380 В. Для увеличения запаса прочности к полученному показателю стоит прибавить еще 5 А.

Схема трехжильной проводки

Стоит учитывать, что для квартир применяются трехжильные провода. Воспользовавшись таблицами, можно подобрать самое близкое значение тока и соответствующее сечение провода. Можно посмотреть какое нужно сечение провода для 3 кВт, а также для других значений.

У проводов разного типа предусмотрены свои тонкости расчетов. Трехфазный ток применяется там, где нужно оборудование значительной мощности. Например, такое используется в производственных целях.

Для выявления нужных параметров на производствах важно точно рассчитать все коэффициенты, а также учесть потери мощности при колебаниях в напряжении. Выполняя электромонтажные работы дома, не нужно проводить сложные расчеты.

Следует знать о различиях алюминиевого и медного провода. Медный вариант отличается более высокой ценой, но при этом превосходит аналог по техническим характеристикам. Алюминиевые изделия могут крошиться на сгибах, а также окисляются и имеют более низкий показатель теплопроводности. По технике безопасности в жилых зданиях используется только продукция из меди.

Основные материалы для кабелей

Так как переменный ток передвигается по трем каналам, то для монтажных работ используется трехжильный кабель. При установке акустических приборов применяются кабели, имеющие минимальное значение сопротивления. Это поможет улучшить качество сигнала и устранить возможные помехи. Для подключения подобных конструкций применяются провода, размер которых 2*15 или 2*25.

Подобрать оптимальный показатель сечения для применения в быту помогут некоторые средние значения. Для розеток стоит приобрести кабель 2,5 мм2, а для оформления освещения – 1,5 мм2. Оборудование с более высокой мощностью требует сечения размером 4-6 мм2.

Варианты соединения проводов

Специальная таблица окажет помощь, если возникают сомнения при расчетах. Для определения точных показателей нужно учитывать все факторы, которые оказывают влияние на ток в цепи.

Это длина отдельных участков, метод укладки, тип изоляции и допустимое значение перегрева.

Все данные помогают увеличить производительность в производственных масштабах и более эффективно применять электрическую энергию.

Расчет сечения кабеля и провода по мощности и току, для подключения частного дома (видео)

Привет. Тема сегодняшней статьи «Сечение кабеля по мощности«. Эта информация пригодиться как в быту, так и на производстве. Речь пойдет о том, как произвести расчет сечения кабеля по мощности и сделать выбор по удобной таблице.

Для чего вообще нужно правильно подобрать сечение кабеля ?

Если говорить простым языком, это нужно для нормальной работы всего, что связано с электрическим током. Будь-то фен, стиральная машина, двигатель или трансформатор. Сегодня инновации не дошли еще до безпроводной передачи электроэнергии (думаю еще не скоро дойдут), соответственно основным средством для передачи и распределения электрического тока, являются кабели и провода.

При маленьком сечении кабеля и большой мощности оборудования, кабель может нагреваться, что приводит к потере его свойств и разрушению изоляции. Это не есть хорошо, так что правильный расчет необходим.

  • Итак, выбор сечения кабеля по мощности. Для подбора будем использовать удобную таблицу:
  • Таблица простая, описывать ее думаю не стоит.

Теперь нам нужно рассчитать общую потребляемую мощность оборудования и приборов, используемых в квартире, доме, цехе или в любом другом месте куда мы ведем кабель. Произведем расчет мощности.

Допустим у нас дом, выполняем монтаж закрытой электропроводки кабелем ВВГ. Берем лист бумаги и переписываем перечень используемого оборудования. Сделали? Хорошо.

Как узнать мощность? Мощность вы сможете найти на самом оборудовании, обычно имеется бирка, где записаны основные характеристики:

Мощность измеряется в Ваттах ( Вт, W ), или Киловаттах ( кВт, KW ). Нашли? Записываем данные, затем складываем.

Допустим, у вас получилось 20 000 Вт, это 20 кВт. Цифра говорит нам о том, сколько энергии потребляют все электроприемники вместе. Теперь нужно подумать сколько вы будете использовать приборов одновременно в течении длительного времени? Допустим 80 %. Коэффициент одновременности в таком случае равен 0,8 . Делаем расчет сечения кабеля по мощности:

Считаем:

20 х 0,8 = 16 (кВт)

Чтобы сделать выбор сечения кабеля по мощности, смотрим на наши таблицы:

Для трехфазной цепи 380 Вольт это будет выглядеть вот так:

Как видите, не сложно. Хочу также добавить, советую выбирать кабель или провод наибольшего сечения жил, на случай если вы захотите подключить что-нибудь еще.

Выбор сечения медного и алюминиевого провода кабеля для электропроводки по нагрузке

Стандартная квартирная электропроводка рассчитывается на максимальный ток потребления при длительной нагрузке 25 ампер (на такую силу тока выбирается и автоматический выключатель, который устанавливается на вводе проводов в квартиру) выполняется медным проводом сечением 4,0 мм2, что соответствует диаметру провода 2,26 мм и мощности нагрузки до 6 кВт.

Согласно требований п 7.1.35 ПУЭ сечение медной жилы для квартирной электропроводки должно быть не менее 2,5 мм2, что соответствует диаметру проводника 1,8 мм и силе тока нагрузки 16 А. К такой электропроводке можно подключать электроприборы суммарной мощностью до 3,5 кВт.

Что такое сечение провода и как его определить

Чтобы увидеть сечение провода достаточно его перерезать поперек и посмотреть на срез с торца. Площадь среза и есть сечение провода. Чем оно больше, тем большую силу тока может передать провод.

Как видно из формулы, сечение провода легко вычислить по его диаметру. Достаточно величину диаметра жилы провода умножить саму на себя и на 0,785. Для вычисления сечения многожильного провода нужно вычислить сечение одной жилы и умножить на их количество.

Диаметр проводника можно определить с помощью штангенциркуля с точностью до 0,1 мм или микрометра с точностью до 0,01 мм. Если нет под рукой приборов, то в таком случае выручит обыкновенная линейка.

Выбор сечения медного провода электропроводки по силе тока

Величина электрического тока обозначается буквой «А» и измеряется в Амперах. При выборе действует простое правило, чем сечение провода больше, тем лучше, по этому округляют результат в большую сторону.

Приведенные мною данные в таблице основаны на личном опыте и гарантируют надежную работу электропроводки при самых неблагоприятных условиях ее прокладки и эксплуатации. При выборе сечения провода по величине тока не имеет значение, переменный это ток или постоянный.

Не имеют значения также величина и частота напряжения в электропроводке, это может быть бортовая сеть автомобиля постоянного тока на 12 В или 24 В, летательного аппарата на 115 В частотой 400 Гц, электропроводка 220 В или 380 В частотой 50 Гц, высоковольтная линия электропередачи на 10000 В.

Если неизвестен ток потребления электроприбором, но известны напряжение питания и мощность, то рассчитать ток можно с помощью приведенного ниже онлайн калькулятора.

Следует отметить, что на частотах более 100 Гц в проводах при протекании электрического тока начинает проявляться скин-эффект, заключающийся в том, что с увеличением частоты ток начинает «прижиматься» к внешней поверхности провода и фактическое сечение провода уменьшается. Поэтому выбор сечения провода для высокочастотных цепей выполняется по другим законам.

Определение нагрузочной способности электропроводки 220 В выполненной из алюминиевого провода

В давно построенных домах электропроводка, как правило, выполнена из алюминиевых проводов.

Если соединения в распределительных коробках выполнены правильно, срок службы алюминиевой проводки может составлять и сто лет.

Ведь алюминий практически не окисляется, и срок службы электропроводки будет определяться только сроком службы пластмассовой изоляции и надежностью контактов в местах присоединения.

В случае подключения дополнительных энергоемких электроприборов в квартире с алюминиевой электропроводкой необходимо определить по сечению или диаметру жил проводов способность ее выдержать дополнительную мощность. По приведенной ниже таблице это легко сделать.

Если у Вас проводка в квартире выполнена из алюминиевых проводов и возникла необходимость подключить вновь установленную розетку в распределительной коробке медными проводами, то такое соединение выполняется в соответствии с рекомендациями статьи Соединение алюминиевых проводов.

Для выбора сечения жил провода кабеля при прокладке электропроводки в квартире или доме нужно проанализировать парк имеющихся электробытовых приборов с точки зрения одновременного их использования.

В таблице представлен перечень популярных бытовых электроприборов с указанием потребляемого тока в зависимости от мощности.

Вы можете узнать потребляемую мощность своих моделей самостоятельно из этикеток на самих изделиях или паспортам, часто параметры указывают на упаковке.

В случае если сила потребляемого тока электроприбором неизвестна, то ее можно измерять с помощью амперметра.

Таблица потребляемой мощности и силы тока бытовыми электроприборами при напряжении питания 220 В

Обычно мощность потребления электроприборов указывается на корпусе в ваттах (Вт или VA) или киловаттах (кВт или кVA). 1 кВт=1000 Вт.

Ток потребляют еще холодильник, осветительные приборы, радиотелефон, зарядные устройства, телевизор в дежурном состоянии. Но в сумме эта мощность составляет не более 100 Вт и при расчетах ее можно не учитывать.

Если Вы включите все имеющиеся в доме электроприборы одновременно, то необходимо будет выбрать сечение провода, способное пропустить ток 160 А. Провод понадобится толщиной в палец! Но такой случай маловероятен. Трудно представить, что кто-то способен одновременно молоть мясо, гладить утюгом, пылесосить и сушить волосы.

Пример расчета. Вы встали утром, включили электрочайник, микроволновую печь, тостер и кофеварку. Потребляемый ток соответственно составит 7 А + 8 А + 3 А + 4 А = 22 А. С учетом включенного освещения, холодильника и в дополнение, например, телевизора, потребляемый ток может достигнуть 25 А.

Выбрать сечение провода можно не только по силе тока но и по величине потребляемой мощности. Для этого нужно составить перечень всех планируемых для подключения к данному участку электропроводки электроприборов, определить, какую мощность потребляет каждый из них по отдельности. Далее сложить полученные данные и воспользоваться нижеприведенной таблицей.

Если имеется несколько электроприборов и для некоторых известен ток потребления, а для других мощность, то нужно определить из таблиц сечение провода для каждого из них, а затем полученные результаты сложить.

Выбор сечения медного провода по мощности для с бортовой сети автомобиля 12 В

Если при подключении к бортовой сети автомобиля дополнительного оборудования известна только его мощность потребления, то определить сечение дополнительной электропроводки можно с помощью ниже приведенной таблицы.

Выбор сечения провода для подключения электроприборовк трехфазной сети 380 В

При работе электроприборов, например, электродвигателя, подключенных к трехфазной сети, потребляемый ток протекает уже не по двум проводам, а по трем и, следовательно, величина протекающего тока в каждом отдельном проводе несколько меньше. Это позволяет использовать для подключения электроприборов к трехфазной сети провод меньшего сечения.

Для подключения электроприборов к трехфазной сети напряжением 380 В, например электродвигателя, сечение провода для каждой фазы берется в 1,75 раза меньше, чем для подключения к однофазной сети 220 В.

Внимание, при выборе сечения провода для подключения электродвигателя по мощности следует учесть, что на шильдике электродвигателя указывается максимальная механическая мощность, которую двигатель может создать на валу, а не потребляемая электрическая мощность. Потребляемая электрическая мощность электродвигателем с, учетом КПД и сos φ приблизительно в два раза больше, чем создаваемая на валу, что необходимо учитывать при выборе сечения провода исходя из мощности двигателя, указанной в табличке.

Например, нужно подключить электродвигатель потребляющий мощность от сети 2,0 кВт. Суммарный ток потребления электродвигателем такой мощности по трем фазам составляет 5,2 А.

По таблице получается, что нужен провод сечением 1,0 мм2, с учетом вышеизложенного 1,0 / 1,75 = 0,5 мм2.

Следовательно, для подключения электродвигателя мощностью 2,0 кВт к трехфазной сети 380 В понадобится медный трехжильный кабель с сечением каждой жилы 0,5 мм2.

Гораздо проще выбрать сечение провода для подключения трехфазного двигателя, исходя из величины тока его потребления, который всегда указывается на шильдике.

Например, в шильдике приведенном на фотографии, ток потребления двигателя мощностью 0,25 кВт по каждой фазе при напряжении питания 220 В (обмотки двигателя подключены по схеме «треугольник») составляет 1,2 А, а при напряжении 380 В (обмотки двигателя подключены по схеме «звезда») всего 0,7 А.

Взяв силу тока, указанную на шильдике, по таблице для выбора сечения провода для квартирной электропроводки выбираем провод сечением 0,35 мм2 при подключении обмоток электродвигателя по схеме «треугольник» или 0,15 мм2 при подключении по схеме «звезда».

О выборе марки кабеля для домашней электропроводки

Делать квартирную электропроводку из алюминиевых проводов на первый взгляд кажется дешевле, но эксплуатационные расходы из-за низкой надежности контактов со временем многократно превысят затраты на электропроводку из меди.

Рекомендую делать проводку исключительно из медных проводов! Алюминиевые провода незаменимы при прокладке воздушной электропроводки, так как они легкие и дешевые и при правильном соединении служат надежно продолжительное время.

А какой провод лучше использовать при монтаже электропроводки, одножильный или многожильный? С точки зрения способности проводить ток на единицу сечения и монтажа, одножильный лучше. Так что для домашней электропроводки нужно использовать только одножильный провод.

Многожильный допускает многократные изгибы, и чем тоньше в нем проводники, тем он более гибкий и долговечнее.

Поэтому многожильный провод применяют для подключения к электросети нестационарных электроприборов, таких как электрофен, электробритва, электроутюг и все остальных.

После принятия решения по сечению провода встает вопрос о марке кабеля для электропроводки. Тут выбор не велик и представлен всего несколькими марками кабелей: ПУНП, ВВГнг и NYM.

Кабель ПУНП с 1990 года, в соответствии с решением Главгосэнергонадзора «О запрете применения проводов типа АПВН, ППБН, ПЕН, ПУНП и др., выпускаемых по ТУ 16-505. 610-74 вместо проводов АПВ, АППВ, ПВ и ППВ по ГОСТ 6323-79*» к применению запрещен.

Кабель ВВГ и ВВГнг – медные провода в двойной поливинилхлоридной изоляции, плоской формы. Предназначен для работы при температуре окружающей среды от −50°С до +50°С, для выполнения проводки внутри зданий, на открытом воздухе, в земле при прокладке в тубах.

Срок службы до 30 лет. Буквы «нг» в обозначении марки говорят о негорючести изоляции провода. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 35,0 мм2. Если в обозначении кабеля перед ВВГ стоит буква А (АВВГ), то жилы в проводе алюминиевые.

Кабель NYM (его российский аналог – кабель ВВГ), с медными жилами, круглой формы, с негорючей изоляцией, соответствует немецкому стандарту VDE 0250. Технические характеристики и область применения, практически одинаковые с кабелем ВВГ. Выпускаются двух-, трех- и четырехжильные с сечением жил от 1,5 до 4,0 мм2.

Как видите, выбор для прокладки электропроводки не велик и определяется в зависимости от того, какой формы кабель более подходит для монтажа, круглой или плоской.

Кабель круглой формы удобнее прокладывается через стены, особенно если делается ввод с улицы в помещение. Понадобится просверлить отверстие чуть больше диаметра кабеля, а при большей толщине стены это становится актуальным.

Для внутренней проводки удобнее применять плоский кабель ВВГ.

При прокладке квартирной электропроводки, как правило, возникает вопрос и о выборе автоматического выключателя, или, как его часто называют, автомата. Этот вопрос и о выборе счетчика, УЗО, дифференциального автомата подробно освещен в статье сайта «Об электрическом счетчике, УЗО и автоматах защиты».

Параллельное соединение проводов электропроводки

Бывают безвыходные ситуации, когда срочно нужно проложить проводку, а провода требуемого сечения в наличии нет. В таком случае, если есть провод меньшего, чем необходимо, сечения, то можно проводку сделать из двух и более проводов, соединив их параллельно. Главное, чтобы сумма сечений каждого из них была не меньше расчетной.

Например, есть три провода сечением 2, 3 и 5 мм2, а нужен по расчетам 10 мм2. Соединяете их все параллельно, и проводка будет выдерживать ток до 50 ампер. Да Вы и сами многократно видели параллельное соединение большего количества тонких проводников для передачи больших токов.

Например, для сварки используется ток до 150 А и для того, чтобы сварщик мог управлять электродом, нужен гибкий провод. Его и делают из сотен параллельно соединенных тонких медных проволочек. В автомобиле аккумулятор к бортовой сети тоже подключают с помощью такого же гибкого многожильного провода, так как во время пуска двигателя стартер потребляет от аккумулятора ток до 100 А.

А при установке и снятии аккумулятора необходимо провода отводить в сторону, то есть провод должен быть достаточно гибким.

Способ увеличения сечения электропровода путем параллельного соединения нескольких проводов разного диаметра можно использовать только в крайнем случае. При прокладке домашней электропроводки допустимо соединять параллельно только провода одинакового сечения, взятые из одной бухты.

Онлайн калькуляторы для вычисления сечения и диаметра провода

С помощью онлайн калькулятора, представленного ниже можно решить обратную задачу – определить по сечению диаметр проводника.

Как вычислить сечение многожильного провода

Многожильный провод, или как его называют еще многопроволочный или гибкий, представляет собой свитые вместе одножильные проволочки. Для вычисления сечения многожильного провода нужно сначала вычислить сечение одной проволочки, а затем полученный результат умножить на их число.

Рассмотрим пример. Есть многожильный гибкий провод, в котором 15 жил диаметром 0,5 мм. Сечение одной жилы равно 0,5 мм×0,5 мм×0,785 = 0,19625 мм2, после округления получим 0,2 мм2. Так как у нас в проводе 15 проволочек , то для определения сечения кабеля нужно перемножить эти числа. 0,2 мм2×15=3 мм2. Осталось по таблице определить, что такой многожильный провод выдержит ток 20 А.

Можно оценить нагрузочную способность многожильного провода без замера диаметра отдельного проводника, измеряв общий диаметр всех свитых проволочек.

Но так как проволочки круглые, то между ними находятся воздушные зазоры. Для исключения площади зазоров нужно полученный по формуле результат сечения провода умножить на коэффициент 0,91.

При замере диаметра надо проследить, чтобы многожильный провод не сплющился.

Рассмотрим на примере. В результате измерений многожильный провод имеет диаметр 2,0 мм. Рассчитаем его сечение: 2,0 мм×2,0 мм×0,785×0,91 = 2,9 мм2. По таблице (смотри ниже) определяем, что данный многожильный провод выдержит ток величиной до 20 А.

Рассчитать сечение многожильного провода удобно с помощью онлайн калькулятора, достаточно ввести диаметр одной проволочки и количество жил в многожильном проводе.

Расчёт сечения провода по мощности и току

Вы планируете заняться модернизацией электросети или дополнительно протянуть силовую линию на кухню для подключения новой электроплиты? Здесь пригодятся минимальные знания о сечении проводника и влиянии этого параметра на мощность и силу тока.

Согласитесь, что неправильный расчёт сечения кабеля приводит к перегреву и короткому замыканию или к неоправданным расходам.

Очень важно провести вычисления на стадии проектирования, так как выход из строя скрытой проводки и последующая замена сопряжена со значительными издержками. Мы поможем вам разобраться с тонкостями проведения расчетов, чтобы избежать проблем при дальнейшей эксплуатации электросетей.

Чтобы не нагружать вас сложными расчетами, мы подобрали понятные формулы и варианты вычислений, привели информацию в доступном виде, снабдив формулы пояснениями. Также в статью добавили тематические фото и видеоматериалы, позволяющие наглядно понять суть рассматриваемого вопроса.

Расчет сечения по мощности потребителей

Основное назначение проводников – доставка электрической энергии к потребителям в необходимом количестве. Поскольку в обычных условиях эксплуатации сверхпроводники не доступны, приходится принимать в расчет сопротивление материала проводника.

Расчет необходимого сечения проводников и кабелей в зависимости от общей мощности потребителей основан на продолжительном опыте эксплуатации.

Общий ход вычислений начнем с того, что сначала проводим расчеты, используя формулу:

P = (P1+P2+..PN)*K*J,

Где:

  • P – мощность всех потребителей, подключенных к рассчитываемой ветке в Ваттах.
  • P1, P2, PN – мощность первого потребителя, второго, n-го соответственно, в Ваттах.

Получив результат по окончанию вычислений по вышеприведенной формуле, настал черед обратиться к табличным данным.

Этап #1 — расчет реактивной и активной мощности

Мощности потребителей указаны в документах на оборудование. Обычно в паспортах оборудования указана активная мощность вместе с  реактивной мощностью.

  • Устройства с активным видом нагрузки превращают всю полученную электрическую энергию, с учетом КПД,  в полезную работу: механическую, тепловую или в другой ее вид.
  • К устройствам с активной нагрузкой относятся лампы накаливания, обогреватели, электроплиты.
  • Для таких устройств расчет мощности по току и напряжению имеет вид:
  • P = U * I,
  • Где:
  • P – мощность в Вт;
  • U – напряжение в В;
  • I – сила тока в А.

Устройства с реактивным видом нагрузки способны накапливать энергию поступающую от источника, а затем возвращать. Происходит такой обмен за счет смещения синусоиды силы тока и синусоиды напряжения.

При нулевом смещении фаз мощность P=U*I всегда имеет положительное значение. Такой график фаз силы тока и напряжения имеют устройства с активным видом нагрузки (I, i – сила тока, U, u – напряжение, π – число пи, равное 3,14)

К устройствам с реактивной мощностью относятся электродвигатели, электронные приборы всех масштабов и назначений, трансформаторы.

Когда есть смещение фаз между синусоидой силы тока и синусоидой напряжения, мощность P=U*I может быть отрицательной (I, i – сила тока, U, u – напряжение, π – число пи, равное 3,14). Устройство с реактивной мощностью возвращает накопленную энергию обратно источнику

Электрические сети построены таким образом, что могут производить передачу электрической энергии в одну сторону от источника к нагрузке.

Поэтому возвращенная энергия потребителя с реактивной нагрузкой является паразитной и тратится на нагрев проводников и других компонентов.

Реактивная мощность имеет зависимость от угла смещения фаз между синусоидами напряжения и тока. Угол смещения фаз выражают через cosφ.

  1. Для нахождения полной мощности применяют формулу:
  2. P = Q / cosφ,
  3. Где Q – реактивная мощность в ВАрах.
  4. Обычно в паспортных данных на устройство указана реактивная мощность и cosφ.
  5. Пример: в паспорте на перфоратор указана реактивная мощность 1200 ВАр и cosφ = 0,7. Следовательно, общая потребляемая мощность будет равна:
  6. P = 1200/0,7 = 1714 Вт
  7. Если cosφ найти не удалось, для подавляющего большинства электроприборов бытового назначения cosφ можно принять равным 0,7.

Этап #2 — поиск коэффициентов одновременности и запаса

K – безразмерный коэффициент одновременности, показывает сколько потребителей одновременно может быть включено в сеть. Редко случается, чтобы все устройства одновременно потребляли электроэнергию.

Маловероятна одновременная работа телевизора и музыкального центра. Из устоявшейся практики K можно принять равным 0,8. Если Вы планируете использовать все потребители одновременно, K следует принять равным 1.

J – безразмерный коэффициент запаса. Характеризует создание запаса по мощности для будущих потребителей.

Прогресс не стоит на месте, с каждым годом изобретаются все новые удивительные и полезные электрические приборы. Ожидается, что к 2050 году рост потребления электроэнергии составит 84%. Обычно J принимается равным от 1,5 до 2,0.

Этап #3 — выполнение расчета геометрическим методом

Во всех электротехнических расчетах принимается площадь поперечного сечения проводника – сечение жилы. Измеряется в мм2.

  • Часто бывает необходимо узнать, как грамотно рассчитать сечение провода по диаметру проволоки проводника.
  • В этом случае есть простая геометрическая формула для монолитного провода круглого сечения:
  • S = π*R2 = π*D2/4, или наоборот
  • D = √(4*S / π)
  • Для проводников прямоугольного сечения:
  • S = h * m
  • Где:
  • S – площадь жилы в мм2;
  • R – радиус жилы в мм;
  • D – диаметр жилы в мм;
  • h, m – ширина и высота соответственно в мм;
  • π – число пи, равное 3,14.
  1. Если Вы приобретаете многожильный провод, у которого один проводник состоит из множества свитых проволочек круглого сечения, то расчет ведут по формуле:
  2. S = N*D2/1,27,
  3. Где N – число проволочек в жиле.

Провода, имеющие свитые из нескольких проволочек жилы , в общем случае имеют лучшую проводимость, чем монолитные. Это обусловлено особенностями протекания тока по проводнику круглого сечения.

Электрический ток представляет собой движение одноименных зарядов по проводнику. Одноименные заряды отталкиваются, поэтому плотность распределения зарядов смещена к поверхности проводника.

Другим достоинством многожильных проводов является их гибкость и механическая стойкость. Монолитные провода дешевле и применяют их в основном для стационарного монтажа.

Этап #4 —рассчитываем сечение по мощности на практике

Задача: общая мощность потребителей на кухне составляет 5000 Вт (имеется ввиду, что мощность всех реактивных потребителей пересчитана). Все потребители подключаются к однофазной сети 220 В и имеют запитку от одной ветки.

Решение:

Коэффициент одновременности K примем равным 0,8. Кухня место постоянных инноваций, мало ли что, коэффициент запаса J=2,0. Общая расчетная мощность составит:

P = 5000*0,8*2 = 8000 Вт = 8 кВт

Используя значение расчетной мощности, ищем ближайшее значение в таблице 1.

Ближайшим подходящим значением сечения жилы для однофазной сети является медный проводник с сечением 4 мм2. Аналогичный размер провода с алюминиевой жилой 6 мм2.

Для одножильной проводки минимальный диаметр составит 2,3 мм и 2,8 мм соответственно. В случае применения многожильного варианта сечение отдельных жил суммируется.

Расчет сечения по току

Расчеты необходимого сечения по току и мощности кабелей и проводов представят более точные результаты. Такие вычисления позволяют оценить общее влияние различных факторов на проводники, в числе которых тепловая нагрузка, марка проводов, тип прокладки, условия эксплуатации т.д.

Весь расчет проводится в ходе следующих этапов:

  • выбор мощности всех потребителей;
  • расчет токов, проходящих по проводнику;
  • выбор подходящего поперечного сечения по таблицам.

Для этого варианта расчёта мощность потребителей по току с напряжением берется без учета поправочных коэффициентов. Они будут учтены при суммировании силы тока.

Этап #1 — расчет силы тока по формулам

Тем, кто подзабыл школьный курс физики, предлагаем основные формулы в форме графической схемы в качестве наглядной шпаргалки:

«Классическое колесо» наглядно демонстрирует взаимосвязь формул и взаимозависимость характеристик электрического тока (I — сила тока, P — мощность, U — напряжение, R — радиус жилы)

  • Выпишем зависимость силы тока I от мощности P и линейного напряжения U:
  • I = P/Uл,
  • Где:
  • I — cила тока, принимается в амперах;
  • P — мощность в ваттах;
  •  — линейное напряжение в вольтах.

Линейное напряжение в общем случае зависит от источника электроснабжения, бывает одно- и трехфазным.

Взаимосвязь линейного и фазного напряжения:

  1. Uл = U*cosφ в случае однофазного напряжения.
  2. Uл = U*√3*cosφ в случае трехфазного напряжения.

Для бытовых электрических потребителей принимают cosφ=1, поэтому линейное напряжение можно переписать:

  1. Uл = 220 В для однофазного напряжения.
  2. Uл = 380 В для трехфазного напряжения.
  1. Далее суммируем все потребляемые токи по формуле:
  2. I = (I1+I2+…IN)*K*J,
  3. Где:
  • I – суммарная сила тока в амперах;
  • I1..IN – сила тока каждого потребителя в амперах;
  • K – коэффициент одновременности;
  • J – коэффициент запаса.

Коэффициенты K и J имеют те же значения, что были применены при расчете полной мощности.

Может быть случай, когда в трехфазной сети через разные фазные проводники течет ток неравнозначной силы.

Такое происходит, когда к трехфазному кабелю подключены одновременно однофазные потребители и трехфазные. Например, запитан трехфазный станок и однофазное освещение.

Возникает естественный вопрос: как в таких случаях рассчитывают сечение многожильного провода? Ответ прост — вычисления производят по наиболее нагруженной жиле.

Этап #2 — выбор подходящего сечения по таблицам

В правилах эксплуатации электроустановок (ПЭУ) приведен ряд таблиц для выбора требуемого сечения жилы кабеля.

Проводимость проводника зависит от температуры. Для металлических проводников с повышением температуры повышается сопротивление.

При превышении определенного порога процесс становится автоподдерживающимся: чем выше сопротивление, тем выше температура, тем выше сопротивление и т.д. пока проводник не перегорает или вызывает короткое замыкание.

Следующие две таблицы (3 и 4) показывают сечение проводников в зависимости от токов и способа укладки.

При использовании таблиц к допустимому длительному току применяются коэффициенты:

  • 0,68 если 5-6 жил;
  • 0,63 если 7-9 жил;
  • 0,6 если 10-12 жил.
  • Понижающие коэффициенты применяются к значениям токов из столбца «открыто».
  • Нулевая и заземляющая жилы в количество жил не входят.
  • По нормативам ПЭУ выбор сечения нулевой жилы по допустимому длительному току, производится как не менее 50% от фазной жилы.
  • Расчет и выбор медных жил до 6 мм2 или алюминиевых до 10 мм2 ведется как для длительного тока.
  • В случае больших сечений возможно применить понижающий коэффициент:
  • 0,875 * √Тпв
  • где Tпв — отношение продолжительности включения к продолжительности цикла.

Продолжительность включения берется из расчета не более 4 минут. При этом цикл не должен превышать 10 минут.

При выборе кабеля для разводки электричества в деревянном доме особое внимание уделяют его огнестойкости.

Этап #3 — расчет сечения проводника по току на примере

Задача: рассчитать необходимое сечение медного кабеля для подключения:

  • трехфазного деревообрабатывающего станка мощностью 4000 Вт;
  • трехфазного сварочного аппарата мощностью 6000 Вт;
  • бытовой техники в доме общей мощностью 25000 Вт;

Подключение будет произведено пятижильным кабелем (три жилы фазные, одна нулевая и одна заземление), проложенным в земле.

Изоляция кабельно-проводниковой продукции рассчитывается на конкретное значение рабочего напряжения. Следует учитывать, что указанное производителем рабочее напряжение его изделия должно быть выше напряжения в сети

  1. Решение.
  2. Шаг # 1. Рассчитываем линейное напряжение трехфазного подключения:
  3. Uл = 220 * √3 = 380 В
  4. Шаг # 2. Бытовая техника, станок и сварочный аппарат имеют реактивную мощность, поэтому мощность техники и оборудования составит:
  5. Pтех = 25000 / 0,7 = 35700 Вт
  6. Pобор = 10000 / 0,7 = 14300 Вт
  7. Шаг # 3. Ток, необходимый для подключения бытовой техники:
  8. Iтех = 35700 / 220 = 162 А
  9. Шаг # 4. Ток, необходимый для подключения оборудования:
  10. Iобор = 14300 / 380 = 38 А

Шаг # 5. Необходимый ток для подключения бытовой техники посчитан из расчета одной фазы. По условию задачи имеется три фазы. Следовательно, ток можно распределить по фазам. Для простоты предположим равномерное распределение:

  • Iтех = 162 / 3 = 54 А
  • Шаг # 6. Ток приходящийся на каждую фазу:
  • Iф = 38 + 54 = 92 А

Шаг # 7. Оборудование и бытовая техника работать одновременно не будут, кроме этого заложим запас равный 1,5. После применения поправочных коэффициентов:

Iф = 92 * 1,5 * 0,8 = 110 А

Шаг # 8. Хотя в составе кабеля имеется 5 жил, в расчет берется только три фазные жилы. По таблице 8 в столбце трехжильный кабель в земле находим, что току в 115 А соответствует сечение жилы 16 мм2.

Шаг # 9. По таблице 8 применяем поправочный коэффициент в зависимости от характеристики земли. Для нормального типа земли коэффициент равен 1.

Шаг # 10. Не обязательный, рассчитываем диаметр жилы:

D = √(4*16 / 3,14) = 4,5 мм

Если бы расчет производился только по мощности, без учета особенностей прокладки кабеля, то сечение жилы составит 25 мм2. Расчет по силе тока сложнее, но иногда позволяет экономить значительные денежные средства, особенно когда речь идет о многожильных силовых кабелях.

Расчет сечения кабеля по мощности: таблицы и формулы | Стройка/Ремонт (своими руками)

Электросети являются потенциальным источником пожарной опасности. Чтобы свести к минимуму возможность аварии, монтаж внутридомовой проводки осуществляется в строгом соответствии с установленными техническими нормативами. Рассмотрим правила правильного выбора необходимого материала, таблицу сечения кабелей по мощности, нюансы расчета нагрузки на электросети.

Для чего нужен расчёт сечения кабеля

Основное требование, предъявляемое к линиям электропередач – безопасность их эксплуатации. Поэтому, с особой внимательностью следует подходить к выбору сечения кабеля по току. Если оно окажется чересчур маленьким, проводка будет греться из-за большой нагрузки. Это, в свою очередь, способно привести к расплавлению изоляционной оплётки, короткому замыканию с последующим пожаром.

Использование проводов слишком большого сечения обезопасит дом от возгорания, но приведёт к неоправданному перерасходу денежных средств. Самый рациональный вариант при прокладке проводки – подобрать кабеля с оптимальным сечением жилы. Точные рекомендации по правильному подбору проводки даны в гл. №1.3 «Правил установки электрооборудования».

Выбор площади поперечного сечения проводника производится в соответствии со следующими параметрами:

  • Сила тока (А).
  • Мощность тока (кВт).
  • Материал изготовления проводки (медь или алюминий).
  • Количество фаз (1 или 3).

Выбираем сечение по мощности

Выбор сечения провода в зависимости от мощности тока начинается с проведения небольших расчётов. Для этого следует сложить общую мощность электрических устройств, которые будут одновременно включаться в квартире. На каждом приборе обычно указывается его мощность в ваттах или киловаттах. В будущем возможно приобретение новых бытовых электроприборов, поэтому к полученной суммарной мощности нужно прибавить ещё 1-2 киловатта.

Для устройства внутридомовой электропроводки рекомендуется использовать медные кабели. Они, хотя и стоят дороже алюминиевых, но обладают большей гибкостью, долговечностью и лучшей электропроводностью. Ниже представлены таблицы выбора сечения кабеля по мощности и силе тока для медной проводки.

Таблица 1. Вычисление мощности медной однофазной проводки напряжением в 220 вольтТаблица 2. Подбор сечения кабеля для медной трёхфазной проводки напряжением в 380 вольт.

Таблица сечения проводки в зависимости от силы и мощности тока для алюминиевых проводов выглядит иначе. В представленных выше таблицах приведены показатели соотношения сечение – ток, в зависимости от его мощности и силы.

Сила тока, проходящего по проводнику, не является постоянной величиной, и может изменяться в зависимости от следующих показателей:

  • Длина провода.
  • Размера сечения.
  • Показатель удельного сопротивления материала, из которого он сделан.
  • Температура проводника. С нагревом проводки сила тока падает.

Ниже показаны соотношения «сила тока – сечение провода» для различных вариантов прокладки. Основные цифры отдельно указаны для медных и алюминиевых проводов.

Таблица 3. Подбор сечения кабеля по мощности для алюминиевой однофазной проводки напряжением в 220 вольт.Таблица 4. Подбор сечения кабеля для алюминиевой трёхфазной проводки напряжением 380 вольт.

Как рассчитать по току

В представленных выше таблицах приведены показатели соотношения сечение – ток, в зависимости от его мощности и силы. Сила тока, проходящего по проводнику, не является постоянной величиной, и может изменяться в зависимости от следующих показателей:

  • Длина провода.
  • Размера сечения.
  • Показатель удельного сопротивления материала, из которого он сделан.
  • Температура проводника. С нагревом проводки сила тока падает.

В таблицах ниже приведены соотношения «сила тока – сечение провода» для различных вариантов прокладки. Основные цифры отдельно указаны для медных и алюминиевых проводов.

Таблица 5. Соотношение силы тока и сечение алюминиевой проводки.Таблица 6. Соотношение силы тока и сечение медной проводки.

Расчёт сечения кабеля по мощности и длине

Из-за сопротивления материала происходит некоторая потеря напряжения при прохождении тока сквозь проводник. Чем длиннее проводка, тем большая величина этих потерь. Однако, ощутимые потери могут возникнуть на линиях электропередач протяжённостью, измеряемой километрами. Для бытовой проводки они столь несущественны, что ими можно вполне пренебречь.

Рассчитываются основные показатели электротока по следующим формулам:

  • Сила тока: I = Р / (U cos ф), где:
    I - искомая сила тока.
    Р - мощность.
    U - напряжение.
    cos ф - коэффициент, применяемый для бытовой проводки. Обычно принимается за единицу.
  • Сопротивление провода: Rо=р L / S, где:
    Rо - удельное сопротивление проводника.
    р - удельное сопротивление материала, из которого он изготовлен (медь или алюминий).
    L - длина проводки.
    S - площадь сечения провода.

Открытая и закрытая прокладка проводов

При расчёте нагрузки на кабель принимается во внимание и особенности прокладки электрической линии. Существует два способа её размещения - закрытый и открытый. В стенах, изготовленных из негорючих стройматериалов – бетона, кирпича, – применяют закрытую прокладку, в специально проделанных канавках-штробах.

В деревянных зданиях проводка прокладывается открытым способом, в защитных кабель-каналах или в гофрированных трубах. Для закрытого способа монтажа используют плоские провода, а для открытой-округлые.

Источник: https://vodatyt.ru/elektrika/raschet-secheniya-kabelya.html

Вам была полезна эта статья? Ставьте палец вверх! Подпишитесь на мой канал и давайте общаться в комментариях!
С уважением, Пётр Андреевич.

Таблицы выбора сечения жилы при прокладке электрических проводов в резиновой или пластиковой (в том числе ПВХ=PVC) изоляции в зависимости от тока и нагрузки. Подходят для сетей 220/380В. Выбор сечения кабеля удлинителя в зависимости от длины и нагрузки.

Таблицы выбора сечения жилы при прокладке электрических проводов в резиновой или пластиковой (в том числе ПВХ=PVC) изоляции в зависимости от тока и нагрузки. Подходят для сетей 220/380В. Выбор сечения кабеля удлинителя в зависимости от длины и нагрузки.

ИТАК:

ПУЭЭ, Глава 1 нормирует допустимые длительные токи через различные виды проводов и кабелей. Другие главы регламентируют способы прокладки и прочие детали. Тем не менее мы приведем 3 таблицы для оперативного выбора площади сечения токопроводящей жилы кабеля (провода) для сетей 220/380В в зависимости от тока, нагрузки, температуры окружающей среды и способа прокладки, которыми сами пользуемся.

  • Выбираем сечения жилы (каждой) для рабочего тока или нагрузки (запоминаем ток, если прикидывали нагрузку) одиночного провода при температуре жил +65, окружающего воздуха +25 и земли + 15°С
  • Если температура не та, то смотрим поправочный коэффициент на ток в зависимости от температуры окружающей среды - если цепь вторичная = цепь управления, сигнализации, контроля, автоматики и релейной защиты электроустановок - то следующий пункт пропускаем
  • Если проводов более 1 , то смотрим поправочный коэффициент на ток в зависимости от способа прокладки
  • Делаем выбор еще раз, с учетом поправок, если нужно

Таблица 1. Выбора сечения жилы при одиночной прокладке проводов при температуре жил +65, окружающего воздуха +25 и земли + 15°С

Проложенные открыто, не пучком (в воздухе)

Проложенные в трубе

Сечение
жилы
мм2

Медь

Алюминий

Медь

Алюминий

Ток

Нагрузка, кВт

Ток

Нагрузка, кВт

Ток

Нагрузка, кВт

Ток

Нагрузка, кВт

А

1х220в

3х380в

А

1х220в

3х380в

А

1х220в

3х380в

А

1х220в

3х380в

0,5

11 2,4 - - - - - - - - - -

0,75

15 3,3 - - - - - - - - - -

1,0

17 3,7 6,4 - - - 14 3,0 5,3 - - -

1,5

23 5,0 8,7 - - - 15 3,3 5,7 - - -

2,0

26 5,7 9,8 21 4,6 7,9 19 4,1 7,2 14,0 3,0 5,3

2,5

30 6,6 11,0 24 5,2 9,1 21 4,6 7,9 16,0 3,5 6,0

4,0

41 9,0 15,0 32 7,0 12,0 27 5,9 10,0 21,0 4,6 7,9

6,0

50 11,0 19,0 39 8,5 14,0 34 7,4 12,0 26,0 5,7 9,8

10,0

80 17,0 30,0 60 13,0 22,0 50 11,0 19,0 38,0 8,3 14,0

16,0

100 22,0 38,0 75 16,0 28,0 80 17,0 30,0 55,0 12,0 20,0

25,0

140 30,0 53,0 105 23,0 39,0 100 22,0 38,0 65,0 14,0 24,0

35,0

170 37,0 64,0 130 28,0 49,0 135 29,0 51,0 75,0 16,0 28,0

Таблица 2. Поправочные коэффициенты на токи для кабелей, неизолированных и изолированных проводов и шин в зависимости от температуры земли и воздуха

Условная темпратура среды, °С  

Нормированная температура жил, °С  

Поправочные коэффициенты на токи при расчетной температуре среды, °С

-5 и ниже

  0

  +5

  +10

  +15

  +20

  +25

  +30

  +35

  +40

  +45

  +50

15 80 1,14 1,11 1,08 1,04 1,00 0,96 0,92 0,88 0,83 0,78 0,73 0,68
25 80 1,24 1,20 1,17 1,13 1,09 1,04 1,00 0,95 0,90 0,85 0,80 0,74
25 70 1,29 1,24 1,20 1,15 1,11 1,05 1,00 0,94 0,88 0,81 0,74 0,67
15 65 1,18 1,14 1,10 1,05 1,00 0,95 0,89 0,84 0,77 0,71 0,63 0,55
25 65 1,32 1,27 1,22 1,17 1,12 1,06 1,00 0,94 0,87 0,79 0,71 0,61
15 60 1,20 1,15 1,12 1,06 1,00 0,94 0,88 0,82 0,75 0,67 0,57 0,47
25 60 1,36 1,31 1,25 1,20 1,13 1,07 1,00 0,93 0,85 0,76 0,66 0,54
15 55 1,22 1,17 1,12 1,07 1,00 0,93 0,86 0,79 0,71 0,61 0,50 0,36
25 55 1,41 1,35 1,29 1,23 1,15 1,08 1,00 0,91 0,82 0,71 0,58 0,41
15 50 1,25 1,20 1,14 1,07 1,00 0,93 0,84 0,76 0,66 0,54 0,37 -
25 50 1,48 1,41 1,34 1,26 1,18 1,09 1,00 0,89 0,78 0,63 0,45 -

Таблица 3. Снижающие коэффициенты допустимых длительных токов в зависимости от способа прокладки (в пучках, в коробах, в лотках)

Снижающий коэффициент допустимых длительных токов для проводов, прокладываемых пучками в лотках и коробах

Снижающий коэффициент допустимых длительных токов для для проводов, прокладываемых в коробах и лотках

  • Допустимые длительные токи для проводов проложенных в коробах, а также в лотках пучками, должны приниматься как для проводов, проложенных в трубах.
  • При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов
    • 0,68 для 5 и 6 проводов.
    • 0,63 для 7-9 проводов.
    • 0,6 для 10-12 проводов.
Количество проложенных проводов Снижающий коэффициент для проводов, питающих
Способ прокладки   одно жильных   много жильных отдельные электро приемники с коэффициен том использова ния до 0,7 группы электро приемников и отдельные приемники с коэф фициентом исполь зования более 0,7
Многослойно и пучками . . .  - До 4 1,0 -
2 5-6 0,85
3-9 7-9 0,75
10-11 10-11 0,7
12-14 12-14 0,65
15-18 15-18 0,6
Однослойно 2-4 2-4 - 0,67
5 5 0,6
  • Допустимые длительные токи для проводов, проложенных в лотках, при однорядной прокладке (не в пучках) следует принимать, как для проводов, проложенных в воздухе.
  • Допустимые длительные токи для проводов, прокладываемых в коробах, следует принимать как для одиночных проводов, проложенных открыто (в воздухе), с применением снижающих коэффициентов, указанных в таблице.
  • При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются.

Максимально допустимая сила тока в медном кабеле, таблица мощности и сечений

Медные проводники получили преимущественное распространение в электрических сетях, электро,- и радиотехнике. Это обусловлено наилучшим соотношением характеристик данного металла:

  • Низкое удельное сопротивление;
  • Низкая стоимость;
  • Высокая механическая прочность;
  • Пластичность и гибкость;
  • Высокая коррозионная стойкость.

Медный кабель

В некоторых случаях в качестве металла для проводников и кабелей используется алюминий, но, по большей части, это вызвано лишь стремлением снизить стоимость и массу, поскольку алюминий имеет меньший удельный вес и стоимость, но несравнимо худшие механические и химические свойства. Алюминиевые провода плохо поддаются пайке, поэтому при производстве продукции радио,- и электротехнического назначения, силовых кабелей преимущество имеет медь. Еще одно преимущество меди состоит в том, что она имеет большие допустимые токовые нагрузки из-за низкого удельного сопротивления и большей температуры плавления.

Определение допустимого тока

Имеется несколько критериев выбора максимального тока через проводники:

  • Тепловой нагрев;
  • Падение напряжения.

Данные параметры являются взаимосвязанными, и увеличение сечения проводников с целью уменьшения падения напряжения снижает и нагрев. В любой ситуации длительно допустимый ток подразумевает отсутствие критического нагрева, который может привести к деградации изоляции, изменению параметров как самого провода, так и близко расположенных элементов.

Тепловой нагрев

Величина тока связана с нагревом в соответствии с законом Джоуля-Ленца, названного так по именам первооткрывателей зависимости:

Q=I2·R·t, где:

  • Q – количество теплоты, которое выделяется на проводнике;
  • R – сопротивление проводника;
  • I – ток, протекающий через проводник;
  • t – промежуток времени, в течение которого производится подсчет тепловыделения.

Из формулы следует, что чем больше сопротивление проводника, тем большее количество теплоты выделится на нем. На этом принципе построены нагревательные приборы с высокоомным нагревательным элементом. Нагреватель выполнен из провода, который, кроме высокого удельного сопротивления, имеет высокую температурную устойчивость (как правило, нихром). Температура меди намного ниже, поэтому существуют определенные условия, при которых нагрев медного проводника не будет выходить за допустимые пределы.

Падение напряжения

Для того чтобы представить влияние тока на падение напряжения, необходимо вспомнить закон Ома:

I=U/(R+r).

Согласно закону Ома, при протекании тока через проводник с сопротивлением R на нем образуется падение напряжения:

U=I·(R+r).

Таким образом, при постоянном сопротивлении нагрузки R, чем больше ток в питающей сети, тем больше будет падение напряжения на сопротивлении r, питающих проводов (U=I·r).

Именно напряжение потерь вызывает ненужный нагрев проводов, но главная проблема в том, что напряжение нагрузки становится меньше на эту величину. Пояснить это можно на простом примере. Пускай в домашней электропроводке имеется участок длиной 100 м, выполненный медным проводом сечением 2.5 мм2. Сопротивление такого участка составит около 0.7 Ом. При токе нагрузки 10А, а это потребляемая мощность чуть больше 2 кВт, падение напряжения на проводе составит 7 В. При однофазном питании используется два провода, поэтому суммарное падение составит 14 В. Это довольно значительная величина, поскольку напряжение на потребителях будет составлять уже не 220, а 206В.

К определению падения напряжения в кабеле

На самом деле этот пример не совсем точен, поскольку уменьшение напряжения на активной нагрузке приведет к снижению мощности, следовательно, к снижению потребляемого тока. Но целью данной статьи не является замена учебника электротехники, поэтому данное объяснение вполне правдоподобно. Таблица, приведенная ниже, показывает соотношение падения напряжения при различных значениях тока на 1 м провода для наиболее распространенных сечений.

Зависимость падения напряжения от сечения и величины протекающего тока

Сечение, мм2

Ток, А

0,7511,522,546
10,0230,0180,0120,0090,0070,0040,003
20,0470,0350,0230,0180,0140,0090,006
50,1170,0880,0590,0450,0350,0220,015
100,2330,1750,1170,0900,0700,0440,029
150,3500,2630,1750,1350,1050,0660,044
200,4660,3500,2330,1800,1400,0880,058

При расчетах однофазной электропроводки по допустимому падению напряжения при предполагаемом токе нагрузки данные таблицы следует удваивать (используется два проводника: ноль и фаза). Не всегда в таблице будет присутствовать нужное сечение проводника, поэтому следует выбирать ближайшее большее значение. Это хорошо еще и тем, что учитывается возможное повышение мощности потребителей. Сильно большое сечение, взятое с запасом, приведет к неоправданному удорожанию материалов.

Допустимая плотность тока

Для упрощения расчетов и подбора требуемого провода принята такая величина, как плотность тока для меди и иных материалов. Плотность тока выражается в амперах на один квадратный миллиметр сечения.

Важно! Допустимая плотность тока определяется для площади сечения, а не диаметра провода. При маркировке монтажного провода обычно используется сечение, а обмоточного – диаметр. Для перевода диаметра провода в сечение нужно воспользоваться формулой S=π·d2/4 или определить его по таблице, взяв равное или ближайшее меньшее значение имеющегося диаметра.

Сечение популярного обмоточного провода ПЭВ-2

Сечение провода ПЭВ-2

Выбирая сечение провода, нужно знать, что допустимый ток для медных проводов во многом зависит от условий охлаждения. Наличие свободного доступа воздуха улучшает охлаждение нагретых проводов, поэтому в самых неблагоприятных условиях находятся внутренние обмотки трансформаторов напряжения, электропроводка, смонтированная в штробах стен. Большое влияние на теплоотдачу имеет материал и толщина внешней изоляции силовых кабелей.

Расчетным путем установлены и подтверждены на практике допустимые значения плотности тока для медного провода, применяемого в обмотках электрических машин и электрической проводки, которые сведены в таблицу ниже.

Допустимые значения плотности тока на 1 мм² в медном проводе

Трансформаторы и электрические машиныЭлектропроводка
Внутренние обмоткиНаружные обмоткиСкрытаяНаружная
2-3 А3-5 А4 А5 А

Обратите внимание! Таблица дает только ориентировочные данные для предварительных расчетов. Более точные показатели допустимых значений для кабелей разных типов и условий эксплуатации приведены в нормативной документации, в частности в ПУЭ.

Нормативные значения сечения кабеля

Пути повышения допустимого тока

Для снижения стоимости конструкций, в которых используются медные провода и кабели или шнуры, уменьшения массы, существует несколько путей повышения допустимых значений тока:

  • Улучшение охлаждения за счет обдува или конвективных потоков;
  • Отвод тепла при помощи теплоотводов или радиаторов;
  • Ограничение максимальных токовых нагрузок по времени.

Грамотно выполненная конфигурация обмоток и расположение трансформатора способны эффективно отводить тепло, которое выделяется при прохождении тока. Для мощных силовых трансформаторов, а это сварочные аппараты, трансформаторы подстанций, выполняется специальная обмотка с воздушными промежутками. Попадая в промежуток между отдельными частями обмоток, воздух отбирает часть тепла и выносит его наружу.

Те же цели преследует обдув нагревающихся частей машин при помощи вентиляторов. К такому решению часто обращаются производители микроволновых печей, устанавливая кулер на мощный высоковольтный трансформатор.

Обмотка с зазорами

Мощные трансформаторы силовых подстанций охлаждают обмотки при помощи трансформаторного масла, в которое погружен весь трансформатор. Обмотки выполняются с промежутками, в которых циркулирует масло.

Масло охлаждается при помощи трубчатого радиатора, который находится на боковых сторонах корпуса трансформатора. Вся конструкция выполнена полностью герметичной, поэтому для компенсации температурного расширения масла имеется расширительный бак.

Масляный трансформатор

Кратковременные токовые нагрузки не успевают в достаточной мере прогреть всю обмотку, поэтому для кратковременно работающего оборудования можно принимать плотность тока по сечению провода вплоть до 7-10А на мм2.

Оборудование, которое эксплуатируется на максимально допустимых плотностях тока, должно чередовать работу под нагрузкой с перерывом на охлаждение.

Важно! Теплопроводность меди и теплоемкость железного сердечника машин переменного тока высоки. Проходящие токи нагрузки прогревают весь объем обмоток одновременно, а охлаждение происходит только с поверхности, поэтому периоды отдыха должны превышать время работы под нагрузкой в несколько раз для достаточного охлаждения не только наружных, но и внутренних частей оборудования.

Последствия превышения тока

Чрезмерно высокий ток в медных проводах способен разогреть материал вплоть до температуры плавления. Разумеется, что подобная ситуация приведет к аварии или неработоспособности оборудования, но в некоторых случаях это является полезным.

Речь идет о плавких предохранителях. Основу их устройства составляет тонкая металлическая проволока, заключенная в огнеупорный изоляционный корпус. Толщина проволоки подобрана таким образом, чтобы ток определенной величины вызывал нагрев и перегорание проводника предохранителя. Наиболее часто используются плавкие вставки из цинка или меди.

Трубчатый предохранитель

Самое главное требование к плавкой вставке – строгое соответствие состава металла и его равномерный диаметр проводника по всей длине. Состав важен для стабильности температуры плавления. Наличие неравномерности по длине провода может вызвать локальный перегрев в месте сужения и перегорание предохранителя при токе, меньше номинального. Исходя из этих условий, провод для предохранителей выпускается с повышенным контролем и называется калиброванным.

Выполнение изложенных требований по допустимому току в проводниках позволяет продлить срок нормальной эксплуатации конструкций и электрооборудования, свести к минимуму риск возникновения поломок и аварий.

Видео

Оцените статью:

Зависимость сечения провода от силы тока

Токовые нагрузки на провода, кабели и шнуры, покрытые резиновой или ПХВ изоляцией приведены исходя из расчета максимально допустимого нагрева жилы до 65°C. Температура окружающего воздуха принята равной 25°C, температура земли 15°C. При определении количества проводов или жил многожильного провода, которые прокладываются в одной трубе, не принимаются в расчет нулевые и заземляющие провода. Токовые нагрузки, указанные в нижеприведенной таблице 2, действительны при любом количестве труб и месте их прокладки (на открытом воздухе, внутри помещения, в перекрытиях здания).

Таблица 1. Токовая нагрузка на провода и шнуры с резиновой или ПХВ изоляцией, проложенные открыто.

Сечение жилы, мм2 Диаметр жилы, мм Ток, А
С медными жилами
С алюминиевыми жилами
0.5 0.80 11 -
0.75 0.98 15 -
1.0 1.1 17 -
1.2 1.2 20 18
1.5 1.4 23 -
2 1.6 26 21
2.5 1.8 30 24
3 2.0 34 27
4 2.3 41 32
5 2.5 46 36
6 2.8 50 39
8 3.2 62 46
10 3.6 80 60
16 4.5 100 75
25 5.6 140 105
35 6.7 170 130
50 8.0 215 165
70 9.4 270 210
95 11.0 330 255
120 12.4 385 295
150 13.8 440 340
185 15.3 510 390
240 17.5 605 465
300 19.5 695 535
400 22.6 830 645

Таблица 2. Токовая нагрузка на провода и шнуры с резиновой или ПХВ изоляцией, проложенные в трубе.

А - два одножильных; Б - три одножильных; В - четыре одножильных;
Г - один двухжильный; Д - один трехжильный.

Сечение жилы, мм2 Диаметр жилы, мм Ток, А
С медными жилами С алюминиевыми жилами    
А Б В Г Д А Б В Г Д
0.5 0.80 - - - - - - - - - -
0.75 0.98 - - - - - - - - - -
1.0 1.1 16 15 14 15 14 - - - - -
1.2 1.2 18 16 15 16 14.5 - - - - -
1.5 1.4 19 17 16 18 15 - - - - -
2 1.6 24 22 20 23 19 19 18 15 17 14
2.5 1.8 27 25 25 25 21 20 19 19 19 16
3 2.0 32 28 26 28 24 24 22 21 22 18
4 2.3 38 35 30 32 27 28 28 23 25 21
5 2.5 42 39 34 37 31 32 30 27 28 24
6 2.8 46 42 40 40 34 36 32 30 31 26
8 3.2 54 51 46 48 43 43 40 37 38 32
10 3.6 70 60 50 55 50 50 47 39 42 38
16 4.5 85 80 75 80 80 60 60 55 60 55
25 5.6  115  100 90  100  100 85 80 70 75 65
35 6.7  135  125  115  125  135  100 95 85 95 75
50 8.0  185  170  150  160  175  140  130  120  125  105
70 9.4  225  210  185  195  215  175  165  140  150  135
95 11.0  275  255  225  245  250  215  200  175  190  165
120 12.4  315  290  260  295 -  245  220  200  230  190
150 13.8  360  330 - - -  275  255 - - -
185 15.3 - - - - - - - - - -
240 17.5 - - - - - - - - - -
300 19.5 - - - - - - - - - -
400 22.6 - - - - - - - - - -

Выбор проводов и способа прокладки

При протекании тока по кабелю существуют потери энергии. Эти потери выражаются в виде нагрева самих проводов и вызваны сопротивлением электронов протеканию тока в проводах. Чем меньше внутреннее сопротивление кабеля, чем больше мощности по нему можно передать. Наименьшим сопротивлением обладает сверхпроводник, но на сегодняшний день по техническим условиям он не подходит. Следующим среди металлов с маленьким сопротивлением идет серебро, но оно дорогое, поэтому наиболее приемлемыми являются медь и алюминий.

Алюминий - легкий металл, дешевле меди, но ломкий и с более высоким внутренним сопротивлением. В советском союзе большинство внутридомовых сетей были протянуты алюминием, логика проектантов была понятна – дешево и раз все штукатурили и прятали в стены, то никаких проблем с дальнейшей эксплуатацией не было, о заземлении бытовых приборов вообще не задумывались.

С развитием электроники в дальнем зарубежье и до нас стали доходить приборы и аппараты, нуждающиеся в большой электрической мощности. При этом стали меняться нормы и правила прокладки сетей электроснабжения. Теперь мало кто выполняет электроснабжение дома алюминиевыми проводами. Все стремятся проложить толстый медный кабель, заштробить все в стены или упаковать всю электрику в стальные трубы. Вариантов много.

Суть выбора проводов в том, чтобы не переплатить и не потерять в благах, которые сулит удобство электроснабжения дома. Провода и кабели покрыты слоями изоляции. В проводах вокруг жилы металла идет пластиковое покрытие, а в кабелях вокруг нескольких сплетенных проводов идет слой защитной оболочки.

Ток, протекая по проводу, нагревает его. Температура плавления алюминия и меди большая. Например, медная проволока диаметром 1,16 мм плавится, если по ней пропустить ток 100 ампер, а вот провод диаметром 1,13 мм - только 15 ампер. Это объясняется тем, что пластиковая изоляция провода плавится при нагреве провода свыше 65°C. Следовательно, выбор сечения проводов и кабеля необходимо производить, исходя из температуры нагрева провода длительным током.

При выборе провода проще перейти от диаметра провода к величине квадратного сечения провода. Провод в своем сечении не обязательно является кругом, так же он может быть и квадратом и прямоугольником и даже треугольником. При треугольном сечении провода тяжело определить диаметр, поэтому принято считать провода как площадь поперечного сечения.

Площадь круглой жилы: S=п*r2=пd2/4

Площадь треугольной жилы при трех проводах в кабеле: S=п*r2/3

Площадь треугольной жилы при четырех проводах в кабеле: S=п*r2/4

Площадь квадратной жилы: S=a*а

Площадь прямоугольной жилы: S=a*b

где S - площадь;

п=3,14;

r - радиус круглой жилы;

d - диаметр круглой жилы;

а - длина сечения жилы;

b - ширина сечения жилы;

Провода, проложенные вместе, греются и подогревают друг друга, поэтому для выбора провода или кабеля по таблице «Допустимые длительные токи для проводов и кабелей» выбираем тип провода или кабеля, находим соответствующую мощность (первая цифра) и ток (вторая цифра), находим сечение жилы провода или кабеля.

Ток не зависит от напряжения, а только от мощности потребителя. Поэтому, не имеет значения напряжение, которым питается потребитель. Только ток.

Не нужно учитывать провод, по которому при нормальном режиме работы оборудования ток не течет - провод заземления. Если в таблице значится ток при прокладке трех ПВ-1, то третий провод не провод заземления, а еще одна фаза или нуль. В таблицах приведены предельно допустимые мощность и токи. Мощность рассчитана для приборов работающих от 220 В (фаза и ноль). Нельзя превышать эти значения. Желательно оставлять небольшой запас по мощности - на всякий случай. Каждое соединение в щитке, в коробке является потребителем энергии, правда очень маленьким, но под него необходимо оставить запас.

В продаже встречаются кабели с маркировкой ГОСТ и ТУ. Обычно ГОСТ - нормальные сечения, т.е сечение соответствует площади, а вот ТУ - заниженного сечения, к примеру кабель ВВГ 3*6 ТУ имеет сечение жилы соответствующей кабелю ВВГ 3*4. Именно поэтому покупать провода лучше со штангенциркулем в руках.

Допустимые длительные токи для проводов и кабелей с медными жилами в зависимости от их количества при прокладке вместе

Сечение, кв.мм Диаметр жилы, мм Мощность / ток
Один провод ПВ-1 или ПВ-3, кВт / А Два провода ПВ-1 или ПВ-3 при прокладке вместе, кВт / А Три провода ПВ-1 или ПВ-3 при прокладке вместе, кВт / А Четыре провода ПВ-1 или ПВ-3 при прокладке вместе, кВт / А Один двухжильный кабель ВВГ, ПВС или ПУНГП, кВт / А Один трехжильный кабель ВВГ, ПВС или ПУНГП, кВт / А
0,5 0,79 2,2 / 10 1,98 / 9 1,76 / 8 1,54 / 7 1,76 / 8 1,54 / 7
0,75 0,97 2,86 / 13 2,64 / 12 2,42 / 11 2,2 / 10 2,42 / 11 2,2 / 10
1 1,13 3,3 / 15 3,08 / 14 2,86 / 13 2,64 / 12 2,86 / 13 2,64 / 12
1,5 1,38 4,4 / 20 3,74 / 17 3,3 / 15 3,08 / 14 3,52 / 16 2,86 / 13
2,5 1,78 5,94 / 27 5,28 / 24 4,84 / 22 4,84 / 22 4,84 / 22 4,18 / 19
4 2,25 7,92 / 36 7,48 / 34 6,82 / 31 5,94 / 27 6,16 / 28 5,28 / 24
6 2,76 10,12 / 46 9,02 / 41 8,14 / 37 7,7 / 35 7,7 / 35 6,6 / 30
10 3,57 15,4 / 70 13,2 / 60 12,1 / 55 9,9 / 45 11 / 50 9,9 / 45
16 4,51 19,8 / 90 16,5 / 75 15,4 / 70 14,3 / 65 15,4 / 70 13,2 / 60
25 5,64 27,5 / 125 22 / 100 19,8 / 90 17,6 / 80 19,8 / 90 16,5 / (75
35 6,67 33 / 150 26,4 / 120 24,2 / 110 22 / 100 24,2 / 110 19,8 / (90
50 7,98 41,8 / 190 36,3 / 165 33 / 150 29,7 / 135 30,8 / 140 26,4 / 120
70 9,44 52,8 / 240 44 / 200 40,7 / 185 36,3 / 165 38,5 / 175 34,1 / 155
95 11 63,8 / 290 53,9 / 245 49,5 / 225 44 / 200 47,3 / 215 41,8 / 190
120 12,36 74,8 / 340 61,6 / 280 56,1 / 255 50,6 / 230 57,2 / 260 48,4 / 220


Допустимые длительные токи для проводов и кабелей с алюминиевыми жилами в зависимости от их количества при прокладке вместе

Сечение, кв.мм Диаметр жилы, мм Мощность / ток
Один провод АПВ, кВт / А Два провода АПВ при прокладке вместе, кВт / А Три провода АПВ при прокладке вместе, кВт / А Четыре провода АПВ при прокладке вместе, кВт / А Один двухжильный кабель АВВГ, кВт / А Один трехжильный кабель АВВГ, кВт / А
2,5 1,78 4,62 / 21 3,96 / 18 3,74 / 17 3,74 / 17 3,74 / 17 3,74 / 17
4 2,25 6,16 / 28 5,5 / 25 5,5 / 25 4,4 / 20 5,5 / 25 4,4 / 20
6 2,76 7,7 / 35 7,04 / 32 6,16 / 28 5,94 / 27 6,16 / 28
5,94 / 27
10 3,57 11 / 50 9,9 / 45 9,24 / 42 7,7 / 35 9,24 / 42
7,7 / 35
16 4,51 15,4 / 70 12,1 / 55 12,1 / 55 11 / 50 12,1 / 55 11 / 50
25 5,64 20,9 / 95 16,5 / 75 15,4 / 70 13,2 / 60 15,4 / 70 13,2 / 60
35 6,67 25,3 / 115 19,8 / 90 18,7 / 85 16,5 / 75 18,7 / 85
16,5 / 75
50 7,98 31,9 / 145 27,5 / 125 25,3 / 115 23,1 / 105 25,3 / 115 23,1 / 105
70 9,44 40,7 / 185 34,1 / 155 31,9 / 145 27,5 / 125 31,9 / 145 27,5 / 125
95 11 49,5 / 225 41,8 / 190 38,5 / 175 34,1 / 155 38,5 / 175 34,1 / 155
120 12,36 57,2 / 260 47,3 / 215 42,9 / 195 38,5 / 175 42,9 / 195 38,5 / 175
150 13,82 66 / 300 53,9 / 245 49,7 / 226 44 / 200 49,7 / 226
44 / 200


Например, нужно подключить стиральную машину к сети через удлинитель. Стиральная машина потребляет 3,5 кВт. По таблице находим, что при однофазной нагрузке бОльшая ближайшая мощность для «Два провода ПВ-1 или ПВ-3 при прокладке вместе, кВт / А» 3,52 кВт, стиральная машина подключается к трехпроводной сети с заземлением, поэтому в таблице ток для двух одножильных проводов 16 ампер и сечение каждой жилы получается 1,5 кв. мм. Итого получаем кабель ПВС 3X1,5. Нужно учитывать, что мощность, передаваемая кабелем, выбрана впритык, поэтому при самом загруженном режиме работы (кипячение) кабель будет немного теплым. Чтобы обеспечить запас по мощности, можно взять кабель ПВС 3X2,5. Такой кабель позволяет передавать 4,84 кВт с током 22 ампера. В подтверждение сказанному замечу, что в домах со старой проводкой стиральные машины работают нормально. Алюминий 2,5 кв.мм выдерживает ток 18 ампер и передает мощность 3,96 кВт. К слову, в инструкции к стиральной машине сказано, что стиральную машину подключать через удлинитель нельзя. Это связано с тем, что по правилам провод заземления не должен коммутироваться на штепсельных вилках и розетках. Тогда, сама стиральная машина не должна иметь разъем, но разъем есть и непонятно предписание не включать стиральную машину через удлинитель.

Необходимо подключить пару бра с креплением на стену к распределительной проводке с заштроблеванием провода в стену. Каждое бра на две лампочки потребляет примерно 120 Вт. Итого потребление 2X120=240 Вт. По таблице находим, что при однофазной нагрузке бОльшая ближайшая мощность 1,98 кВт при токе 9 ампер. Бра подключается к двухпроводной сети, каждой жилы получается 0,5 кв. мм. Прокладку выполняем проводом ПВ-3 сечением 0,5 кв.мм

Промышленность выпускает большое количество проводов и кабелей. Доступно в магазинах сравнительно небольшое количество, которого вполне хватает для электроснабжения дома. Пробивное напряжение изоляции – напряжение, при котором может разрушиться изоляция провода или кабеля, поэтому чем выше этот показатель, тем надежнее и долговечнее кабель.

ВВГнг – кабель, каждая жила из меди в винилхлоридной изоляции и оболочка кабеля из винилхлорида, кабель не распространяет горения, пробивное напряжение 0,66 кВ. Жилы все однопроволочные, т.е. цельные. Кабель ориентирован на промышленное использование.

АВВГнг – кабель, каждая жила из алюминия в винилхлоридной изоляции и оболочка кабеля из винилхлорида, кабель не распространяет горения, пробивное напряжение 0,66 кВ. Жилы все однопроволочные, т.е. цельные. Кабель ориентирован на промышленное использование.

ПВС – кабель, каждая жила из меди в полиэтиленовой изоляции и оболочка кабеля из винилхлорида, пробивное напряжение 0,4 кВ. Жилы все многопроволочные, т.е. состоят из нескольких проволочек. Кабель ориентирован на бытовое использование.

ПУНП - кабель, каждая жила из меди в полиэтиленовой изоляции и оболочка кабеля из полиэтилена, пробивное напряжение 0,25 кВ. Жилы все многопроволочные, т.е. состоят из нескольких проволочек. Кабель ориентирован на бытовое использование.

ПВ-1 – провод, жила из меди в поливинилхлоридной изоляции, пробивное напряжение 0,66 кВ. Жила однопроволочная, провод ориентирован на разводку электросхемы в щитке.

ПВ-3 – провод, жила из меди в поливинилхлоридной изоляции, пробивное напряжение 0,66 кВ. Жила многопроволочная, провод ориентирован на протяжку в трубы, короба, кабель-каналы, металлорукава и т.п.

Провода и кабели по нагреву выбирают с небольшим запасом. Сами провода выбирают по условиям прокладки в зависимости от материала стен.

При выборе способа прокладки кабелей руководствуются прежде всего логикой. В советское время допустимо было прокладывать провода в штробах. Теперь прокладка проводов без защитной оболочки недопустима. Это можно объяснить тем, что нужно увеличить продажи промышленного кабеля, либо тем, что после прокладки забивают гвоздь прямо в провод и двойная изоляция кабеля сохранит жизнь.

Способ прокладки кабелей и проводов в зависимости от материала стен сведены в таблицу.

Материал поверхности Вид провода Способ прокладки
Кирпич, бетон, штукатурка ПВ-1, ПВ-3 Скрыто под штукатуркой, в коробах, в гофре, в металлорукаве, в стальных трубах
ВВГ, ПВС, ПУГНП Открыто, скрыто под штукатуркой, в коробах, в гофре, в металлорукаве, в стальных трубах
Металл ПВ-1, ПВ-3 В коробах, в гофре, в металлорукаве, в стальных трубах
ВВГ, ПВС, ПУГНП Открыто, в коробах, в гофре, в металлорукаве, в стальных трубах
Дерево ПВ-1, ПВ-3 В металлорукаве, в стальных трубах
ВВГ, ПВС, ПУГНП В металлорукаве, в стальных трубах
Гипсокартон ПВ-1, ПВ-3 В коробах, в гофре, в металлорукаве, в стальных трубах
ВВГ, ПВС, ПУГНП Открыто, скрыто под гипсокартоном, в коробах, в гофре, в металлорукаве, в стальных трубах
Пластик ПВ-1, ПВ-3 В коробах, в гофре, в металлорукаве, в стальных трубах
ВВГ, ПВС, ПУГНП Открыто, скрыто под штукатуркой, в коробах, в гофре, в металлорукаве, в стальных трубах

Бывает, что необходимо поставить "жучок" вместо перегоревшего предохранителя. Можно воспользоваться гвоздем, но это неправильно. Данная таблица демонстрирует зависимость диаметра проволоки от выдерживаемого тока.

Ток плавления Диаметр проволочки, мм
медь олово сталь
1 0,05 0,19 0,12
2 0,09 0,29 0,19
3 0,11 0,36 0,25
4 0,14 0,46 0,3
5 0,16 0,56 0,42
10 0,25 0,85 0,55
15 0,33 1,11 0,72
25 0,46 1,59 1,01
35 0,57 1,95 1,28
50 0,73 2,48 1,61
60 0,83 3,05 1,81
70 0,92 3,1 2,01
80 1 3,39 2,2
90 1,08 3,67 2,38
100 1,16 3,93 2,55
120 1,31 4,44 2,88
140 1,45 4,92 3,19
160 1,59 5,38 3,49
180 1,72 5,82 3,77
250 2,14 7,24 4,7

Страница не найдена | MIT

Перейти к содержанию ↓
  • Образование
  • Исследование
  • Инновации
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Выпускников
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Выпускников
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что Вы ищете? Увидеть больше результатов

Предложения или отзывы?

9.4: Удельное сопротивление и сопротивление - Physics LibreTexts

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В, , которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на свободные заряды, вызывая ток.Величина тока зависит не только от величины напряжения, но и от характеристик материала, через который протекает ток. Материал может сопротивляться потоку зарядов, и мера того, насколько материал сопротивляется потоку зарядов, известна как удельное сопротивление . Это удельное сопротивление грубо аналогично трению между двумя материалами, которые сопротивляются движению.

Удельное сопротивление

Когда к проводнику прикладывается напряжение, создается электрическое поле \ (\ vec {E} \), и заряды в проводнике ощущают силу, создаваемую электрическим полем.Полученная плотность тока \ (\ vec {J} \) зависит от электрического поля и свойств материала. Эта зависимость может быть очень сложной. В некоторых материалах, включая металлы при заданной температуре, плотность тока приблизительно пропорциональна электрическому полю. В этих случаях плотность тока можно смоделировать как

\ [\ vec {J} = \ sigma \ vec {E}, \]

, где \ (\ sigma \) - электропроводность . Электропроводность аналогична теплопроводности и является мерой способности материала проводить или передавать электричество.{-1} \).

Электропроводность - это внутреннее свойство материала. Другим внутренним свойством материала является удельное сопротивление или электрическое сопротивление . Удельное сопротивление материала - это мера того, насколько сильно материал препятствует прохождению электрического тока. Символ удельного сопротивления - строчная греческая буква ро, \ (\ rho \), а удельное сопротивление - величина, обратная удельной электропроводности:

\ [\ rho = \ dfrac {1} {\ sigma}.{-1}\)ConductorsSemiconductors [1]Insulators">

Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. У проводников наименьшее удельное сопротивление, а у изоляторов наибольшее; полупроводники имеют промежуточное удельное сопротивление. Проводники имеют различную, но большую плотность свободных зарядов, тогда как большинство зарядов в изоляторах связаны с атомами и не могут двигаться. Полупроводники являются промежуточными, имеют гораздо меньше свободных зарядов, чем проводники, но обладают свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике.Эти уникальные свойства полупроводников находят применение в современной электронике, о чем мы поговорим в следующих главах.

Пример \ (\ PageIndex {1} \): плотность тока, сопротивление и электрическое поле для токоведущего провода

Рассчитайте плотность тока, сопротивление и электрическое поле 5-метрового медного провода диаметром 2,053 мм (калибр 12), по которому проходит ток \ (I - 10 \, мА \).

Стратегия

Мы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, которая равна \ (A = 3.{-5} \ dfrac {V} {m}. \ End {align *} \]

Значение

Исходя из этих результатов, неудивительно, что медь используется для проводов, проводящих ток, потому что сопротивление довольно мало. Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.

Упражнение \ (\ PageIndex {1} \)

Медные провода обычно используются для удлинителей и домашней электропроводки по нескольким причинам.2} \). Третья важная характеристика - пластичность. Пластичность - это мера способности материала вытягиваться в проволоку и мера гибкости материала, а медь обладает высокой пластичностью. Подводя итог, можно сказать, что проводник является подходящим кандидатом для изготовления проволоки, по крайней мере, с тремя важными характеристиками: низким удельным сопротивлением, высокой прочностью на разрыв и высокой пластичностью. Какие еще материалы используются для электромонтажа и в чем их преимущества и недостатки?

Ответ

Серебро, золото и алюминий используются для изготовления проводов.Все четыре материала обладают высокой проводимостью, серебро - самой высокой. Все четыре элемента легко сворачиваются в проволоку и обладают высокой прочностью на разрыв, хотя и не такой высокой, как медь. Очевидным недостатком золота и серебра является их стоимость, но серебряные и золотые провода используются для специальных применений, таких как провода для динамиков. Золото не окисляется, улучшая связи между компонентами. У алюминиевых проводов есть свои недостатки. Алюминий имеет более высокое удельное сопротивление, чем медь, поэтому необходим больший диаметр, чтобы соответствовать сопротивлению на длину медных проводов, но алюминий дешевле меди, поэтому это не является серьезным недостатком.Алюминиевая проволока не обладает такой высокой пластичностью и прочностью на разрыв, как медная, но пластичность и прочность на разрыв находятся в допустимых пределах. Есть несколько проблем, которые необходимо решить при использовании алюминия, и следует соблюдать осторожность при выполнении соединений. Алюминий имеет более высокий коэффициент теплового расширения, чем медь, что может привести к ослаблению соединений и возможной опасности возгорания. Окисление алюминия не проводит и может вызвать проблемы. При использовании алюминиевых проводов необходимо использовать специальные методы, а компоненты, такие как электрические розетки, должны быть рассчитаны на прием алюминиевых проводов.

PhET

Просмотрите это интерактивное моделирование, чтобы увидеть, как площадь поперечного сечения, длина и удельное сопротивление провода влияют на его сопротивление. Отрегулируйте переменные с помощью ползунков и посмотрите, станет ли сопротивление меньше или больше.

Температурная зависимость удельного сопротивления

Вернувшись к таблице \ (\ PageIndex {1} \), вы увидите столбец «Температурный коэффициент». Удельное сопротивление некоторых материалов сильно зависит от температуры.В некоторых материалах, таких как медь, удельное сопротивление увеличивается с увеличением температуры. Фактически, в большинстве проводящих металлов удельное сопротивление увеличивается с повышением температуры. Повышение температуры вызывает повышенные колебания атомов в структуре решетки металлов, которые препятствуют движению электронов. В других материалах, таких как углерод, удельное сопротивление уменьшается с повышением температуры. Во многих материалах зависимость является приблизительно линейной и может быть смоделирована с помощью линейного уравнения:

\ [\ rho \ приблизительно \ rho_0 [1 + \ alpha (T - T_0)], \]

, где \ (\ rho \) - удельное сопротивление материала при температуре T , \ (\ alpha \) - температурный коэффициент материала, а \ (\ rho_0 \) - удельное сопротивление при \ (T_0 \) , обычно принимается как \ (T_0 = 20.oC \).

Обратите внимание, что температурный коэффициент \ (\ alpha \) отрицателен для полупроводников, перечисленных в таблице \ (\ PageIndex {1} \), что означает, что их удельное сопротивление уменьшается с увеличением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения \ (\ rho \) с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

Сопротивление

Теперь рассмотрим сопротивление провода или компонента. Сопротивление - это мера того, насколько сложно провести ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление - это характеристика материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление - это характеристика провода или компонента.

Чтобы вычислить сопротивление, рассмотрим участок проводящего провода с площадью поперечного сечения A, , длиной L, и удельным сопротивлением \ (\ rho \).Батарея подключается к проводнику, обеспечивая разность потенциалов \ (\ Delta V \) на нем (рисунок \ (\ PageIndex {1} \)). Разность потенциалов создает электрическое поле, которое пропорционально плотности тока согласно \ (\ vec {E} = \ rho \ vec {J} \).

Рисунок \ (\ PageIndex {1} \): потенциал, обеспечиваемый батареей, прикладывается к сегменту проводника с площадью поперечного сечения \ (A \) и длиной \ (L \).

Величина электрического поля на участке проводника равна напряжению, деленному на длину, \ (E = V / L \), а величина плотности тока равна току, деленному на поперечную площадь сечения \ (J = I / A \).Используя эту информацию и вспоминая, что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем видеть, что напряжение пропорционально току:

\ [\ begin {align *} E & = \ rho J \\ [4pt] \ dfrac {V} {L} & = \ rho \ dfrac {I} {A} \\ [4pt] V & = \ left (\ rho \ dfrac {L} {A} \ right) I. \ end {align *} \]

Определение: Сопротивление

Отношение напряжения к току определяется как сопротивление \ (R \):

\ [R \ Equiv \ dfrac {V} {I}.\]

Сопротивление цилиндрического сегмента проводника равно удельному сопротивлению материала, умноженному на длину, деленную на площадь:

\ [R \ Equiv \ dfrac {V} {I} = \ rho \ dfrac {L} {A}. \]

Единицей измерения сопротивления является ом, \ (\ Omega \). Для данного напряжения, чем выше сопротивление, тем ниже ток.

Резисторы

Обычно в электронных схемах используется резистор. Резистор можно использовать для уменьшения протекания тока или обеспечения падения напряжения.На рисунке \ (\ PageIndex {2} \) показаны символы, используемые для резистора в принципиальных схемах цепи. Два широко используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-см.») И Международной электротехнической комиссией (IEC). Обе системы обычно используются. Мы используем стандарт ANSI в этом тексте для его визуального распознавания, но отметим, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что облегчает чтение.

Рисунок \ (\ PageIndex {2} \): символы резистора, используемые в принципиальных схемах. (а) символ ANSI; (b) символ IEC.

Зависимость сопротивления материала и формы от формы

Резистор можно смоделировать как цилиндр с площадью поперечного сечения A, и длиной L , сделанный из материала с удельным сопротивлением \ (\ rho \) (рисунок \ (\ PageIndex {3} \)) . Сопротивление резистора \ (R = \ rho \ dfrac {L} {A} \)

Рисунок \ (\ PageIndex {3} \): Модель резистора в виде однородного цилиндра длиной L и площадью поперечного сечения A .Его сопротивление потоку тока аналогично сопротивлению, оказываемому трубой потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше его площадь поперечного сечения A , тем меньше его сопротивление.

Наиболее распространенным материалом для изготовления резистора является углерод. Углеродная дорожка обернута вокруг керамического сердечника, к нему прикреплены два медных вывода. Второй тип резистора - это металлопленочный резистор, который также имеет керамический сердечник. Дорожка сделана из материала оксида металла, который имеет полупроводниковые свойства, аналогичные углеродным.Опять же, в концы резистора вставляются медные провода. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на рисунке \ (\ PageIndex {4} \).

Рисунок \ (\ PageIndex {4} \): Многие резисторы напоминают рисунок, показанный выше. Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют собой первые две цифры сопротивления резистора. Третий цвет - множитель. Четвертый цвет обозначает допуск резистора.{-5} \, \ Omega \), а сверхпроводники вообще не имеют сопротивления при низких температурах. Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.

Сопротивление объекта также зависит от температуры, поскольку \ (R_0 \) прямо пропорционально \ (\ rho \). Для цилиндра мы знаем \ (R = \ rho \ dfrac {L} {A} \), поэтому, если L и A не сильно изменяются с температурой, R имеет ту же температурную зависимость, что и \ ( \ rho \).(Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L и A примерно на два порядка меньше, чем на \ (\ rho \).) Таким образом,

\ [R = R_0 (1 + \ alpha \ Delta T) \ label {Tdep} \]

- это температурная зависимость сопротивления объекта, где \ (R_0 \) - исходное сопротивление (обычно принимаемое равным \ (T = 20,00 ° C \), а R - сопротивление после изменения температуры \ (\ Дельта Т \).oC \).

Многие термометры основаны на влиянии температуры на сопротивление (Рисунок \ (\ PageIndex {5} \)). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры. Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Рисунок \ (\ PageIndex {5} \): Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.oC) \ right) \\ [5pt] & = 4.8 \, \ Omega \ end {align *} \]

Значение

Обратите внимание, что сопротивление изменяется более чем в 10 раз, когда нить накала нагревается до высокой температуры, а ток через нить накала зависит от сопротивления нити и приложенного напряжения. Если нить накаливания используется в лампе накаливания, начальный ток через нить накала при первом включении лампы будет выше, чем ток после того, как нить накала достигнет рабочей температуры.

Упражнение \ (\ PageIndex {2} \)

Тензодатчик - это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей основы, поддерживающей рисунок из проводящей фольги. Сопротивление фольги изменяется по мере растяжения основы. Как меняется сопротивление тензодатчика? Влияет ли тензодатчик на изменение температуры?

Ответ

Рисунок фольги растягивается по мере растяжения основы, а дорожки фольги становятся длиннее и тоньше.Поскольку сопротивление рассчитывается как \ (R = \ rho \ dfrac {L} {A} \), сопротивление увеличивается по мере того, как дорожки из фольги растягиваются. При изменении температуры меняется и удельное сопротивление фольги, меняя сопротивление. Один из способов борьбы с этим - использовать два тензодатчика, один используется в качестве эталона, а другой - для измерения деформации. Два тензодатчика поддерживаются при постоянной температуре

Сопротивление коаксиального кабеля

Длинные кабели иногда могут действовать как антенны, улавливая электронные шумы, которые являются сигналами от другого оборудования и приборов.Коаксиальные кабели используются во многих случаях, когда требуется устранение этого шума. Например, их можно найти дома через кабельное телевидение или другие аудиовизуальные соединения. Коаксиальные кабели состоят из внутреннего проводника с радиусом \ (r_i \), окруженного вторым внешним концентрическим проводником с радиусом \ (r_0 \) (рисунок \ (\ PageIndex {6} \)). Пространство между ними обычно заполнено изолятором, например полиэтиленовым пластиком. Между двумя проводниками возникает небольшой ток радиальной утечки.Определите сопротивление коаксиального кабеля длиной L .

Рисунок \ (\ PageIndex {6} \): Коаксиальные кабели состоят из двух концентрических проводников, разделенных изоляцией. Они часто используются в кабельном телевидении или других аудиовизуальных средствах связи.

Стратегия

Мы не можем использовать уравнение \ (R = \ rho \ dfrac {L} {A} \) напрямую. Вместо этого мы смотрим на концентрические цилиндрические оболочки толщиной dr и интегрируем.

Решение

Сначала мы находим выражение для \ (dR \), а затем интегрируем от \ (r_i \) до \ (r_0 \),

\ [\ begin {align *} dR & = \ dfrac {\ rho} {A} dr \\ [5pt] & = \ dfrac {\ rho} {2 \ pi r L} dr, \ end {align *} \]

Объединение обеих сторон

\ [\ begin {align *} R & = \ int_ {r_i} ^ {r_0} dR \\ [5pt] & = \ int_ {r_i} ^ {r_0} \ dfrac {\ rho} {2 \ pi r L } dr \\ [5pt] & = \ dfrac {\ rho} {2 \ pi L} \ int_ {r_i} ^ {r_0} \ dfrac {1} {r} dr \\ [5pt] & = \ dfrac {\ rho} {2 \ pi L} \ ln \ dfrac {r_0} {r_i}.\ end {align *} \]

Значение

Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов, а также удельного сопротивления материала, разделяющего два проводника. Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к ослаблению (или ослаблению) сигнала, передаваемого по кабелю.

Упражнение \ (\ PageIndex {3} \)

Сопротивление между двумя проводниками коаксиального кабеля зависит от удельного сопротивления материала, разделяющего два проводника, длины кабеля и внутреннего и внешнего радиуса двух проводников.Если вы разрабатываете коаксиальный кабель, как сопротивление между двумя проводниками зависит от этих переменных?

Ответ

Чем больше длина, тем меньше сопротивление. Чем больше удельное сопротивление, тем выше сопротивление. Чем больше разница между внешним радиусом и внутренним радиусом, то есть чем больше соотношение между ними, тем больше сопротивление. Если вы пытаетесь максимизировать сопротивление, выбор значений для этих переменных будет зависеть от приложения.Например, если кабель должен быть гибким, выбор материалов может быть ограничен.

Phet: Цепь батарейного резистора

Просмотрите это моделирование, чтобы увидеть, как приложенное напряжение и сопротивление материала, через который протекает ток, влияют на ток через материал. Вы можете визуализировать столкновения электронов и атомов материала, влияющие на температуру материала.

Авторы и ссылки

  • Сэмюэл Дж.Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами. Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).

Удельное сопротивление | Физика проводников и изоляторов

Расчет сопротивления проводов

Номинальная допустимая нагрузка проводника - это грубая оценка сопротивления, основанная на потенциальной опасности возникновения пожара по току. Однако мы можем столкнуться с ситуациями, когда падение напряжения, вызванное сопротивлением проводов в цепи, представляет собой другие проблемы, кроме предотвращения возгорания.Например, мы можем проектировать схему, в которой напряжение на компоненте является критическим и не должно опускаться ниже определенного предела. В этом случае падение напряжения из-за сопротивления провода может вызвать техническую проблему, будучи в безопасных (пожарных) пределах допустимой нагрузки:

Если нагрузка в приведенной выше схеме не выдерживает напряжения ниже 220 В при напряжении источника 230 В, то лучше убедиться, что проводка не упадет более чем на 10 вольт по пути.Если подсчитать как питающие, так и обратные проводники этой цепи, остается максимально допустимое падение в 5 вольт по длине каждого провода. Используя закон Ома (R = E / I), мы можем определить максимально допустимое сопротивление для каждого отрезка провода:

Мы знаем, что длина каждого куска провода составляет 2300 футов, но как определить величину сопротивления для определенного размера и длины провода? Для этого нам понадобится другая формула:

Эта формула связывает сопротивление проводника с его удельным сопротивлением (греческая буква «ро» (ρ), которая похожа на строчную букву «p»), его длиной («l») и поперечным сечением. площадь сечения («А»).Обратите внимание, что с переменной длины в верхней части дроби значение сопротивления увеличивается по мере увеличения длины (аналогия: труднее протолкнуть жидкость через длинную трубу, чем через короткую) и уменьшается по мере увеличения площади поперечного сечения ( аналогия: жидкость легче течет по толстой трубе, чем по тонкой). Удельное сопротивление является константой для типа рассчитываемого материала проводника.

Удельное сопротивление нескольких проводящих материалов можно найти в следующей таблице.Внизу таблицы мы находим медь, уступающую только серебру по низкому удельному сопротивлению (хорошей проводимости):

Удельное сопротивление при 20 градусах Цельсия
Материал Элемент / Сплав (Ом-смил / фут) (мкОм-см)
Нихром Сплав 675 112,2
Нихром В Сплав 650 108,1
Манганин Сплав 290 48.21
Константан Сплав 272,97 45,38
Сталь * Сплав 100 16,62
Платина Элемент 63,16 10,5
Утюг Элемент 57,81 9,61
Никель Элемент 41,69 6,93
цинк Элемент 35.49 5,90
Молибден Элемент 32,12 5,34
Вольфрам Элемент 31,76 5,28
Алюминий Элемент 15,94 2,650
Золото Элемент 13,32 2,214
Медь Элемент 10,09 1.678
Серебро Элемент 9,546 1,587

* = Стальной сплав с содержанием железа 99,5%, углерода 0,5%

Обратите внимание, что значения удельного сопротивления в приведенной выше таблице даны в очень странной единице «Ом-см-мил / фут» (Ом-см-мил / фут). Эта единица указывает, какие единицы мы должны использовать в формуле сопротивления ( R = ρl / A). В этом случае эти значения удельного сопротивления предназначены для использования, когда длина измеряется в футах, а площадь поперечного сечения измеряется в круглых милах.

Метрической единицей измерения удельного сопротивления является ом-метр (Ом-м) или ом-сантиметр (Ом-см), при этом 1,66243 x 10 -9 Ом-метров на Ом-смил / фут (1,66243 x 10 -7 Ом-см на Ом-см-мил / фут). В столбце таблицы Ом-см цифры фактически масштабированы как мкОм-см из-за их очень малых величин. Например, железо указано как 9,61 мкОм-см, что может быть представлено как 9,61 x 10 -6 Ом-см.

При использовании единицы измерения удельного сопротивления Ом-метр в формуле R = ρl / A длина должна быть в метрах, а площадь - в квадратных метрах.При использовании единицы Ом-сантиметр (Ом-см) в той же формуле длина должна быть в сантиметрах, а площадь - в квадратных сантиметрах.

Все эти единицы измерения удельного сопротивления действительны для любого материала (Ом-смиль / фут, Ом-м или Ом-см). Тем не менее, можно предпочесть использовать Ω-cmil / ft при работе с круглой проволокой, площадь поперечного сечения которой уже известна в круглых милах. И наоборот, при работе с шиной нестандартной формы или изготовленной по индивидуальному заказу шиной, вырезанной из металлической заготовки, когда известны только линейные размеры длины, ширины и высоты, более подходящими могут быть единицы измерения удельного сопротивления в Ом-метр или Ом-см.

Решение

Возвращаясь к нашей примерной схеме, мы искали провод с сопротивлением 0,2 Ом или меньше на длине 2300 футов. Предполагая, что мы собираемся использовать медный провод (самый распространенный тип производимого электрического провода), мы можем настроить нашу формулу следующим образом:

Алгебраически решая относительно A, мы получаем значение 116 035 круговых милов. Ссылаясь на нашу таблицу размеров сплошных проводов, мы обнаруживаем, что провод «двойной длины» (2/0) с длиной 133 100 см является достаточным, тогда как следующий меньший размер, «одинарный провод» (1/0) с длиной 105 500 см слишком мал. .Имейте в виду, что ток нашей схемы составляет скромные 25 ампер. Согласно нашей таблице допустимой токовой нагрузки для медного провода на открытом воздухе, достаточно было бы провода калибра 14 (если речь идет о , а не , вызывающем пожар). Однако с точки зрения падения напряжения провод 14 калибра был бы очень неприемлемым.

Ради интереса, давайте посмотрим, как провод 14 калибра повлияет на характеристики нашей силовой цепи. Глядя на нашу таблицу размеров проводов, мы обнаруживаем, что проволока калибра 14 имеет площадь поперечного сечения 4 107 круглых милов.Если мы по-прежнему используем медь в качестве материала для проволоки (хороший выбор, если только мы не действительно богаты и не можем позволить себе 4600 футов серебряной проволоки 14 калибра!), То наше удельное сопротивление все равно будет 10,09 Ом-см / фут. :

Помните, что это 5,651 Ом на 2300 футов медного провода калибра 14, и что у нас есть два участка по 2300 футов во всей цепи, поэтому каждый кусок провода в цепи имеет сопротивление 5,651 Ом:

Наше общее сопротивление проводов цепи равно 2 умноженным на 5.651 или 11,301 Ом. К сожалению, это сопротивление намного больше, чем , чтобы обеспечить ток 25 ампер при напряжении источника 230 вольт. Даже если бы сопротивление нагрузки было 0 Ом, сопротивление нашей проводки 11,301 Ом ограничило бы ток в цепи до 20,352 ампер! Как вы можете видеть, «небольшое» сопротивление провода может иметь большое значение в характеристиках схемы, особенно в силовых цепях, где токи намного выше, чем обычно встречаются в электронных схемах.

Давайте рассмотрим пример проблемы сопротивления для куска изготовленной по индивидуальному заказу шины.Предположим, у нас есть кусок сплошного алюминиевого стержня шириной 4 см, высотой 3 см и длиной 125 см, и мы хотим рассчитать сквозное сопротивление по длине (125 см). Сначала нам нужно определить площадь поперечного сечения стержня:

Нам также необходимо знать удельное сопротивление алюминия в соответствующих единицах измерения (Ом-см). Из нашей таблицы удельных сопротивлений мы видим, что это 2,65 x 10 -6 Ом-см. Установив нашу формулу R = ρl / A, мы имеем:

Как видите, из-за большой толщины шины обеспечивает очень низкое сопротивление по сравнению со стандартными размерами проводов, даже при использовании материала с большим удельным сопротивлением.

Процедура определения сопротивления шины принципиально не отличается от определения сопротивления круглого провода. Нам просто нужно убедиться, что площадь поперечного сечения рассчитана правильно и что все единицы соответствуют друг другу, как должны.

ОБЗОР:

  • Сопротивление проводника увеличивается с увеличением длины и уменьшается с увеличением площади поперечного сечения, при прочих равных условиях.
  • Удельное сопротивление («ρ») - это свойство любого проводящего материала, показатель, используемый для определения сквозного сопротивления проводника данной длины и площади в этой формуле: R = ρl / A
  • Удельное сопротивление материалов указывается в единицах Ом-см / фут или Ом-метр (метрическая система).Коэффициент преобразования между этими двумя единицами составляет 1,66243 x 10 -9 Ом-метров на Ом-см-дюйм / фут или 1,66243 x 10 -7 Ом-см на Ом-см-дюйм / фут.
  • Если падение напряжения в цепи является критическим, необходимо произвести точный расчет сопротивления проводов до выбора сечения проводов.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Исследование сопротивления провода - Курсовая работа по физике GCSE - Owlcation

Введение

В этой статье я исследую, что влияет на сопротивление провода.

Электроэнергия течет в металлах. Металлические проволоки состоят из миллионов крошечных металлических кристаллов, и атомы каждого кристалла расположены в определенном порядке. Металл полон «свободных» электронов, которые не прилипают к какому-либо конкретному атому; скорее, они заполняют пространство между атомами. Когда эти электроны движутся, они создают электрический ток.

Проводники имеют сопротивление, но одни хуже других. Свободные электроны продолжают сталкиваться с атомами. Сопротивление провода зависит от четырех основных факторов:

  • Удельное сопротивление
  • Длина провода
  • Площадь поперечного сечения
  • Температура провода

Я исследую, как длина провода влияет на сопротивление.Я провел предварительный эксперимент, чтобы помочь мне решить, как лучше всего провести расследование. Результаты также помогут мне делать прогнозы.

Предварительное исследование

Ниже приведены мои результаты предварительного эксперимента (см. Таблицу 1). Для обеспечения точности я снял по три измерения напряжения и силы тока.

Таблица 1: Предварительные результаты

Эти результаты показывают, что с увеличением длины провода увеличивается и сопротивление. Кроме того, если вы удвоите длину провода, сопротивление увеличится примерно вдвое.Например, при длине провода 20 см сопротивление составляет 3,14 Ом; когда длина провода 40 см, сопротивление составляет 6,18 Ом, что примерно вдвое больше. В моем основном исследовании я посмотрю, применимо ли это наблюдение к моим результатам.

Я обнаружил, что устройство, которое я использовал, было подходящим, но я думаю, что я мог бы увеличить количество точек данных для получения более надежных результатов, возможно, увеличивая длину провода на 5 см каждый раз, а не на 10 см.

Исследование сопротивления провода

Цель

Я исследую сопротивление провода в зависимости от его длины.

Прогноз

Я предсказываю, что чем длиннее провод, тем больше сопротивление. Это связано с тем, что свободные электроны в проводе сталкиваются с большим количеством атомов, тем самым затрудняя прохождение электричества. Точно так же, чем короче провод, тем меньше сопротивление, потому что электроны будут сталкиваться с меньшим количеством атомов, тем самым ослабляя поток электричества. Кроме того, сопротивление провода прямо пропорционально длине и обратно пропорционально площади, поэтому удвоение длины провода должно увеличить сопротивление в два раза.Это связано с тем, что если длина провода удвоится, электроны столкнутся с вдвое большим количеством атомов, поэтому сопротивление будет в два раза больше. Если это правильно, график должен показать положительную корреляцию.

Аппарат

Аппарат, который я буду использовать в этом эксперименте, выглядит следующим образом:

  • 1 амперметр (для измерения тока)
  • 1 вольтметр (для измерения напряжения)
  • 5 проводов
  • 2 зажима типа «крокодил»
  • Блок питания
  • нихромовая проволока 100см

Метод

Сначала я соберу необходимое мне устройство и установлю его, как показано на схеме 1 ниже.Затем я установлю блок питания на минимально возможное напряжение, чтобы гарантировать, что ток, проходящий через схему, не будет слишком высоким (что потенциально может повлиять на результаты, потому что провод станет слишком горячим).

Я размещу один зажим «крокодил» на расстоянии 0 см на проводе, а другой - на расстоянии 5 см, чтобы замкнуть цепь. Затем я включу блок питания и запишу показания вольтметра и амперметра. Я выключу блок питания, перемещу зажим «крокодил», который был на высоте 5 см, на 10 см, и включу блок питания.Опять же, запишу показания вольтметра и амперметра и выключу блок питания. Я буду повторять этот метод каждые 5 см, пока не доберусь до 100 см, снимая каждый раз по три показания с вольтметра и амперметра для обеспечения точности. Кроме того, после каждого считывания я выключаю блок питания, чтобы убедиться, что провод не слишком сильно нагревается и не влияет на мои результаты.

Схема 1: Аппарат

Обеспечение точности

Для обеспечения точности я буду записывать напряжение и ток три раза через каждые 5 см и снимать среднее значение.Это снизит вероятность ложных показаний и аннулирует любые аномальные результаты. Я также позабочусь о том, чтобы провод не слишком сильно нагрелся, подтвердив, что я не установил слишком высокое напряжение на блоке питания, и поддерживая то же напряжение при каждом показании. Кроме того, я обязательно выключаю блок питания после каждого чтения. Я постараюсь сделать это расследование максимально точным.

Переменные

В этом эксперименте можно изменять различные переменные; это независимая переменная.Однако в связи с моим запросом я изменю только длину провода. Переменные, которые я буду контролировать, будут типом провода (удельное сопротивление) и площадью поперечного сечения провода. Я также буду контролировать, используя блок питания, сколько вольт проходит через провод. Ниже приведена таблица, иллюстрирующая влияние изменения переменных (см. Таблицу 2):

Таблица 2: Переменные

Безопасность

Я обеспечу экспериментальную безопасность, убедившись, что все провода подключены правильно и что нет изоляции на проводах носится.Я также позабочусь о том, чтобы была четкая индикация того, что питание отключено с помощью переключателя и L.E.D. Я буду стоять во время расследования, чтобы не пораниться, если что-то сломается.

Результаты

Ниже представлена ​​таблица с моими результатами (Таблица 3). Я сделал три отсчета и вычислил среднее значение, показанное красным.

Таблица 3: Результаты

Таблица 4: Длина и сопротивление

Таблица 3 показывает, что с увеличением длины провода увеличивается и сопротивление.Это подтверждает первую часть моего прогноза: чем длиннее провод, тем больше сопротивление.

Кроме того, мое предсказание, что удвоение длины провода увеличивает сопротивление в два раза, верно (см. Таблицу 4).

График

График этих результатов показывает почти прямую линию, иллюстрирующую сильную положительную корреляцию между длиной и сопротивлением, что согласуется с моим предсказанием.

Обсуждение

В целом мои результаты очень совпадают с моими прогнозами.Большинство точек данных находились на линии наилучшего соответствия или очень близко к ней. Есть несколько точек данных, которые находятся дальше от линии наилучшего соответствия, чем другие, но они по-прежнему соответствуют общей тенденции. Нет никаких аномальных результатов, которые я бы считал далекими от линии наилучшего соответствия.

Существуют возможные источники ошибок, которые могли привести к противоречивым результатам, например изгиб провода. Это не позволило бы площади проволоки оставаться постоянной и повлияло бы на мои результаты.Однако я следил за тем, чтобы провод оставался прямым на протяжении всего эксперимента.

Я думаю, что диапазона моих результатов было достаточно, чтобы я мог сделать верный вывод о том, как длина провода повлияла на сопротивление. Это произошло потому, что я мог построить график и показать общую тенденцию.

Я думаю, что паттерн / общая тенденция продолжится за пределами диапазона значений, которые я использовал. Однако я думаю, что, если бы у меня не было специального оборудования, результаты были бы искажены, потому что в конечном итоге провод очень сильно нагрелся.Кроме того, аппарат, который я использовал в школе, не подошел бы, если бы я продолжал увеличивать длину провода; например, в классе я не мог увеличить длину более 150 см из-за соображений безопасности, а также из-за нехватки места.

Я думаю, что мой метод можно было улучшить, чтобы результаты были еще более последовательными. Я мог бы подумать об использовании каждый раз нового отрезка проволоки, чтобы регулировать температуру более строго. Использование одного и того же куска проволоки на протяжении всего эксперимента означало, что его температура со временем немного повысилась, что могло повлиять на мои результаты.Однако использование новых отрезков проволоки каждый раз было бы слишком непрактично и отнимало бы много времени в контексте этого урока. В целом, я считаю, что моего метода было достаточно для получения надежных результатов.

Чтобы подтвердить свое предсказание и заключение, я мог бы провести дальнейшие эксперименты. Например, вместо нихрома я мог бы использовать разные типы проволоки. Я также мог бы рассмотреть возможность использования проводов с разным поперечным сечением или даже намеренного изменения температуры проводов и посмотреть, как манипулирование этими переменными влияет на сопротивление провода.

нина от 30 марта 2020 г .:

оценка риска для этого?

Angkit Jeyachandran от 5 августа 2019 г .:

нуждается в оценке, пожалуйста,

Nathan от 9 апреля 2019 г .:

Этот материал очень помог мне выполнить мое задание по физике. большое спасибо

твоя мама гей 18 марта 2019 г .:

lol jomall большой гей и собираюсь вытащить Deji и проиграть 25 августа

как если вы согласны

игнорировать, чтобы умереть немедленно

kimoy smith от 12 марта 2019 г .:

Спасибо, это очень помогло мне и моим одноклассникам.

будет 04 марта 2019 г .:

очень хорошо, но где же зависимые и управляющие переменные? также включите некоторые экзаменационные вопросы и способы получения оценок, поскольку люди, которые это читают, с большей вероятностью будут сдавать экзамены! тем не менее, это очень хороший отчет об эксперименте.

Ria от 2 марта 2019 г .:

Большое спасибо, это действительно помогло мне с моим отчетом в лаборатории физики. Я обязательно размещу его на сайте и отдаю вам должное!

Гарри Патерсон 20 февраля 2019 г .:

Я люблю детей.

Джордан Фонг от 15 февраля 2019 г .:

Мне нравятся дети

hehohehohehoeh 7 января 2019 г .:

большое спасибо действительно помогли мне

боб 7 декабря 2018 г .:

привет хорошие вещи

Flash от 6 декабря 2018 г .:

хорошие они мне действительно помогли

Lol 17 ноября 2018 г .:

всякая чушь неправильная

Ура папа 15 ноября 2018 г .:

Я люблю твоего Уилли

middsi 27 октября 2018 г .:

требует заключения, но это сделано очень хорошо.Спасибо. но также имейте в виду, что он не удваивается, а только увеличивается в небольших эпизодах xx

jamm 19 октября 2018 г .:

нуждается в оценке

Salal 13 июня 2018 г .:

Спасибо, это помогло Я был очень смущен своим исследованием физики.

123456789 24 мая 2018 г .:

бесполезно

извините

lll 24 мая 2018 г .:

это было очень полезно для моей домашней работы, большое вам спасибо 🙂

Maya on 17 мая 2018 г .:

время напрасно

Чикенед 25 марта 2018 г .:

Вы ошиблись насчет удвоения длины провода = сопротивление увеличивается в два раза.

Я использовал некоторые данные для домашнего задания по физике, спасибо за это.

Просто не забудьте продолжать жевать курицу, как я.

ali 05 февраля 2018 г .:

Я скопировал и вставил все это для своего hw, и это было очень хорошо, спасибо

charlie houghton 22 января , 2018:

Большое спасибо, это действительно помогло мне понять этот эксперимент!

rio ​​ 27 ноября 2017 г .:

дали идеальные ответы, но для вывода вам нужно было добавить пример ваших результатов, это то, что говорит мой учитель естествознания, кроме того, это отличный источник информации, действительно помог я с моим домашним заданием

kcds 24 ноября 2017 г .:

вы только что выполнили мое задание: D спасибо, человек

bob 22 мая 2017 г .:

Хорошая работа.Молодец, Золотая Звезда. 🙂

angel kyeremeh от 8 мая 2017 г .:

это так красиво. отлично сработано!

Тереза ​​Июнь 25 апреля 2017 г .:

Какой у вас был SWG (стандартный калибр проволоки) или диаметр? Я знаю, что вы заявили, что это был нихром и длина 100 см, но SWG не указывается - я использую ваши данные как второстепенные, и мне нужно сравнить мое расследование и ваше.

сб? от 13 апреля 2017 г .:

вы только что выполнили для меня задание, спасибо boi

Retep882 30 марта 2017 г .:

Это, безусловно, чудовищный источник информации, который я мог найти для своей курсовой работы, вы великолепны 🙂

Мисс забывчивая. от 21 марта 2017 г .:

Большое спасибо за это, потому что это очень помогло мне на уроках физики.

Эллиот Хобноб 2 марта 2017 г .:

привет его Эллиот

Каллум Твизелл 27 февраля 2017 г .:

В моей концептуальной команде есть Ибра Месси и Заурес!

миша от 3 февраля 2017 г .:

Я вернулся

Привет 31 января 2017 г .:

Какие ссылки вы использовали?

yaas 31 января 2017 г .:

YAAASSS SLAY

MR Stone 27 января 2017 г .:

действительно полезно для моей контрольной оценки физики

Mike Litoris 27 января 2017 г .:

Забавно то, что я не девушка: /

Zac 23 января 2017 г .:

Меня отвлекли от всех рекламных объявлений

Bish Bash Bosh k 16 января 2017 г .:

удивительно XDXDXDXDXDXDXDXD

Анонимный от 7 января 2017 г .:

Какой диаметр или SWG используемого провода?

CAL от 20 октября 2016 г .:

ВЫ СОХРАНИЛИ МОЮ ЖИЗНЬ ДЛЯ МОИХ ВТОРИЧНЫХ ДАННЫХ БОЛЬШОЕ ВРЕМЯ ПРИВЕТСТВИЕ

gracealbam 17 октября 2016 г .:

Omg большое спасибо

Lono13 12 октября , 2016:

Люблю этот lono 2012, what a geeza

XxX 06 сентября 2016 г .:

мы можем быть вместе навсегда

doritoman 6 сентября 2016 г .:

UR NOW EX

doritoman от 6 сентября 2016 г .:

I NO LUV U NO MO

doritoman 6 сентября 2016 г .:

Это было действительно полезно для моей контролируемой оценки.luv u

mehitsme 13 июля 2016 г .:

Вы знаете, какая толщина у провода? об этом здесь не говорится, и это была бы действительно хорошая информация для таких, как я, которым нужно использовать ее в качестве вторичного источника в своих контролируемых оценках.

Бен от 8 февраля 2016 г .:

Спасибо, мне нужен вторичный источник данных для моей контролируемой оценки.

Dayanara от 14 февраля 2015 г .:

Я очень доволен inootmarifn в этом.ТЫ!

Luno2012 (автор) из Соединенного Королевства, 20 марта 2014 г .:

@ehehfeelgood - курсовая работа предназначена для учащихся GCSE и средней школы.

ehehfeelgood от 19 марта 2014 г .:

Thx, но это не подходит для тех лет, которые они не умеют читать, вы знаете, должны быть какие-то картинки

helpmyballs 19 марта 2014 г .:

это так хорошо даже человек с синей бритвой использует его

BlueRazorBlade 19 марта 2014 г .:

Это очень помогло мне в моей научной работе y7 Спасибо

vikki 05 февраля 2014 г .:

Я ЛЮБЛЮ ТЕБЯ

Дарий 17 декабря 2013 г .:

Спасибо! Это действительно помогло мне с работой в 9 классе.Я очень ценю информацию, которую вы ввели в это. Еще раз спасибо!

omt8 от 7 ноября 2013 г .:

Отличная помощь. Мне очень помогли мои курсовые работы в 9 классе. спасибо

Luno2012 (автор) из Соединенного Королевства 26 октября 2013 г .:

Сэм: Не беспокойтесь.

MrsBonnersSciencePupil: Рад, что смог помочь!

Люси: Рада это слышать, Люси. Удачи вам в будущих тестах и ​​экзаменах.

Люси 13 октября 2013 г .:

привет, это было действительно полезно, я сейчас занимаюсь CAU за 11 год, и это было большим подспорьем, спасибо

MrsBonnersSciencePupil 18 июня 2013 г .:

Это было действительно полезно для моей контролируемой оценки.luv u

sam waiganjo kenya от 4 октября 2012 г .:

thnx много

Resolver2009 из Борнмута, Великобритания / Осло, Норвегия 27 апреля 2012 г .:

Проголосовали 🙂 Должно быть очень полезно для студентов, изучающих физику.

Как рассчитать проводимость | Наука

Обновлено 6 ноября 2020 г.

Ариэль Балтер, доктор философии

В электронике проводимость - это мера тока, вырабатываемого элементом схемы при заданном приложенном напряжении.Обычно обозначается буквой G, проводимость - величина, обратная сопротивлению R. Единица проводимости - сименс (S). Электропроводность проводника зависит от многих факторов, включая его форму, размеры и проводимость материала, обычно обозначаемую греческой буквой σ.

Проводимость от сопротивления

Предположим, что конкретный элемент схемы имеет сопротивление 1,25 × 10 3 Ом. Поскольку проводимость обратно пропорциональна сопротивлению, мы можем записать:

G = \ frac {1} {R}

G = \ frac {1} {1.2 \ text {siemens}

Проводимость при известных значениях тока и напряжения

Рассмотрим следующий пример: напряжение (В) в 5 вольт генерирует ток (I) в 0,30 ампера на определенной длине провода. Закон Ома говорит нам, что сопротивление (R) можно легко определить. По закону:

В = IR

\ frac {1} {R} = \ frac {I} {V}

В данном случае это 0,30 А ÷ 5 В = 0,06 Сименса.

Проводимость от проводимости

Предположим, у вас есть провод с круглым поперечным сечением, радиусом r и длиной L.2 \ sigma} {L}

Пример:

Найдите проводимость круглого куска железа с радиусом поперечного сечения 0,001 метра и длиной 0,1 метра.

Железо имеет проводимость 1,03 × 10 7 сименс / м, а площадь поперечного сечения провода составляет 3,14 × 10 -6 м. Тогда проводимость провода составляет 324 сименса.

Сопротивление проводника

Хотя можно использовать провод любого размера или значения сопротивления, слово «проводник» обычно относится к материалам, которые обладают низким сопротивлением току, а слово «изолятор» описывает материалы, которые обладают высоким сопротивлением току. текущий.Между проводниками и изоляторами нет четкой разделительной линии; при надлежащих условиях все типы материалов проводят ток. Материалы, обладающие сопротивлением прохождению тока на полпути между лучшими проводниками и самыми плохими проводниками (изоляторами), иногда называют «полупроводниками» и находят наибольшее применение в области транзисторов.

Лучшие проводники - это материалы, в основном металлы, которые обладают большим количеством свободных электронов; И наоборот, изоляторы - это материалы с небольшим количеством свободных электронов.Лучшие проводники - серебро, медь, золото и алюминий; но некоторые неметаллы, такие как углерод и вода, могут использоваться в качестве проводников. Такие материалы, как резина, стекло, керамика и пластмассы, являются настолько плохими проводниками, что их обычно используют в качестве изоляторов. Ток в некоторых из этих материалов настолько мал, что обычно считается нулевым. Единица измерения сопротивления называется ом. Символ ома - греческая буква омега (Ω). В математических формулах заглавная буква «R» обозначает сопротивление.Сопротивление проводника и приложенное к нему напряжение определяют количество ампер тока, протекающего по проводнику. Таким образом, сопротивление 1 Ом ограничивает ток до 1 ампера в проводнике, к которому приложено напряжение 1 вольт.

Факторы, влияющие на сопротивление

  1. Сопротивление металлического проводника зависит от типа материала проводника. Было указано, что некоторые металлы обычно используются в качестве проводников из-за большого количества свободных электронов на их внешних орбитах.Медь обычно считается лучшим доступным материалом проводника, поскольку медная проволока определенного диаметра обеспечивает меньшее сопротивление току, чем алюминиевая проволока того же диаметра. Однако алюминий намного легче меди, и по этой причине, а также по соображениям стоимости алюминий часто используется, когда важен весовой коэффициент.
  2. Сопротивление металлического проводника прямо пропорционально его длине. Чем больше длина провода данного размера, тем больше сопротивление.На рисунке 12-41 показаны два проводника разной длины. Если электрическое давление 1 вольт приложено к двум концам проводника, длина которого составляет 1 фут, и сопротивление движению свободных электронов предполагается равным 1 Ом, ток ограничивается 1 ампер. Если провод того же размера удвоить в длину, те же электроны, приведенные в движение под действием приложенного 1 вольт, теперь обнаруживают удвоенное сопротивление; следовательно, ток уменьшается вдвое. Рисунок 12-41. Сопротивление зависит от длины проводника.
  3. Сопротивление металлического проводника обратно пропорционально площади поперечного сечения. Эта область может быть треугольной или даже квадратной, но обычно круглой. Если площадь поперечного сечения проводника увеличивается вдвое, сопротивление току уменьшается вдвое. Это верно из-за увеличенной площади, в которой электрон может двигаться без столкновения или захвата атомом. Таким образом, сопротивление изменяется обратно пропорционально площади поперечного сечения проводника.
  4. Четвертым важным фактором, влияющим на сопротивление проводника, является температура.Хотя некоторые вещества, такие как углерод, демонстрируют снижение сопротивления при повышении температуры окружающей среды, большинство материалов, используемых в качестве проводников, увеличивают сопротивление при повышении температуры. Сопротивление некоторых сплавов, таких как константан и манганин ™, очень мало изменяется при изменении температуры. Величина увеличения сопротивления образца проводника сопротивлением 1 Ом на один градус повышения температуры выше 0 ° по Цельсию (C), принятого стандарта, называется температурным коэффициентом сопротивления.Для каждого металла это разные значения. Например, для меди это значение составляет примерно 0,00427 Ом. Таким образом, медный провод, имеющий сопротивление 50 Ом при температуре 0 ° C, имеет увеличение сопротивления на 50 × 0,00427 или 0,214 Ом на каждый градус повышения температуры выше 0 ° C. Температурный коэффициент сопротивления необходимо учитывать там, где наблюдается заметное изменение температуры проводника во время работы. Доступны графики с указанием температурного коэффициента сопротивления для различных материалов.На Рис. 12-42 показана таблица «удельного сопротивления» некоторых распространенных электрических проводников.
Рисунок 12-42. Таблица удельного сопротивления.

Сопротивление материала определяется четырьмя свойствами: материалом, длиной, площадью и температурой. Первые три свойства связаны следующим уравнением при T = 20 ° C (комнатная температура):

Сопротивление и связь с размером провода

Круглые проводники (провода / кабели)

Поскольку известно, что Сопротивление проводника прямо пропорционально его длине, и если нам дано сопротивление единичной длины провода, мы можем легко вычислить сопротивление любой длины провода из этого материала, имеющего тот же диаметр.Кроме того, поскольку известно, что сопротивление проводника обратно пропорционально его площади поперечного сечения, и если нам дано сопротивление отрезка провода с единичной площадью поперечного сечения, мы можем вычислить сопротивление такой же длины. из проволоки из того же материала любой площади сечения. Следовательно, если мы знаем сопротивление данного проводника, мы можем рассчитать сопротивление для любого проводника из того же материала при той же температуре. Из соотношения:

Можно также записать:

Если у нас есть проводник длиной 1 метр (м) с площадью поперечного сечения 1 (миллиметр) мм 2 и сопротивлением 0 .017 Ом, каково сопротивление 50 м провода из того же материала, но с площадью поперечного сечения 0,25 мм 2 ?

В то время как единицы СИ обычно используются при анализе электрических цепей, электрические проводники в Северной Америке все еще производятся с использованием стопы в качестве единицы длины и мил (одна тысячная часть дюйма) в качестве единицы диаметра. Прежде чем использовать уравнение R = (ρ × l) ⁄A для расчета сопротивления проводника данного американского калибра проводов (AWG), площадь поперечного сечения в квадратных метрах должна быть определена с использованием коэффициента преобразования 1 mil = 0 .0254 мм. Самая удобная единица длины проволоки - стопа. В соответствии с этими стандартами единицей измерения является мил-фут. Таким образом, провод имеет единичный размер, если он имеет диаметр 1 мил и длину 1 фут.

В случае использования медных проводников мы избавляемся от утомительных вычислений с использованием таблицы, показанной на рис. 12-43. Обратите внимание, что размеры поперечного сечения, указанные в таблице, таковы, что каждое уменьшение на один номер датчика равняется 25-процентному увеличению площади поперечного сечения.Из-за этого уменьшение трех калибровочных чисел означает увеличение площади поперечного сечения примерно на 2: 1. Аналогичным образом, изменение десяти калибровочных номеров проводов представляет собой изменение площади поперечного сечения 10: 1 - кроме того, при удвоении площади поперечного сечения проводника сопротивление уменьшается вдвое. Уменьшение сечения проводов на три сечения снижает сопротивление проводника заданной длины вдвое.

Рисунок 12-43. Таблица преобразования при использовании медных жил.

Прямоугольные проводники (шины)

Для вычисления площади поперечного сечения проводника в квадратных милях длина одной стороны в милах возводится в квадрат.В случае прямоугольного проводника длина одной стороны умножается на длину другой. Например, обычная прямоугольная шина (большой, специальный проводник) имеет толщину 3⁄8 дюйма и ширину 4 дюйма. Толщина 3⁄8 дюйма может быть выражена как 0,375 дюйма. Поскольку 1000 мил равняется 1 дюйму, ширину в дюймах можно преобразовать в 4000 мил. Площадь поперечного сечения прямоугольного проводника находится путем преобразования 0,375 в мил (375 мил × 4000 мил = 1 500 000 квадратных мил).

Flight Mechanic рекомендует

Цель - 8: Сопротивление металлического проводника - CCEA - GCSE Physics (Single Science) Revision - CCEA

Экспериментально исследовать, как сопротивление металлического проводника при постоянной температуре зависит от длины, и получить достаточную значения для построения графика сопротивления (ось y) и длины (ось x).

Переменные

Основными переменными в научном эксперименте являются независимая переменная, зависимая переменная и контрольные переменные.

Независимая переменная - это то, что мы изменяем или контролируем в эксперименте.

Зависимая переменная - это то, что мы тестируем и будем измерять в эксперименте.

Контрольные переменные - это то, что мы сохраняем неизменными во время эксперимента, чтобы убедиться, что это справедливый тест.

В этом эксперименте:

  • Независимая переменная - это длина провода.
  • Зависимая переменная - это сопротивление провода.
  • Управляющие переменные - это материал, площадь поперечного сечения и температура провода. Они сохраняются неизменными за счет того, что не меняют провод во время эксперимента, сохраняют небольшой ток и открывают переключение между показаниями.

Помните - эти переменные контролируются (или остаются неизменными), потому что для проверки достоверности можно изменить только 1 переменную, которая в данном случае является длиной провода.

Уравнение

Сопротивление R = \ (\ frac {напряжение ~ V} {ток ~ I} \)

Прогноз

По мере увеличения длины провода сопротивление будет расти.

Обоснование прогноза

Чем больше длина провода, тем больше количество столкновений между свободными электронами и ионами металлов.

Это приведет к большему сопротивлению.

Безопасность

Опасность Последствия Меры контроля
Вода Поражение электрическим током Не ставьте эксперимент возле кранов, раковин и т. Д.
Проволока нагревается Незначительные ожоги Не трогайте провод. Выключите между измерениями.

Аппарат

Длина константанового провода 1 м, линейка для счетчика, блок питания низкого напряжения, вольтметр, амперметр, соединительные провода, выключатель, 2 зажима типа «крокодил», скотч.

Метод

  1. Настройте схему, как показано выше. Прикрепите гибкий провод на отметке 20 см так, чтобы длина провода, через который проходит ток, составляла 20 см.Запишите эту длину в подходящую таблицу.
  2. Отрегулируйте блок питания до тех пор, пока ток на амперметре не станет 0,4 А. Запишите значение тока в таблицу.
  3. Считайте соответствующее значение напряжения на проводе на вольтметре и запишите в таблицу.
  4. Выключите выключатель, чтобы не допустить повышения температуры провода.
  5. Снова включите и повторите измерение напряжения. Запишите в таблицу. Выключите и рассчитайте среднее напряжение.
  6. Рассчитайте сопротивление этой длины провода и запишите его в таблицу.
  7. Включите снова. Убедитесь, что ток по-прежнему составляет 0,4 А, и повторите считывание тока и напряжения для длин 40 см, 50 см, 60 см, 80 см и 100 см.
  8. Рассчитайте сопротивление для каждой длины, не забывая выключать между каждым считыванием.

Ошибка

Температура провода должна поддерживаться постоянной.

Когда через проводник течет ток, возникает эффект нагрева.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *