Таблица удельное сопротивление проводников: Удельное сопротивление проводников: таблица удельного сопротивления меди, алюминия и других металлов

Содержание

Таблица удельных сопротивлений проводников - Морской флот

На практике нередко приходится рассчитывать сопротивление различных проводов. Это можно сделать с помощью формул или по данным, приведенным в табл. 1.

Влияние материала проводника учитывается с помощью удельного сопротивления, обозначаемого греческой буквой ? и представляющего собой сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Наименьшим удельным сопротивлением ? = 0,016 Ом•мм2/м обладает серебро. Приведем среднее значение удельного со п ротивления некоторых проводников:

Серебро – 0,016 , Свинец – 0,21 , Медь – 0,017 , Никелин – 0,42 , Алюминий – 0,026 , Манганин – 0,42 , Вольфрам – 0,055 , Константан – 0,5 , Цинк – 0,06 , Ртуть – 0,96 , Латунь – 0,07 , Нихром – 1,05 , Сталь – 0,1 , Фехраль – 1,2 , Бронза фосфористая – 0,11 , Хромаль – 1,45 .

При различных количествах примесей и при разном соотношении компонентов, входящих в состав реостатных сплавов, удельное сопротивление может несколько измениться.

Сопротивление рассчитывается по формуле:

где R — сопротивление, Ом; удельное сопротивление, (Ом•мм2)/м; l — длина провода, м; s — площадь сечения провода, мм2.

Если известен диаметр провода d, то площадь его сечения равна:

Измерить диаметр провода лучше всего с помощью микрометра, но если его нет, то следует намотать плотно 10 или 20 витков провода на карандаш и измерить линейкой длину намотки. Разделив длину намотки на число витков, найдем диаметр провода.

Для определения длины провода известного диаметра из данного материала, необходимой для получения нужного сопротивления, пользуются формулой

Примечание. 1. Данные для проводов, не указанных в таблице, надо брать как некоторые средние значения. Например, для провода из никелина диаметром 0,18 мм можно приблизительно считать, что площадь сечения равна 0,025 мм2, сопротивление одного метра 18 Ом, а допустимый ток равен 0,075 А.

2. Для другого значения плотности тока данные последнего столбца нужно соответственно изменить; например, при плотности тока, равной 6 А/мм2, их следует увеличить в два раза.

Пример 1. Найти сопротивление 30 м медного провода диаметром 0,1 мм.

Решение. Определяем по табл. 1 сопротивление 1 м медного провода, оно равно 2,2 Ом. Следовательно, сопротивление 30 м провода будет R = 30•2,2 = 66 Ом.

Расчет по формулам дает следующие результаты: площадь сечения провода: s= 0,78•0,12 = 0,0078 мм2. Так как удельное сопротивление меди равно 0,017 (Ом•мм2)/м, то получим R = 0,017•30/0,0078 = 65,50м.

Пример 2. Сколько никелинового провода диаметром 0,5 мм нужно для изготовления реостата, имеющего сопротивление 40 Ом?

Решение. По табл. 1 определяем сопротивление 1 м этого провода: R= 2,12 Ом: Поэтому, чтобы изготовить реостат сопротивлением 40 Ом, нужен провод, длина которого l= 40/2,12=18,9 м.

Проделаем тот же расчет по формулам. Находим площадь сечения провода s= 0,78•0,52 = 0,195 мм2. А длина провода будет l = 0,195•40/0,42 = 18,6 м.

Закон Ома устанавливает связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах. Формулировка для участка электрической цепи (проводника), не содержащего источников электродвижущей силы (ЭДС): сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Законы Ома для замкнутой неразветвлённой цепи: сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна полному сопротивлению цепи. Закон Ома справедлив для постоянных и квазистационарных токов. Был открыт немецким физиком Георгом Омом в 1826 году. * Современная энциклопедия

В случае переменного тока, величины, входящие в расчётные формулы – становятся комплексными.

Закон Ома в дифференциальной форме – описывает исключительно электропроводящие свойства материала, вне зависимости от геометрических размеров.

Удельное электрическое сопротивление вещества есть электросопротивление изготовленного из него куба со сторонами, равными единице (1метр), когда ток идёт перпендикулярно двум его противоположным граням, площадью 1 квадратный метр каждая. 2/м] (SI – Ω·m, рус. – Ом-метр, англ. – ohm-meter). Для измерения проводниковых материалов разрешается использовать внесистемную единицу –
Ом·мм2/м (для миллиметрового сечения проводника, длиной 1 м., то есть – миллионную часть Ом-метра).

Физический смысл удельного сопротивления: материал (однородный и изотропный*) имеет удельное электрическое сопротивление один Ом·м, если изготовленный из этого материала куб со стороной 1 метр имеет сопротивление 1 Ом при измерении на противоположных гранях куба.
* Изотропность – идентичность физических свойств во всех направлениях.

Удельное сопротивление характеризует способность вещества проводить электрический ток и не зависит от формы и размеров вещества, но меняется, при отличии его температуры от 20 °C (то есть, от комнатной, при которой определялись табличные значения для справочников).

На практике, в технике чаще применяется единица, в миллион раз меньшая (миллиметровое токоведущее сечение), чем Ом·м:

1 мкОм·м (SI – µΩ·m, рус. -9 Ом•м)

Металлы высокой проводимости (не более 0,1 мкОм.м) – используются для изготовления проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п. Металлы и сплавы высокого сопротивления (не менее 0,3 микроом-метр) – применяются для производства образцовых резисторов, реостатов, электроизмерительных приборов, электронагревательных устройств, нитей ламп накаливания и т. п. Нагревательные сплавы должны выдерживать длительную работу на открытом воздухе – без разрушения при температурах не менее 1000 °С.

Таблица значений удельного электрического сопротивления,
мкОм·м (микроом-метр) = Ом·мм2/м (равные числовые величины)

при температуре окружающей среды 20 градусов по Цельсию

Серебро – 0,015-0,016
Медь – 0,0172-0,0180
Золото – 0,024
Алюминий – 0.026-0.030
Вольфрам – 0,053-0,055
Цинк 0,053-0,062
Никель – 0.068-0,073
Латунь (сплав меди с цинком) – 0,043 – 0,108
Железо – 0,098
Сталь – 0,10-0,14
Олово – 0,12
Оловяно-свинцовый припой – 0,14 – 0,16
Бронзовые сплавы – 0,02 – 0,2
Свинец – 0,217 – 0,227
Никелин – 0,4
Манганин – 0,42 – 0,48
Константан – 0,48 – 0,52
Нихром – 1,05-1,40
Фехраль – 1,15-1,35
Угольно-графитовые щётки для электрических машин – 20-50
Угольный сварочный электрод – 50-90 мкОм·м

Минералка (с минерализацией воды – 2-7 грамм на литр) – 1-4 *10^6 мкОм·м = 1-4 Ом•м

Вода грунтовая – 10-50 *10^6
Влажная / сырая садовая земля (верхний слой почвы, грунта – после поливки) – 20-60 *10^6

Почему в электросетях применяется высокое напряжение

В линии электропередачи, при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом, считается желательным, увеличение напряжения до величин в десятки (внутригородские воздушные и кабельные сети электропередач на 380 вольт, 6, 10, 20, 35, 110, 220 и 330 кВ) и сотни киловольт (магистральные электросети сверхвысокого – ЛЭП500-750 кВ и ультравысокого напряжения, 1150кВ и выше) на линиях переменного и постоянного (150, 400, 800 кВ) тока. Но, при таких параметрах эксплуатации, постоянно растущем потреблении электрической энергии и частых пиковых перегрузках, износ оборудования, отсутствие резервных мощностей, погодные аномалии, локальные несоответствия требованиям безопасности, непрофессионализм и элементарное разгильдяйство – могут стать причиной нештатных ситуаций и системных аварий (называемых теперь, на английский манер – блэкаут). По этой причине, муниципальные власти любого посёлка и города – имеют постоянную головную боль по обеспечению резервными источниками питания (аккумуляторами и дизель-генераторами) для бесперебойного электроснабжения социальных объектов по резервной схеме.

Спецсплавы на медной основе, в электротехнике

При больших токах, до 10 А – применяют проволочный резистор большой мощности, называемый реостатом. В качестве обмотки используют проволоку, изготовленную из термостабильного (с минимальным температурным коэффициентом) сплава с большим удельным сопротивлением, например, из константана (40% Ni, 1,2% Mn, 58,8% Cu). Если напряжение между соседними витками не превышает 1 вольта – такую проволку можно наматывать плотно, виток к витку, без особой изоляции между витками, благодаря наличию естественной плёнки окисла, образующейся на поверхности данного металла, при быстром (не более трёх секунд) нагреве до достаточно высокой температуры (порядка 900 °С).

В приборах высокого класса точности – применяется манганин (3%Ni, 12%Mn, 85%Cu), менее термоустойчивый, но, в отличие от константанового провода, имеющий очень малую термоЭДС (контактную разность электрических потенциалов) в паре с медью.

Обозначения рекомендуемых кратных и дольных величин от единиц СИ

10^9 Ом – гигаом ГОм GΩ
10^6 Ом – мегаом МОм MΩ
10^3 Ом = 1000 Ом – килоом кОм kΩ. -9 Ом – наноом нОм nΩ

Зависимость сопротивления от температуры.

При нагревании, электрическое сопротивление металлических проводников – возрастает, а при охлаждении – уменьшается. Для вычисления, по формуле, электросопротивления при определённой температуре – используют, так называемый, "температурный коэффициент сопротивления" (ТКС). Расчёты ведутся от некоторого начального уровня температуры. Для интервала температур, в пределах обычных погодных условий (в зимнее и летнее время года) окружающей среды, зависимость для проводника описывается математической формулой:

R2 = R1 * (1 + α * (t2 – t1)),

где R1 (начальное, известное значение, при нуле или 20 градусов по Цельсию, измеренное или посчитанное) и R2 (искомое) – сопротивления резистора соответственно при температурах t1 (0°С или 20°С) и t2; α – температурный коэффициент сопротивления (из справочной таблицы), равный относительному изменению электр. сопротивления (удельного или абсолютного) при изменении температуры на 1 °С. Так как значения ТКС очень малы, то в справочниках их указывают в единицах тысячных или миллионных долей (ppm/°С – Parts Per Million) относительного изменения сопротивления на градус.

Обычно, исходные, табличные значения различных физических постоянных – приводятся или к нормальной комнатной температуре +20 °С или к нулевой (в справочных таблицах проводниковых и реостатных материалов, применяемых в электрических аппаратах).

В металлических термометрах, изготавливаемых из медной или платиновой проволоки – электросопротивление, с повышением температуры (без экстремально высоких, для этих материалов, значений) увеличивается почти линейно. Но, при чрезмерно сильном нагреве, к примеру, тонкого медного провода до температуры красного каления, его активное электрическое сопротивление постоянному току возрастает многократно.

Пример расчёта для стометрового алюминиевого шинопровода, радиусом 40 мм, нагретого на 95°С:
R = (R1 * (1 + α * (t2–t1))) * L / S =
= 2,62*10 -8 Ом•м * (1 + 0,0042*95) * 100 / (3,14 * 40 2 * 10 -6 ) = 7,3 * 10 -4 Ом
где:
S – площадь сечения в м 2 (с вычетом толщины слоёв изоляции),
L – длина проводника в метрах.

Температурный коэффициент сопротивления х10 -3 , 1/градус:
Алюминий – 4,2
Бронза оловянистая твёрдотянутая – 0,6-0,7
Вольфрам – 4,2
Графит – -1,3
Дюраль – 2,2
Константан – 0,003-0,005
Латунь – 1,5
Манганин – 0,03-0,06 (при температуре до 250-300°С)
Медь – 4,3
Нихром – 0,14
Серебро – 4,0
Сталь – 9,0
Цинк – 4,2

2

Постоянные резисторы и их маркировка

В буквенно-цифровой (кодовой) маркировке резисторов – на их корпус наносится числовое значение электрического сопротивления и буквы, первая из которых обозначает множитель (R или Е – Ом,&nbsp K – килоом,&nbsp M – мегаом) и, заодно, определяет положение разделительной запятой десятичного знака. 2)/4
с помощью своего калькулятора, находится диаметр (в миллиметрах) = корень квадратный из (4 * S / 3.14)

Длина провода, в единицах системы СИ (переводим в метры):
80 см = 0.8 м

Находим электр. сопротивление по формуле:
R = (p * L) / S = (0.017 * 0.8) / 0.2 = 0.068 Ом

Ответ: с точностью до второго знака после запятой, R = 0.07 Ом

Электромонтажные работы – монтаж электрики, подключение и обслуживание электропроводки. | Минисправочник по электрическим параметрам: соотношения Ом х мм2/м и мкОм x м (микроом), в технических расчётах.

Дата публикации: 26 марта 2013 .
Категория: Электротехника.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

0,050,070,10,20,30,40,50,711,522,54611
Наибольший допустимый ток, А0,711,32,53,545710141720253054
Рисунок 1. Условное обозначение электрического сопротивления

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать "Сопротивление проводника равно 15 Ом", можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой

ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Удельные сопротивления различных проводников

Материал проводникаУдельное сопротивление ρ в
Серебро
Медь
Алюминий
Вольфрам
Железо
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
0,016
0,0175
0,03
0,05
0,13
0,2
0,42
0,43
0,5
0,94
1,1

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t сопротивление проводника равно r

, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Значения температурного коэффициента для некоторых металлов

Серебро
Медь
Железо
Вольфрам
Платина0,0035
0,0040
0,0066
0,0045
0,0032Ртуть
Никелин
Константан
Нихром
Манганин0,0090
0,0003
0,000005
0,00016
0,00005

Из формулы температурного коэффициента сопротивления определим rt:

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Источник: Кузнецов М. И., "Основы электротехники" – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Удельное сопротивление материалов таблица

Закон Ома устанавливает связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах. Формулировка для участка электрической цепи (проводника), не содержащего источников электродвижущей силы (ЭДС): сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Законы Ома для замкнутой неразветвлённой цепи: сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна полному сопротивлению цепи. Закон Ома справедлив для постоянных и квазистационарных токов. Был открыт немецким физиком Георгом Омом в 1826 году. * Современная энциклопедия

В случае переменного тока, величины, входящие в расчётные формулы – становятся комплексными.

Закон Ома в дифференциальной форме – описывает исключительно электропроводящие свойства материала, вне зависимости от геометрических размеров.

Удельное электрическое сопротивление вещества есть электросопротивление изготовленного из него куба со сторонами, равными единице (1метр), когда ток идёт перпендикулярно двум его противоположным граням, площадью 1 квадратный метр каждая.2/м] (SI – Ω·m, рус. – Ом-метр, англ. – ohm-meter). Для измерения проводниковых материалов разрешается использовать внесистемную единицу –
Ом·мм2/м (для миллиметрового сечения проводника, длиной 1 м., то есть – миллионную часть Ом-метра).

Физический смысл удельного сопротивления: материал (однородный и изотропный*) имеет удельное электрическое сопротивление один Ом·м, если изготовленный из этого материала куб со стороной 1 метр имеет сопротивление 1 Ом при измерении на противоположных гранях куба.
* Изотропность – идентичность физических свойств во всех направлениях.

Удельное сопротивление характеризует способность вещества проводить электрический ток и не зависит от формы и размеров вещества, но меняется, при отличии его температуры от 20 °C (то есть, от комнатной, при которой определялись табличные значения для справочников).

На практике, в технике чаще применяется единица, в миллион раз меньшая (миллиметровое токоведущее сечение), чем Ом·м:

1 мкОм·м (SI – µΩ·m, рус.-9 Ом•м)

Металлы высокой проводимости (не более 0,1 мкОм.м) – используются для изготовления проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т. п. Металлы и сплавы высокого сопротивления (не менее 0,3 микроом-метр) – применяются для производства образцовых резисторов, реостатов, электроизмерительных приборов, электронагревательных устройств, нитей ламп накаливания и т. п. Нагревательные сплавы должны выдерживать длительную работу на открытом воздухе – без разрушения при температурах не менее 1000 °С.

Таблица значений удельного электрического сопротивления,
мкОм·м (микроом-метр) = Ом·мм2/м (равные числовые величины)

при температуре окружающей среды 20 градусов по Цельсию

Серебро – 0,015-0,016
Медь – 0,0172-0,0180
Золото – 0,024
Алюминий – 0.026-0.030
Вольфрам – 0,053-0,055
Цинк 0,053-0,062
Никель – 0.068-0,073
Латунь (сплав меди с цинком) – 0,043 – 0,108
Железо – 0,098
Сталь – 0,10-0,14
Олово – 0,12
Оловяно-свинцовый припой – 0,14 – 0,16
Бронзовые сплавы – 0,02 – 0,2
Свинец – 0,217 – 0,227
Никелин – 0,4
Манганин – 0,42 – 0,48
Константан – 0,48 – 0,52
Нихром – 1,05-1,40
Фехраль – 1,15-1,35
Угольно-графитовые щётки для электрических машин – 20-50
Угольный сварочный электрод – 50-90 мкОм·м

Минералка (с минерализацией воды – 2-7 грамм на литр) – 1-4 *10^6 мкОм·м = 1-4 Ом•м
Вода грунтовая – 10-50 *10^6
Влажная / сырая садовая земля (верхний слой почвы, грунта – после поливки) – 20-60 *10^6

Почему в электросетях применяется высокое напряжение

В линии электропередачи, при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом, считается желательным, увеличение напряжения до величин в десятки (внутригородские воздушные и кабельные сети электропередач на 380 вольт, 6, 10, 20, 35, 110, 220 и 330 кВ) и сотни киловольт (магистральные электросети сверхвысокого – ЛЭП500-750 кВ и ультравысокого напряжения, 1150кВ и выше) на линиях переменного и постоянного (150, 400, 800 кВ) тока. Но, при таких параметрах эксплуатации, постоянно растущем потреблении электрической энергии и частых пиковых перегрузках, износ оборудования, отсутствие резервных мощностей, погодные аномалии, локальные несоответствия требованиям безопасности, непрофессионализм и элементарное разгильдяйство – могут стать причиной нештатных ситуаций и системных аварий (называемых теперь, на английский манер – блэкаут). По этой причине, муниципальные власти любого посёлка и города – имеют постоянную головную боль по обеспечению резервными источниками питания (аккумуляторами и дизель-генераторами) для бесперебойного электроснабжения социальных объектов по резервной схеме.

Спецсплавы на медной основе, в электротехнике

При больших токах, до 10 А – применяют проволочный резистор большой мощности, называемый реостатом. В качестве обмотки используют проволоку, изготовленную из термостабильного (с минимальным температурным коэффициентом) сплава с большим удельным сопротивлением, например, из константана (40% Ni, 1,2% Mn, 58,8% Cu). Если напряжение между соседними витками не превышает 1 вольта – такую проволку можно наматывать плотно, виток к витку, без особой изоляции между витками, благодаря наличию естественной плёнки окисла, образующейся на поверхности данного металла, при быстром (не более трёх секунд) нагреве до достаточно высокой температуры (порядка 900 °С).

В приборах высокого класса точности – применяется манганин (3%Ni, 12%Mn, 85%Cu), менее термоустойчивый, но, в отличие от константанового провода, имеющий очень малую термоЭДС (контактную разность электрических потенциалов) в паре с медью.

Обозначения рекомендуемых кратных и дольных величин от единиц СИ

10^9 Ом – гигаом ГОм GΩ
10^6 Ом – мегаом МОм MΩ
10^3 Ом = 1000 Ом – килоом кОм kΩ.-9 Ом – наноом нОм nΩ

Зависимость сопротивления от температуры.

При нагревании, электрическое сопротивление металлических проводников – возрастает, а при охлаждении – уменьшается. Для вычисления, по формуле, электросопротивления при определённой температуре – используют, так называемый, "температурный коэффициент сопротивления" (ТКС). Расчёты ведутся от некоторого начального уровня температуры. Для интервала температур, в пределах обычных погодных условий (в зимнее и летнее время года) окружающей среды, зависимость для проводника описывается математической формулой:

R2 = R1 * (1 + α * (t2 – t1)),

где R1 (начальное, известное значение, при нуле или 20 градусов по Цельсию, измеренное или посчитанное) и R2 (искомое) – сопротивления резистора соответственно при температурах t1 (0°С или 20°С) и t2; α – температурный коэффициент сопротивления (из справочной таблицы), равный относительному изменению электр. сопротивления (удельного или абсолютного) при изменении температуры на 1 °С. Так как значения ТКС очень малы, то в справочниках их указывают в единицах тысячных или миллионных долей (ppm/°С – Parts Per Million) относительного изменения сопротивления на градус.

Обычно, исходные, табличные значения различных физических постоянных – приводятся или к нормальной комнатной температуре +20 °С или к нулевой (в справочных таблицах проводниковых и реостатных материалов, применяемых в электрических аппаратах).

В металлических термометрах, изготавливаемых из медной или платиновой проволоки – электросопротивление, с повышением температуры (без экстремально высоких, для этих материалов, значений) увеличивается почти линейно. Но, при чрезмерно сильном нагреве, к примеру, тонкого медного провода до температуры красного каления, его активное электрическое сопротивление постоянному току возрастает многократно.

Пример расчёта для стометрового алюминиевого шинопровода, радиусом 40 мм, нагретого на 95°С:
R = (R1 * (1 + α * (t2–t1))) * L / S =
= 2,62*10 -8 Ом•м * (1 + 0,0042*95) * 100 / (3,14 * 40 2 * 10 -6 ) = 7,3 * 10 -4 Ом
где:
S – площадь сечения в м 2 (с вычетом толщины слоёв изоляции),
L – длина проводника в метрах.

Температурный коэффициент сопротивления х10 -3 , 1/градус:
Алюминий – 4,2
Бронза оловянистая твёрдотянутая – 0,6-0,7
Вольфрам – 4,2
Графит – -1,3
Дюраль – 2,2
Константан – 0,003-0,005
Латунь – 1,5
Манганин – 0,03-0,06 (при температуре до 250-300°С)
Медь – 4,3
Нихром – 0,14
Серебро – 4,0
Сталь – 9,0
Цинк – 4,2

2

Постоянные резисторы и их маркировка

В буквенно-цифровой (кодовой) маркировке резисторов – на их корпус наносится числовое значение электрического сопротивления и буквы, первая из которых обозначает множитель (R или Е – Ом,&nbsp K – килоом,&nbsp M – мегаом) и, заодно, определяет положение разделительной запятой десятичного знака.2)/4
с помощью своего калькулятора, находится диаметр (в миллиметрах) = корень квадратный из (4 * S / 3.14)

Длина провода, в единицах системы СИ (переводим в метры):
80 см = 0.8 м

Находим электр. сопротивление по формуле:
R = (p * L) / S = (0.017 * 0.8) / 0.2 = 0.068 Ом

Ответ: с точностью до второго знака после запятой, R = 0.07 Ом

Электромонтажные работы – монтаж электрики, подключение и обслуживание электропроводки. | Минисправочник по электрическим параметрам: соотношения Ом х мм2/м и мкОм x м (микроом), в технических расчётах.

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок в зависимости от температуры — в диапазоне от 0 до 1350°С.

В общем случае, удельное сопротивление определяется только составом вещества и его температурой, оно численно равно полному сопротивлению изотропного проводника, имеющего длину 1 м и площадь поперечного сечения 1 м 2 .

Удельное электрическое сопротивление стали существенно зависит от состава и температуры. При повышении температуры этого металла увеличивается частота и амплитуда колебаний атомов кристаллической решетки, что создает дополнительное сопротивление прохождению электрического тока через толщу сплава. Поэтому, с ростом температуры сопротивление стали увеличивается.

Изменение состава стали и процента содержания в ней легирующих добавок значительно сказывается на величине электросопротивления. Например, углеродистые и низколегированные стали в несколько раз лучше проводят электрический ток, чем высоколегированные и жаропрочные, которые имеют высокое содержание никеля и хрома.

Углеродистые стали

Углеродистые стали при комнатной температуре, как уже было сказано, имеют низкое удельное электросопротивление за счет высокого содержания железа. При 20°С значение их удельного сопротивления находится в диапазоне от 13·10 -8 (для стали 08КП) до 20·10 -8 Ом·м (для У12).

При нагревании до температур более 1000°С способность углеродистых сталей проводить электрический ток сильно снижается. Величина сопротивления возрастает на порядок и может достигать значения 130·10 -8 Ом·м.

0,05 0,07 0,1 0,2 0,3 0,4 0,5 0,7 1 1,5 2 2,5 4 6 11
Наибольший допустимый ток, А 0,7 1 1,3 2,5 3,5 4 5 7 10 14 17 20 25 30 54
Удельное электрическое сопротивление углеродистых сталей ρэ·10 8 , Ом·м
Температура, °С Сталь 08КП Сталь 08 Сталь 20 Сталь 40 Сталь У8 Сталь У12
12 13,2 15,9 16 17 18,4
20 13 14,2 16,9 17,1 18 19,6
50 14,7 15,9 18,7 18,9 19,8 21,6
100 17,8 19 21,9 22,1 23,2 25,2
150 21,3 22,4 25,4 25,7 26,8 29
200 25,2 26,3 29,2 29,6 30,8 33,3
250 29,5 30,5 33,4 33,9 35,1 37,9
300 34,1 35,2 38,1 38,7 39,8 43
350 39,3 40,2 43,2 43,8 45 48,3
400 44,8 45,8 48,7 49,3 50,5 54
450 50,9 51,8 54,6 55,3 56,5 60
500 57,5 58,4 60,1 61,9 62,8 66,5
550 64,8 65,7 68,2 68,9 69,9 73,4
600 72,5 73,4 75,8 76,6 77,2 80,2
650 80,7 81,6 83,7 84,4 85,2 87,8
700 89,8 90,5 92,5 93,2 93,5 96,4
750 100,3 101,1 105 107,9 110,5 113
800 107,3 108,1 109,4 111,1 112,9 115
850 110,4 111,1 111,8 113,1 114,8 117,6
900 112,4 113 113,6 114,9 116,4 119,6
950 114,2 114,8 115,2 116,6 117,8 121,2
1000 116 116,5 116,7 117,9 119,1 122,6
1050 117,5 117,9 118,1 119,3 120,4 123,8
1100 118,9 119,3 119,4 120,7 121,4 124,9
1150 120,3 120,7 120,7 122 122,3 126
1200 121,7 122 121,9 123 123,1 127,1
1250 123 123,3 122,9 124 123,8 128,2
1300 124,1 124,4 123,9 124,6 128,7
1350 125,2 125,3 125,1 125 129,5

Низколегированные стали

Низколегированные стали способны чуть более сильно сопротивляться прохождению электричества, чем углеродистые. Их удельное электросопротивление составляет (20…43)·10 -8 Ом·м при комнатной температуре.

Следует отметить марки стали этого типа, которые наиболее плохо проводят электрический ток — это 18Х2Н4ВА и 50С2Г. Однако при высоких температурах, способность проводить электрический ток у сталей, приведенных в таблице, практически не различается.

Удельное электрическое сопротивление низколегированных сталей ρэ·10 8 , Ом·м
Марка стали 20 100 300 500 700 900 1100 1300
15ХФ 28,1 42,1 60,6 83,3
30Х 21 25,9 41,7 63,6 93,4 114,5 120,5 125,1
12ХН2 33 36 52 67 112
12ХН3 29,6 67 116
20ХН3 24 29 46 66 123
30ХН3 26,8 31,7 46,9 68,1 98,1 114,8 120,1 124,6
20ХН4Ф 36 41 56 72 102 118
18Х2Н4ВА 41 44 58 73 97 115
30Г2 20,8 25,9 42,1 64,5 94,6 114,3 120,2 125
12МХ 24,6 27,4 40,6 59,8
40Х3М 33,1 48,2 69,5 96,2
20Х3ФВМ 39,8 54,4 74,3 98,2
50С2Г 42,9 47 60,1 78,8 105,7 119,7 124,9 128,9
30Н3 27,1 32 47 67,9 99,2 114,9 120,4 124,8

Высоколегированные стали

Высоколегированные стали имеют удельное электрическое сопротивление в несколько раз выше чем углеродистые и низколегированные. По данным таблицы видно, что при температуре 20°С его величина составляет (30…86)·10 -8 Ом·м.

При температуре 1300°С сопротивление высоко- и низко- легированных сталей становится почти одинаковым и не превышает 131·10 -8 Ом·м.

Удельное электрическое сопротивление высоколегированных сталей ρэ·10 8 , Ом·м
Марка стали 20 100 300 500 700 900 1100 1300
Г13 68,3 75,6 93,1 95,2 114,7 123,8 127 130,8
Г20Х12Ф 72,3 79,2 91,2 101,5 109,2
Г21Х15Т 82,4 95,6 104,5 112 119,2
Х13Н13К10 90 100,8 109,6 115,4 119,6
Х19Н10К47 90,5 98,6 105,2 110,8
Р18 41,9 47,2 62,7 81,5 103,7 117,3 123,6 128,1
ЭХ12 31 36 53 75 97 119
40Х10С2М (ЭИ107) 86 91 101 112 122

Хромистые нержавеющие стали

Хромистые нержавеющие стали имеют высокую концентрацию атомов хрома, что увеличивает их удельное сопротивление — электропроводность такой нержавеющей стали не высока. При обычных температурах ее сопротивление составляет (50…60)·10 -8 Ом·м.

Удельное электрическое сопротивление хромистых нержавеющих сталей ρэ·10 8 , Ом·м
Марка стали 20 100 300 500 700 900 1100 1300
Х13 50,6 58,4 76,9 93,8 110,3 115 119 125,3
2Х13 58,8 65,3 80 95,2 110,2
3Х13 52,2 59,5 76,9 93,5 109,9 114,6 120,9 125
4Х13 59,1 64,6 78,8 94 108

Хромоникелевые аустенитные стали

Хромоникелевые аустенитные стали также являются нержавеющими, но за счет добавки никеля имеют удельное сопротивление почти в полтора раза выше, чем у хромистых — оно достигает величины (70…90)·10 -8 Ом·м.

Удельное электрическое сопротивление хромоникелевых нержавеющих сталей ρэ·10 8 , Ом·м
Марка стали 20 100 300 500 700 900 1100
12Х18Н9 74,3 89,1 100,1 109,4 114
12Х18Н9Т 72,3 79,2 91,2 101,5 109,2
17Х18Н9 72 73,5 92,5 103 111,5 118,5
Х18Н11Б 84,6 97,6 107,8 115
Х18Н9В 71 77,6 91,6 102,6 111,1 117,1 122
4Х14НВ2М (ЭИ69) 81,5 87,5 100 110 117,5
1Х14Н14В2М (ЭИ257) 82,4 95,6 104,5 112 119,2
1х14Н18М3Т 89 100 107,5 115
36Х18Н25С2 (ЭЯ3С) 98,5 105,5 110 117,5
Х13Н25М2В2 103 112,1 118,1 121
Х7Н25 (ЭИ25) 109 115 121 127
Х2Н35 (ЭИ36) 87,5 92,5 103 110 116 120,5
Н28 84,2 89,1 99,6 107,7 114,2 118,4 122,5

Жаропрочные и жаростойкие стали

По своим электропроводящим свойствам жаропрочные и жаростойкие стали близки к хромоникелевым. Высокое содержание в этих сплавах хрома и никеля не позволяет им проводить электрический ток, подобно обычным углеродистым с высокой концентрацией железа.

Значительное удельное электросопротивление и высокая рабочая температура таких сталей делают возможным их применение в качестве рабочих элементов электрических нагревателей. В частности, сталь 20Х23Н18 по своему сопротивлению и жаростойкости в некоторых случаях способна заменить такой популярный сплав для нагревателей, как нихром Х20Н80.

В данной статье мы подробно разберем что такое удельное сопротивление и электропроводность, ясно опишем все формулы с помощью примеров задач, а так же дадим вам таблицу удельных сопротивлений некоторых проводников.

Описание

Закон Ома гласит, что, когда источник напряжения (V) подается между двумя точками в цепи, между ними будет протекать электрический ток (I), вызванный наличием разности потенциалов между этими двумя точками. Количество протекающего электрического тока ограничено величиной присутствующего сопротивления (R). Другими словами, напряжение стимулирует протекание тока (движение заряда), но это сопротивление препятствует этому.

Мы всегда измеряем электрическое сопротивление в Омах, где Ом обозначается греческой буквой Омега, Ω. Так, например: 50 Ом, 10 кОм или 4,7 МОм и т.д. Проводники (например, провода и кабели) обычно имеют очень низкие значения сопротивления (менее 0,1 Ом), и, таким образом, мы можем пренебречь ими, как мы предполагаем в расчетах анализа цепи, что провода имеют ноль сопротивление. С другой стороны, изоляторы (например, пластиковые или воздушные), как правило, имеют очень высокие значения сопротивления (более 50 МОм), поэтому мы можем их игнорировать и для анализа цепи, поскольку их значение слишком велико.

Но электрическое сопротивление между двумя точками может зависеть от многих факторов, таких как длина проводников, площадь их поперечного сечения, температура, а также фактический материал, из которого он изготовлен. Например, давайте предположим, что у нас есть кусок провода (проводник), который имеет длину L, площадь поперечного сечения A и сопротивление R, как показано ниже.

Электрическое сопротивление R этого простого проводника является функцией его длины, L и площади поперечного сечения A. Закон Ома говорит нам, что для данного сопротивления R ток, протекающий через проводник, пропорционален приложенному напряжению, поскольку I = V / R. Теперь предположим, что мы соединяем два одинаковых проводника вместе в последовательной комбинации, как показано на рисунке.

Здесь, соединив два проводника вместе в последовательной комбинации, то есть, к концу, мы фактически удвоили общую длину проводника (2L), в то время как площадь поперечного сечения A остается точно такой же, как и раньше. Но помимо удвоения длины, мы также удвоили общее сопротивление проводника, дав 2R как: 1R + 1R = 2R.

Таким образом , мы можем видеть , что сопротивление проводника пропорционально его длину, то есть: R ∝ L. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально больше, чем оно длиннее.

Отметим также, что, удваивая длину и, следовательно, сопротивление проводника (2R), чтобы заставить тот же ток I, чтобы течь через проводник, как и раньше, нам нужно удвоить (увеличить) приложенное напряжение I = (2 В) / (2R). Далее предположим, что мы соединяем два идентичных проводника вместе в параллельной комбинации, как показано.

Здесь, соединяя два проводника в параллельную комбинацию, мы фактически удвоили общую площадь, дающую 2А, в то время как длина проводников L остается такой же, как у исходного одиночного проводника. Но помимо удвоения площади, путем параллельного соединения двух проводников мы фактически вдвое сократили общее сопротивление проводника, получив 1 / 2R, поскольку теперь каждая половина тока протекает через каждую ветвь проводника.

Таким образом, сопротивление проводника обратно пропорционально его площади, то есть: R 1 / ∝ A или R ∝ 1 / A. Другими словами, мы ожидаем, что электрическое сопротивление проводника (или провода) будет пропорционально меньше, чем больше его площадь поперечного сечения.

Кроме того, удваивая площадь и, следовательно, вдвое увеличивая суммарное сопротивление ветви проводника (1 / 2R), для того же тока, чтобы I протекал через параллельную ветвь провода, как раньше, нам нужно только наполовину уменьшить приложенное напряжение I = (1 / 2V) / (1 / 2R).

Надеемся, мы увидим, что сопротивление проводника прямо пропорционально длине (L) проводника, то есть: R ∝ L, и обратно пропорционально его площади (A), R ∝ 1 / A. Таким образом, мы можем правильно сказать, что сопротивление это:

Пропорциональность сопротивления

Но помимо длины и площади проводника, мы также ожидаем, что электрическое сопротивление проводника будет зависеть от фактического материала, из которого он изготовлен, потому что разные проводящие материалы, медь, серебро, алюминий и т.д., имеют разные физические и электрические свойства. Таким образом, мы можем преобразовать знак пропорциональности (∝) вышеприведенного уравнения в знак равенства, просто добавив «пропорциональную константу» в вышеприведенное уравнение, давая:

Уравнение удельного электрического сопротивления

Где: R — сопротивление в омах (Ω), L — длина в метрах (м), A — площадь в квадратных метрах (м 2 ), и где известна пропорциональная постоянная ρ (греческая буква «rho») — удельное сопротивление .

Удельное электрическое сопротивление

Удельное электрическое сопротивление конкретного материала проводника является мерой того, насколько сильно материал противостоит потоку электрического тока через него. Этот коэффициент удельного сопротивления, иногда называемый его «удельным электрическим сопротивлением», позволяет сравнивать сопротивление различных типов проводников друг с другом при определенной температуре в соответствии с их физическими свойствами без учета их длины или площади поперечного сечения. Таким образом, чем выше значение удельного сопротивления ρ, тем больше сопротивление, и наоборот.

Например, удельное сопротивление хорошего проводника, такого как медь, составляет порядка 1,72 х 10 -8 Ом (или 17,2 нОм), тогда как удельное сопротивление плохого проводника (изолятора), такого как воздух, может быть значительно выше 1,5 х 10 14 или 150 трлн.

Такие материалы, как медь и алюминий, известны низким уровнем удельного сопротивления, благодаря чему электрический ток легко проходит через них, что делает эти материалы идеальными для изготовления электрических проводов и кабелей. Серебро и золото имеют очень низкие значения удельного сопротивления, но по понятным причинам дороже делать из них электрические провода.

Тогда факторы, которые влияют на сопротивление (R) проводника в омах, могут быть перечислены как:

  • Удельное сопротивление (ρ) материала, из которого сделан проводник.
  • Общая длина (L) проводника.
  • Площадь поперечного сечения (А) проводника.
  • Температура проводника.

Пример удельного сопротивления № 1

Рассчитайте общее сопротивление постоянному току 100-метрового рулона медного провода 2,5 мм 2 , если удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 Ом метр.

Приведенные данные: удельное сопротивление меди при 20 o C составляет 1,72 x 10 -8 , длина катушки L = 100 м, площадь поперечного сечения проводника составляет 2,5 мм 2 , что дает площадь: A = 2,5 x 10 -6 м 2 .

Ответ: 688 МОм или 0,688 Ом.

Удельное электрическое сопротивление материала

Ранее мы говорили, что удельное сопротивление — это электрическое сопротивление на единицу длины и на единицу площади поперечного сечения проводника, таким образом, показывая, что удельное сопротивление ρ имеет размеры в Ом-метрах или Ом · м, как это обычно пишется. Таким образом, для конкретного материала при определенной температуре его удельное электрическое сопротивление определяется как.

Электрическая проводимость

Хотя как электрическое сопротивление (R), так и удельное сопротивление ρ, являются функцией физической природы используемого материала, а также его физической формы и размера, выраженных его длиной (L) и площадью его сечения ( А), Проводимость или удельная проводимость относится к легкости, с которой электрический ток проходит через материал.

Проводимость (G) является обратной величиной сопротивления (1 / R) с единицей проводимости, являющейся сименсом (S), и ей дается перевернутый символ омов mho, ℧. Таким образом, когда проводник имеет проводимость 1 сименс (1S), он имеет сопротивление 1 Ом (1 Ом). Таким образом, если его сопротивление удваивается, проводимость уменьшается вдвое, и наоборот, как: Сименс = 1 / Ом, или Ом = 1 / Ом.

В то время как сопротивление проводников дает степень сопротивления потоку электрического тока, проводимость проводника указывает на легкость, с которой он пропускает электрический ток. Таким образом, металлы, такие как медь, алюминий или серебро, имеют очень большие значения проводимости, что означает, что они являются хорошими проводниками.

Проводимость, σ (греческая буква сигма), является обратной величиной удельного сопротивления. Это 1 / ρ и измеряется в сименах на метр (S / m). Поскольку электропроводность σ = 1 / ρ, предыдущее выражение для электрического сопротивления R можно переписать в виде:

Электрическое сопротивление как функция проводимости

Тогда мы можем сказать, что проводимость — это эффективность, посредством которой проводник пропускает электрический ток или сигнал без потери сопротивления. Поэтому материал или проводник, который имеет высокую проводимость, будет иметь низкое удельное сопротивление, и наоборот, поскольку 1 сименс (S) равен 1 Ом -1 . Таким образом, медь, которая является хорошим проводником электрического тока, имеет проводимость 58,14 x 10 6 Симен на метр.

Пример удельного сопротивления №2

Кабель длиной 20 метров имеет площадь поперечного сечения 1 мм 2 и сопротивление 5 Ом. Рассчитать проводимость кабеля.

Приведенные данные: сопротивление постоянному току, R = 5 Ом, длина кабеля, L = 20 м, а площадь поперечного сечения проводника составляет 1 мм 2, что дает площадь: A = 1 x 10 -6 м 2 .

Ответ: 4 мега-симена на метр длины.

Таблица удельных сопротивлений проводников

Проводник Удельное сопротивление
ρ
Температурный коэффициент α
Алюминий 0,028 4,2
Бронза 0,095 — 0,1
Висмут 1,2
Вольфрам 0,05 5
Железо 0,1 6
Золото 0,023 4
Иридий 0,0474
Константан 0,5 0,05
Латунь 0,025 — 0,108 0,1-0,4
Магний 0,045 3,9
Манганин 0,43 — 0,51 0,01
Медь 0,0175 4,3
Молибден 0,059
Нейзильбер 0,2 0,25
Натрий 0,047
Никелин 0,42 0,1
Никель 0,087 6,5
Нихром 1,05 — 1,4 0,1
Олово 0,12 4,4
Платина 0.107 3,9
Ртуть 0,94 1,0
Свинец 0,22 3,7
Серебро 0,015 4,1
Сталь 0,103 — 0,137 1-4
Титан 0,6
Фехраль 1,15 — 1,35 0,1
Хромаль 1,3 — 1,5
Цинк 0,054 4,2
Чугун 0,5-1,0 1,0

Где: удельное сопротивление ρ измеряется в Ом*мм 2 /м и температурный коэффициент электрического сопротивления металлов α измеряется в 10 -3 *C -1 (или K -1 ) .

Краткое описание удельного сопротивления

Мы поговорили в этой статье об удельном сопротивлении, что удельное сопротивление — это свойство материала или проводника, которое указывает, насколько хорошо материал проводит электрический ток. Мы также видели, что электрическое сопротивление (R) проводника зависит не только от материала, из которого сделан проводник, меди, серебра, алюминия и т.д., но также от его физических размеров.

Сопротивление проводника прямо пропорционально его длине (L) как R ∝ L. Таким образом, удвоение его длины удвоит его сопротивление, в то время как последовательное удвоение проводника уменьшит вдвое его сопротивление. Также сопротивление проводника обратно пропорционально его площади поперечного сечения (A) как R ∝ 1 / A. Таким образом, удвоение его площади поперечного сечения уменьшило бы его сопротивление вдвое, тогда как удвоение его площади поперечного сечения удвоило бы его сопротивление.

Мы также узнали, что удельное сопротивление (символ: ρ) проводника (или материала) связано с физическим свойством, из которого он изготовлен, и варьируется от материала к материалу. Например, удельное сопротивление меди обычно дается как: 1,72 х 10 -8 Ом · м. Удельное сопротивление конкретного материала измеряется в единицах Ом-метров (Ом), которое также зависит от температуры.

В зависимости от значения удельного электрического сопротивления конкретного материала его можно классифицировать как «проводник», «изолятор» или «полупроводник». Обратите внимание, что полупроводники — это материалы, в которых их проводимость зависит от примесей, добавляемых в материал.

Удельное сопротивление также важно в системах распределения электроэнергии, так как эффективность системы заземления для системы электропитания и распределения сильно зависит от удельного сопротивления земли и материала почвы в месте расположения системы.

Проводимость — это имя, данное движению свободных электронов в форме электрического тока. Проводимость, σ является обратной величиной удельного сопротивления. Это 1 / ρ и имеет единицу измерения сименс на метр, S / m. Проводимость варьируется от нуля (для идеального изолятора) до бесконечности (для идеального проводника). Таким образом, сверхпроводник имеет бесконечную проводимость и практически нулевое омическое сопротивление.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

таблица удельного сопротивления меди, алюминия и других металлов

Как нам известно из закона Ома, ток на участке цепи находится в следующей зависимости: I=U/R. Закон был выведен в результате серии экспериментов немецким физиком Георгом Омом в XIX веке. Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно - от его сопротивления.

Позже было установлено, что сопротивление участка зависит от его геометрических характеристик следующим образом: R=ρl/S,

где l- длина проводника, S - площадь его поперечного сечения, а ρ - некий коэффициент пропорциональности.

Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление (далее - у. с.) - так назвали этот коэффициент. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление - это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества.

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ - это и есть удельное сопротивление вещества.

Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их "отдать", что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.

В растворах носителями заряда являются ионы.

Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:

  1. Проводники;
  2. Полупроводники;
  3. Диэлектрики.

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.8 Ом.

Между этими двумя классами существуют вещества, называемые полупроводниками. Но выделение их в отдельную группу веществ связано не столько с их промежуточным состоянием в линейке «проводимость - сопротивление», сколько с особенностями этой проводимости в различных условиях.

Зависимость от факторов внешней среды

Проводимость - не совсем постоянная величина. Данные в таблицах, откуда берут ρ для расчетов, существуют для нормальных условий среды, то есть для температуры 20 градусов. В реальности для работы цепи сложно подобрать такие идеальные условия; фактически у.с. (а стало быть, и проводимость) зависят от следующих факторов:

  1. температура;
  2. давление;
  3. наличие магнитных полей;
  4. свет;
  5. агрегатное состояние.

Разные вещества имеют свой график изменения этого параметра в разных условиях. Так, ферромагнетики (железо и никель) увеличивают его при совпадении направления тока с направлением силовых линий магнитного поля. Что касается температуры, то зависимость здесь почти линейная (существует даже понятие температурного коэффициента сопротивления, и это тоже табличная величина). Но направление этой зависимости различно: у металлов оно повышается с повышением температуры, а у редкоземельных элементов и растворов электролитов увеличивается - и это в пределах одного агрегатного состояния.

У полупроводников зависимость от температуры не линейная, а гиперболическая и обратная: при повышении температуры их проводимость увеличивается. Это качественно отличает проводники от полупроводников. Вот так выглядит зависимость ρ от температуры у проводников:

Здесь представлены удельное сопротивление меди, платины и железа. Немного другой график у некоторых металлов, например, ртути — при понижении температуры до 4 К она теряет его почти полностью (такое явление называется сверхпроводимостью).

А для полупроводников эта зависимость будет примерно такая:

При переходе в жидкое состояние ρ металла увеличивается, а вот дальше все они ведут себя по-разному. Например, у расплавленного висмута оно ниже, чем при комнатной температуре, а у меди - в 10 раз выше нормального. Никель выходит из линейного графика еще при 400 градусах, после чего ρ падает.

Зато у вольфрама температурная зависимость настолько высока, что это становится причиной перегорания ламп накаливания. При включении ток нагревает спираль, и ее сопротивление увеличивается в несколько раз.

Также у. с. сплавов зависит от технологии их производства. Так, если мы имеем дело с простой механической смесью, то сопротивление такого вещества можно посчитать по среднему, а вот оно же у сплава замещения (это когда два и более элемента складываются в одну кристаллическую решетку) будет иным, как правило, куда большим. Например, нихром, из которого делают спирали для электроплиток, имеет такую цифру этого параметра, что этот проводник при включении в цепь греется до красноты (из-за чего, собственно, и используется).

Вот характеристика ρ углеродистых сталей:

Как видно, при приближении к температуре плавления оно стабилизируется.-8 3,7

Как видно из таблицы, лучший проводник - это серебро. И только его стоимость мешает массово применять его в производстве кабеля. У.с. алюминия тоже небольшое, но меньше, чем у золота. Из таблицы становится понятно, почему проводка в домах либо медная, либо алюминиевая.

В таблицу не включен никель, у которого, как мы уже сказали, немного необычный график зависимости у. с. от температуры. Удельное сопротивление никеля после повышения температуры до 400 градусов начинает не расти, а падать. Интересно он ведет себя и в других сплавах замещения. Вот так ведет себя сплав меди и никеля в зависимости от процентного соотношения того и другого:

А этот интересный график показывает сопротивление сплавов Цинк - магний:

В качестве материалов для изготовления реостатов используют высокоомные сплавы, вот их характеристики:

сплав удельное сопротивление
манганин 4,82*10^-7
константан 4,9*10^-7
нихром 1,1*10^-6
фехраль 1,2*10^-6
хромаль 1,2*10^-6

Это сложные сплавы, состоящие из железа, алюминия, хрома, марганца, никеля.-7 Ом · м.

Разница между у. с. различных проводников определяет и их применение. Так, медь и алюминий массово применяются при производстве кабеля, а золото и серебро - в качестве контактов в ряде радиотехнических изделий. Высокоомные проводники нашли свое место среди производителей электроприборов (точнее, они и создавались для этого).

Изменчивость этого параметра в зависимости от условий внешней среды легла в основу таких приборов, как датчики магнитного поля, терморезисторы, тензодатчики, фоторезисторы.

Конвертер удельного электрического сопротивления • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Высоковольтная линия идет на север от атомной электростанции в Пикеринге, Онтарио, Канада

Общие сведения

Алюминиевый провод высоковольтной линии электропередачи

Как только электричество покинуло лаборатории учёных и стало широко внедряться в практику повседневной жизни, встал вопрос о поиске материалов, обладающих определёнными, порой совершенно противоположными, характеристиками по отношению к протеканию через них электрического тока.

Трубчатый нагреватель кухонной плиты

Например, при передаче электрической энергии на дальнее расстояние, к материалу проводов предъявлялись требования минимизации потерь из-за джоулева нагрева в сочетании с малыми весовыми характеристиками. Примером тому являются всем знакомые высоковольтные линии электропередач, выполненные из алюминиевых проводов со стальным сердечником.

Или, наоборот, для создания компактных трубчатых электронагревателей требовались материалы с относительно высоким электрическим сопротивлением и высокой термостойкостью. Простейшим примером прибора, в котором применяются материалы с подобными свойствами, может служить конфорка обыкновенной кухонной электроплиты.

От проводников, используемых в биологии и медицине в качестве электродов, зондов и щупов, требуется высокая химическая устойчивость и совместимость с биоматериалами в сочетании с малым контактным сопротивлением.

Александр Николаевич Лодыгин. Источник: Wikimedia Commons

Вольфрамовая спираль лампы накаливания

К разработке такого ныне привычного всем прибора, как лампа накаливания, свои усилия приложила целая плеяда изобретателей из разных стран: Англии, России, Германии, Венгрии и США. Томас Эдисон, проведя более тысячи опытов проверки свойств материалов, подходящих на роль нитей накала, создал лампу с платиновой спиралью. Лампы Эдисона, хотя и имели высокий срок эксплуатации, но не были практичными из-за высокой стоимости исходного материала.

Последующие работы русского изобретателя Лодыгина, предложившего использовать в качестве материалов нити относительно дешёвые тугоплавкие вольфрам и молибден с более высоким удельным сопротивлением, нашли практическое применение. К тому же Лодыгин предложил откачивать из баллонов ламп накаливания воздух, заменяя его инертными или благородными газами, что привело к созданию современных ламп накаливания. Пионером массового производства доступных и долговечных электрических ламп стала компания General Electric, которой Лодыгин переуступил права на свои патенты и далее успешно работал в лабораториях компании долгое время.

Низкое качество электропроводки часто является причиной пожаров в каркасных домах

Этот перечень можно продолжать, поскольку пытливый человеческий ум настолько изобретателен, что порой для решения определённой технической задачи ему нужны материалы с невиданными доселе свойствами или с невероятными сочетаниями этих свойств. Природа уже не успевает за нашими аппетитами и учёные всех стран мира включились в гонку создания материалов, не имеющих природных аналогов.

Одной из важнейших характеристик как природных, так и синтезированных материалов является удельное электрическое сопротивление. Примером электрического прибора, в котором в чистом виде применяется это свойство, может служить плавкий предохранитель, защищающий нашу электро- и электронную аппаратуру от воздействия тока, превышающего допустимые значения.

При этом надо заметить, что именно самодельные заменители стандартных предохранителей, выполненные без знаний удельного сопротивления материала, порой служат причиной не только выгорания различных элементов электрических схем, но и возникновения пожаров в домах и возгорания проводки в автомобилях.

Различные плавкие предохранители, применяемые для защиты электронной аппаратуры

То же самое относится и к замене предохранителей в силовых сетях, когда вместо предохранителя меньшего номинала устанавливается предохранитель с большим номиналом тока срабатывания. Это приводит к перегреву электропроводки и даже, как следствие, к возникновению пожаров с печальными последствиями. Особенно это присуще каркасным домам.

Историческая справка

Понятие удельного электрического сопротивление появилось благодаря трудам известного немецкого физика Георга Ома, который теоретически обосновал и в ходе многочисленных экспериментов доказал связь между силой тока, электродвижущей силой батареи и сопротивлением всех частей цепи, открыв таким образом закон элементарной электрической цепи, названным затем его именем. Ом исследовал зависимость величины протекающего тока от величины приложенного напряжения, от длины и формы материала проводника, а также от рода материала, используемого в качестве проводящей среды.

При этом надо отдать должное работам сэра Гемфри Дэви, английского химика, физика и геолога, который первым установил зависимости электрического сопротивления проводника от его длины и площади поперечного сечения, а также отметил зависимость электропроводности от температуры.

Исследуя зависимости протекания электрического тока от рода материалов, Ом обнаружил, что каждый доступный ему проводящий материал обладал некоторой присущей только ему характеристикой сопротивления протеканию тока.

Надо заметить, что во времена Ома один из самых обыкновенных ныне проводников — алюминий — имел статус особо драгоценного металла, поэтому Ом ограничился опытами с медью, серебром, золотом, платиной, цинком, оловом, свинцом и железом.

В конечном итоге Ом ввёл понятие удельного электрического сопротивления материала как фундаментальной характеристики, совершенно ничего не зная ни о природе протекания тока в металлах, ни о зависимости их сопротивления от температуры.

Удельное электрическое сопротивление. Определение

Удельное электрическое сопротивление или просто удельное сопротивление — фундаментальная физическая характеристика проводящего материала, которая характеризует способность вещества препятствовать похождению электрического тока. Обозначается греческой буквой ρ (произносится как ро) и рассчитывается исходя из эмпирической формулы для расчёта сопротивления, полученной Георгом Омом.

R = ρ ∙ L/S

или, отсюда

ρ = R ∙ S/L

где R — сопротивление в Омах, S — площадь в м²/, L — длина в м

Размерность удельного электрического сопротивления в Международной системе единиц СИ выражается в Ом•м.

Это сопротивление проводника длиной в 1 м и площадью поперечного сечения в 1 м²/ величиной в 1 Ом.

В электротехнике, для удобства расчётов, принято пользоваться производной величины удельного электрического сопротивления, выражаемой в Ом•мм²/м. Значения удельного сопротивления для наиболее распространённых металлов и их сплавов можно найти в соответствующих справочниках.

В таблицах 1 и 2 приведены значения удельных сопротивлений различных наиболее распространённых материалов.

Таблица 1. Удельное сопротивление некоторых металлов

Металлρ, Ом•мм²/мМеталлρ, Ом•мм²/мМеталлρ, Ом•мм²/м
Серебро0,015…0,0162Алюминий0,0262…0,0295Железо0,098
Медь0,01724…0,018Цинк0,059Платина0,107
Золото0,023Никель0,087Олово0,12

Таблица 2. Удельное сопротивление распространенных сплавов

Сплавρ, Ом•мм²/мСплавρ, Ом•мм²/мСплавρ, Ом•мм²/м
Сталь0,103…0,137Манганин0,43…0,51Хромаль1,3…1,5
Эваном0,764Нихром1,05…1,4Латунь0,025…0,108
Константан0,5Фехраль1,15…1,35Бронза0,095…0,1

Источник: Статья Википедии «Удельное электрическое сопротивление» с изменениями и дополнениями

 

Кристалл кварца

Удельные электрические сопротивления различных сред. Физика явлений

Удельные электрические сопротивления металлов и их сплавов, полупроводников и диэлектриков

Сегодня, вооружённые знаниями, мы в состоянии заранее просчитать удельное электрическое сопротивление любого, как природного, так и синтезированного материала исходя из его химического состава и предполагаемого физического состояния.

Эти знания помогают нам лучшим образом использовать возможности материалов, порой весьма экзотические и уникальные.

В силу сложившихся представлений, с точки зрения физики твёрдые тела подразделяются на кристаллические, поликристаллические и аморфные вещества.

Кварцевые резонаторы в различных устройствах

Проще всего, в смысле технического расчёта удельного сопротивления или его измерения, дело обстоит с аморфными веществами. Они не имеют выраженной кристаллической структуры (хотя и могут иметь микроскопические включения таковых веществ), относительно однородны по химическому составу и проявляют характерные для данного материала свойства.

У поликристаллических веществ, образованных совокупностью относительно мелких кристаллов одного химического состава, поведение свойств не очень отличается от поведения аморфных веществ, поскольку удельное электрическое сопротивление, как правило, определяется как интегральное совокупное свойство данного образца материала.

Кварцевый резонатор в форме камертона в корпусе и со снятым корпусом

Сложнее дело обстоит с кристаллическими веществами, особенно с монокристаллами, которые имеют различное удельное электрическое сопротивление и другие электрические характеристики относительно осей симметрии их кристаллов. Это свойство называется анизотропией кристалла и широко используется в технике, в частности, в радиотехнических схемах кварцевых генераторов, где стабильность частоты определяется именно генерацией частот, присущих данному кристаллу кварца.

Каждый из нас, являясь обладателем компьютера, планшета, мобильного телефона или смартфона, включая владельцев наручных электронных часов вплоть до iWatch, одновременно является обладателем кристаллика кварца. По этому можно судить о масштабах использования в электронике кварцевых резонаторов, исчисляемых десятками миллиардов.

Помимо прочего, удельное сопротивление многих материалов, особенно полупроводников, зависит от температуры, поэтому справочные данные обычно приводятся с указанием температуры измерения, обычно равной 20 °С.

Уникальные свойства платины, имеющей постоянную и хорошо изученную зависимость удельного электрического сопротивления от температуры, а также возможность получения металла высокой чистоты послужили предпосылкой создания на её основе датчиков в широком диапазоне температур.

Для металлов разброс справочных значений удельного сопротивления обусловлен способами изготовления образцов и химической чистотой металла данного образца.

Для сплавов более сильный разброс справочных значений удельного сопротивления обусловлен способами изготовления образцов и непостоянством состава сплава.

Удельное электрическое сопротивление жидкостей (электролитов)

Вода имеет максимальную плотность при 4 °С

В основе понимания удельного сопротивления жидкостей лежат теории термической диссоциации и подвижности катионов и анионов. Например, в самой распространённой жидкости на Земле – обыкновенной воде, некоторая часть её молекул под воздействием температуры распадается на ионы: катионы Н+ и анионы ОН– . При подаче внешнего напряжения на электроды, погружённые в воду при обычных условиях, возникает ток, обусловленный перемещением вышеупомянутых ионов. Как выяснилось, в воде образуются целые ассоциации молекул — кластеры, порой соединяющимися с катионами Н+ или анионами ОН–. Поэтому передача ионов кластерами под воздействием электрического напряжения происходит так: принимая ион в направлении приложенного электрического поля с одной стороны, кластер «сбрасывает» аналогичный ион с другой стороны. Наличие в воде кластеров прекрасно объясняет тот научный факт, что при температуре около 4 °C вода имеет наибольшую плотность. Большая часть молекул воды при этом находится в кластерах из-за действия водородных и ковалентных связей, практически в квазикристаллическом состоянии; термодиссоциация при этом минимальна, а образование кристаллов льда, который имеет более низкую плотность (лёд плавает в воде), ещё не началось.

В целом проявляется более сильная зависимость удельного сопротивления жидкостей от температуры, поэтому эта характеристика всегда измеряется при температуре в 293 K, что соответствует температуре 20 °C.

Помимо воды имеется большое число других растворителей, способных создавать катионы и анионы растворяемых веществ. Знание и измерение удельного сопротивления таких растворов также имеет большое практическое значение.

Для водных растворов солей, кислот и щелочей существенную роль в определении удельного сопротивления раствора играет концентрация растворённого вещества. Примером может служить следующая таблица, в которой приведены значения удельных сопротивлений различных растворённых в воде веществ при температуре 18 °С:

Таблица 3. Значения удельных сопротивлений различных растворённых в воде веществ при температуре 18 °С

 Удельное сопротивление, Ом•м
Концентрация c, %NH₄ClNaClZnSO₄CuSO₄КОНNaOHH₂SO₄
5,010,914,952,452,95,85,14,8
15,03,96,124,123,82,42,91,8
25,02,54,720,81,93,71,4

Данные таблиц взяты из Краткого физико-технического справочника, Том 1, — М.: 1960

 

Цветная гибкая полихлорвиниловая и жидкая изоленты

Удельное сопротивление изоляторов

Огромное значение в отраслях электротехники, электроники, радиотехники и робототехники играет целый класс различных веществ, имеющий относительно высокое удельное сопротивление. Вне зависимости от их агрегатного состояния, будь оно твёрдое, жидкое или газообразное, такие вещества называются изоляторами. Такие материалы используются для изолирования отдельных частей электрических схем друг от друга.

Примером твёрдых изоляторов может служить всем знакомая гибкая изолента, благодаря которой мы восстанавливаем изоляцию при соединении различных проводов. Многим знакомы фарфоровые изоляторы подвески воздушных линий электропередач, текстолитовые платы с электронными компонентами, входящими в состав большинства изделий электронной техники, керамика, стекло и многие другие материалы. Современные твёрдые изоляционные материалы на базе пластмасс и эластомеров делают безопасным использование электрического тока различных напряжений в самых разнообразных устройствах и приборах.

Мощные понижающие трансформаторы на трансформаторной подстанции в Торонто, Канада

Помимо твёрдых изоляторов широкое применение в электротехнике находят жидкие изоляторы с высоким удельным сопротивлением. В силовых трансформаторах электросетей жидкое трансформаторное масло предотвращает межвитковые пробои из-за ЭДС самоиндукции, надёжно изолируя витки обмоток. В масляных выключателях масло используется для гашения электрической дуги, которая возникает при переключении источников тока. Конденсаторное масло используется для создания компактных конденсаторов с высокими электрическими характеристиками; помимо этих масел в качестве жидких изоляторов используются природное касторовое масло и синтетические масла.

При нормальном атмосферном давлении все газы и их смеси являются с точки зрения электротехники отличными изоляторами, но благородные газы (ксенон, аргон, неон, криптон) в силу их инертности обладают более высоким удельным сопротивлением, что широко используется в некоторых областях техники.

Но самым распространённым изолятором служит воздух, в основном состоящий из молекулярного азота (75% по массе), молекулярного кислорода (23,15% по массе), аргона (1,3% по массе), углекислого газа, водорода, воды и некоторой примеси различных благородных газов. Он изолирует протекание тока в обычных бытовых выключателях света, переключателях тока на основе реле, магнитных пускателях и механических рубильниках. Необходимо отметить, что снижение давления газов или их смесей ниже атмосферного приводит к росту их удельного электрического сопротивления. Идеальным изолятором в этом смысле является вакуум.

Красными стрелками показано заземление оборудования столба высоковольтной линии электропередачи в жилом районе. На желтом фоне написано, что заземляющий провод изготовлен из омеднённой стали и не представляет ценности при сдаче в металлолом.

Удельное электрическое сопротивление различных грунтов

Одним из важнейших способов защиты человека от поражающего действия электрического тока при авариях электроустановок является устройство защитного заземления.

Оно представляет собой преднамеренное соединение кожуха или корпуса электроустройств с защитным заземляющим устройством. Обычно заземление выполняется в виде зарытых в землю на глубину более 2,5 метра стальных или медных полос, труб, стержней или уголков, которые в случае аварии обеспечивают протекание тока по контуру устройство — корпус или кожух — земля — нулевой провод источника переменного тока. Сопротивление этого контура должно быть не более 4 Ом. В этом случае напряжение на корпусе аварийного устройства снижается до безопасного для человека величин, а автоматические устройства защиты электрической цепи тем или иным способом производят отключение аварийного устройства.

При расчёте элементов защитного заземления существенную роль играет знание удельного сопротивления грунтов, которое может варьироваться в широких пределах.

Сообразуясь с данными справочных таблиц, выбирается площадь заземляющего устройства, по ней вычисляется количество заземляющих элементов и собственно конструкция всего устройства. Соединение элементов конструкции устройства защитного заземления производится сваркой.

Электротомография

Электроразведка изучает приповерхностную геологическую среду, применяется для поиска рудных и нерудных полезных ископаемых и других объектов на основе исследования различных искусственных электрических и электромагнитных полей. Частным случаем электроразведки является электротомография (Electrical Resistivity Tomography) — метод определения свойств горных пород по их удельному сопротивлению.

Суть метода заключается в том, что при определённом положении источника электрического поля проводятся замеры напряжения на различных зондах, затем источник поля перемещают в другое место или переключают на другой источник и повторяют измерения. Источники поля и зонды-приёмники поля размещают на поверхности и в скважинах.

Затем полученные данные обрабатываются и интерпретируются с помощью современных компьютерных методов обработки, позволяющих визуализировать информацию в виде двухмерных и трёхмерных изображений.

Электротомография оказывает неоценимую помощь геологам, археологам и палеозоологам

Являясь очень точным методом поиска, электротомография оказывает неоценимую помощь геологам, археологам и палеозоологам.

Определение формы залегания месторождений полезных ископаемых и границ их распространения (оконтуривание) позволяет выявить залегание жильных залежей полезных ископаемых, что существенно снижает затраты на их последующую разработку.

Археологам этот метод поиска даёт ценную информацию о расположении древних захоронений и наличия в них артефактов, тем самым сокращая затраты на раскопки.

Палеозоологи с помощью электротомографии ищут окаменевшие останки древних животных; результаты их работ можно увидеть в музеях естественных наук в виде поражающих воображение реконструкций скелетов доисторической мегафауны.

Кроме того, электротомография применяется при возведении и при последующей эксплуатации инженерных сооружений: высотных зданий, плотин, дамб, насыпей и других.

Определение диаметра проволоки

Определения удельного сопротивления на практике

Порой для решения практических задач перед нами может встать задача определения состава вещества, например, проволоки для резака пенополистирола. Имеем два мотка проволоки подходящего диаметра из различных неизвестных нам материалов. Для решения задачи необходимо найти их удельное электрическое сопротивление и далее по разнице найденных значений или по справочной таблице определить материал проволоки.

Отмерим рулеткой и отрежем по 2 метра проволоки от каждого образца. Определим диаметры проволок d₁ и d₂ микрометром. Включив мультиметр на нижний предел измерения сопротивлений, измеряем сопротивление образца R₁. Повторяем процедуру для другого образца и также измеряем его сопротивление R₂.

Учтём, что площадь поперечного сечения проволок рассчитывается по формуле

S = π · d2/4

Теперь формула для расчёта удельного электрического сопротивления будет выглядеть следующим образом

Измерение сопротивления куска проволоки

ρ = R · π · d2/4 · L

Подставляя полученные значения L, d₁ и R₁ в формулу для расчёта удельного сопротивления, приведенную в статье выше, вычисляем значение ρ₁ для первого образца.

ρ1 = 0,12 ом мм2

Подставляя полученные значения L, d₂ и R₂ в формулу, вычисляем значение ρ₂ для второго образца.

ρ2 = 1,2 ом мм2

Из сравнения значений ρ₁ и ρ₂ со справочными данными вышеприведенной Таблицы 2, делаем вывод, что материалом первого образца является сталь, а второго — нихром, из которого и изготовим струну резака.

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Сплавы для проводников и элементов сопротивления :: Технология металлов

Проводниковые материалы должны изготовляться из возможно чистых металлов, а материалы высокого сопротивления — из сплавов, структура которых пред­ставляет твердый раствор.

Основными проводниковыми материалами являются медь и алюминий. Понятие «чистого» металла условно, так как чистота получаемых металлов повы­шается из года в год по мере роста технических средств в производстве и в лабораториях. С другой стороны, электрическое сопротивление чистых металлов резко возрастает при наличии малых количеств растворенных примесей. Из рис.  видно, как значительно падает проводимость меди при введении в ее состав таких примесей, как кремний, железо, мышьяк, бериллий в количествах <0,2%. Для проводниковой техники разработан интернациональный стан­дарт технически чистой отожженной меди (1913 г.), удельное сопротивление которой при 20° С равно 1,7241 мкОм-см. С тех пор добились дальнейшего очи­щения меди и повышения ее проводимости.

Для повышения прочности медного провода в его состав вводят примеси Cd, Sn, Αl, Ρ, Cr, Be. Электропроводность при этом, естественно, понижается.

Рис. 1. Влияние примесей на электропроводность меди

Наиболее распространенной является так называемая кадмиевая бронза (0,9% Cd, остальное медь), которая в твердотянутом состоянии обладает проводимостью до 90% от проводимости меди при временном сопротивлении при растяжении, в 2—2,5 раза большем, чем у меди. В табл. 25 приведены составы и свойства медных проводниковых материалов.

Проводниковый алюминий имеет электропроводность, равную 65% от про­водимости меди. Однако ввиду малой плотности алюминия его проводимость, рассчитанная на 1 кг проводника, составляет 214% от таковой для меди. Это позволяет облегчить конструкцию опор на линиях передач с алюминиевыми про­водами. Для повышения прочности алюминиевых проводов в их состав вводят магний и кремний (совместно), которые образуют соединение Mg2Si, очень мало растворимое в алюминии при комнатной температуре (меньше 0,25%). Путем закалки и старения удается повысить временное сопротивление такого сплава в 2 раза при электропроводности 90% от проводимости чистого алюминия. Сплавы такого типа (альдрей и альмелек) содержат 0,4 и 0,7% Mg, 0,5—0,6% Si и до 0,3% Fe. Альдрей (0,4% Mg, 0,6% Si и 0,3% Fe) имеет температурный коэф­фициент электрического спротивления, равный 3,6 * 10-4, т. е. весьма близкий к температурному коэффициенту чистого алюминия (4,0 * 10-4). Это еще раз свидетельствует о том, что при обработке путем дисперсионного твердения Mg2Si выделяется из раствора почти нацело.

Для реостатов в нагревательных приборах, а также там, где необходимо высокое электрическое сопротивление и малый температурный коэффициент, применяют сплавы железа с примесями, образующими твердые растворы. В табл. 2 приводятся типичные железные сплавы, а также для сравнения сплавы на никелевой основе.

Эти сплавы являются не только сплавами высокого сопротивления, но и жаростойкими. Для придания жаростойкости в железные сплавы вводятся хром и алюминий. Железные сплавы дешевле никелевых, однако они не только не яв­ляются заменителями, но имеют также и более высокую рабочую температуру.

В качестве элементов сопротивления применяются  медноникелевые сплавы— константан и никелин. Рабочая температура константана до 400° С, никелина — до 200° С.

Таблица 1

Медные  проводниковые  сплавы

Сплав

Состояние

Электро­провод­ность, %

Временное сопротивле­ние при рас­тяжении, МПа

Удлине­ние,  %

Чистая медь

Отожженная

101

220—270

50

Твердотянутая

98

До 480

4

Кадмиевая     бронза

(0,9% Cd)

Отожженная

95

310—380

50  

Твердотянутая

83—90

До 730

4

Бронза     (0,75% Sn

или 0,8% Cd и 0,6% Sn)

Отожженная

55—60

290 .

55

Твердотянутая

50—55

До 730

4

Бронза      (2,5% А1, 2% Sn)

Отожженная

15—18

370

45

Твердотянутая

15—18

До 970

4

Фосфористая  бронза

(7% Sn, 0,1% Ρ)

Отожженная

10—15

400

60

Твердотянутая

10—15

1050

3

Таблица 2

Сплавы  для   реостатов  и  нагревательных  приборов

Сплав

Состав (средний),  %

Удельное электро­сопроти­вление, мкОм · см

Темпера­турный коэффи­циент α

Наивыс­шая ра­бочая темпера­тура, °С

Х13Ю4 (фехраль)

13,5 Сr; 4,5 Аl; остальное Fe

126

0,00005

1000

0Х23Ю5

23 Сr; 5 Аl; остальное Fe

137

1200

0Х27Ю5А

27 Сr; 5,5 Аl; остальное Fe

142

0,00002

1300

Сверхмегапир

37 Сr; 7,5 Аl; остальное Fe

180

0,00012

1350

Х15Н60 (нихром)

16,5 Сr: 58 Ni: остальное Fe

110

0,00017

1000

Х20Н80

21,5 Сr; остальное Ni

100

1100

 

Таблица 3.

Влияние   различных  элементов   на  удельное электросопротивление  железа

Элемент

 

 

Пределы концентрации и

температуры

Средние  значения   возрастания

удельного сопротивления, мкОм.см

% (по массе)

°с

на 1 % (по массе)

на 1 % (ат.)

Аl

0—2,0

18—23

11,1—14,4

6,0—7,7

As

0—2,6

6,8

9,10

Au

1.1

5,80

В

0—0,45

6,2

1,25

С

0—0,9

20

34,0

7,6

Со

0,5

18—30

1,0—3,0

1,1—3,2

Сг

0,3

12

2,5—5,4

2,3—5,0

Сu

0—1

3,0—4,0

3,4—4,6

Μn

0—2

18—30

5,0—10,5

4,9—10,3

Mo

0—1

17

3,4

5,8

Ν

0—0,1

20

14,6

3,8

Ni

0—5

18—30

1,55—4,45

1,7-4,7

Ρ

0—0,3

11,4

6,1

S

0—0,1

20

12,0

6,9

Si

0—1

20

13—15,8

6,5—8,0

Ti

1,0

0,9

V

0—1

6,7

6,1

W

0—2

15—20

2,0—3,6

6,5—11,8

 

 

 

Источник:
Лившиц Б.Г., Крапошин В.С, Липецкий Я.Л. "Физические свойства металлов и сплавов". М. «Металлургия», 1980.

Электрическое сопротивление и проводимость

Дата публикации: .
Категория: Статьи.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

Рисунок 1. Условное обозначение электрического сопротивления

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б. В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать "Сопротивление проводника равно 15 Ом", можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Материал проводника Удельное сопротивление ρ в
Серебро
Медь
Алюминий
Вольфрам
Железо
Свинец
Никелин (сплав меди, никеля и цинка)
Манганин (сплав меди, никеля и марганца)
Константан (сплав меди, никеля и алюминия)
Ртуть
Нихром (сплав никеля, хрома, железа и марганца)
0,016
0,0175
0,03
0,05
0,13
0,2
0,42
0,43
0,5
0,94
1,1

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Металл α

Металл

α

Серебро
Медь
Железо
Вольфрам
Платина
0,0035
0,0040
0,0066
0,0045
0,0032
Ртуть
Никелин
Константан
Нихром
Манганин
0,0090
0,0003
0,000005
0,00016
0,00005

Из формулы температурного коэффициента сопротивления определим rt:

rt = r0 [1 ± α (tt0)].

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

rt = r0 [1 ± α (tt0)] = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Источник: Кузнецов М. И., "Основы электротехники" – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Удельное сопротивление металлов и сплавов. Что такое удельное сопротивление проводника

Что такое удельное сопротивление вещества? Чтобы ответить простыми словами на этот вопрос, нужно вспомнить курс физики и представить физическое воплощение этого определения. Через вещество пропускается электрический ток, а оно, в свою очередь, препятствует с какой-то силой прохождению тока.

Понятие удельного сопротивления вещества

Именно эта величина, которая показывает насколько сильно препятствует вещество току и есть удельное сопротивление (латинская буква «ро»). В международной системе единиц сопротивление выражается в Омах , умноженных на метр. Формула для вычисления звучит так: «Сопротивление умножается на площадь поперечного сечения и делится на длину проводника».

Возникает вопрос: «Почему при нахождении удельного сопротивления используется еще одно сопротивление?». Ответ прост, есть две разных величины - удельное сопротивление и сопротивление. Второе показывает насколько вещество способно препятствовать прохождению через него тока, а первое показывает практически то же самое, только речь идет уже не о веществе в общем смысле, а о проводнике с конкретной длиной и площадью сечения, которые выполнены из этого вещества.

Обратная величина, которая характеризует способность вещества пропускать электричество именуется удельной электрической проводимостью и формула по которой вычисляется удельная сопротивляемость напрямую связана с удельной проводимостью.

Применение меди

Понятие удельного сопротивления широко применяется в вычисление проводимости электрического тока различными металлами. На основе этих вычислений принимаются решения о целесообразности применения того или иного металла для изготовления электрических проводников, которые используются в строительстве, приборостроении и других областях.

Таблица сопротивления металлов

Существуют определенные таблицы? в которых сведены воедино имеющиеся сведения о пропускании и сопротивлении металлов, как правило, эти таблицы рассчитаны для определенных условий.

В частности, широко известна таблица сопротивления металлических монокристаллов при температуре двадцать градусов по Цельсию, а также таблица сопротивления металлов и сплавов.

Этими таблицами пользуются для вычисления различных данных в так называемых идеальных условиях, чтобы вычислить значения для конкретных целей нужно пользоваться формулами.

Медь. Ее характеристики и свойства

Описание вещества и свойства

Медь - это металл, который очень давно был открыт человечеством и также давно применяется для различных технических целей. Медь очень ковкий и пластичный металл с высокой электрической проводимостью, это делает ее очень популярной для изготовления различных проводов и проводников.

Физические свойства меди:

  • температура плавления - 1084 градусов по Цельсию;
  • температура кипения - 2560 градусов по Цельсию;
  • плотность при 20 градусах - 8890 килограмм деленный на кубический метр;
  • удельная теплоемкость при постоянном давлении и температуре 20 градусов - 385 кДж/Дж*кг
  • удельное электрическое сопротивление - 0,01724;

Марки меди

Данный металл можно разделить на несколько групп или марок, каждая из которых имеет свои свойства и свое применение в промышленности:

  1. Марки М00, М0, М1 - отлично подходят для производства кабелей и проводников, при ее переплавке исключается перенасыщение кислородом.
  2. Марки М2 и М3 - дешевые варианты, которые предназначены для мелкого проката и удовлетворяют большинству технических и промышленных задач небольшого масштаба.
  3. Марки М1, М1ф, М1р, М2р, М3р - это дорогие марки меди, которые изготавливаются для конкретного потребителя со специфическими требованиями и запросами.

Между собой марки отличаются по нескольким параметрам:

Влияние примесей на свойства меди

Примеси могут влиять на механические, технические и эксплуатационные свойства продукции.

Электрическое сопротивление, выражаемое в омах, отличается от понятия «удельное сопротивление». Чтобы понять, что такое удельное сопротивление, надо связать его с физическими свойствами материала.

Об удельной проводимости и удельном сопротивлении

Поток электронов не перемещается беспрепятственно через материал. При постоянной температуре элементарные частицы качаются вокруг состояния покоя. Кроме того, электроны в зоне проводимости мешают друг другу взаимным отталкиванием из-за аналогичного заряда. Таким образом возникает сопротивление.

Удельная проводимость является собственной характеристикой материалов и количественно определяет легкость, с которой заряды могут двигаться, когда вещество подвергается воздействию электрического поля. Удельное сопротивление является обратной величиной и характеризуется степенью трудности, которую электроны встречают при своих перемещениях внутри материала, давая представление о том, насколько хорош или плох проводник.

Важно! Удельное электрическое сопротивление с высоким значением указывает на то, что материал плохо проводящий, а с низким значением – определяет хорошее проводящее вещество.

Удельная проводимость обозначается буквой σ и рассчитывается по формуле:

Удельное сопротивление ρ, как обратный показатель, можно найти так:

В этом выражении E является напряженностью создаваемого электрического поля (В/м), а J – плотностью электротока (А/м²). Тогда единица измерения ρ будет:

В/м х м²/А = ом м.

Для удельной проводимости σ единицей, в которой она измеряется, служит См/м или сименс на метр.

Типы материалов

В соответствии с удельным сопротивлением материалов, их можно классифицировать на несколько типов:

  1. Проводники. К ним относятся все металлы, сплавы, растворы, диссоциированные на ионы, а также термически возбужденные газы, включая плазму. Из неметаллов можно привести в пример графит;
  2. Полупроводники, фактически представляющие собой непроводящие материалы, кристаллические решетки которых целенаправленно легированы включением чужеродных атомов с большим или меньшим числом связанных электронов. В результате в структуре решетки образуются квазисвободные избыточные электроны или дырки, которые вносят вклад в проводимость тока;
  3. Диэлектрики или изоляторы диссоциированные – все материалы, которые в нормальных условиях не имеют свободных электронов.

Для транспортировки электрической энергии или в электроустановках бытового и промышленного назначения часто используемый материал – медь в виде одножильных или многожильных кабелей. Альтернативно применяется металл алюминий, хотя удельное сопротивление меди составляет 60% от такого же показателя для алюминия. Но он гораздо легче меди, что предопределило его использование в линиях электропередач сетей высокого напряжения. Золото в качестве проводника применяется в электроцепях специального назначения.

Интересно. Электропроводность чистой меди была принята Международной электротехнической комиссией в 1913 году в качестве стандарта по этой величине. Согласно определению, проводимость меди, измеренная при 20°, равна 0,58108 См/м. Это значение называется 100% LACS, а проводимость остальных материалов выражается как определенный процент LACS.

Большинство металлов имеют значение проводимости меньше 100% LACS. Однако есть исключения, такие как серебро или специальная медь с очень высокой проводимостью, обозначенные С-103 и С-110, соответственно.

Диэлектрики не проводят электричество и используются в качестве изоляторов. Примеры изоляторов:

  • стекло,
  • керамика,
  • пластмасса,
  • резина,
  • слюда,
  • воск,
  • бумага,
  • сухая древесина,
  • фарфор,
  • некоторые жиры для промышленного и электротехнического использования и бакелит.

Между тремя группами переходы являются текучими. Известно точно: абсолютно непроводящих сред и материалов нет. Например, воздух – изолятор при комнатной температуре, но в условиях мощного сигнала низкой частоты он может стать проводником.

Определение удельной проводимости

Если сравнивать удельное электрическое сопротивление различных веществ, требуются стандартизированные условия измерения:

  1. В случае жидкостей, плохих проводников и изоляторов, используют кубические образцы с длиной ребра 10 мм;
  2. Величины удельного сопротивления почв и геологических образований определяются на кубах с длиной каждого ребра 1 м;
  3. Проводимость раствора зависит от концентрации его ионов. Концентрированный раствор менее диссоциирован и имеет меньше носителей заряда, что снижает проводимость. По мере увеличения разведения увеличивается число ионных пар. Концентрация растворов устанавливается в 10%;
  4. Для определения удельного сопротивления металлических проводников используются провода метровой длины и сечения 1 мм².

Если материал, такой как металл, может обеспечить свободные электроны, то когда приложить разность потенциалов, по проводу потечет электрический ток. По мере увеличения напряжения большее количество электронов перемещается через вещество во временную единицу. Если все дополнительные параметры (температура, площадь поперечного сечения, длина и материал провода) неизменны, то отношение силы тока к приложенному напряжению тоже постоянно и именуется проводимостью:

Соответственно, электросопротивление будет:

Результат получается в ом.

В свою очередь, проводник может быть разных длины, размеров сечения и изготавливаться из различных материалов, от чего зависит значение R. Математически эта зависимость выглядит так:

Фактор материала учитывает коэффициент ρ.

Отсюда можно вывести формулу для удельного сопротивления:

Если значения S и l соответствуют заданным условиям сравнительного расчета удельного сопротивления, т. е. 1 мм² и 1 м, то ρ = R. При изменении габаритов проводника количество омов тоже меняется.

Содержание:

Появление электрического тока наступает при замыкании цепи, когда на зажимах возникает разность потенциалов. Перемещение свободных электронов в проводнике осуществляется под действием электрического поля. В процессе движения, электроны сталкиваются с атомами и частично передают им свою накопившуюся энергию. Это приводит к уменьшению скорости их движения. В дальнейшем, под влиянием электрического поля, скорость движения электронов снова увеличивается. Результатом такого сопротивления становится нагревание проводника, по которому течет ток. Существуют различные способы расчетов этой величины, в том числе и формула удельного сопротивления, применяющаяся для материалов с индивидуальными физическими свойствами.

Электрическое удельное сопротивление

Суть электрического сопротивления заключается в способности того или иного вещества превращать электрическую энергию в тепловую во время действия тока. Данная величина обозначается символом R, а в качестве единицы измерения используется Ом. Значение сопротивления в каждом случае связано со способностью того или иного .

В процессе исследований была установлена зависимость от сопротивления. Одним из основных качеств материала становится его удельное сопротивление, меняющееся в зависимости от длины проводника. То есть, с увеличением длины провода, возрастает и значение сопротивления. Данная зависимость определяется как прямо пропорциональная.

Другим свойством материала является площадь его поперечного сечения. Она представляет собой размеры поперечного среза проводника, независимо от его конфигурации. В этом случае получается обратно пропорциональная связь, когда с увеличением площади поперечного сечения уменьшается .

Еще одним фактором, влияющим на сопротивление, является сам материал. Во время проведения исследований была обнаружена различная сопротивляемость у разных материалов. Таким образом, были получены значения удельных электрических сопротивлений для каждого вещества.

Выяснилось, что самыми лучшими проводниками являются металлы. Среди них самой низкой сопротивляемостью и высокой проводимостью обладают и серебро. Они применяются в наиболее ответственных местах электронных схем, к тому же медь имеет сравнительно низкую стоимость.

Вещества, удельное сопротивление которых очень высокое, считаются плохими проводниками электрического тока. Поэтому они используются в качестве изоляционных материалов. Диэлектрические свойства более всего присущи фарфору и эбониту.

Таким образом, удельное сопротивление проводника имеет большое значение, поскольку с его помощью можно определить материал, из которого был изготовлен проводник. Для этого измеряется площадь сечения, определяется сила тока и напряжение. Это позволяет установить значение удельного электрического сопротивления, после чего, с помощью специальной таблицы можно легко определить вещество. Следовательно, удельное сопротивление относится к наиболее характерным признакам того или иного материала. Этот показатель позволяет определить наиболее оптимальную длину электрической цепи так, чтобы соблюдался баланс .

Формула

На основании полученных данных можно сделать вывод, что удельным сопротивлением будет считаться сопротивление какого-либо материала с единичной площадью и единичной длиной. То есть сопротивление, равное 1 Ом возникает при напряжении 1 вольт и силе тока 1 ампер. На этот показатель оказывает влияние степень чистоты материала. Например, если к меди добавить всего лишь 1% марганца, то ее сопротивляемость увеличится в 3 раза.

Удельное сопротивление и проводимость материалов

Проводимость и удельное сопротивление рассматриваются как правило при температуре 20 0 С. Эти свойства будут отличаться у различных металлов:

  • Медь . Чаще всего применяется для изготовления проводов и кабелей. Она обладает высокой прочностью, стойкостью к коррозии, легкой и простой обработкой. В хорошей меди доля примесей составляет не более 0,1%. В случае необходимости медь может использоваться в сплавах с другими металлами.
  • Алюминий . Его удельный вес меньше, чем у меди, однако у него более высокая теплоемкость и температура плавления. Чтобы расплавить алюминий, потребуется энергии значительно больше, чем для меди. Примеси в качественном алюминии не превышают 0,5%.
  • Железо . Наряду с доступностью и дешевизной, этот материал обладает высоким удельным сопротивлением. Кроме того, у него низкая устойчивость к коррозии. Поэтому практикуется покрытие стальных проводников медью или цинком.

Отдельно рассматривается формула удельного сопротивления в условиях низких температур. В этих случаях свойства одних и тех же материалов будут совершенно другими. У некоторых из них сопротивляемость может упасть до нулевой отметки. Такое явление получило название сверхпроводимости, при которой оптические и структурные характеристики материала остаются неизменными.

Электрический ток возникает в результате замыкания цепи с разностью потенциалов на зажимах. Силы поля воздействуют на свободные электроны и они перемещаются по проводнику. В процессе этого путешествия, электроны встречаются с атомами и передают им часть своей накопившейся энергии. В результате этого их скорость уменьшается. Но, из-за воздействия электрического поля, она снова набирает обороты. Таким образом, электроны постоянно испытывают на себе сопротивление, именно поэтому электрический ток нагревается.

Свойство вещества, превращать электроэнергию в тепло во время воздействия тока, и является электрическим сопротивлением и обозначается, как R, его измерительной единицей является Ом. Величина сопротивления зависит, главным образом от способности различных материалов проводить ток.
Впервые, о сопротивляемости заявил немецкий исследователь Г. Ом.

Для того, чтобы узнать зависимость силы тока от сопротивления, известный физик провел множество экспериментов. Для опытов он использовал различные проводники и получал различные показатели.
Первое, что определил Г. Ом — это то, что удельное сопротивление зависит от длинны проводника. То есть, если увеличивалась длинна проводника, сопротивление тоже увеличивалось. В результате, эта связь была определена, как прямо пропорциональная.

Вторая зависимость — это площадь поперечного сечения. Её можно было определить путем поперечного среза проводника. Площадь той фигуры, что образовалась на срезе и есть площадь поперечного сечения. Здесь связь получилась обратно пропорциональная. То есть чем больше была площадь поперечного сечения, тем меньше становилось сопротивление проводника.

И третья, важная величина, от которой зависит сопротивление, это материал. В результате того, что Ом использовал в опытах различные материалы, он обнаружил различные свойства сопротивляемости. Все эти опыты и показатели были сведены в таблицу из которой видно, различное значение удельной сопротивляемости у различных веществ.

Известно, что самые лучшие проводники — металлы. А какие из металлов лучшие проводники? В таблице показано, что наименьшей сопротивляемостью обладают медь и серебро. Медь используется чаще из-за меньшей стоимости, а серебро применяют в наиболее важных и ответственных приборах.

Вещества с высоким удельным сопротивлением в таблице, плохо проводят электрический ток, а значит могут быть прекрасными изоляционными материалами. Вещества обладающие этим свойством в наибольшей степени, это фарфор и эбонит.

Вообще, удельное электрическое сопротивление является очень важным фактором, ведь, определив его показатель, мы можем узнать из какого вещества сделан проводник. Для этого необходимо измерить площадь сечения, узнать силу тока с помощью вольтметра и амперметра, а также измерить напряжение. Таким образом мы узнаем значение удельного сопротивления и, с помощью таблицы легко выйдем на вещество. Получается, что удельное сопротивление — это в роде отпечатков пальцев вещества. Кроме этого, удельное сопротивление важно при планировании длинных электрических цепей: нам необходимо знать этот показатель, чтобы соблюдать баланс между длинной и площадью.

Есть формула, определяющая, что сопротивление равно 1 ОМ, если при напряжении 1В, его сила тока равняется 1А. То есть, сопротивление единичной площади и единичной длинны, сделанного из определенного вещества и есть удельное сопротивление.

Надо отметить также, что показатель удельного сопротивления напрямую зависит от частоты вещества. То есть от того имеет ли он примеси. Та, добавление всего одного процента марганца увеличивает сопротивляемость самого проводящего вещества — меди, в три раза.

Эта таблица демонстрирует величину удельного электрического сопротивления некоторых веществ.



Материалы с высокой проводимостью

Медь
Как мы уже говорили медь чаще всего применяется в качестве проводника. Это объясняется не только её низкой сопротивляемостью. Медь имеет такие преимущества, как высокая прочность, стойкость к коррозии, легкость в использовании и хорошая обрабатываемость. Хорошими марками меди считается М0 и М1. В них количество примесей не превышает 0,1%.

Высокая стоимость металла и его преобладающая в последнее время дефицитность побуждает производителей применять в качестве проводника алюминий. Также, используются сплавы меди с различными металлами.
Алюминий
Этот металл значительно легче меди, но алюминий обладает большими значениями теплоемкости и температуры плавления. В связи с этим для того, что довести его до расплавленного состояния требуется больше энергии, чем меди. Тем не менее нужно учитывать факт дефицитности меди.
В производстве электротехнических изделий применяется, как правило, алюминий марки А1. Он содержит не более 0,5% примесей. А металл наивысшей частоты — это алюминий марки АВ0000.
Железо
Дешевизна и доступность железа омрачается его высокой удельной сопротивляемостью. Кроме того, она быстро подвергается коррозии. По этой причине стальные проводники часто покрывают цинком. Широко используется так называемый биметалл — это сталь покрытая для защиты медью.
Натрий
Натрий, тоже доступный и перспективный материал, но его сопротивляемость почти в три раза больше меди. Кроме того, металлический натрий обладает высокой химической активностью, что обязывает покрывать такой проводник герметичной защитой. Она же должна защищать проводник от механических повреждений, так как натрий очень мягкий и достаточно непрочный материал.

Сверхпроводимость
В таблице ниже, указано удельное сопротивление веществ при температуре 20 градусов. Указание температуры неслучайно, ведь удельное сопротивление напрямую зависит от этого показателя. Это объясняется тем, что при нагревании, повышается и скорость атомов, а значит вероятность встречи их с электронами тоже увеличится.


Интересно, что происходит с сопротивляемостью в условиях охлаждения. Впервые поведение атомов при очень низких температурах заметил Г. Камерлинг-Оннес в 1911 году. Он охладил ртутную проволоку до 4К и обнаружил падение её сопротивляемости до нуля. Изменение показателя удельной сопротивляемости у некоторых сплавов и металлов в условиях низкой температуры, физик назвал сверхпроводимостью.

Сверхпроводники переходят в состояние сверхпроводимости при охлаждении, и, при этом их оптические и структурные характеристики не меняются. Главное открытие состоит в том, что электрические и магнитные свойства металлов в сверхпроводящем состоянии сильно отличаются от их же свойств в обычном состоянии, а также от свойств других металлов, которые при понижении температуры не могут переходить в это состояние.
Применение сверхпроводников осуществляется, главным образом, в получении сверхсильного магнитного поля, сила которого достигает 107 А/м. Также разрабатываются системы сверхпроводящих линий электропередач.

Похожие материалы.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать "Сопротивление проводника равно 15 Ом", можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Диаграмма AWG и удельное электрическое сопротивление и проводимость

Диаграмма AWG
9000/0 )
AWG Диаметр витков провода Площадь Медь
сопротивление [6]
Медный провод NEC
допустимая нагрузка при
60/75/90 ° C
изоляция (A) [7]
Приблизительно
в стандартных метрических эквивалентах
Ток предохранителя
(медь) [8] [9]
(дюйм) (мм) (на дюйм) (на см) (тыс. Мил) (мм 2 ) (Ом / км)
(мОм / м)
(Ом / kFT)
(мОм / фут)
Preece
(~ 10 с)
Onderdonk
(1 с)
Onderdonk
(32 мс)
0000 (4/0) 0.4600 11,684 2,17 0,856 212 107 0,1608 0,04901 195/230/260 31 кА 173 кА
0,4096 10,404 2,44 0,961 168 85,0 0,2028 0,06180 165/200/225 24,5 137 008 кА
004
04 2/0)
0.3648 9,266 2,74 1,08 133 67,4 0,2557 0,07793 145/175/195 19,5 кА 109 кА 0 ) 0,3249 8,252 3,08 1,21 106 53,5 0,3224 0,09827 125/150/170 1,9 кА 15,5 87 кА 04
04 1 4
0.2893 7,348 3,46 1,36 83,7 42,4 0,4066 0,1239 110/130/150 1,6 кА 12 кА 68 кА
0 2 0,2576 9,7 кА 0.2294
6,544 3,88 1,53 66,4 33,6 0,5127 0,1563 95/115/130 1,3 кА 9,7 кА 54
54
5,827 4,36 1,72 52,6 26,7 0,6465 0,1970 85/100/110 196 / 0,4 1,1 кА 7,7 кА 04 43 кА 4
0,2043 5,189 4,89 1,93 41,7 21,2 0,8152 0,2485 70/85/95 946 A 6,1 кА 04 5 4 4 0,4 9000 900 0,19 4
0.1819 4,621 5,50 2,16 33,1 16,8 1,028 0,3133 126 / 0,4 795 A 4,8 кА 27 кА
0 0,19 4,115 6,17 2,43 26,3 13,3 1,296 0,3951 55/65/75 668 A 3,8 кА 21 кА 03 03 031443 3,665 6,93 2,73 20,8 10,5 1,634 0,4982 80 / 0,4 561 A 3 кА 17 кА
3,264 7,78 3,06 16,5 8,37 2,061 0,6282 40/50/55 472 A 2,4 кА 13,5 кА
031144 2,906 8,74 3,44 13,1 6,63 2,599 0,7921 84 / 0,3 396 A 1,9 кА 10,7
1,9 кА 10,7
0 0907 4 4 1400080 0,03 900 4
2,588 9,81 3,86 10,4 5,26 3,277 0,9989 30/35/40 333 A 1,5 кА 8,5 кА
11 2,305 11,0 4,34 8,23 4,17 4,132 1,260 56 / 0,3 280 A 1,2 0,0 кА 6,7 кА
0 2,053 12,4 4,87 6,53 3,31 5,211 1,588 25/25/30 235 A 955 A 5,3 кА
.0720 1,828 13,9 5,47 5,18 2,62 6,571 2,003 50 / 0,25 198 A 758 A 4,2 кА
1,628 15,6 6,14 4,11 2,08 8,286 2,525 20/20/25 166 A 601 A 3,3 кА
03 .0571 1,450 17,5 6,90 3,26 1,65 10,45 3,184 30 / 0,25 140 A 477 A 2,7 кА
0,08 900 1,291 19,7 7,75 2,58 1,31 13,17 4,016 - / - / 18 117 A 377 A 2,1 кА
0. 0. 0453 1,150 22,1 8,70 2,05 1,04 16,61 5,064 32 / 0,2 99 A 300 A 1,7 кА 0
03 03 03 03 1,024 24,8 9,77 1,62 0,823 20,95 6,385 - / - / 14 24 / 0,2 83 A 237 A 1.3 кА
19 0,0359 0,912 27,9 11,0 1,29 0,653 26,42 8,051 70 A 189 1 70 A 189 A 0 0226 4
0,0320 0,812 31,3 12,3 1,02 0,518 33,31 10,15 16 / 0,2 58,5 A 149 A 834 A 149 A 834 149 A 834 9000 0.0285 0,723 35,1 13,8 0,810 0,410 42,00 12,80 13 / 0,2 49 A 119 A 662 A
0,01 0,644 39,5 15,5 0,642 0,326 52,96 16,14 7 / 0,25 41 A 94 A 525 A
0
0 0,573 44,3 17,4 0,509 0,258 66,79 20,36 35 A 74 A 416 A
0 0 0,509
0 0142
49,7 19,6 0,404 0,205 84,22 25,67 1 / 0,5, 7 / 0,2, 30 / 0,1 29 A 59 A 330 A
03 25 0.0179 0,455 55,9 22,0 0,320 0,162 106,2 32,37 24 A 47 A 262 A
04 262
04 04 262 62,7 24,7 0,254 0,129 133,9 40,81 1 / 0,4, 7 / 0,15 20 A 37 A 208 A
27
27
27 0,361 70,4 27,7 0,202 0,102 168,9 51,47
28 0,0126 900 00080 28 0,0126 900 00080 0,0126 0 0,0810
212,9 64,90 7 / 0,12
29 0,0113 0,286 88,8 35,0 0.127 0,0642 268,5 81,84
30 0,0100 0,255 99,7 39,3 0,101 0,0509 0 0,0509 0 0 , 7 / 0,1
31 0,00893 0,227 112 44,1 0,0797 0,0404 426,9 130,1
0.
0.00795 0,202 126 49,5 0,0632 0,0320 538,3 164,1 1 / 0,2, 7 / 0,08
33 0
0,004708
33 0 0,19 4

380

0,004708 0,0501 0,0254 678,8 206,9
34 0,00630 0,160 159 62,4 0.0398 0,0201 856,0 260,9
35 0,00561 0,143 178 70,1 0,0315 0,0160 0,0315 0,0160 0,0160 0,0160 36 0,00500 0,127 200 78,7 0,0250 0,0127 1361 414,8
37 0.00445 0,113 225 88,4 0,0198 0,0100 1716 523,1
38 0,00397 0,101 0,00397 0,101 0 0,00397 0,101 0,09 2164 659,6
39 0,00353 0,0897 283 111 0,0125 0.00632 2729 831,8
40 0,00314 0,0799 318 125 0,00989 0,00501 3441 0,00501 3441 80

29

00

24 900

Удельное электрическое сопротивление и проводимость

Удельное сопротивление (ρ) и проводимость (σ) металлов, сплавов, горных пород и грунтов

Удельное сопротивление, также именуемое как удельное сопротивление, зависит от природы материала, а также его объема определение (форма и размер).Удельное сопротивление выражается в единицах, которые являются произведением сопротивление и длина; например, Ом · см. Символ, наиболее часто используемый для обозначения удельного сопротивления. есть rho (ρ).

Электропроводность - это величина, обратная сопротивлению. Электропроводность выражается в единицах, являющихся частным от проводимость (Сименс) и длина; например, См / см. Символ, наиболее часто используемый для удельное сопротивление - сигма (σ).

В качестве примера расчета сопротивления объема рассмотрим рисунок слева.Предположим, что медный провод 12 AWG с удельным сопротивлением (из таблицы) 1,72x10 -6 Ом · см, площадь поперечного сечения (A) 0,03309 см 2 и длина 1 метр. По данной формуле его сопротивление составляет:

,

, что хорошо согласуется с типичными указанными значениями Ом / км, опубликованными производителями проводов. Alpha утверждает, что 1,59 Ом / 1000 'или 5,22 Ом / км.

Таблица Значения удельного сопротивления ниже взяты из справочных данных для радио. Инженеры , 1995, Самс Паблишинг.Пожалуйста, проверьте точность у другого источника. Видеть Таблица пород и грунтов внизу. Интересное примечание: никель-серебро соединение фактически не содержит серебра; его название происходит от серебристого цвета.

Алюмель цельный 33,3 0 0,0012
Алюминий жидкий
твердый
20,3
2,62
670
20

.0039
Сурьма жидкий
твердый
123
39,2
800
20

0,0036
мышьяк цельный 35 0 0,0042
Бериллий цельный 4,57 20
висмут жидкий
твердый
128.9
115
300
20

0,004
Бор цельный 1,8х10 12 0
Латунь (66 Cu, 34 Zn) цельный 3,9 20 0,002
Кадмий жидкий
твердый
34
7,5
400
20

0.0038
Углерод алмаз
графит
графен
5х10 20
1400
15
20

-0,0005
Церий цельный 78 20
Цезий жидкий
твердый
36,6
20
30
20
Chromax (15 Cr, 35 Ni, остальное Fe) цельный 100 20 0.00031
хромель цельный 70-110 0 0,00011-0,000054
Хром цельный 2,6 0
Кобальт цельный 9,7 20 0,0033
константан (55 Cu, 45 Ni) цельный 44.2 20 0,0002
Медь (отожженная) жидкий
твердый
21,3
1,7241
1083
20

0,0039
Галлий твердый
жидкий
27
53
30
0
Золото жидкий
твердый
30.8
2,44
1063
20

0,0034
Гранит цельный 1x10 13 - 1x10 15
Гафний цельный 32,1 20
Индий жидкий
твердый
29
9
157
20

0.00498
Иридий цельный 5,3 20 0,0039
Утюг цельный 9,71 20 0,0052-0,0062
Ковар A (29, Ni, 17 Co, 0,3 Mn, остальное Fe) цельный 45-84 20
Поток лавы (основной)
Лава, свежая
жидкость 1x10 12 - 1x10 13
Свинец жидкий
твердый
98
21.9
400
20

0,004
ПБО 2 цельный 92
Литий жидкий
твердый
45
9,3
230
20
0,003
0,005
Магний цельный 4,46 20 0.004
Марганец цельный 5 20
MnO 2 цельный 6000000 20
Магнанин (84 Cu, 12 Mn, 4 Ni) цельный 44 20 ± 0,0002
Меркурий жидкий
твердый
95.8
21,3
20
-50
0,00089
молибден цельный 5,17
4,77
0
20

0,0033
Металлический монель (67 Ni, 30 Cu, 1,4 Fe) цельный 42 20 0,002
Неодим цельный 79 18
Нихром (65 Ni, 12 Cr, 23 Fe) цельный 100 20 0.00017
Никель цельный 6,9 20 0,0047
Никель-серебро (64 Cu, 18 Zn, 18 Ni) цельный 28 20 0,00026
Ниобий цельный 12,4 20
Осмий цельный 9 20 0.0042
Палладий цельный 10,8 20 0,0033
Фосфорная бронза (4 Sn, 0,5 P, остальное Cu) цельный 9,4 20 0,003
Платина цельный 10,5 20 0,003
Плутоний цельный 150 20
Калий жидкий
твердый
13
7
62
20

0.006
празеодим цельный 68 25
Рений цельный 19,8 20
родий цельный 5,1 20 0,0046
Рубидий цельный 12,5 20
рутений цельный 10 20
Селен цельный 1.2 20
Серебро цельный 1,62 20 0,0038
Натрий жидкий
твердый
9,7
4,6
100
20
Сталь (0,4-0,5 C, остальное Fe) цельный 13-22 20 0.003
Сталь, марганец (13 Mn, 1 C, 86 Fe) цельный 70 20 0,001
Сталь нержавеющая (0,1 C, 18 Cr, 8 Ni, остальное Fe) цельный 90 20
Стронций цельный 23 20
Сера цельный 2х10 23 20
Тантал цельный 13.1 20 0,003
Таллий цельный 18,1 20 0,004
торий цельный 18 20 0,0021
Олово цельный 11,4 20 0,0042
Титан цельный 47.8 25
Тофет А (80 Ni, 20 Cr) цельный 108 20 0,00014
Вольфрам цельный 5,48 20 0,0045
Вт 2 О 5 цельный 450 20
WO 3 цельный 2х10 11 20
Уран цельный 29 0 0.0021
цинк жидкий
твердый
35,3
6
420
20

0,0037
цирконий цельный 40 20 0,0044

Гранит 10 7 - 10 9
Поток лавы (основной)
Лава, свежая
10 6 - 10 7
3x10 5 - 10 6
Мрамор
Мрамор, белый
Мрамор, желтый
4x10 8
10 10
10 10
Кварц, жила, массив > 10 6
Сланец, слюда 10 7
Сланец, пласт
Сланец, не такой
10 5
10 4
Известняк
Известняк, кембрийский
10 4
10 4 -10 5
Песчаник
Песчаник, восточная часть
10 5
3x10 3 -10 4
Глина синяя
Глина огненная
2х10 4
2х10 5
Глинистая земля 10 4 - 4x10 4
Гравий 10 5
Песок сухой
Песок влажный
10 5 - 10 6
10 6 - 10 5

Опубликовано: 13 июля, 2018

% PDF-1.7 % 6 0 obj > эндобдж xref 6 74 0000000016 00000 н. 0000002085 00000 н. 0000002198 00000 н. 0000002735 00000 н. 0000002879 00000 п. 0000003472 00000 н. 0000004007 00000 н. 0000004580 00000 н. 0000005063 00000 н. 0000005277 00000 н. 0000006081 00000 н. 0000006221 00000 н. 0000006553 00000 н. 0000006999 00000 н. 0000007767 00000 н. 0000008354 00000 п. 0000008669 00000 н. 0000008882 00000 н. 0000009291 00000 п. 0000009781 00000 п. 0000010448 00000 п. 0000011141 00000 п. 0000134013 00000 н. 0000134041 00000 н. 0000134114 00000 п. 0000134230 00000 н. 0000134498 00000 н. 0000137641 00000 н. 0000137922 00000 н. 0000137991 00000 н. 0000138363 00000 н. 0000138388 00000 н. 0000138885 00000 н. 0000139269 00000 н. 0000139531 00000 н. 0000139600 00000 н. 0000139762 00000 н. 0000139787 00000 н. 0000140097 00000 н. 0000144017 00000 н. 0000144303 00000 н. 0000144873 00000 н. 0000149429 00000 н. 0000149701 00000 н. 0000150213 00000 н. 0000150297 00000 н. QA @ 4L, X'0`

Удельное сопротивление и проводимость: определение, причины, формула и единицы (с диаграммой)

Удельное сопротивление и проводимость - две стороны одной медали, но оба имеют решающее значение для понимания, когда вы изучаете электронику.По сути, это два разных способа описания одного и того же фундаментального физического свойства: насколько хорошо электрический ток течет через материал.

Удельное электрическое сопротивление - это свойство материала, которое показывает, насколько он сопротивляется прохождению электрического тока, а проводимость количественно определяет, насколько легко ток течет. Они очень тесно связаны между собой: электропроводность является обратной величине удельного сопротивления, но детальное понимание того и другого важно для решения проблем физики электроники.

Удельное электрическое сопротивление

Удельное сопротивление материала является ключевым фактором при определении электрического сопротивления проводника, и это часть уравнения сопротивления, которая учитывает различные характеристики различных материалов.

Само электрическое сопротивление можно понять с помощью простой аналогии. Представьте, что поток электронов (носителей электрического тока) по проводу представлен шариками, стекающими по пандусу: вы получите сопротивление, если разместите препятствия на пути пандуса.Когда шарики натыкаются на преграды, они теряют часть своей энергии из-за препятствий, и общий поток шариков по рампе замедляется.

Другая аналогия, которая может помочь вам понять, как сопротивление влияет на ток, - это влияние, которое прохождение через гребное колесо оказывает на скорость потока воды. Опять же, энергия передается лопастному колесу, в результате чего вода движется медленнее.

Реальность протекания тока через проводник ближе к примеру с мрамором, потому что электроны протекают через материал, но решетчатая структура ядер атомов препятствует этому потоку, который замедляет электроны.

Электрическое сопротивление проводника определяется как:

R = \ frac {ρL} {A}

Где ρ (rho) - удельное сопротивление материала (которое зависит от его состава), длина L - длина проводника, а A - площадь поперечного сечения материала (в квадратных метрах). Уравнение показывает, что более длинный проводник имеет более высокое электрическое сопротивление, а провод с большей площадью поперечного сечения имеет меньшее сопротивление.

Единицей измерения сопротивления в системе СИ является ом (Ом), где 1 Ом = 1 кг · м 2 с −3 A −2 , а единицей измерения удельного сопротивления в системе СИ является ом-метр (Ом · м). . У разных материалов разное удельное сопротивление, и вы можете посмотреть значения удельного сопротивления материала, который вы используете в расчетах, в таблице (см. Ресурсы).

Электропроводность

Электропроводность определяется просто как величина, обратная удельному сопротивлению, поэтому высокое удельное сопротивление означает низкую проводимость, а низкое удельное сопротивление означает высокую проводимость.Математически проводимость материала представлена ​​как:

σ = \ frac {1} {ρ}

, где σ - это проводимость, а ρ - удельное сопротивление, как и раньше. Конечно, вы можете переставить уравнение для сопротивления в предыдущем разделе, чтобы выразить это через сопротивление, R , площадь поперечного сечения A проводника и длину L , В зависимости от того, какую проблему вы решаете.

Единицы измерения проводимости в системе СИ являются обратными единицам удельного сопротивления, что делает их Ω −1 м −1 ; однако обычно оно выражается в сименсах на метр (См / м), где 1 S = 1 Ом -1 .

Расчет удельного сопротивления и проводимости

Учитывая определения удельного электрического сопротивления и проводимости, просмотр примера расчета поможет закрепить идеи, представленные до сих пор. Для отрезка медного провода длиной L = 0.1 м и площадью поперечного сечения A = 5,31 × 10 −6 м 2 и сопротивлением R = 3,16 × 10 −4 Ом, что такое удельное сопротивление ρ меди? Во-первых, вам нужно перестроить уравнение для сопротивления, чтобы получить выражение для удельного сопротивления ρ следующим образом:

R = \ frac {ρL} {A}

ρ = \ frac {RA} {L }

Теперь вы можете вставить значения, чтобы найти результат:

\ begin {align} ρ & = \ frac {3.7 \ text {s / m} \ end {align}

Очень низкое удельное сопротивление и высокая проводимость объясняют, почему именно такой медный провод, вероятно, используется в вашем доме для подачи электричества.

Температурная зависимость

Все значения удельного сопротивления различных материалов, которые вы найдете в таблице, будут значениями при определенной температуре (обычно выбираемой равной комнатной температуре), потому что удельное сопротивление увеличивается с повышением температуры для большинства материалов.

Хотя для некоторых материалов (например, полупроводников, таких как кремний) удельное сопротивление уменьшается с повышением температуры, увеличение с температурой является общим правилом.Это легко понять, если вернуться к аналогии с мрамором: когда барьеры вибрируют вокруг (в результате повышенной температуры и, следовательно, внутренней энергии), они с большей вероятностью заблокируют шарики, чем если бы они были полностью неподвижны. .

Удельное сопротивление при температуре T определяется соотношением:

ρ (T) = ρ_0 (1 + α (T - T_0))

Где альфа ( α ) - температурный коэффициент удельного сопротивления, T - это температура, при которой вы рассчитываете удельное сопротивление, T 0 - эталонная температура (обычно принимаемая как 293 K, примерно комнатная температура) и ρ 0 - удельное сопротивление при эталонной температуре.Все температуры в этом уравнении выражены в кельвинах (K), а единицей СИ для температурного коэффициента является 1 / K. Температурный коэффициент удельного сопротивления обычно имеет то же значение, что и температурный коэффициент сопротивления, и имеет тенденцию быть порядка 10 -3 или ниже.

Если вам нужно рассчитать температурную зависимость для различных материалов, вам просто нужно найти значение соответствующего температурного коэффициента и обработать уравнение с эталонной температурой T 0 = 293 K (если поскольку она соответствует температуре, используемой для эталонного значения удельного сопротивления). {- 1} \\ \ hline \ text {Silver} & 1.{-23} & \\ \ hdashline \ end {array}

Обратите внимание, что у изоляторов в списке нет установленных значений для их температурных коэффициентов, но они включены, чтобы показать полный диапазон значений удельного сопротивления и проводимости.

Расчет удельного сопротивления при различных температурах

Хотя теория о том, что удельное сопротивление увеличивается при повышении температуры, имеет смысл, стоит взглянуть на расчет, чтобы подчеркнуть влияние, которое повышение температуры может оказать на проводимость и удельное сопротивление материала.В качестве примера расчета рассмотрим, что происходит с удельным сопротивлением и проводимостью никеля при нагревании от 293 K до 343 K. Еще раз взглянув на уравнение:

ρ (T) = ρ_0 (1 + α (T - T_0))

Вы можете видеть, что значения, необходимые для расчета нового удельного сопротивления, приведены в таблице выше, где удельное сопротивление ρ 0 = 6,99 × 10 −8 Ом м, а температурный коэффициент α = 0,006. Вставка этих значений в приведенное выше уравнение позволяет легко вычислить новое удельное сопротивление:

\ begin {align} ρ (T) & = 6.{−8} \ text {Ω m} \ end {align}

Расчет показывает, что довольно существенное повышение температуры на 50 K приводит только к 30-процентному увеличению значения удельного сопротивления и, следовательно, к 30-процентному увеличению в сопротивлении данного количества материала. Конечно, затем вы можете продолжить и вычислить новое значение проводимости на основе этого результата.

Влияние повышения температуры на удельное сопротивление и проводимость определяется размером температурного коэффициента, при этом более высокие значения означают большее изменение с температурой, а более низкие значения означают меньшее изменение.

Сверхпроводники

Голландский физик Хайке Камерлинг-Оннес исследовал свойства различных материалов при очень низких температурах в 1911 году и обнаружил, что ниже 4,2 К (т. Е. -268,95 ° C) ртуть полностью теряет свое сопротивление воздействию протекает электрический ток, поэтому его удельное сопротивление становится равным нулю.

В результате этого (и зависимости между удельным сопротивлением и проводимостью) их проводимость становится бесконечной, и они могут проводить ток неограниченное время без потери энергии.Позже ученые обнаружили, что многие другие элементы проявляют такое поведение при охлаждении ниже определенной «критической температуры» и называются «сверхпроводниками».

В течение долгого времени физика не предлагала реального объяснения сверхпроводников, но в 1957 году Джон Бардин, Леон Купер и Джон Шриффер разработали теорию сверхпроводимости «БКШ». Это предполагает, что электроны в материале группируются в «куперовские пары» в результате взаимодействий с положительными ионами, составляющими решеточную структуру материала, и эти пары могут перемещаться через материал без каких-либо препятствий.

Когда электрон движется через охлаждаемый материал, положительные ионы, образующие решетку, притягиваются к ним и немного меняют свое положение. Однако это движение создает в материале положительно заряженную область, которая притягивает другой электрон, и процесс начинается снова.

Сверхпроводники обладают многими потенциальными и уже реализованными применениями благодаря их способности переносить токи без сопротивления. Одно из наиболее распространенных применений, с которым вы, скорее всего, знакомы, - это магнитно-резонансная томография (МРТ) в медицинских учреждениях.

Тем не менее, сверхпроводимость также используется для таких вещей, как поезда на маглеве, которые работают за счет магнитной левитации и нацелены на устранение трения между поездом и рельсами, и ускорители частиц, такие как Большой адронный коллайдер в ЦЕРНе, где сверхпроводящие магниты используются для ускорять частицы со скоростью, приближающейся к скорости света. В будущем сверхпроводники могут быть использованы для повышения эффективности производства электроэнергии и увеличения скорости компьютеров.

9.4: Удельное сопротивление и сопротивление - Physics LibreTexts

Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока. Все такие устройства создают разность потенциалов и называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В , которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на свободные заряды, вызывая ток.Величина тока зависит не только от величины напряжения, но и от характеристик материала, через который протекает ток. Материал может сопротивляться потоку зарядов, и мера того, насколько материал сопротивляется потоку зарядов, известна как удельное сопротивление . Это удельное сопротивление грубо аналогично трению между двумя материалами, которые сопротивляются движению.

Удельное сопротивление

Когда к проводнику прикладывается напряжение, создается электрическое поле \ (\ vec {E} \), и заряды в проводнике ощущают силу, создаваемую электрическим полем.Полученная плотность тока \ (\ vec {J} \) зависит от электрического поля и свойств материала. Эта зависимость может быть очень сложной. В некоторых материалах, включая металлы при данной температуре, плотность тока приблизительно пропорциональна электрическому полю. В этих случаях плотность тока можно смоделировать как

\ [\ vec {J} = \ sigma \ vec {E}, \]

, где \ (\ sigma \) - это удельная электропроводность . Электропроводность аналогична теплопроводности и является мерой способности материала проводить или передавать электричество.{-1} \).

Электропроводность - это внутреннее свойство материала. Другим неотъемлемым свойством материала является удельное сопротивление или электрическое сопротивление . Удельное сопротивление материала - это мера того, насколько сильно материал противостоит прохождению электрического тока. Символом удельного сопротивления является строчная греческая буква ро, \ (\ rho \), а удельное сопротивление - величина, обратная удельной электропроводности:

\ [\ rho = \ dfrac {1} {\ sigma}.{-1}\)ConductorsSemiconductors [1]Insulators">

Материалы, перечисленные в таблице, разделены на категории проводников, полупроводников и изоляторов на основе широких групп удельного сопротивления. У проводников наименьшее удельное сопротивление, а у изоляторов наибольшее; полупроводники имеют промежуточное удельное сопротивление. Проводники имеют разную, но большую плотность свободных зарядов, тогда как большинство зарядов в изоляторах связаны с атомами и не могут двигаться. Полупроводники являются промежуточными, имеют гораздо меньше свободных зарядов, чем проводники, но обладают свойствами, из-за которых количество свободных зарядов сильно зависит от типа и количества примесей в полупроводнике.Эти уникальные свойства полупроводников находят применение в современной электронике, о чем мы поговорим в следующих главах.

Пример \ (\ PageIndex {1} \): плотность тока, сопротивление и электрическое поле для токоведущего провода

Рассчитайте плотность тока, сопротивление и электрическое поле 5-метрового медного провода диаметром 2,053 мм (калибр 12), по которому проходит ток \ (I - 10 \, мА \).

Стратегия

Мы можем рассчитать плотность тока, сначала найдя площадь поперечного сечения провода, которая равна \ (A = 3.{-5} \ dfrac {V} {m}. \ End {align *} \]

Значение

Исходя из этих результатов, неудивительно, что медь используется для проводов, проводящих ток, потому что сопротивление довольно мало. Обратите внимание, что плотность тока и электрическое поле не зависят от длины провода, но напряжение зависит от длины.

Упражнение \ (\ PageIndex {1} \)

Медные провода обычно используются для удлинителей и домашней электропроводки по нескольким причинам.2} \). Третья важная характеристика - пластичность. Пластичность - это мера способности материала вытягиваться в проволоку и мера гибкости материала, а медь обладает высокой пластичностью. Подводя итог, можно сказать, что проводник является подходящим кандидатом для изготовления проволоки, по крайней мере, с тремя важными характеристиками: низким удельным сопротивлением, высокой прочностью на разрыв и высокой пластичностью. Какие еще материалы используются для электромонтажа и в чем их достоинства и недостатки?

Ответ

Серебро, золото и алюминий используются для изготовления проволоки.Все четыре материала обладают высокой проводимостью, серебро - самой высокой. Все четыре элемента легко сворачиваются в проволоку и обладают высоким пределом прочности на разрыв, хотя и не таким высоким, как медь. Очевидным недостатком золота и серебра является их стоимость, но серебряные и золотые провода используются для специальных применений, таких как провода для динамиков. Золото не окисляется, улучшая связи между компонентами. У алюминиевых проводов есть свои недостатки. Алюминий имеет более высокое удельное сопротивление, чем медь, поэтому требуется больший диаметр, чтобы соответствовать сопротивлению на длину медных проводов, но алюминий дешевле, чем медь, поэтому это не является серьезным недостатком.Алюминиевая проволока не обладает такой высокой пластичностью и прочностью на разрыв, как медная, но пластичность и прочность на разрыв находятся в допустимых пределах. Есть несколько проблем, которые необходимо решить при использовании алюминия, и следует соблюдать осторожность при выполнении соединений. Алюминий имеет более высокий коэффициент теплового расширения, чем медь, что может привести к ослаблению соединений и возможной опасности возгорания. Окисление алюминия не проводит и может вызвать проблемы. При использовании алюминиевых проводов необходимо использовать специальные методы, а компоненты, такие как электрические розетки, должны быть рассчитаны на прием алюминиевых проводов.

ФЭТ

Просмотрите это интерактивное моделирование, чтобы увидеть, как площадь поперечного сечения, длина и удельное сопротивление провода влияют на сопротивление проводника. Отрегулируйте переменные с помощью ползунков и посмотрите, станет ли сопротивление меньше или больше.

Температурная зависимость удельного сопротивления

Вернувшись к таблице \ (\ PageIndex {1} \), вы увидите столбец с надписью «Температурный коэффициент». Удельное сопротивление некоторых материалов сильно зависит от температуры.В некоторых материалах, таких как медь, удельное сопротивление увеличивается с повышением температуры. Фактически, в большинстве проводящих металлов удельное сопротивление увеличивается с повышением температуры. Повышение температуры вызывает повышенные колебания атомов в структуре решетки металлов, которые препятствуют движению электронов. В других материалах, таких как углерод, удельное сопротивление уменьшается с повышением температуры. Во многих материалах зависимость является приблизительно линейной и может быть смоделирована с помощью линейного уравнения:

\ [\ rho \ приблизительно \ rho_0 [1 + \ alpha (T - T_0)], \]

где \ (\ rho \) - удельное сопротивление материала при температуре T , \ (\ alpha \) - температурный коэффициент материала, а \ (\ rho_0 \) - удельное сопротивление при \ (T_0 \) , обычно принимается как \ (T_0 = 20.oC \).

Обратите внимание, что температурный коэффициент \ (\ alpha \) отрицателен для полупроводников, перечисленных в таблице \ (\ PageIndex {1} \), что означает, что их удельное сопротивление уменьшается с увеличением температуры. Они становятся лучшими проводниками при более высоких температурах, потому что повышенное тепловое перемешивание увеличивает количество свободных зарядов, доступных для переноса тока. Это свойство уменьшения \ (\ rho \) с температурой также связано с типом и количеством примесей, присутствующих в полупроводниках.

Сопротивление

Теперь рассмотрим сопротивление провода или компонента. Сопротивление - это мера того, насколько сложно пропустить ток через провод или компонент. Сопротивление зависит от удельного сопротивления. Удельное сопротивление является характеристикой материала, используемого для изготовления провода или другого электрического компонента, тогда как сопротивление является характеристикой провода или компонента.

Чтобы рассчитать сопротивление, рассмотрим участок проводящего провода с площадью поперечного сечения A , длиной L и удельным сопротивлением \ (\ rho \).Батарея подключается к проводнику, обеспечивая разность потенциалов \ (\ Delta V \) на нем (рисунок \ (\ PageIndex {1} \)). Разность потенциалов создает электрическое поле, которое пропорционально плотности тока, согласно \ (\ vec {E} = \ rho \ vec {J} \).

Рисунок \ (\ PageIndex {1} \): потенциал, обеспечиваемый батареей, прикладывается к сегменту проводника с площадью поперечного сечения \ (A \) и длиной \ (L \).

Величина электрического поля на отрезке проводника равна напряжению, деленному на длину, \ (E = V / L \), а величина плотности тока равна току, деленному на поперечную площадь сечения \ (J = I / A \).Используя эту информацию и вспоминая, что электрическое поле пропорционально удельному сопротивлению и плотности тока, мы можем видеть, что напряжение пропорционально току:

\ [\ begin {align *} E & = \ rho J \\ [4pt] \ dfrac {V} {L} & = \ rho \ dfrac {I} {A} \\ [4pt] V & = \ left (\ rho \ dfrac {L} {A} \ right) I. \ end {align *} \]

Определение: Сопротивление

Отношение напряжения к току определяется как сопротивление \ (R \):

\ [R \ Equiv \ dfrac {V} {I}.\]

Сопротивление цилиндрического сегмента проводника равно удельному сопротивлению материала, умноженному на длину, деленную на площадь:

\ [R \ Equiv \ dfrac {V} {I} = \ rho \ dfrac {L} {A}. \]

Единицей измерения сопротивления является ом, \ (\ Omega \). Для заданного напряжения чем выше сопротивление, тем ниже ток.

Резисторы

Резистор является обычным компонентом электронных схем. Резистор можно использовать для уменьшения протекания тока или обеспечения падения напряжения.На рисунке \ (\ PageIndex {2} \) показаны символы, используемые для резистора в принципиальных схемах цепи. Два широко используемых стандарта для принципиальных схем предоставлены Американским национальным институтом стандартов (ANSI, произносится как «AN-см.») И Международной электротехнической комиссией (IEC). Обе системы обычно используются. Мы используем стандарт ANSI в этом тексте для его визуального распознавания, но отметим, что для более крупных и сложных схем стандарт IEC может иметь более четкое представление, что упрощает чтение.

Рисунок \ (\ PageIndex {2} \): символы резистора, используемые в принципиальных схемах. (а) символ ANSI; (б) символ IEC.

Зависимость сопротивления материала и формы от формы

Резистор можно смоделировать как цилиндр с площадью поперечного сечения A и длиной L , сделанный из материала с удельным сопротивлением \ (\ rho \) (Рисунок \ (\ PageIndex {3} \)) . Сопротивление резистора равно \ (R = \ rho \ dfrac {L} {A} \)

Рисунок \ (\ PageIndex {3} \): Модель резистора в виде однородного цилиндра длиной L и площадью поперечного сечения A .Его сопротивление потоку тока аналогично сопротивлению трубы потоку жидкости. Чем длиннее цилиндр, тем больше его сопротивление. Чем больше площадь его поперечного сечения A , тем меньше его сопротивление.

Наиболее распространенным материалом для изготовления резистора является углерод. Углеродная дорожка намотана на керамический сердечник, к нему прикреплены два медных вывода. Второй тип резистора - это металлопленочный резистор, который также имеет керамический сердечник. Дорожка сделана из материала оксида металла, который имеет полупроводниковые свойства, аналогичные углеродным.Опять же, в концы резистора вставляются медные провода. Затем резистор окрашивается и маркируется для идентификации. Резистор имеет четыре цветные полосы, как показано на рисунке \ (\ PageIndex {4} \).

Рисунок \ (\ PageIndex {4} \): Многие резисторы напоминают рисунок, показанный выше. Четыре полосы используются для идентификации резистора. Первые две цветные полосы представляют собой первые две цифры сопротивления резистора. Третий цвет - множитель. Четвертый цвет обозначает допуск резистора.{-5} \, \ Omega \), а сверхпроводники вообще не имеют сопротивления при низких температурах. Как мы видели, сопротивление связано с формой объекта и материалом, из которого он состоит.

Сопротивление объекта также зависит от температуры, поскольку \ (R_0 \) прямо пропорционально \ (\ rho \). Для цилиндра мы знаем \ (R = \ rho \ dfrac {L} {A} \), поэтому, если L и A не сильно изменяются с температурой, R имеет ту же температурную зависимость, что и \ ( \ rho \).(Исследование коэффициентов линейного расширения показывает, что они примерно на два порядка меньше типичных температурных коэффициентов удельного сопротивления, поэтому влияние температуры на L и A примерно на два порядка меньше, чем на \ (\ rho \).) Таким образом,

\ [R = R_0 (1 + \ alpha \ Delta T) \ label {Tdep} \]

- это температурная зависимость сопротивления объекта, где \ (R_0 \) - исходное сопротивление (обычно принимаемое равным \ (T = 20,00 ° C \), а R - сопротивление после изменения температуры \ (\ Дельта Т \).oC \).

Многие термометры основаны на влиянии температуры на сопротивление (Рисунок \ (\ PageIndex {5} \)). Один из наиболее распространенных термометров основан на термисторе, полупроводниковом кристалле с сильной температурной зависимостью, сопротивление которого измеряется для определения его температуры. Устройство небольшое, поэтому быстро приходит в тепловое равновесие с той частью человека, к которой прикасается.

Рисунок \ (\ PageIndex {5} \): Эти знакомые термометры основаны на автоматическом измерении сопротивления термистора в зависимости от температуры.oC) \ right) \\ [5pt] & = 4.8 \, \ Omega \ end {align *} \]

Значение

Обратите внимание, что сопротивление изменяется более чем в 10 раз, когда нить накала нагревается до высокой температуры, а ток через нить накала зависит от сопротивления нити и приложенного напряжения. Если нить накаливания используется в лампе накаливания, начальный ток через нить накала при первом включении лампы будет выше, чем ток после того, как нить накала достигнет рабочей температуры.

Упражнение \ (\ PageIndex {2} \)

Тензодатчик - это электрическое устройство для измерения деформации, как показано ниже. Он состоит из гибкой изолирующей основы, поддерживающей рисунок из проводящей фольги. Сопротивление фольги изменяется по мере растяжения основы. Как меняется сопротивление тензодатчика? Влияет ли тензодатчик на изменение температуры?

Ответ

Рисунок фольги растягивается по мере растяжения основы, а дорожки фольги становятся длиннее и тоньше.Поскольку сопротивление рассчитывается как \ (R = \ rho \ dfrac {L} {A} \), сопротивление увеличивается по мере того, как дорожки из фольги растягиваются. При изменении температуры меняется и удельное сопротивление дорожек фольги, изменяя сопротивление. Один из способов борьбы с этим - использовать два тензодатчика, один используется в качестве эталона, а другой - для измерения деформации. Два тензодатчика поддерживаются при постоянной температуре

Сопротивление коаксиального кабеля

Длинные кабели иногда могут действовать как антенны, улавливая электронные шумы, которые являются сигналами от другого оборудования и приборов.Коаксиальные кабели используются во многих случаях, когда требуется устранение этого шума. Например, их можно найти дома через кабельное телевидение или другие аудиовизуальные соединения. Коаксиальные кабели состоят из внутреннего проводника с радиусом \ (r_i \), окруженного вторым внешним концентрическим проводником с радиусом \ (r_0 \) (рисунок \ (\ PageIndex {6} \)). Пространство между ними обычно заполнено изолятором, например полиэтиленовым пластиком. Между двумя проводниками возникает небольшой ток радиальной утечки.Определите сопротивление коаксиального кабеля длиной L .

Рисунок \ (\ PageIndex {6} \): Коаксиальные кабели состоят из двух концентрических проводников, разделенных изоляцией. Они часто используются в кабельном телевидении или других аудиовизуальных средствах связи.

Стратегия

Мы не можем использовать уравнение \ (R = \ rho \ dfrac {L} {A} \) напрямую. Вместо этого мы смотрим на концентрические цилиндрические оболочки толщиной dr и интегрируем.

Решение

Сначала мы находим выражение для \ (dR \), а затем проинтегрируем от \ (r_i \) до \ (r_0 \),

\ [\ begin {align *} dR & = \ dfrac {\ rho} {A} dr \\ [5pt] & = \ dfrac {\ rho} {2 \ pi r L} dr, \ end {align *} \]

Объединение обеих сторон

\ [\ begin {align *} R & = \ int_ {r_i} ^ {r_0} dR \\ [5pt] & = \ int_ {r_i} ^ {r_0} \ dfrac {\ rho} {2 \ pi r L } dr \\ [5pt] & = \ dfrac {\ rho} {2 \ pi L} \ int_ {r_i} ^ {r_0} \ dfrac {1} {r} dr \\ [5pt] & = \ dfrac {\ rho} {2 \ pi L} \ ln \ dfrac {r_0} {r_i}.\ end {align *} \]

Значение

Сопротивление коаксиального кабеля зависит от его длины, внутреннего и внешнего радиусов, а также удельного сопротивления материала, разделяющего два проводника. Поскольку это сопротивление не бесконечно, между двумя проводниками возникает небольшой ток утечки. Этот ток утечки приводит к ослаблению (или ослаблению) сигнала, передаваемого по кабелю.

Упражнение \ (\ PageIndex {3} \)

Сопротивление между двумя проводниками коаксиального кабеля зависит от удельного сопротивления материала, разделяющего два проводника, длины кабеля и внутреннего и внешнего радиуса двух проводников.Если вы разрабатываете коаксиальный кабель, как сопротивление между двумя проводниками зависит от этих переменных?

Ответ

Чем больше длина, тем меньше сопротивление. Чем больше удельное сопротивление, тем выше сопротивление. Чем больше разница между внешним радиусом и внутренним радиусом, то есть чем больше соотношение между ними, тем больше сопротивление. Если вы пытаетесь максимизировать сопротивление, выбор значений для этих переменных будет зависеть от приложения.Например, если кабель должен быть гибким, выбор материалов может быть ограничен.

Phet: Цепь батарейного резистора

Просмотрите это моделирование, чтобы увидеть, как приложенное напряжение и сопротивление материала, через который протекает ток, влияют на ток через материал. Вы можете визуализировать столкновения электронов и атомов материала, влияющие на температуру материала.

Авторы и авторство

  • Сэмюэл Дж.Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами. Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).

Электропроводность материалов - Blue Sea Systems

Считаете эту статью полезной?
Подпишитесь на нашу рассылку новостей!

Различия в электропроводности различных материалов, используемых в морских электротехнических изделиях, часто недостаточно понятны.Предположения об электропроводности материала, поскольку он похож на другой проводящий материал с известной допустимой допустимой нагрузкой, могут привести к плачевным результатам.

Возможно, наиболее распространенной формой этой ошибки является замена меди в электротехнике на медь. Латунь только на 28% проводит меньше меди. Некоторые виды бронзы имеют такую ​​же проводимость, как медь, на 7%!

Медь - это стандарт, по которому оцениваются электрические материалы, а значения проводимости выражаются в единицах измерения относительно меди.Эти рейтинги часто обозначаются как «28 МАКО». IACS - это аббревиатура от Международного стандарта на отожженную медь, а число перед «IACS» - это процент проводимости материала по отношению к меди, которая считается 100% проводящей. Это не означает, что медь не имеет сопротивления (100% проводимость в абсолютном смысле), а скорее, что это стандарт, по которому измеряются другие материалы. Чем выше% IACS, тем выше проводимость материала. Этот стандарт относится к чистой, «стандартной» меди с удельным сопротивлением 1.7241 мкм-см при 20 ° C (68 ° F).

Вооружившись этими знаниями, интересно изучить значения проводимости IACS некоторых распространенных материалов.


Материал IACS % Электропроводность
Серебро 105
Медь 100
Золото 70
Никель 61
0 22
Цинк 27
Латунь 28
Железо 17
Олово 15
Фосфорная бронза
Никель Алюминий Бронза 7
Сталь от 3 до 15

Возможно, самый интересный факт, показанный на этой диаграмме, - это то, насколько низкими являются материалы из медных сплавов по относительной проводимости.Можно легко предположить, что сплавы, такие как латунь и бронза, поскольку они в основном медные, обладают почти такой же проводимостью, как медь. Это не тот случай. Небольшие процентные содержания олова, алюминия, никеля, цинка и фосфора, которые составляют эти сплавы, ухудшают электрические характеристики полученного сплава до гораздо большего процента, чем их процентное содержание в составе сплава.

Однако из этого не следует делать вывод, что латунь никогда не должна использоваться в электрических устройствах.Бывают случаи, когда превосходные характеристики латуни при растяжении и механической обработке делают ее лучшим выбором, чем медь, при условии, что площади поперечного сечения увеличиваются пропорционально для достижения проводимости, которую медная деталь будет иметь при применении. Однако среди материалов, обычно используемых в электротехнике, медь уступает только серебру.

Удельное электрическое сопротивление | Основы резистора

Что такое удельное электрическое сопротивление?

Удельное электрическое сопротивление - это мера способности материала противодействовать прохождению электрического тока.Выражается в Ом-метрах (Ом⋅м). Символом удельного сопротивления обычно является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Удельное электрическое сопротивление определяется как отношение между электрическим полем внутри материала и электрическим током, проходящим через него, как следствие:

, где ρ - удельное сопротивление материала (Ом · м),

E - величина электрического поля в материале (В / м),

Дж - величина плотности электрического тока в материале (А / м 2 )

Если электрическое поле ( E ) через материал очень велико, а протекание тока ( Дж, ) очень мало, это означает, что материал имеет высокое удельное сопротивление.

Электропроводность - это инверсия удельного сопротивления и мера того, насколько хорошо материал проводит электрический ток:

, где σ - проводимость материала, выраженная в Сименсах на метр (См / м). В электротехнике часто вместо σ используется κ (каппа).

Электрическое сопротивление

Электрическое сопротивление выражается в Ом и не совпадает с удельным сопротивлением. В то время как удельное сопротивление - это свойство материала, сопротивление - это свойство объекта.Электрическое сопротивление резистора определяется сочетанием формы и удельного сопротивления материала. Например, резистор с проволочной обмоткой с длинным и толстым проводом имеет более высокое сопротивление, чем с более коротким и тонким проводом. Резистор с проволочной обмоткой, изготовленный из материала с высоким удельным сопротивлением, имеет более высокое значение сопротивления, чем резистор с низким удельным сопротивлением. Можно провести аналогию с гидравлической системой, где вода перекачивается по трубе. Чем длиннее и тоньше труба, тем выше будет сопротивление.Труба, заполненная песком, будет противостоять потоку воды больше, чем труба без песка (свойство удельного сопротивления).

Гидравлическая аналогия электрического сопротивления

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления, длины и диаметра. Формула для расчета сопротивления провода выглядит следующим образом:

, в котором R - сопротивление (Ом)

,

ρ - удельное сопротивление материала (Ом · м),

l - длина материала (м),

A - площадь поперечного сечения материала (м 2 )

Значение сопротивления провода зависит от трех параметров; его удельное сопротивление, площадь поперечного сечения и длина.

В качестве примера рассмотрим проволочный резистор с проволокой из нихрома с удельным сопротивлением 1,10 × 10 −6 Ом · м. Проволока имеет длину 1500 мм и диаметр 0,05 мм. С помощью этих трех параметров рассчитывается значение сопротивления:

Нихром и константан часто используются в качестве проволоки сопротивления. Посмотрите в таблице удельное сопротивление материалов для часто используемых материалов.

Листовое сопротивление

Значение сопротивления листа рассчитывается точно так же, как сопротивление провода.Площадь поперечного сечения может быть записана как произведение w и t :

Для некоторых применений, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется сопротивлением листа. R s :

, в котором Rs выражено в омах. Для этого расчета толщина пленки должна быть одинаковой.

Часто производители резисторов увеличивают сопротивление, вырезая узор на пленке, чтобы увеличить путь электрического тока.

Электрическое сопротивление листа зависит от длины, ширины, толщины пленки и удельного сопротивления. Сопротивление можно увеличить, вырезав узор на листе.

Резистивные свойства материалов

Удельное сопротивление материала зависит от температуры и обычно дается для комнатной температуры (20 ° C). Изменение удельного сопротивления в результате изменения температуры описывается температурным коэффициентом. Например, термисторы используют это свойство для измерения температуры.С другой стороны, в прецизионной электронике это обычно нежелательный эффект. Резисторы из металлической фольги обладают отличными свойствами в отношении температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции компонента.

Для резисторов используется множество различных материалов и сплавов. Нихром, сплав никеля и хрома, часто используется в качестве материала для проволоки резистора из-за его высокого удельного сопротивления и не окисляется при высоких температурах.-3

Серебро 1,59 × 10 −8 6,30 × 10 7 3,8
Медь 1,68 × 10 −8 5,96 × 10 7 3,9
Золото 2,44 × 10 −8 4,10 × 10 7 3,4
Алюминий 2,82 × 10 −8 3,5 × 10 7 3.9
Вольфрам 5,60 × 10 −8 1,79 × 10 7 4,5
цинк 5,90 × 10 −8 1,69 × 10 7 3,7
Никель 6,99 × 10 −8 1,43 × 10 7 6
Литий 9,28 × 10 −8 1,08 × 10 7 6
Утюг 1.0 × 10 −7 1,00 × 10 7 5
Платина 1,06 × 10 −7 9,43 × 10 6 3,9
Олово 1,09 × 10 −7 9,17 × 10 6 4,5
Свинец 2,2 × 10 −7 4,55 × 10 6 3,9
Манганин 4.82 × 10 −7 2,07 × 10 6 0,002
Константан 4,9 × 10 −7 2,04 × 10 6 0,008
Меркурий 9,8 × 10 −7 1,02 × 10 6 0,9
нихром 1,10 × 10 −6 9,09 × 10 5 0,4 ​​
Углерод (аморфный) 5 × 10 −4 до 8 × 10 −4 1.От 25 до 2 × 10 3 -0,5
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *