Таблица сечения кабеля по мощности и току 12в: Ничего не найдено для Sechenie Provoda Po Toku 12 Vol T %23___12 2

Содержание

Как можно определить какую мощность выдержит кабель или провод

Как можно определить какую мощность выдержит кабель или провод

Нам часто приходится подключать электроприборы к сети. Для этого нужен кабель или провод подходящего сечения. Но как же самому подобрать именно тот, что нам нужен и справиться с этой ситуацией без помощи специалистов.

Если подключить слишком большую нагрузку на кабель, то он будет греться, а может и вовсе перегреться. Из-за этого оплавится изоляция, что опасно коротким замыканием, поражением электрическим током и возгоранием. Отсюда возникает вопрос: "как узнать какую мощность выдерживает кабель или провод?". Давайте разбираться!

Что влияет на допустимую мощность?

Сразу стоит отметить что сечение и мощность кабеля в принципе не связаны между собой. Для проводника решающую роль играет допустимый длительный ток. Эти величины описаны в ПУЭ раздел 1, глава 1.3. Дело в том, что если он выдерживает ток 16А, то в сети 220В это 3.5 кВт, для 380В - это 10 кВт, а в сети 12В это всего 192Вт. Поэтому говорить о допустимой мощности для кабеля разумно говорить лишь в контексте заведомо известного напряжения.

Чтобы перевести киловатт в ватты нужно просто разделить кВт на 1000.

Чтобы перевести Ватты в Амперы нужно Ватты разделить на напряжение в вольтах.

А для трёхфазной сети то разделить ещё и на 1.73 (корень из 3) и на CosФ.

CosФ – коэффициент мощности, указывается на табличке расположенной на корпусе большинства электроприборов.

Таблица сечений провода и допустимый ток

Есть специальные таблицы, в которых описано соответствие сечения кабеля, тока, напряжения и мощности. Но информация в них не всегда справедлива для подбора кабелей.

Если для расчётов квартирной электропроводки, где длина линии редко превышает 15-20 метров между крайними точками, а температура окружающей среды обычно около 20-25 градусов, это ещё справедливо. ..

Но представим ситуацию, когда вы собрались ставить забор на участке частного дома, и придется использовать электроинструмент при его монтаже и сварочный аппарат, еще и бетономешалку, да к тому же на улице жара на солнце далеко за 30 градусов Цельсия. Тогда вам нужен хороший удлинитель, чтобы подключить его в гараже или в доме, а работать будете по всему периметру участка.

Все вышесказанное включало в себя ряд факторов влияющих на то, какую мощность выдержат кабеля, а именно:

1. Длина линии.

2. Температура окружающей среды и самого проводника.

Оба фактора влияют на сопротивление кабеля, а оно, в свою очередь, на потери мощности и нагрев проводника. Если выбрать проводник со слишком малым сечением для этой мощности, то под нагрузкой напряжение на его конце просядет. Нежелательно допускать потери более 3-5%. В цепях освещения допустимо 10% падения напряжения.

Сопротивление, длина, материал, температура как связаны?

Сопротивление проводника определяется по формуле

R=ро*L/S

Где Ро - удельное сопротивление металла Ом*кв.мм/м, L - длина в метрах, S - площадь поперечного сечения в кв. мм.

Например, удельное сопротивление Ро у меди 0.018, а у алюминия 0.029. Поэтому, вы могли видеть в таблице выше, что при одинаковом сечении медный проводник выдержит больший ток, чем алюминиевый. Это связано с потерями, о них поговорим ниже.

Также в формуле фигурируют ещё две величины - длина и площадь поперечного сечения. Чем больше длина и чем меньше площадь поперечного сечения, тем больше сопротивление. Соответственно с увеличением сечения при постоянной длине сопротивление падает, также и с уменьшением длины.

Есть интересная аналогия с автомобильной дорогой: чем больше полос для движения в одном направлении, тем быстрее едут автомобили, а если автомобилей много (большой ток) и есть всего по одной полосе в каждую сторону, то они будут толкаться в пробке.

У металлов с ростом температуры повышается и сопротивление, соответственно снижается проводимость, если объяснить простыми словами, то это связано с тем, что при нагреве частицы в металле и носители зарядов начинают хаотичное движение, из-за чего чаще сталкиваются.

Потери

Подведем небольшие итоги, от чего зависят потери:

1. Материал кабеля (алюминий или медь).

2. Длина линии.

3. Площадь поперечного сечения.

4. Температура окружающей среды.

5. Прокладка нескольких кабелей в одной трубе. В таком случае нет условий для их охлаждения, к тому же температуры соседних кабелей влияют друг на друга худшим образом.

Подбирать кабель нужно так чтобы итоговые потери были как можно меньшими. В идеале до 3-5%. В крайнем случае, если других вариантов нет, то до 10%. Ведь, при напряжении в сети 220 вольт 10% - это уже 22В потерь и 192В на выходе, при условии что сеть и без того не просажена. А при токе хотя бы в 10А это 220Вт потерь только на проводах. Это описано в ГОСТ 721 и ГОСТ 21128.

Сечение

Перейдем к сути вопроса "Как узнать мощность, которую выдержит кабель?". Исходя из вышесказанного, следует определить сечение проводника. Для этого нужно измерить его диаметр. Удобнее и быстрее это сделать штангенциркулем. Этот способ подойдёт для любых сечений и проводов.

Если провод с однопроволочной (монолитной) жилой, то нужно просто измерить её диаметр. Если жила гибкая многопроволочная - меряют диаметр одной проволоки, находят её площадь и умножают её на общее количество жил в проводе. Так находят общее поперечное сечение кабелей и проводов.

Чтобы вычислить поперечное сечение по диаметру, нужно возвести его в квадрат, и умножить на 0.785.

Как измерить диаметр кабеля линейкой?

Для толстых кабелей особой проблемы нет, нужно просто приложить линейку к жиле, но с тонкими кабелями так сделать не получится. Поэтому воспользуйтесь следующим способом.

Нужно плотно намотать на отвёртку или другой продолговатый предмет витков 10 провода, а затем измерить линейкой длину получившейся спирали и разделить её на количество витков. Для определения сечения тоненькой жилки из многопроволочной жилы придётся намотать больше витков 30-50, чтобы было удобнее измерять.

Когда вы уже знаете площадь поперечного сечения жил кабеля, можно заглянуть в таблицу и узнать её допустимый ток. Если линия не длинная (до 10 метров) и ток больше тока предполагаемой нагрузки, то можно смело его использовать.

Как упростить расчёты?

Чтобы избежать расчётов потерь и сечений можно воспользоваться онлайн калькуляторами или приложениями для смартфонов, тем более они работают в оффлайн режиме и он всегда с вами. К примеру, для пользователей ОС Android есть приложение "Мобильный Электрик" в нем есть функции:

1. Расчёта сопротивления проводника при известном: материале, сечении, длине и температуре.

2. Расчёта длины проводника при известных: сопротивлении, температуры и сечении.

3. Расчёта сечения при известных: длине, напряжении, допустимых потерях, материале жилы токе и температуре.

4. Расчёта максимальной длины проводника при известных: напряжении, допустимых потерях, материале жилы, токе и температуре. И другие.

Они позволят оценить допустимую мощность и подобрать нужный провод для конкретной мощности.

Кроме этого приложения есть и другие я рассмотрел то, чем пользуюсь сам в работе.

Заключение

Подведем итоги. Чтобы узнать выдержит ли кабель или провод нагрузку нужно определить:

1. Материал, из которого изготовлены жилы.

2. Их сечение.

3. Длину линии.

4. Ток нагрузки.

После чего произвести расчёты или воспользоваться калькуляторами.

Ранее ЭлектроВести писали, почему происходят скачки напряжения и как от них защититься.

Под понятием скачков напряжения подразумевают, как правило, кратковременные или импульсные изменения значения напряжения, как в сторону увеличения, так и в сторону уменьшения. В зависимости от причины перепады напряжения могут иметь различную частоту, амплитуду и общую продолжительность.

По материалам electrik.info

Таблица сечений кабеля, предохранителей

Рекомендации по монтажу проводов питания (12В) изделий

1. Основные ограничения1.1. Максимально-допустимое падение напряжения на проводах на участке от блока питания до любого изделия - 1В.
1.2. Для подключения питания непосредственно к клеммам изделий рекомендуется использовать провод сечением не более 1,5 мм2.

2. Справочные данные
Сопротивление 100м медного провода (двойного):
а) для провода сечением 0,35мм2 - 10,3 Ом,
б) для провода сечением 9,0мм2 - 0,4 Ом.
В промежутке между этими значениями - обратно пропорционально сечению провода.

3. Минимально-допустимое сечение провода в зависимости от суммарного тока нагрузки и длины провода питания
Для случая монтажа линии питания проводом единого сечения последовательным обходом всех изделий существует следующее общее выражение:
Smin = 0,035 * (i1*L1+ i2*L2+… + ik*Lk), где
L1, L2, … Lk , - значения длины участка провода питания от блока питания до каждого из изделий, м;

i1, i2, ik -токи потребления изделий, включая токи нагрузок, которые питаются через клеммы изделия (замки, сирены, считыватели и т.д.), А;
Smin - минимально-допустимое сечение провода, мм2.

Если токи потребления изделий равны и составляют iср , то выражение упрощается и принимает следующий вид
Smin=0,035 * iср * (L1+ L2+… +Lk).

Ниже приведена таблица значений сечения провода для случая, когда вся нагрузка сосредоточена на конце провода питания.

При равномерном распределении изделий по длине провода питания его сечение может быть уменьшено по отношению к приведенным в таблице в 2 раза.

При неравномерном распределении изделий или при неодинаковых токах потребления для расчета сечения провода следует пользоваться вышеприведенными формулами.

Если для монтажа цепей питания требуется провод сечением больше, чем 1,5 мм2, то рекомендуется разделить нагрузки на группы таким образом, чтобы к каждой группе можно было подвести питание отдельным лучом проводом сечением не более 1,5 мм2.

Если монтаж цепей питания проведен проводом сечением больше, чем 1,5 мм2, то для непосредственного подключения цепи к плате изделий необходимо применять отводы из провода 0,75-1,5 мм2 длиной не более 2м.

************************************************

Подбор сечения силового кабеля.

Работу электрической схемы постоянного тока можно легко объяснить, применяя аналогию движения электронов по проводнику движению воды по трубопроводу. Электрическая цепь ведет себя аналогично гидравлической системе подачи воды под
давлением. Электрический провод, по которому движутся электроны - это труба, по которой течет вода. Аккумуляторная батарея аналогична водонапорной башне (или насосу), которая создает давление в системе. Разность давления воды между начальной
точкой трубы, где установлен насос и ее конечной точкой заставляет течь воду по трубопроводу. Точно так же, разность потенциалов (напряжение) на концах проводника обеспечивает движение электронов по проводу. Количество воды, протекающее за
определенный промежуток времени через сечение трубы называют расходом воды в трубе (литр/сек). Аналогично расходу воды, сила тока в проводнике определяется как количество электрического заряда, переносимого за определенный промежуток времени

через сечение провода. Если сила тока со временем не меняется, то такой ток называют постоянным. Прение, возникающее в роцессе движения электронов о кристаллическую решетку проводника принято называть сопротивлением проводника. Сопротивление
измеряется в Омах. По закону Ома для участка цепи сопротивление равно отношению напряжения к силе тока.

1 Ом = 1 Вольт /1 Ампер

Сопротивление проводника вызывает его нагрев. Поэтому правильный выбор сечения кабеля является очень важной задачей. Чем больше сечение кабеля, тем меньше его сопротивление, и тем больший ток он сможет пропустить. Следует помнить,
что с увеличением длины проводника сопротивление растет.

Автомобильные аудиосистемы потребляют большой ток, особенно если устанавливается несколько усилителей мощности. Напряжение в энергосистеме автомобиля постоянно и равно 12В, поэтому для обеспечения высокой мощности аудиосистема вынуждена потреблять большое количество тока. Усилитель является самым энергопотребляющим компонентом в звуковых системах. Поэтому для расчета

сечения силового кабеля нам прежде всего необходимо будет определить максимальную мощность усилителя. Для начала надо в спецификации к усилителю прочитать его среднюю мощность при 2 Ом или 4 омной нагрузке. Допустим, что мы имеем четырехканальный усилитель, RMS мощность которого равна 35 Вт на канал. Полная RMS мощность равна произведению количества каналов на мощность одного канала:
35 Вт х 4 = 140 Вт. (средняя мощность)

Зная, что средняя (RMS) мощность соответствует приблизительно 50% эффективности усилителя, то для определения максимальной мощности надо удвоить ее значение:
140 Вт х 2 ~ 280 Вт. (максимальная мощность)

Из физики известно, что мощность равна произведению силы тока на напряжение. Следовательно, сила тока равна:
Ампер = Ватт/Вольт.

Напряжение в сети автомобиля известно и равно приблизительно 13В. Значит, ток потребляемый нашим усилителем будет равен:
280 Вт /13 В = 21.53 A

Подобные вычисления следует произвести для каждого усилителя в аудиосистеме. После необходимо определить длину силового кабеля от аккумулятора до распределительного блока, а затем от этого блока до каждого компонента системы. Зная потребляемую силу тока и длину кабеля, обращаемся к специальной таблице подбора сечения и длины кабеля и подбираем необходимый калибр кабеля. Данные в таблице учитывают тот факт, что силовой кабель, сечение которого подобрано удовлетворяет не только потреблению тока усилителем, но и рассчитано на питание остальных компонентов аудиосистемы. Сечение заземляющих кабелей должно быть такое же, как и сечение питающих проводов.

******************************************************

СОВЕТ
Memory 12V+

В современных авто магнитолах применяется несколько проводов питания: для питания усилителя мощности, для включения подсветки при включении габаритов автомобиля, для питания памяти и т. д. провод, питающий усилитель мощности, имеет обычно толстое сечение и на нем установлен мощный предохранитель - это основное питание авто магнитолы.(обычно красный) провод меньшего сечения, часто имеющий предохранитель с малым током сгорания , необходим для питания памяти автомагнитолы . Обычно это аппаратура среднего и высокого класса, имеющие цифровую шкалу настройки и память, куда заносится информация о настройке радиоприемника на станции, что позволяет вести бес поисковый прием станций набрав только номер станции (кнопка). Еще один вариант , где применяется дополнительный провод это приемники с возможностью кодирования и чтобы не вносить код доступа при каждом включении применяется микросхема памяти, питающаяся от аккумулятора отдельным проводом.(может быть желтого цвета или красный, но малого сечения). Из этого следует: чтобы авто магнитола работала правильно надо тонкий провод питания подключать напрямую (без каких-либо коммутаций) это и есть провод "Memory 12V+ " к аккумулятору, а толстый провод можно подключать через коммутирующие элементы как замок зажигания или дополнительный выключатель.



источник АвтоАудиоЦентр - ФОРУМ ПО АВТОЗВУКУ :: Просмотр темы - Питание аудио системы

Сайт компании «АльтЭнго» - Расчет сечения кабеля от фотоэлектрических элементов до контролера заряда

  • Свеча на ветру 2.5Вт - аналог лампы накаливания 25Вт

    Потребляема мощность:  2.5W Световой поток: 230lm Входное

  • Модуль солнечный каркасный ФСМ-50М

    Каркасный солнечный модуль серии ФСМ имеет номинальные

  • GU10 3Вт

    Тип цоколя:                       &nbsp

  • ИБП POWERMAN BLACK STAR 500

    Линейно-интерактивный ИБП Black Star 500 защитит подключенное

  • ИБП POWERMAN ONLINE 3000

    POWERMAN ONLINE 3000 - самая мощная модель в данной линейке. ИБП построен

  • Источник бесперебойного питания Энергия ПН-500

    Энергия ПН устройство, имеющее функции источника бесперебойного

  • Автохолодильник MobiCool G30 AC\DC

    Объем: 29 литров.  Габариты (Д x Ш x В): 396х296х445 мм.Вмещает

  • ИБП POWERMAN SMART SINE 1000

    POWERMAN Smart Sine 1000 - линейно-интерактивный источник бесперебойного

  • Модуль солнечный каркасный ФСМ-200М

    Каркасный солнечный модуль серии ФСМ имеет номинальные

  • ИБП POWERMAN BLACK STAR PLUS 500

    Линейно-интерактивный ИБП Black Star 500  Plus защитит подключенное

  • Источник бесперебойного питания ИБП 1 кВА Исток ИДП-1-1/1-1-220-ТА-1U

    Производитель - ЗАО Электромаш, Россия Представляем Вам

  • Контроллер заряда EPSolar LS2024RP 20A 12В/24В с таймерами водостойкий

    Цена опт – 2100 руб, крупный опт – по запросу Контроллер

  • Складная солнечная батарея на жестких фотоэлементах 10Вт SOLARIS-10-12

    Портативные солнечные батареи – идеальное решение в

  • 5Вт - аналог лампы накаливания 40Вт

    Количество светодиодов:  5*1W Потребляема мощность: &nbsp

  • SKAT-UPS 1000

    220 В, 1000 ВА (700 Вт) On-Line, синусоидальная форма выходного напряжения

  • Spot light 4Вт

    Потребляема мощность:  4W Световой поток: 180lm Входное

  • T8-900 11Вт

    Модель T8-900-190 Мощность 11Вт Размеры (длина, диаметр) 900

  • ИБП POWERMAN BLACK STAR PLUS 800

    Линейно-интерактивный ИБП Black Star 8000 Plus защитит подключенное

  • Инвертор 24-300 DC-AC

    Преобразователь постоянного напряжения 24В в переменное

  • ИБП POWERMAN BLACK STAR 400

    Линейно-интерактивный ИБП Black Star 400 защитит подключенное

  • Источник бесперебойного питания UPS ПН6-12-1500

    Источник бесперебойного питания высокой пусковой мощности

  • Свеча 2.5Вт - аналог лампы накаливания 25Вт

    Потребляема мощность:  2.5W Световой поток: 230lm Входное

  • Солнечная батарея на жестких фотоэлементах 24 Вт СФБ-24-12

    Фотоэлектрические солнечные батареи изготовлены из монокристаллического

  • Комплект для фонаря на солнечной батарее

    Фонари на солнечных батареях часто применяют для освещения

  • Автохолодильник MobiCool W40 AC\DC

    Объем: 40 литров. Габариты (Д x Ш x В): 560x380x420 мм.Вмещает вертикально

  • ИБП POWERMAN BLACK STAR PLUS 1000

    Линейно-интерактивный ИБП Black Star 1000 Plus защитит подключенное

  • ИБП CPS 600 E (600ВА / 420Вт)

    Инверторы CyberPower CPS (Emergency Power System - Аварийные системы питания)

  • 6Вт - аналог лампы накаливания 45Вт

    Потребляема мощность:  6W Световой поток: 450lm Входное

  • Маршрутизатор RBGroove-52HPn

    Groove 52HPn новая самая маленькая всепогодная модель, которая

  • Контроллер заряда EPSolar LS2024R 20A 12В/24В с таймерами

      Цена опт – 1900 руб, крупный опт – по запросу Контроллер

  • ИБП POWERMAN BACK PRO 2000 PLUS

    POWERMAN Back Pro 2000 Plus - линейно-интерактивный ИБП мощностью 2000ВА

  • Источник бесперебойного питания ИБПС-12-350К OnLine

    Источник бесперебойного питания c функцией стабилизации

  • Автохолодильник Mobicool B40 AC/DC Hybrid

    Объем: 38 литров.Габариты (Д x Ш x В): 520x510x450 мм.Охлаждение: от

  • 6Вт - аналог лампы накаливания 45Вт диммируемая

    Потребляема мощность:  6W Световой поток: 450lm Регулятор

  • T8-600 9Вт

    Модель T8-600-140 Мощность 9Вт Размеры (длина, диаметр) 598

  • Источник бесперебойного питания ИБПС-24-1000M

    ИБПС-24-1000M надежный и стабильный ИБП, является уникальным

  • Автохолодильник WAECO BoardBar TF-14

    Объем: 14 литров.Габариты (Д x Ш x В): 420x250x395 мм.Вмещает вертикально

  • Модуль Солнечный Каркасный МСК-95

    Технические характеристики Максимальная мощность 95Вт Номинальное

  • Источник бесперебойного питания Энергия ПН-1000(Н)

    Источники бесперебойного питания Энергия ПН бывают

  • Солнечная батарея на жестких фотоэлементах 160 Вт СФБ-160-12

    Супер мощная батарея на 160Вт ! Фотоэлектрические солнечные

  • ИБП МИ3024 OffLine, универсальный источник бесперебойного питания

    Новинка!  Долговременная мощность 3300 Вт Максимальная

  • Модуль солнечный каркасный ФСМ-320М

    Каркасный солнечный модуль серии ФСМ имеет номинальные

  • ИБП POWERMAN BACK PRO 2000

    POWERMAN Back Pro 2000 - линейно-интерактивный ИБП мощностью 2000ВА

  • ИБП POWERMAN BLACK STAR 600

    Линейно-интерактивный ИБП Black Star 600 защитит подключенное

  • Инвертор 12-300 DC-AC

    Преобразователь постоянного напряжения 12В в переменное

  • Контроллер заряда EPSolar LS1024RP 10A 12В/24В с таймерами водостойкий

    Цена опт – 1350 руб, крупный опт – по запросу Контроллер

  • РАЗМАХ-6000 высоковольтный инвертор для альтернативной энергетики

    Данный инвертор отличается предельно широким спектром

  • GU10 5Вт

    Тип цоколя:             Gu10 Материал:    

  • ИБП POWERMAN SMART SINE 600

    POWERMAN Smart Sine 600 - линейно-интерактивный источник бесперебойного

  • Складная солнечная батарея на жестких фотоэлементах 36Вт SOLARIS-36-12

    Бесплатная доставка по всем городам России! Портативные

  • Солнечный комплект для пасеки 200Вт

    Система предназначена для автономного питания на пасеке

  • Солнечная батарея 49W 12V NP49GK

    Устройство солнечной панели и техническое описание

  • Модуль Солнечный Каркасный МСК-60

    Технические характеристики Максимальная мощность 60Вт Номинальное

  • Солнечная батарея на гибких фотоэлементах 18Вт. (SCM-18/12)

    Для этого товара действует акция бесплатная доставка по

  • Складная солнечная батарея на жестких фотоэлементах 120Вт SOLARIS-120-12/24

    Бесплатная доставка по всем городам России! Портативные

  • Модуль солнечный каркасный ФСМ-30М

    Каркасный солнечный модуль серии ФСМ имеет номинальные

  • ИБП POWERMAN ONLINE 3000 PLUS

    POWERMAN ONLINE 3000 Plus построен по схеме двойного преобразования

  • Контроллер заряда Steca Solsum 6.6F (6 А, 12/24 В)

    Контроллер заряда немецкой фирмы Steca  Solsum 6.6F является

  • Контроллер заряда EPSolar LS1024R 10A 12В/24В с таймерами

    Контроллер заряда EPSolar LS1024R является контроллером типа

  • Солнечный комплект для пасеки 150Вт

     Система предназначена для автономного питания на пасеке

  • Модуль Солнечный Каркасный МСК-185(24)

    Технические характеристики Максимальная мощность 185Вт Номинальное

  • ИБП POWERMAN BLACK STAR PLUS 400

    Линейно-интерактивный ИБП Black Star 400  Plus защитит подключенное

  • 8Вт 220В - аналог лампы накаливания 60Вт

      Окупаемость светодиодных лампПотребляема мощность:&

  • 5Вт - аналог лампы накаливания 50Вт

    Потребляема мощность:  5W Световой поток: 500-550lm Входное

  • T8-1500 20Вт

    Модель T8-1500-300 Мощность 20Вт Размеры (длина, диаметр) 1500

  • Источник бесперебойного питания DUALDSP-12-3000-UPS

    Основные технические характеристики:  Параметр мин

  • ИБП POWERMAN ONLINE 1000 PLUS

    POWERMAN ONLINE 1000 Plus построен по схеме двойного преобразования

  • ИБП POWERMAN ONLINE 2000 PLUS

    POWERMAN ONLINE 2000 Plus построен по схеме двойного преобразования

  • Источник бесперебойного питания Энергия ПН-5000

    Источники бесперебойного питания Энергия ПН бывают

  • Инвертор BINEOS EM3KF, 3000-24, +MPPT контроллер 1000Вт

    Номинальная мощность, ВА/Вт 3000/3000 Пиковая мощность

  • ИБП CyberPower SMP 350 EI (350ВА / 200Вт)

    Для обеспечения стабильной работы газового котла и другого

  • Источник бесперебойного питания DUALDSP-24-3000-UPS

    Основные технические характеристики:  Параметр мин

  • Источник бесперебойного питания DUALDSP-12-1500-UPS

    Краткие технические характеристики:  Напряжение

  • T8-1200 19Вт

    Модель T8-1200-288 Мощность 19Вт Размеры (длина, диаметр) 1198

  • Складная солнечная батарея на жестких фотоэлементах 60Вт SOLARIS-60-12

    Бесплатная доставка по всем городам России! Портативные

  • Exmork 100М 100 ватт 24В Моно

    Основным назначением солнечных модулей Exmork является получение

  • ИБП POWERMAN BLACK STAR PLUS 1500

    Линейно-интерактивный ИБП Black Star 1500 Plus защитит подключенное

  • T8-600 8Вт

    Модель T8-600-120 Мощность 8Вт Размеры (длина, диаметр) 598

  • 7Вт - аналог лампы накаливания 50Вт

    Количество светодиодов:  7*1W Потребляема мощность: &nbsp

  • ИБП POWERMAN BLACK STAR PLUS 600

    Линейно-интерактивный ИБП Black Star 600  Plus защитит подключенное

  • РАЗМАХ-6000 высоковольтный инвертор для альтернативной энергетики

    Данный инвертор отличается предельно широким спектром

  • ИБП POWERMAN SMART SINE 2000

    POWERMAN Smart Sine 2000 - линейно-интерактивный источник бесперебойного

  • NORMA 7500

    Представляем современные стабилизаторы напряжения Norma

  • Spot light 3Вт, 5Вт, 7Вт, 9Вт

    Характеристики: Мощность 3W 5W 7W 9W Аналог лампы накаливания 35Вт&

  • Складная солнечная батарея на жестких фотоэлементах 80Вт SOLARIS-80-12/24

    Бесплатная доставка по всем городам России! Портативные

  • Инвертор ЕРМАК 1512 DC-AC

         ЕРМАК 1512 - новый источник бесперебойного питания

  • Источник бесперебойного питания ИБПС-12-600N

    ИБПС-12-600N является уникальным программируемым источником

  • Расчет кабеля питания акустической системы

    Расчет кабеля питания акустической системы

    Работу электрической схемы постоянного тока можно легко объяснить, применяя аналогию движения электронов по проводнику движению воды по трубопроводу. Электрическая цепь ведет себя аналогично гидравлической системе подачи воды под давлением.

    Электрический провод, по которому движутся электроны — это труба, по которой течет вода. Аккумуляторная батарея аналогична водонапорной башне (или насосу), которая создает давление в системе. Разность давления воды между начальной
    точкой трубы, где установлен насос и ее конечной точкой заставляет течь воду по трубопроводу. Точно так же, разность потенциалов (напряжение) на концах проводника обеспечивает движение электронов по проводу. Количество воды, протекающее за
    определенный промежуток времени через сечение трубы называют расходом воды в трубе (литр/сек). Аналогично расходу воды, сила тока в проводнике определяется как количество электрического заряда, переносимого за определенный промежуток времени
    через сечение провода. Если сила тока со временем не меняется, то такой ток называют постоянным. Прение, возникающее в процессе движения электронов о кристаллическую решетку проводника принято называть сопротивлением проводника. Сопротивление
    измеряется в Омах. По закону Ома для участка цепи сопротивление равно отношению напряжения к силе тока.

     

    1 Ом = 1 Вольт /1 Ампер

     

    Сопротивление проводника вызывает его нагрев. Поэтому правильный выбор сечения кабеля является очень важной задачей. Чем больше сечение кабеля, тем меньше его сопротивление, и тем больший ток он сможет пропустить. Следует помнить,
    что с увеличением длины проводника сопротивление растет.

     

    Автомобильные аудиосистемы потребляют большой ток, особенно если устанавливается несколько усилителей мощности. Напряжение в энергосистеме автомобиля постоянно и равно 12В, поэтому для обеспечения высокой мощности аудиосистема вынуждена потреблять большое количество тока. Усилитель является самым энергопотребляющим компонентом в звуковых системах. Поэтому для расчета
    сечения силового кабеля нам прежде всего необходимо будет определить максимальную мощность усилителя. Для начала надо в спецификации к усилителю прочитать его среднюю мощность при 2 Ом или 4 омной нагрузке. Допустим, что мы имеем четырехканальный усилитель, RMS мощность которого равна 35 Вт на канал. Полная RMS мощность равна произведению количества каналов на мощность одного канала:
    35 Вт х 4 = 140 Вт. (средняя мощность)

     

    Зная, что средняя (RMS) мощность соответствует приблизительно 50% эффективности усилителя, то для определения максимальной мощности надо удвоить ее значение:
    140 Вт х 2 ~ 280 Вт. (максимальная мощность)

     

    Из физики известно, что мощность равна произведению силы тока на напряжение. Следовательно, сила тока равна:
    Ампер = Ватт/Вольт.

     

    Напряжение в сети автомобиля известно и равно приблизительно 13В. Значит, ток потребляемый нашим усилителем будет равен:
    280 Вт /13 В = 21.53 A

     

    Подобные вычисления следует произвести для каждого усилителя в аудиосистеме. После необходимо определить длину силового кабеля от аккумулятора до распределительного блока, а затем от этого блока до каждого компонента системы. Зная потребляемую силу тока и длину кабеля, обращаемся к специальной таблице подбора сечения и длины кабеля и подбираем необходимый калибр кабеля. Данные в таблице учитывают тот факт, что силовой кабель, сечение которого подобрано удовлетворяет не только потреблению тока усилителем, но и рассчитано на питание остальных компонентов аудиосистемы. Сечение заземляющих кабелей должно быть такое же, как и сечение питающих проводов. Плюсовой провод и заземление желательно тянуть от аккамулятора, если это невозможно по какой-то причине, заземлять ВСЕ компоненты системы нужно в одной точке, дабы исключить разность потенциалов между компонентами.
    Расчет номинала предохранителя.
    Расстояние от плюсовой клеммы аккумулятора до потребителя в основном превышает 40 сантиметров, поэтому устанавливаем защитный предохранитель, естественно не далее 40 сантиметров от аккумуляторной клеммы, а лучше устанавливать главный предохранитель возможно ближе к плюсовой клемме аккумулятора. Его назначение, защитить питающий кабель от возгорания, например в случае аварии автомобиля (ДТП). Повреждение автомобиля может быть пустяковым, но пережатый питающий кабель приведет к короткому замыканию, возгоранию и уничтожению автомобиля. Номинал главного предохранителя определяется МАКСИМАЛЬНО возможным номиналом предохранителя для данного сечения кабеля. Например для кабеля сечением 2 GA МАКСИМАЛЬНО возможный номинал предохранителя составляет 150 Ампер. А можно поставить предохранитель номиналом, допустим 100 Ампер, 80Ампер или 50 Ампер? Да можно! Можно поставить любой предохранитель, при одном условии, что он НЕ БУДЕТ превышать номинал 150 Ампер (иначе смысл этого предохранителя пропадает). Общий максимальный ток, который может быть потреблен к примеру двумя усилителями (моноблок 80А и двухканальник 30А), составляет 110 Ампер, так что если поставить главный предохранитель номиналом 100 Ампер, существует вероятность того, что он будет перегорать на пиках максимальной громкости. Исходя из вышеизложенного, я рекомендую выбрать предохранитель номиналом 150 Ампер, в случае нештатной ситуации он сработает.

     

    Питающий кабель доходит до дистрибьютора, здесь питание делится на две линии ( в некоторых случаях и больше). Первая питает моноблок (с внутренней защитой 40 х 2 = 80 Ампер). Вторая питает двухканальный усилитель (с внутренней защитой 30 Ампер). Для чего нужны предохранители внутри усилителя? Для того, чтобы защитить усилитель от перегрузки и для того чтобы защитить автомобиль от возгорания в случае короткого замыкания внутри усилителя. Для питания уселителя возможен выбор разных размеров кабеля. Если мы выбрали от дистрибьютора до усилителя кабель размером 2 GA, МАКСИМАЛЬНЫЙ номинал предохранителя не может превышать 150 Ампер – мы защищаем кабель на случай короткого замыкания, а не усилитель. А можно выбрать номинал предохранителя, например 80 Ампер? Без проблем, вниз можно идти куда угодно, хоть до 1 ампера, но логика подсказывает, что смысла ставить предохранитель меньше 80 ампер нет, потому, что в цепи усилителя стоит предохранитель 80 Ампер. И так для каждого усилителя.

    Расчет кабеля питания видеонаблюдения

    При построении системы видеонаблюдения одной из ключевых задач является обеспечение качественного и стабильного электропитания. На этапе ее решения возникает ряд вопросов, один из которых — выбор подходящего кабеля питания, одного из дорогостоящих компонентов системы видеонаблюдения.

    У многих инсталляторов возникает желание сэкономить, поэтому иногда они делают выбор в пользу более тонкого кабеля с меньшим сечением.

    Однако излишняя экономия в свою очередь может привести к нестабильной работе всей системы. С другой стороны, установка питающего кабеля «с запасом» приводит к серьезным затратам, особенно в сильно распределенных системах. Так как же подобрать оптимальный вариант кабеля с помощью нехитрых расчетов и обеспечить надежную работу системы видеонаблюдения с минимальными затратами?

    По виду напряжения питания камеры видеонаблюдения можно подразделить на три группы:

    • с питанием постоянным напряжением 12 В (=12),
    • постоянным 24 Вольта (=24),
    • камеры, питающиеся от переменного напряжения 220 Вольт (~220).

    Основное достоинство использования постоянного напряжения питания — высокая степень электробезопасности. Вместе с тем, при значительных мощностях (большом количестве камер) требуется использование проводов значительных сечений.

    Поскольку любой проводник обладает сопротивлением (которое тем выше, чем меньше его сечение и больше длина), на нем происходит падение части напряжения питания. В этом можно легко убедиться, вспомнив закон Ома (рис.1).

    На участке L1 потери напряжения будут составлять U1, таким образом на камеру К1 поступит напряжения питания Uк1=Uп-U1. Следующей камере видеонаблюдения «достанется» еще меньше и так далее по цепочке.

    Чтобы избавить Вас от излишних расчетов, приведу значения удельного сопротивления (Ом/метр) медных проводников, наиболее часто используемых сечений:

    Таблица 1.

    Сечение (мм2) Удельное сопротивление (ом/м)
    0,5 0,035
    0,75 0,022
    1,0 0,015

     

    Следует помнить, что при расчетах и проектировании системы видеонаблюдения значение длины провода следует брать в два раза больше чем расстояние от блока до камеры, поскольку проводников два (плюс и минус). Пример расчета приведен в конце статьи.

    Что касается питания 220 Вольт, то, в большинстве случаев, здесь потерями напряжения можно пренебречь. Однако, с точки зрения безопасности этот вариант менее предпочтителен, хотя в ряде случаев, например при организации уличного видеонаблюдения, его реализация может оказаться проще и дешевле.

    Блоки питания для систем видеонаблюдения

    Наиболее часто для питания камер видеонаблюдения используются блоки напряжением 12В. Первое на что следует обратить внимание при выборе блока питания — это его мощность (рабочий ток), которые связаны между собой следующими соотношением:

    P=I*U или I=P/U, где:

    • P (Ватт) — мощность,
    • I (Ампер) — ток,
    • U (Вольт) — напряжение.

    Следует заметить, что ориентироваться надо на номинальные значения тока и мощности, но никак не на максимальные (пиковые).

    Теперь что касается некоторых функциональных возможностей блоков питания:

    Стабилизация напряжения.

    Если сетевое напряжение на объекте где установлено видеонаблюдение не подвержено скачкам и провалам, то можно использовать нестабилизированный блок, тем более он дешевле.

    Защита от перегрузок и замыканий.

    Главным образом — это нужно для защиты самого блока. Однако, при срабатывании он отключит все питаемые от него камеры, как следствие — система «зависнет».

    На важных с точки зрения безопасности объектах для минимизации подобных рисков стоит использовать несколько источников питания (для небольших групп камер — отдельный) или многоканальные блоки с независимой защитой по каждому каналу. Кстати, это позволит предотвратить возможность взаимных помех по цепи питания.

    Способ преобразования.

    Импульсный блок питания при прочих равных условиях имеет меньшие габариты и вес, чем трансформаторный. Для больших токов он предпочтительнее.

    Если система видеонаблюдении имеет небольшое количество камер, то можно обойтись трансформаторным. Здесь определяющим фактором выбора будет цена.

    Стоит учесть, что некачественное импульсное устройство может явиться источником дополнительных помех.

    Резервирование.

    Для камер оно имеет смысл при наличии резерва по питанию остальных компонентов оборудования системы, например, видеорегистраторов или ПК. Для особо важных объектов эту опцию рекомендуется предусмотреть.

    Пример расчета питания для камер системы видеонаблюдения

    Исходные данные

    • количество камер видеонаблюдения — 4,
    • расстояние до камер 50 метров (будем считать, что все камеры расположены в непосредственной близости друг от друга),
    • ток потребления каждой камеры 150 мА,
    • напряжение питания камеры видеонаблюдения 12В+/-10%.

     

    Расчет:
    1. Определяем суммарный ток потребления I=150*4=600мА=0,6А.
    2. Выбираем соответствующий блок питания, смотрим параметры его выходного напряжения, например 12,6+/-0,2В.
    3. Определяем минимальный уровень напряжения блока 12,6-0,2=12,4В и камеры12В-10%=10,8В.
    4. Максимально допустимый уровень потерь составит U=12,4-10,8=1,6В.
    5. Рассчитываем максимально возможное сопротивление линии (рис.1) R=U/I=1,6/0,6=2,7 Ом.
    6. Общая длина провода L=50*2=100 метров.
    7. Максимально допустимое удельное сопротивление Rуд=R/L=2,7/100=0,027 Ом/метр.
    8. По приведенной в начале статьи таблице определяем, что сечение провода должно составлять не менее 0,75 мм2.

    Какого сечения провода в автомобиле

    Home Автоэлектроника Автомобильные провода и наконечники

    Для соединения в схемах электрооборудования применяют автотракторные провода, которые делятся на провода низкого напряжения (до 48 Вольт) и высокого.

    В качестве изоляции автомобильных проводов применяют поливинилхлоридный пластикат, который удовлетворяет следующим требованиям, предъявляемым к изоляции проводов на автомобиле:

    масло-, бензо- и кислотостойкости, не распространением горения, работоспособности при низких и высоких температурах. Провода марок ПВА, ПВАЭ и ПВАЛ используют для соединений при температуре от —40 до +105°С, провода остальных марок — от —40 до +70 °С. Если при соединении приборов требуется экранирование провода, то применяют провода марок ПВАЭ и ПГВАЭ, а в случае необходимости защиты проводов от механических повреждений — провода с бронированной изоляцией марки ПГВАБ. Для удобства отыскания соединений и цепей провода изготавливают следующих цветов: белого, желтого, оранжевого, красного (бордо), розового, синего (голубого), зеленого, коричневого, черного, серого и фиолетового. Сверху сплошного цвета допускается нанесение дополнительного цвета эмалью ХС5103 в виде колец или полос (белой, черной, красной и голубой). Срок службы проводов не менее 8 лет.

    Для соединения подвижной пластины прерывателя в распределителе зажигания используют провод марки ПЩОО сечением 0,5 мм 2 . В переносных лампах автомобилей применяют двухжильные провода марок ШПВУ и ПЛКТ.

    Соединение аккумуляторной батареи с массой автомобиля на некоторых автомобилях производят медным неизолированным плетеным проводом марки АМГ. Однако следует иметь в виду, что в случае попадания электролита на этот провод он быстро разрушается.

    Как определить нужное сечение автомобильного провода

    При выборе сечения провода необходимо учитывать: силу тока из условия допустимого нагрева провода, допустимое напряжение в цепи, механическую прочность провода и способ прокладки (одиночный или в пучке).

    В зависимости от марки автомобильного провода сечение его жилы может быть следующих размеров: 0,5; 0,75; 1,0; 1,5; 2,5; 4,0; 6,0; 10; 16; 25; 35; 50; 70 и 95 мм2. Ниже приведена зависимость между сечением провода и его сопротивлением.

    Сечение провода, мм 2 0,5 0,75 1,0 1,5 2,5 4,0 6,0
    Электрическое сопротивление, Ом/м х 10 -2 , не более 3,7 2,5 1,85 1,2 0,72 0,46 0,29

    Допустимые значения силы тока при длительных нагрузках проводов сечением 0,5—16 мм 2 при одиночной прокладке должны быть не выше указанных в таблице 1.

    Таблица 1 номинальное сечение провода и допустимое значение тока в автомобильной проводке.

    Номинальное сечение провода, мм 2 Сила допускаемого тока (в А) при длительной нагрузке и при температуре окружающей среды, °С
    20 30 50 80
    0,5 17,5 16,5 14,0 9,5
    0,75 22,5 21,5 17,5 12,5
    1 26,5 25,0 21,5 15,0
    1,5 33,5 32,0 27,0 19,0
    2,5 45,5 43,5 37,5 26,0
    4,0 61,5 58,5 50,0 35,5
    6,0 80,5 77,0 66,0 47,0
    16,0 149,0 142,5 122,0 88,5

    Контакт наконечника в месте соединения обладает сопротивлением, значение которого не должно превышать значений, указанных в таблице 2.

    Таблица 2 допустимые значения сопротивлений контактов наконечника в месте соединения проводов в автомобиле.

    Соединение Переходное сопротивление, мОм
    допустимые значения рекомендуемое
    Винтовое 0,03—0,04 0,04
    Штекерное, включая переход штекер—провод 0,11—0,27 0,11
    Плавкие через предохранители:
    на 10 А
    2,4—6,1 4,6
    на 20—30 А 1,1—3,5 1,5

    Штекерные соединения, у которых усилие разъема мало (1—3 Н), обладают по сравнению с обычными повышенным переходным сопротивлением (в 2—2,5 раза). Поэтому не рекомендуется без надобности производить расстыковку штекерных соединений во избежание ослабления и нарушения контакта.

    При прокладке проводов сечением 0,5—4,0 2 в жгутах, в поперечном сечении которых по трассе содержится от двух до семи проводов, сила допустимого тока в проводе I=0,55I1 (где I1 — сила тока по таблице 1), а при наличии 8—19 проводов — I=0,38I1.

    Сечение проводов цепи автомобильного стартера подбирают так, чтобы падение напряжения в проводе не превышало 0,2 В на каждые 100 А потребляемого стартером тока.

    Автомобильные провода высокого напряжения

    Рис. 2. Провода высокого напряжения для автомобилей: а — ПВВ; б — ПВВО; в — ПВВП

    Провода высокого напряжения в автомобилях, применяемые для соединения в цепях системы зажигания, подразделяются на обычные ПВВ с металлическим многожильным проводником 1 (рис. 2, а) и помехоподавительные провода марок ПВВО и ПВВП. При использовании проводов ПВВ необходимо устанавливать наконечники с подавительными резисторами у каждой автомобильной свечи. Резистивный провод ПВВО (рис. 2, б) состоит из жилы-сердечника 2 (изготовленной из хлопчатобумажной пряжи и пропитанной сажевым раствором) в хлопчатобумажной или капроновой оплетке 3 и изоляции 4 из поливинилхлоридного пластиката или одно- или двухслойной резины. Недостаток провода марки ПВВО — трудность обеспечения надежного контакта между проводом и наконечником.

    Реактивные провода марки ПВВП (рис. 2, в) имеют в центре льняную нить 1, на которую нанесен слой ферропласта 7 (20 % поливинилхлоридного пластиката ПДФ и 80 % ферритового порошка). Поверх ферропластового слоя намотана проволока 6 диаметром 0,12 мм из сплава 40Н, являющаяся токопроводящей жилой. На нее наложена изоляция 5 из поливинилхлоридного пластиката. Подавление помех в этом проводе осуществляется как слоем ферропласта, так и проводником — спиралью. Провода марки ПВВП соответствуют требованиям на допустимые пределы радиопомех.

    Провода имеют наконечники под винт или штекерные соединения. Наконечники соединяются с проводом пайкой или опрессовкой.

    Правила ухода за автомобильными проводами

    При эксплуатации автомобиля необходимо соблюдать следующие правила ухода за проводами:

    • не допускать попадания на провода и их оплетку воды, масла, топлива и электролита;
    • систематически очищать изоляцию проводов от грязи, в случае наличия на изоляции провода трещин, повреждения изоляции устранить повреждение или заменить участок провода;
    • систематически подтягивать винтовые зажимы в местах подсоединения проводов, предварительно очистив их от пыли и грязи;
    • не рекомендуется без надобности расстыковывать штекерные соединения во избежание ослабления и нарушения контакта. Необходимо смазывать штекерные соединения смазкой Литол-24, а также применять защитные чехлы;
    • систематически проверять падение напряжения на участках цепей и контактных соединениях систем освещения, электроснабжения, пуска и других потребителей;
    • систематически проверять посадку проводов высокого напряжения в гнезда крышки распределителя и наконечников свечей;
    • проверять, не расположены ли провода близко от нагретых деталей двигателя, а провода высокого напряжения — близко от массы двигателя и автомобиля для предотвращения пробоя изоляции на массу;
    • систематически проверять, не появилась ли коррозия и не окислились ли винтовые и штекерные соединения, тщательно устранять их при обнаружении;
    • заменять плавкие вставки предохранителей после устранения причин, вызвавших короткое замыкание.

    При замене плавкой вставки использовать выпускаемые промышленностью предохранители на соответствующую силу номинального тока или, в крайней, безвыходной ситуации, на проволоку только рекомендуемого сечения.

    Например, при силе номинального тока предохранителя 10 А медный луженый провод плавкой вставки должен иметь диаметр 0,26 мм (для силы тока 15 А соответственно 0,37 мм). Категорически запрещается применять более толстую проволоку («жучки») или выпускаемые промышленностью предохранители, рассчитанные на большей силы номинальный ток.

    В процессе подбора проводов, которые используются для монтажа автомобильной проводки, чрезвычайно важно учесть ключевые факторы влияния на них внешней среды. Во время эксплуатации автопровода будут подвергаться вибрационным воздействиям, загрязняться топливом и машинными маслами, а также функционировать в условиях температурных колебаний. Именно поэтому изоляционный слой автомобильного провода должен быть устойчивым к агрессивным средам, выдерживать как мороз, так и аномально высокий нагрев. Еще один критерий, по которому подбирается автопроводка, – удобство монтирования, то есть достаточный показатель гибкости.


    Обзор наиболее популярных марок автомобильных проводов

    Ниже мы приведем основные технические параметры и характеристики, которыми отличаются автопровода производства отечественных заводов-изготовителей:

    Марка ПВА

    ПВА относится к низковольтным кабелям и имеет высокий 5-й класс гибкости. Эта марка специально сконструирована для применения при промышленном производстве автомашин. ПВА прекрасно выдерживает нагрев до +105 С, при этом предельная температура его эксплуатации может достигать +135 С, но не более 96 часов. Марка хорошо выдерживает воздействие автомобильных нефтепродуктов, включая дизеля, бензины и масла. Минимальный период службы ПВА – 10 лет.

    Малогабаритное исполнение данной марки, провод ПВАМ, отличается меньшей толщиной изоляционного слоя и, соответственно, массой. При этом ощутимых различий в процедуре прокладки не наблюдается. Основная сфера применения марки – монтаж бортовой сети легковых и грузовых транспортных средств.

    Марки ПВА и ПВАМ полностью отвечают евростандартам.

    Марка ПГВА

    Марка ПГВА также относится к типу низковольтных проводов и отличается неплохими показателями гибкости (класс 3). Ее диапазон эксплуатационных температур несколько ниже, чем у ПВА: -40/+70 С. Данная марка хорошо зарекомендовала себя при монтировании бортовых сетей грузовиков, сельскохозтехники и пассажирского транспорта. Если возникает необходимость защиты передаваемого электросигнала от EMI-помех, то используется исполнение с экранированием – марку ПГВАЭ.

    Вышеназванные марки относятся к разновидности автотракторных проводников и выпускаются с цветовым маркированием изоляции. Это облегчает монтаж и последующую идентификацию проводов при их замене.

    Марки НВ, НВМ

    Марки НВ и НВМ – это универсальные монтажные проводники, которые применяют для межприборного, в основном фиксированного, монтажа. Провода отличаются классом гибкости, рассчитаны на эксплуатацию при 600/1000 В переменного и 840/1400 постоянного электронапряжения. НВ и НВМ легко паять, ведь их моно- или мультипроволочная токопроводящая жила изготовлена из луженой меди. Рабочий нагрев проводов – до + 105 С.

    Для прокладки автопроводки можно применять и некоторые другие марки, например, ПВ3, ПВ4, ПуГВ. Однако следует учитывать особенности их конструкции и технические параметры. Изоляционный слой данных марок не содержит особых пластификаторов и не обеспечивает надежную защиту от нефтепродуктов, поэтому потребуется дополнительная защита. Эксплуатация проводов допускается до +70 С. Возможная сфера использования – запитывание автомобильной акустики.

    Отличный вариант – негорючий гибкий провод SiHF производства немецкой компании. Он оснащен силиконовой изоляцией, выдерживает нагрев до +180 С и удобен для монтажных работ. Единственный недостаток – высокая стоимость.

    Сечение проводов для автопроводки

    Правильный расчет проводного сечения автомобильной проводки важен для бесперебойной работы узлов, механизмов и приборов машины. Чтобы предельно точно подсчитать необходимые параметры потребуется знать:

    максимальные величины электротока, которые потребляет подключаемое электрооборудование автомашины;

    длину провода, которая требуется для запитывания оборудования от аккумулятора;

    номинальное напряжение электротока, выдаваемого источником питания.

    Для оперативного подбора оптимального проводного сечения можно воспользоваться готовыми таблицами, которые учитывают максимальную силу электротока для каждого стандартного диаметра жил с поправкой на температуру окружающей среды. Важно: эти таблицы справедливы только для коротких электроцепей.

    Сечение провода, мм 2 Сила допустимого тока (А) в зависимости от температуры окружающей среды, С
    20 30 50 80
    0,5 17,5 16,5 14 9,5
    0,75 22,5 21,5 17,5 12,5
    1 26,5 25 21,5 15
    1,5 33,5 32 27 19
    2,5 45,5 43,5 37,5 26
    4 61,5 58,5 50 35,5
    6 80,5 77 66 47

    Помните, что на каждые 1 мм 2 сечения – подключаемая нагрузка 10 А.

    При подборе сечения также необходимо учитывать предельную длину проводника, который проложен от 12 В аккумулятора.

    Ток, А Сечение кабеля, мм 2
    1 1,5 2,5 4 6 10 16 25 35 50 75 100
    1 7 10,91 17,65 28,57 42,86 70,6 109,1 176,5 244,9
    2 3,53 5,45 8,82 14,29 21,4 35,3 54,5 88,2 122,4 171,4
    4 1,76 2,73 4,41 7,7,14 10,7 17,6 27,3 44,1 61,2 85,7 130,4
    6 1,18 1,82 2,94 4,76 7,1 11,7 18,2 29,4 40,8 57,1 87 117,6
    8 0,88 1,36 2,2 3,57 5,4 8,8 13,6 22 30,6 42,9 65,25 88,2
    10 0,71 1 1,76 2,86 4,3 7,1 10,9 17,7 24,5 34,3 52,2 70,6
    15 0,73 1,18 1,9 2,9 4,7 7,3 11,8 16,3 22,9 34,8 47,1
    20 0,88 1,43 2,1 3,5 5,5 8,8 12,2 17,1 26,1 35,3
    25 1,14 1,7 2,8 4,4 7,1 9,8 13,7 20,9 28,2
    30 1,4 2,4 3,6 5,9 8,2 11,4 17,4 23,5
    40 1,8 2,7 4,4 6,1 8,5 13 17,6
    50 2,2 3,5 4,9 6,9 10,4 14,1
    100 1,7 2,4 3,4 5,2 7,1
    150 2,3 3,5 4,7
    200 2,6 3,5

    Например, для подключения магнитолы на 15 А электроток и длину в 2 м оптимальным будет сечение 6 мм 2 .

    Более точные расчеты для подбора сечения автопровода Вам помогут произвести наши специалисты.

    При выборе провода для автомобильной проводки нужно учитывать факторы воздействия, которым он будет подвергаться при эксплуатации: перепады температур, вибрация, воздействия масел, бензина. Качественный автомобильный провод должен быть гибким, многпроволочным, с медными жилами, а его изоляция устойчива к морозам, не трескаться, не дубеть и не плавиться на жаре.

    В чем разница между гибким многопроволочным кабелем и кабелем с монолитной жилой читйте в нашей статье "Кабель гибкий многожильный"

    Рассмотрим характеристики отечественных марок проводов для автомобильной проводки, которые можно купить на российском рынке.

    ПВА-низковольтный провод высокого класса гибкости (5-ый класс), специально предназначен для использования в автомобильной промышленности. Допустимая температура эксплуатации до +105 С, хотя предел теплостойкости значительно выше (до 96 часов при t + 135C). Провод устойчив к нефтепродуктам – маслу, дизельному и бензиновому топливу. Минимальный срок службы до 10 лет. Провод ПВАМ (М-малогабаритный) отличается от ПВА лишь толщиной изоляции, что делает его легче по общей массе, однако разница при монтаже не ощутима. Преимущественное применение в современных легковых и грузовых автомобилях для подключения оборудования бортовой сети. Кабель соответствует европейским стандартам.

    Заказать ПВА

    ПГВА-низковольтный провод повышенной гибкости для автомобильной электрики. Температурный диапазон ниже, чем у ПВА – от – 40 до + 70 С. ПГВА имеет класс гибкости 3, менее гибкий, чем ПВА, но визуально разница незначительна. Этот кабель чаще всего используют для бортовой сети в сельскохозяйственной технике, грузовых машин и пассажирского транспорта. При необходимости защитить передачу электрического сигнала от помех используют экранированный кабель ПГВАЭ.

    Все провода из серии автотракторных проводов (ПВА, ПВАМ, ПГВА, ПГВАЭ и др.) выпускаются разноцветные, что удобно при подключении автомобильного электрооборудования и последующей идентификации.

    НВ, НВМ – относятся к категории универсальных монтажных проводов и применяются для межприборных соединений, преимущественно фиксированный монтаж. Кабель рассчитан на переменное напряжение 600 и 1000 В и постоянное 840 и 1400 В.В качестве токопроводящей жилы используются однопроволочная или многопроволочная луженая медь, что улучшает качество пайки при необходимости. Температурный диапазон до + 105 С. Разница между НВ и НВМ заключается в выпускаемом классе гибкости жил.

    Заказать НВ

    Некоторые автомастера используют в качестве проводов для автомобильной проводки установочные провода марок ПВ3, ПВ4, ПуГВ, однако максимальная рабочая температура этих проводов не более +70С, и их можно использовать только для стационарного монтажа, а также эти провода необходимо дополнительно защищать. Также в изоляции данных проводов нет специальных пластификаторов, которые защищают от воздействия бензина и масел. Нередко марки ПВ3, ПугВ используют для питания акустики в автомобиле.

    Немецкий гибкий провод марки SiHF имеет силиконовую изоляцию и также может быть использован для автомобильной проводки. Силиконовый провод выдерживает температуру до +180С, негорючий. Однако такой провод достаточно дорогой по сравнению с выше рассмотренными марками.

    Сечение проводов автомобильной проводки

    Чтобы правильно рассчитать сечение провода для автомобильной проводки нужны следующие данные:

    • максимальный потребляемый ток подключаемого электрооборудования в автомобиле;
    • расстояние от оборудования до источника питания (аккумулятора), то есть длину провода;
    • номинальное напряжение источника питания.

    Чтобы быстро подобрать сечение провода достаточно знать максимальную силу тока и воспользоваться готовой таблицей. Существуют нормы максимального тока для каждого стандартного сечения, но этот метод применим только для коротких электрических цепей.

    Сечение провода, мм2 Сила допустимого тока (А) в зависимости от температуры окружающей среды, С
    20 30 50 80
    0,5 17,5 16,5 14 9,5
    0,75 22,5 21,5 17,5 12,5
    1 26,5 25 21,5 15
    1,5 33,5 32 27 19
    2,5 45,5 43,5 37,5 26
    4 61,5 58,5 50 35,5
    6 80,5 77 66 47

    Существует также негласное правила автоэлектриков, что на каждые 1мм2 сечения подключаемая нагрузка 10А.

    Ниже представлена таблица с учётом максимальной длины провода от источника питания в 12В до электрооборудования при падении напряжения менее 2%

    1 1,5 2,5 4 6 10 16 25 35 50 75 100
    1 7 10,91 17,65 28,57 42,86 70,6 109,1 176,5 244,9
    2 3,53 5,45 8,82 14,29 21,4 35,3 54,5 88,2 122,4 171,4
    4 1,76 2,73 4,41 7,7,14 10,7 17,6 27,3 44,1 61,2 85,7 130,4
    6 1,18 1,82 2,94 4,76 7,1 11,7 18,2 29,4 40,8 57,1 87 117,6
    8 0,88 1,36 2,2 3,57 5,4 8,8 13,6 22 30,6 42,9 65,25 88,2
    10 0,71 1 1,76 2,86 4,3 7,1 10,9 17,7 24,5 34,3 52,2 70,6
    15 0,73 1,18 1,9 2,9 4,7 7,3 11,8 16,3 22,9 34,8 47,1
    20 0,88 1,43 2,1 3,5 5,5 8,8 12,2 17,1 26,1 35,3
    25 1,14 1,7 2,8 4,4 7,1 9,8 13,7 20,9 28,2
    30 1,4 2,4 3,6 5,9 8,2 11,4 17,4 23,5
    40 1,8 2,7 4,4 6,1 8,5 13 17,6
    50 2,2 3,5 4,9 6,9 10,4 14,1
    100 1,7 2,4 3,4 5,2 7,1
    150 2,3 3,5 4,7
    200 2,6 3,5

    Пример: Необходимо подключить магнитолу, длина провода 2 метра провода, ток 15 ампер.Согласно таблице ищем наиболее близкие данные для этой задачи.По таблице получается, что нам подойдет сечение 6 мм2,

    Для более точного расчета сечения провода для автомобильной проводки рекомендуем обратиться к специалистам.

    Компания Кабельные системы осуществляет оптово-розничную продажу проводов для автомобильной проводки.Поможем с выбором нужной марки для вашего случая!

    “>

    Диапазон передачи мощности - Delta

    В установках промышленного мониторинга часто необходимо проложить длинные кабели для питания электронного устройства, например, камеры. Здесь необходимо учитывать очень важный периметр - "падение напряжения" на кабеле. Многие установщики не знают о последствиях влияния текущего потока, протекающего через силовые кабели, а проблема электроснабжения является основой при проектировании любой системы видеонаблюдения.

     

    Производители оборудования предоставляют фиксированное значение напряжения питания для данного устройства, например 12В постоянного тока, но не сообщают диапазон этого напряжения (минимальное и максимальное значение). При проведении практических испытаний, мы предположили, что для камеры 12В напряжение может упасть до 11 В. Ниже этого значения могут возникнуть помехи или потеря видеосигнала. Так что падение напряжения на кабеле между блоком питания и камерой может составлять максимум 1В. Многие пользуются готовыми счетчиками мощности, но не знают теоретических и практических вопросов. Поэтому мы постараемся представить их в этой статье.

     

    Каждый провод имеет сопротивление (сопротивление) больше 0. Когда через провод с заданным сопротивлением течет ток, происходят два явления.

     

    1. Происходит падение напряжения по закону Ома.

     

    2. Электричество преобразуется в тепло по закону Ома.

     

    или

     

    Каждый провод представляет собой резистор (резистор). Ниже предоставлена схема замены двухжильного кабеля (включая только сопротивление).

     

    Следует учитывать падение напряжения на каждом проводе, поэтому общее сопротивление (R) двухжильного кабеля будет: R = R1 + R2.

     

    Ниже представлена принципиальная схема падения напряжения в двухпроводном кабеле:

     

    где:
    Uin – напряжение питания, например, от блока питания,
    I – ток, протекающий в цепи,
    R1 – резистанция (сопротивление) первой жилы кабеля,
    R2 – резистанция (сопротивление) второй жилы кабеля,
    UR1 – падение напряжения на первой жиле кабеля,
    UR2 – падение напряжения на второй жиле кабеля,
    L – длина кабеля,
    RL – нагрузка, наример, камеры,
    URL – напряжение на нагрузке.

     

    После подачи напряжения от источника питания (Uin) на кабель подключение нагрузки (RL) в системе начинает течь ток (I), что вызывает падение напряжения на кабеле (UR1 + UR2). Соотношение выглядит следующим образом: выходное напряжение на нагрузке уменьшается из-за падения напряжения на кабеле.

     

    Для расчета падения напряжения (Ud) была использована следующая формула для постоянного и переменного нпряжения (1-фазное):

     

    где:
    Ud – падение напряжения, измеренное в вольтах (В),
    2 – постоянное число, полученное в результате того, что мы вычисляем падение напряжениядля двух кабелей,
    L – длина кабеля, выраженная в метрах (м),
    R – сопротивление (сопротивление) одиночного проводника, выраженное в омах на километр (Ом/км),
    I – ток, потребляемый нагрузкой, выраженный в амперах (А).

     

    Как видите, падение напряжения зависит не от величины входного напряжения, а от тока, длины и сопротивления провода.

     

    Подавляющее большинство промышленных камер имеют переменное энергопотребление. Это связано с тем, что инфракрасный осветитель включается ночью, что увеличивает энергопотребление. Например, камера потребляет 150 мА днем и 600 мА ночью. Не рекомендуется подавать на камеру более высокое напряжение, чтобы компенсировать потери на шнуре питания, так как падение напряжения меняется. При длинной линии питания и включенной инфракрасной подсветке, напряжение питания камеры будет правильным. Выключение подсветки снизит потребление тока камеры и увеличит напряжение нагрузки, что может повредить камеру.

     

    Для расчета падения напряжения потребуются значения сопротивления одиночного провода в Ом/км. Методика расчета этих значений будет описана далее в статье. В таблице есть гтовые данные для нескольких сечений кабелей.

     

     

    Сечение проводника [mm2] Сопротивление [Ω/km] (одиночный провод)
    0,5 35,6
    0,75 23,73
    1 17,8
    1,5 11,87
    0,19625 (UTP K5 Ø0,5 mm) 90,7
    0,246176 (UTP K6 Ø0,56 mm) 72,31

    Пример

    Источник питания 12В постоянного тока, двухжильный кабель сечением 0,5 мм2 и длиной 50 м, камера (нагрузка) с потребляемым током 0,5А (500 мА). Подставляем эти значения в формулу.

     

    Приведенные выше расчеты показывают, что падение напряжения на этом двухпроводном кабеле составляет 1,78 V (2 x 0,89 V). то, конечно, сумма падений напряжений на отдельных проводах. Таким образом, напряжение на нагрузке снизится до значения:
    12 V – 1,78 V = 10,22 V, как показано на рисунке ниже.

     

    Мы можем легко рассчитать процент потери напряжения на кабле питания, используя формулу:

     

    где:
    Ud% – потери напряжения на проводе, выраженные в процентах (%),
    Ud – падение напряжения,
    Uin – входное напряжение.

     

    После подстановки в формулу, вычислим снижение напряжения на нагрузке в %, т.е. потери на линии электропередачи.

     

    Учтите, что проблема падения напряжения, особенно при низких напряжениях питания, очень серьезна. Если мы увеличим напряжение питания, падение напряжения на проводе будет таким же, но процентное падение напряжения на нагрузке будет меньше.

     

    Пример

    Как в предыдущем примере: двухжильный кабель с сечением 0,5 мм2 и длиной 50 м, камера ( нагрузка) с потребляемым током 0,5А (500мА), а также источник питания 24 В постоянного тока.

     

    Потери в линии снабжения:

     

    Как видите, падение напряжения на кабеле составит 1,78 V, что снизит напряжение на нагрузке с 24 В до 22,22 В или на 7,4%, что не повлияет на работу нагрузки.

     

    Пример

    Как в примерах выше: двухжильный кабель с сечением 0,5 мм2 и длиной 50 м, камера (нагрузка) с потребляемым током 0,5А (500мА), но блок питания 230 В постояннного тока.

     

    Потери в линии снабжения:

     

    Как видите, падение напряжения на кабеле будет 1,78 V, что снизит напряжение на нагрузке с 230 В до 228,2 В, то-есть на 0,77%, что не повлияет на характеристики нагрузки.

     

    Были проанализированы три корпуса блока питания для разных напряжений. Падение напряжения такое же и не зависит от уровня напряжения питания. В то время как в установках 230 В падение напя напряжения может быть серьезной, вызывая неисправность подключенного устройства.

     

    Для приведенных выше расчетов нам потребовались значения в Ом/км. Чтобы самостоятельно рассчитать сопротивление одиночного проводника, нам необходимо знать,Это выражается формулой для расчета так называемый, второй закон Ома. В нем говорится, что сопротивление участка проводника с постоянным пересечным сечением пропорциально длине проводника и обратно пропорционально его площади поперечного сечения.

     

    Это выражается формулой для расчета сопротивления проводника длиной L и сечением S:

     

    где:
    R – сопротивление одиночного проводника, выраженное в омах (Ом),
    p – сопротивление (удельное сопротивление) проводника (Oм мм2/m) соответствующее материалу, из которого изготовлен проводник (для меди всегда подставляется значение 0,0178),
    L – длина проводника, выраженная в метрах (м),
    S – площадь сечения проводникав квадратных миллиметрах (мм2).

     

    Для меди удельное сопротивление составляет 0,0178 (Ω мм2/м), что означает, что 1 м проводника с поперечным сечением 1 мм2 имеет сопротивление 0,0178 Ом (для чистой меди). Это значение является ориентировочным и может варьироваться в зависимости от чистоты и обработки меди. Например, дешевые китайские кабели содержат медные сплавы с алюминием и другими примесями, что приводит к увеличению удельного сопротивления и, следовательно, их сопротивления, а также к большому падению напряжения. Удельное сопротивление алюминия составляет 0,0278 (Ω мм2/м).

     

    Пример

    Рассчитываем сопротивление (резистанцию) медного провода длиной 1000 м и сечением 0,75 мм2.

     

    Таким образом, одиночный кабель длиной 1000 м имеет сопротивление 23,73 Ома.

     

    Зная приведеннную выше формулу и закон Ома, очень легко рассчитать максимальный ток для заданного расстояния проводника с определенным поперечным сечением (в мм2). Мы включаем цифру 2 в формулу, потому что мы будем рассчитывать реальную длину для 2 проводов.

     

    Пример

    У нас имеется кабель длиной 30 м с поперечным сечением 2 х 0,75 мм2.

     

    Для начала рассчитываем сопротивление провода.

     

    Для системы 12В мы предполагаем падение напряжения на 1В. Это означает, что напряжение на нагрузке снижается до 11В. Максимальный ток рассчитывается по закону Ома.

     

    Пример

    У кабеля витая пара имеет 4 пары проводов. Рассчитываем падение напряжения, передаваемое 1 паре при токе, потребляемом нагрузкой 500 мА (0,5А) и длиной 40 м UTP K5, который имеет поперечное сечение 0,19625 мм2, питание 1,2В.

     

    Для начала рассчитываем сопротивление кабеля (витая пара UTP K5 имеет сечение 0,19625 мм2):

     

    По закону Ома рассчитываем полное падение напряжения на 2 жилах для тока 500мА (0,5А).

     

    Таким образом, падение напряжения на линии питания будет 3,62В, а напряжение на приемнике будет 8,38В (12 В – 3,62 В = 8,38 В).

     

    Можем также рассчитать по закону Ома максимальный ток при падении напряжения на 1В для установки, питаемой от 12В, что означает, что напряжение на нагрузке снижается до 11 В.

     

    В расчетах использовалась 1 пара витой пары. Очень часто, чтобы уменьшить падение напряжения, для передачи мощности используются 2, 3 или 4 пары компьютеров на витой паре. Они соединены параллельно, что увеличивает поперечное сечение и, таким образом, снижает сопротивление линии, что связано с меньшими потерями напряжения.

     

    Готовые расчеты для тех же параметров: кабель UTP K5, ток 500мА (0,5А) и длина 30 м, питание 12В, это:

  • пара - напряжение на нагрузке = 8,38В,
  • 2 пары - напряжение на нагрузке = 10,16В,
  • 3 пары - напряжение на нагрузке + 10,8В,
  • 4 pary – пары - напряжение на нагрузке +11,1В. 
  • В таблице ниже указан максимальный ток, который можно передать по кабелю определенной длины и сечения, чтобы падение напряжения на нагрузке не превышало 1В. Расчеты производились для 2-х проводов.

     
    Длина кабеля [м] Максимальный ток - медный провод 2 x 0,5 mm2 [A] Максимальный ток - медный провод 2 x 0,75 mm2 [A] Максимальный ток - медный провод 2 x 1 mm2 [A] Максимальный ток - медный провод 2 x 1,5 mm2 [A] Максимальный ток - медный провод 2 x 2,5 mm2 [A]
    10 1,40 2,10 2,80 4,21 7,02
    20 0,70 1,05 1,40 2,10 3,51
    30 0,46 0,70 0,93 1,40 2,34
    40 0,35 0,52 0,70 1,05 1,75
    50 0,28 0,42 0,56 0,84 1,40
    60 0,23 0,35 0,46 0,70 1,17
    70 0,20 0,30 0,40 0,60 1,00
    80 0,17 0,26 0,35 0,52 0,87
    90 0,15 0,23 0,31 0,46 0,78
    100 0,14 0,21 0,28 0,42 0,70
    110 0,12 0,19 0,25 0,38 0,63
    120 0,11 0,17 0,23 0,35 0,58
    130 0,10 0,16 0,21 0,32 0,54
    140 0,10 0,15 0,20 0,30 0,50
    150 0,09 0,14 0,18 0,28 0,46

    В следующей таблице показан максимальный ток, который может быть передан по витой паре определенной длины, чтобы падение напряжения на нагрузке не превышало 1В. Расчеты были выполнены для передачи энергии с помощью 1, 2, 3 и 4 пар кабелей витой пары для популярных категорий 5 и 6.

     
    Длина кабеля [м] Максимальный ток - компьютерная витая пара UTP K5 1 пара
    2 x 0,19625 mm2 [A]
    Максимальный ток - компьютерная витая пара UTP K5 2 пара
    4 x 0,19625 mm2 [A]
    Максимальный ток - компьютерная витая пара UTP K5 3 пара
    6 x 0,19625 mm2 [A]
    Максимальный ток - компьютерная витая пара UTP K5 4 пара
    8 x 0,19625 mm2 [A]
    Максимальный ток - компьютерная витая пара UTP K6 1 пара
    2 x 0,246176 mm2 [A]
    Максимальный ток - компьютерная витая пара UTP K6 2 пара
    4 x 0,246176 mm2 [A]
    Максимальный ток - компьютерная витая пара UTP K6 3 пара
    6 x 0,246176 mm2 [A]
    Максимальный ток - компьютерная витая пара UTP K6 4 пара
    8 x 0,246176 mm2 [A]
    10 0,55 1,10 1,65 2,20 0,69 1,38 2,07 2,76
    20 0,27 0,55 0,82 1,10 0,34 0,69 1,03 1,38
    30 0,18 0,36 0,55 0,73 0,23 0,46 0,69 0,92
    40 0,13 0,27 0,41 0,55 0,17 0,34 0,51 0,69
    50 0,11 0,22 0,33 0,44 0,13 0,27 0,41 0,55
    60 0,09 0,18 0,27 0,36 0,11 0,23 0,34 0,46
    70 0,07 0,15 0,23 0,31 0,09 0,19 0,29 0,39
    80 0,06 0,13 0,20 0,27 0,08 0,17 0,25 0,34
    90 0,06 0,12 0,18 0,24 0,07 0,15 0,23 0,30
    100 0,05 0,11 0,16 0,22 0,06 0,13 0,20 0,27

    Для всех вышеперечисленных расчетов необходимо знать сечение проводника, выраженное в квадратных миллиметрах. Этот параметр не следует путать с диаметром.

     

    Для более толстых кабелей, например, силовых, производители и дистрибьюторы указывают поперечное сечение в квадратных миллиметрах (мм2). Однако для более тонких кабелей, например, телекоммуникационных или информационных, диаметр кабеля указывается в миллиметрах (мм) и в этих случаях мы должны преобразовать диаметр в поперечное сечение.

     

    Ниже представлен чертеж, показывающий разницу между сечением и диаметром проводника:

     

    где:
    S – сечение проводника, выраженное в квадратных миллиметрах (мм2),
    D – диаметр проволоки в миллиметрах (мм),
    r – радиус проволоки - (половина диаметра) в миллиметрах (мм),
    L – длина кабеля.

     

    Формула для расчета сечения:

     

    или

     

    π – число пи, математическая константа= 3,14

     

    Пример

    Компьютерная витая пара UTP категории 5е. Производитель дает диаметр S=0,5 мм. Вычисляем поперечное сечение в мм2.

     

    или

     

    Таким образом, провод диаметром 0,5 мм имеет поперечное сечение всего 0,19623 мм2.

     

    Основные факторы, влияющие на падения напряжения:

  • ток – соотношение закона Ома: чем выше ток, тем больше падение напряжения;
  • диаметр или поперечное сечение кабеля – чем тоньше кабель, тем больше падение напряжения;
  • длина кабеля – логически: чем длиннее кабель, тем больше сопротивление и падение напряжения;
  • материал, из которого сделан кабель. Сегодня большинство проводников изготовлено из меди, что делает их хорошими проводниками. На рынке доступны дешевые китайские кабели, которые выглядят как медь, но сделаны из сплава, содержащего, например, алюминий и магний. Также встречается стальная проволока с тонким медным покрытием. Все это приводит к увеличения сопротивления и увеличению падения напряжения. 
  • Расчет калибра проводов для питания вашего устройства

    Как получить электроэнергию отсюда сюда?

    Многие люди спрашивали нас о сечении провода, необходимого между устройством и источником питания. Они также хотят знать, как далеко могут быть эти два устройства. В этой статье рассказывается, как правильно выбрать провод и рассчитать максимальную длину провода.

    Для работы вашей IP-камере наблюдения, электрическому дверному замку, аудиоусилителю или даже электрическому обогревателю необходимо определенное напряжение и ток.Когда мощность передается по проводу, возникает падение напряжения, вызванное сопротивлением провода. Если камера наблюдения (нагрузка) находится на расстоянии 500 футов от источника питания (источника), и для нее требуется 12 В постоянного тока, какой тип проводки требуется, чтобы устройство получало нужное питание?

    Вы всегда можете использовать очень толстую проволоку (малой толщины), но она может стоить намного дороже, чем более тонкая проволока (большая толщина). Чтобы рассчитать правильный провод и длину, вам сначала нужно понять несколько концепций и уравнений электротехники.

    Электротехнические формулы :

    Не паникуйте. Это будет легко. Три основных элемента в электричестве - это напряжение (В), ток (I) и сопротивление (r). Напряжение измеряется в вольтах, ток измеряется в амперах, а сопротивление измеряется в омах.

    Аккуратная аналогия, помогающая понять эти термины, - это шланг для воды. Напряжение равно давлению воды, сила тока равна скорости потока, а сопротивление равно размеру шланга.

    Например, если вы используете шланг для полива газона, вы можете распылить воду дальше, увеличив давление воды и, следовательно, скорость потока воды. Между давлением, расходом и диаметром шланга существует прямая зависимость.

    Точно так же напряжение, ток и сопротивление связаны друг с другом электротехнической формулой, называемой законом Ома.

    В = I x R

    Еще одно важное соотношение определяет электрическую мощность, которая измеряется в ваттах.В электрической системе мощность (P) равна напряжению, умноженному на ток.

    P = VI

    Мы можем использовать эту формулу для расчета тока, необходимого для нагрузки. Если камере требуется 10 Вт (P), а также 12 В постоянного тока, то можно рассчитать ток:

    I = P / V

    I = 10 Вт / 12 В = 0,833 А

    Падение напряжения

    Падение напряжения - это снижение напряжения в электрической цепи между источником и нагрузкой.Это вызвано током, протекающим через провод, имеющий некоторое сопротивление.

    Сопротивление проводника постоянному току зависит от его длины, площади поперечного сечения, типа материала и температуры.

    Падение напряжения на проводе

    Местные напряжения вдоль длинной линии постепенно уменьшаются от источника к нагрузке.

    Если напряжение между проводником и фиксированной точкой отсчета измеряется во многих точках вдоль проводника, измеренное напряжение будет постепенно уменьшаться по направлению к нагрузке.По мере того, как ток проходит по более длинному проводнику, все больше и больше напряжения «теряется» (недоступно для нагрузки). Это происходит из-за падения напряжения на сопротивлении проводника. На приведенной выше диаграмме падение напряжения вдоль проводника показано заштрихованной областью. Местные напряжения вдоль линии постепенно уменьшаются от источника к нагрузке. Если ток нагрузки увеличивается, падение напряжения в питающем проводе также увеличивается. Падение напряжения существует как в питающих, так и в обратных проводах цепи.

    Мы можем рассчитать напряжение на нагрузке, зная мощность, потребляемую устройством, и напряжение источника. Взгляните на следующую диаграмму. Это упрощение всей системы, которая включает сопротивление провода, нагрузки и источника.

    Принципиальная схема сопротивления напряжения

    R1 - сопротивление провода. R2 - сопротивление нагрузки. V - напряжение источника. Вы можете рассчитать падение напряжения на конце провода, если знаете сопротивление провода и ожидаемый ток.

    Значение R1 можно найти в таблице, в которой указано сопротивление на фут (или метр) для провода определенного калибра. Вы можете найти эти таблицы в Интернете. Например, посмотрите http://www.bulkwire.com/wireresistance.asp. Эта диаграмма предназначена для постоянного тока (постоянного тока). Значения для переменного тока немного отличаются, поэтому убедитесь, что вы используете правильную диаграмму для своих расчетов.

    Пример расчета

    А теперь сделаем пример расчета.Давайте воспользуемся камерой, которая требует 12 В постоянного тока и потребляет 10 Вт. Мы определили, что для этого требуется 0,833 ампера. Используя закон Ома, мы можем рассчитать сопротивление камеры.

    R = V / I

    R = 12 В постоянного тока / 0,833 А = 14,4 Ом.

    Значит, R2 на нашей диаграмме равняется 14,4 Ом.

    Теперь давайте воспользуемся таблицей, чтобы определить сопротивление провода. Предположим, у нас есть длина провода 500 футов, и мы решили использовать провод 18 калибра. Глядя на диаграмму, у проволоки падение 6.5227 на 1000 футов. Поскольку мы хотим пройти только 500 футов, получаем:

    R1 = 6,5227 / 2 = 3,26 Ом

    Теперь мы можем определить напряжение на нагрузке R2. Для этого рассчитываем ток в цепи:

    I = V / (R1 + R2) = 12 / (3,26 +14,4) = 0,68 ампер

    Наконец, рассчитываем напряжение на нагрузке (камере). Обратите внимание, что многие камеры будут работать при напряжении на 10% меньше номинального. Таким образом, если у нас есть камера, которая требует номинального напряжения 12 В постоянного тока, она будет работать правильно, если напряжение равно 10.8 вольт.

    V2 = 0,68 x 14,4 = 9,79 вольт.

    Ой, у нас проблемы! Поскольку расчетное напряжение ниже 90% от 12 В (10,8 В), эта камера не будет работать. Нам нужно что-то сделать, чтобы увеличить напряжение на камере. Мы можем либо увеличить напряжение источника, либо изменить калибр провода, чтобы он не приводил к такому падению напряжения.

    Давайте вернемся к таблице и посмотрим, сможем ли мы отрегулировать калибр проволоки. Если мы используем провод 12 калибра, падение сопротивления составит 1,19 Ом (2.37/2). Тогда общий ток:

    I = 12 / 15,59 Ом = 0,77 ампер.

    И тогда напряжение на камере 0,77 х 14,4 = 11,08 Вольт.

    Это будет работать.

    Мы также можем рассчитать допустимое сопротивление провода, так как нам известен ток, который нам нужен. Как только мы узнаем сопротивление, мы можем использовать диаграмму, чтобы выбрать правильный калибр провода. Я не хочу слишком усложнять, поэтому оставим этот расчет для будущей статьи.

    Питание через Ethernet (PoE)

    А как насчет устройств, использующих Power over Ethernet (PoE)? Вам нужно беспокоиться о проводе и длине? Собственно, об этом можно не беспокоиться.С устройствами, использующими PoE, гораздо проще иметь дело. Вам не нужно иметь дело с кабелем, поскольку он использует стандартную проводку Ethernet. Вам просто нужно убедиться, что переходник или инжектор PoE обеспечивает достаточную мощность для устройства. Длина провода контролируется максимальной длиной сетевого кабеля Ethernet, которая составляет 100 м (328 футов). Тип сетевого кабеля - 22 калибра. Будет падение напряжения от источника (сетевого коммутатора или промежуточного звена), но все это обрабатывается конструкцией PoE.

    Источники питания

    PoE обеспечивают напряжение, превышающее номинальные 48 вольт, чтобы учесть падение напряжения.Инжекторы или инжекторы PoE большей мощности обеспечивают более высокое напряжение источника. Устройства с питанием (нагрузка) рассчитаны на поддержку гораздо более широкого диапазона напряжений, поэтому они будут работать при плюс-минус 20% В или более.

    Сводка

    IP-камеры

    и другие системы безопасности не будут работать правильно, если они не имеют нужного питания. Калибр силовой проводки является ключом к установке работающей системы. Используя закон Ома, вы можете точно рассчитать провод нужного диаметра.

    Вот как мы это делаем.Если вам нужна помощь в выборе подходящего кабеля, свяжитесь с нами. У нас большой опыт работы с системой общей безопасности, поэтому я уверен, что мы сможем помочь. С нами можно связаться по телефону 914-944-3425 или 1-800-431-1658 (в США) или просто используйте нашу контактную форму.

    Вт - мощность ленточного кабеля

    Я хочу кое-что добавить к ответу Маженко:

    Вы перепутали напряжение с падение напряжения !

    Если вы используете ленточный кабель для питания цепи напряжением 12 В постоянного тока, то падение напряжения на вашем кабеле, вероятно, крошечное - это определенно доли вольта, и это зависит от сопротивления кабеля.2 / R \ $, ваш двигатель имеет сопротивление 2,4 Ом.

    Используется провод 28 AWG. Вы не сказали, сколько это длится, поэтому я воспользуюсь этим калькулятором и подключу 1 фут провода, что дает мне сопротивление 0,065 Ом.

    А вот и ваша (упрощенная) схема:

    смоделировать эту схему - Схема создана с помощью CircuitLab

    Фактически это делитель напряжения, поэтому вы можете определить падение напряжения на каждой секции кабеля и на двигателе.2 / (0,065 \ Омега) = 1,46 Вт \ $

    Это работает для любого участка кабеля - даже если один из них на 12 В, а другой на 0.

    Также обратите внимание, что падение напряжения на кабеле довольно мало по сравнению с напряжением на двигателе, поэтому более простой способ определить мощность - это определить ток в двигателе, игнорируя падение напряжения в проводах:

    \ $ I = \ frac {12V} {2.4 \ Omega} = 5A \ $

    и просто убедитесь, что ток не выделяет слишком много тепла (на единицу длины, исходя из сопротивления на единицу длины).Никакого напряжения. Имеет ли это смысл?

    Проводка 12 В: калибр проводов к току

    Требования к проводному манометру на 12 В при удельном токе к длине для автомобильных электрических систем…

    Wire использует измерение калибра для определения размера провода. Чем крупнее провод, тем меньше калибр. Чтобы найти необходимый калибр провода для конкретного применения, вы должны знать ток, потребляемый аксессуаром в цепи, и общую длину провода между аксессуаром и источником питания.Большее потребление тока (более высокая сила тока) требует большего сечения провода для безопасного питания аксессуара.

    Автомобильное напряжение не 12 вольт

    Автомобильная проводка не совсем 12 вольт. Фактическое напряжение покоя полностью заряженной 6-элементной автомобильной свинцово-кислотной батареи составляет около 12,7 В или около 2,1 В на элемент. 6,4 В для свинцово-кислотного аккумулятора на 6 В. Старые батареи, вероятно, будут показывать более низкое напряжение. Когда автомобиль работает, генератор увеличивает автомобильное напряжение примерно до 13.8 вольт. 13,8 вольт - лучшее значение для расчета калибра провода, хотя обычно оно дает примерно такой же калибр, как 12 вольт.

    Сопротивление = падение напряжения

    С длиной кабеля приходит сопротивление. Все провода обладают внутренним сопротивлением, и чем длиннее провод, тем больше сопротивление и тем больше падение напряжения на длине провода. По этой причине важно учитывать длину провода при определении его калибра. 3-футовый провод будет иметь меньшее сопротивление, чем 20-футовый провод, и поэтому для большей длины провода может потребоваться увеличение калибра провода, чтобы обеспечить адекватное напряжение для аксессуара.Установка слишком маленького калибра провода снижает производительность и может создать потенциальную угрозу безопасности. В качестве альтернативы использование проволоки увеличенного диаметра не имеет недостатков и может обеспечить лучшую производительность аксессуара, однако излишек сам по себе имеет обратную сторону - потраченные впустую деньги и ценное пространство. Но при выборе между двумя возможными размерами датчика в серой зоне расчетных или справочных расчетов датчиков всегда лучше выбрать больший датчик.

    Выбор калибра проводов

    Чтобы выбрать подходящий калибр провода, определите потребляемую мощность (силу тока), которую выдержит проводная цепь.Затем измерьте расстояние, которое пройдет провод (длина), включая длину возврата на землю (заземляющий провод, идущий к шасси или обратно к заземляющему блоку или батарее. Используя эти два числа, Ампер и длину, найдите ближайший датчик. значение в таблице ниже. Для автомобильных систем на 6 В обычно следует использовать калибр провода на 2 размера больше, чем показано.

    А
    при 13,8 В
    ДЛИНА ПРОВОДА
    Американский калибр проводов (AWG )
    0-4 фут. 4-7 футов 7-10 футов 10-13 футов 13-16 футов 16-19 футов 19 -22 фут.
    0-10 16-ga. 16-га. 14-га. 14-га. 12-га. 10-га. 10-га.
    10 - 15 14-га. 14-га. 14-га. 12-га. 10-га. 8-га. 8-га.
    15 -20 12-га. 12-га. 12-га. 12-га. 10-га. 8-га. 8-га.
    20-35 12-га. 10-га. 10-га. 10-га. 10-га. 8-га. 8-га.
    35-50 10-га. 10-га. 10-га. 8-га. 8-га. 8-га. 6 или 4-га.
    50-65 10-га. 10-га. 8-га. 8-га. 6 или 4-га. 6 или 4-га. 4-га.
    65-85 10-га. 8-га. 8-га. 6 или 4-га. 6 или 4-га. 4-га. 4-га.
    85-105 8-га. 8-га. 6 или 4-га. 4-га. 4-га. 4-га. 4-га.
    105-125 8-га. 8-га. 6 или 4-га. 4-га. 4-га. 4-га. 2-га.
    125-150 8-га. 6 или 4-га. 4-га. 4-га. 2-га. 2-га. 2-га.
    150-200 6 или 4-га. 4-га. 4-га. 2-га. 2-га. 1/0-га. 1/0-га.
    200-250 4-га. 4-га. 2-га. 2-га. 1/0-га. 1/0-га. 1/0-га.
    250-300 4-га. 2-га. 2-га. 1/0-га. 1/0-га. 1/0-га. 2/0-га.

    В чем разница между системами калибра проводов SWG и AWG?
    SWG и AWG - это системы калибровки проволоки, используемые для обозначения толщины проволоки. В зависимости от типа металла используются разные системы нумерации. Цветные металлы (не содержащие железо) используют Американскую систему калибров проволоки или AWG. Для черных металлов обычно используется стандартный калибр проволоки (SWG).

    См. Также:

    Советы по электромонтажу - использование реле

    Требования к проводке 12 В при определенных значениях силы тока для автомобильных электрических систем

    Схема проводки 12 В - расстояние и сила тока

    Преобразование мощности свечей в ватты и наоборот и другая информация о внедорожном освещении

    Советы и методы по электромонтажу

    Установка и проверка системы зажигания HEI

    Использование светодиодных фонарей в вашем автомобиле

    Установка / проверка дальнего света

    Что такое HID Lights?

    Схемы подключения солнечных батарей - передовые турбины и решения для электроснабжения

    МИНИМАЛЬНЫЙ рекомендуемый размер кабеля (площадь поперечного сечения двухжильного кабеля) для:
    Системы возобновляемых источников энергии 12 В: поддержание потери напряжения ниже 5%

    Максимальная мощность от солнечной панели / массива 1 метр (3.28 футов) 3 метра (9,84 фута) 5 метров (16,4 футов) 10 метров (32,8 футов) 15 метров (49,21 футов) 20 метров (65,61 футов)
    20 Вт 0,5 мм 2 0,5 мм 2 1,0 мм 2 1,5 мм 2 2,0 мм 2 2,5 мм 2
    30 Вт 0.5 мм 2 0,5 мм 2 1,0 мм 2 2,0 мм 2 2,5 мм 2 3,5 мм 2
    36 Вт (= 3 А) 0,5 мм 2 1,0 мм 2 1,0 мм 2 2,5 мм 2 3,0 мм 2 4,0 мм 2
    40 Вт 0.5 мм 2 1,0 мм 2 1,5 мм 2 2,5 мм 2 3,5 мм 2 5,0 мм 2
    50 Вт 0,5 мм 2 1,0 мм 2 1,5 мм 2 3,0 мм 2 5,0 мм 2 6,0 мм 2
    60 Вт 0.5 мм 2 1,0 мм 2 2,0 мм 2 3,5 мм 2 5,0 мм 2 10,0 мм 2
    72 Вт (= 6 ампер) 0,5 мм 2 1,5 мм 2 2,0 мм 2 4,0 мм 2 6,0 мм 2 10,0 мм 2
    80 Вт 0.5 мм 2 1,5 мм 2 2,5 мм 2 5,0 мм 2 10,0 мм 2 10,0 мм 2
    90 Вт 0,5 мм 2 1,5 мм 2 2,5 мм 2 5,0 мм 2 10,0 мм 2 10,0 мм 2
    100 Вт 1.0 мм 2 2,0 мм 2 3,0 мм 2 6,0 мм 2 10,0 мм 2 15,0 мм 2
    120 Вт (= 10 А) 1,0 мм 2 2,0 мм 2 3,5 мм 2 10,0 мм 2 10,0 мм 2 15,0 мм 2
    192 Вт (= 16 А) 1.5 мм 2 3,5 мм 2 6,0 мм 2 15,0 мм 2 20,0 мм 2 25,0 мм 2
    288 Вт (= 24 А) 2,0 мм 2 5,0 мм 2 10,0 мм 2 20,0 мм 2 25,0 мм 2 35,0 мм 2
    360 Вт (= 30 А) 2.0 мм 2 6,0 мм 2 10,0 мм 2 20,0 мм 2 30,0 мм 2 40,0 мм 2
    480 Вт (= 40 А) 3,0 мм 2 10,0 мм 2 15,0 мм 2 30,0 мм 2 40,0 мм 2 55,0 мм 2

    Размеры кабеля указывают минимальную рекомендуемую площадь поперечного сечения двухжильного кабеля.

    См. Таблицу кабелей 24 В для сравнения размеров и AWG ниже.

    МИНИМАЛЬНЫЙ рекомендуемый размер кабеля (площадь поперечного сечения двухжильного кабеля) для:
    Системы возобновляемых источников энергии 24 В: потеря напряжения менее 5%

    Максимальная мощность от солнечной панели / массива 1 метр (3,28 фута) 3 метра (9,84 фута) 5 метров (16.4 фута) 10 метров (32,8 футов) 15 метров (49,21 футов) 20 метров (65,61 футов)
    40 Вт 0,5 мм 2 0,5 мм 2 0,5 мм 2 1,0 мм 2 1,0 мм 2 1,5 мм 2
    72 Вт (= 3 А) 0,5 мм 2 0.5 мм 2 0,5 мм 2 1,0 мм 2 1,5 мм 2 2,0 мм 2
    144 Вт (= 6 А) 0,5 мм 2 1,0 мм 2 1,0 мм 2 2,0 мм 2 3,0 мм 2 4,0 мм 2
    240 Вт (= 10 А) 0,5 мм 2 1.0 мм 2 2,0 мм 2 3,5 мм 2 5,0 мм 2 10,0 мм 2
    360 Вт (= 15 А) 0,5 мм 2 1,5 мм 2 2,5 мм 2 5,0 мм 2 10,0 мм 2 10,0 мм 2
    480 Вт (= 20 А) 1,0 мм 2 2.0 мм 2 3,5 мм 2 10,0 мм 2 10,0 мм 2 15,0 мм 2
    720 Вт (= 30 А) 1,0 мм 2 3,0 мм 2 5,0 мм 2 10,0 мм 2 15,0 мм 2 20,0 мм 2
    960 Вт (= 40 А) 1.5 мм 2 4,0 мм 2 10,0 мм 2 15,0 мм 2 20,0 мм 2 30,0 мм 2

    Необходимая толщина проволоки - quinled.info

    При подключении светодиодной ленты бывает сложно понять, какие провода вам нужно использовать. Я перечислил, как подключать все провода для каждой из моих диммерных плат, но какой толщины должны быть эти провода?

    Во-первых, давайте установим общее правило: мы используем медные кабели, а не что-то еще, например, провод динамика CCA.

    Проектирование наихудшего сценария

    Все сделанные расчеты предназначены для наихудшего сценария, то есть полной яркости. Теперь я понимаю, что вы не будете использовать светодиодные ленты с полной яркостью большую часть времени (или когда-либо действительно с версиями с очень высокой мощностью), поэтому вы создаете диммер! Тем не менее, я стараюсь разрабатывать все свои настройки таким образом, чтобы, если мне действительно нужна полная яркость или что-то пойдет не так, вся настройка (источник питания + кабели + диммер + охлаждение) может справиться с количеством мощности, которое МОЖЕТ выводиться на Светодиодная лента - вероятность возгорания меньше!

    С учетом сказанного, продолжайте читать, пока не дойдете до «Вы с ума сошли?» раздел!

    Метод расчета толщины

    Чтобы рассчитать необходимую толщину, сначала нам нужно знать, какой длины должен быть кабель.Как правило, потеря около 5% (падение напряжения) является приемлемой для большинства соединений постоянного тока. Величина потерь в кабеле напрямую зависит от длины кабеля. Кабель AWG22 может подойти для 20 см, но если вам нужно гораздо большее расстояние, например, 5 м, вам понадобятся кабели гораздо более толстые.

    Второй важный фактор - это количество ампер, необходимое для передачи по кабелю. Напряжение не играет прямой роли при определении толщины кабеля, но определяет величину мощности, которая может пройти по кабелю в конечном итоге, и величину потерь, которые могут возникнуть.

    Этот калькулятор также очень удобен при вычислении падения напряжения и других цифр!

    Таким образом, Amperage + Length определяет толщину кабеля. Взгляните на следующую таблицу. В этой таблице указаны мм2, а не калибр провода !:

    Таблица позаимствована у 24volt.co.uk

    Эта таблица позволяет очень легко увидеть толщину кабеля, к которой следует стремиться при использовании напряжения 24 В. Поскольку на этой диаграмме указана сила тока, а не мощность, те же значения должны применяться и для 5 В и 12 В, изменится только процентное падение, но вы все равно должны оставаться в безопасном диапазоне.

    В качестве примера предположим, что у вас есть светодиодная лента длиной 5 м (~ 16,6 футов), которая потребляет 100 Вт мощности при максимальной яркости. Длина кабеля, который вы хотите использовать, должна составлять 5 метров, при 12 В это 8,33 А, а при 24 В - всего 4,16 А! Чтобы безопасно передавать ~ 8 А, вам понадобится кабель 1,5 мм2, переключающий его до светодиодной ленты 24 В и источника питания, теперь вам нужно передать только 4,16 А, и, таким образом, кабель 0,75 мм2 (в основном половина толщины) подойдет. Чтобы перевести мм2 в манометр, см. Следующую таблицу:

    Исходя из того, что указано в этой таблице для 12 В 8 А, вам понадобится кабель калибра 14.Если вы покупаете все на 24 В, вам нужно будет транспортировать только ~ 4 А мощности и, следовательно, понадобится только кабель сечением от 22 до 20. В основном это происходит по тем же причинам, что и объясняется в моей статье «12v vs 24v», использование более высокого напряжения постоянного тока позволяет вам использовать меньше меди и, таким образом, сэкономить на стоимости! Вы также столкнетесь с меньшими проблемами с выцветанием светодиодной ленты на дальнем конце.

    Для подключения аналоговой белой светодиодной ленты провода + и - должны быть одинаковой толщины.

    • 5м, 12В, светодиодная лента тёпло-белого цвета с использованием 16 / м
      • 5 м * 16 Вт = 80 Вт | 80 Вт / 12 В ~ 7 А
        • Длина проводов от диммера до светодиодной ленты 2 м
          • Для транспортировки 7 А на расстояние более 2 м вам потребуется провод толщиной не менее 1.5 мм2 или калибр от 16 до 14
    • 5 м, 24 В, светодиодная лента теплого белого цвета, мощность 14,4 Вт / м
      • 5 м * 14,4 Вт = 72 Вт | 72 Вт / 24 В = 3 А
        • Длина проводов от диммера до светодиодной ленты 2 м
          • Для транспортировки 3 А на расстояние более 2 м вам потребуется провод толщиной не менее 0,75 мм2 или калибром от 22 до 20
        • Тот же сценарий, но теперь расстояние до светодиодной ленты составляет 10 м от диммера до светодиодной ленты.
          • Для транспортировки 3 А на расстояние более 10 м вам потребуется провод минимальной толщины 1.5 мм2 или калибр от 16 до 14
    • 5 м, 5 В, 60 светодиодов / м, лента WS2812b RGB с использованием 60 мА на каждый светодиод
      • 60 светодиодов / м * 5в = 300 | 300 светодиодов * 0,06 А = 18 ампер
        • От диммера до светодиодной ленты 5 м
          • Для транспортировки 18 А на расстояние более 5 м вам потребуется провод толщиной не менее 2,5 мм2 или калибр 10

    Согласно приведенным выше расчетам, вам понадобятся толстые кабели для подключения светодиодных лент к платам! Большинство светодиодных лент поставляются с короткими выводами, которые имеют небольшую толщину, так какой смысл в приведенных выше расчетах?

    Толщина кабеля напрямую зависит от расстояния.Для провода 10 см вам не понадобится провод 2,5 мм2 или 10 калибра. Что-то вроде калибра 0,5 мм2 или 24 (или даже меньше) подойдет. Лично я использую катушку с проводом 0,75 мм2 или 20 калибра для своих коротких проводов, длина которых не превышает 1 метр. Так что, если диммер находится близко к светодиодной ленте, вам не о чем беспокоиться. Когда диммер или источник питания находятся на расстоянии нескольких метров или 10 футов, вам нужно уделять пристальное внимание толщине кабеля!

    Чтобы приобрести кабель, см. Статью «Инструменты и оборудование». Я перечислил несколько различных типов кабеля, которые можно использовать для силовых или сигнальных проводов (сигнальные провода могут быть намного тоньше!).

    Иногда при расчете толщины проволоки необходимо учитывать особые случаи.

    Двойная подача светодиодной ленты

    Если у вас, например, однократное питание светодиодной ленты мощностью 100 Вт, которая работает при 24 В и требует 5 метров кабеля, для этого требуется 4,16 А мощности и, следовательно, толщина провода 0,75 мм2 для передачи его на эти 5 метров. Однако, если вы продвигаете кабель дважды (с обоих концов), требование на кабель составляет всего ~ 2 А, поэтому можно использовать более тонкие кабели!

    * Распределение мощности никогда не бывает равным на 100%, и рекомендуется убедиться, что оба конца могут выдерживать полную нагрузку, возможно, используйте 2/3 толщины вместо половины, например

    Аналоговый RGB (Вт)

    При использовании полосы RGB (W) у вас есть 4 отрицательных провода, но только один положительный провод.Чтобы иметь возможность выдерживать такое же количество тока, с которым могут справиться все отрицательные провода, положительный провод теоретически должен быть в 4 раза толще, чем отрицательный. На самом деле из этого получится очень толстый (и, следовательно, дорогой) кабель, поэтому обычно рекомендуется кабель вдвое большего размера. Если каждый цвет светодиодной ленты может выдерживать, скажем, 1 А при напряжении 24 В, убедитесь, что положительный + кабель может выдерживать не менее 2 А, но желательно больше.

    Цифровой RGB

    Digital RGB имеет свой собственный набор правил. Если мы говорим об APA102, есть положительный, отрицательный и отдельные провода данных и часов.Для WS2812b есть положительный, отрицательный и только один провод данных. Толщина провода передачи данных в основном не так уж и важна, даже провод dupont подойдет. Однако толщина положительного и отрицательного проводов важна! Поскольку в большинстве этих лент используется только 5 В, это означает, что вы имеете дело с гораздо большей силой тока, чем со светодиодами 12 или 24 В. Цифровая полоса RGB любой приличной длины может легко выдержать ток более 10 А, поэтому толщина кабеля важна! Проверьте приведенную выше таблицу, чтобы рассчитать, что вам потребуется.Например, для 10 ампер потребуется 4 мм2 или калибр 6 для длины кабеля 10 метров, поэтому настоятельно рекомендуется стараться, чтобы длина провода после источника питания была как можно короче!

    Например, в этой статье QuinLED-Quad у меня есть схемы оптимального подключения. Однако есть разные способы, которые иногда появляются в Интернете, я в основном не рекомендую их, но они есть:

    2-сторонняя одинарная подача

    Если вы хотите убедиться, что все светодиоды внутри полосы светятся равномерно, вы можете подключить положительный ток на одном конце и отрицательный ток на другой стороне светодиодной полосы.Таким образом, мощность всегда должна проходить одинаковое расстояние через полосу, и теоретически падение напряжения, таким образом, также всегда будет одинаковым для каждого светодиода. Хотя это жизнеспособный способ сделать это, особенно в больших светодиодных установках, подключение может быть затруднительным. Это также не решает проблему падения напряжения внутри светодиодной ленты, но в основном позволяет решить эту проблему, используя эффект вместо его решения. Результат, хотя и равномерно освещенный, все равно приведет к более тусклому свету светодиодов, а также вызовет много дополнительного тепла из-за всего тока, проходящего через светодиодную ленту.

    Только двойное кормление положительное +

    При использовании полосы RGBW каждый цвет (красный, зеленый, синий и белый) имеет свою собственную отрицательную линию, идущую к полосе. Положительная линия / рельс делится между ними. На мой взгляд, вам нужно убедиться, что положительная шина толще и использует более толстые кабели, чтобы иметь возможность соответствовать 4 отрицательным шинам на полной яркости (отображение белого + белого цвета в RGB). На самом деле все кабели, подключенные к светодиодным лентам, имеют одинаковую толщину, поэтому положительный кабель должен проводить намного больше тока, чем другие кабели.Чтобы исправить это, проложите только положительный кабель к другой стороне полосы и подайте только положительную шину дважды. Поскольку ток, протекающий через отрицательные провода, намного меньше, напряжение должно падать меньше, и иногда вы можете обойтись только двойным питанием положительных шин таким образом.

    Лично я бы посоветовал, если вы планируете это, запланировать двойную подачу всех рельсов (положительную и отрицательную) или среднюю подачу, чтобы предотвратить дисбаланс в полосе. Это также гарантирует, что вы получите желаемую максимальную яркость полосы и не вызовете очень сильного нагрева со стороны, где подключены все отрицательные провода.С учетом сказанного, для некоторых проектов только двойная подача положительного тока может быть достаточной и работоспособной.

    Вот пример того, как подключить это с помощью QuinLED-Quad:

    Часть 1: Выбор правильного размера провода для цепи постоянного тока

    Считаете эту статью полезной?
    Подпишитесь на нашу рассылку новостей!

    Выбор правильного сечения провода для вашего электрического проекта постоянного тока важен, так как слишком маленький провод может перегреться и, возможно, вызвать пожар.Американский совет по лодкам и яхтам (ABYC) публикует диаграммы с ценной информацией, чтобы помочь опытным судостроителям и установщикам определить, какой размер провода им нужен. Хотя эти диаграммы - отличный ресурс, они немного пугают. В этом кратком техническом описании информация на этих диаграммах представлена ​​в более удобном для монтажников и судовладельцев размере.

    Качественный морской провод, как указано в стандартах ABYC, всегда будет многожильным, а не сплошным, и всегда будет покрыт оловом медью.Кроме того, в приведенной ниже таблице выбора проводов постоянного тока предполагается, что номинальная изоляция проводов составляет 105 ° C. Более низкий рейтинг снизит допустимую нагрузку на провод по току.

    Чтобы использовать таблицу, включенную в это техническое описание, следуйте приведенным ниже инструкциям.

    Выбор правильного провода

    A Найдите ТОК В АМПАХ вашего устройства в верхней части таблицы. Большинство электротехнической продукции имеют паспортную табличку, или вы можете найти номинальную силу тока в документации, прилагаемой к продукту.

    B Найдите контур ДЛИНА В ФУГАХ в левой части диаграммы. Обратите внимание, что общая длина цепи - это расстояние туда и обратно от источника питания (обычно аккумулятора) до продукта и обратно.

    C Выберите ТИП ЦЕПИ . Допустимое падение напряжения зависит от того, является ли цепь критической или некритической.

    Критические цепи с допустимым падением напряжения 3% включают

    • Главные питатели панели
    • Трюмные воздуходувки
    • Электроника
    • Навигационные огни

    Некритические цепи с допустимым падением напряжения 10% включают

    • Общие освещение
    • Брашпильки
    • Насосы для приманки
    • Бытовая техника общего назначения

    Следуйте по колонке вниз, пока не найдете ДЛИНА В ФУТАХ вашей цепи.

    D Пересечение ТОК В АМПАХ с ДЛИНА В ФУТАХ для определения размера провода.

    Пример: брашпиль на 80 А находится на расстоянии 25 футов от батареи. Длина цепи составляет 50 футов, тип цепи «некритичный», а правильный размер провода - 4 AWG .

    Щелкните изображение ниже, чтобы увеличить

    Хотя этот процесс использует информацию из ABYC E-11, чтобы рекомендовать размер провода и защиту цепи, он может не охватывать все уникальные характеристики, которые могут существовать на лодке.Если у вас есть конкретные вопросы по установке, обратитесь к сертифицированному установщику ABYC.

    Мастер цепей на сайте circuitwizard.bluesea.com - это ресурс для более подробного описания выбора сечения проводов для цепей постоянного тока. Он позволяет вводить подробную информацию, включая номинальную температуру изоляции провода и другие факторы снижения номинальных характеристик. Мастер схемы прост в использовании и доступен с любого компьютера, подключенного к Интернету.

    Поищите дополнительные статьи по выбору защиты цепей на сайте bluesea.ru / support / article / Circuit_Protection.

    Прочтите Часть 2: Выбор предохранителя и держателя предохранителя для установки устройства постоянного тока

    Информация о кабелях и установке

    Информация о кабелях и установке

    Советы по выбору кабеля и установке


  • ПЕРЕПАД НАПРЯЖЕНИЯ И ПЛОЩАДЬ СЕЧЕНИЯ
  • Кабели постоянного тока между батареей и инвертором должны иметь достаточную площадь поперечного сечения (общее поперечное сечение всех отдельных жил), чтобы эффективно пропускать ток, потребляемый инвертором.Как правило, чем толще, тем лучше работает, но такие факторы, как количество медных жил в кабеле и чистота самой меди, также могут влиять на характеристики. Кабель с поперечным сечением, подходящим для текущих требований приложения (как показано в таблице), минимизирует входное сопротивление, а высококачественная медь дополнительно повышает эффективность работы. С ростом популярности мощных автомобильных аудиосистем стали доступны высококачественные кабели питания от батарей.

    Довольно распространенная ошибка - недооценка тока, потребляемого входным каскадом инвертора. Система на 12 вольт обычно потребляет 1 ампер на каждые 10 ватт выходной мощности, что дает максимальный ток нагрузки около 20 ампер для небольшого блока мощностью 200 ватт и почти 40 ампер при пределе перенапряжения. Хотя многие кабели могут указывать номинальные токи намного выше, чем это, это не обязательно означает, что они подходят для этого приложения.Многие такие кабели предназначены для бытовой электропроводки, например, кольцевой сети и ответвлений кухонных плит, работающих при напряжении сети, и падение на несколько вольт под нагрузкой, скажем, 20 ампер, не будет проблемой. Такое же падение напряжения на уровне 20 А, например, при питании инвертора от 12-вольтной батареи, представит инвертор как раз разряженную батарею.


    Вход

    В
    O
    L
    Т
    A
    G
    E

    МОЩНОСТЬ

    200Вт

    700 Вт

    1500 Вт

    12В

    6 мм2

    16 мм2

    32 мм2

    24 В

    3 мм2

    10 мм2

    24 мм2

    48 В

    1.5 мм2

    6 мм2

    16 мм2

    96V

    1 мм2

    3 мм2

    6 мм2

    Вернуться в начало документа.

  • ВОПРОСЫ ДЛИНЫ КАБЕЛЯ АККУМУЛЯТОРА
  • Часто бывает неудобно или невозможно расположить аккумуляторную батарею рядом с нагрузкой, и в этих случаях необходимо удлинить проводку.Поначалу казалось бы логичным разместить инвертор рядом с нагрузкой и убрать батарею, даже снаружи для вентиляции, однако с точки зрения электричества это не лучшее решение. Слишком большое протяжение кабелей относительно сильноточной батареи приведет к чрезмерным падениям напряжения и появлению таких симптомов, как использование кабеля недостаточного поперечного сечения. Как и в предыдущем разделе, падение напряжения на входном каскаде инвертора дает вид разряженной батареи.Если входной кабель необходимо удлинить , то для компенсации необходимо увеличить выбранную площадь поперечного сечения.

    Лучшее решение проблемы - разместить инвертор рядом с аккумулятором с короткими кабелями аккумулятора и протянуть выходной кабель до нагрузки. Причина этого в том, что, хотя удлинение любого кабеля вызывает падение напряжения на нем под нагрузкой, выходное напряжение, подаваемое на нагрузку, относительно высокое, поэтому последствия любого падения менее заметны.При таком расположении коротких кабелей к батарее для установки требуется только минимальная длина относительно дорогого кабеля батареи.

    Вернуться в начало документа.

  • УПРАВЛЕНИЕ ПЕРЕКЛЮЧАТЕЛЕМ НИЗКОГО ТОКА
  • Если желательно управлять инвертором с помощью переключателя, близкого к нагрузке, рекомендуется использовать устройства с проводом дистанционного переключателя.Эта функция позволяет включать и выключать инвертор на расстоянии без удлинения основных токоведущих кабелей, которые могут вызвать падение напряжения на входе. Переключатель должен быть только малоточного типа, а проводка должна иметь минимальное поперечное сечение. Такое расположение потребовало бы, чтобы второй предохранитель был помещен в эту линию переключателя для защиты тонкого кабеля, значение 1 А было бы достаточным, поскольку через эту цепь когда-либо проходил только минимальный ток.

    Вернуться в начало документа.

  • СИГНАЛИЗАЦИЯ ЗАРЯДА АККУМУЛЯТОРА
  • Тревоги состояния батареи, если они установлены, должны давать звуковое предупреждение о том, что батарея требует зарядки, и отключать инвертор, когда батарея падает до определенного состояния разряда. Эта схема воздействует на напряжение, присутствующее на входе инвертора, поэтому любое падение напряжения, вызванное недостаточной разводкой аккумуляторных кабелей, также будет влиять на срабатывание сигнализации и в некоторых случаях вызывать отключение инвертора при приложении нагрузки.Обычно для 12-вольтовой системы блок будет работать нормально до тех пор, пока аккумулятор не разрядится до точки, при которой напряжение, подаваемое на инвертор, упадет примерно до 10,5 вольт, в этот момент начнет тихо звучать аварийный сигнал, предлагая пользователю зарядить аккумулятор. Если не предпринять никаких действий или зарядные устройства не подают ток со скоростью, требуемой инвертором, напряжение батареи упадет дальше, а громкость сигнала тревоги увеличится примерно до 9.5 Вольт выход инвертора отключится. Инвертор будет оставаться в этом состоянии до тех пор, пока не будут перезаряжены обе батареи. и инвертор вручную выключится и снова включится для сброса цепи. Это действие предотвращает глубокую разрядку аккумулятора, что может сократить срок его службы или, например, предотвратить возможность запуска двигателя.

    Вернуться в начало документа.

  • ПРЕДОХРАНИТЕЛЬНАЯ ЗАЩИТА АККУМУЛЯТОРНОГО КАБЕЛЯ
  • Все наши устройства имеют внутренние предохранители, рассчитанные на срабатывание в случае сбоя внутри инвертора или чрезмерной перегрузки. Эти предохранители не могут защитить кабели аккумулятора от возгорания в случае неисправности, вызванной, например, трением кабеля о переборку или раздавливанием. По этой причине вам следует установить линейный предохранитель с номиналом, подходящим для защиты кабеля батареи, но не таким, чтобы вызвать чрезмерное падение напряжения в кабеле.Например, инвертор мощностью 200 Вт для 12-вольтовой аккумуляторной системы имеет внутренний предохранитель на 30 А, поэтому при использовании подходящих тяжелых кабелей вся система может быть защищена встроенным плавким предохранителем на 60 А на полюсе аккумуляторной батареи. В системах, в которых используются батареи, подключенные параллельно, мы рекомендуем линейный предохранитель для каждой батареи . В системах с последовательными батареями один предохранитель в любом месте цепи обеспечит безопасность в случае неисправности. Таким образом, короткое замыкание приведет в лучшем случае к выскакиванию встроенного предохранителя, однако риск того, что в незащищенной системе возникнет короткое замыкание, которое высвободит огромный ток, быстро нагревая все, кроме очень тяжелых кабелей, не стоит принимая.

    Вернуться в начало документа.

  • СЕРИЯ ПОДКЛЮЧЕНИЕ АККУМУЛЯТОРОВ
  • Что касается раздела, касающегося удлинения кабелей, одно из преимуществ более высоких входных напряжений состоит в том, что падение напряжения на кабеле батареи является гораздо меньшей проблемой. Например, инвертор на 24 В обычно потребляет половину тока, который потребляет инвертор на 12 В для того же выхода, что позволяет использовать более тонкие, длинные и более легко прокладываемые кабели в корпусах батарей.Конечно, вам потребуются две 12-вольтовые батареи вместо одной, но их емкость должна быть только вдвое меньше (или по тем же соображениям вы получите вдвое большую емкость, чем 12-вольтовая система, использующая тот же тип батареи), что и они делятся работой. Устройства предохранителей просты, поскольку один предохранитель защищает весь кабель батареи и может быть расположен в любом месте цепи, например, между батареями, как показано на рисунке. Также необходимо принять во внимание устройства для зарядки, предпочтительным методом будет последовательное соединение аккумуляторов при зарядке с использованием зарядного устройства на 24 В, чтобы все элементы оставались сбалансированными и в одном и том же состоянии.Для стационарной установки стоит рассмотреть преимущества аккумуляторных систем с более высоким напряжением, поскольку они имеют много преимуществ перед 12-вольтовой системой, когда требуются более высокие мощности.

    Вернуться в начало документа.

  • ПАРАЛЛЕЛЬНАЯ ПОДКЛЮЧЕНИЕ АККУМУЛЯТОРОВ
  • Когда требуется большая емкость батареи, батареи могут быть подключены параллельно, это также дает больший пиковый пусковой ток.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *