Схемы импульсных блоков питания 12в: Мощный импульсный блок питания на 12 В своими руками

Содержание

Мощный импульсный блок питания на 12 В своими руками

Доброго времени суток дорогие друзья, в этой статье хочу поделиться с вами своим опытом по созданию импульсных источников питания. Речь пойдет о том как собрать своими руками импульсный источник питания на микросхеме IR2153.
Микросхема IR2153 представляет собой высоковольтный драйвер затвора, на ней строят много различных схем, блоки питания, зарядные устройства и т. д. Напряжение питания варьируется от 10 до 20 вольт, рабочий ток 5 мА и рабочую температуру до 125 градусов Цельсия.
Начинающие радиолюбители побаиваются собрать свой первый импульсный блок питания, очень часто прибегают к трансформаторным блокам. Я в свое время тоже опасался, но все таки собрался и решил попробовать, тем более что деталей было достаточно для его сборки. Теперь поговорим не много о схеме. Это стандартный полумостовой источник питания с IR2153 на борту.

Детали


Диодный мост на входе 1n4007 или готовая диодная сборка рассчитанная на ток не менее 1 А и обратным напряжением 1000 В.
Резистор R1 не менее двух ватт можно и 5 Ватт 24 кОм, резистор R2 R3 R4 мощностью 0,25 Ватт.
Конденсатор электролитический по высокой стороне 400 вольт 47 мкф.
Выходной 35 вольт 470 – 1000 мкФ. Конденсаторы фильтра пленочные рассчитанные на напряжение не менее 250 В 0,1 - 0,33 мкФ. Конденсатор С5 – 1 нФ. Керамический, конденсатор С6 керамический 220 нФ, С7 пленочный 220 нФ 400 В. Транзистор VT1 VT2 N IRF840, трансформатор от старого блока питания компьютера, диодный мост на выходе полноценный из четырех ультрабыстрых диодах HER308 либо другие аналогичные.
В архиве можно скачать схему и плату:


Печатная плата изготовлена на куске фольгированного одностороннего стеклотекстолита методом ЛУТ. Для удобства подключения питания и подключения выходного напряжения на плате стоят винтовые клемники.


Схема импульсного блока питания на 12 В


Преимущество этой схемы в том, что эта схема очень популярная в своем роде и ее повторяют многие радиолюбители в качестве своего первого импульсного источника питания и КПД а разы больше не говоря уже и размерах. Схема питается от сетевого напряжения 220 вольт по входу стоит фильтр который состоит из дросселя и двух пленочных конденсаторов рассчитанных на напряжение не менее 250 – 300 Вольт емкостью от 0,1 до 0,33 мкФ их можно взять из компьютерного блока питания.

В моем случае фильтра нет, но поставить желательно. Далее напряжение поступает на диодный мост рассчитанный на обратное напряжение не менее 400 Вольт и током не менее 1 Ампера. Можно и поставить готовую диодную сборку. Дальше по схеме стоит сглаживающий конденсатор с рабочим напряжением 400 В, поскольку амплитудное значение сетевого напряжение составляет в районе 300 В. Емкость данного конденсатора подбирается следующим образом, 1 мкФ на 1 Ватт мощности, так как я не собираюсь выкачивать из этого блока большие токи, то в моем случае стоит конденсатор на 47 мкФ, хотя из такой схемы можно и выкачивать сотни ватт. Питание микросхемы берется с переменки, здесь организован источник питания резистор R1 который обеспечивает гашение тока, желательно ставить помощнее не менее двух ватт так как осуществляется его нагрев, затем напряжение выпрямляется всего одним диодом и поступает на сглаживающий конденсатор а затем на микросхему.
1 вывод микросхемы плюс питания и 4 вывод это минус питания.

Можно и собрать отдельный источник питания для нее и подать согласно полярности 15 В. В нашем случае микросхема работает на частоте 47 – 48 кГц для такой частоты организована RC цепочка состоящая из резистора R2 15 ком и пленочного или керамического конденсатора на 1 нФ. При таком раскладе деталей микросхема будет работать правильно и вырабатывать прямоугольные импульсы на своих выходах которые поступают на затворы мощных полевых ключей через резисторы R3 R4 номиналы их могут отклоняться в пределах от 10 до 40 Ом. Транзисторы необходимо ставить N канальные, в моем случае стоят IRF840 с рабочим напряжением сток исток 500 В и максимальным током стока при температуре 25 градусов 8 А и максимальной рассеиваемой мощностью 125 Ватт. Далее по схеме стоит импульсный трансформатор, после него идет полноценный выпрямитель из четырех диодов марки HER308, обычные диоды тут не подойдут так как они не смогут работать на высоких частотах, поэтому ставим ультрабыстрые диоды и после моста напряжение уже поступает на выходной конденсатор 35 Вольт 1000 мкФ, можно и 470 мкФ особо больших емкостей в импульсных блоках питания не требуется.


Вернемся к трансформатору, его можно найти на платах компьютерных блоков питания, определить тут его не сложно на фото видно самый большой вот он то нам и нужен. Чтобы перемотать такой трансформатор необходимо прослабить клей, которым склеены половинки феррита, для этого берем паяльник или паяльный фен и потихоньку прогреваем трансформатор, можно опустить в кипяток на несколько минут и аккуратно разъединяем половинки сердечника. Сматываем все базовые обмотки, наматывать будем свои. Из расчета того что мне на выходе нужно получить напряжение в районе 12-14 Вольт, первичная обмотка трансформатора содержит 47 витков проводом 0,6 мм в две жилы, делаем изоляцию между намоткой обычным скотчем, вторичная обмотка содержит 4 витка того же провода в 7 жил. ВАЖНО производить намотку в одну сторону, каждый слой изолировать скотчем, отмечая начало и конец обмоток иначе ни чего работать не будет, а если и будет тогда блок не сможет отдать всю мощность.

Проверка блока


Ну а теперь давайте протестируем наш блок питания так как мой вариант полностью исправен то я сразу подключаю в сеть без страховочной лампы.

Проверим выходное напряжение как видим оно в районе 12 – 13 В не много гуляет от перепадов напряжения в сети.

В качестве нагрузки автомобильная лампа на 12 В мощностью 50 Ватт ток соответственно протекает 4 А. Если такой блок дополнить регулировкой тока и напряжения, поставить входной электролит большей емкости, то можно смело собирать зарядное устройство для авто и лабораторный блок питания.

Перед запуском блока питания необходимо проверить весь монтаж и включаем в сеть через страховочную лампу накаливания 100 Ватт, если Лампа горит в полный накал значит ищите ошибки при монтаже сопли не смытый флюс либо не исправен какой то компонент и т д. При правильной сборке лампа должна слегка вспыхнуть и погаснуть, это нам говорит, что Конденсатор по входу зарядился и ошибок в монтаже нет. Поэтому перед установкой компонентов на плату их необходимо проверять даже если они новые. Еще один не мало важный момент после запуска напряжение на микросхеме между 1 и 4 выводом должно быть не менее 15 В.
Если это не так подбирать нужно номинал резистора R2.

Смотрите видео


Блок питания 1,5в, 3,3в, 5в, 12в, 24в, самому собрать из подручных деталей мощный блок. Схемы блоков питания. Сборка простого блока питания.

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Блок питания 12в

 

Каждый, кто захочет сможет изготовить 12 - ти вольтовый блок самостоятельно, без особых затруднений.


Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник ...
Шаг 1: Какие детали необходимы для сборки блока питания ...
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок ....
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В - 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ - 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.

Шаг 2: Инструменты ....
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие ...

 

Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

 

Блок питания 12в 30а

Схема блока питания 12в 30А.
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.


Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания

При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку - типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 - 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт,  при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.


Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения . ..
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0. 1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы - отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 - ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Трансформаторный блок питания
Ремонт и доработка китайского блока питания для питания адаптера.
Доработка блока питания

Схемы блоков питания

Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805

Импульсный блок питания: схемы, принцип работы, особенности

Мы имеем множество различных устройств, подключая которые к сети мы даже не задумываемся о том, какое питание им необходимо. Значительная часть бытовой техники имеет импульсный блок питания. Даже светодиодные или люминесцентные цокольные лампы имеют встроенный источник импульсного питания (ИИП).

Содержание статьи

Что делает импульсный блок питания (ИБП)

В сети напряжение имеет синусоидальную форму. Для некоторых устройств это то что нужно, другим надо постоянное или импульсное напряжение. Вот этим и занимаются источники питания — преобразуют синусоидальную форму в нужную и, чаще всего, это постоянное напряжение. Независимо от формы выходного напряжения блок питания называют импульсным, потому что одна из стадий преобразования — формирование импульсов, которые затем выпрямляются.

Примеры импульсных блоков питания:

  • Зарядное устройство для телефона или смартфона;
  • Внешний блок питания ноутбука;
  • Блок питания компьютера;
  • Блок питания для светодиодной ленты.

Импульсный блок питания Robiton EN5000S. Предназначен для питания от источника переменного тока 100-240В приборов с напряжением 6,0 / 7,5 / 9,0 / 12,0 / 13,5 / 15 / 16В и максимальным входным током 5000 мА

Есть импульсные источники питания выдающие постоянное напряжение одного номинала. Наиболее распространенные на — 5 В, 12 В или  24 В. Есть устройства, выдающие сразу несколько уровней. Такие, например, стоят в компьютерах. На выходе они формируют сразу 5 В и 12 В. Есть — регулируемые ИИП, при помощи переключателей в них можно задавать выходные параметры (в определенных рамках). Импульсный блок питания может быть в виде отдельного устройства или являться частью какого-то более сложного прибора.

Путь преобразования синусоиды в постоянное напряжение при помощи источника импульсного питания

Если говорить об отдельных ИБП, то самыми распространенными, пожалуй, являются зарядные устройства для телефонов, ноутбуков. Они имеют компактные размеры, так как требуется небольшая мощность. Встроенный импульсный блок питания есть в телевизорах, компьютерах и другой сложной электронике, в некоторых бытовых приборах. Блоки питания бывают линейные (трансформаторные) или импульсные (инверторные).

Инвертор — устройство для преобразования постоянного тока в переменный с изменением величины напряжения. Обычно представляет собой генератор периодического напряжения, по форме приближённого к синусоиде, или дискретного сигнала.

Оба типа блоков питания преобразуют синусоиду в постоянный ток, но вот путь преобразования разный, да и результаты несколько отличаются. Импульсный блок питания отличается высокой стабильностью работы. Тем не менее трансформаторные источники еще в ходу. Почему? Стоит разобраться.

Чем отличается от трансформаторного блока питания

И трансформаторный (линейный) и импульсный (инверторный) БП выдают на выходе постоянное напряжение. Причем вторые имеют меньшие габариты, более стабильны в работе, часто ниже по цене, да еще и напряжение дают более «качественное» и независящее от параметров исходной синусоиды (а она далеко не идеальная в наших сетях). Так почему же используют и трансформаторные блоки, и импульсные? Чтобы понять, надо знать в чем отличие трансформаторного блока питания от импульсного. А для этого придется разбираться в устройстве и принципах работы. На основании этого можно уяснить основные свойства.

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность. Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц. Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Схемы импульсных блоков питания

Чтобы понимать, как работает импульсный блок питания, надо разобраться в том, что происходит в каждой его части. Сделать это проще по схемам. Мы приведем только некоторые, так как вариантов и вариаций — море. Схема импульсного блока питания содержит пять обязательных блоков плюс обратная связь. Вот о каждом элементе и поговорим отдельно, Попутно приведем полные схемы ИБП с использованием различной элементной базы.

Вариант импульсного источника питания с выходным напряжением 5 В и 12 В и разной полярности

Входной фильтр

Как мы уже говорили, входной фильтр стоит для того, чтобы в сеть не попали высокочастотные помехи, генерируемые источником питания. В самом простейшем варианте это устройство представляет собой дроссель, который подавляет электромагнитные помехи и два конденсатора, включенных параллельно входу и нагрузке.

Схема простейшего входного фильтра

Конденсаторы используются специальные — X-типа. Икс-конденсаторы были разработаны специально для этих целей. Они выдерживают мгновенные киловольтные всплески напряжения (до 2,5 кВ), гася тем самым помехи между фазой и нейтралью (противофазные помехи). Дроссель — это ферритовый сердечник с намотанными лакированными медными проводами. В нем наводятся токи, нейтрализующие токи помех.

Приведенная выше схема входного фильтра для импульсного источника питания не устраняет помехи, которые возникают между фазой и землей (корпусом) или между нейтралью и корпусом. Для их нейтрализации в схему добавляют два конденсатора Y-типа (которые выдерживают скачки напряжения до 5 кВ). Специальная конструкция Y-конденсатора гарантирует обрыв цепи, а не короткое замыкание, в случае выхода его из строя.

Оба типа конденсаторов (X и Y), который ставят во входных фильтрах, выполняют из специальных негорючих материалов, так как они могут греться до очень высоких температур и могут стать причиной пожара. Именно в этом, да еще в конструктивных особенностях кроется причина их высокой стоимости (по сравнению с обычными).

Схема для компенсации всех типов помех

Но для корректной работы этой схемы необходимо рабочее заземление. Его надо подключить к корпусу блока питания. Без заземления, корпус блока питания будет находиться под напряжением около 110 В. Ток будет очень маленьким, но прикосновения будут ощутимы.

Сетевой выпрямитель и сглаживающий фильтр

Как уже сказано выше, выпрямитель проводит предварительное выпрямление синусоиды. Если установлен один диод, он отсекает нижние (отрицательные) полуволны.

Сравнение однополупериодного и двухполупериодного выпрямителя. При использовании одного диода низкий КПД и большая пульсация выпрямленного напряжения. По этим причинам предпочтительней мостовая схема на четырех диодах

В самом простом случае выпрямитель — диод Шоттки, но может использоваться и диодный мост с параллельно подключенным конденсатором. Для диодных мостов часто применяют обычные диоды типа 1N4007, но лучше все-таки устанавливать все те же диоды Шоттки. Они «быстрее», так что можно получить лучше результаты на выходе.

Несколько схем фильтров разной степени сложности

Один диод ставят в блоках питания к недорогой технике. На его выходе напряжение имеет вид идущих с некоторыми промежутками положительных полуволн. На выходе диодного моста пульсации намного ниже, так что такой выпрямитель ставят для более требовательных к питанию приборов. Пульсирующее напряжение с выхода диода/диодного моста подается на конденсатор (он должен быть рассчитан на напряжение 270-400 В), который из полуволн делает «зубчики». Тут уже получаем более-менее стабильное постоянное напряжение.

Инвертор или блок ключей

На следующем блоке выпрямленное напряжение преобразуется в импульсы. Частота импульсов высокая — от 10 до 50 кГц. Есть два способа реализации этих блоков: при помощи микросхем, на основе автогенератора (блокинг-генератора).

Еще одна блок-схема ИИП

Во втором случае используется пара транзисторов, которые включаются попеременно, формируя на выходе последовательность импульсов. Частота переключений задается генератором. Такие схемы встречаются и сейчас, но большинство реализуется на микросхемах.

Пример схемы инвертора на транзисторах

Если есть микросхема, зачем городить огород из нескольких десятков деталей. Тем более, что требуемый тип микросхем широко распространен и стоит немного. Это так называемые ШИМ-контроллеры ( TL494, UC384х, Dh421,  TL431, IR2151, IR2153 и др).  К этим микросхемам надо добавить всего-лишь пару полевых транзисторов и несколько мелких деталей и получим требуемый инвертор.

Схема ИИП с ШИМ контроллером для обратноходового и полумостового преобразователей

ШИМ-контроллер отлично встраивается в любой тип схем. Он совместим с обратноходовыми, полумостовыми и мостовыми схемами выпрямителей. Естественно, отличается количество элементов, но все они простые и доступные.В обратноходовых схемах транзисторы должны быть рассчитаны на более высокое напряжение, чем подается на вход.

Устройство импульсного источника напряжения с ШИМ контроллером и двухтактным и мостовым выпрямителем

По полумостовым схемам построены импульсные блоки питания в осветительных приборах, в энергосберегающих и светодиодных лампах, электронный балласт для люминисцентных ламп (ЭПРА). Мостовые схемы применяют в более мощных блоках. Например, в сварочных инверторах.

Есть и более «серьезные» контроллеры, которые параллельно с работой, проверяют параметры входного и выходного напряжения и, при неисправностях, просто блокируют свою работу. Так как в импульсном блоке питания этот компонент, обычно, самый дорогой, это очень неплохо. Заменив неисправные детали (обычно резисторы или конденсаторы), получаем рабочий агрегат.

Силовой трансформатор

Узел трансформатора на блоке питания является одним из самых стабильных. В этом блоке, кроме самого трансформатора, содержится небольшая группа элементов которая нейтрализует выброс тока, который возникает на обмотках трансформатора при смене полярностей. Эта группа называется «снаббер».

Рассматриваемый блок обведен красным, а снаббер — зеленым

Трансформатор — один из самых надежных элементов. В нем очень редко возникают проблемы. Он может повредиться при пробое инвертора. В этом случае через обмотку течет слишком высокий ток, который и выводит из строя трансформатор.

Схема блока силового трансформатора для ИИП

Работает все это следующим образом:

  • На первом такте работы импульсного источника питания открыт ключ ВТ1 (полевой транзистор с индуцированным каналом n-типа). Ток течет через первичную обмотку трансформатора, заряд накапливается в сердечнике.
  • На втором такте ключ закрывается, ток течет во вторичной обмотке через диод VD2.
  • При переключении на первичной обмотке возникает выброс, который вызван неидеальностью деталей. Тут в работу вступает снаббер. Его задача поглотить этот выброс, так как напряжение может быть достаточно большим и может повредить ключевой транзистор, что приведет к неработоспособности схемы. Ток выброса течет через первичную обмотку трансформатора, диод VD1, через сопротивление R1 и емкость C2.
  • Далее полярность снова меняется, вступает в работу ключ ВТ1.

Номиналы выбираются исходя из параметров трансформатора. Подбор сложный, так что описывать его не имеет смысла. И еще: не во всех схемах есть снаббер, но его наличие увеличивает надежность и стабильность работы импульсного источника питания.

Несколько слов о диодах, которые используют в снабберах. Это может быть обычный диод, подобранный по параметрам, но более надежны схемы со стабилитроном. Еще может быть вариант без резистора и емкости, но с включенным навстречу супрессором (на схеме ниже).

Еще один вариант блока силового трансформатора с использованием супрессора (защитного диода) D1

Супрессор — это защитный диод, принцип работы похож на стабилитрон, вот только выравнивается импульсный ток и рассеиваемая мощность. Может быть несимметричный и симметричным.

Выходной выпрямитель и фильтр, стабилизатор

На этом, можно считать со схемой импульсного блока питания разобрались, так как выходные выпрямитель и фильтр устроены по тому же принципу. Элементы могут быть другие, а схемы те же. Единственное, что еще стоит рассмотреть — стабилизация выходных параметров. Это опционная часть, но такой импульсный блок питания более надежен.

Наиболее простой и дешевый способ стабилизации используется в дешевых блоках питания — обратная связь на пассивных элементах. На схеме ниже, это два резистора R6 и R7, подключенные к вспомогательной обмотке силового трансформатора. Не слишком надежно, потому что есть влияние между обмотками, но просто и недорого.

Простой способ стабилизации

Второй вариант стабилизатора выходного напряжения сделан на стабилизаторе VD9 и оптроне HL1. Выходное напряжение складывается из падения на стабилитроне и напряжения на оптроне. Это чуть более надежная схема для ИИП средней мощности.

Стабилизация выхода ИИП при помощи стабилитрона и оптрона

Наиболее стабильные выходные показатели имеют схемы ИИП со стабилизатором  TL431.

TL431 — интегральная схема трёхвыводного регулируемого параллельного стабилизатора напряжения с улучшенной температурной стабильностью. С внешним делителем TL431 способна стабилизировать напряжения от 2,5 до 36 В при токах до 100 мА.

ИБП с использованием микросхемы TL431 более сложные, но надежные. В таких схемах может быть подстроечный переменный резистор, который позволяет изменять выходное напряжение в небольших пределах. Обычно подстройка составляет не более 20%, так как в противном случае схема может быть нестабильной.

Схема со стабильным напряжением на выходе

Если подстройка выходного напряжения не нужна, лучше подстроечный резистор заменить обычным, так как переменные менее надежны.

Пару слов о резисторе R20 (см. схему выше), который стоит на выходе. Это так называемый, нагрузочный резистор. Как известно ИИП не будет работать без нагрузки. Поэтому на выходе и ставят сопротивление, которое обеспечивает минимальную рабочую нагрузку. Но это решение неидеально, так как резистор греется и порой очень сильно. Располагать рядом конденсаторы крайне нежелательно, иначе подогреваются и они. А в качестве выходного сопротивления должны стоять высокоточные резисторы, так как они при нагреве мало меняют свои параметры (блок выдает стабильное напряжение даже при длительной работе).

Самодельный импульсный блок питания 12В 400Вт на IR2153

Иногда в нашей практике бывает необходим довольно мощный нестабилизированный источник постоянного напряжения. От такого источника можно запитать например подогреваемый столик 3D принтера, батарейный шуруповерт или даже мощный усилитель НЧ класса D (в этом случае ИБП стоит оборудовать дополнительным фильтром для уменьшения высокочастотных помех). В случае изготовления источника питания, рассчитанного на мощности 200 — 500 вт дешевле пойти по пути изготовления импульсного источника, так как сетевой трансформатор 50 Гц на такую мощность будет довольно дорог и очень тяжел.

Проще всего такой источник питания собрать по полумостовой схеме на основе драйвера IR2153. Эта микросхема обычно используется в качественных драйверах (электронных балластах) люминесцентных ламп.

Принципиальная схема импульсного блока питания на IR2153

Сетевое напряжение 220В поступает на выпрямитель (диодный мост) через сетевой фильтр на элементах C1, C2, C3, C4, L1. Этот фильтр предотвращает проникновение высокочастотных помех от блока питания в электросеть. Термистор на входе устройства уменьшает бросок тока через диодный мост в момент включения блока питания в сеть, когда происходит заряд конденсаторов C5 и C6.

Катушку сетевого фильтра L1, термистор и конденсаторы C5 и C6 можно извлечь из старого компьютерного блока питания. импульсный силовой трансформатор Т1 придется намотать самостоятельно. Сердечник трансформатора берем также из старого компьютерного блока. Нужно разобрать трансформатор. Для этот помещаем трансформатор в емкость с водой (банку, кастрюльку) так, чтобы он был полностью погружен в жидкость. Ставим ескость на плиту и кипятим примерно полчаса. После этого сливаем воду, извлекаем трансформатор и пока он горячий, пытаемся аккуратно разобрать сердечник. Сматываем с каркаса все заводские обмотки и наматываем новые. Первичная обмотка содержит 40 витков провода диаметром 0.8мм. Вторичная обмотка содержит 2 части по 3 витка и намотана «косой» из 7 проводов того же провода диаметром 0.8мм.

Импульсный трансформатор от компьютерного блока питания

Резистор R2 в цепи питания микросхемы должен быть мощностью не менее 2 W и в процессе работы он будет слегка нагреваться. Это нормально. Диодный мост выпрямителя сетевого напряжения можно составить из четырех диодов 1N5408 (3А 1000В). Транзисторы IRF840 нужно установить на радиатор через изолирующие прокладки. желательно установить в корпусе блока питания небольшой вентилятор для охлаждения этих транзисторов и других элементов схемы.

Первое включение блока питания в сеть нужно производить через лампу накаливания мощностью 100вт, включенную последовательно с предохранителем FU1. В момент включения в сель лампа может вспыхнуть, затем она должна погаснуть. Если лампа светится постоянно, это означает что с блоком проблемы — короткое замыкание в монтаже или неисправность компонентом. В этом случае включать блок в сеть напрямую без лампы накаливания нельзя. Нужно найти причину неисправности.

Самодельный импульсный блок питания 12 вольт 2 ампера


Задумал я сделать импульсный блок питания на 12V 4A своими руками, выбрал схему, посоветовался с людьми на форуме, спаял. В результате отладки выяснилось, что нагрузку 4А, данный самодельный блок питания, не сможет держать, но с 2А он справится отлично.
За основу взята схема дежурки пользователя Starichok51. Она получила дополнения, например, обзавелась фильтрами, а также, претерпела ряд изменений номиналов, позволяющих сделать блоки питания более мощным.

Трансформатор для данного импульсного блока питания  я использовал с сердечником EI-28. У боковых частей E части было полное примыкание к I части, а у средней – имелся заводской зазор в 0,65 мм.  Трансформатор пришлось перематывать несколько раз.
В первый раз обмотки были следующими: I – 46 витков (Ø – 0.36 мм), I I – 5 витков (Ø – 1 мм х 3), обратная связь – 4 витка (Ø – 0.22 мм). Индуктивность первичной обмотки - 490 uH. Вторичная обмотка и ОС находились между двумя половинами первичной. При этом был избыточный нагрев транзистора даже при малых нагрузках, напряжение ОС – выше необходимого.
Во второй раз перемотал трансформатор по совету пользователя Starichok51, из расчета на 12В 4А: I – 36 витков (Ø – 0.36 мм), I I – 4 витков (Ø – 1 мм х 2), обратная связь – 2 витка (Ø – 0.36 мм). Индуктивность первичной обмотки – порядка 250 uH. Как и в первом случае, первичная обмотка разделена на две половины. Блок питания при таких обмотках запускался в узком диапазоне подбираемых деталей. Но даже в тот момент, когда он запускался, его работа была нестабильна и «прожорливой».
В третий раз перемотал трансформатор по своему усмотрению. Точнее, взял имеющийся кусок провода Ø 0.36 мм и намотал его весь. Получилось, что ко второй половине первичной обмотке добавил еще 26 витков. В сумме – первичная обмотка составляла 62 витка, проводом Ø – 0.36 мм. Индуктивность первичной обмотки – ориентировочно составила 850 uH. Блок питания начал вести себя более-менее адекватно.
Для достижения максимальной стабильности и производительности, начал подбирать номиналы R9+C5, R2, C7+R11. Те, на которых я остановился, указаны на схеме. Также, вместо транзистора C5027, запаивал C5763. У последнего оказался нагрев без радиатора на 2-3 градуса ниже. В качестве радиатора использовал алюминиевую пластину, толщиной 2 мм и площадью 15 см2, изогнутую таким образом, чтобы она поместилась в корпусе и не контактировала с остальными деталями. Транзистор посажен на теплопроводящую пасту.
L1 сделал самостоятельно. Его конструкцию подсмотрел из АТ компьютерного блока питания. В оригинальном исполнение кольцо имело внешний диаметр 17 мм, а ширину – 8 мм, обмотки имели по 18 витков Ø – 0.5 мм. Я подобрал кольцо, от материнской платы, похожее по габаритам, а в качестве проводов использовал часть витой пары. L2 – готовый дроссель (выпаянный не помню откуда). Сердечник L2 в высоту 20мм, Ø – 5 мм, обмотка – 18 витков Ø – 1 мм, индуктивность 3,9uH.
 

Привожу фотографию первой версии печатной платы с расположенной на ней элементами. Т.к. в процессе отладки, схема претерпела изменения, разводку печатной платы подправил под конечный результат. Разводку печатной платы данного самодельного блока питания 12V 2A в формате *.lay6 можно скачать ЗДЕСЬ. Печатная плата разводилась под имеющийся в наличии корпус. Для дополнительного охлаждения элементов схемы, в корпусе просверлил вентиляционные отверстия.
Выражаю свою благодарность пользователям Starichok51 и Serj66610, которые принимали активное участие в процессе обсуждения отладки данного блока питания.

Блоки питания 12 Вольт 0.5(1) Ампер. Обзор блока питания, схема и внутреннее устройство блока питания 12В, тестирование

Многие читатели знают, как мне нравится писать обзоры о блоках питания. И вот так случайно сложилось, что я дорвался до некоторого количества данных устройств. Все дело в том, что не так давно в одном известном магазине появились разнообразные блоки питания "с разборки", и об одном я сегодня расскажу.

Еще в прошлом году я написал в комментах, что скоро будут обзоры разных блоков питания и я имел в виду именно эти блоки питания. Заказал я их несколько видов, три мелких "БУ" и один новый, довольно мощный. Рассказывать буду "по старшинству", потому начну с самого мелкого.
Так как блоки питания я использую часто, то заказал лотом в три штуки, но есть лоты и 1 и 5 и 10 штук. Данный блок питания не является исключением и будет использован в одном из обзоров, который я планирую подготовить в относительно скором времени.

Поставляются блоки питания в отдельных больших пакетах, а не три в одном пакете, как я изначально подумал. Т.е. фактически на складе просто ставится отметка, сколько позиций положить в корзинку.
К упаковке претензий не было, все обильно замотано вспененным полиэтиленом.

В заголовке я написал ток 0.5 (1) Ампер. По ходу обзора я поясню что это означает.
На странице товара было написано - 12 Вольт, 1 Ампер, что более чем понятно. Также там написано, что блоки питания disassemble, т.е. не новые, а выковыряны откуда-то. Моя практика показывает, что такие БП чаще имеют лучше качество сборки и схемотехники, чем новые.

Блоки питания довольно компактные, реальные размеры составляют примерно 57х35х19мм.

Компоновка платы довольно плотная, частично залита силиконом, который в некоторых местах потом пришлось срезать.
Так как плата БУ, то заметны обрезанные провода.

Платы имеют разный цвет гетинакса, да и выпущены в разное время, но все три в интервале 2007-2008 годов.

Также на платах была обнаружена и маркировка модели - 3A-064WU12, по которой я нашел их реальные характеристики.
12 Вольт, 0.5 Ампера, 6 Ватт, КПД при 115 Вольт - 74%. Там же есть и название фирмы производителя - Eng Electric Co., LTD. Так что блоки питания вполне себе фирменные.

На странице товара также есть упоминание о токе в 0.5 Ампера, но указанное как-то вскользь. Думаю подразумевалось, что 0.5 номинальный, 1.0 кратковременный. Но в любом случае, данные характеристики правильно и указывать в разделе характеристики, а не в названии товара.

Ладно, вернемся к нашим блокам питания.
1. По входу стоит предохранитель на ток в 1 Ампер. Предохранитель замедленный (T- Trage - медленные нем.), это обусловлено импульсным характером тока при включении блока питания.
2. Также по входу присутствует варистор диаметром 7мм и рассчитанный на амплитудное напряжение в 470 Вольт. Рядом с ним виден помехоподавляющий конденсатор Х типа с емкостью 0.1мкФ
3. Дальше синфазный дроссель и диодный мост.
4. Первичная и вторичная стороны соединены через конденсатор Y типа с емкостью 2.2нФ.
По большому счету можно было бы поставить пять баллов за фильтр, если бы не два недостатка:
1. Нет термистора, но возможно здесь в нет особого смысла, емкость входных конденсаторов не очень высокая.
2. Параллельно конденсатору Х типа нет разрядного резистора, без него БП может "щипаться" если вынуть вилку из розетки и сразу схватиться за ее контакты.

При этом плюс производителю за наличие помехоподавляющего фильтра и варистор.

1. По входу БП установлены два конденсатора емкостью 6.8мкФ каждый, суммарная емкость 13.6мкФ, что для заявленной мощности в 6 Ватт вполне нормально.
2. Но конденсаторы соединены не просто параллельно, между ними дополнительно включен дроссель. На фото не видно цветовую маркировку - коричневый-черный-красный-золотой.
3. Управляет работой блока питания довольно известный ШИМ контроллер VIPer-12A.
4. Рядом с контроллером находится конденсатор фильтра питания этого контроллера. Часто эти конденсаторы могут незаметно выйти из строя и "попить крови", так как внешне остаются нормальными. Если БП БУ, то рекомендую заменять их в первую очередь.

Силикон, которым залита плата, имеет небольшой желтый оттенок. Сначала я решил что это из-за нагрева компонентов, но цвет одинаков даже около компонентов, которые не греются.

Как я уже писал выше, применен ШИМ контроллер серии VIPer. Это семейство интегрированных ШИМ контроллеров, внутри корпуса микросхемы находится не только сам ШИМ контроллер, а и высоковольтный транзистор, цепи защиты от перегрузки, перегрева и перенапряжения.
Я обычно пользуюсь подобными контроллерами от другой, не менее известной фирмы - Power Integrations, мне они нравятся больше. Но по большому счету они во многом очень похожи.
Заявлено, что для корпуса DIP-8 мощность составляет 13 Ватт в узком диапазоне (230 Вольт) и 8 Ватт в широком (115-230 Вольт). Так как БП заявлен как 115-230, то получается что реальная мощность до 8 Ватт.

На блок схеме виден выходной транзистор, а также цепи защиты. В принципе я мог бы рассказать обо всем этом подробнее, но на мой взгляд это скорее тема отдельной статьи.

Во вторичной части блока питания находятся:
1. Выходной диод Шоттки на ток 2 Ампера, что опять же говорит о максимальном выходном токе не более 650-700мА. На одном из выводов диода присутствует ферритовая бусина.
2. Выходных конденсаторов два, 470 и 220мкФ, как и в случае входных производитель Samxon. Не скажу что конденсаторы высокого класса, скорее среднего, изначально это OEM от фирмы Matsushita продающийся под своим брендом. Лично меня расстроило то, что они рассчитаны на 16 Вольт, а не 25, как положено при таком напряжении.
3. Между конденсаторами есть место под дроссель для уменьшения пульсаций, но вместо него установлена перемычка.
4. Цепь стабилизации стандартна, регулируемый стабилитрон AZ431 (аналог TL431) и оптрон EL817 (аналог PC817).

По выходной цепи не понравились две вещи:
1. Отсутствие выходного дросселя.
2. Конденсаторы на 16 Вольт, а не 25.

В остальном все сделано довольно неплохо.

Качество пайки вполне терпимое. Снизу расположены остальные компоненты, а также пара стабилитронов, о которых я расскажу ниже.
Расстояние между высоковольтной и низковольтной сторонами вполне достаточное. Отсутствуют защитные прорези, но так как БП изначально проектировался под установку в закрытый корпус, то допустимо делать и так.

Схема блока питания в общем-то стандартна и фактически сделана по даташиту ШИМ контроллера. Из дополнительных мелочей, которые весьма полезны в плане безопасности нагрузки я отмечу пару стабилитронов.
ZD1 - Напряжение 14 Вольт, установлен параллельно выходу, задача - не допустить поднятия выходного напряжения выше 14-14,5 Вольт.
ZD2 - Напряжение 16 Вольт, установлен параллельно транзистору оптрона, задача - ограничить выходное напряжение в случае обрыва или выхода из строя цепи обратной связи.

В комментариях мне несколько раз писали, что я не совсем правильно подхожу к тестам уровня пульсаций. Что же, я принял информацию к сведению и попробую в этот, а также в следующие раз делать это более корректно.

Дело в том, что при измерениях я подключаюсь обычно используя "неправильный" способ, как более удобный. В этом случае земляной провод щупа работает отчасти как антенна, на которую наводятся помехи и искажают осциллограмму. Такой способ для общей оценки большого значения не имеет, но действительно является некорректным.
Картинка ниже взята из описания методики тестирования блоков питания.

Для корректного снятия осциллограмм надо подключать щуп без длинных проводов прямо на выход блока питания.

Как можно увидеть по фото, щуп осциллографа помимо земляного провода с крокодилом имеет возможность подключения сразу около самого щупа.
Используя "палки и веревки" я сделал некое подобие специального щупа для проверки блоков питания, наиболее неудобно было подключаться к центральному контакту, так как он имеет коническую форму.
Параллельно входу подключены два конденсатора, электролитический 1мкФ 63 Вольта и керамический 0.1мкФ.

Конечно то, что я показал выше, можно назвать колхозом, но даже довольно известные фирмы (та же Power Integrations) не чураются делать подобное, правда они использую для этого разъем, но у меня его не было :(.
Фото из описания применения ШИМ контроллеров серии TOP от Power Integrations, номиналы элементов взяты оттуда же.

Щуп осциллографа был подключен прямо на выходные контакты блока питания, нагрузка к дополнительно запаянному проводу.
В процессе подготовки я сравнивал осциллограмму на холостом ходу с подключенной нагрузкой и без, разницы не было.

Первое, что меня удивило при включении, напряжение на выходе 12 Вольт с точностью как минимум до второго знака. По большому счету это не имеет значения и даже если бы напряжение было в диапазоне 11.5-12.5 Вольта, то я бы сказал что нормально, но все равно приятно.
1. Холостой ход.
2. 0.25 Ампера
3. 0.5 Ампера
4. 0.75 Ампера
5. 1 Ампер
6. 1.2 Ампера.

Видно что напряжение на выходе стало падать только при токе нагрузки выше 0.75 Ампера, что в полтора раза выше заявленного. До этого напряжение держалось очень точно и снижалось примерно на 0.001 Вольта на каждые 0.25 Ампера нагрузки.

Уровень пульсаций я бы не назвал маленьким, при номинальном токе 0.5 Ампера они составили 100мВ, но даже при перегрузке не были выше чем 140 мВ.

Исследование показало, что максимальный ток, при котором блок питания стабильно держит выходное напряжение, составляет 0.9 Ампера. И это для не нового БП и при почти двукратном выходном токе.

Также мне писали, что неправильно тестировать блоки питания используя электронную нагрузку. В данном случае я несогласен с таким заключением, так как в линейном режиме полевые транзисторы нагрузки по сути представляют собой те же резисторы, но с обратной связью.
В любом случае я ради эксперимента сравнил поведение блока питания при нагрузке обычным резистором с номиналом в 10 Ом (что было под рукой). На фото видно, что плюсовой щуп нагрузки не подключен.
Напряжение конечно просело, так как ток явно выше расчетного.

Слева осциллограмма нагрузки током 1 Ампер при помощи электронной нагрузки, справа 1.08 Ампера и резистор в качестве нагрузки.
Не сказал бы, что имеется какая-то глобальная разница.

Следующий этап, тест на нагрев. Для этого я закрыл блок питания импровизированным "корпусом" и нагружал последовательно током от 0.25 Ампера до 0.9 Ампера. Ток в 0.9 Ампера был выбран исходя из того, что при этом токе БП еще нормально держит выходное напряжение. Каждый тест занимал 20 минут, общее время теста 1 час 20 минут.

Все данные свел в табличку, попутно ввел новую графу и теперь указано напряжение на начало теста (V1) и в конце (V2). Данное дополнение позволяет отследить уход напряжения от прогрева.
Само напряжение сначала может показаться менее стабильным, чем в тесте выше, но там я подключался прямо к контактам БП, здесь же с использованием куска провода, потому и вышла разница. Но могу сказать, что температурной зависимости выходного напряжения практически нет.
Зато выяснилось, что при токе нагрузки в 0.9 Ампера БП примерно через 5-7 минут снизил выходное напряжение.

Максимальная температура компонентов после завершения теста составила около 100 градусов у трансформатора и 118 у ШИМ контроллера. При токе до 0.75 Ампера (1.5 от номинала), перегрева нет.

Так выглядело ограничение выходной мощности. Я провел повторный тест на уже прогретом БП чтобы было более наглядно.
Старт, через 6 минут постепенное снижение напряжения, на отметке 20 минут я снял крышку, напряжение начало потихоньку расти, еще примерно через 15 минут пришлось несколько раз подуть на плату и напряжение быстро вернулось в норму.

Выше я посетовал на отсутствие выходного дросселя и решил эту недоработку сравнить, а заодно сравнить как изменится результат.
Использовал мелкий самодельный дроссель, буквально что было под рукой. Размер небольшой, намотан проводом 0.68мм.

Результат как говорится - налицо.
1, 2. Ток 0.5 Ампера, слева без дросселя, справа с дросселем.
3, 4. Ток 1.0 Ампера.

Предупрежу сразу, дроссель не должен иметь большую индуктивность, так как при увеличении индуктивности начнут сильно расти пульсации на первом конденсаторе фильтра и это будет вредно как для самого конденсатора, так и для защитного стабилитрона, установленного параллельно ему. Придется менять конденсатор на аналогичный, но с напряжением в 25 Вольт, а стабилитрон переносить на выход БП.

На этом все. Если коротко, то блоки питания хоть и не лишены некоторых недостатков, перечисленных в обзоре, но в целом довольно неплохие и могут быть применены для разных самодельных устройств, где не требуется большая мощность (6-8 Ватт). Блоки питания вполне фирменные и относительно качественные.
Поштучно выходят дороже и потому если покупать, то лотами по 3 или 5 штук.

Надеюсь что обзор был полезен, как всегда буду рад вопросам в комментариях.

cxema.org - Мощный импульсный блок питания 12В 40А

Такое устройство недавно заказали из местного магазина. Устройство предназначено для запитки стенда сразу с 30- ю автомобильными магнитолами. Ясное дело, если прикинуть, то одна магнитола будет потреблять порядка 1 Ампер тока, это просто если она включена, но если запустить на полную громкость, то потребление одной магнитолы будет в районе 7-8 Ампер. 30 магнитол по 1 А это уже 30 Ампер, а при напряжении 12 Вольт мощность блока питания должна быть не менее 350-400 ватт. Поскольку финансы были ограничены, то собрать такое дело с сетевым трансформатором на 400 ватт крайне не выгодно, вот и решил замутить импульсную схему. Одна из самых простых вариантов построена на высоковольтном полумостовом драйвере IR2153, не смотря на простоту сборки, такой блок питания может обеспечить заданную мощность. 

Затраты на компоненты не превосходят 10$, при этом блок получился минимальных размеров.

На входе питания построен сетевой фильтр, предохранитель. Термистор сохраняет полевики от бросков напряжения во время подачи питания. Диодный мост построен на 4-х выпрямителях 1N5408, это 3-х Амперный диод с обратным напряжением 1000 Вольт. Конденсаторы 200В 470мкФ - сняты от компьютерного блока питания. Заменой емкости можно поднять или снизить мощность блока питания в целом. Не смотря на то, что нагружал блок питания почти до максимума, но ключи были полностью холодными за 3 минуты работы. Сами ключи через изоляции укреплены на общий теплоотвод небольших размеров. Отдув осуществляется кулером, который питает отдельный бп на 3 ватта, такой блок был снят из светодиодного светильника. Такое решение обусловлено тем, что в случае запитки кулера от общей шины 12 Вольт, может образоваться фон, а это в свою очередь приводит к искажениям, если к блоку подключена автомагнитола. 
Трансформатор пришлось мотать с нуля.

Сердечник был взят из компьютерного блока питания. Все промышленные обмотки нужно убрать и мотать свою. Сетевая обмотка состоит из 40 витков провода 0,8мм. Вторичная обмотка намотана шиной из 7жил провода 0,8 мм, обмотка состоит из 2х3 витков. На выходе стоит сдвоенный диод шоттки 2х30А, теплоотводом для него служит корпус блока питания, а сам корпус был взят из компового БП.

Ограничительный резистор для запитки микросхемы нужен мощный (2 ватт) в процессе работы он может немножко перегреваться, номинал может отклониться в ту или иную сторону на 10%. 

В итоге получился очень мощный блок питания, который уже неделю питает стенд с автомагнитолами, работает 12 часов в сутки без перерывов. 

С уважением - АКА КАСЬЯН

Цепь источника питания постоянного тока 12 В

ТЕОРИЯ РАБОТЫ, СХЕМА, СХЕМА ПЛАТЫ

ОПИСАНИЕ.

На приведенной ниже принципиальной схеме показана простая тривиальная недорогая схема импульсного источника питания постоянного тока 12 В постоянного тока 50 Вт, работающая в автономном режиме. Его можно использовать для домашних проектов DIY или для изучения работы обратных преобразователей. Этот блок питания может работать в универсальном диапазоне входной линии переменного тока 90-264 В переменного тока. Он обеспечивает номинальное выходное напряжение 12 В постоянного тока при нагрузке более 4 А. Регулировка линии и нагрузки лучше, чем 0.5%.
Устройство имеет защиту от перегрузки по току, перегрева и перенапряжения, а также пассивное ограничение пускового тока. Пульсации на выходе составляют примерно 0,2 В от пика до пика в диапазоне от 0 до 20 МГц. Если вам нужно уменьшить пульсации, вы можете установить дополнительный выходной конденсатор или LC-фильтр вне контура обратной связи. Этот проект представляет собой модификацию схемы 24 В, которую я разработал много лет назад в качестве консультанта для небольшой компании. Эта компания хотела заменить подключаемый модуль на дешевый стандартный источник питания переменного тока в постоянный, у которого было долгое время выполнения заказа.К тому времени, когда я закончил дизайн и построил прототип, они нашли готовую деталь в другом месте на складе. Таким образом, они так и не начали производство этого модуля. Соответственно, я не тестировал эту конструкцию, кроме базовой DVT. Вы можете построить эту схему для личного использования (конечно, на свой страх и риск). Но вам не разрешается где-либо повторно публиковать содержимое этой страницы или использовать его в коммерческих целях без моего разрешения.

ПРЕДУПРЕЖДЕНИЕ О БЕЗОПАСНОСТИ.

Для безопасного тестирования или поиска неисправностей в этой цепи рекомендуется запитать ее через изолирующий трансформатор или от изолированного источника переменного тока.Также обратите внимание, что автономный однотранзисторный обратноходовой преобразователь генерирует внутреннее напряжение, которое может достигать 600 В. Не пытайтесь играть с этой схемой, если вы не достигли совершеннолетия, не разбираетесь в силовой электронике и не знаете, как безопасно обращаться с высоким напряжением. Вы можете пройти нашу быструю викторину по безопасности источников питания.

СХЕМА:

РАБОТА В ЦЕПИ.


В этом источнике питания переменного тока в постоянный используется обратный ход, который представляет собой простейшую топологию преобразователя SMPS.Он использует МОП-транзистор 800 В / 11 А (Q1) в качестве коммутирующего устройства и ШИМ-контроллер UC3844AN (U3). Входная секция включает предохранитель, фильтр электромагнитных помех, NTC-резистор R1, ограничивающий пусковой ток, полный мостовой выпрямитель CR1 и конденсатор C2 фильтра шины постоянного тока.
Начальный пусковой ток для ИС с ШИМ обеспечивается «стекающими» резисторами R7, R8, которые пропускают небольшой ток, который заряжает конденсатор C7 Vcc. Когда вывод Vcc U3 достигает положительного порога блокировки при пониженном напряжении (обычно 14–16 В), ИС начинает работать и будет включать и выключать переключатель Q1 через резистор управления затвором R4 с фиксированной частотой (в этой схеме это 100 кГц).Когда Q1 включается, напряжение шины постоянного тока подается на первичную обмотку трансформатора T1, ток через первичную обмотку трансформатора нарастает, а энергия накапливается в магнитном поле трансформатора. Диоды D4 и D7 в течение этого временного интервала имеют обратное смещение. Когда Q1 выключается, энергия, запасенная в магнитном поле, заставляет напряжения на всей обмотке менять полярность. В результате выходные выпрямители D4 и D7 проводят ток, и накопленная энергия передается на выход и в цепь смещения.После запуска преобразователя смещение для управляющей ШИМ поступает от обмотки смещения трансформатора.
Контур управления с обратной связью на вторичной стороне использует прецизионный шунтирующий стабилизатор D1 TL431 как в качестве опорного сигнала, так и в качестве усилителя ошибки. Он сравнивает разделенное выходное напряжение с внутренним опорным напряжением D1 2,5 В. Оптопара U1 подает ток, пропорциональный сигналу ошибки, через границу гальванической развязки трансформатора обратно в первичный ШИМ. Если точное регулирование выхода не требуется, обратная связь может быть взята из напряжения смещения на C9 и подана через делитель на вывод обратной связи 2.
Первичный ток в T1 измеряется резистором R6. Это напряжение измерения тока подается через пиковый фильтр на клемму датчика тока U3, где оно сравнивается с уменьшенным в масштабе сигналом ошибки на выводе компенсации 1. Когда линейное изменение напряжения датчика тока достигает 1/3 × (V pin1 -1 ), импульс прекращается, и Q1 выключается.
Стабилитрон D6 с оптопарой U2 обеспечивает защиту от перенапряжения на выходе без фиксации.
Термовыключатель отключает источник питания, когда температура на радиаторе MOSFET превышает 95-100 ° C.

Вот полная спецификация. Отметим, что он был составлен более десяти лет назад. Некоторые номера деталей могут потребовать замены.

ПЕЧАТНАЯ ПЛАТА:


СИЛОВОЙ ТРАНСФОРМАТОР



Конструкция трансформатора может выглядеть необычно. Обратите внимание, что обратный трансформатор работает как индуктор: он накапливает энергию в магнитном поле в течение периода включения Q1. Затем он передает его (за вычетом потерь) во вторичные обмотки в течение периода выключения Q1.Для эффективного хранения энергии с минимальным физическим размером, немагнитный зазор необходим последовательно с материалом магнитного сердечника с высокой магнитной проницаемостью. В конструкции трансформатора с обратным ходом обычно используются ферритовые сердечники с физическим зазором или порошковые металлические сердечники с естественным распределенным зазором. Ферриты с зазором обычно имеют более низкие потери, но у них крутая кривая насыщения. Порошковые сердечники имеют более высокие потери, но их кривая B (H) мягкая. Среди других форм-факторов тороидальные трансформаторы имеют самую низкую индуктивность рассеяния.В данном БП трансформатор выполнен на порошковом тороидальном сердечнике KoolM. Правильная фазировка обмотки имеет решающее значение в обратноходовых преобразователях, как и во всех несимметричных преобразователях. Если обмотки перепутаны по фазе, схема не будет работать или может просто взорваться. Обратитесь к приведенной выше схеме и схеме обмотки для правильной установки трансформатора. Все катушки в этой конструкции должны быть сделаны из проволоки с двумя или более слоями тефлоновой изоляции, чтобы обеспечить усиленную изоляцию между первичной и вторичной обмотками.

См. Также связанные страницы:
Совместимость разъемов питания компьютера; Схема
SMPS и теория работы.


Схема источника питания 12 В 1 А SMPS: 4 шага

Перед тем, как приступить к созданию прототипа, давайте рассмотрим принципиальную схему источника питания 12 В и его работу. Схема состоит из следующих частей:

  1. Защита от перенапряжения на входе и сбоя SMPS
  2. Преобразование переменного тока в постоянное
  3. ПИ-фильтр
  4. Схема драйвера или схема переключения
  5. Защита от пониженного напряжения.
  6. Цепь зажима
  7. Магнит и гальваническая развязка
  8. Фильтр электромагнитных помех
  9. Вторичный выпрямитель и демпфирующая цепь
  10. Секция фильтра

Защита от перенапряжения на входе и защиты от короткого замыкания SMPS

Эта секция состоит из двух компонентов, F1 и RV1.F1 - это плавкий предохранитель на 1 А 250 В переменного тока, а RV1 - это 7-миллиметровый варистор на 275 В (металлооксидный варистор). Во время скачка высокого напряжения (более 275 В переменного тока) MOV резко замыкается и перегорает входной предохранитель. Однако благодаря функции медленного срабатывания предохранитель выдерживает пусковой ток через ИИП.

Преобразование переменного тока в постоянное

В этом разделе используется диодный мост. Эти четыре диода (внутри DB107) образуют полный мостовой выпрямитель. Диоды - 1N4006, но стандартный 1N4007 справится с этой задачей отлично. В этом проекте эти четыре диода заменены полным мостовым выпрямителем DB107.

ПИ-фильтр

В разных штатах действуют разные стандарты подавления электромагнитных помех. Эта конструкция соответствует стандарту EN61000-Class 3, а фильтр PI разработан таким образом, чтобы уменьшить подавление синфазных электромагнитных помех. Этот раздел создается с использованием C1, C2 и L1. C1 и C2 - конденсаторы 400 В 18 мкФ. Это нечетное значение, поэтому для этого приложения выбрано 22 мкФ 400 В. L1 - это синфазный дроссель, который принимает дифференциальный сигнал электромагнитных помех для подавления обоих.

Схема драйвера или схема переключения

Это сердце SMPS.Первичная обмотка трансформатора управляется коммутационной схемой TNY268PN. Частота переключения 120-132 кГц. Из-за этой высокой частоты переключения можно использовать трансформаторы меньшего размера. Схема переключения состоит из двух компонентов: U1 и C3. U1 является основным драйвером микросхемы TNY268PN. C3 - это байпасный конденсатор, который необходим для работы нашей микросхемы драйвера.

Защита от пониженного напряжения от блокировки

Защита от пониженного напряжения от блокировки выполняется с помощью измерительных резисторов R1 и R2.Он используется, когда SMPS переходит в режим автоматического перезапуска и определяет линейное напряжение.

Цепь зажима

D1 и D2 - цепь зажима. D1 - это TVS-диод, а D2 - сверхбыстрый восстанавливающийся диод. Трансформатор действует как огромный индуктор на микросхеме драйвера питания TNY268PN. Поэтому во время выключения трансформатор создает выбросы высокого напряжения из-за индуктивности рассеяния трансформатора. Эти высокочастотные всплески напряжения подавляются диодным зажимом на трансформаторе.UF4007 выбран из-за сверхбыстрого восстановления, а P6KE200A выбран для работы TVS.

Магнитная и гальваническая развязка

Трансформатор представляет собой ферромагнитный трансформатор, который не только преобразует высокое напряжение переменного тока в низкое напряжение переменного тока, но также обеспечивает гальваническую развязку.

Фильтр электромагнитных помех

Фильтрация электромагнитных помех выполняется конденсатором C4. Это увеличивает невосприимчивость схемы, чтобы уменьшить высокие помехи EMI.

Вторичный выпрямитель и демпферная цепь

Выходной сигнал трансформатора выпрямляется и преобразуется в постоянный ток с помощью выпрямительного диода Шоттки D6.Демпферная цепь на D6 обеспечивает подавление переходных процессов напряжения во время операций переключения. Схема демпфера состоит из одного резистора и одного конденсатора, R3 и C5.

Секция фильтра

Секция фильтра состоит из конденсатора фильтра C6. Это конденсатор с низким ESR для лучшего подавления пульсаций. Кроме того, LC-фильтр, использующий L2 и C7, обеспечивает лучшее подавление пульсаций на выходе.

Схема блока питания 12 В 1 А SMPS на печатной плате

Для работы любого электронного устройства или продукта требуется надежный блок питания (PSU) .Почти все устройства в нашем доме, такие как телевизор, принтер, музыкальный проигрыватель и т. Д., Состоят из встроенного блока питания, который преобразует сетевое напряжение переменного тока в подходящий уровень постоянного напряжения для их работы. Наиболее часто используемым типом цепи питания является SMPS (импульсный источник питания) , вы можете легко найти этот тип цепей в своем адаптере 12 В или зарядном устройстве для мобильных устройств / ноутбуков. В этом руководстве мы узнаем , как построить схему 12 В SMPS , которая преобразует мощность сети переменного тока в 12 В постоянного тока с максимальным номинальным током 1.25А. Эту схему можно использовать для питания небольших нагрузок или даже приспособить к зарядному устройству для зарядки свинцово-кислотных и литиевых аккумуляторов. Если эта схема блока питания 12 В 15 Вт не соответствует вашим требованиям, вы можете проверить различные схемы блока питания с разными номиналами.

Цепь источника питания 12 В - Соображения по проектированию

Перед тем, как приступить к проектированию любого источника питания, необходимо провести анализ требований в зависимости от среды, в которой будет использоваться наш источник питания.Различные типы источников питания работают в разных средах и с определенными границами ввода-вывода.

Входные характеристики

Начнем с ввода. Входное напряжение питания - это первое, что будет использоваться SMPS и будет преобразовано в полезное значение для питания нагрузки. Поскольку эта конструкция указана для преобразования AC-DC , на входе будет переменный ток (AC). Для Индии входной переменный ток доступен с напряжением 220–230 вольт, для США он рассчитан на 110 вольт.Есть также другие страны, которые используют другие уровни напряжения. Обычно ИИП работает с универсальным входным напряжением в диапазоне . Это означает, что входное напряжение может отличаться от 85 до 265 В переменного тока. SMPS может использоваться в любой стране и может обеспечить стабильную выходную мощность при полной нагрузке, если напряжение находится в пределах 85-265 В переменного тока. SMPS также должен нормально работать при частотах 50 Гц и 60 Гц. По этой причине мы можем использовать зарядные устройства для телефонов и ноутбуков в любой стране.

Выходные характеристики

На выходной стороне мало нагрузок резистивных, мало индуктивных.В зависимости от нагрузки конструкция ИИП может быть разной. Для этого ИИП нагрузка принята как резистивная нагрузка . Однако нет ничего лучше резистивной нагрузки, каждая нагрузка состоит, по крайней мере, из некоторого количества индуктивности и емкости; здесь предполагается, что индуктивность и емкость нагрузки незначительны.

Выходные характеристики ИИП сильно зависят от нагрузки, например, сколько напряжения и тока потребуются нагрузке во всех рабочих условиях.Для этого проекта SMPS может обеспечить выходную мощность 15 Вт . Это 12 В и 1,25 А. Целевое значение пульсации выходного сигнала выбрано как меньше 30 мВ пик-пик при полосе пропускания 20000 Гц .

В зависимости от выходной нагрузки, мы также должны выбрать между проектированием ИИП постоянного напряжения или ИИП постоянного тока . Постоянное напряжение означает, что напряжение на нагрузке будет постоянным, а ток будет изменяться в соответствии с изменениями сопротивления нагрузки.С другой стороны, режим постоянного тока позволяет току быть постоянным, но изменяет напряжение в соответствии с изменениями сопротивления нагрузки. Кроме того, в SMPS могут быть доступны как CV, так и CC, но они не могут работать одновременно. Когда в SMPS существуют обе опции, должен быть диапазон, в котором SMPS изменит свою выходную операцию с CV на CC и наоборот. Обычно зарядные устройства с режимами CC и CV используются для зарядки свинцово-кислотных или литиевых батарей.

Функции защиты входа и выхода

Существуют различные схемы защиты, которые могут использоваться в SMPS для более безопасной и надежной работы.Схема защиты защищает SMPS, а также подключенную нагрузку. В зависимости от расположения схема защиты может быть подключена к входу или выходу. Наиболее распространенная защита входа - это Защита от перенапряжения и Фильтры электромагнитных помех . Защита от перенапряжения защищает ИИП от скачков напряжения на входе или перенапряжения переменного тока . Фильтр EMI защищает SMPS от генерации EMI на входной линии. В этом проекте будут доступны обе функции. Защита выхода включает защиту от короткого замыкания , защиту от перенапряжения и защиту от перенапряжения .Эта конструкция SMPS также будет включать все эти схемы защиты.

Выбор микросхемы управления питанием

Для каждой цепи SMPS требуется ИС управления питанием, также известная как ИС переключения, ИС SMPS или ИС осушителя. Подведем итоги проектных соображений, чтобы выбрать идеальную ИС управления питанием, которая будет подходить для нашей конструкции. Наши требования к дизайну:

  1. Выход 15 Вт. 12 В 1,25 А с пульсацией пик-пик менее 30 мВ при полной нагрузке.
  2. Универсальный входной рейтинг.
  3. Защита от перенапряжения на входе.
  4. Выходное короткое замыкание, защита от перенапряжения и перегрузки по току.
  5. Работа с постоянным напряжением.

Из приведенных выше требований есть широкий выбор ИС, но для этого проекта мы выбрали Power integration . Power Integration - это компания, производящая полупроводники, которая предлагает широкий спектр микросхем драйверов питания в различных диапазонах выходной мощности. Исходя из требований и доступности, мы решили использовать TNY268PN из семейства крошечных коммутаторов II .

На изображении выше показана максимальная мощность 15 Вт. Однако мы сделаем ИИП в открытом корпусе и для универсального входного номинала. В таком сегменте TNY268PN может обеспечить выходную мощность 15 Вт. Давайте посмотрим на схему контактов.

Проектирование цепи ИИП на 12 В, 1 А

Лучшим способом построения схемы является использование экспертного программного обеспечения PI Power Integration. Это отличное программное обеспечение для проектирования источников питания.Схема построена с использованием интегральной схемы Power Integration IC. Процедура проектирования объясняется ниже, или вы также можете прокрутить вниз, чтобы увидеть видео, объясняющее то же самое.

Шаг -1: Выберите Tiny switch II , а также выберите желаемый пакет. Мы выбрали пакет DIP. Выберите тип корпуса, адаптер или открытую раму. Здесь выбран Open Frame.

Затем выберите тип обратной связи. Это важно, поскольку используется топология Flyback .TL431 - отличный выбор для обратной связи. TL431 - это шунтирующий стабилизатор, обеспечивающий отличную защиту от перенапряжения и точное выходное напряжение.

Step-2: Выберите диапазон входного напряжения. Поскольку это будет универсальный входной ИИП, входное напряжение выбрано 85-265В переменного тока. Частота сети 50 Гц.

Шаг - 3:

Выберите выходное напряжение, ток и мощность.Номинал SMPS будет 12 В 1,25 А. Мощность показывает 15 Вт. Рабочий режим также выбран как CV, что означает режим работы с постоянным напряжением. Наконец, все делается в три простых шага, и схема создается.

Схема и объяснение 12 В SMPS

Схема ниже немного изменена в соответствии с нашим проектом.

Прежде чем приступить к созданию прототипа, давайте рассмотрим принципиальную схему 12 В SMPS и его работу.Схема имеет следующие участки

  1. Защита от перенапряжения и отказа SMPS
  2. Преобразование переменного тока в постоянное
  3. ПИ-фильтр
  4. Схема драйвера или схема переключения
  5. Защита от пониженного напряжения.
  6. Цепь зажима
  7. Магниты и гальваническая развязка
  8. Фильтр электромагнитных помех
  9. Вторичный выпрямитель и демпферная цепь
  10. Секция фильтра
  11. Раздел обратной связи.

Защита от импульсных перенапряжений и отказов SMPS

Этот раздел состоит из двух компонентов: F1 и RV1.F1 - это плавкий предохранитель на 1 А 250 В переменного тока, а RV1 - это 7-миллиметровый варистор на 275 В (металлооксидный варистор). Во время скачка высокого напряжения (более 275 В переменного тока) MOV резко замыкается и перегорает входной предохранитель. Однако благодаря функции медленного срабатывания предохранитель выдерживает пусковой ток через ИИП.

Преобразование переменного тока в постоянное

Эта секция регулируется диодным мостом. Эти четыре диода (внутри DB107) образуют полный мостовой выпрямитель. Диоды - 1N4006, но стандартный 1N4007 справится с этой задачей отлично.В этом проекте эти четыре диода заменены полным мостовым выпрямителем DB107.

ПИ-фильтр

В разных штатах разный стандарт подавления электромагнитных помех. Эта конструкция соответствует стандарту EN61000-Class 3 , а фильтр PI разработан таким образом, чтобы уменьшить подавление синфазных электромагнитных помех . Этот раздел создается с использованием C1, C2 и L1. C1 и C2 - конденсаторы 400 В 18 мкФ. Это нечетное значение, поэтому для этого приложения выбрано 22 мкФ 400 В.L1 - это синфазный дроссель, который принимает дифференциальный сигнал электромагнитных помех для подавления обоих.

Схема драйвера или схема переключения

Это сердце ИИП. Первичная обмотка трансформатора управляется коммутационной схемой TNY268PN. Частота переключения 120-132 кГц. Из-за этой высокой частоты коммутации можно использовать трансформаторы меньшего размера. Схема переключения состоит из двух компонентов: U1 и C3. U1 - это основная микросхема драйвера TNY268PN.C3 - это байпасный конденсатор , который необходим для работы нашей микросхемы драйвера.

Защита от пониженного напряжения

Защита от блокировки при пониженном напряжении обеспечивается резисторами R1 и R2. Он используется, когда SMPS переходит в режим автоматического перезапуска и определяет линейное напряжение.

Схема зажима

D1 и D2 - цепь зажима. D1 - это TVS-диод , а D2 - - диод сверхбыстрого восстановления .Трансформатор действует как огромная катушка индуктивности на интегральной схеме драйвера питания TNY268PN. Следовательно, во время выключения трансформатор создает скачков напряжения из-за индуктивности рассеяния трансформатора . Эти высокочастотные всплески напряжения подавляются диодным зажимом на трансформаторе. UF4007 выбран из-за сверхбыстрого восстановления, а P6KE200A выбран для работы TVS.

Магниты и гальваническая развязка

Трансформатор представляет собой ферромагнитный трансформатор, который не только преобразует высокое напряжение переменного тока в низкое, но также обеспечивает гальваническую развязку.

Фильтр электромагнитных помех

Фильтрация электромагнитных помех осуществляется конденсатором C4. Это увеличивает невосприимчивость схемы, чтобы уменьшить высокие помехи EMI.

Вторичный выпрямитель и демпферная цепь

Выходной сигнал трансформатора выпрямляется и преобразуется в постоянный ток с помощью D6, выпрямительного диода Шоттки . Демпферная цепь на D6 обеспечивает подавление переходных процессов напряжения во время операций переключения.Схема демпфера состоит из одного резистора и одного конденсатора, R3 и C5.

Секция фильтра

Секция фильтра состоит из конденсатора фильтра C6. Это конденсатор с низким ESR для лучшего подавления пульсаций. Кроме того, LC-фильтр, использующий L2 и C7, обеспечивает лучшее подавление пульсаций на выходе.

Отдел обратной связи

Выходное напряжение определяется U3 TL431 и R6 и R7. После измерения линии U2 оптопара управляется и гальванически изолирует датчик вторичной обратной связи с контроллером первичной стороны.Оптопара имеет внутри транзистор и светодиод. Управляя светодиодом, можно управлять транзистором. Поскольку связь осуществляется оптически, она не имеет прямого электрического соединения, что обеспечивает гальваническую развязку цепи обратной связи.

Теперь, когда светодиод напрямую управляет транзистором, обеспечивая достаточное смещение через светодиод оптопары, можно управлять транзистором оптопары , а точнее схемой драйвера. Эта система управления используется TL431.Поскольку у шунтирующего регулятора есть резисторный делитель на опорном выводе, он может управлять светодиодом оптопары, подключенным к нему. Контакт обратной связи имеет опорное напряжение 2,5 В . Следовательно, TL431 может быть активен только при достаточном напряжении на делителе. В нашем случае делитель напряжения установлен на значение 12В. Следовательно, когда выходное напряжение достигает 12 В, TL431 получает 2,5 В через опорный вывод и, таким образом, активирует светодиод оптопары, который управляет транзистором оптопары и косвенно управляет TNY268PN.Если на выходе недостаточно напряжения, цикл переключения немедленно приостанавливается.

Сначала TNY268PN активирует первый цикл переключения, а затем определяет свой вывод EN. Если все в порядке, он продолжит переключение, если нет, он будет пытаться еще раз через некоторое время. Этот цикл продолжается до тех пор, пока все не нормализуется, что предотвращает проблемы с коротким замыканием или перенапряжением. Вот почему это называется топологией обратного хода, поскольку выходное напряжение возвращается к драйверу для измерения связанных операций.Кроме того, цикл попыток называется режимом сбоя работы в условиях отказа.

D3 - это диод с барьером Шоттки . Этот диод преобразует высокочастотный выход переменного тока в постоянный. Диод Шоттки 3A 60V выбран для надежной работы. R4 и R5 выбираются и рассчитываются PI Expert. Он создает делитель напряжения и передает ток на светодиод оптопары от TL431.

R6 и R7 - это простой делитель напряжения, рассчитываемый по формуле TL431 REF Voltage = (Vout x R7) / R6 + R7 .Опорное напряжение составляет 2,5 В, а выходное напряжение - 12 В. Выбрав значение R6 23,7k, R7 стал примерно 9,09k.

Изготовление печатной платы для цепи SMPS 12 В, 1 А

Теперь, когда мы понимаем, как работают схемы, мы можем приступить к созданию печатной платы для нашего SMPS. Поскольку это схема SMPS, рекомендуется использовать печатную плату, так как она может решить проблему шума и изоляции. Компоновку печатной платы для указанной выше схемы также можно загрузить как Gerber по ссылке

.

Теперь, когда наш дизайн готов, пора изготовить их с помощью файла Gerber.Сделать печатную плату довольно просто, просто следуйте инструкциям ниже

Шаг 1: Зайдите на сайт www.pcbgogo.com, зарегистрируйтесь, если это ваш первый раз. Затем во вкладке PCB Prototype введите размеры вашей печатной платы, количество слоев и количество требуемых печатных плат. Предполагая, что размер платы составляет 80 см × 80 см, вы можете установить размеры, как показано ниже.

Шаг 2: Продолжите, нажав кнопку Quote Now . Вы попадете на страницу, где при необходимости установите несколько дополнительных параметров, например, используемый материал, расстояние между дорожками и т. Д.Но в большинстве случаев значения по умолчанию будут работать нормально. Единственное, что мы должны здесь учитывать, - это цена и время. Как видите, время сборки составляет всего 2-3 дня, а для нашего PSB это всего лишь 5 долларов. Затем вы можете выбрать предпочтительный способ доставки в зависимости от ваших требований.

Шаг 3: Последний шаг - загрузить файл Gerber и продолжить оплату. Чтобы убедиться, что процесс проходит гладко, PCBGOGO проверяет, действителен ли ваш файл Gerber, прежде чем продолжить оплату.Таким образом, вы можете быть уверены, что ваша печатная плата удобна для изготовления и будет доставлена ​​вам, как и обещано.

Сборка печатной платы

После того, как плата была заказана, она пришла ко мне через несколько дней, хотя курьер доставил ее в аккуратно маркированную, хорошо упакованную коробку, и, как всегда, качество печатной платы было потрясающим. Печатная плата, которую я получил, показана ниже

.

Включил паяльник и приступил к сборке платы.Поскольку посадочные места, контактные площадки, переходные отверстия и шелкография идеально подходят по форме и размеру, у меня не возникло проблем со сборкой платы. Моя печатная плата, прикрепленная к тискам для пайки, показана ниже.

Закупка комплектующих

Все компоненты для схемы 12 В 15 Вт SMPS приобретаются в соответствии со схемой. Подробную спецификацию можно найти в приведенном ниже файле Excel для загрузки.

Почти все компоненты доступны для использования в готовом виде.У вас могут возникнуть проблемы с поиском подходящего трансформатора для этого проекта. Обычно обратный трансформатор для коммутации цепей SMPS недоступен напрямую от поставщиков, в большинстве случаев вам придется наматывать собственный трансформатор, если вам нужны эффективные результаты. Однако также можно использовать аналогичный обратный трансформатор, и ваша схема все равно будет работать. Идеальная спецификация для нашего трансформатора будет обеспечена программным обеспечением PI Expert, которое мы использовали ранее.

Механическая и электрическая схема трансформатора, полученная от PI Expert, показана ниже.

Если вы не можете найти подходящего поставщика, вы можете восстановить трансформатор от адаптера 12 В или других цепей SMPS. В качестве альтернативы вы также можете купить трансформатор самостоятельно, используя следующие материалы и инструкции по намотке.

Как только все компоненты будут закуплены, их сборка должна быть легкой. Вы можете использовать файл Gerber и спецификацию для справки и собрать плату PCB.После этого моя передняя и задняя сторона печатной платы выглядят примерно так, как показано ниже

Тестирование нашей цепи SMPS 15 Вт

Теперь, когда наша трасса готова, пора покрутить ее. Мы подключим плату к нашей сети переменного тока через VARIAC, загрузим на выходную сторону нагрузочную машину и измерим пульсирующее напряжение, чтобы проверить работоспособность нашей схемы. Полное видео с процедурой тестирования также можно найти в конце этой страницы.На изображении ниже показана схема, испытанная с входным напряжением переменного тока 230 В переменного тока, для которого мы получаем выходное напряжение 12,08 В

.

Измерение пульсаций напряжения с помощью осциллографа

Чтобы измерить пульсации напряжения осциллографом, измените вход осциллографа на переменный ток с коэффициентом усиления 1x. Затем подключите электролитический конденсатор с низким энергопотреблением и керамический конденсатор с низким энергопотреблением для снижения шума из-за проводки. Вы можете обратиться к странице 40 этого документа RDR-295 от Power Integration для получения дополнительной информации об этой процедуре.

Приведенный ниже снимок был сделан при отсутствии нагрузки при напряжении 85 и 230 В переменного тока. Шкала установлена ​​на 10 мВ на деление, и, как вы можете видеть, пульсация составляет почти 10 мВ пик-пик.

При входном напряжении 90 В переменного тока и полной нагрузке пульсации можно увидеть на уровне около 20 мВ пик-пик

При 230 В переменного тока и при полной нагрузке пульсации напряжения измеряются на уровне около 30 мВ пик-пик, что является наихудшим сценарием

Вот и все; вот как вы можете разработать свою собственную схему 12В SMPS .После того, как вы поймете принцип работы, вы можете изменить принципиальную схему 12 В SMPS в соответствии с вашими требованиями к напряжению и питанию. Надеюсь, вы поняли руководство и получили удовольствие от изучения чего-то полезного. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев или воспользуйтесь нашим форумом для технических обсуждений. Встретимся снова с еще одним интересным дизайном SMPS, а пока подпишусь….

100+ Принципиальная схема блока питания с печатной платой

Вы ищете много принципиальных схем блока питания, не так ли?

Потому что различные электронные проекты должны использовать их в качестве источника энергии.

Но иногда может понадобиться сэкономить время и почерпнуть идеи.

Кроме того, они просты в сборке и дешевы.

Сначала взгляните на:

3 источник питания для электронных устройств

Давайте познакомимся с тремя наиболее типами источников питания.
Типы 1 # Батарея
Многие схемы потребляют мало энергии. Так что он может питаться от батареек.

Это маленький и простой в использовании в любом месте. Но обычно они низкого напряжения.

Таким образом…

Они лучше всего подходят для работы с малым током.

Но для большой нагрузки. Что нам использовать?

Лучше подойдут аккумуляторные батареи. Для многократного использования много раз, чтобы сэкономить много денег.

Мне нравится, когда мои дети ими пользуются. Потому что для него это безопасно.

Тип 2 # Solar

Мы можем использовать его как солнечную энергию напрямую в нашей цепи.

Но…

Нам нравится использовать это солнечное зарядное устройство для аккумуляторной батареи.

Например…

Мой сын любит делать солнечный свет.

Тип 3 # Линия переменного тока

Мы используем линию переменного тока, в основном это адаптер переменного тока, как блок питания. Они компактнее и проще в использовании, чем аккумулятор.

Мы можем применять их для различных выходных напряжений и токов.

Когда мы в доме. мы должны использовать их вместо батарей и солнечных батарей, это сэкономит нам деньги.

Осторожно:

Мы должны использовать его осторожно. Безопасность прежде всего! Это много полезного, но также может убить вас!

Почему следует использовать линейный источник питания?

Есть много видов цепей питания.Но все их можно разделить на две группы.

  • Линейный источник питания
  • Импульсный источник питания

Как работает линейный?

Во-первых, напряжение переменного тока подается на силовой трансформатор для повышения или понижения напряжения.

Затем преобразовано в постоянное напряжение.

И далее, применительно к цепи регулятора системы.

Поддерживает напряжение и ток нагрузки.

Но…

Как работает импульсный источник питания

Без трансформатора - он преобразует мощность переменного тока напрямую в постоянное напряжение без трансформатора.

И…

Высокая частота - это постоянное напряжение преобразуется в высокочастотный сигнал переменного тока.

Затем схема регулятора внутри выдает желаемое напряжение и ток.

Линейные импульсные источники питания постоянного тока

В таблице ниже сравниваются различные параметры линейной и импульсной формы.

Спасибо: CR Источник питания Tekpower 30V 5A на Amazon

Мне нравится линейный источник питания.

Почему?

Это…

  • простая принципиальная схема
  • тихая
  • высокая стабильность, надежность и надежность
  • низкий уровень шума, пульсации, задержки и электромагнитных помех

Какой тип переключения прямо противоположный.
ОБНОВЛЕНИЕ: Теперь я также люблю импульсные источники питания постоянного тока
Читайте также: Как это работает
Вы можете полюбить это со мной.

Изучение источников питания

Я знаю, что вы не хотите терять время, хотите быстро создать цепь питания. Но ждать. Если вы новичок.

Следует хотя бы раз изучить его принципы работы. Чтобы уменьшить количество ошибок и правильно выбрать схему Я хочу легко увидеть вашу жизнь.

8 Верхние схемы питания

На нашем сайте есть очень много схем питания.Мы не можем показать вам все. Таким образом, для экономии времени см. Списки ниже.

1 # Первый источник переменного тока постоянного тока, LM317

Вы можете настроить выходное напряжение от 1,25 В до 30 В при 1,5 А. Мне это нравится. Потому что… Это просто и дешево.

Подробнее: LM317 Блок питания

Например, вы можете использовать его вместо батареи 1,5 В.

Читайте также: См. Распиновку LM317 и ее использование

2 # Простой фиксированный стабилизатор постоянного тока


Вы часто смотрите на эту схему во многих устройствах.Это довольно старая схема, но очень полезная.

Потому что… Это очень просто: всего , один транзистор , стабилитрон и резистор. Выходное напряжение зависит от стабилитрона.

Например…

Вам нужно питание 12 В, вы используете стабилитрон 12 В. Ты сможешь. Я верю тебе!

Продолжить чтение »

3 # 78xx регулятор напряжения - круто!

Фиксированный стабилизатор 5V, 6V, 9V, 10V, 12V 1A от IC 7805,7806,7809,7812


Это популярный фиксированный стабилизатор постоянного тока на 1A, простой и дешевый.

Например…

Если вам требуется питание 5V 1A для цифровой схемы. Обычно здесь используется LM7805. Продолжить чтение »

Также: Изучите распиновку схемы 7805 и многое другое

4 # Простой регулируемый регулятор 3А, LM350

Регулируемый регулятор напряжения LM350

Иногда мне нужно использовать источник переменного напряжения 3А.

Но…

LM317 не может мне легко помочь.

В скором времени мы используем LM350 Variable power supply .

Это лучшая линейная [электронная почта] Выход от 1,25В до 25В.

5 # Регулируемый источник постоянного тока 0-30 В, 3 А

Мы редко используем ток 3 А, который может регулировать выходное напряжение от 0 до 30 В.

Это лучший выбор.

Он использует LM723 в качестве известной ИС регулятора.

А вот и схема современного дизайна, полная защита, чем у LM350T.
Продолжить чтение »

6 # Переменный источник питания, 0-50 В при 3 А

Если вам нужно использовать выходное напряжение более 30 В или отрегулируйте от 0 до 50 В.

Можно использовать. У них есть ключевые компоненты, LM723, и транзистор 2SC5200 более высокого напряжения.

Также полная защита от перегрузки.

Продолжить чтение »

7 # Собрать блок питания 12В 2А с помощью молотка

Если торопитесь, а печатной платы нет. Эта идея может быть хорошей. Вы можете легко и недорого собрать адаптер 12В 2А.

С помощью молотка и улитки по деревянной доске. Кроме того, чтобы узнать больше.

8 # 15V Двойное питание для предусилителя

Если вам нужно использовать много схем с OP-AMP.

Например, предусилитель с регулятором тембра и др. Им необходимо использовать источник питания +/- 15 В.

У нас есть для вас 3 схемы схем. Читать дальше >>

Цепей много в категориях: Блоки питания.

Прочие цепи линейного питания

Регулятор постоянного напряжения: 1,5 В, 3 В, 6 В, 9 В, 12 В

Низкое напряжение

Источники питания 5 В Цифровые источники питания

9 В

Низкое падение напряжения

Простота и идеи

Регулируемая схема источника питания

Что такое регулируемый источник питания? Проще говоря, это блок питания, который может регулировать выходное напряжение или ток.Но он по-прежнему имеет те же характеристики, что и фиксированный регулируемый источник питания. Он будет поддерживать стабильное напряжение при любой нагрузке.

Менее 1A
2A Выходной ток
3A Выходной ток
Высокий ток (5A вверх)
Высокое напряжение (100V up)

Двухканальный регулятор и несколько напряжений

Бестрансформаторный

Источник постоянного тока

Режим переключения Цепи питания

Это импульсные блоки питания постоянного тока.Быть идеями по созданию проектов или инструментов. Потому что они имеют небольшие размеры и дешевле линейных блоков питания.

На моем сайте появляется много схем. Пока друзья не сказали, что сложно увидеть схемы или проекты, как он хочет.

Особый импульсный источник питания постоянного тока очень полезен. В приведенном ниже списке представлены идеи по созданию отличного блока питания, небольшого размера и позволяющего сэкономить деньги. Для применения или обучения.

Итак, я собираю эти схемы для облегчения доступа к интересующим меня проектам.Кроме того, они могут быть вам полезны.

Примеры схем

Регулятор режима переключения
Преобразователь постоянного тока в постоянный

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ ЭЛЕКТРОННУЮ ПОЧТУ

Я всегда стараюсь сделать Electronics Learning Easy .

Выходной переключатель ± 15 В или ± 12 В -

Аннотация: В этой заметке по применению показано, как использовать схему повышения напряжения MAX668 и схему инвертирования MAX1846 для реализации импульсного источника питания, который обеспечивает напряжение ± 12 В или ± 15 В при 0.Выход 5A от входа 4,5 В до 12 В.

Обзор

Схемы импульсного источника питания, проиллюстрированные в этом примечании по применению, обеспечивают выходное напряжение ± 12 В или ± 15 В при 0,5 А от входного напряжения от 4,5 В до 12 В. Этот широкий диапазон входного напряжения позволяет питать устройство от регулируемого постоянного напряжения или даже от нерегулируемого постоянного напряжения, такого как выпрямленный выход недорогого понижающего трансформатора переменного тока с «бородавками». Эта конструкция может быть предпочтительнее старой конструкции Maxim MAX742, которая требует более крупной общей схемы.

Источник питания состоит из схемы повышения напряжения MAX668 или схемы инвертирования MAX1846. Каждая схема работает с частотой переключения 300 кГц, сбалансированной стоимостью, размером и производительностью. Цепи ограничивают максимальный ток переключения, что в конечном итоге ограничивает выходной ток для заданного входного напряжения; однако максимальный выходной ток увеличивается с увеличением входного напряжения.

Схема MAX668

На рисунке 1 показано, как использовать схему повышения напряжения MAX668 для реализации импульсного источника питания, который обеспечивает + 15 В при 0.Выход 5A от входа 4,5 В до 12 В. Эта схема MAX668 добавляет несколько компонентов к минимальной реализации схемы. C7 добавляет полюс для компенсации нулевого ESR выходного конденсатора. R5 и C8 фильтруют напряжение измерения тока, чтобы предотвратить преждевременное срабатывание ограничения тока высокочастотным шумом переключения. Эта функция дополняет внутреннее время гашения тока 60 нс MAX668.

Выходное напряжение MAX668 можно изменить на +12 В, изменив номинал резистора R2 на 86.6кОм. Это изменение снижает минимальное входное напряжение примерно до 10 В. Поскольку MAX668 обеспечивает внутреннюю компенсацию, никаких других изменений для выхода +12 В не требуется.

Выходное пульсирующее напряжение из-за переключения можно уменьшить на порядок, установив вторичный выходной фильтр на одну десятую частоты переключения. Резистор 1 Ом, 0,5 Вт, соединенный последовательно с конденсатором 10 мкФ, 25 В с ESR менее 100 мОм, приводит к снижению выходного напряжения на 0,5 В при нагрузке 0,5 А. Напряжение обратной связи должно быть измерено до того, как оно достигнет вторичного фильтра, чтобы MAX668 поддерживал стабильность.

Схема MAX1846

Рисунок 2 использует инвертирующую схему MAX1846 для реализации импульсного источника питания, который обеспечивает выходное напряжение -15 В при 0,5 А при входном напряжении от 4,5 В до 12 В. Эта схема MAX1846 также добавляет несколько компонентов к минимальной реализации схемы. C20 добавляет полюс для компенсации нулевого ESR выходного конденсатора, в то время как R16 и C22 фильтруют напряжение измерения тока, чтобы предотвратить срабатывание предельного тока высокочастотным шумом переключения. Эта функция дополняет внутреннее время гашения тока 100 нс MAX1846.Вывод MAX1846 EXT обеспечивает контролируемую скорость нарастания, что помогает ограничить высокочастотный шум переключения.

Выходное напряжение MAX1846 можно изменить на -12 В, изменив значение R13 на 97,6 кОм и R10 на 91 кОм. Максимальное входное напряжение не уменьшается, хотя джиттер рабочего цикла увеличивается где-то между 10 В и 12 В на входе. Опять же, выходное пульсирующее напряжение из-за переключения может быть уменьшено на порядок с помощью того же вторичного фильтра, который описан в схеме MAX668 выше. Как и в случае с MAX668, напряжение обратной связи для MAX1846 должно быть измерено до того, как оно достигнет вторичного фильтра, чтобы инвертор напряжения работал должным образом.


Рис. 1. На этой схеме используется схема повышения напряжения MAX668 для реализации выходного напряжения +15 В при 0,5 А с входа от 4,5 В до 12 В.

Таблица 1. Рабочие характеристики цепи MAX668

В ВХОД (В) I IN (A) В ВЫХ (В) I ВЫХ (A) КПД
5,00 0,0007 15,11 0
5.00 1,597 14,81 0,50 0,927
6,00 1,318 14,85 0,50 0,939
8,00 0,981 14,91 0,50 0,950
10,00 0,781 14,96 0,50 0,958
11,00 0,708 14,98 0.50 0,962
12,00 0,648 15.01 0,50 0,965
4,47 1,800 14,78 0,50 0,918
20 МГц BW 240 мВ P-P
4,46 2,556 14,70 0,70 0,903
Ограничение по току ~ 0.71

Таблица 2. Спецификация материалов для схемы импульсного источника питания MAX668 Входное напряжение от 4,5 В до 10 В, выходное напряжение 15 В при 0,5 А (23.12.05)
ОБОЗНАЧЕНИЕ КОЛ-ВО ОПИСАНИЕ
C1 1 10 мкФ, 25 В, керамический конденсатор X5R (1210) Тайё Юдэн TMK325BJ106MM
C2 1 0,22 мкФ керамический конденсатор 25 В (0805) Тайё Юдэн UMK212BJ224MG
C3 1 0.Керамический конденсатор 22 мкФ 10 В (0603) Тайё Юдэн EMK107BJ224MA
C4 1 Керамический конденсатор X5R, 1 мкФ, 10 В (0603) Тайё Юдэн LMK107BJ105MA
C5 1 390 мкФ Алюминиевый электролитический конденсатор 25 В Sanyo 25MV390AX
C6 1 Керамический конденсатор X5R, 1 мкФ, 25 В (1206)
C7 1 Керамический конденсатор 2,2 нФ (0603)
C8 1 Керамический конденсатор 1 нФ (0603)
D1 1 3A 60V диод Шоттки Нихон EC31QS06
L1 1 Силовой индуктор, 22 мкГн, 6 А Койлкрафт ДО5022П-223
N1 1 30 мОм 30 В n-канальный МОП-транзистор (SO-8) Fairchild FDS6612A
R1 1 0.033 Ом 0,5 Вт 5% резистор (2012 г.)
R2 1 Резистор 110 кОм 1% (0603)
R3 1 Резистор 10,0 кОм 1% (0603)
R4 1 Резистор 165 кОм 1% (0603)
R5 1 Резистор 100 Ом 5% (0603)
U1 1 MAX668EUB (10-µMAX®)


Рисунок 2.На этой схеме используется инвертирующая схема MAX1846 для реализации вывода -15 В при 0,5 А на входе от 4,5 В до 12 В.

Таблица 3. Рабочие характеристики цепи MAX1846

В ВХОД (В) I IN (A) В ВЫХ (В) I ВЫХ (A) КПД
5,00 0,0077 -15,15 0
5.00 1,76 -15,15 0,50 0,861
6.01 1,42 -15,15 0,50 0,888
8.01 1,05 -15,15 0,50 0,901
10,00 0,84 -15,15 0,50 0,902
12,00 0,70 -15,15 0.50 0,902
4,48 2,04 -15,15 0,50 0,829
20 МГц BW 360 мВ П-П
4,48 3,63 -15,15 0,80 0,745
Ограничение по току ~ 0,81

Таблица 4. Спецификация для схемы импульсного источника питания MAX1846 4.Вход от 5 В до 12 В, -15 В при выходе 0,5 А (23.12.05)
ОБОЗНАЧЕНИЕ КОЛ-ВО ОПИСАНИЕ
C11 1 керамический конденсатор 0,47 мкФ (0603)
C12, C13 2 10 мкФ, 25 В, керамический конденсатор X5R (1210) Тайё Юдэн TMK325BJ106MM
C15 1 Керамический конденсатор 68 нФ (0603)
C16 1 Керамический конденсатор 47 пФ (0603)
C17 1 390 мкФ Алюминиевый электролитический конденсатор 25 В Sanyo 25MV390AX
C18 1 Керамический конденсатор X5R, 1 мкФ, 25 В (1206)
C19 1 0.Керамический конденсатор 1 мкФ (0603)
C20 1 Керамический конденсатор 2,2 нФ (0603)
C22 1 Керамический конденсатор 1 нФ (0603)
D2 1 5A 40V Диод Шоттки Central Semiconductor CMSH5-40
L2 1 33 мкГн 5A индуктор Coilcraft DS5022P-333
P2 1 MOSFET, 35 мОм -30 В, пик (SO-8) Fairchild FDS6685
R9 1 Резистор 22 кОм 5% (0603)
R10 1 Резистор 110 кОм 5% (0603)
R11 1 Резистор 150 кОм 5% (0603)
R12 1 0.02 Ом 1 Вт 1% резистор (2512) Dale WSL-2512-R020-F
R13 1 Резистор 121 кОм 1% (0603)
R14 1 Резистор 10,0 кОм 1% (0603)
R16 1 Резистор 100 Ом 5% (0603)
U2 1 MAX1846EUB (10-µMAX)

©, Maxim Integrated Products, Inc.
Содержимое этой веб-страницы защищено законами об авторских правах США и зарубежных стран.Для запросов на копирование этого контента свяжитесь с нами.
ПРИЛОЖЕНИЕ 3943:
ПРИМЕЧАНИЕ ПО ПРИМЕНЕНИЮ 3943, г. AN3943, AN 3943, APP3943, Appnote3943, Appnote 3943

maxim_web: en / products / power, maxim_web: en / products / power / импульсные регуляторы / step-up-Switches-reg, maxim_web: en / products / power / импульсные-регуляторы / инвертирующие-переключатели-regs

maxim_web: en / products / power, maxim_web: en / products / power / импульсные регуляторы / step-up-Switches-reg, maxim_web: en / products / power / импульсные-регуляторы / инвертирующие-переключатели-regs

Как выбрать блок питания

Руководство покупателя питания: основные сведения об источниках питания

Есть старая поговорка: «Используйте правильный инструмент для работы!» Но иногда для работы существует несколько «правильных инструментов», так как же узнать, какой из них использовать? Чтобы правильно выбрать источник питания, необходимо понять некоторые важные основы.

Линия электропитания Jameco Electronics включает широкий выбор источников питания. Они обеспечивают все ваши потребности в источниках питания, от настенных адаптеров и настольных источников питания до открытых / закрытых источников питания переменного тока в постоянный и преобразователей постоянного тока в постоянный / инверторов постоянного тока в переменный ток. Какой бы инструмент вы ни выбрали в качестве источника питания, вы можете быть уверены, что получите продукцию отличного качества, подходящую для вашей работы.

Условия подачи питания

Прежде всего, давайте проясним некоторые термины, которые часто сбивают с толку людей, но которые важны при выборе правильного источника питания для настенного адаптера.«Импульсные» источники питания переменного тока в постоянный по сравнению с «линейными» источниками питания часто вводят в заблуждение тех, кто с ними не знаком.

Линейные источники питания принимают входной переменный ток (обычно 120 или 240 В переменного тока), понижают напряжение с помощью трансформатора, затем выпрямляют и фильтруют входной сигнал в выход постоянного тока.

Импульсный источник питания принимает входной переменный ток, но сначала выпрямляет и фильтрует в постоянный ток, затем преобразует обратно в переменный ток на некоторой высокой частоте переключения, понижает напряжение с помощью трансформатора, затем выпрямляется и фильтруется в выход постоянного тока.

Разница между линейным и коммутационным процессами заключается в том, что они позволяют использовать разные компоненты. Линейный источник питания обычно менее эффективен, использует более крупный и тяжелый трансформатор, а также более крупные компоненты фильтра. Импульсный источник питания подразумевает более высокий КПД из-за высокой частоты переключения, что позволяет использовать более компактный и менее дорогой высокочастотный трансформатор, а также более легкие и менее дорогие компоненты фильтра. Импульсные источники питания содержат больше общих компонентов, поэтому, как правило, они дороже.

Примечание:
Существует разница между «переключением» на стороне входа и «переключением» на стороне выхода. То, что мы только что обсудили, относится к переключению на выходной стороне. Говоря о стороне входа, существует 2 типа «переключаемых» источников питания:

1) Переключение - автоматически переключает между входами переменного тока и частотами, или
2) Переключаемый - на источнике питания есть ручной переключатель, который меняет диапазон и частота входного переменного тока.

Суммирование, хотя линейный процесс кажется более эффективным из-за более короткого процесса, импульсный источник питания на самом деле более эффективен.


Astec ACV15N4.5 - Линейный источник питания 15 В, 4,5 А
Размер: 7,0 "Д x 4,8" Ш x 2,7 "В
Mean Well PS-65-15 - Импульсный источник питания 15 В, 4,2 А
Размер: 5,0" Д x 3,0 "Ш x 1,7" В

Также возникает много вопросов, когда говорят о "регулируемых" и "нерегулируемых" источниках питания. Эти термины относятся к схеме управления источником питания.

В нерегулируемом источнике питания переключающий транзистор работает с постоянным рабочим циклом, поэтому нет ничего, что могло бы управлять выходом. Выходы не имеют определенного значения; вместо этого они немного колеблются при приложении различных нагрузок.Только очень низкое напряжение приведет к отключению источника питания.

В регулируемом источнике питания выходная мощность поддерживается очень близкой к ее номинальной мощности за счет изменения рабочего цикла для компенсации изменений нагрузки. Это обеспечивает лучшую защиту ваших устройств и более точные выходные данные.

Основные отличия регулируемых источников питания от нерегулируемых - это защита и цена. Регулируемые источники питания обеспечивают лучшую эффективность и защиту, но нерегулируемые источники питания значительно дешевле по стоимости.


Jameco ReliaPro 12V, 1A Регулируемый линейный настенный адаптер
1-Unit Price: $ 14.95
Jameco ReliaPro 12V, 1A Нерегулируемый линейный настенный адаптер
1-Unit Price: $ 9.95
Теперь, когда вы знаете, что искать, убедитесь, что у вас есть все необходимые детали. Если по какой-то причине вы не можете найти то, что вам нужно, просто напишите нам, и мы сделаем все возможное, чтобы найти это для вас.

Есть еще вопросы? Напишите нам на [адрес электронной почты защищен]

Вернуться в центр энергоресурсов >>

Импульсный источник питания 12 В 5 А

Импульсный источник питания 12 В 5 А

Этот импульсный источник питания работает по принципу обратного инвертора.В качестве переключателя питания используется MOSFET. Резистор 470 кОм заряжает затвор полевого МОП-транзистора и заставляет его начать открываться. Положительная обратная связь позволяет быстро полностью открыть полевой МОП-транзистор. Затем эта первичная обмотка трансформатора подключается к напряжению 325 В, и сердечник начинает накапливать энергию. Это также увеличивает первичный ток и падение напряжения на резисторе измерения тока 0R22. Когда падение достигает 0,5 В, транзистор KC507 открывается и снижает напряжение на затворе MOSFET. MOSFET начинает закрываться, и обратная связь заставляет его быстро полностью отключиться, полярность напряжения на обмотках меняется на обратную.Собранная в сердечнике трансформатора энергия передается конденсатору электролитического фильтра на выходе. Когда выходное напряжение достигает номинального значения, стабилитрон начинает открываться и ток течет через светодиод оптопары 4N35. Корпус оптопары транзистора начинает открываться и увеличивать напряжение на базе KC507. Таким образом, он включается при меньшем падении на 0R22, MOSFET открывается на более короткий период, и передаваемая мощность значительно уменьшается, выходное напряжение больше не растет.Схема устойчива к короткому замыканию, потому что Датчик тока (0R22 с KC507) никогда не позволяйте пиковому току MOSFET превышать 2,27 А. Трансформатор имеет ферритовый сердечник, вторичная обмотка намотана четырехпроводной проволокой диаметром 0,6 мм, остальные обмотки намотаны проволокой 0,4 мм. Стабилизация напряжения производится с помощью оптрона и стабилитрона. Максимальное отклонение выходного напряжения 4%. Этот импульсный блок питания может быть легко изменен для других напряжений. (Изменяет только напряжение стабилитрона ZD и количество витков вторичной обмотки в том же соотношении.)

Предупреждение! Импульсное питание не для новичков, так как большинство его цепей подключено к опасному сетевому напряжению. При плохом дизайне электросеть напряжение может достигать выхода! Конденсаторы могут оставаться заряженными до опасного напряжения даже после отключения от сети. Все, что вы делаете на свой страх и риск, за любую травму здоровье или имущество я не беру на себя ответственности.



Схема импульсного блока питания 12В 5А


Готовый импульсный блок питания (некоторые детали находятся в нижней части платы)


Не предназначен для лам!


дом

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *