Схему импульсного зарядного: Схема импульсного зарядного устройства для автомобильного аккумулятора

Содержание

Схема импульсного зарядного устройства для автомобильного аккумулятора

На данный момент существует много схем зарядных устройств, в том числе и импульсных, которые позволяют зарядить аккумулятор автомобиля. Часть таких устройств, к сожалению, обладают существенными недостатками, выраженными в значительных габаритах, дороговизне комплектующих, сложности самостоятельной сборки или недостаточной выходной мощности. Представленная ниже схема не обладает такими минусами, но к тому же еще имеет следующие преимущества:

Все эти функции возможны в одном зарядном устройстве, которое вполне под силу собрать самостоятельно, тщательно подбирая компоненты и припаивая их на свои места. Схема импульсного зарядного устройства для автомобильного аккумулятора:

Рис. 1. Схема импульсного зарядного устройства для автомобильного аккумулятора

На первый взгляд схема может показаться сложной, но на самом деле она будет достаточно компактной, при своей функциональности. Элементная база ЗУ широко распространена, и на большинство деталей вполне можно найти аналоги, как импортные, так и отечественные. Все номиналы подписаны на схеме. 

 

Краткий принцип работы и особенности сборки

Регулировка выходного тока выставляется в пределах 2,5А – 7А, чего вполне достаточно для зарядки большинства аккумуляторов. Резистором R14 подстраивается необходимый ток заряда конкретного аккумулятора исходя из расчета одной десятой части его емкости. В зависимости от выбранного режима, ток разряда АКБ будет составлять 2,5 Ампера, или 0,65 Ампер при выставлении режима десульфитация. Изменяя значения резисторов R35 и R36, можно изменять время разряда и заряда аккумулятора. R35 отвечает за заряд, а R36 – за разряд. В схеме установлено время заряда 17с, а разряда – 5с. Мощность, потребляемая устройством, составляет 30 Вт, при минимальном токе заряда и достигает 90 Вт при использовании максимального тока заряда. 

Теперь о режимах работы зарядного устройства. При выставлении кнопки SA2 в положение, которое указано на схеме устройства и при включенной кнопке SA1 происходит обычный заряд аккумулятора, с возможностью выбрать необходимый ток заряда. SA2, выставленная в режим десульфитации, позволяет перейти к цикличному заряду-разряду батарее, который продолжается до момента достижения напряжения аккумулятора 14,5 В. Кнопка SB1 задает режим разряда АКБ до указанного напряжения, а затем автоматически происходит заряд до 14,5В методом десуфитации. При достижении конечного напряжения, устройство прекращает заряд и отключается, что очень удобно, так как не требуется постоянно наблюдать за напряжением на клеммах аккумулятора. Для восстановления аккумулятора предусмотрен отдельный режим, который задается нажиманием кнопки SA3. Зарядка ведется непрерывно в этом случае, так что придется наблюдать самостоятельно за процессом.

В схему дополнительно можно подключить охлаждение при помощи вентилятора, что позволит значительно уменьшить радиаторы и обеспечить надежный теплоотвод. При этом, габариты конечного устройства уменьшаться, равно, как и вес прибора. Подключение производится согласно следующей схеме на рис. 2:

Рис. 2. Схема подключения

 

Трансформатор был намотан на основе взятого из отечественного телевизора УПИМЦТ. Все обмотки удаляются и мотаются новые. Первичная обмотка самодельного трансформатора мотается в два провода, вторичная тоже в два, а третья обмотка мотается в семь проводов. Все обмотки состоят из провода ПЭВ 2. Первичная обмотка из 91-го витка, а вторичная – из 4-ех витков. Диаметр провода – 0,5 мм. Для третьей обмотки использован провод диаметром 0,6 мм, количеством витков 9. Наматывать провод необходимо без перехлестов. За этим нужно следить внимательно, так как это не только трансформатор по схеме, но и дросселя. Изоляция между обмотками была осуществлена бумагой, но можно использовать несколько слоев скотча. Начала и концы обмоток помечаются отдельно, чтобы ничего не спутать. 

R26 – это шунт, состоящий из кусочка нихрома в диаметре 2 мм сопротивлением 0,1 Ом. В схеме предусмотрена индикация процесса заряда. Можно использовать отдельное устройство, в самостоятельном исполнении, приобретенное на радио-рынке или в магазине электронных компонентов. Можно использовать индикацию из старых магнитофонов, одна из которых под названием М4761. Предусмотрена схема самостоятельной сборки на рис. 3:

Рис. 3. Схема самостоятельной сборки

 

Разводку платы можно осуществить самостоятельно при помощи любой, предназначенной, для этого, программой. Можно использовать готовый вариант:

Рис. 4. Печатная плата устройства

 

Настройка несложная. Собрав ЗУ, потребуется выкрутить две лампочки HL1 и HL3. При подключенном аккумуляторе, регулируя R34, выставляется напряжение в 10,5 Вольт, до момента загорания лампочки HL2. Напряжение 14,2 Вольта достигается регулированием резистора R31, о чем сигнализирует выключение этой же лампочки. Выкрученные лампы следует включить обратно и можно пользоваться собранным своими руками импульсным зарядным устройством для автомобильных аккумуляторов.

Автор: RadioRadar

Импульсное зарядное устройство для автомобильного аккумулятора: схема, инструкция

Широкую популярность получили импульсные зарядные устройства для автомобильных аккумуляторов. Схем таких устройств довольно много – одни предпочитают собирать их из подручных элементов, другие же используют готовые блоки, например от компьютеров. Блок питания персонального компьютера можно без особого труда переделать во вполне качественное зарядное для автомобильного аккумулятора. Буквально за пару часов можно сделать устройство, в котором можно будет проводить замер напряжения питания и тока зарядки. Нужно только добавить в конструкцию приборы для измерения.

Основные характеристики зарядников

Всего существует два типа зарядных устройств для аккумуляторных батарей:

  1. Трансформаторные – у них очень большой вес и габариты. Причина – используется трансформатор – у него внушительные обмотки и сердечки из электротехнической стали, у которой большой вес.
  2. Импульсные зарядные устройства для автомобильных аккумуляторов. Отзывы о таких устройствах более положительные – габариты у приборов небольшие, вес тоже маленький.

Именно за компактность и полюбились потребителям зарядные устройства импульсного типа. Но кроме этого, у них более высокий КПД в сравнении с трансформаторными. В продаже можно встретить только такого типа импульсные зарядные устройства для автомобильных аккумуляторов. Схемы у них в целом похожи, отличаются они только используемыми элементами.

Элементы конструкции зарядника

При помощи зарядного устройства восстанавливается работоспособность аккумуляторной батареи. В конструкции используется исключительно современная элементная база. В состав входят такие блоки:

  1. Импульсный трансформатор.
  2. Блок выпрямителя.
  3. Блок стабилизатора.
  4. Приборы для измерения тока зарядки и (или) напряжения.
  5. Основной блок, позволяющий осуществлять контроль процесса зарядки.

Все эти элементы имеют маленькие габариты. Импульсный трансформатор небольшой, наматываются его обмотки на ферритовых сердечниках.

Самые простые конструкции импульсных зарядных устройств для автомобильных аккумуляторов Hyundai или других марок машин можно выполнить всего на одном транзисторе. Главное – сделать схему управления этим транзистором. Все компоненты можно приобрести в магазине радиодеталей или же снять с блоков питания ПК, телевизоров, мониторов.

Особенности работы

По принципу работы все схемы импульсных зарядных устройств для автомобильных аккумуляторов можно разделить на такие подгруппы:

  1. Зарядка аккумулятора напряжением, ток при этом имеет постоянное значение.
  2. Напряжение остается неизменным, но ток при зарядке постепенно уменьшается.
  3. Комбинированный метод – объединение двух первых.

Самый «правильный» способ – это изменять ток, а не напряжение. Он подходит для большей части аккумуляторных батарей. Но это в теории, так как зарядники могут осуществлять контролирование силы тока только в том случае, если напряжение на выходе будет иметь постоянное значение.

Особенности режимов зарядки

Если ток остается постоянным, а меняется напряжение, то вы получите массу неприятностей – пластины внутри аккумуляторной батареи будут осыпаться, что приведет к выходу ее из строя. В этом случае восстановить АКБ не получится, придется только покупать новую.

Наиболее щадящим режимом оказывается комбинированный, при котором сначала происходит зарядка при помощи постоянного тока. Под конец процесса происходит изменение тока и стабилизация напряжения. С помощью этого возможность закипания аккумуляторной батареи сводится к минимуму, газов тоже меньше выделяется.

Как подобрать зарядное?

Чтобы АКБ прослужила как можно дольше, необходимо правильно выбрать импульсное зарядное устройство для автомобильного аккумулятора. В инструкциях к ним указываются все параметры: ток зарядки, напряжение, даже схемы в некоторых приводятся.

Обязательно учитывайте, что зарядник должен вырабатывать ток, равный 10 % от суммарной емкости аккумуляторной батареи. Также вам потребуется учесть такие факторы:

  1. Обязательно учитывайте у продавца, сможет ли конкретная модель зарядника полностью восстановить работоспособность аккумулятора. Проблема в том, что не все устройства способны делать это. Если в вашей машине стоит аккумулятор на 100 А*ч, а вы покупаете зарядник с максимальным током 6 А, то его явно будет недостаточно.
  2. Исходя из первого пункта, внимательно смотрите, какой максимальный ток может выдать устройство. Не лишним будет обратить внимание и на напряжение – некоторые устройства могут выдавать не 12, а 24 Вольта.

Желательно, чтобы в заряднике присутствовала функция автоматического отключения при достижении полного заряда аккумулятора. С помощью такой функции вы избавите себя от лишних проблем – не нужно будет контролировать зарядку. Как только достигнет зарядка максимума, устройство само отключится.

Несколько советов для работы с зарядниками

Обязательно во время эксплуатации подобного рода приборов могут возникнуть проблемы. Чтобы этого не произошло, нужно придерживаться простых рекомендаций. Главное – добиться того, чтобы в банках аккумуляторной батареи было достаточное количество электролита.

Если его мало, то долейте дистиллированной воды. Заливать чистый электролит не рекомендуется. Обязательно также учитывайте такие параметры:

  1. Величину напряжения зарядки. Максимальное значение не должно превышать 14,4 В.
  2. Величину силы тока – эту характеристику можно без особого труда регулировать на импульсных зарядных устройствах для автомобильных аккумуляторов «Орион» и аналогичных. Для этого на передней панели устанавливается амперметр и переменный резистор.
  3. Длительность зарядки аккумуляторной батареи. При отсутствии индикаторов сложно понять, когда аккумуляторная батарея заряжена, а когда разряжена. Подключите амперметр между зарядным устройством и аккумулятором – если его показания не изменяются и крайне малы, то это свидетельствует о том, что зарядка полностью восстановилась.

Какой бы зарядник вы ни использовали, старайтесь не переборщить – больше суток не держите аккумулятор. В противном случае может произойти замыкание и закипание электролита.

Самодельные устройства

За основу можно взять схему импульсного зарядного устройства для автомобильных аккумуляторов «Аида» или аналогичных. Очень часто в самоделках применяют схему IR2153. Ее отличие от всех остальных, которые используются для изготовления зарядников, в том, что устанавливается не два конденсатора, а один — электролитический. Но у такой схему есть один недостаток – с ее помощью можно сделать только маломощные устройства. Но эта проблема решается установкой более мощных элементов.

Во всех конструкциях применяются транзисторные ключи, например 8N50. Корпус у этих приборов изолирован. Диодные мосты для самодельных зарядников лучше всего использовать те, которые устанавливаются в блоках питания персональных компьютеров. В том случае если готовой мостовой сборки нет, можно сделать ее из четырех полупроводниковых диодов. Желательно, чтобы величина обратного тока у них была выше 10 ампер. Но это для случаев, когда зарядное будет использоваться с аккумуляторными батареями емкостью не более 70-8-0 А*ч.

Цепь питания зарядного устройства

В импульсных зарядных устройствах для автомобильных аккумуляторов Bosch и аналогичных обязательно используется в схеме цепи питания резистор для гашения тока. Если вы решили самостоятельно изготовить зарядник, то потребуется устанавливать резистор сопротивлением около 18 кОм. Далее по схеме находится выпрямительный блок однополупериодного типа. В нем применяется всего один полупроводниковый диод, после которого устанавливается электролитический конденсатор.

Он необходим для того, чтобы отсекать переменную составляющую тока. Желательно использовать керамические или пленочные элементы. По законам Кирхгофа составляются схемы замещения. В режиме переменного тока конденсатор заменяется в ней отрезком проводника. А при работе схемы на постоянном токе – разрывом. Следовательно, в выпрямленном токе после диода будут две составляющие: основная – постоянный ток, а также остатки переменного, их нужно убрать.

Импульсный трансформатор

В конструкции импульсного зарядного устройства для автомобильных аккумуляторов «Кото» используется специальной конструкции трансформатор. Для самоделок можно воспользоваться готовым – снять из блока питания персонального компьютера. В них применяются трансформаторы, которые идеально подходят для реализации схем зарядных устройств – они могут создать высокий уровень тока.

Также они позволяют обеспечить сразу несколько значений напряжений на выходе зарядника. Диоды, которые устанавливаются после трансформатора, должны быть именно импульсными, другие работать в схеме попросту не смогут. Они быстро выйдут из строя при попытке выпрямить высокочастотный ток. В качестве фильтрующего элемента желательно установить несколько электролитических конденсаторов и ВЧ-дроссель. Рекомендуется применить термистор сопротивлением 5 Ом, чтобы обеспечить снижение уровня бросков.

Кстати, термистор тоже можно найти в старом БП от компьютера. Обратите внимание на емкость электролитического конденсатора – ее нужно подбирать исходя из значения мощности всего устройства. На каждый 1 Ватт мощности требуется 1 мкФ. Рабочее напряжение не менее 400 В. Можно применить четыре элемента по 100 мкФ каждый, включенных параллельно. При таком соединении емкости суммируются.

[rssless]

Читайте НАС ВКонтакте

[/rssless]

Импульсное зарядное устройство для авто, схема, описание

К вашему вниманию простая схема импульсного ЗУ для автомобильного акб, компактная, проверенная в работе и со всеми защитами.

Электронный трансформатор немного дорабатываем, чтобы в конечном итоге выход был 14 вольт, то есть если нет 14 вольт, то нужно немного домотать вторичную обмотку. Затем мы добавим (тут по желанию) сетевой фильтр. Сделаем обязательно диодный выпрямитель и схемы защиты от короткого замыкания, переполюсовки и перегрузки. Ну и добавим индикацию.

Я взял китайский электронный трансформатор на 80 ватт. Частота задаётся динистором DB3 в районе 30 кГц. Имеется 2 трансформатора, один ОС, второй (основной) понижающий.

3 обмотки содержит тран-тор ОС, две базовые обмотки ключей и саму обмотку ОС. Были взяты ключи MJE 13005.

Чтобы использовать наше зарядное устройство можно было ещё и в качестве БП, реализуем включение без нагрузки.

Итак, что для этого надо….

1) Выпаять обмотку ОС и вместо неё сделать перемычку.
2) Мотаем 2 витка проводом 0.4 мм на основном трансе и подключаем всё это дело как показано на схеме ниже. Это делать не обязательно, если данное устройство будет работать только как зарядное для аккумуляторов.

Резистор нужно взять мощностью 5-10 ватт и то он всегда будет тёплый, но это нормально.

Такая переделка даёт нам защиту от короткого замыкания и включение системы без нагрузки. Но всё равно при длительном замыкании (больше 10 сек) ключи могут выйти из строя, поэтому мы будем делать отдельную защиту от короткого замыкания.

Сделаем на отдельной плате.

В схеме использован транзистор IRFZ44, можно взять и помощней IRF3205. Ключи можно использовать на ток более 20 ампер, такие как  IRFZ24, IRFZ40, IRFZ46, IRFZ48 и т.д. Теплоотвод для полевика не требуется. Выбор второго транзистора не критичен, я взял биполярник  MJE13003, но выбор за вами. Шесть резисторов по 0.1 ому, подключены параллельно задают сопротивление шунта, которым подбирается ток защиты. При таком раскладе ток защиты срабатывает при нагрузке в 6 или 7 ампер. Также можно подстроить ток срабатывания переменным резистором.

Выходной ток БП доходит до 7 ампер, довольно прилично. Резисторы для шунта брал на 5 ватт, но подойдут и по 2-3 ватта.

Теперь нужно переделать чтобы выходное напряжение было 14 вольт вместо 10-12.

Это делается просто на вторичную обмотку доматываем всего 3 витка и этим повышаем напряжение на три вольта. Сердечник сам разбирать не обязательно. Провод брал сечением 1 мм и подключаем, вернее припаиваем нашу обмотку одним концом к заводской, а другой конец получается выходом. (то есть последовательно)

Теперь приступим к выпрямителю.

Диоды взял шоттки, выпаял из БП от компьютера. Нужны три одинаковые сборки. Обязательно диоды должны быть импульсные или ультрафасты и не менее 10 ампер. Подойдут и наши типа КД213 и подобные.

Собираем мост, блоки в кучу и включаем в сеть 220, чтобы схема не сгорела (в случаи если что накосячили) её следует подключить через обыкновенную лампочку на 60-100 ватт, которую соединяем последовательно с нашей схемой.

При правильной сборке блок работает сразу, теперь замыкаем выход на нём, при этом загорается светодиод (свидетельствует о коротком замыкании).

Теперь собираем схему индикатора

Сама схема взята от зарядника аккумуляторной отвёртки. Где зелёный огонёк показывает, что идёт заряд, а красный показывает, что есть напряжение на выходе блок питания.

Зелёный индикатор будет затухать постепенно и после 12.4 вольт он окончательно потухнет.

Сетевой фильтр

Но вот и осталось нам только сделать сетевой фильтр, он у нас будет состоять из 2-х плёночных конденсаторов и дросселя.

Коденсаторы подключаются перед дросселем и после.  Дроссель можно взять готовый от ИБП или намотать самому. Берём кольцо и мотаем две отдельные обмотки, по 20 витков проводом 0.5 мм. Конденсаторы по 0,47 мкФ 250 или 400 вольт, лучше взять плёночные.Теперь собираем всё в корпус и наслаждаемся полноценным импульсным зарядным устройством. Если будет желание, можно сделать и регулятор мощности.

В устройстве можно применить и более мощные трансформаторы. Практика показала надёжность данного устройства и его простоту в изготовлении.Автор; АКА Касьян

Зарядные устройства - полный список схем и документации на QRZ.RU

1Alinco EDC-64 Ni-Cd battery charger1010321.03.2009
2Автоматическая подзарядка аккумуляторов.3108916.06.2003
3Автоматическая подзарядка аккумуляторов. 1783526.03.2006
4Автоматическая приставка к зарядному устройству для авто аккумулятора 178916.11.2016
5Автоматическое зарядно-пусковое устройство для автомобильного аккумулятора 202816.11.2016
6Автоматическое зарядное и восстанавливающее устройство (0-10А) 282316.11.2016
7Автоматическое зарядное устройство 137316.11.2016
8Автоматическое зарядное устройство + режим десульфатации для аккумулятора 217016.11.2016
9Автоматическое зарядное устройство для кислотных аккумуляторов 171816.11.2016
10Автоматическое зарядное устройство на микросхеме К561ЛЕ5 155716.11.2016
11Автоматическое зарядное устройство с бестрансформаторным питанием 146016.11.2016
12Автоматическое импульсное зарядное устройство для аккумуляторов 12В 180616.11.2016
13Автоматическое малогабаритное универсальное зарядное устройство для 6 и 12 вольтовых аккумуляторов5443917.09.2005
14Автоматическое устройство длязарядки аккумуляторов. 1836517.09.2002
15Бестрансформаторное зарядное устройство для аккумулятора 138016.11.2016
16Бестрансформаторный блок питания большой мощности для любительского передатчика 119416.11.2016
17Бестрансформаторный блок питания на полевом транзисторе (BUZ47A) 117716.11.2016
18Бестрансформаторный блок питания с регулируемым выходным напряжением 123316.11.2016
19Бестрансформаторный стабилизированный источник питания на КР142ЕН8 107716.11.2016
20Блок питания 0-12В/300мА 108816.11.2016
21Блок питания 1-29В/2А (КТ908) 128616.11.2016
22Блок питания 12В 6А (КТ827) 147616.11.2016
23Блок питания 60В 100мА 63916.11.2016
24Блок питания Senao-5681044150911.07.2016
25Блок питания Senao-8681116159511.07.2016
26Блок питания автомобильной радиостанции (13.8В, ЗА ) 38116.11.2016
27Блок питания для аналоговых и цифровых микросхем 28316.11.2016
28Блок питания для ионизатора (Люстра Чижевского) 39516.11.2016
29Блок питания для персонального компьютера «РАДИО 86 РК» 31316.11.2016
30Блок питания для телевизора 250В 53516.11.2016
31Блок питания на ТВК-110 ЛМ 5-25В/1А 37216.11.2016
32Блок питания с автоматическим зарядным устройством на компараторе 35016.11.2016
33Блок питания с гасящим конденсатором 37616.11.2016
34Блок питания СИ-БИ радиостанции (142ЕН8, КТ819) 40116.11.2016
35Блок питания Ступенька 5 - 9 - 12В на ток 1A 32116.11.2016
36Блок питания усилителя ЗЧ (18В, 12В) 26416.11.2016
37ВСА-5К, ВСА-111К2561947014.03.2010
38Выпрямители для получения двуполярного напряжения 3В, 5В, 12В, 15В и других 45116.11.2016
39Выпрямитель для питания конструкций на радиолампах (9В, 120В, 6,3В) 27116.11.2016
40Выпрямитель с малым уровнем пульсаций 36716.11.2016
41Высококачественный блок питания на транзисторах (0-12В) 58216.11.2016
42Высокоэффективное зарядное устройство для аккумуляторов 53216.11.2016
43Высокоэффективное зарядное устройство для батарей2168222.11.2004
44Два бестрансформаторных блока питания 33716.11.2016
45Двуполярный источник питания 12В/0,5А (К142ЕН1Г,КТ805) 30116.11.2016
46Двуполярный источник питания для УНЧ на TDA2030, TDA2040 (18В) 37916.11.2016
47Зарядка аккумуляторов с помощью солнечных батарей4715103.02.2003
48Зарядно-пусковое уст-во "Импульс ЗП-02"6741925514.08.2009
49Зарядно-пусковое устройство Старт УПЗУ-У3180153311.03.2017
50Зарядно-пусковое устройство-автомат для автомобильного аккумулятора 12В 88316.11.2016
51Зарядно-разрядное устройство для аккумуляторов емкостью до 55Ач 63416.11.2016
52Зарядное устройство91885012.07.2007
53Зарядное устройство для Ni-Cd аккумуляторов 46816.11.2016
54Зарядное устройство "КЕДР-АВТО"72161005.10.2009
55Зарядное устройство HAMA TA03C397361407.10.2016
56Зарядное устройство \"Квант\"411334822.10.2008
57Зарядное устройство \"Рассвет-2\"11848923.12.2009
58Зарядное устройство для автомобильного аккумулятора3068621.04.2006
59Зарядное устройство для автомобильного аккумулятора 58616.11.2016
60Зарядное устройство для аккумулятором с током заряда 300 мА 33016.11.2016
61Зарядное устройство для никель-кадмиевых аккумуляторов (0,5 -1А/ч) 36116.11.2016
62Зарядное устройство для никель-кадмиевых и никель-металлогидридных аккумуляторов3982404.05.2009
63Зарядное устройство для фонарей ФОС-1451031303.12.2006
64Зарядное устройство до 5 А.311390710.02.2009
65Зарядное устройство на основе импульсного инвертора (К1114ЕУ4, КТ886) 37216.11.2016
66Зарядное устройство с таймером для Ni-Cd аккумуляторов 28916.11.2016
67Зарядное устройство с температурной компенсацией 35216.11.2016
68Зарядное устройство шуруповёрта P.I.T.466236114.07.2016
69Звуковой индикатор разряда 12V аккумулятора1415115.10.2002
70Измеритель заряда для автомобильного аккумулятора 42216.11.2016
71Импульсные источники питания на микросхемах и транзисторах 55916.11.2016
72Импульсные источники питания, теория и простые схемы 96716.11.2016
73Импульсный блок питания 5В 0,2А 43816.11.2016
74Импульсный блок питания на транзисторах и таймер на КР512ПС10 (12В-1,2А) 25616.11.2016
75Импульсный блок питания УМЗЧ мощностью 800Вт (ЛА7, ЛА8, ТМ2, КП707В2) 41016.11.2016
76Импульсный блок питания УНЧ 4х30В 200Вт 44416.11.2016
77Импульсный источник питания (5В 6А) 26116.11.2016
78Импульсный источник питания на 40 Вт 31416.11.2016
79Импульсный источник питания на микросхеме КР1033ЕУ10 (27В, 3А) 20716.11.2016
80Импульсный источник питания с полумостовым преобразователем (КР1156ЕУ2) 32916.11.2016
81Импульсный источник питания УМЗЧ (60В) 28616.11.2016
82Импульсный сетевой блок питания 9В 3А (КТ839) 32416.11.2016
83Импульсный сетевой блок питания УМЗЧ 2х25В, 20В, 10В 27216.11.2016
84Индикатор ёмкости батарей 37216.11.2016
85Интеллектуальное зарядное устройство1494962022.09.2008
86Источник питания 14В 12А (завод "Фотон", Ташкент)1321100911.07.2016
87Источник питания для автомобильного трансивера 13В 20А 42916.11.2016
88Источник питания для гибридного (лампы, транзисторы) трансивера 26816.11.2016
89Источник питания для детских электрофицированных игрушек 12В 26816.11.2016
90Источник питания для измерительного прибора на микросхемах 27016.11.2016
91Источник питания для измерительных приборов 29116.11.2016
92Источник питания для компьютера 32416.11.2016
93Источник питания для логических микросхем (5В) 27616.11.2016
94Источник питания для трехвольтовых аудиоплейеров 26616.11.2016
95Источник питания для часов на БИС 27016.11.2016
96Источник питания на базе импульсного компьютерного БП (5-15В, 1-10А) 45316.11.2016
97Источник питания повышенной мощности 12В 20А (142ЕН5+транзисторы) 46516.11.2016
98Источник питания повышенной мощности 14 В, 100 Ватт 34816.11.2016
99Источник питания с плавным изменением полярности +/- 12В 30516.11.2016
100Источник питания со стабилизацией на UL7523 (3В) 27316.11.2016
101Источники питания для варикапа 27816.11.2016
102Квазирезонансные преобразователи с высоким КПД 35716.11.2016
103Кедр-М781525418.11.2007
104Комбинированный блок питания 0-215В/0-12В/0,5А 34516.11.2016
105Комбинированный лабораторный блок питания 4-12V/1.5A (К140УД6,КП901) 38116.11.2016
106Конденсаторно-стабилитронный выпрямитель 35016.11.2016
107Лабораторный блок питания для рабочего места (3-18В 4А) 40116.11.2016
108Лабораторный блок питания с регулируемым напряжением от 5 до 100В (0,2А) 40516.11.2016
109Лабораторный источник питания на микросхеме LM324 (0-30 В, 1 А) 34216.11.2016
110Малогабаритное универсальное зарядное устройство для аккумуляторов 37016.11.2016
111Маломощный источник питания (9В, 70мА) 25716.11.2016
112Маломощный конденсаторный выпрямитель с ШИМ стабилизатором 33316.11.2016
113Маломощный регулируемый двуполярный источник питания (LM317, LM337) 21916.11.2016
114Маломощный сетевой блок питания (9В) 35616.11.2016
115Маломощный сетевой источник питания - выпрямитель на 9В 23316.11.2016
116Миниатюрный импульсный блок питания 5...12 В 37916.11.2016
117Миниатюрный импульсный сетевой блок питания 5В 0,5А 34416.11.2016
118Миниатюрный сетевой блок питания (5В, 200мА) 19916.11.2016
119Мощный блок питания для усилителя НЧ (27В/3А) 31516.11.2016
120Мощный блок питания на напряжение 5-35В и ток 5A-30A и более (LM338, 741) 73916.11.2016
121Мощный импульсный блок питания для УНЧ (2х50В, 12В) 32916.11.2016
122Мощный источник питания на составных транзисторах 0-15В 20А (КТ947, КТ827) 55416.11.2016
123Мощный лабораторный источник питания 0-25В, 7А 51116.11.2016
124Мощный электронный сетевой трансформатор для магнитолы и радиостанции на 12В 34816.11.2016
125Обзор схем восстановления заряда у батареек 38216.11.2016
126Однополярный источник питания УНЧ (40В) 25216.11.2016
127Питание будильника 1,5В от сети 220В 36916.11.2016
128Питание микроконтролерных устройств от сети 220В 30916.11.2016
129Питание микроконтроллеров от сети 220В через трансформатор 24216.11.2016
130Питание микроконтроллеров от телефонной линии 26616.11.2016
131Питание низковольтной радиоаппаратуры от сети 25616.11.2016
132Поддержание аккумуляторов в рабочем состоянии811204.10.2002
133Подключение таймера к зарядному устройству аварийного аккумулятора 25716.11.2016
134Прецизионное зарядное устройство для аккумуляторов 35616.11.2016
135Прибор для измерения параметров аккумуляторов. 927310.06.2002
136Приставка-контроллер к зарядному устройству аккумулятора 12В 42016.11.2016
137Приставка-регулятор к зарядному устройству аккумулятора 44316.11.2016
138Простейшие пусковые устройства 12В для авто на основе ЛАТРа 53416.11.2016
139Простое зарядное устройство для автомобильного аккумулятора (ток 1,5А) 49216.11.2016
140Простое зарядное устройство для аккумуляторов (до 55Ач) 44116.11.2016
141Простое зарядное устройство для аккумуляторов и батарей 38316.11.2016
142Простое малогабаритное автоматическое зарядное устройство для пальчиковых аккумуляторов3263827.06.2006
143Простой блок питания 5В/0,5А (КТ807) 38816.11.2016
144Простой двуполярный источник питания (14-20В, 2А) 26416.11.2016
145Простой импульсный блок питания мощностью 15Вт 31616.11.2016
146Простой импульсный блок питания на ИМС 36716.11.2016
147Простой импульсный источник питания 5В 4А 34316.11.2016
148Пятивольтовый блок питания с ШИ стабилизатором 30016.11.2016
149Регулируемый блок питания на ОУ LM324 (0-30В, 2А) 48016.11.2016
150Регулируемый двуполярный источник питания из однополярного 31416.11.2016
151Регулируемый импульсный стабилизатор напряжения с ограничением по току (2-25В, 0-5А) 44516.11.2016
152Регулируемый источник питания на LM317T (1-37В 1,5А) 37116.11.2016
153Регулируемый источник питания на ток до 1 А (К142ЕН12А) 33916.11.2016
154Регулируемый стабилизатор тока 16В/7А (140УД1, КУ202) 36516.11.2016
155Регуляторы заряда аккумуляторов от солнечных батарей 32616.11.2016
156Самодельное пусковое устройство130215125.06.2017
157Самодельный лабораторный источник питания с регулировкой 0-20В 37516.11.2016
158Сетевая «Крона» 9В/25мА 35316.11.2016
159Симметричный динистор в бестрансформаторном блоке питания 35916.11.2016
160Солнечное зарядное устройство13235146716.04.2014
161Стабилизатор напряжения сети СПН-400 \"Рубин\"260428.06.2012
162Стабилизатор тока для зарядки батареи 6В (142ЕН5А) 31216.11.2016
163Стабилизированный блок питания 3-12В/0,25А (142ЕН12А) 32016.11.2016
164Стабилизированный источник питания с автоматической защитой от коротких замыканий 31216.11.2016
165Стабилизированный лабораторный источник питания (0-27В, 500мА) 30216.11.2016
166Схема автоматического зарядного устройства (на LM555) 37916.11.2016
167Схема автоматического зарядного устройства для сотовых телефонов 69416.11.2016
168Схема блока питания и зарядного устройства для iPod4218322.03.2012
169Схема блока питания с напряжением 12В и током 6А 36516.11.2016
170Схема высоковольтного преобразователя (вход 12В, вых - 700В) 32416.11.2016
171Схема зарядно-разрядного устройства с током 5А (КУ208, КТ315) 44716.11.2016
172Схема зарядного устройства для Li-Ion и Ni-Cd аккумуляторов 53916.11.2016
173Схема зарядного устройства для аккумулятора от GSM-телефона (LM317) 23616.11.2016
174Схема зарядного устройства для батарей 34916.11.2016
175Схема зарядного устройства с повышающим преобразователем 31516.11.2016
176Схема измерителя выходного сопротивления батарей 29616.11.2016
177Схема импульсного стабилизатора для зарядки телефона 32716.11.2016
178Схема источника питания 12В, с током в нагрузке до 10 А 45716.11.2016
179Схема контроллера заряда батарей 29016.11.2016
180Схема непрерывного подзаряда батарей 31916.11.2016
181Схема простого зарядного устройства на диодах 30616.11.2016
182Схема стабилизированного источника питания 40В, 1.2А 31716.11.2016
183Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713) 53416.11.2016
184Схема универсального лабораторного источника питания 36116.11.2016
185Схема устройства для подзаряда батарей 18716.11.2016
186Схемы бестрансформаторного сетевого питания микроконтроллеров 34716.11.2016
187Схемы бестрансформаторных зарядных устройств 33316.11.2016
188Схемы нетрадиционных источников питания для микроконтроллеров 34516.11.2016
189Схемы питания микроконтроллеров от разъёмов COM, USB, PS/2 (5-9В) 39716.11.2016
190Схемы питания микроконтроллеров от солнечных элементов 35916.11.2016
191Схемы подзарядки маломощных аккумуляторных батарей для питания МК 33616.11.2016
192Схемы простых выпрямителей для зарядки аккумуляторов 44916.11.2016
193Таймер-индикатор разрядки батареи 29316.11.2016
194Тиристорное зарядное устройство на КУ202Е 57016.11.2016
195Универсальное зарядное устройство для маломощных аккумуляторов 35816.11.2016
196Универсальный блок питания с несколькими напряжениями 33316.11.2016
197Устройство автоматической подзарядки аккумулятора1083630.10.2005
198Устройство для автоматической тренировки аккумуляторов 12В, 40-100Ач 51816.11.2016
199Устройство для заряда и формирования аккумуляторных батарей 6-12В, 85Ач 50016.11.2016
200Устройство для поддержания заряда батареи 6СТ-9 32016.11.2016
201Устройство для хранения никель-кадмиевых аккумуляторов 29116.11.2016
202Устройство зарядное автоматическое УЗ-А-12-4,51341570719.04.2006
203Устройство контроля заряда и разряда аккумулятора 12В 45716.11.2016
204Экономичный импульсный блок питания 2x25В 3,5А 40016.11.2016
205Экономичный источник питания с малой разницей входного и выходного напряжения 5В 1А 31916.11.2016
206Эксплуатация никелево-кадмиевых аккумуляторов (НКА) при повышенных разрядных токах616706.10.2002
207Эксплуатация никелево-кадмиевых аккумуляторов при повышенных разрядных токах 292210.06.2002
208Электронный стабилизатор тока для зарядки аккумуляторных батарей 51316.11.2016

Зарядное устройство импульсное для автомобильного аккумулятора своими руками: схема ЗУ для АКБ

Автор: Виктор

Разряд аккумуляторной батареи — это довольно распространенная проблема, с которой сталкиваются многие наши соотечественники. Для восстановления работоспособности АКБ ее необходимо зарядить, для этой цели в продаже можно найти множество видов зарядных приборов. Из каких элементов состоит зарядное устройство импульсное для автомобильного аккумулятора и как его соорудить своими руками — подробнее об этом читайте ниже.

Содержание

Открытьполное содержание

[ Скрыть]

Характеристика прибора

Приборы для зарядки аккумулятора могут быть трансформаторными либо импульсными. Первые сегодня практически неактуальны из-за их больших размеров и веса, а также недостатков, соответственно, востребованность импульсных ЗУ для АКБ только растет.

Устройство и принцип работы

Предназначение такого прибора заключается в восстановлении заряда батареи.

Устройство девайса следующее:

  • трансформаторный импульсный механизм;
  • выпрямительный узел;
  • стабилизатор;
  • устройства индикации заряда;
  • управляющий модуль, осуществляющий контроль за работой ЗУ.

ИЗУ для автомобильной АКБ от производителя BOSCH

Если вы сравните импульсное зарядное устройство с трансформаторным, то увидите, что все компоненты, которые входят в состав первого, значительно меньше по размерам и весу. Именно поэтому приборы такого типа получили популярность среди соотечественников, тем более, что их вполне можно соорудить в домашних условиях.

Если говорить о принципе действия, то непосредственно сам процесс заряда может осуществляться:

  • напряжением постоянным током;
  • напряжением с неизменными параметрами;
  • еще один способ — комбинированный.

Наиболее оптимальным, а также правильным с точки зрения теории является второй вариант, поскольку именно он позволяет полностью контролировать процесс заряда. В том случае, если вы планируете добиться максимального уровня заряда, в ходе процесса также следует учитывать и значение разряда аккумулятора. Метод постоянного тока — не самый лучший способ, поскольку в данном случае речь идет о быстром процессе заряда. При таком напряжении через пластины батареи проходит высокий ток, в результате чего есть вероятность разрушения пластин АКБ. А это, в свою очередь, приведет к ее неработоспособности, ведь восстановить пластины не получится (автор видео — канал deonich tex).

Что касается последнего способа — комбинированного, то он считается одним из самых щадящих для конструкции аккумулятора. В данном случае через батарею в первую очередь проходит постоянный ток, который впоследствии меняется на переменный, когда батарея будет практически заряжена. После этого ток постепенно снижается, его значение уменьшается почти до нуля, что способствует стабилизации напряжения в целом. По утверждению многих электриков, этот вариант дает возможность если не предотвратить, то как минимуму снизить вероятность выкипания раствора электролита в банках батареи. Соответственно, это способствует и предотвращению возможности выделения газов.

Особенности подбора оборудования

Есть несколько особенностей подбора девайса:

  1. Во-первых, большинство наших соотечественников при покупке рассчитывают на то, что зарядный прибор при необходимости сможет восстановить работоспособность полностью севшего аккумулятора. Несмотря на то, то импульсное зарядное устройство — это довольно технологичный прибор, не факт, что оно сможет выполнить эту функцию. Покупая девайс в магазине, обязательно нужно уточнить, сможет ли ЗУ справиться с задачей восстановления полностью разряженной батареи.
  2. Во-вторых, необходимо учитывать значение максимального тока, который будет проходит через аккумуляторную батарею во время зарядки. Здесь же необходимо брать во внимание и уровень напряжения, с которым будет осуществляться зарядка АКБ. Покупая импульсное зарядное устройство, желательно, чтобы прибор имел функцию автоматического отключения либо поддержки, она будет активироваться в том случае, когда АКБ зарядится (автор видеообзора импульсной зарядки — канал Oops of ZikValera).

Советы по эксплуатации

Используя зарядные приборы для аккумуляторов автомобилей, необходимо руководствоваться элементарными правилами эксплуатации.

Для начала нужно запомнить, что при использовании ЗУ важно соблюдать последовательность действий:

  1. Сначала АКБ извлекается из авто.
  2. Затем проверяется состояние батареи — внешний вид, корпус, при необходимости очищаются клеммы.
  3. Затем выкручиваются пробки банок батареи, если нужно, уровень электролита в банках восполняется путем добавления в систему дистиллированной воды.
  4. После этого к клеммам АКБ покдлючаются щупы зарядного прибора с соблюдением полярности.
  5. И только после этого ЗУ включается в бытовую сеть.

При выставлении настроек ЗУ нужно также учитывать такие моменты:

  1. Значение силы тока — этот параметр можно отрегулировать, чтобы сделать это, следует учесть, насколько АКБ разряжена. Если уровень разряда составляет всего 25%, то при включении прибора значение силы тока может увеличиться.
  2. Напряжение. В процессе заряда значение напряжения должно быть не выше 14.4 В, в противном случае это может отразиться на работе автоаккумулятора в дальнейшем.
  3. Время, на протяжении которого батарея должна заряжаться. Практически все современные ЗУ оснащаются дисплеями, а также световыми индикаторами, по которым можно определить степень заряда устройства. Если же индикаторы отсутствуют, то вычислить время зарядки можно с помощью значения тока. Если вы заметили, что на протяжении 2 часов сила тока остается на одном уровне, это может сказать о том, что АКБ полностью зарядилась.

Заряжать аккумулятор больше суток нельзя, поскольку это приведет к выкипанию раствора электролита в банках. А это, в свою очередь, может стать причиной замыкания на пластинах.

Инструкция по изготовлению импульсного ЗУ своими руками

Простая схема для изготовления импульсной зарядки

Сделать ЗУ для автоаккумуляторов можно в домашних условиях, рассмотрим процесс изготовления девайса со схемой IR2153. В этой схеме нет двух конденсаторных элементов, подключенных к средней точке, вместо них устанавливается электролит. По этой схеме можно изготовить девайс, который изначально рассчитан на невысокую мощность, но если вы хотите получить более мощное ЗУ, то можете немного изменить схему, добавив в нее мощные компоненты.

  1. Схема импульсного зарядного устройства подразумевает использование ключей 8N50, которые оснащаются защитным корпусом. Также вам потребуются и диодные мосты, их не обязательно покупать в магазине, можно взять со старого БП компьютера. Если у вас нет возможности достать такие диоды, то в принципе, мост можно сделать из выпрямительных диодных элементов, потребуется четыре штуки.
  2. Не менее важным этапом является обустройство цепи питания, для реализации вам понадобится резисторный элемент для гашения тока, наиболее оптимальным вариантом будет резистор на 18 кОм. За резисторным компонентом устанавливается выпрямитель, который монтируется на диоде. В данном случае питание от бытовой сети будет передаваться на плату, это нам подходит. На самом питании нужно будет установить электролит, а его также надо будет соединить с конденсаторным элементом — можно использовать керамическое устройство или пленочное. Конденсатор в обязательном порядке нужно добавить в схему, поскольку это позволит максимально сгладить возможные помехи в работе ЗУ.
  3. Трансформаторный узел можно взять из старого компьютерного БП, важно убедиться в том, что он рабочий. Устройства, которые ставятся в блоки питания, оптимально подходят для изготовления ЗУ, так как они выдают хороший ток на выходе. Диодные элементы трансформатора должны быть в любом случае импульсными, так как обычные детали будут не в состоянии работать в условиях высокой частоты.
  4. Что касается фильтрующего элемента, то его использование не является обязательным, но все же добавить фильтр можно. Также в схему можно добавить термистор на 5 Ом и установить его перед фильтром, это позволит добиться максимального снижения помех. К слову, термистор также можно демонтировать из компьютерного БП.
  5. Не забудьте установить и электролитический конденсаторный компонент, при его выборе необходимо руководствоваться соотношением 1 Вт — 1 мкФ (автор видео о пошаговом изготовлении ЗУ — канал Паяльник TV).

На первый взгляд эта схема может показаться достаточно сложной, но в целом в ее реализации нет ничего сложного. Если вы все сделаете правильно и учтете все моменты и рекомендации, то процесс изготовления не вызовет сложностей, даже если вы никогда ранее не сталкивались с такой задачей.

Фотогалерея «Схемы для изготовления ЗУ»

Ниже представлены более сложные схемы для изготовления зарядных устройств. Если вы владеете навыками, то можете использовать эти схемы.

1. Более сложная схема для импульсного ЗУ
2. Схема мощного импульсного прибора
 Загрузка ...

Видео «Простая инструкция по изготовлению импульсного ЗУ своими руками»

В ролике ниже представлена простая и наглядная инструкция по изготовлению импульсного ЗУ в домашних условиях с описанием схемы и всех основных рабочих моментов (автор видео — канал Blaze Electronics).

​Схема импульсного зарядного устройства: как разобраться?

В настоящее время в среде людей, увлекающихся радиоэлектроникой, популярны импульсные зарядники – устройства, в которых ток пульсирующий. Схемы таких устройств не простые и собрать их довольно трудоемко. Хотя следует отметить, что для специалиста механизм действия достаточно прост и при желании схемы можно собрать без каких-либо сложностей.

Схема импульсного автоматического зарядного устройства по классическому варианту – это первое, что следует изучить начинающему радиомонтажнику. Классическая схема имеет регулятор на тиристорах. Недостаток использования тиристоров это большой объем и, конечно, по весу такое устройство тоже великовато.

Принцип работы классического варианта автоматического зарядного устройства следующий: подключение аккумулятора, выставление нужного зарядного тока (в соответствии с рекомендациями 10 процентов от полной емкости батареи). Процесс зарядки в контроле не нуждается. После того, как процесс завершится, индикатор на заряднике должен изменить цвет.

Такое АЗУ собирается на основе микросхемы UC3845, очень демократичной по цене. Схема имеет стандартное включение. После включения микросхемы начинает работать мощный полевой транзистор, который получает нагрузку от импульсного трансформатора.

Комплектующие для построения данной схемы можно добыть легко и просто. Если собирать схему самостоятельно, то очевидно, что новичку и дилетанту собрать ее будет довольно сложно. А тот, кто является практикующим радиолюбителем, наверняка имеет в кладовой старые блоки питания от компьютеров. Радиодетали для данной схемы можно снять с этих блоков. там же добывают и трансформатор, который все же нужно будет перемотать. Поскольку устройство импульсное, то достаточно пары десятков витков, что по времени займет не более часа.

Можно пойти другим путем – переоборудовать готовое зарядное устройство, которое сломано или не устраивает по техническим параметрам. Тогда получится очень хорошая модель, где надежность не потеряется, а схема существенно упростится.

Описание схем ИЗУ для автомобильных аккумуляторов
Длительная эксплуатация аккумуляторной батареи с нарушением правил зарядки, а так же попадание аккумулятора в такие условия, когда он подвергается быстрой разрядке, чревато быстрым износом. Функционирование в таких режимах вызывает возникновение крупнокристаллических труднорастворимых кристаллов-дендридов, приводящих к разрушению электродов, возникают межэлектродные замыкания и коробление пластин. Если начинается процесс ускорения саморазряда, то это вызывает снижение рабочей емкости в батареи.
Кристаллизация вызывает повышение внутреннего сопротивления, которое вызванное ведет к понижению напряжения даже при небольших нагрузках. Если же заряд повышать принудительно, то может начаться кипение электролита.

Итак, в случае, если принудительно повышается напряжение зарядов, то во время проведения процедуры восстановления батарей может случиться закипание электролита, вследствие чего температура в элементах повысится, усилится газообразование, причем возможен даже механический разрыв. Следовательно, аккумулятор восстановлен быть не может в данной ситуации.

Что в таких случаях делать? Если осуществлять регенерацию пластин при помощи пульсирующего тока, то есть возможность значительно улучшить технические характеристики батареи. Дело в том под воздействием пульсирующего тока внутреннее сопротивление восстанавливается и входит в рабочее состояние.

Схема импульсного зарядного устройства для автомобильного аккумулятора предусматривает возможность воостановления батарей любого типа. Возможно восстановление и заряд NiCd аккумуляторов, свинцовых аккумуляторов и даже аккумуляторных устройств для мощных машин. Благоприятная динамика процесса восстановления даже аккумуляторов в запущенном состоянии обусловлена особенностяями электронной схемы.

Автомобильное импульсное зарядное устройство, благодаря пульсации процесса зарядки и восстановления дает возможность эксплуатировать элементы батарей еще длительное время. Причем, эксплуатационные характеристики остаются высокими.

Итак, как устроено импульсное пуско-зарядное устройство? Схема включает в себя генератор, который оснащен аналоговым таймером. Питание подается через сетевой блок питания. Следует отметить, что использование интегрального таймера дает возможность добиться стабильности частоты и минимизации энергопотребления.

Интервалы времени между импульсами находятся в зависимости от емкости конденсаторов. Установка диодов на схеме позволяет получать непроизвольный разряд. Когда схема начинает работать, то напряжение на первом конденсаторе нулевое. Процесс зарядки начинается и напряжение нарастает. При достижении требуемого уровня напряжения на выходе, происходит автоматическое отключение зарядки. На выходе устанавливается нулевое напряжение.

Зарядное устройство для автомобильного аккумулятора своими руками

Тема автомобильных зарядных устройств интересна очень многим. Из статьи вы узнаете, как переделать компьютерный блок питания в полноценное зарядное устройство для автомобильных аккумуляторов. Оно будет представлять собой импульсное зарядное устройство для аккумуляторов с емкостью до 120 А·ч, то есть зарядка будет довольно мощной.

Собирать практически ничего не нужно – просто переделывается блок питания. К нему добавится всего один компонент.

Компьютерный блок питания имеет несколько выходных напряжений. Основные силовые шины имеют напряжение 3,3, 5 и 12 В. Таким образом, для работы устройства понадобится 12-вольтовая шина (желтый провод).

Для зарядки автомобильных аккумуляторов напряжение на выходе должно быть в районе 14,5-15 В, следовательно, 12 В от компьютерного блока питания явно маловато. Поэтому первым делом необходимо поднять напряжение на 12-вольтовой шине до уровня 14,5-15 В.

Затем, нужно собрать регулируемый стабилизатор тока или ограничитель, чтобы была возможность выставить необходимый ток заряда.

Зарядник, можно сказать, получится автоматическим. Аккумулятор будет заряжаться до заданного напряжения стабильным током. По мере заряда сила тока будет падать, а в самом конце процесса сравняется с нулем.

Приступая к изготовлению устройства необходимо найти подходящий блок питания. Для этих целей подойдут блоки, в которых стоит ШИМ-контроллер TL494 либо его полноценный аналог K7500.

Когда нужный блок питания найден, необходимо его проверить. Для запуска блока нужно соединить зеленый провод с любым из черных проводов.

Если блок запустился, нужно проверить напряжение на всех шинах. Если все в порядке, то нужно извлечь плату из жестяного корпуса.

После извлечения платы, необходимо удалить все провода, кроме двух черных, двух зеленого и идет для запуска блока. Остальные провода рекомендуется отпаять мощным паяльником, к примеру, на 100 Вт.

На этом этапе потребуется все ваше внимание, поскольку это самый важный момент во всей переделке. Нужно найти первый вывод микросхемы (в примере стоит микросхема 7500), и отыскать первый резистор, который применен от этого вывода к шине 12 В.

На первом выводе расположено много резисторов, но найти нужный — не составит труда, если прозвонить все мультиметром.

После нахождения резистора (в примере он на 27 кОм), необходимо отпаять только один вывод. Чтобы в дальнейшем не запутаться, резистор будет называться Rx.

Теперь необходимо найти переменный резистор, скажем, на 10 кОм. Его мощность не важна. Нужно подключить 2 провода длиной порядка 10 см каждый таким образом:

Один из проводов необходимо соединить с отпаянным выводом резистора Rx, а второй припаять к плате в том месте, откуда был выпаян вывод резистора Rx. Благодаря этому регулируемому резистору можно будет выставлять необходимое выходное напряжение.

Стабилизатор или ограничитель тока заряда очень важное дополнение, которое должно иметься в каждом зарядном устройстве. Этот узел изготавливается на базе операционного усилителя. Тут подойдут практически любые «операционники». В примере задействован бюджетный LM358. В корпусе этой микросхемы два элемента, но необходим только один из них.

Пару слов о работе ограничителя тока. В этой схеме операционный усилитель применяется в качестве компаратора, который сравнивает напряжение на резисторе с низким сопротивлением с опорным напряжением. Последнее задается при помощи стабилитрона. А регулируемый резистор теперь меняет это напряжение.

При изменении величины напряжения операционный усилитель постарается сгладить напряжение на входах и сделает это путем уменьшения или увеличения выходного напряжения. Тем самым «операционник» будет управлять полевым транзистором. Последний регулирует выходную нагрузку.

Полевой транзистор нужен мощный, поскольку через него будет проходить весь ток заряда. В примере используется IRFZ44, хотя можно использовать любой другой соответствующих параметров.

Транзистор обязательно устанавливается на теплоотвод, ведь при больших токах он будет хорошенько нагреваться. В этом примере транзистор просто прикреплен к корпусу блока питания.

Печатная плата была разведена на скорую руку, но получилось довольно неплохо.

Теперь остается соединить все по картинке и приступить к монтажу.

Напряжение выставлено в районе 14,5 В. Регулятор напряжения можно не выводить наружу. Для управления на передней панели имеется только регулятор тока заряда, да и вольтметр тоже не нужен, поскольку амперметр покажет все, что надо видеть при зарядке.

Амперметр можно взять советский аналоговый или цифровой.

Также на переднюю панель был выведен тумблер для запуска устройства и выходные клеммы. Теперь можно считать проект завершенным.

Получилось несложное в изготовлении и недорогое зарядное устройство, которое вы можете смело повторить сами.

Автор: АКА КАСЬЯН.

Прикрепленные файлы: СКАЧАТЬ.


 

Pulse Charger для восстановления усталых свинцово-кислотных аккумуляторов

Описание

Если у вас есть мотоцикл, дом на колесах, фургон, газонокосилка, круиз на день или, может быть, старинный автомобиль, вам, должно быть, в какой-то момент пришлось списать свинцово-кислотный аккумулятор. Когда аккумулятор заряжается неправильно или саморазряд, как это происходит во время простоя, кристаллы сульфата накапливаются на пластинах аккумулятора.

Сульфат, не позволяющий полностью зарядить аккумулятор, и поэтому он не может полностью зарядиться.При попытке зарядить аккумулятор в этом состоянии он только нагревается и теряет воду, плотность электролита не увеличивается до нормального состояния «полного заряда». Единственное, что вы делаете - полностью убиваете батарею. Если напряжение покоя батареи составляет не менее 1,8 В / элемент, и ни одна из ячеек не закорочена, можно выполнить десульфатацию ее пластин. Эта схема является дополнением и частью модификации обычного зарядного устройства и решает проблему сульфата.

ВНИМАНИЕ: Перед тем, как начать подобный проект, помните: напряжение в сети опасно, поэтому, если вы не уверены на 100% в том, что делаете, посоветуйтесь с другом, у которого есть навыки, или не делайте этого вообще!

Проект: возьмите старое зарядное устройство, большое или маленькое, на ваш выбор, в зависимости от размера батарей, с которыми вы обычно работаете (чем больше, тем лучше).Есть несколько уловок для повышения производительности, если вам это нужно. Начните с того, что вырвите все, кроме трансформатора и выпрямителя. Некоторые старые зарядные устройства оснащены ребристыми выпрямителями, которые имеют высокое падение напряжения и требуют замены. Замените на прочный мостовой выпрямитель, способный выдерживать большие токи. Вся проводка на вторичной обмотке должна быть короткой и толстой. Выпрямитель должен быть прикручен к шасси болтами, чтобы он не охладился. Если в зарядном устройстве есть переключатель высокого / низкого уровня, это является плюсом, в противном случае вы можете в некоторых случаях добавить несколько витков провода на вторичную обмотку.Схема; 14-ступенчатый счетчик пульсаций и генератор IC 4060 генерируют импульс, который является тактовым импульсом схемы. Импульс подается на таймер 555, который определяет длину активного выхода. С помощью переключателя вы можете выбрать длинный или короткий импульсный выход. Выход таймера 555 запускает через транзистор драйвер симистора оптоизолятора с переходом через нуль MOC 3041. Это обеспечивает плавный пуск трансформатора зарядного устройства через симистор и демпферную цепь. Для схемы необходим небольшой блок питания, состоящий из Т1 трансформатора 15В 0.Вторичная обмотка 1А, мостовой выпрямитель, регулятор и две крышки. Поскольку этот проект включает зарядное устройство (X), результат может отличаться по производительности от одного случая к другому. Однако это не означает, что ваш проект не работает, но эффективность может варьироваться. Некоторые отмечают, что демпфирующий колпачок относится к высоковольтному типу переменного тока (X), а резисторы на стороне сети имеют тип не менее 0,5 Вт. Используйте симистор, который может принимать 400 В + и 10 А +, я использую BTA 25.600, но в большинстве случаев это перебор. Нет печатной платы, извините!

Как это работает

Ну краткая версия.Цель состоит в том, чтобы получить достаточно высокое напряжение элемента, чтобы сульфат растворился без кипячения или плавления батареи. Это достигается за счет применения более высокого напряжения на более короткие периоды времени и за счет того, что батарея некоторое время отдыхает. Импульсы в коротком диапазоне составляют примерно 0,5 с вкл. / 3 с выкл., А длинные импульсы - 1,4 с вкл. / 2 с выкл. Это время может варьироваться в зависимости от допусков компонентов. Начните с длинного импульса и, если вы обнаружите «закипание» (больше, чем при нормальной зарядке) в электролите, переключитесь на короткие импульсы. Не оставляйте процесс без присмотра, по крайней мере, пока вы не узнаете, какова ваша конкретная версия этого проекта.Я построил первую версию этой схемы около 10 лет назад и экспериментировал с ней, но уверен, что кто-то сможет улучшить ее и дальше.

Удачи! Анте

Изучены 2 простые схемы десульфатора батареи

В этой статье мы исследуем 2 простые, но мощные схемы десульфатора батареи, которые можно использовать для эффективного удаления и предотвращения десульфатации в свинцово-кислотных батареях. Первый метод использует импульсы ШИМ, а второй метод реализует обычный мостовой выпрямитель для того же.

Сульфатирование в свинцово-кислотных аккумуляторах является довольно распространенным явлением и представляет собой большую проблему, поскольку этот процесс полностью снижает эффективность аккумулятора. Считается, что зарядка свинцово-кислотной батареи с помощью метода ШИМ инициирует десульфатацию, помогая восстановить эффективность батареи до некоторых уровней.

Что такое сульфатирование в свинцово-кислотных аккумуляторах

Сульфатирование - это процесс, при котором серная кислота, присутствующая в свинцово-кислотных аккумуляторах, со временем реагирует с пластинами с образованием слоев белого порошка, подобного веществу, над пластинами.

Этот слой отложений серьезно ухудшает химические процессы внутри батареи во время зарядки или разрядки, делая батарею неэффективной с ее способностью передавать энергию.

Обычно это происходит, когда аккумулятор не используется в течение длительного времени, а процессы зарядки и разрядки выполняются не очень часто.

К сожалению, не существует эффективного способа решения этой проблемы, однако было исследовано, что застрявшие отложения серы на поврежденной батарее могут быть в некоторой степени разрушены путем воздействия на батарею сильноточных импульсов во время ее зарядки.

Эти сильноточные зарядные импульсы должны быть хорошо оптимизированы с помощью некоторой схемы управления и должны тщательно диагностироваться при реализации процесса.

1) Использование ШИМ

Реализация метода через схему с ШИМ-управлением, вероятно, лучший способ сделать это.

Вот отрывок из википедии, в котором говорится:

«Десульфатация достигается за счет сильноточных импульсов, возникающих между выводами батареи. Этот метод, также называемый импульсным кондиционированием, разрушает кристаллы сульфата, которые образуются на пластинах батареи. .Лучше всего работают короткие сильноточные импульсы. Электронные схемы используются для регулирования импульсов различной длительности и частоты сильноточных импульсов. Их также можно использовать для автоматизации процесса, поскольку для полной десульфатации батареи требуется много времени ».

https://en.wikipedia.org/wiki/Talk%3ABattery_regenerator

Схема батареи с ШИМ Обсуждаемое здесь зарядное устройство можно рассматривать как лучшую конструкцию для выполнения вышеупомянутого процесса десульфатации

Как работает схема

IC 555 конфигурируется и используется в стандартном режиме управления ШИМ.

Выходной сигнал ИС соответствующим образом усиливается через пару транзисторов, чтобы он мог подавать упомянутые сильноточные импульсы на батарею, которую необходимо десульфатировать.

ШИМ-регулирование может быть установлено на низкий коэффициент «отметки» для реализации процесса десульфатации.

И наоборот, если схема предназначена для использования для зарядки обычных аккумуляторов, ШИМ-регулятор может быть настроен для генерации импульсов с равными соотношениями метка / пространство или согласно желаемым спецификациям.

Управление ШИМ будет зависеть исключительно от личных предпочтений человека, поэтому должно выполняться правильно в соответствии с инструкциями производителя батарей.

Несоблюдение соответствующих процедур может привести к несчастному случаю со смертельным исходом из-за возможного взрыва аккумулятора.

Уровень входного тока, равный уровню AH батареи, может быть выбран изначально и постепенно уменьшаться, если обнаруживается положительный ответ от батареи.

2) Десульфатирование с помощью схемы трансформатора и мостового выпрямителя

Чтобы сделать этот простейший, но эффективный десульфатор аккумуляторной батареи со схемой зарядного устройства, вам потребуется только трансформатор подходящего номинала и мостовой выпрямитель.Конструкция не только обессеривает аккумулятор, но и предотвращает возникновение этой проблемы в новых аккумуляторах и одновременно заряжает их до желаемого уровня.

В начале этого поста мы узнали, как десульфатировать, используя концепцию ШИМ, однако более глубокое исследование показывает, что процесс десульфатации батареи не обязательно требует точной схемы ШИМ, просто источник питания должен колебаться с определенной заданной скоростью, и этого достаточно, чтобы запустить процесс десульфатации (в большинстве случаев) ...при условии, что батарея все еще находится в диапазоне отверждения и не вышла из состояния восстановления.

Итак, что вам нужно, чтобы сделать эту сверхпростую схему десульфатора батареи, которая также будет заряжать данную батарею и, кроме того, обладать способностью предотвращать развитие проблемы сульфатирования в новых батареях?

Трансформатор подходящего номинала, мостовой выпрямитель и амперметр - все, что нужно для этой цели.

Номинальное напряжение трансформатора должно быть примерно на 25% выше номинального напряжения батареи, то есть для батареи 12 В на клеммах батареи может подаваться напряжение от 15 до 16 В.

Ток может быть приблизительно равен номиналу Ач батареи для тех, которые необходимо восстановить и которые сильно сульфатированы, для хороших аккумуляторов ток зарядки может составлять примерно 1/10 или 2/10 их номинала Ач. Мостовой выпрямитель должен быть рассчитан в соответствии с указанными или рассчитанными уровнями заряда.

Схема десульфатора с использованием мостового выпрямителя

Принцип работы мостового выпрямителя в качестве десульфатора

На приведенной выше диаграмме показаны минимальные требования к предлагаемому десульфатору батареи со схемой зарядного устройства.

Мы можем увидеть наиболее стандартную или, скорее, грубую настройку источника питания переменного тока в постоянный, где трансформатор понижает сетевое напряжение до 15 В переменного тока для указанной батареи на 12 В.

Прежде чем достичь клемм аккумулятора, 15 В переменного тока проходит процесс выпрямления через подключенный мостовой выпрямительный модуль и преобразуется в двухполупериодный 15 В постоянного тока.

При питании от сети 220 В частота перед мостом будет 50 Гц (стандартная спецификация сети), а после выпрямления предполагается, что она станет вдвое больше, чем при 100 Гц.Для входа 110 В переменного тока это будет около 120 Гц.

Это происходит из-за того, что мостовая сеть инвертирует нижние полупериоды пониженного переменного тока и объединяет их с верхними полупериодами, чтобы в итоге получить пульсирующий постоянный ток 100 или 120 Гц.

Именно этот пульсирующий постоянный ток становится ответственным за встряхивание или сбивание сульфатных отложений на внутренних пластинах конкретной батареи.

Для хорошей батареи это импульсное зарядное устройство с частотой 100 Гц гарантирует, что сульфатирование прекращается в первую очередь, и, таким образом, помогает удерживать пластины относительно свободными от этой проблемы.

Вы также можете увидеть амперметр, подключенный последовательно к входу питания, он обеспечивает прямую индикацию потребления тока батареей и обеспечивает «живое обновление» процедуры зарядки, а также то, может ли происходить что-либо положительное.

Для хороших аккумуляторов это предоставит информацию от начала до конца, касающуюся процесса зарядки, то есть первоначально стрелка измерителя будет указывать указанную скорость зарядки аккумулятора, и можно ожидать, что постепенно она опустится до нулевой отметки, и это когда необходимо отключить зарядное устройство.

Можно использовать более сложный подход для включения автоматического отключения, когда батарея полностью заряжена, используя схему автоматического отключения полного заряда батареи на основе операционных усилителей (вторая диаграмма)

Импульсный режим, линейная и импульсная зарядка Т

Аннотация: Существует три метода зарядки Li + аккумуляторов: импульсный, линейный и импульсный. У каждого метода есть свои преимущества и недостатки. Зарядка в режиме переключения сводит к минимуму рассеивание мощности в широком диапазоне напряжений адаптера переменного тока, но занимает больше места на плате и усложняет линейную и импульсную зарядку.Линейные зарядные устройства имеют небольшие размеры и отлично подходят для шумочувствительного оборудования, но рассеиваемая мощность высока. Импульсные зарядные устройства небольшие и эффективные, но для них требуется адаптер переменного тока с ограничением тока. Выберите метод оплаты, исходя из приоритета стоимости, площади и эффективности.

Зарядка аккумуляторов Li + в мобильных телефонах и КПК - это баланс. С одной стороны, большой ток необходим для быстрой замены энергии, расходуемой из батареи при передаче голоса или данных. С другой стороны, зарядное устройство должно быть маленьким, чтобы поместиться внутри постоянно уменьшающегося форм-фактора мобильного телефона и коммуникативного КПК.Знание типов доступных зарядных устройств и компромиссов между ними позволяет разработчику выбрать правильное зарядное устройство для конкретного приложения.

Требования к зарядным устройствам Li +

Зарядное устройство Li + аккумулятора должно ограничивать зарядный ток и максимальное напряжение аккумулятора. Разработчики должны проконсультироваться с производителем батареи, чтобы определить, что требуется для безопасной зарядки конкретной батареи. Другие функции часто добавляются для увеличения срока службы батарей или работы зарядного устройства.К ним относятся снижение зарядного тока для чрезмерно разряженных элементов, обнаружение неисправных элементов, мониторинг напряжения аккумулятора и / или измерение уровня топлива, ограничение входного тока, выключение зарядного устройства после завершения заряда, автоматический перезапуск зарядки после частичного разряда, индикация состояния заряда и управление включением / отключением внешнего зарядного устройства.

Эти функции могут быть реализованы в самом зарядном устройстве, в ASIC или дискретной схеме, или, возможно, в программном обеспечении микроконтроллера.Разработчики схем решают, какие функции включить и как их реализовать, в зависимости от конкретного приложения и приемлемого уровня стоимости или сложности.

Типы зарядных устройств Li +

Зарядные устройства Li + бывают трех типов: импульсные, линейные и импульсные. Основное различие между этими топологиями заключается в размере и соотношении стоимости и производительности, которые они предлагают. Зарядные устройства

с импульсным режимом обычно больше и сложнее, и для них требуется большой пассивный выходной LC-фильтр; дополнительное пространство на плате повышает эффективность.

Линейные и импульсные зарядные устройства занимают мало места на плате и требуют минимум внешних компонентов. Хотя линейному зарядному устройству может не потребоваться много места на плате для размещения ИС и ее внешних компонентов, ему может потребоваться дополнительная площадь на плате для рассеивания тепла, выделяемого проходным транзистором зарядного устройства. Импульсные зарядные устройства не представляют этой проблемы. Однако для них требуется адаптер переменного тока с ограничением по току, который обычно стоит дороже.

Импульсные зарядные устройства

На рисунке 1 показана схема типичного импульсного зарядного устройства Li +.Он использует контроллер зарядного устройства батареи MAX1737 Li + с двумя n-канальными MOSFET для понижения напряжения адаптера переменного тока до напряжения батареи. Рассеиваемая мощность этой схемы остается ниже примерно 1 Вт во всем диапазоне напряжения батареи и в широком диапазоне напряжений адаптера переменного тока. Эту схему можно легко масштабировать, чтобы можно было заряжать до четырех последовательных ячеек токами до 4 А.


Рис. 1. Зарядное устройство MAX1737 Switch Mode Li +.

Импульсные зарядные устройства имеют стабильно низкую рассеиваемую мощность при больших колебаниях входного напряжения и напряжения батареи, что является несомненным преимуществом перед линейными зарядными устройствами.Зарядные устройства с импульсным режимом также имеют преимущество перед импульсными зарядными устройствами: они хорошо работают в широком диапазоне входного напряжения, что позволяет использовать меньший и более дешевый сетевой адаптер переменного тока, чем при использовании импульсного зарядного устройства. Основными недостатками зарядного устройства такого типа являются его размер и сложность. Контроллер вместе с внешними переключателями и LC-фильтром занимает больше места на плате, чем другие типы зарядных устройств. К другим недостаткам относятся электромагнитные помехи и электрические помехи, вызванные переключающим действием зарядного устройства, и излучение, вызванное индуктором выходного фильтра.Фиксированная частота переключения контроллера, однако, позволяет легко фильтровать электрические шумы, но следует соблюдать осторожность при компоновке схемы и выборе компонентов, чтобы предотвратить проблемы с помехами.

Схема зарядного устройства, показанная на Рисунке 1, включает множество других функций, которые увеличивают как срок службы батареи, так и работу системы. Например, контроллер схемы зарядного устройства позволяет установить ограничение на ток, протекающий в цепи. Когда этот ток достигает предела, контроллер автоматически снижает ток, заряжающий аккумулятор, ограничивая ток, который может течь на вход схемы.Поскольку зарядное устройство ограничивает входной ток, для питания цепи можно использовать адаптер переменного тока меньшего размера и, как правило, более дешевый.

Зарядное устройство включает в себя конечный автомат, который выключает зарядное устройство после завершения зарядки и автоматически перезапускает зарядку, когда часть заряда слилась с аккумулятора. Функции безопасности включают бережную предварительную зарядку чрезмерно разряженных аккумуляторов при пониженном токе и возможность обнаружения неисправных аккумуляторов. Кроме того, индикаторы заряда и состояния могут напрямую управлять светодиодами или связываться с микроконтроллером.

Линейные зарядные устройства

Один из способов минимизировать размер и сложность зарядного устройства - использовать линейное зарядное устройство. В линейном зарядном устройстве используется проходной транзистор (обычно MOSFET, но иногда и биполярный транзистор) для понижения напряжения адаптера переменного тока до напряжения батареи. Количество внешних компонентов намного меньше: для линейных зарядных устройств требуются входные и выходные байпасные конденсаторы, а иногда и внешний проходной транзистор, а также резисторы для установки ограничений по напряжению и току.

Основная проблема линейного зарядного устройства - это рассеивание мощности.Зарядное устройство просто понижает напряжение адаптера переменного тока до напряжения аккумулятора. Рассеиваемая мощность проходного элемента равна напряжению адаптера минус напряжение аккумулятора, умноженное на ток зарядки. В случае зарядного устройства 1 А, регулируемого напряжения адаптера переменного тока 5 В ± 10% и напряжения батареи, которое варьируется от 4,2 В до 2,5 В, рассеиваемая мощность может составлять от 0,3 Вт до 3,0 Вт.

На рисунке 2 показано типичное линейное зарядное устройство Li +. В этой схеме используется MAX1898 и внешний полевой МОП-транзистор с p-каналом для снижения напряжения адаптера переменного тока до напряжения батареи.Этот тип зарядного устройства намного проще, чем тип переключателя, главным образом потому, что пассивный LC-фильтр не требуется. Он рассеивает наибольшую мощность, когда напряжение батареи минимально, поскольку разница между фиксированным входным напряжением и напряжением батареи наибольшая в этом состоянии. MAX1898 включает в себя функцию (называемую состоянием предварительной квалификации ), которая снижает ток зарядки для любого напряжения батареи менее 2,5 В. Поэтому в худшем случае рассеяние мощности происходит, когда уровень заряда батареи чуть выше номинала 2.Порог предварительной квалификации 5 В и максимальное входное напряжение. Для входа 5 В ± 10% максимальное входное напряжение составляет 5,5 В. С учетом допуска минимальное напряжение предварительной квалификации MAX1898 составляет 2,375 В. Таким образом, в худшем случае рассеиваемая мощность проходного транзистора составляет 3,125 Вт на ампер зарядного тока. При больших токах зарядки (около 1 А) из-за большого рассеивания мощности маленький мобильный телефон или КПК может стать чрезмерно горячим, что может снизить его производительность. К сожалению, уменьшение зарядного тока для устранения проблем рассеивания мощности увеличивает время зарядки.Выбор между дополнительным нагревом и временем дополнительной зарядки может быть затруднен в зависимости от области применения.


Рис. 2. Линейное зарядное устройство MAX1898 Li +.

Даже с учетом проблемы рассеивания мощности, связанной с линейной зарядкой, это все равно может быть лучшим выбором для беспроводных устройств. Поскольку нет переключающего действия и не требуются индукторы, линейные зарядные устройства имеют более низкие кондуктивные и излучаемые эмиссии, чем другие типы зарядных устройств. Благодаря такому снижению шума линейное зарядное устройство может стать подходящим решением для чувствительных к шуму беспроводных устройств.

MAX1898 включает в себя: индикатор зарядки, который может напрямую управлять светодиодом или микроконтроллером, схему пониженного напряжения аккумулятора, которая снижает ток зарядки для чрезмерно разряженных аккумуляторов, таймер для выключения зарядного устройства после завершения зарядки и регулируемый порог перезапуска до автоматически возобновляет зарядку, если аккумулятор разряжен. Вывод ISET устанавливает зарядный ток и показывает его уровень, пока зарядное устройство регулирует напряжение. Напряжение на выводе ISET можно контролировать с помощью АЦП или компаратора, чтобы определить, когда ток зарядки аккумулятора упал до достаточно низкого уровня; либо этот уровень, либо встроенный таймер можно использовать для прекращения зарядки.Контроллер также включает в себя выходной контакт, который указывает состояние зарядки (/ CHG \), и комбинированный входной и выходной контакт (EN / OK), который указывает на наличие входного напряжения и включает зарядное устройство.

Импульсные зарядные устройства

Третий тип зарядного устройства Li +, импульсное зарядное устройство, обладает некоторыми преимуществами как импульсных, так и линейных зарядных устройств. Подобно импульсному зарядному устройству, импульсное зарядное устройство работает эффективно. Когда напряжение заряжаемой батареи низкое, проходной транзистор остается включенным и проводит входной ток источника непосредственно к батарее.Когда напряжение батареи достигает напряжения стабилизации батареи, зарядное устройство подает импульс входного тока для достижения желаемого зарядного тока, таким образом регулируя напряжение батареи на желаемом пределе напряжения. Потому что транзистор не работает в своей линейной области во время этой части цикла заряда, а действует как переключатель, и рассеиваемая мощность намного ниже, чем у линейного зарядного устройства. Поскольку импульсному зарядному устройству не требуется выходной LC-фильтр, оно меньше, чем импульсное зарядное устройство.

На рисунке 3 показано импульсное зарядное устройство MAX1736 Li +. Он не уступает линейному зарядному устройству по простоте и небольшому количеству внешних компонентов. Благодаря более низкому рассеянию мощности компромисс между временем зарядки и рассеиваемой мощностью не следует рассматривать как линейное зарядное устройство.


Рисунок 3. Импульсное зарядное устройство Li +.

Однако к импульсному зарядному устройству предъявляются особые требования. Во-первых, источник входного напряжения, который питает зарядное устройство, должен быть ограничен по току.Текущий предел должен быть достаточно точным; настенные кубы с таким уровнем точности доступны не так повсеместно, как кубики без точного ограничения тока. К тому же они дороже. Однако в некоторых случаях ограничение тока адаптера переменного тока указывается достаточно точно, чтобы гарантировать, что неисправность в устройстве, которое он питает, не создаст угрозы безопасности. Если по той или иной причине требуется точное ограничение входного тока, то при его использовании для зарядки не требуется никаких дополнительных затрат.

MAX1736 автоматически заряжает аккумулятор при низком токе 6 мА, когда напряжение аккумулятора ниже 2,5 В, чтобы предотвратить его повреждение в чрезмерно разряженном состоянии. Однако контроллер не прекращает зарядку автоматически. В большинстве случаев он прекращает зарядку после того, как зарядный ток упадет ниже некоторого порогового значения, обычно 10% от предельного зарядного тока. Чтобы установить этот режим прекращения заряда, вывод GATE на MAX1736 используется для непосредственного управления входом микроконтроллера.Измеряя рабочий цикл напряжения на выводе GATE, микропроцессор определяет средний ток. В случае 10%, когда рабочий цикл на выводе GATE упадет ниже 10%, микроконтроллер завершит зарядку. Микроконтроллер также может отключить MAX1736, управляя контактом EN. Когда входной источник отсутствует или на контакте EN низкий уровень заряда батареи уменьшается до 2 мкА, чтобы зарядное устройство не разряжало батарею после завершения зарядки.

Заключение

Зарядные устройства импульсного режима рассеивают мало энергии в широком диапазоне входного и зарядного напряжения и тока, но имеют большую стоимость и сложность, чем другие типы.Линейные зарядные устройства меньше и менее сложны, чем устройства, работающие в режиме переключения, но в большинстве случаев они рассеивают больше энергии. Импульсные зарядные устройства рассеивают значительно меньше энергии и занимают небольшую площадь на плате, но требуют более дорогих адаптеров переменного тока, которые ограничивают потребляемый от них ток. Лучший выбор появляется только после взвешивания того, какие из этих различных факторов являются наиболее важными для конкретного дизайна.

Аналогичная версия этой статьи появилась в ноябрьском номере журнала Wireless Design and Development за ноябрь 2001 года.

(PDF) Конструкция импульсного зарядного устройства с регулируемым напряжением для улучшения реакции зарядки литий-ионных аккумуляторов

CHEN: КОНСТРУКЦИЯ DVVPC ДЛЯ УЛУЧШЕНИЯ ОТЗЫВОВ НА ЗАРЯДКУ литий-ионных аккумуляторов 487

[5] П. «Быстрая зарядка аккумулятора VRLA при управлении стрессом

», IEEE Trans. Ind. Electron., Vol. 50, нет. 6, pp. 1229–

1237, декабрь 2003 г.

[6] YH Liu, JH Teng и YC Lin, «Поиск оптимальной схемы быстрой зарядки

для литий-ионных аккумуляторов с использованием алгоритма системы муравьиных колоний». ”IEEE

Trans.Ind. Electron., Vol. 52, нет. 5, pp. 1328–1336, Dec. 2005.

[7] Л. Р. Чен, Р. К. Хсу и К. С. Лю, «Конструкция системы зарядки литий-ионных аккумуляторов

, рассчитанная на основе серого прогноза», IEEE Trans. Ind. Electron., Vol. 55, нет. 10,

pp. 3692–3701, октябрь 2008 г.

[8] Л. Р. Чен, «Топология схемы заряда батареи на основе ФАПЧ», IEEE Trans. Инд.

Электрон., Т. 51, нет. 6, pp. 1344–1346, декабрь 2004 г.

[9] Л. Р. Чен и К. С. Ван, «Моделирование, анализ и проектирование зарядного устройства

с фазовой синхронизацией», J.Подбородок. Inst. Англ., Т. 30, нет. 6, pp. 1037–1046,

2007.

[10] Дж. Чжан, Дж. Ю, Ч. Ча и Х. Ян, «Влияние импульсной зарядки

на внутреннее давление и циклические характеристики герметичных Ni / MH аккумуляторы »,

J. Источники энергии, т. 136, нет. 1, pp. 180–185, Sep. 2004.

[11] П. Х. Ченг и К. Л. Чен, «Стратегия быстрой зарядки

с высокой эффективностью и без диссипации», Proc. Inst. Электр. Англ. - электр. Power Appl., Vol. 150,

нет.5, pp. 539–545, Sep. 2003.

[12] J. Díaz, JA Martin-Ramos, AM Pernía, F. Nu

˘

no, и FF Linera,

«Интеллектуальная и универсальная быстрая зарядное устройство для Ni – Cd и Ni – MH аккумуляторов в портативных устройствах

», IEEE Trans. Ind. Electron., Vol. 51, нет. 4, pp. 857–

863, август 2004 г.

[13] З. Цзян и Р.А. Дугал, «Синергетическое управление преобразователями энергии

для зарядки импульсным током современных батарей от источника питания топливных элементов

» ”IEEE Trans.Power Electron., Т. 19, нет. 4, pp. 1140–1150,

июль 2004 г.

[14] М. Бхатт, WG Hurley и WH Wölfle, «Новый подход к прерывистой зарядке свинцово-кислотных аккумуляторных батарей с регулируемым клапаном в

. резервные приложения

подключения », IEEE Trans. Ind. Electron., Vol. 52, нет. 5, pp. 1337–1342,

Oct. 2005.

[15] Л. Р. Чен, «Разработка оптимальной импульсной системы заряда с помощью частотно-

различных методов», IEEE Trans. Ind. Electron., Vol. 54, нет.1, стр. 398–405,

февраль 2007 г.

[16] Л. Р. Чен, Нью-Йорк Чу, К. С. Ван и Р. Х. Лян, «Дизайн двунаправленного преобразователя на основе re fl ex-

с функцией рекуперации энергии», IEEE

Пер. Ind. Electron., Vol. 55, нет. 8, pp. 3022–3029, Aug. 2008.

[17] Ф. Хуэ, «Обзор измерений импеданса для определения

состояния заряда или состояния вторичных батарей», J. Power

Источники, т. 70, нет. 1, стр.59–69, Jan. 1998.

[18] Р. М. Спотниц, «Моделирование импеданса переменного тока для литий-ионных элементов», Proc.

35-й межд. Symp. По источникам энергии, июнь 1992 г., стр. 99–102.

[19] Д. Ку, «Исследования импеданса на переменном токе для пористого катода MnO

2

с помощью модифицированной модели линии передачи

», J. Power Sources, vol. 102, вып. 1,

pp. 270–276, Dec. 2001.

[20] М. Коулман, К. К. Ли, К. Чжу и У. Г. Херли, «Определение состояния заряда

по оценке напряжения ЭДС: Использование импеданса , клемма

напряжение и ток для свинцово-кислотных и литий-ионных аккумуляторов », IEEE Trans.

Ind. Electron., Vol. 54, нет. 5, pp. 2550–2557, Oct. 2007.

[21] Ф. Б. Диниз, Л. Э. П. Борхес и Б. де. Б. Нето, «Сравнительное исследование

формирования импульсного тока для положительных пластин автомобильных свинцово-кислотных аккумуляторов

», J. Power Sources, vol. 109, нет. 1, стр. 184–188, июнь 2002 г.

[22] X. Ван и Т. Стюарт, «Схема измерения заряда аккумуляторных батарей электромобиля

», IEEE Trans. Aerosp. Электрон. Syst., Т. 38, нет. 4, стр.1201–

1209, октябрь 2002 г.

Лян-Жуй Чен (M’04) родился в Чанхуа,

Тайвань, в 1971 году. Он получил степень бакалавра наук, магистра наук и

доктора философии. степени в области электронной инженерии, полученные в Национальном Тайваньском национальном университете науки и технологий

-

, Тайбэй, Тайвань, в 1994, 1996 и 2001 годах,

соответственно.

С августа 2006 года он работал на факультете

Департамента электротехники, Na-

tional Changhua University of Education, Changhua,

, где он в настоящее время является доцентом.Его основные исследовательские интересы

включают силовую электронику, проектирование электронных схем

и автоматическое управление.

имп.% 20 аккумулятор% 20 зарядное устройство% 20 техническое описание схемы и примечания по применению

tze16d804

Аннотация: TME12B800 TZE16D024 PE-64934 68881 T1144 импульсный TX1099 тройной импульсный трансформатор TX1089
Текст: нет текста в файле


Оригинал
PDF 1500 В среднекв. TBE06E010 PE-64931 TDE06A013 PE-64934 TBE06B022 PE-64936 TBE06A012 PE-64937 TBE06B016 tze16d804 TME12B800 TZE16D024 PE-64934 68881 T1144 пульс TX1099 тройной импульсный трансформатор TX1089
2004 - M68HC05

Аннотация: C380 M68HC11 MC68332 MC68HC MC68HC05C4 MC68HC05J1 MC68HC11A8 MC68HC705C8
Текст: нет текста в файле


Оригинал
PDF AN1067 / D M68HC05 C380 M68HC11 MC68332 MC68HC MC68HC05C4 MC68HC05J1 MC68HC11A8 MC68HC705C8
2013 - магазинчик

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 3R / 4X / 12; IP-66 Fast028SDMT2 ZA028SDMT3 ZA028SDMT4 ZA028SDMT5 ZA028SDMT6 ZA028SDMT7 ZA028SDMT8 ZA028MDMT1 мелочь
2012 - Нет в наличии

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF 24-июл-12
Резистор AC20

Абстракция: AC15 РЕЗИСТОР AC07 AC04 AC05 AC03 AC10 AC20 BALLAST 160W phoenix
Текст: нет текста в файле


Оригинал
PDF 1000ч Июль-05-2002 Резистор AC20 РЕЗИСТОР AC15 AC07 AC04 AC05 AC03 AC10 AC20 БАЛЛАСТ 160Вт Феникс
SM12CXC724

Аннотация: CXC724 Диод Westcode Диод Westcode CXC724
Текст: нет текста в файле


OCR сканирование
PDF 000Hb2S CXC724 DFC724 4000 А 5400A SM12CXC724 Диод Westcode Диод Westcode CXC724
генератор прямоугольных импульсов

Аннотация: Генератор частоты Thandar TGP110 0.1 Гц 10 МГц 20 ВА EN50082-1 ​​EN61010-1 Thurlby Thandar Instruments Thurlby
Текст: нет текста в файле


Оригинал
PDF TGP110 10 МГц 100us 100 мс 100 нс 500us 500 нс 500 мс генератор прямоугольных волн Тандар Генератор частоты 0,1 Гц 10 МГц 20ВА EN50082-1 EN61010-1 Инструменты Thurlby Thandar Thurlby
2001-ВАРИСТОР К460

Аннотация: S275BR7 K40 варистор k150 варистор s275br7 варистор Siemens SIOV-B32K550 SIOV-SR1210M4S B462-P6213-V1 SIOV-CN1206M6G варистор K680 matsua
Текст: нет текста в файле


Оригинал
PDF SIOV-CN0603M4G SIOV-CN0805M4G SIOV-CN0805M6G SIOV-CN0805S14BAUTOG SIOV-CN1206K35G SIOV-CN0805K20G SIOV-CN1206M4G SIOV-CN1206M6G SIOV-CN1206S14BAUTOG SIOV-CN1210K50G ВАРИСТОР k460 S275BR7 К40 варистор k150 варистор варистор s275br7 Варистор Siemens SIOV-B32K550 СИОВ-СР1210М4С B462-P6213-V1 SIOV-CN1206M6G К680 варистор мацуа
DS3151

Аннотация: DS3152 DS3153 DS3153DK DS3154 DS3154DK APP2877 DS2153DK
Текст: нет текста в файле


Оригинал
PDF DS3154DK, DS2153DK, DS315X, DS3151, DS3152, DS3153, DS3154, DS315x DS3151 DS3152 DS3153 DS3153DK DS3154 DS3154DK APP2877 DS2153DK
1996 - П6055

Аннотация: CB119 3586a Дифференциальный преобразователь Тейлора 15508B CS61534 CS61574 ЭЛТ для осциллографов hp 3586
Текст: нет текста в файле


Оригинал
PDF ПКМ-30 TR-NWT-000499, CB-119 15508B P6055 CB119 3586a дифференциальный преобразователь тейлора CS61534 CS61574 ЭЛТ для осциллографов 3586 л.с.
2002 - M68HC05

Аннотация: MC68HC05C4 MC68HC05J1 MC68HC11A8 MC68HC705C8 C380 M68HC11 MC68332 MC68HC
Текст: нет текста в файле


Оригинал
PDF AN1067 / D M68HC05 MC68HC05C4 MC68HC05J1 MC68HC11A8 MC68HC705C8 C380 M68HC11 MC68332 MC68HC
AN397

Аннотация: APP397 DS2155 DS21Q55 DS3151 DS3152 DS3153 DS3154
Текст: нет текста в файле


Оригинал
PDF DS21Q55, DS3154, DS3153, DS3152, DS3151 com / an397 DS2155: DS21Q55: DS3151: DS3152: AN397 APP397 DS2155 DS21Q55 DS3151 DS3152 DS3153 DS3154
C380

Аннотация: MC68HC705C8 MC68HC11A8 MC68HC11 MC68HC05J1 MC68HC05C4 MC68HC05 MC68HC MC68332 68HC05CX
Текст: нет текста в файле


OCR сканирование
PDF AN1067 / D A30150 AN1067 / D C380 MC68HC705C8 MC68HC11A8 MC68HC11 MC68HC05J1 MC68HC05C4 MC68HC05 MC68HC MC68332 68HC05CX
1989 - датчик расхода жидкости

Аннотация: РЕЛЕ PCB SPDT 12V 8 pin «Датчик расхода жидкости» ТАХОМЕТР твердотельное реле расхода жидкости 240v 10a датчик pcb Расходомер PNP реле счетчика партий 12v 40mA spdt
Текст: нет текста в файле


Оригинал
PDF D9833 100 мА датчик расхода жидкости ПЕЧАТА РЕЛЕ SPDT 12V 8 pin "датчик расхода жидкости" ТАХОМЕТР расход жидкости твердотельное реле 240v 10a pcb датчик Расходомер PNP счетчик партий реле 12v 40mA spdt
2015 - Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF S11962-01CR B1201, KMPD1141E04
2001 - TA1307P

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF TA1307P TA1307P
2003 - SH7046

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF SH7046 REJ05B0089-0100O / Rev
c2078

Аннотация: XT-2058 alcatel 2440 BCM 2076 XT-2051 Broadcom BCM 2091 ATS-091B транзистор C1845 c2058 XT-2052
Текст: нет текста в файле


Оригинал
PDF 50350R 50398R 50408R 50409R 50439R ECS-VXO-11 49USM 49SLMB 32С12 ILCX01 c2078 XT-2058 alcatel 2440 BCM 2076 XT-2051 Broadcom BCM 2091 АТС-091Б транзистор C1845 c2058 XT-2052
TP20

Аннотация: HT66F40 TP10
Текст: нет текста в файле


Оригинал
PDF HT66F40 HA0248T HT66Fx0 HT66F40 6400H TP20 TP10
2004 - 2761 л

Аннотация: генератор прямоугольных импульсов
Текст: нет текста в файле


Оригинал
PDF 01 декабря 2004 г. 2761 л генератор прямоугольных импульсов
2015 - Недоступно

Аннотация: абстрактный текст недоступен
Текст: нет текста в файле


Оригинал
PDF S11961-01CR B1201, KMPD1140E04
2008 - композитная синхронизация

Аннотация: 625p Sync pll tv MAX9568 12282 19 HDTV синхрогенератор MMBT3904 Генератор импульсов E16-1 MAX9566
Текст: нет текста в файле


Оригинал
PDF MAX9568 MAX9568 MAX9566, MAX9567, MAX9569 Композитная синхронизация 625p Синхронизация pll tv 12 282 19 Генератор синхронизации HDTV MMBT3904 E16-1 генератор импульсов MAX9566
DS3151

Аннотация: DS3152 DS3153 DS3154 DS3154DK 6 PORT LIU
Текст: нет текста в файле


Оригинал
PDF DS315x DS3151, DS3152, DS3153, DS3154 DS315x) DS3154DK DS315x, DS3151 DS3152 DS3153 DS3154 6 ПОРТ ЛИУ
AN397

Аннотация: DS21Q55 DS3154
Текст: нет текста в файле


Оригинал
PDF DS3154.75-ом DSMAT75X12 AN397 DS21Q55 DS3154
2001 - 74121 применение в качестве генератора импульсов

Аннотация: схемы применения моностабильного мультивибратора ic 74121 MM14538 с использованием схемы задержки времени 74123 для моностабильного мультивибратора ic 74123 с использованием приложения 74121 cd4538, эквивалентного приложения 74121 CD4528, 74LS221
Текст: нет текста в файле


Оригинал
PDF Ан-366 74121 применение в качестве генератора импульсов схемы применения микросхемы 74121 MM14538 моностабильный мультивибратор с использованием 74123 схема задержки времени для микросхемы 74123 моностабильный мультивибратор с использованием 74121 cd4538 приложение 74121 эквивалент CD4528 приложений 74LS221

зарядка аккумулятора - импульсный или не импульсный

Вот две цитаты со страницы Википедии о свинцово-кислотных аккумуляторах:

"Пусковые батареи, находящиеся на постоянной подзарядке, пострадают. коррозия электродов, которая также приведет к преждевременному отказ.Поэтому пусковые батареи должны быть разомкнуты, но заряжается регулярно (не реже одного раза в две недели), чтобы предотвратить сульфатирование »

и

"Есть коммерческие продукты, которые, как утверждается, обеспечивают десульфатацию за счет различные техники (например, импульсная зарядка), но нет рецензируемые публикации, подтверждающие их утверждения. Сульфатион профилактика остается лучшим курсом действий, периодически полностью зарядка свинцово-кислотных аккумуляторов ».

Итак, ответ на ваш вопрос "Что лучше по времени жизни батареи?" Кажется, есть неожиданный ответ - Don't Float Charge - потому что это сокращает срок службы батареи.И на аккумуляторах глубокого разряда тоже есть коррозия, просто она не так сильно влияет на них, потому что их пластины толще.

Вы ​​можете реализовать функцию «Smart Float Charge» , которая позволит клиенту просто держать ваше зарядное устройство подключенным, включенным и подключенным к батарее, для их удобства и спокойствия; но ваше зарядное устройство на самом деле не будет заряжаться, вместо этого оно полностью отключит заряд и подождет две недели (как предложено в цитате блока № 1 выше), а затем инициирует полную зарядку.Это будет держать батарею готовой к использованию всякий раз, когда это необходимо, что является основной целью плавающего заряда, но это вызовет гораздо меньше коррозии, в результате чего батарея клиента прослужит намного дольше. Может быть неплохо кнопка для ручного поднятия заряда за несколько часов непосредственно перед использованием. Кроме того, не забудьте отрегулировать напряжение зарядки в зависимости от температуры - зарядка в Аризоне, вероятно, отличается от зарядки в Аляске.

Кроме того, во время основного заряда может потребоваться импульсный , потому что он якобы сбивает сульфатирование, также увеличивая срок службы батареи.Выполните поиск в Google для этого, потому что есть исследования (я видел это мимоходом, в поисках, чтобы попытаться ответить на ваш вопрос, но не читал его - просто знайте, что это там, и, вероятно, очень полезно). Во время основного заряда вам может потребоваться определенная пульсация, чтобы наиболее эффективно нейтрализовать сульфатирование.

Поскольку ваши ответы действительно относятся к области химии, если вам нужна дополнительная информация, я, , предлагаю вам задать дополнительные вопросы по обмену стеками Chemistry. Они должны быть в состоянии подтвердить или прояснить то, что сказано в Википедии (иногда Википедии требуется подтверждение), иметь больше возможностей указать вам в правильном направлении или ответить на ваш исходный вопрос (который, я готов поспорить, таков: «если вы собираетесь плавать в любом случае зарядка, это заряд с низким энергопотреблением, и не имеет значения, импульсный он или постоянный ».)

Надеюсь, это поможет.

Зарядные устройства и методы зарядки

Схемы зарядки

Зарядное устройство имеет три основные функции

  • Зарядка аккумулятора (Зарядка)
  • Оптимизация скорости зарядки (стабилизация)
  • Знание, когда остановиться (Завершение)

Схема начисления платы представляет собой комбинацию методов начисления и завершения.

Прекращение начисления

Когда аккумулятор полностью заряжен, необходимо как-то рассеять зарядный ток. В результате выделяется тепло и газы, которые вредны для аккумуляторов. Суть хорошей зарядки состоит в том, чтобы уметь определять, когда восстановление активных химикатов завершено, и останавливать процесс зарядки до того, как будет нанесен какой-либо ущерб, при постоянном поддержании температуры элемента в безопасных пределах.Обнаружение этой точки отключения и прекращение заряда имеет решающее значение для продления срока службы батареи. В простейших зарядных устройствах это происходит при достижении заранее определенного верхнего предела напряжения, часто называемого напряжением завершения . Это особенно важно для устройств быстрой зарядки, где опасность перезарядки выше.

Безопасная зарядка

Если по какой-либо причине существует риск чрезмерной зарядки аккумулятора из-за ошибок в определении точки отключения или неправильного обращения, это обычно сопровождается повышением температуры.Условия внутренней неисправности в батарее или высокие температуры окружающей среды также могут привести к выходу батареи за пределы безопасных рабочих температур. Повышенные температуры ускоряют выход батарей из строя, а мониторинг температуры элементов - хороший способ обнаружить признаки неисправности, вызванной множеством причин. Температурный сигнал или сбрасываемый предохранитель можно использовать для выключения или отсоединения зарядного устройства при появлении знаков опасности, чтобы избежать повреждения аккумулятора. Эта простая дополнительная мера предосторожности особенно важна для аккумуляторных батарей большой мощности, где последствия отказа могут быть как серьезными, так и дорогостоящими.

Время зарядки

Во время быстрой зарядки можно перекачивать электрическую энергию в аккумулятор быстрее, чем химический процесс может на нее отреагировать, что приводит к разрушительным результатам.

Химическое воздействие не может происходить мгновенно, и будет происходить градиент реакции в объеме электролита между электродами с электролитом, ближайшим к преобразуемым или «заряжаемым» электродам, до того, как электролит находится дальше.Это особенно заметно в элементах большой емкости, которые содержат большой объем электролита.

Фактически, в химических превращениях клетки участвуют по крайней мере три ключевых процесса.

  • Одним из них является «перенос заряда», который представляет собой фактическую химическую реакцию, происходящую на границе раздела электрода с электролитом, и она протекает относительно быстро.
  • Второй - это процесс «массопереноса» или «диффузии», в котором материалы, преобразованные в процессе переноса заряда, перемещаются с поверхности электрода, давая возможность другим материалам достичь электрода и принять участие в процессе преобразования.Это относительно медленный процесс, который продолжается до тех пор, пока все материалы не будут преобразованы.
  • Процесс зарядки также может подвергаться другим значительным эффектам, время реакции которых также следует принимать во внимание, например, «процессу интеркаляции», с помощью которого заряжаются литиевые элементы, при котором ионы лития вставляются в кристаллическую решетку основного электрода. См. Также Литиевое покрытие из-за чрезмерной скорости зарядки или зарядки при низких температурах.

Все эти процессы также зависят от температуры.

Кроме того, могут быть другие паразитные или побочные эффекты, такие как пассивация электродов, образование кристаллов и скопление газа, которые все влияют на время зарядки и эффективность, но они могут быть относительно незначительными или нечастыми, или могут возникать только в условиях неправильного обращения. . Поэтому они здесь не рассматриваются.

Таким образом, процесс зарядки аккумулятора имеет по меньшей мере три характерные постоянные времени, связанные с достижением полного преобразования активных химикатов, которые зависят как от используемых химикатов, так и от конструкции элемента.Постоянная времени, связанная с переносом заряда, может составлять одну минуту или меньше, тогда как постоянная времени массопереноса может достигать нескольких часов или более в большой ячейке с большой емкостью. Это одна из причин, по которой элементы могут передавать или принимать очень высокие импульсные токи, но гораздо более низкие постоянные токи (еще один важный фактор - это отвод тепла). Эти явления нелинейны и относятся как к процессу разрядки, так и к зарядке. Таким образом, существует предел скорости приема заряда элемента.Продолжая перекачивать энергию в элемент быстрее, чем химические вещества могут реагировать на заряд, может вызвать локальные условия перезаряда, включая поляризацию, перегрев, а также нежелательные химические реакции вблизи электродов, что приведет к повреждению элемента. Быстрая зарядка увеличивает скорость химической реакции в элементе (как и быстрая разрядка), и может потребоваться «периоды покоя» во время процесса зарядки, чтобы химические воздействия распространялись через основную массу химической массы в элементе и для стабилизации на прогрессивном уровне заряда.

Узнайте больше о периодах отдыха и о том, как их можно использовать для увеличения срока службы батареи и повышения точности измерений SOC на странице «Программно-конфигурируемая батарея».

См. Также влияние химических изменений и скорости зарядки в разделе Срок службы батареи.

Запоминающееся, хотя и не совсем эквивалентное явление - налив пива в стакан.Очень быстрое наливание приводит к образованию большого количества пены и небольшому количеству пива на дне стакана. Медленное наливание по краю стакана или, как вариант, дать пиву отстояться, пока пена не рассеется, а затем долить, чтобы стакан наполнился полностью.

Гистерезис

Постоянные времени и вышеупомянутые явления, таким образом, вызывают гистерезис в батарее.Во время зарядки химическая реакция отстает от приложения зарядного напряжения, и аналогично, когда к батарее прикладывается нагрузка для ее разрядки, происходит задержка, прежде чем полный ток может пройти через нагрузку. Как и в случае с магнитным гистерезисом, энергия теряется во время цикла заряда-разряда из-за эффекта химического гистерезиса.

На приведенной ниже диаграмме показан эффект гистерезиса в литиевой батарее.

Допущение коротких периодов стабилизации или отдыха во время процессов заряда-разряда для учета времени химической реакции будет иметь тенденцию уменьшать, но не устранять разницу напряжений из-за гистерезиса.

Истинное напряжение батареи в любом состоянии заряда (SOC), когда батарея находится в «состоянии покоя» или в спокойном состоянии, будет где-то между кривыми заряда и разряда.Во время зарядки измеренное напряжение элемента во время периода покоя будет медленно перемещаться вниз в сторону состояния покоя, поскольку химическое преобразование в элементе стабилизируется. Точно так же во время разряда измеренное напряжение элемента во время периода покоя будет перемещаться вверх в направлении состояния покоя.

Быстрая зарядка также вызывает повышенный джоулев нагрев элемента из-за более высоких токов, а более высокая температура, в свою очередь, вызывает увеличение скорости процессов химического преобразования.

В разделе «Скорость разряда» показано, как скорость разряда влияет на эффективную емкость элемента.

В разделе «Конструкция ячеек» описывается, как можно оптимизировать конструкции ячеек для быстрой зарядки.

Эффективность заряда

Это относится к свойствам самого аккумулятора и не зависит от зарядного устройства.Это соотношение (выраженное в процентах) между энергией, удаленной из аккумулятора во время разряда, по сравнению с энергией, используемой во время зарядки для восстановления исходной емкости. Также называется Coulombic Efficiency или Charge Acceptance .

Прием заряда и время заряда в значительной степени зависят от температуры, как указано выше. Более низкая температура увеличивает время зарядки и снижает прием заряда.

Обратите внимание, , что при низких температурах аккумулятор не обязательно получит полную зарядку, даже если напряжение на клеммах может указывать на полную зарядку. См. Факторы, влияющие на состояние заряда.

Основные методы зарядки

  • Постоянное напряжение Зарядное устройство постоянного напряжения - это в основном источник питания постоянного тока, который в своей простейшей форме может состоять из понижающего трансформатора от сети с выпрямителем для подачи постоянного напряжения для зарядки аккумулятора.Такие простые конструкции часто встречаются в дешевых зарядных устройствах для автомобильных аккумуляторов. Свинцово-кислотные элементы, используемые для автомобилей и систем резервного питания, обычно используют зарядные устройства постоянного напряжения. Кроме того, в литий-ионных элементах часто используются системы постоянного напряжения, хотя они обычно более сложные с добавленной схемой для защиты как батарей, так и безопасности пользователя.
  • Постоянный ток Зарядные устройства постоянного тока изменяют подаваемое на батарею напряжение для поддержания постоянного тока и отключаются, когда напряжение достигает уровня полной зарядки.Эта конструкция обычно используется для никель-кадмиевых и никель-металлогидридных элементов или батарей.
  • Конусный ток Это зарядка от грубого нерегулируемого источника постоянного напряжения. Это не контролируемый заряд, как в V Taper выше. Ток уменьшается по мере нарастания напряжения элемента (противо-ЭДС). Существует серьезная опасность повреждения элементов из-за перезарядки. Чтобы избежать этого, следует ограничить скорость и продолжительность зарядки.Подходит только для батарей SLA.
  • Импульсный заряд Импульсные зарядные устройства подают зарядный ток в аккумулятор импульсами. Скорость зарядки (на основе среднего тока) можно точно контролировать, изменяя ширину импульсов, обычно около одной секунды. Во время процесса зарядки короткие периоды отдыха от 20 до 30 миллисекунд между импульсами позволяют стабилизировать химическое воздействие в батарее за счет выравнивания реакции по всему объему электрода перед возобновлением заряда.Это позволяет химической реакции идти в ногу со скоростью поступления электрической энергии. Также утверждается, что этот метод может уменьшить нежелательные химические реакции на поверхности электрода, такие как газообразование, рост кристаллов и пассивация. (См. Также Импульсное зарядное устройство ниже). При необходимости можно также измерить напряжение холостого хода батареи во время периода покоя.

Оптимальный профиль тока зависит от химического состава и конструкции клетки.

  • Взрывная зарядка Также называется Reflex или Зарядка с отрицательным импульсом Используется вместе с импульсной зарядкой, подает очень короткий импульс разрядки, обычно в 2–3 раза превышающий зарядный ток в течение 5 миллисекунд, во время периода покоя зарядки. деполяризовать клетку. Эти импульсы вытесняют любые пузырьки газа, которые образовались на электродах во время быстрой зарядки, ускоряя процесс стабилизации и, следовательно, общий процесс зарядки.Выпуск и распространение пузырьков газа известно как «отрыжка». Были сделаны противоречивые заявления об улучшении как скорости заряда, так и срока службы батареи, а также об удалении дендритов, которое стало возможным с помощью этого метода. Самое меньшее, что можно сказать, это то, что «не повреждает аккумулятор».
  • IUI Charging Это недавно разработанный профиль зарядки, используемый для быстрой зарядки стандартных свинцово-кислотных аккумуляторов от определенных производителей.Он подходит не для всех свинцово-кислотных аккумуляторов. Первоначально аккумулятор заряжается с постоянной (I) скоростью, пока напряжение элемента не достигнет заданного значения - обычно напряжения, близкого к тому, при котором происходит газообразование. Эта первая часть цикла зарядки известна как фаза объемной зарядки. По достижении заданного напряжения зарядное устройство переключается в фазу постоянного напряжения (U), и ток, потребляемый батареей, будет постепенно падать, пока не достигнет другого заданного уровня. Эта вторая часть цикла завершает нормальную зарядку аккумулятора с медленно убывающей скоростью.Наконец, зарядное устройство снова переключается в режим постоянного тока (I), и при выключении зарядного устройства напряжение продолжает повышаться до нового более высокого предварительно заданного предела. Эта последняя фаза используется для выравнивания заряда отдельных ячеек в батарее, чтобы максимально продлить срок ее службы. См. Балансировка ячеек.
  • Капельная зарядка Капельная зарядка предназначена для компенсации саморазряда аккумулятора. Непрерывный заряд. Долговременная зарядка постоянным током для использования в режиме ожидания.Скорость зарядки зависит от частоты разрядки. Не подходит для некоторых типов батарей, например NiMH и литий, которые могут выйти из строя из-за перезарядки. В некоторых приложениях зарядное устройство предназначено для переключения на непрерывную зарядку, когда аккумулятор полностью заряжен.
  • Плавающий заряд . Аккумулятор и нагрузка постоянно подключены параллельно к источнику заряда постоянного тока и поддерживаются при постоянном напряжении ниже верхнего предела напряжения аккумулятора.Используется для систем резервного питания аварийного питания. В основном используется со свинцово-кислотными аккумуляторами.
  • Случайная зарядка Все вышеперечисленные приложения включают контролируемую зарядку аккумулятора, однако есть много приложений, в которых энергия для зарядки аккумулятора доступна только или доставляется случайным, неконтролируемым образом. Это относится к автомобильным приложениям, где энергия зависит от частоты вращения двигателя, которая постоянно меняется. Проблема стоит более остро в приложениях EV и HEV, в которых используется рекуперативное торможение, поскольку при торможении возникают большие всплески мощности, которые должна поглощать аккумулятор.Более щадящие применения - солнечные панели, которые можно заряжать только при ярком солнце. Все это требует специальных методов для ограничения зарядного тока или напряжения до уровней, которые может выдержать аккумулятор.

Тарифы зарядки

Батареи можно заряжать с разной скоростью в зависимости от требований. Типичные ставки показаны ниже:

  • Медленная зарядка = Ночь или 14-16 часов зарядки при 0.1С рейтинг
  • Быстрая зарядка = от 3 до 6 часов зарядки при скорости 0,3 ° C
  • Быстрая зарядка = менее 1 часа зарядки при скорости 1.0C

Медленная зарядка

Медленная зарядка может выполняться в относительно простых зарядных устройствах и не должна приводить к перегреву аккумулятора. По окончании зарядки аккумуляторы следует вынуть из зарядного устройства.

  • Никады, как правило, наиболее устойчивы к перезарядке, и их можно оставить на непрерывной подзарядке в течение очень длительных периодов времени, поскольку процесс их рекомбинации имеет тенденцию поддерживать напряжение на безопасном уровне. Постоянная рекомбинация поддерживает высокое внутреннее давление в ячейке, поэтому уплотнения постепенно протекают. Он также поддерживает температуру ячейки выше окружающей среды, а более высокие температуры сокращают срок службы.Так что жизнь еще лучше если снять с зарядного устройства.
  • Свинцово-кислотные аккумуляторы немного менее надежны, но могут выдерживать кратковременный непрерывный заряд. Затопленные батареи, как правило, расходуют воду, а соглашения об уровне обслуживания обычно рано умирают из-за коррозии сети. Свинцово-кислотные вещества следует либо оставить в неподвижном состоянии, либо подзаряжать (поддерживать постоянное напряжение значительно ниже точки выделения газа).
  • С другой стороны, никель-металлгидридные элементы
  • будут повреждены при длительной подзарядке.
  • Однако литий-ионные элементы
  • не допускают перезарядки или перенапряжения, и заряд должен быть немедленно прекращен при достижении верхнего предела напряжения.

Быстрая / быстрая зарядка

По мере увеличения скорости зарядки возрастает опасность перезарядки или перегрева аккумулятора. Предотвращение перегрева батареи и прекращение заряда, когда батарея полностью заряжена, становятся гораздо более важными.Химический состав каждого элемента имеет свою характеристическую кривую зарядки, и зарядные устройства для аккумуляторов должны быть спроектированы так, чтобы определять условия окончания заряда для конкретного химического состава. Кроме того, должна быть предусмотрена некоторая форма отключения по температуре (TCO) или термопредохранитель, чтобы предотвратить перегрев аккумулятора во время процесса зарядки.

Для быстрой зарядки и быстрой зарядки требуются более сложные зарядные устройства. Поскольку эти зарядные устройства должны быть разработаны для определенного химического состава ячеек, обычно невозможно зарядить один тип элементов в зарядном устройстве, которое было разработано для другого химического состава ячеек, и вероятно повреждение.Универсальные зарядные устройства, способные заряжать все типы элементов, должны иметь сенсорные устройства для определения типа элемента и применения соответствующего профиля зарядки.

Примечание , что для автомобильных аккумуляторов время зарядки может быть ограничено доступной мощностью, а не характеристиками аккумулятора. Внутренние кольцевые главные цепи на 13 А могут выдавать только 3 кВт. Таким образом, при условии отсутствия потери эффективности в зарядном устройстве, десятичасовая зарядка потребляет максимум 30 кВт · ч энергии.Достаточно примерно на 100 миль. Сравните это с заправкой автомобиля бензином.

Требуется около 3 минут, чтобы поместить в бак достаточно химической энергии, чтобы обеспечить 90 кВт-ч механической энергии, достаточной для того, чтобы автомобиль проехал 300 миль. Подача 90 кВт / ч электроэнергии в батарею за 3 минуты будет эквивалентна скорости зарядки 1,8 мегаватт !!

Способы прекращения начисления

В следующей таблице приведены методы прекращения зарядки для популярных аккумуляторов.Это объясняется в следующем разделе.

Способы прекращения начисления

SLA

Nicad

NiMH

Литий-ионный

Медленная зарядка

Таймер

Предел напряжения

Быстрая зарядка 1

Имин

NDV

дт / дт

Imin при пределе напряжения

Быстрая зарядка 2

Delta TCO

дт / дт

dV / dt = 0

Прекращение резервного копирования 1

Таймер

TCO

TCO

TCO

Завершение резервного копирования 2

DeltaTCO

Таймер

Таймер

Таймер

TCO = отключение по температуре

Delta TCO = Превышение температуры окружающей среды

I min = минимальный ток

Методы контроля заряда

Было разработано множество различных схем зарядки и оконечной нагрузки для разного химического состава и различных приложений.Ниже приведены наиболее распространенные из них.

Управляемая зарядка

Обычная (медленная) зарядка

  • Полупостоянный ток Простой и экономичный. Самый популярный. Таким образом, при слабом токе тепло не выделяется, а происходит медленно, обычно от 5 до 15 часов. Скорость заряда 0,1C. Подходит для Nicads
  • Таймер с управлением система зарядки Просто и экономично.Надежнее, чем полупостоянный ток. Использует таймер IC. Зарядки со скоростью 0,2 ° C в течение заданного периода времени с последующей подзарядкой 0,05 ° C. Избегайте постоянного перезапуска таймера, вставляя и вынимая аккумулятор из зарядного устройства, поскольку это снизит его эффективность. Рекомендуется установка абсолютного отсечки температуры. Подходит для аккумуляторов Nicad и NiMH.

Быстрая зарядка (1-2 часа)

  • Отрицательный треугольник V (NDV) Система отсечки заряда
  • Это самый популярный способ быстрой зарядки для Nicads.

    Батареи заряжаются постоянным током со скоростью от 0,5 до 1,0 С. Напряжение аккумулятора повышается по мере того, как зарядка достигает пика при полной зарядке, а затем падает. Это падение напряжения, -delta V, связано с поляризацией или накоплением кислорода внутри элемента, которое начинает происходить, когда элемент полностью заряжен. В этот момент элемент попадает в зону опасности перезаряда, и температура начинает быстро расти, поскольку химические изменения завершены, и избыточная электрическая энергия преобразуется в тепло.Падение напряжения происходит независимо от уровня разряда или температуры окружающей среды, и поэтому его можно обнаружить и использовать для определения пика и, следовательно, для отключения зарядного устройства, когда аккумулятор полностью заряжен, или переключения на непрерывный заряд.

    Этот метод не подходит для зарядных токов менее 0,5 C, так как дельта V становится трудно обнаружить. Ложная дельта V может возникнуть в начале заряда при чрезмерно разряженных элементах. Это преодолевается с помощью таймера, который задерживает обнаружение дельты V в достаточной степени, чтобы избежать проблемы.Свинцово-кислотные аккумуляторы не демонстрируют падения напряжения после завершения зарядки, поэтому этот метод зарядки не подходит для аккумуляторов SLA.

  • dT / dt Система зарядки NiMH аккумуляторы не демонстрируют такого выраженного падения напряжения NDV, когда они достигают конца цикла зарядки, как это видно на графике выше, и поэтому метод отключения NDV не является надежным для завершения NiMH заряжать.Вместо этого зарядное устройство определяет скорость повышения температуры элемента в единицу времени. Когда достигается заданная скорость, быстрая зарядка останавливается, и метод зарядки переключается на непрерывную зарядку. Этот метод более дорогой, но позволяет избежать перезарядки и продлевает срок службы. Поскольку длительная непрерывная зарядка может повредить NiMH аккумулятор, рекомендуется использовать таймер для регулирования общего времени зарядки.
  • Постоянный ток Система заряда с постоянным напряжением (CC / CV) .Используется для зарядки литиевых и некоторых других батарей, которые могут быть повреждены при превышении верхнего предела напряжения. Указанная производителем скорость зарядки при постоянном токе - это максимальная скорость зарядки, которую аккумулятор может выдержать без повреждения аккумулятора. Необходимы особые меры предосторожности, чтобы максимально увеличить скорость зарядки и гарантировать полную зарядку аккумулятора, в то же время избегая перезарядки. По этой причине рекомендуется переключать метод зарядки на постоянное напряжение до того, как напряжение элемента достигнет своего верхнего предела.Обратите внимание, что это означает, что зарядные устройства для литий-ионных элементов должны быть способны контролировать как зарядный ток, так и напряжение аккумулятора.
  • Чтобы поддерживать заданную скорость зарядки постоянного тока, зарядное напряжение должно увеличиваться синхронно с напряжением элемента, чтобы преодолеть обратную ЭДС элемента по мере его зарядки. Это происходит довольно быстро в режиме постоянного тока до тех пор, пока не будет достигнут верхний предел напряжения элемента, после чего зарядное напряжение поддерживается на этом уровне, известном как плавающий уровень, во время режима постоянного напряжения.В течение этого периода постоянного напряжения ток уменьшается до тонкой струйки по мере того, как заряд приближается к завершению. Отключение происходит при достижении заданной минимальной точки тока, которая указывает на полный заряд. См. Также Литиевые батареи - Зарядка и производство батарей - Формирование.

    Примечание 1 : Когда указаны скорости Fast Charging , они обычно относятся к режиму постоянного тока.В зависимости от химического состава ячейки этот период может составлять от 60% до 80% времени до полной зарядки. Эти значения не следует экстраполировать для оценки времени полной зарядки аккумулятора, поскольку скорость зарядки быстро падает в течение периода постоянного напряжения.

    Примечание 2: Поскольку невозможно заряжать литиевые батареи со скоростью зарядки C, указанной производителями, в течение всего времени зарядки, также невозможно оценить время зарядки полностью разряженной батареи простым разделением Емкость аккумулятора в ампер-часах с указанной скоростью зарядки C, так как эта скорость изменяется во время процесса зарядки.Однако следующее уравнение дает разумное приближение времени для полной зарядки разряженной батареи при использовании стандартного метода зарядки CC / CV:

    Время зарядки (ч) = 1,3 * (емкость аккумулятора в Ач) / (ток зарядки в режиме CC)

  • Управляемая напряжением система заряда. Быстрая зарядка со скоростью от 0,5 до 1,0 С. Зарядное устройство выключилось или переключилось на непрерывный заряд при достижении заданного напряжения.Следует комбинировать с датчиками температуры в батарее, чтобы избежать перезаряда или теплового разгона.
  • V- Система заряда с конусным управлением. Аналогична системе с контролем напряжения. Как только заданное напряжение достигнуто, ток быстрой зарядки постепенно уменьшается за счет снижения напряжения питания, а затем переключается на непрерывный заряд. Подходит для аккумуляторов SLA, позволяет безопасно достичь более высокого уровня заряда. (См. Также ток конуса ниже)
  • Таймер отказоустойчивости

    Ограничивает ток заряда, который может протекать, чтобы удвоить емкость элемента.Например, для элемента емкостью 600 мАч ограничьте заряд до 1200 мАч. В крайнем случае, если отключение не достигнуто другими способами.

  • Предварительная зарядка
  • В качестве меры предосторожности для аккумуляторов большой емкости часто используется предварительная зарядка. Цикл зарядки инициируется низким током. Если нет соответствующего повышения напряжения батареи, это указывает на возможное короткое замыкание в батарее.

  • Интеллектуальная система зарядки
    Интеллектуальные системы зарядки объединяют системы управления в зарядном устройстве с электроникой в ​​батарее, что позволяет более точно контролировать процесс зарядки. Преимущества - более быстрая и безопасная зарядка и более длительный срок службы аккумулятора. Такая система описана в разделе «Системы управления батареями».

Примечание

Большинство зарядных устройств, поставляемых с устройствами бытовой электроники, такими как мобильные телефоны и портативные компьютеры, просто обеспечивают постоянный источник напряжения.Требуемый профиль напряжения и тока для зарядки аккумулятора обеспечивается (или должен предоставляться) от электронных схем, либо внутри самого устройства, либо внутри аккумуляторной батареи, а не зарядным устройством. Это обеспечивает гибкость при выборе зарядных устройств, а также служит для защиты устройства от потенциального повреждения из-за использования неподходящих зарядных устройств.

Измерение напряжения

Для простоты во время зарядки напряжение аккумулятора обычно измеряется на проводах зарядного устройства.Однако для сильноточных зарядных устройств может наблюдаться значительное падение напряжения на проводах зарядного устройства, что приводит к недооценке истинного напряжения батареи и, как следствие, к недозаряду батареи, если напряжение батареи используется в качестве триггера отключения. Решение состоит в том, чтобы измерить напряжение с помощью отдельной пары проводов, подключенных непосредственно к клеммам аккумулятора. Поскольку вольтметр имеет высокое внутреннее сопротивление, падение напряжения на выводах вольтметра будет минимальным, и показания будут более точными.Этот метод называется соединением Кельвина. См. Также DC Testing.

Типы зарядных устройств

Зарядные устройства

обычно включают в себя некоторую форму регулирования напряжения для управления зарядным напряжением, подаваемым на аккумулятор. Выбор технологии зарядного устройства обычно зависит от цены и качества. Ниже приведены некоторые примеры:

  • Регулятор режима переключения (Switcher) - Использует широтно-импульсную модуляцию для управления напряжением.Низкое рассеивание мощности при больших колебаниях входного напряжения и напряжения батареи. Более эффективен, чем линейные регуляторы, но более сложен.
    Требуется большой пассивный выходной фильтр LC (катушка индуктивности и конденсатор) для сглаживания импульсной формы волны. Размер компонента зависит от текущей пропускной способности, но может быть уменьшен за счет использования более высокой частоты переключения, обычно от 50 кГц до 500 кГц., Поскольку размер требуемых трансформаторов, катушек индуктивности и конденсаторов обратно пропорционален рабочей частоте.
    Коммутация сильных токов вызывает электромагнитные помехи и электрические помехи.
  • Регулятор серии (линейный) - Менее сложный, но с большими потерями - требуется радиатор для отвода тепла в последовательном транзисторе с понижением напряжения, который компенсирует разницу между напряжением питания и выходным напряжением. Весь ток нагрузки проходит через регулирующий транзистор, который, следовательно, должен быть устройством большой мощности. Поскольку нет переключения, он обеспечивает чистый постоянный ток и не требует выходного фильтра.По той же причине конструкция не страдает проблемой излучаемых и кондуктивных выбросов и электрических шумов. Это делает его подходящим для малошумных беспроводных и радиоприложений.
    С меньшим количеством компонентов они также меньше.
  • Шунтирующий регулятор - Шунтирующие регуляторы широко используются в фотоэлектрических (PV) системах, поскольку они относительно дешевы в сборке и просты в конструкции. Ток зарядки контролируется переключателем или транзистором, подключенным параллельно фотоэлектрической панели и аккумуляторной батарее.Перезаряд батареи предотвращается путем закорачивания (шунтирования) выхода PV через транзистор, когда напряжение достигает заданного предела. Если напряжение батареи превышает напряжение питания фотоэлектрической батареи, шунт также защитит фотоэлектрическую панель от повреждения из-за обратного напряжения, разряжая батарею через шунт. Регуляторы серии обычно обладают лучшими характеристиками контроля и заряда.
  • Понижающий регулятор Импульсный регулятор, который включает понижающий преобразователь постоянного тока в постоянный.У них высокий КПД и низкие тепловые потери. Они могут выдерживать высокие выходные токи и генерировать меньше радиопомех, чем обычный импульсный стабилизатор. Простая бестрансформаторная конструкция с низким коммутационным напряжением и небольшим выходным фильтром.
  • Импульсное зарядное устройство . Использует последовательный транзистор, который также можно переключать. При низком напряжении батареи транзистор остается включенным и проводит ток источника непосредственно к батарее. Когда напряжение батареи приближается к желаемому регулирующему напряжению, последовательный транзистор подает импульс входного тока для поддержания желаемого напряжения.Поскольку он действует как импульсный источник питания в течение части цикла, он рассеивает меньше тепла и поскольку он действует как линейный источник питания в течение части времени, выходные фильтры могут быть меньше. Импульсный режим позволяет аккумулятору стабилизироваться (восстанавливаться) с небольшими приращениями заряда при прогрессивно высоких уровнях заряда во время зарядки. В периоды покоя поляризация клетки снижается. Этот процесс обеспечивает более быструю зарядку, чем это возможно при одной продолжительной зарядке высокого уровня, которая может повредить аккумулятор, поскольку не позволяет постепенно стабилизировать активные химические вещества во время зарядки.Импульсные зарядные устройства обычно нуждаются в ограничении тока на входе источника по соображениям безопасности, что увеличивает стоимость.
  • Зарядное устройство универсальной последовательной шины (USB)
  • Спецификация USB была разработана группой производителей компьютеров и периферийных устройств для замены множества патентованных стандартов механического и электрического взаимодействия для передачи данных между компьютерами и внешними устройствами. Он включал двухпроводное соединение для передачи данных, линию заземления и линию питания 5 В, обеспечиваемую главным устройством (компьютером), которая была доступна для питания внешних устройств.Непреднамеренное использование порта USB заключалось в обеспечении источника 5 В не только для непосредственного питания периферийных устройств, но и для зарядки любых батарей, установленных в этих внешних устройствах. В этом случае само периферийное устройство должно включать в себя необходимую схему управления зарядом для защиты аккумулятора. Исходный стандарт USB определял скорость передачи данных 1,5 Мбит / с и максимальный ток зарядки 500 мА.

    Питание всегда течет от хоста к устройству, но данные могут передаваться в обоих направлениях.По этой причине разъем USB-хоста механически отличается от разъема устройства USB, и поэтому кабели USB имеют разные разъемы на каждом конце. Это предотвращает подключение любого 5-вольтового соединения от внешнего источника USB к главному компьютеру и, таким образом, возможное повреждение хост-машины.

    Последующие обновления увеличили стандартную скорость передачи данных до 5 Гбит / с, а доступный ток - до 900 мА. Однако популярность USB-подключения привела к появлению множества нестандартных вариантов, в частности, к использованию USB-разъема для обеспечения чистого источника питания без соответствующего подключения для передачи данных.В таких случаях порт USB может просто включать в себя регулятор напряжения для подачи 5 В от автомобильной шины питания 12 В или выпрямитель и регулятор для подачи 5 В постоянного тока от сети переменного тока 110 или 240 В с выходными токами до 2100 мА. В обоих случаях устройство, принимающее питание, должно обеспечивать необходимый контроль заряда. Источники питания USB с питанием от сети, часто известные как «глупые» зарядные устройства USB, могут быть встроены в корпус сетевых вилок или в отдельные розетки USB в настенных розетках переменного тока.

    См. Дополнительную информацию о USB-соединениях в разделе, посвященном шинам передачи данных от батарей.

  • Индуктивная зарядка
  • Индуктивная зарядка не относится к процессу зарядки самой батареи. Имеется в виду конструкция зарядного устройства. По сути, входная сторона зарядного устройства, часть, подключенная к сети переменного тока, состоит из трансформатора, который разделен на две части. Первичная обмотка трансформатора размещена в блоке, подключенном к сети переменного тока, а вторичная обмотка трансформатора размещена в том же герметичном блоке, который содержит аккумулятор вместе с остальной частью обычной электроники зарядного устройства.Это позволяет заряжать аккумулятор без физического подключения к сети и без обнажения каких-либо контактов, которые могут вызвать поражение пользователя электрическим током.

    Примером малой мощности является электрическая зубная щетка. Зубная щетка и зарядная база образуют трансформатор, состоящий из двух частей: первичная индукционная катушка находится в основании, а вторичная индукционная катушка и электроника содержатся в зубной щетке.Когда зубная щетка помещается в основание, создается полный трансформатор, и индуцированный ток во вторичной катушке заряжает аккумулятор. Во время использования прибор полностью отключен от электросети, а поскольку батарейный блок находится в герметичном отсеке, зубную щетку можно безопасно погружать в воду.

    Техника также используется для зарядки имплантатов медицинских батарей.

    Примером высокой мощности является система зарядки, используемая для электромобилей.По концепции аналогична зубной щетке, но в большем масштабе, это также бесконтактная система. Индукционная катушка в электромобиле принимает ток от индукционной катушки в полу гаража и заряжает автомобиль в течение ночи. Чтобы оптимизировать эффективность системы, воздушный зазор между статической катушкой и съемной катушкой можно уменьшить, опуская приемную катушку во время зарядки, и транспортное средство должно быть точно размещено над зарядным устройством.

    Аналогичная система использовалась для электрических автобусов, которые принимают ток от индукционных катушек, встроенных под каждой автобусной остановкой, что позволяет увеличить дальность действия автобуса или, наоборот, для одного и того же маршрута можно указать батареи меньшего размера.Еще одно преимущество этой системы заключается в том, что если заряд батареи постоянно пополняется, глубина разряда может быть минимизирована, а это приводит к увеличению срока службы. Как показано в разделе «Срок службы батареи», время цикла увеличивается экспоненциально по мере уменьшения глубины разряда.

    Более простая и менее дорогая альтернатива этой возможной зарядке заключается в том, что транспортное средство создает токопроводящую связь с электрическими контактами на подвесном портале на каждой автобусной остановке.

    Также были сделаны предложения по установке сетки индуктивных зарядных катушек под поверхностью вдоль дорог общего пользования, чтобы позволить транспортным средствам собирать заряд во время движения, однако практических примеров еще не было установлено.

  • Зарядные станции для электромобилей
  • Подробнее о специализированных зарядных устройствах высокой мощности, используемых для электромобилей, см. В разделе «Инфраструктура для зарядки электромобилей».

Зарядные устройства Источники питания

При указании зарядного устройства также необходимо указать источник, от которого зарядное устройство получает свою мощность, его доступность, а также его напряжение и диапазон мощности. Следует также учитывать потери эффективности зарядного устройства, особенно для зарядных устройств большой мощности, где величина потерь может быть значительной. Ниже приведены некоторые примеры.

Управляемая зарядка

Простота установки и управления.

  • Сеть переменного тока
  • Многие портативные зарядные устройства малой мощности для небольших электроприборов, таких как компьютеры и мобильные телефоны, должны работать на международных рынках. Поэтому они имеют автоматическое определение напряжения сети и, в особых случаях, частоты сети с автоматическим переключением на соответствующую входную цепь.

    Для приложений с более высокой мощностью могут потребоваться специальные меры. Мощность однофазной сети обычно ограничивается примерно 3 кВт. Трехфазное питание может потребоваться для зарядки аккумуляторов большой емкости (более 20 кВтч), например, используемых в электромобилях, которые могут потребовать скорости зарядки более 3 кВт для достижения разумного времени зарядки.

  • Регулируемый источник питания постоянного тока
  • Может поставляться установками специального назначения, такими как передвижное генерирующее оборудование для индивидуальных приложений.

  • Специальные зарядные устройства
  • Портативные источники, такие как солнечные батареи.

Возможность зарядки

Зарядка с возможностью подзарядки - это зарядка аккумулятора при наличии питания или между частичными разрядками, а не ожидание полной разрядки аккумулятора. Он используется с батареями в циклическом режиме и в приложениях, когда энергия доступна только с перерывами.

Доступность энергии и уровни мощности могут сильно отличаться. Для защиты аккумулятора от перенапряжения необходима специальная управляющая электроника. Избегая полной разрядки аккумулятора, можно увеличить срок службы.

Доступность влияет на спецификацию аккумулятора, а также на зарядное устройство.

Типичные области применения: -

  • Бортовые автомобильные зарядные устройства (Генераторы, рекуперативное торможение)
  • Зарядные устройства индукционные (в местах остановки транспортных средств)

Механическая зарядка

Это применимо только к определенному химическому составу клеток.Это не зарядное устройство в обычном понимании этого слова. Механическая зарядка используется в некоторых батареях большой мощности, таких как батареи Flow и воздушно-цинковые батареи. Цинково-воздушные батареи заряжаются заменой цинковых электродов. Аккумуляторы Flow можно перезарядить, заменив электролит.

Механическая зарядка выполняется за считанные минуты. Это намного быстрее, чем длительное время зарядки, связанное с традиционной электрохимией с обратимым элементом, которое может занять несколько часов.Поэтому воздушно-цинковые батареи использовались для питания электрических автобусов, чтобы решить проблему чрезмерного времени зарядки.

Производительность зарядного устройства

Тип батареи и область применения, в которой она используется, устанавливают требования к характеристикам, которым должно соответствовать зарядное устройство.

  • Чистота выходного напряжения
  • Зарядное устройство должно обеспечивать чистое регулируемое выходное напряжение с жесткими ограничениями на выбросы, пульсации, шум и радиочастотные помехи (RFI), которые могут вызвать проблемы для аккумулятора или цепей, в которых оно используется.

Для приложений с большой мощностью производительность зарядки может быть ограничена конструкцией зарядного устройства.

  • КПД
  • При зарядке аккумуляторов большой мощности потери энергии в зарядном устройстве могут значительно увеличить время зарядки и эксплуатационные расходы приложения. Типичный КПД зарядного устройства составляет около 90%, отсюда и необходимость в эффективных конструкциях.

  • Пусковой ток
  • Когда зарядное устройство изначально подключается к разряженной батарее, пусковой ток может быть значительно выше, чем максимальный указанный зарядный ток. Следовательно, зарядное устройство должно быть рассчитано либо на передачу, либо на ограничение этого импульса тока.

  • Коэффициент мощности
  • Это также может быть важным фактором для зарядных устройств большой мощности.

См. Также «Контрольный список зарядного устройства»

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *