Схема зарядного устройства для автомобильного: Схемы зарядных устройств для автомобильных АКБ: как сделать своими руками

Содержание

Схема автомобильного зарядного устройства | 2 Схемы

Зима неумолимо приближается и скоро начнется сезон покупки (сборки) автомобильных зарядных устройств. Хотим представить зарядное устройство, которое изготовлено самостоятельно для собственных потребностей в зарядке двух АКБ на 40 и 60 А/ч. Оно работает уже в нескольких экземплярах у разных людей, и зимой особенно необходимо.

В дешевых зарядных устройствах, доступных в магазинах, бывает так что зарядное напряжение в финальной фазе достигает 20 В (такое без стабилизатора при росте сетевого напряжения до 250 В вполне возможно), а электролит превращается в газ. Они не подходят по соображениям безопасности, поэтому лучше о покупке таких девайсов даже не думайте!

При минимальных знаниях и ровности рук можно потратив наименьшее количество денег, используя что есть под рукой, собрать вполне приличную зарядку для авто 12 В.

Схема зарядного к автомобилю

Потенциометр PR1 позволяет регулировать рабочее напряжение компаратора U1 в диапазоне не менее 13,5 … 15 В.

Если напряжение батареи ниже чем рабочее напряжение компаратора, то после каждого сброса триггера U2A после дополнительного короткого момента высокое состояние выводится на Q-выход. Конденсатор С1 заряжается, и напряжение на затворе транзистора становится как минимум на 10 В выше, чем напряжение на его истоке — транзистор открывается. Важной характеристикой схемы является то, что описанный цикл зарядки C1 не повторяется в каждой половине работы сети, только каждый полный период, то есть каждые 20 мс. Благодаря этому система всегда будет проходить через четное число синусоидальных полуволн, что полезно для трансформатора, поскольку поглощенный ток не содержит постоянной составляющей.

Данное зарядное устройство построено на хорошо известной микросхеме 4013. Единственное изменение в схеме — это использование CEP50N06 вместо транзистора BUZ11, он имеет еще более низкое сопротивление перехода (19 мОм вместо 30 мОм). Это действительно очень хорошая и многократно проверенная схема, хотя она имеет два недостатка, а именно: отсутствие регулировки зарядного тока и невозможность работать при напряжении аккумулятора ниже 10 В.

Трудно сказать каково предельное нижнее напряжение для правильной работы схемы, но подключив разряженную батарею, на которой напряжение без нагрузки было 8 В — система не запускалась, нужно было ненадолго подключить аккумулятор к БП напрямую (чуть поднять напряжение), после чего зарядное устройство справилось.


Корпус от классического блока питания компьютера, в котором всё было возможно разместить. В середине был прикручен трансформатор от поврежденного ИБП, от которого была использована только одна обмотка 17 В. Схема также работает с выпрямительным мостом 25 А, V / A модулем производства Китая. Что касается модуля V / A, его преимуществом является широкий диапазон напряжения питания до 30 В и то, что он может легко запитываться от самого измеренного напряжения. Точность измерения может быть откалибрована с помощью микро потенциометров. Модуль имеет встроенный шунт, диапазон измерения тока составляет 10 А. Выход защищен предохранителем на 15 А.

Вентилятор установлен на задней части корпуса БП, рабочее напряжение его ограничено резистором 220 Ом, 5 Вт (чтоб меньше шумел).

Резистор подобран экспериментальным путем, чтобы у кулера не было проблем с запуском, а его обороты были ниже. Он ведь должен не шуметь, а только обеспечивать циркуляцию воздуха. Конечно можно отказаться от вентилятора вообще, но тогда было бы полезно иметь большой радиатор для транзистора.

Кабель подключения к АКБ 2×1,5 мм длиной 3 м, зажимы типа «крокодил», он используется для подключения к аккумулятору. Кабель может быть и более толстым, так как при токе 8 А падение напряжения составляет около 0,75 В, при 5 А — около 0,5 В, а при 2 А — всего 0,2 В. Это не слишком большая проблема, потому что на последней стадии зарядки ток очень маленький и напряжение тоже падает.

Расходы на самодельную автозарядку вышли несравнимо меньшие, чем на покупку готовой, пусть даже на дешевом китайском сайте.

При зарядке не нужно отсоединять аккумулятор от автомобильной электроники (схема контролирует выходное напряжение, которое установлено на 14,4 В), и не нужно контролировать время зарядки, когда заряд аккумулятора завершается, ток зарядки со временем упадет почти до нуля.

Максимальный ток, который удавалось достичь на представленной конструкции, составляет 12 А (модуль V / A выдержал) при разряженной батарее до 8 В, о которой упоминалось ранее. При нормальной работе аккумуляторных батарей ток в начальной фазе составляет 6 А, а затем постепенно уменьшается. Его значение зависит от степени разрядки аккумулятора.

Цифровой вольтметр подключен к аккумулятору. Амперметр подключен сразу к диодному мосту. Во время зарядки вольтметр колебался в диапазоне около 0,1 В и это нормальная работа. После зарядки батареи до 14,4 В вольтметр перестал колебаться и постоянно отображал это значение. Во время зарядки амперметр изменял свои показания с максимума на ноль. Ноль показывал строго и не колебался как на вольтметре 14.4 В.

Инструкция по работе с ЗУ к авто

Зарядное устройство работает следующим образом:

  1. Вы подключаете батарею несколько разряженную, предположим что после подключения напряжение составляет 12,3 В. Поскольку сопротивление такой батареи низкое, а напряжение ниже установленного 14,4 В, транзистор открывается и течет постоянный ток.
    Насколько велик этот ток, зависит от мощности трансформатора и сопротивления аккумулятора. Предположим, что это будет 6 А.
  2. Батарея заряжается, напряжение на ней увеличивается, а ток немного уменьшается.
  3. Напряжение достигает заданного значения 14,4 В, схема переходит в импульсный режим, чтобы ограничить дальнейшее повышение напряжения.
  4. Напряжение больше не будет увеличиваться, но батарея будет подзаряжаться все время, ток будет постепенно уменьшаться, амперметр будет колебаться по показаниям.
  5. Батарея продолжает заряжаться, пиковый ток становится ниже, а при полной зарядке колеблется в пределах очень низких значений. Аккумулятор следует считать заряженный, когда ток составляет около 0-0,3 А.

Схема переходит в импульсный режим подпитки, когда напряжение достигает 14,4 В, и к этому времени ток протекающий через АКБ становится стабильным, амперметр также показывает это. В импульсном режиме амперметр будет показывать около нуля, это означает что батарея полностью заряжена.

Это не первое самодельное зарядное устройство собранное по предлагаемой схеме, предыдущие выглядели так как на фото выше. Все они работают у людей уже давным-давно. Описание ЗУ в оригинале и рисунок печатной платы скачайте в архиве.


КАК СДЕЛАТЬ - Простая схема зарядного устройства

     Десульфатацию автомобильных аккумуляторов, а также зарядно-восстановительную тренировку автомобильных аккумуляторов можно производить при помощи простого зарядно-восстановительного устройства, которое восстанавливает засульфатированные аккумуляторы «асиметричным» током.

 

     Кроме методики десульфатации аккумулятора в ручном режиме при помощи простейшего зарядного устройства, как описано в Десульфатация аккумулятора, известен еще один способ тренировки авотомобильного аккумулятора «асиметричным» током, когда в один полупериод аккумулятор заряжается, а следующий разряжается токами 10:1. Такой метод тренировки хорошо зарекомендовал себя не только при десульфатации аккумулятора, но и для профилактики исправных.

Картинкаа кликабельна.

     Устройство обеспечивает возможность ускоренного заряда током до 10А, но рекомендуется зарядный ток 5А  и соответственно ток разряда 0.5А.

     Трансформатор можно взять любой, мощностью не менее 200Вт и выходным напряжением 22-25В. Например, можно использовать телевизионный трансформатор ТС-200. Сразу после трансформатора включено реле типаРПУ-0 с напряжением на обмотке 24В или любое другое. Если использовать реле на меньшее напряжения, то потребуется подобрать и последовательно с обмоткой реле включить добавочный резистор. Реле своими контактами подключает зарядно-восстановительное устройство к аккумулятору и предохряняет аккумулятор от разряда в случае пропадания напряжения в электросети.

    Заряд аккумулятора происходит во время одного полупериода через диоды VD1 , VD2. Во время второго полупериода, когда диоды закрыты, аккумулятор разряжается через резистор R4. Ток разряда составляет 0.5А.

    Зарядный ток устанавливается пременным резистором R2 и контролируется по амперметру.

Учитывая, что в полупериод заряда часть тока заряда (10%) протекает через разрядный резистор, то показания амперметра необходимо устанавливать 1.8А – амперметр показывает усредненное значение тока, а заряд производится в течение половины периода.

Немного об используемых деталях:

Трансформатор на напряжение 22-25В, можно телевизионный ТС-200.

Реле в принципе любое с напряжением обмотки 24В. Важно, чтобы контакты реле выдерживали ток не менее 10А. При использовании реле с обмоткой на 12В, его включаем через ограничивающее сопротивление.

Измерительный амперметр типа М42100 или любой на ток 3-5А

R2 может бітьот 3.3 до 15Ком.

Стабилитроны любые на напряжение от 7.5 до 12В.

Транзистор КТ827 модно заменить на КТ825, но при этом необходимо заменить полярность элементов, как показано на втором варианте схемы. Какртинка кликабельна.

     Транзистор должен быть установлен на радиатор площадью не менее 200кв.см. В качестве радиатора можно использовать металлическую стенку корпуса.

      В отличие от схемы полного автомата, описанной в  Десульфатация аккуумулятора схема ,   эта схема отличается простотой и достаточно высокой эффективностью. Ее можно собрать из любых подручных радиоэлементов. При этом требуется соблюсти необходимые напряжения и токи.

Возможно, вас заинтересуют статья Как построить гараж недорого и сопутствующие.

 

Читайте также:

Оставьте комментарий

Добавить комментарий

Схема китайского зарядного устройства для автомобильного аккумулятора

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт


Посмотрите на картинке на схему ЗУ на 12 В. Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания на 12 вольт — 10 ампер.

1 схема промышленного ЗУ


Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20: «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

1 схема мощного ЗУ


Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Итак, хочу рассказать о конструкции самого простого и самого надежного зарядного устройства для кислотных аккумуляторов. По сути, данное устройство может использоваться для зарядки буквально любых типов аккумуляторов. Я заряжал даже литий-полимерные и литий-ионные, в этом случае емкость конденсаторов нужна в разы меньше.

Представленная схема ЗУ для автомобильного аккумулятора не новая, известна достаточно давно, но мало кому приходило в голову создать на такой основе зарядное устройство для автомобильного аккумулятора.

Схема настолько компактная, что ее можно засунуть даже в корпус от китайского ночника. К слову ЗУ было собранно для преподавателя (ему огромное спасибо и низкий поклон, мало сейчас таких людей как он).

Схема не содержит никаких трансформаторов, не боится замыканий (можно замкнуть и оставить часами, ничего не перегорит), компактная и может работать месяцами, при этом не греется ни капли. Думаете сказка? А вот и нет! Зарядное устройство можно реализовать из подручного хлама всего за 10-15 минут.

Схема зарядного устройства для автомобильных аккумуляторов

Основа — бестрансформаторная зарядка, которую можно увидеть в китайских фонариках для зарядки встроенного кислотного аккумулятора (герметичный свинцово-гелиевый аккумулятор). Благодаря повышенной емкости аккумуляторов удалось на выходе получить ток в 1 Ампер. В моем варианте я использовал 4 конденсатора, все они рассчитаны на напряжение 250 Вольт, хотя желательно подобрать на 400 или 630 Вольт. Конденсаторы подключены параллельно, суммарная емкость составила порядка 8 мкФ.

Резистор подключенный параллельно конденсаторам нужен для разряжения последних, поскольку после выключения схемы на конденсаторах остается напряжение.

Диодный мост — был взят готовый из компьютерного блока питания, обратное напряжение 600 Вольт, максимально допустимый ток 6 Ампер, в ходе работы остается ледяным.

Светодиодный индикатор сообщает о наличии напряжения в сети.

Сейчас некоторые подумают, что 1Ампер зарядного тока слишком мало для автомобильного аккумулятора, но это не так и аккумулятор заряжается достаточно быстро. Напряжение на выходе такого зарядного устройства составляет 180-200 Вольт. Схема не вредит аккумулятору, такая зарядка даже полезна для него.

Не прикасайтесь выходных проводов включенного ЗУ, в противном случае получите поражение током, хотя и не смертельное.

Вот такое простое зарядное устройство можно использовать для зарядки кислотных аккумуляторов с емкостью от 0,5 до 120 Ампер.

Творите, радуйтесь и наслаждайтесь жизнью, поскольку она дана нам лишь раз, а я с вами прощаюсь.

Зарядное устройство (ЗУ) для аккумулятора необходимо каждому автолюбителю, но стоит оно немало, а регулярные профилактические поездки в автосервис не выход. Обслуживание батареи в СТО требует времени и денег. Кроме того, на разряженном аккумуляторе до сервиса ещё нужно доехать. Собрать своими руками работоспособное зарядное устройство для автомобильного аккумулятора своими руками сможет каждый, кто умеет пользоваться паяльником.

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11. 6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

Самодельные зарядки для АКБ

Собрать своими руками зарядное устройство для автомобильного аккумулятора реально и не особо сложно. Для этого нужно иметь начальные знания по электротехнике и уметь держать в руках паяльник.

Простое устройство на 6 и 12 В

Такая схема самая элементарная и бюджетная. При помощи этого ЗУ вы сможете качественно зарядить любой свинцовый аккумулятор с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч.

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4. Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

К примеру, если необходим ток в 5 А, то понадобится включить тумблеры S4 и S2. Замкнутые S5, S3 и S2 дадут в сумме 11 А. Для контроля напряжения на АКБ служит вольтметр PU1, за зарядным током следят при помощи амперметра PА1.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 см. кв.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

Схема проста, если собрать её из исправных деталей, то в налаживании не нуждается. Это устройство подойдёт и для зарядки шестивольтовых батарей, но «вес» каждого из переключателей S2-S5 будет иным. Поэтому ориентироваться в зарядных токах придётся по амперметру.

С плавной регулировкой тока

По этой схеме собрать зарядник для аккумулятора автомобиля своими руками сложнее, но она возможна в повторении и тоже не содержит дефицитных деталей. С её помощью допустимо заряжать 12-вольтовые аккумуляторы ёмкостью до 120 А/ч, ток заряда плавно регулируется.

Зарядка батареи производится импульсным током, в качестве регулирующего элемента используется тиристор. Помимо ручки плавной регулировки тока, эта конструкция имеет и переключатель режима, при включении которого зарядный ток увеличивается вдвое.

Режим зарядки контролируется визуально по стрелочному прибору RA1. Резистор R1 самодельный, выполненный из нихромовой или медной проволоки диаметром не менее 0.8 мм. Он служит ограничителем тока. Лампа EL1 — индикаторная. На её месте подойдёт любая малогабаритная индикаторная лампа с напряжением 24–36 В.

Понижающий трансформатор можно применить готовый с выходным напряжением по вторичной обмотке 18–24 В при токе до 15 А. Если подходящего прибора под рукой не оказалось, то можно сделать самому из любого сетевого трансформатора мощностью 250–300 Вт. Для этого с трансформатора сматывают все обмотки, кроме сетевой, и наматывают одну вторичную обмотку любым изолированным проводом с сечением 6 мм. кв. Количество витков в обмотке — 42.

Тиристор VD2 может быть любым из серии КУ202 с буквами В-Н. Его устанавливают на радиатор с площадью рассеивания не менее 200 см. кв. Силовой монтаж устройства делают проводами минимальной длины и с сечением не менее 4 мм. кв. На месте VD1 будет работать любой выпрямительный диод с обратным напряжением не ниже 20 В и выдерживающий ток не менее 200 мА.

Налаживание устройства сводится к калибровке амперметра RA1. Сделать это можно, подключив вместо аккумулятора несколько 12-вольтовых ламп общей мощностью до 250 Вт, контролируя ток по заведомо исправному эталонному амперметру.

Из компьютерного блока питания

Чтобы собрать это простое зарядное устройство своими руками, понадобится обычный блок питания от старого компьютера АТХ и знания по радиотехнике. Но зато и характеристики прибора получатся приличными. С его помощью заряжают батареи током до 10 А, регулируя ток и напряжение заряда. Единственное условие — БП желателен на контроллере TL494.

Для создания автомобильной зарядки своими руками из блока питания компьютера придётся собрать схему, приведённую на рисунке.

Пошагово необходимые для доработки операции будут выглядеть следующим образом:

  1. Откусить все провода шин питания, за исключением жёлтых и чёрных.
  2. Соединить между собой жёлтые и отдельно чёрные провода — это будут соответственно «+» и «-» ЗУ (см. схему).
  3. Перерезать все дорожки, ведущие к выводам 1, 14, 15 и 16 контроллера TL494.
  4. Установить на кожух БП переменные резисторы номиналом 10 и 4,4 кОм — это органы регулировки напряжения и тока зарядки соответственно.
  5. Навесным монтажом собрать схему, приведённую на рисунке выше.

Если монтаж выполнен правильно, то доработку закончена. Осталось оснастить новое ЗУ вольтметром, амперметром и проводами с «крокодилами» для подключения к АКБ.

В конструкции возможно использовать любые переменные и постоянные резисторы, кроме токового (нижний по схеме номиналом 0. 1 Ом). Его рассеиваемая мощность — не менее 10 Вт. Сделать такой резистор можно самостоятельно из нихромового или медного провода соответствующей длины, но реально найти и готовый, к примеру, шунт от китайского цифрового тестера на 10 А или резистор С5−16МВ. Ещё один вариант — два резистора 5WR2J, включённые параллельно. Такие резисторы есть в импульсных блоках питаниях ПК или телевизоров.

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

  1. Все свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
  2. В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
  3. Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
  4. Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
  5. Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14.7 В.
  6. Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

Схемы зарядных устройств для аккумуляторов и батарей (Страница 3)


Автоматическое импульсное зарядное устройство для аккумуляторов 12В

Предлагаемое устройство позволяет перед зарядкой разрядить аккумулятор до напряжения 10,5 В током равным 1/20 его ёмкости, а затем зарядно-разрядным циклом довести напряжение на батарее до 14,2 - 14,5 В. При соотношении зарядного и разрядного токов 10:1 и длительности импульсов заряд-разряд - 3:1.......

2 4968 0

Приставка-регулятор к зарядному устройству аккумулятора

Описываемая ниже приставка предназначена для работы совместно с зарядными устройствами, обеспечивающими необходимый зарядный ток и имеющими на выходе пульсирующее зарядное напряжение. Подойдут, например, выпускаемые промышленностью устройства УЗ-А-6/12, УЗР-П-12-6,3, а также любительские. ...

0 4713 0

Зарядно-разрядное устройство для аккумуляторов емкостью до 55Ач

Как показывает практика, для профилактических работ с аккумуляторами ёмкостью до 55 Ач вполне достаточно иметь зарядное устройство, обеспечивающее выходной ток до 4 А. Несколько меньший зарядный ток, в сравнении с номинальным током десятичасовой зарядки, нетрудно компенсировать увеличением времени...

0 5162 0

Простое зарядное устройство для автомобильного аккумулятора (ток 1,5А)

Описываемое маломощное сетевое зарядное устройство служит для зарядки автомобильной аккумуляторной батареи небольшим током в 1,5 А. Конструктивно оно рассчитано на установку в транспортное средство с подключением к системе электрооборудования. Таким образом, не нужно каждый раз развертывать...

4 4872 0

Приставка-контроллер к зарядному устройству аккумулятора 12В

Приставка позволяет регулировать верхний пороговый уровень напряжения в пределах 14 - 16 В, а нижний - 10-13В. Потребляемая приставкой мощность не превышает 8 Вт. Режим работы - длительный. Погрешность установки выбранных порогов определяется, в основном, точностью градуировки шкал регуляторов.......

0 3384 0

Автоматическое зарядное устройство + режим десульфатации для аккумулятора

Устройство имеет узлы управления и контроля заряда и режим десульфатации батареи путем её зарядки током с разрядной составляющей. Несмотря на все усложнения, зарядное устройство осталось довольно простым по схеме, лёгким в налаживании и удобным в эксплуатации. Узел контроля следит за напряжением...

8 7152 2

Устройство контроля заряда и разряда аккумулятора 12В

Для автоматического контроля за процессами зарядки и разрядки батареи предназначено устройство, описанное ниже. Рассмотрим его работу в режиме зарядки. К зажимам X1 и Х2 подключают любое зарядное устройство, а к зажимам Х3 и Х4 - аккумуляторную батарею. Переключатель SA1 устанавливают в...

0 5012 0

Автоматическое зарядное устройство для кислотных аккумуляторов

Описываемый ниже автомат предназначен для обслуживания двенадцативольтовых кислотных аккумуляторных батарей. Он может быть использован и как мощный источник переменного напряжения 12 В для питания вулканизаторов, переносных ламп и другого оборудования. Основные характеристики автомата Ток...

1 5607 2

Устройство для автоматической тренировки аккумуляторов 12В, 40-100Ач

Описываемый прибор предназначен для обслуживания кислотных аккумуляторных батарей с номинальным напряжением 12 В и ёмкостью от 40 до 100 Ач. Прибор питается от сети переменного тока напряжением 220 В и потребляет не более 25 Вт при отсутствии зарядки и не более 180 Вт при максимальном зарядном...

0 5509 0

Автоматическое зарядное и восстанавливающее устройство (0-10А)

Описываемое зарядное устройство позволяет восстановить сульфатированные батареи в автоматическом режиме, или проводить формирование и профилактическую обработку исправных. Зарядный ток отключается автоматически по достижении напряжения на зажимах аккумуляторной батареи 14,1 - 14,2 В. Сравнение...

3 5762 8

 1  2 3 4  5  6  7  ... 8 

Радиодетали, электронные блоки и игрушки из китая:

Выбор схемы зарядного устройства для автомобильного аккумулятора: простые и сложные схемы

Любой автолюбитель знает, сколько неприятностей может доставить аккумулятор, не работающий в штатном режиме. Гарантированно безотказно он может проработать минимум 5 лет при условии, что водитель постоянно следит за его состоянием. Но ситуации, когда аккумуляторная батарея (АКБ) перестаёт выполнять свои функции, случаются довольно часто. Причин может быть довольно много, начиная от неисправностей в системе электроснабжения автомобиля и заканчивая длительным простоем авто в тяжёлых погодных условиях, чаще всего на холоде.

Поэтому к выбору подзарядки АКБ автолюбители, не желающие тратить деньги в специальных сервисных центрах, должны подойти с большой ответственностью.

Виды зарядных устройств

Перед приобретением зарядного устройства (ЗУ) автолюбитель должен знать, что торговля предлагает ЗУ двух основных видов:

  • устройства зарядно-предпусковые;
  • зарядно-пусковые ЗУ.

Первый вид предназначен только для подзарядки аккумуляторных батарей.

При подключении клемм АКБ проводами с клещевидными зажимами к выходу устройства осуществляется подзарядка аккумулятора.

Используя зарядно-пусковые ЗУ можно осуществлять как обычную подзарядку аккумулятора, так и запуск двигателя вращением стартера без подключения аккумуляторной батареи.

Основные критерии выбора

Критериями могут служить рабочие параметры. К ним относятся:

  • максимальное выходное напряжение;
  • максимальный нагрузочный ток.

Максимальное напряжение для зарядки 12- вольтовых кислотных батарей (с учётом падения напряжения на проводах и клеммах АКБ) 15,5 В. При выборе такого ЗУ в конце зарядки напряжение аккумулятора составит порядка 14,5 В.

Максимальный ток выбирается исходя из номинальной ёмкости АКБ.

Для кислотных аккумуляторов действует простое соотношение между ними:

Imax =0,1 C ном.

Для щелочных батарей:

Imax =0,25Сном.

C ном — мощность АКБ, выраженная в Ампер-часах (А-ч).

Выбрав ЗУ с Imax =10А, можно зарядить любой автомобильный аккумулятор.

Классификация зарядных устройств

ЗУ можно классифицировать по схемным решениям, по элементной базе, используемой при их проектировании, по принципам преобразования переменного тока в постоянный. Исходя из этого, можно выделить две группы устройств зарядки аккумуляторов:

  • трансформаторные ЗУ;
  • импульсные устройства зарядки.

В устройствах первой группы используется мощный силовой трансформатор.

В импульсных устройствах зарядки осуществляется преобразование тока сети в последовательность импульсов высокой частоты.

Трансформаторные ЗУ

В трансформаторных ЗУ используются мощные электронные компоненты. Они могут выдерживать перегрузки (в разумных пределах), справляются с ситуациями ошибочного подключения к клеммам АКБ. В ЗУ самодельного изготовления такого типа не всегда присутствуют все компоненты, необходимые для стабильной и безопасной зарядки аккумуляторов. К необходимым компонентам схемы зарядки относятся:

  • трансформаторный блок питания;
  • стабилизатор тока зарядки;
  • токовый регулятор заряда АКБ;
  • устройство защиты от коротких замыканий;
  • устройства индикации параметров.

В простых «самоделках» регулятором тока часто выступают проволочные реостаты с ручным управлением, лампы ближнего и дальнего света автомобиля, которые облают в некоторой степени свойством термосопротивлений. С увеличением силы тока через спираль лампы её сопротивление возрастает. Таким образом, величина тока как бы поддерживается на постоянном уровне. На элементах таких схем выделяется большая тепловая мощность. КПД этих ЗУ невелик. Элементы устройств, собранных по таким схемам, пожароопасны, и их надёжность оставляет желать лучшего.

В некоторых схемах используют набор конденсаторов разной ёмкости. Они вручную включаются по очереди последовательно с первичной обмоткой понижающего трансформатора. Обладая ёмкостным сопротивлением, они понижают величину входного напряжения. Уменьшается напряжение в понижающей обмотке трансформатора и величина тока заряда аккумуляторной батареи. Нагрев элементов в этих схемах меньше, а их КПД возрастает.

Диоды в выпрямительном мосту должны быть подобраны по величине тока заряда батареи. Ток через них должен быть больше максимального зарядного тока. Они обычно устанавливаются на пластинчатые металлические радиаторы, отводящие от диодов избыток тепла и предотвращающие их перегрев.

Более совершенные конструкции предусматривают возможность их автоматического отключения от нагрузки при полной зарядке АКБ. Такие схемные решения позволяют не бояться обрывов в цепи нагрузки и коротких замыканий в ней.

В «продвинутых» схемах для регулирования зарядного тока используют тиристоры. Напряжение на управляющем электроде, определяющее степень открывания прибора, через который протекает ток зарядки, устанавливается вручную переменным резистором схемы. Его ось выведена на переднюю панель устройства зарядки.

В качестве устройств индикации параметров зарядки выступают стрелочные амперметры, включаемые последовательно в цепь нагрузки и вольтметры, контролирующие напряжение на клеммах аккумуляторных батарей. В последних моделях ЗУ стрелочные индикаторы постепенно заменяют цифровыми. Схема усложняется, так как необходимо питать и элементы электронной индикации.

Схема автоматического зарядного устройства для аккумуляторов 12 В позволяет подключать ЗУ к сети при подсоединении проводов с клещевидными зажимами к АКБ. По окончании заряда, когда ток уменьшается до величины срабатывания компаратора схемы, контакты реле размыкаются, светодиод сигнализирует об окончании процесса зарядки и ЗУ отключается от сетевого напряжения.

Импульсные устройства

Устройства этого класса, как и трансформаторные ЗУ, ставят перед собой задачу — восстановление работоспособности аккумуляторных батарей при их частичном или полном разряде. Но схемные решения, использованные в них, основываются на применении современной базы.

Для того чтобы избавиться от мощных силовых понижающих трансформаторов, в импульсных ЗУ переменное сетевое напряжение (50 Герц) преобразуется в переменное напряжение импульсной формы высокой частоты. Это высокочастотное напряжение с помощью импульсного трансформатора доводится до значений, необходимых для зарядки АКБ. Затем оно выпрямляется и фильтруется. Частота преобразования обычно около 50 килогерц, размеры трансформатора, который в основном определяет размеры устройства, минимизируются.

Повышенные требования в ЗУ импульсного типа предъявляются к уровню помех, создаваемых генераторами этих устройств. Для этих целей в схемах используют высокочастотные дроссели. Трансформаторы выполнены в виде обмоток на ферритовых кольцах. Импульсные диоды имеют небольшие размеры.

Если представить общую схему устройства в виде отдельных составных частей, то она будет включать в себя:

  • блок сетевого выпрямителя;
  • блок преобразователя;
  • импульсный трансформатор;
  • блок контроля зарядки;
  • приборы индикации параметров.

В устройствах импульсной зарядки можно использовать один из способов восстановления работоспособности батарей:

  • постоянным током;
  • напряжением постоянной величины;
  • комбинированным способом.

Последний из них позволяет на разных этапах процесса использовать как первый, так и второй способы. При разряженном аккумуляторе необходимо его подзарядить постоянным током до определённого предела. После этого включается режим стабилизации напряжения при уменьшающемся токе заряда.

Импульсные ЗУ можно разделить, в свою очередь, на ручные, требующие самостоятельного регулирования напряжения и силы тока, автоматические, в которых процесс регулируется программным путём, и полуавтоматы.

Сравнение ЗУ разных классов

Надо заметить, что как одни, так и другие устройства зарядки аккумуляторов обладают рядом преимуществ и недостатков. Рассмотрев каждый класс и сравнив их между собой, можно прийти к окончательному выводу о приобретении того или иного устройства.

Трансформаторные зарядные устройства

Среди достоинств трансформаторных ЗУ можно отметить такие: простота конструкции, которую может повторить радиолюбитель не очень высокого класса, надёжность, проверенная временем, доступность элементов схемы, отсутствие сетевых и радиопомех.

Из недостатков можно отметить: значительный вес и габариты, невысокий коэффициент полезного действия из-за потерь в металлических сердечниках трансформаторов.

Импульсные ЗУ

Достоинствами этих устройств являются: небольшой вес из-за отсутствия железа сетевых трансформаторов и радиаторов силовых элементов, высокий (до 98%) КПД, большие допуски на частоту и напряжение питающей сети, большое количество элементов защиты и автоматизации процесса зарядки АКБ.

К недостаткам относятся следующие: отсутствие гальванической развязки от питающей сети, наличие широкого спектра гармоник, требующее принимать дополнительные схемные решения для их подавления.

Постепенно всё большее число автолюбителей, стремящихся обезопасить себя от неприятных ситуаций, связанных с неисправностями аккумуляторных батарей, выбирают зарядные устройства импульсного класса.

Схема автомобильного зарядного устройства 5В » Вот схема!


Схема зарядного устройства показана на рисунке 2, это DC-DC преобразователь, дающий стабильное напряжение +5V при токе до 0,5А, и входном напряжении в пределах 7. ..18V. Посмотрев на схему, может возникнуть вопрос, - зачем такие сложности, когда, казалось бы, можно обойтись одной кренкой. Вопрос справедливый. Действительно, аналогичное зарядное устройство можно сделать, например, по схеме на рисунке 1. И такая схема будет работать.

Но обратите внимание на то, что КР142ЕН5А это обычный линейный стабилизатор, и при входном напряжении 12V и токе нагрузки 0,5А мощность, которая будет рассеиваться на регулировочном транзисторе микросхемы КР142ЕН5А может быть более 6W. Микросхема будет нагреваться, потребуется достаточно объемный и тяжелый радиатор. Не говоря уже о низком КПД такой схемы.

Схема, показанная на рисунке 2 работает как импульсный источник, и при нормальном режиме работы рассеивает очень незначительную мощность. Здесь совершенно нет ничего, чему требуется отвод тепла. Кроме того, что она имеет очень высокий КПД, такая схема позволяет собрать адаптер в виде очень легкой и компактной конструкции.

Конечно, есть и минус, - схема значительно сложнее, содержит много деталей, суммарная стоимость которых существенно больше цены КР142ЕН5А и пары конденсаторов.

Подключается зарядное устройство к прикуривателю автомобиля. Диод VD1 на всякий случай защищает схему от неправильной полярности входного напряжения. Стабилитрон VD2 - защита от коротких импульсов высокого напряжения, которые могут быть в сети не очень нового автомобиля.

На микросхеме А1 собраны основные узлы преобразователя, - генератор импульсов, регулятор их ширины и измерительный компаратор, сравнивающий выходное напряжение с опорным, вырабатываемым внутренним стабилизатором микросхемы. Вход компаратора, - вывод 5.

На него подается напряжение с выхода схемы через делитель на резисторах R4-R6. Коэффициент деления зависит от положения движка подстроенного резистора R5. Этим резистором при настройке преобразователя устанавливают требуемое выходное напряжение (в данном случае это 5V).

Детали. Диод VD1 - любой выпрямительный кремниевый диод с допустимым прямым током не ниже 0,7А. VD2 - стабилитрон средней мощности, с напряжением стабилизации 20-30V. VD3 - диод с барьером Шоттки с допустимым прямым током не ниже 2A. VD4 -стабилитрон средней мощности с напряжением стабилизации 5,0-5,6V. HL1 - любой индикаторный светодиод.

Обратите внимание, - у всех диодов и стабилитронов, типы которых указаны на схеме, пояском на корпусе отмечен КАТОД. Конденсаторы С1 и С4 любые электролитические малогабаритные, например, К50-35 или JAMICON, с допустимым напряжением С1 - не ниже 20V, С4 - не ниже 6,3V.
Резисторы - обычные. Резисторы R1, R2, R3 можно заменить одним резистором мощностью 1W и сопротивлением 0,3 Оm. Резистор должен быть непроволочным.

Катушка L1 намотана на ферритовом кольце диаметром 16 мм, для намотки используется провод ПЭВ - 0.47. Число витков - 80. Намотка равномерно распределена по всей окружности кольца.

Все детали помещены на печатную плату, монтаж и разводка которой показаны на рисунке 3. Плата помещена в пластмассовый корпус размерами примерно 120x30x20 мм. Со сторон торцов выходят два кабеля, один из которых оконечен стандартным разъемом для подключения переносной лампы к автомобильному прикуривателю, а второй - таким штекером, как у зарядного устройства вашего мобильного телефона.

Если все детали исправны и нет ошибок в монтаже, налаживание - это только регулировка выходного напряжения резистором R5.

Такую же схему можно использовать и для зарядки батареи МР-3 плеера, например, сделав выходной кабель с USB-разъемом можно заряжать аккумулятор МР-3 плеера iPOD или другого аналогичного. В принципе, на корпусе зарядного устройства можно установить какой-то разъем в качестве Х2, например, USB (+5V на контакт 1, -5V на контакт 4), и сделать несколько сменных кабелей (для телефона, радиостанции, МР3 плеера и др.). Если нужно другое напряжение, соответственно, перенастройте делитель R4-R5-R6 и замените стабилитрон VD4.

Схема зарядного устройства


Обзор схем зарядных устройств автомобильных аккумуляторов

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I - средний зарядный ток, А. , а Q - паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 - Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 - VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Схема зарядного устройства для автомобильного аккумулятора – от простого к сложному

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Это в теории. На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой аккумулятора: то есть, зарядным устройством.

Во вкладке четыре проверенных и надежных схем зарядных устройств для автомобиля от простой до самой сложной. Выбирай любую и она будет работать.

Простая схема зарядного устройства на 12В. Зарядное устройство с регулировкой тока зарядки. Регулировка от 0 до 10А осуществляется изменением задержки открывания тринистора. Схема зарядного устройства для аккумулятора с самоотключением после зарядки. Для заряда аккумуляторов емкостью 45 ампер.Схема умного зарядного устройства, которое предупредит о не правильном подключении.

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Любая схема автомобильного зарядного устройства состоит из следующих компонентов:

  • Блок питания.
  • Стабилизатор тока.
  • Регулятор силы тока заряда. Может быть ручным или автоматическим.
  • Индикатор уровня тока и (или) напряжения заряда.
  • Опционально – контроль заряда с автоматическим отключением.

Любой зарядник, от самого простого, до интеллектуального автомата – состоит из перечисленных элементов или их комбинации.

Схема простого зарядного устройства для автомобильного аккумулятора

Формула нормального заряда простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).

Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов: блок питания, регулятор, индикатор.

Классика – резисторный зарядник

Блок питания изготавливается из двух обмоточного «транса» и диодной сборки. Выходное напряжение подбирается вторичной обмоткой. Выпрямитель – диодный мост, стабилизатор в этой схеме не применяется.

Ток заряда регулируется реостатом.

Проволочный реостат необходим для противостояния главной проблеме такой схемы – избыточная мощность выделяется в виде тепла. Причем происходит это очень интенсивно. Разумеется, КПД такого прибора стремится к нулю, а ресурс его компонентов очень низкий (особенно реостата). Тем не менее, схема существует, и она вполне работоспособна. Для аварийной зарядки, если под рукой нет готового оборудования, собрать ее можно буквально «на коленке». Есть и ограничения – ток более 5 ампер является предельным для подобной схемы. Стало быть, заряжать можно АКБ емкостью не более 45 Ач.

Зарядное устройство своими руками, подробности, схемы – видео

Гасящий конденсатор

Принцип работы изображен на схеме. Благодаря реактивному сопротивлению конденсатора, включенного в цепь первичной обмотки, можно регулировать зарядный ток. Реализация состоит из тех же трех компонентов – блок питания, регулятор, индикатор (при необходимости). Схему можно настроить под заряд одного типа АКБ, и тогда индикатор будет не нужен.

Популярное:  Преобразователь с 12 на 220: как собрать в домашних условиях

Если добавить еще один элемент – автоматический контроль заряда, а также собрать коммутатор из целой батареи конденсаторов – получится профессиональный зарядник, остающийся простым в изготовлении. Схема контроля заряда и автоматического отключения, в комментариях не нуждается. Технология отработана, один из вариантов вы видите на общей схеме. Порог срабатывания устанавливается переменным резистором R4. Когда собственное напряжение на клеммах аккумуляторной батареи достигает настроенного уровня, реле К2 отключает нагрузку. В качестве индикатора выступает амперметр, который перестает показывать ток заряда.

Изюминка зарядного устройства – конденсаторная батарея. Особенность схем с гасящим конденсатором – добавляя или уменьшая емкость (просто подключая или убирая дополнительные элементы) вы можете регулировать выходной ток. Подобрав 4 конденсатора для токов 1А, 2А, 4А и 8А, и коммутируя их обычными выключателями в различных комбинациях, вы можете регулировать ток заряда от 1 до 15 А с шагом в 1 А.

При этом никакого паразитного нагрева (кроме естественного, выделяющегося на диодах моста), коэффициент полезного действия зарядника высокий.

Схема самодельного зарядного устройства для аккумулятора на тринисторе

Если вы не боитесь держать в руках паяльник, можно собрать автомобильный аксессуар с плавной регулировкой тока заряда, но без недостатков, присущих резисторной классике. В качестве регулятора применяется не рассеиватель тепла в виде мощного реостата, а электронный ключ на тиристоре. Вся силовая нагрузка проходит через этот полупроводник. Данная схема рассчитана на ток до 10 А, то есть позволяет без перегрузок заряжать АКБ до 90 Ач.

Регулируя резистором R5 степень открытия перехода на транзисторе VT1, вы обеспечиваете плавное и очень точное управление тринистором VS1.

Схема надежная, легко собирается и настраивается. Но есть одно условие, которое мешает занести подобный зарядник в перечень удачных конструкций. Мощность трансформатора должна обеспечивать троекратный запас по току заряда.

То есть, для верхнего предела в 10 А, трансформатор должен выдерживать длительную нагрузку 450-500 Вт. Практически реализованная схема будет громоздкой и тяжелой. Впрочем, если зарядное устройство стационарно устанавливается в помещении – это не проблема.

Популярное:  Что измеряет вольтметр? Вопрос понятен всем. Или нет?

Схема импульсного зарядного устройства для автомобильного аккумулятора

Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки. Такова сущность импульсных зарядников. Эти схемы имеют завидную мощность, мало греются, располагают высоким КПД. К тому же, компактные размеры и малый вес, позволяют просто возить их с собой в бардачке автомобиля. Схемотехника понятна любому радиолюбителю, имеющему понятие, что такое ШИМ генератор. Он собран на популярном (и совершенно недефицитном) контроллере IR2153. В данной схеме реализован классический полу мостовой инвертор.

При имеющихся конденсаторах выходная мощность составляет 200 Вт. Это немало, но нагрузку можно увеличить вдвое, заменив конденсаторы на емкости по 470 мкФ. Тогда можно будет заряжать аккумуляторы емкостью до 200 Ач.

Собранная плата получилась компактной, умещается в коробочку 150*40*50 мм. Принудительного охлаждения не требуется, но вентиляционные отверстия надо предусмотреть. Если вы увеличиваете мощность до 400 Вт, силовые ключи VT1 и VT2 следует установить на радиаторы. Их надо вынести за пределы корпуса. В качестве донора может выступить блок питания от системника ПК.

Поэтому просто воспользуемся элементной базой. Отлично подойдет трансформатор, дроссель и диодная сборка (Шоттки) в качестве выпрямителя. Все остальное: транзисторы, конденсаторы и прочая мелочь – обычно в наличии у радиолюбителя по всяким коробочкам-ящичкам. Так что зарядник получается условно бесплатным.

На видео показано и рассказано как собрать самостоятельно собрать импульсное зарядное устройство для авто.

Стоимость же заводского импульсника на 300-500 Вт – не менее 50 долларов (в эквиваленте).

Вывод:

Собирайте и пользуйтесь. Хотя разумнее поддерживать вашу аккумуляторную батарею «в тонусе».

Схема простого зарядного устройства для АКБ

Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.

Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.

Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.

Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.

Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для консульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.

Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 ампер\часов.

Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.

Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора,  например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и т.д.

В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.

Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.

переделал на транзистор

Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером.  Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.

Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.

Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.

Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.

По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.

Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).

Плата в формате .lay; скачать…

Автор; АКА КАСЬЯН

Схема автомобильного зарядного устройства

Качественно работающий автомобильный аккумулятор трудно переоценить. Однако, со временем он становится менее емким и способен быстрее разряжаться. На этот процесс оказывают влияние и другие факторы, связанные с условиями эксплуатации. Чтобы не попадать в затруднительную ситуацию, стоит иметь дома или в гараже простое зарядное устройство своими руками.

В большинстве случаев принципиальная схема зарядного устройства самодельной конструкции будет относительно несложной. Собрать такой аппарат удастся из подручных недорогих компонентов. При этом электрический агрегат поможет быстро запустить легковушку. Предпочтительней обзавестись пуско-зарядной аппаратурой, но она требует немного больших мощностей от используемых элементов.

Базовые полезные знания о зарядке батарей

Применять электрическую подпитку для АКБ нужно в тех ситуациях, когда замер на клеммах электроприбора демонстрирует уровень ниже 11,2 В для большинства легковых авто. Хотя двигатель способен запускаться при таком уровне вольтажа, но внутри начинаются нежелательные химические процессы. Происходит сульфатация и разрушение пластин. Емкость заметно снижается.

Важно знать, что во время длительной зимовки или стоянки авто в течение нескольких недель уровень заряда падает, поэтому рекомендуется контролировать данное значение мультиметром, а при необходимости в ход пускать сделанное своими руками ЗУ для автомобильных аккумуляторов либо купленное в автомагазине.

Для подпитки АКБ чаще всего применяются устройства двух типов:

  • выдающее на «крокодилах» напряжение постоянного типа;
  • системы с импульсным типом работы.

При зарядке от устройства постоянного тока подбирается значение тока заряда арифметически соответствующее 1/10 от установленного производителем значения емкости. Когда имеется в наличии батарея на 60 А*ч, то ампераж отдачи должен быть на уровне 6 А. Стоит учитывать исследования, согласно которым умеренное снижение количества ампер на отдачи способствует уменьшению процессов сульфатации.

Если же пластины частично стали покрываться нежелательным сульфатным налетом, то опытные автомобилисты задействуют операции по десульфатации. Применяемая методика заключается в следующем:

  • аккумулятор разряжаем до появления на мультиметре 3—5 В после замера, используя для операции большие токи и малую длительность их воздействия, например, прокручивание стартером;
  • на следующей стадии медленно полностью заряжаем блок от одноамперного источника;
  • повторяются предыдущие операции на протяжении 7—10 циклов.

Подобный принцип работы задействован в заводских зарядных десульфатирующих устройствах импульсного типа. За один цикл на клеммы АКБ поступает в течение нескольких миллисекунд непродолжительный во времени импульс обратной полярности, сменяющийся прямой полярностью.

Необходимо контролировать состояние устройства и не допускать перезаряда батареи. При достижении значений 12,8—13,2 В на контактах стоит отключать систему от подпитки. В противном случае возникнет явление кипения, повышение концентрации и плотности залитого внутрь электролита и последующее разрушение пластин. Для предотвращения негативных явлений заводская принципиальная электрическая схема зарядного устройства наделена платами электронного контроля и автоматического отключения.

Читайте также:  Как проверить аккумулятор без нагрузочной вилки

Какой бывает схема автомобильного зарядного устройства

В гаражных условиях можно воспользоваться несколькими типами зарядок для автомобиля. Они могут быть как максимально примитивными, состоящими из нескольких элементов, так и довольно громоздкими многофункциональными стационарными устройствами. Обычно автовладельцы идут по пути упрощения.

Простейшие схемы

Если в наличии нет заводского зарядного, а реанимировать АКБ необходимо без задержки, то подойдет наиболее простой вариант. В нем участвуют ограничительное сопротивление в виде нагрузки и источник питания, способный генерировать 12—25 В.

Собрать самодельное зарядное устройство получится даже «на коленках», если имеется в доме зарядка для ноутбука. Обычно они выдают около 19 В и 2 А. При сборке стоит учитывать полярность:

  • наружный контакт – минус;
  • внутренний контакт – плюс.

Важно! Обязательно должно быть установлено ограничительное сопротивление, в качестве которого нередко используют лампочку из салона.

Вывинчивать лампу из поворотник или даже «стопов» не стоит, так как они станут перегрузом для схемы. Цепь состоит из таких соединенных между собой элементов: отрицательная клемма блока ноутбука – лампа – отрицательная клемма заряжаемой батареи – положительная клемма заряжаемой батареи – плюс блока ноутбука. Достаточно полутора-двух часов для возвращения АКБ к жизни на столько, что от него можно будет запустить мотор.

При отсутствии ноутбуков или нетбуков рекомендуем отправиться заранее на радиорынок за мощным диодом, рассчитанным на обратное напряжение более 1000 В и ток выше 3 А. Небольшие габариты детали позволяют возить его с собой в бардачке или багажнике, чтобы не попасть в нежелательное положение.

Воспользоваться таким диодом можно в самодельной схеме. Предварительно откидываем и достаем аккумулятор. На следующем этапе монтируем цепочку из элементов: первый контакт бытовой розетки в квартире – отрицательный контакт на диоде – положительный контакт диода – лимитирующая нагрузка – отрицательная клемма аккумулятора – плюс аккумулятора – второй контакт бытовой розетки.

Лимитирующей нагрузкой в подобной сборке обычно служит мощная лампа накаливания. Их предпочтительней выбирать от 100 Вт. Получаемый ток можно определить из школьной формулы:

U * I = W, где

  • U – напряжение, В;
  • I – сила тока, А;
  • W – мощность, кВт.

Исходя из расчетов при нагрузке в 100-ваттной нагрузке и 220-вольтном напряжении выдача мощности ограничивается примерно половиной ампера. За ночь аккумулятор получит около 5 А, что обеспечит заводку движку. Утроить мощность и одновременно ускорить зарядку удастся с помощью добавления в цепь еще пары таких ламп. Не стоит переусердствовать и запускать к такой системе мощных потребителей типа электроплиты, так как можно вывести из строя диод и АКБ.

Важно знать, что собранная прямозарядная схема автомобильного зарядного устройства своими руками рекомендуется к применению в крайнем случае, если иного выхода нет.

Переделка компьютерного блока питания

Прежде чем приступать к экспериментам с электроприборами, нужно объективно оценить собственные силы по реализации задуманного варианта исполнения. После можно приступать к сборкам.

Читайте также:  Как поменять замок зажигания на Приоре

В первую очередь проводится подбор материальной базы. Нередко для такого дела используют старые компьютерные системники. Из них вынимают блок питания. Традиционно они снабжены выводами разного вольтажа. Кроме пятивольтовых контактов, имеются отводы на 12 В. Последние также наделены током в 2 А. Подобных параметров почти хватает для сборки схемы своими руками.

Рекомендуем поднять напряжение до уровня 15 В. Часто это осуществляется эмпирически. Для корректировки понадобится килоомное сопротивление. Такой резистор накидывают параллельно другим имеющимся резисторам в блоке возле восьминожной микросхемы во вторичной цепи БП.

Подобным методом меняют значение коэффициента передачи цепи обратной связи, что оказывает влияние на выходной вольтаж. Способ обеспечивает обычно поднятие до 13,5 В, чего хватает для простых задач с автомобильным аккумулятором.

На выходные контакты накидываются защипы-крокодилы. Дополнительных лимитирующих защит ставить не нужно, так как внутри имеется ограничивающая электроника.

Трансформаторная схема

Из-за своей доступности, надежности и простоты давно востребована у бывалых водителей. В ней используются трансформаторы со вторичной обмоткой, выдающей 12—18 В. Такие элементы встречаются в старых телевизорах, магнитофонах и прочей бытовой технике. Из более современных приборов можно посоветовать отработанные бесперебойники. Они доступны на вторичном рынке за небольшую плату.

В наиболее минималистичном варианте схемы присутствует такой набор:

  • диодный выпрямляющий мостик;
  • подобранный по параметрам трансформатор;
  • рассчитанная соответственно сети защитная нагрузка.

Так как по лимитирующей нагрузке течет большой ток, то от этого она перегревается. Чтобы сбалансировать ампераж, не допуская превышения тока зарядки, в цепь добавляют конденсатор. Его место – первичная цепь трансформатора.

В экстремальных ситуациях при грамотно просчитанном объеме конденсатора можно рискнуть и удалить трансформатор. Однако, подобная схема станет небезопасной в плане поражения электрическим током.

Оптимальными можно назвать цепи, в которых имеется регулировка параметров и лимитирование тока заряда. Представляем на странице один из примеров.

Получить диодный мостик удастся с минимальным усилием из вышедшего из строя автомобильного генератора. Достаточно выпаять его и перекоммутировать при необходимости.

Основы безопасности при сборке и эксплуатации схем

Во время работы по комплектации зарядного устройства для автомобильной АКБ стоит учитывать определенные факторы:

  • все должно быть смонтировано и установлено на пожаробезопасной площадке;
  • при работе с прямоточными примитивными зарядными устройствами нужно вооружиться средствами защиты от поражения током: резиновыми перчатками и ковриком;
  • в процессе зарядки АКБ первый раз самодельными аппаратами необходимо контролировать текущее состояние работающей системы;
  • контрольными точками являются сила тока с напряжением на выходе зарядки, допустимая степень нагрева батареи и зарядного устройства, недопущение закипания электролита;
  • если оставлять оборудование на ночь, то важно оснастить схему устройством защитного отключения.

Важно! Рядом должен всегда находиться порошковый огнетушитель, чтобы уберечь от возможного распространения огня.

Схема автомобильного зарядного устройства

- купить автомобильное зарядное устройство схемы с бесплатной доставкой на AliExpress

Отличные новости !!! Вы находитесь в нужном месте для схемы автомобильного зарядного устройства. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта лучшая схема автомобильного зарядного устройства в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели автомобильное зарядное устройство на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в схеме автомобильного зарядного устройства и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести автомобильное зарядное устройство по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Журнал

Low Processing Fee Journal в EEE / ECE / E & I / ECE / ETE - Impact Factor-7.122


Система распознавания и проверки биометрических данных ладони

Джобин Дж., Джиджи Джозеф, Сандхья Ю.А., Сони П. Саджи, Дипа П.Л.

Кафедра электроники и коммуникаций, Инженерно-технологический колледж Мар Базелиос, Тривандрам, Индия

Абстрактные

Контроллерная сеть в современной домашней автоматизации

ВИДЖАЯН Т

Доцент кафедры E&I, Бхаратский университет, Ченнаи - 600073, Индия

Абстрактные

Экономическая осуществимость гибридной системы биомассы / фотоэлектрической энергии / ветра для удаленных деревень с использованием HOMER

Дж.К. Махерчандани, Читранджан Агарвал, Мукеш Сахи

Доцент кафедры электротехники, Технологический и инженерный колледж, Удайпур, Индия
Доцент, кафедра машиностроения, Технологический и инженерный колледж, Удайпур, Индия
Лектор, Департамент электротехники, Правительство. Политехнический колледж, Читторгарх, Индия

Абстрактные

Сравнительное исследование различных сценариев передачи обслуживания в сети WiMAX

Чандан Гупта

PG Студент, факультет цифровых коммуникаций, Университет Мевара, Ганграр, Читторгарх, Раджастхан, Индия

Абстрактные

Динамическое моделирование, имитация и управление системами MIMO

М.БХАРАТИ, Ч.СЕЛЬВАКУМАР

HOD, факультет электроники и приборостроения, Бхаратский университет, Ченнаи - 600073, Индия
Профессор и руководитель инженерного колледжа Святого Иосифа, Ченнаи-119, Индия

Абстрактные

Уменьшение пульсаций с помощью семиуровневого шунтирующего активного фильтра мощности для приводов большой мощности и системы нелинейной нагрузки

П. Винод Кумар, Дж. Т. Рама Лингесвар, К. Рама Кришна Редди

Доцент кафедры EEE инженерного колледжа SV, Тирупати, Читтур (округ) А.P, Индия
Ассистент-профессор, отдел EEE, инженерный колледж SV, Тирупати, Читтор (округ), Индия
Доцент, отдел EEE, инженерный колледж SV, Тирупати, Читтур (округ), Индия

Абстрактные

Исследование влияния изменения длины канала в нанодиапазоне на мощность и задержку ячейки 3T DRAM

Сарадинду Панда, Б.Маджи, доктор А.К. Мухопадхьяй

Отделение электроники и техники связи, Технологический институт Нарула, Калькутта, Индия
Отделениеотдела электроники и коммуникаций, NIT, Дургапур, Индия
Директор, BITM, Сантиникетан, Бирбхум, Западная Бенгалия, Индия

Абстрактные

Разработка полностью цифрового ПИД-регулятора на базе FPGA для динамических систем

Випул Б. Патель, Вирендра Сингх, Рави Х. Ачарья

Отделение электроники и техники связи, Институт исследований и технологий Сагара, Бхопал, Мадхая-Прадеш, Индия

Абстрактные

Распознавание размытых изображений по инвариантам моментов Лежандра

С.RAJESWARI

Доцент кафедры ECE, BIST, Бхаратский университет, Ченнаи, Тамилнад, Индия

Абстрактные

Проектирование системы обработки сигналов на ПЛИС

К. Чандра Сехар

Профессор, Департамент ECE, Инженерный колледж S V, Тирупати, АП, Индия

Абстрактные

Влияние выхода сопла на расстояние до поверхности на охлаждение электрически нагретой поверхности с ударом струи

Читранджан Агарвал, Дж.К. Махерчандани, Мукеш Сахи

Доцент кафедры машиностроения, Технологический и инженерный колледж, Удайпур, Индия
Доцент, кафедра электротехники, Технологический и инженерный колледж, Удайпур, Индия
Лектор, Департамент электротехники, Правительство. Политехнический колледж, Читторгарх, Индия

Абстрактные

Шпионаж в беспроводной сенсорной сети для выявления узлов неправильного поведения

г.Гурусами, С.Шайк Маджит, Г.Ашок кумар

PG Студент, Инженерный колледж Савита, Ченнаи, Индия
Доцент, Департамент ECE, Инженерный колледж Савита, Ченнаи, Индия
Доцент, Департамент CSE, Карпагамский инженерный колледж, Коимбатур, Индия

Абстрактные

Magnetics - новое слово в энергии будущего

DruvaKumar.L, Jathin.P, Gowtham.S, Manikandan.P

UG-студент, факультет ECE, инженерный факультет Университета Христа, Бангалор
UG-студент, факультет ECE, инженерный факультет Университета Христа, Бангалор
UG-студент, факультет CSE, инженерный факультет Университета Христа, Бангалор
Asst .Профессор кафедры EEE инженерного факультета Университета Христа, Бангалор

Абстрактные

СИНТЕЗ ШИННОЙ МАТРИЦЫ НА ОСНОВЕ ГРАФИКОВ ШТЕЙНЕРА ДЛЯ ЭНЕРГОЭФФЕКТИВНОЙ СИСТЕМЫ СВЯЗИ С ЧИПОМ

М.ДЖАСМИН

Доцент, Департамент ДОО, Бхаратский университет, Ченнаи, Тамилнад, Индия

Абстрактные

Оптимальное размещение ДГ в радиальной распределительной сети для минимизации потерь

Рам Сингх, Гурсевак Сингх Брар и Навдип Каур

Доцент, кафедра.электротехники, Баба Хира Сингх Бхаттал институт Engg. & Technology, Лехрагага, Пенджаб, Индия.
Доцент кафедры электротехники, Инженерный колледж Баба Банда Сингх Бахадур, Фатегарх Сахиб, Пенджаб, Индия.
Доцент, кафедра электротехники, Баба Хира Сингх Бхаттал институт Engg. & Technology, Лехрагага, Пенджаб, Индия

Абстрактные

Имитационное исследование поведения беспроводных пылинок с учетом параметрических изменений

Проф.Сатиш К. Шах, г-жа Сонал Дж. Рэйн, г-жа Дхармиштха Вишвакарма

Кафедра электротехники, Технологический и инженерный факультет, Университет Барода, Индия

Абстрактные

Синтез матрицы шины на основе графов Штейнера для энергоэффективной системы на микросхеме связи

М.ДЖАСМИН

Доцент, Департамент ECE, Бхаратский университет Ченнаи - 600073, Индия

Абстрактные

Анализ и извлечение различных диалоговых сцен из шаблонов видео

Рави Х.Ачарья, проф. Вирендра Сингх, Випул Б. Патель

Отделение ECE, Институт исследований и технологий Сагара, Бхопал, Мадхья-Прадеш, Индия.

Абстрактные

Внедрение управляемой сети для мониторинга и защиты от кражи мощности в распределительном трансформаторе с использованием Zigbee и SCADA

М.Прадип, С.Ратика Каннан

UG Студент, кафедра EEE, Инженерный колледж Савита, Ченнаи, Тамилнад, Индия

Доцент кафедрыEEE, Инженерный колледж Савита, Ченнаи, Тамилнад, Индия

Абстрактные

Конструкция высокоскоростного оборудования Эффективный 4-битный умножитель SFQ

Баламуруган П.С., Куппусамы. S

Доцент кафедры дошкольного образования, Карпагамский инженерный колледж, Коимбатур, Индия

Абстрактные

NoC Самотестирование

Э. Прасад, Б. Чандра Кала, А. Субраманьям

Доцент, Департамент ECE, Инженерный колледж S V, Тирупати, А.P, Индия

Abstract

Бортовые зарядные устройства и зарядные станции для электромобилей

По мере того, как мир готовится совершить революцию в области электромобилей, верно то, что скорость адаптации низкая. Электромобили (электромобили), несмотря на то, что они более экологичный, плавный и дешевый вид транспорта, пока не кажутся практичными. Причина в двух словах: Стоимость и Экосистема. В настоящее время электромобили оцениваются в основном на уровне бензиновых автомобилей, что делает их менее важным выбором для покупателей. Ожидается, что развитие аккумуляторных технологий и государственные схемы снизят стоимость электромобилей в будущем.

Вторая часть заключается в том, что для покупателей не существует надлежащей экосистемы, позволяющей без особых хлопот пользоваться электромобилем. Под «Экосистемой» я имею в виду зарядные станции для зарядки вашего электромобиля, когда у вас заканчивается заряд батареи. Представьте, что вы используете бензиновый автомобиль, когда у вас нет заправочных станций в вашем городе, и единственное место, где вы можете заправиться, - это ваш дом, к тому же вам понадобится как минимум 6-8 часов, чтобы зарядить типичный электромобиль. Многие компании, такие как Tesla, EVgo, точки зарядки и т. Д., Уже осознали эту проблему, установив зарядные станции по всей стране.Что касается таких стран, как Нидерланды, которые пообещали отказаться от бензиновых двигателей к 2035 году, они уверены, что дороги будущего будут заменены электромобилями вместо двигателей внутреннего сгорания, и вокруг нас появится множество станций зарядки электромобилей.

Но, , как работают зарядные станции для электромобилей ? Может ли одна зарядная станция заряжать все типы электромобилей? Какие типы зарядных устройств для электромобилей ? Какие протоколы используются для зарядных устройств для электромобилей? В этой статье мы обсудим ответы на все эти вопросы, а также поймем, что представляет собой зарядная станция для электромобилей и стоящие за ней подсистемы .Прежде чем продолжить, вы должны прочитать об аккумуляторах, используемых в электромобиле, и о том, как система управления батареями работает внутри электромобиля.

Оборудование для снабжения электромобилей (EVSE)

Оборудование, составляющее Зарядную станцию ​​для электромобилей, вместе называется Оборудование для снабжения электромобилей (EVSE). Термин более популярен и относится только к зарядным станциям. Некоторые люди также называют его ECS, что означает электрическая зарядная станция.

EVSE разработан и спроектирован для зарядки аккумуляторной батареи с использованием сети для подачи энергии; эти аккумуляторные батареи могут присутствовать в электромобиле (EV) или в подключаемом к сети электромобиле (PEV). Питание, разъем и протокол для этих EVSE будут различаться в зависимости от конструкции, которую мы обсудим в этой статье.

Бортовые зарядные устройства и зарядные станции

Прежде чем мы перейдем к зарядным станциям, важно понять, что находится внутри электромобиля и к какой части будет подключено зарядное устройство. Большинство электромобилей сегодня поставляются с бортовым зарядным устройством (OBC ), и производитель также предоставляет зарядное устройство вместе с автомобилем. Эти зарядные устройства вместе с бортовым зарядным устройством могут использоваться покупателем для зарядки своего электромобиля от домашней розетки, как только он / она получит его домой. Но эти зарядные устройства очень просты и не имеют каких-либо дополнительных функций, поэтому для зарядки типичного электромобиля обычно требуется около 8 часов.

Типы зарядных станций для электромобилей (EVSE) Зарядные станции

можно разделить на два типа: зарядные станции переменного тока и зарядные станции постоянного тока.

Зарядная станция переменного тока , как следует из названия, обеспечивает питание переменного тока от сети для электромобиля, которое затем преобразуется в постоянный ток с помощью бортового зарядного устройства для зарядки автомобиля. Эти зарядные устройства также называются зарядными устройствами уровня 1 и уровня 2 , которые используются в жилых и коммерческих помещениях. Преимущество зарядной станции переменного тока заключается в том, что бортовое зарядное устройство будет регулировать напряжение и ток в соответствии с требованиями для электромобиля, следовательно, для зарядной станции не обязательно связываться с электромобилем. Недостатком является низкая выходная мощность, увеличивающая время зарядки. Типичная система зарядки переменного тока показана на рисунке ниже. Как мы видим, переменный ток из сети подается напрямую в OBC через EVSE, затем OBC преобразует его в постоянный ток и заряжает батарею через BMS. Контрольный провод используется для определения типа зарядного устройства, подключенного к электромобилю, и установки необходимого входного тока для OBC. Мы обсудим это позже.

Зарядная станция постоянного тока получает питание переменного тока от сети, преобразует его в напряжение постоянного тока и использует его для зарядки аккумулятора напрямую, минуя бортовое зарядное устройство (OBS).Эти зарядные устройства обычно выдают высокое напряжение до 600 В и ток до 400 А, что позволяет заряжать электромобиль менее чем за 30 минут по сравнению с 8-16 часами на зарядном устройстве переменного тока. Они также называются зарядными устройствами уровня 3 и широко известны как зарядные устройства постоянного тока (DCFC) или суперзарядные устройства. Преимуществом этого типа зарядного устройства является его быстрое время зарядки, а недостатком - его сложная инженерия. , где ему необходимо связываться с электромобилем, чтобы заряжать его эффективно и безопасно.Типичная система зарядки постоянным током показана ниже, так как вы можете видеть, что EVSE подает постоянный ток непосредственно на аккумулятор, минуя OBS. EVSE скомпонован стеками для обеспечения высокого тока, при этом один стек не сможет обеспечить высокий ток из-за ограничений переключателя мощности.

Обычно зарядные устройства уровня 1 предназначены для использования в жилых помещениях. - это зарядные устройства, которые поставляются производителями вместе с электромобилем, которые можно использовать для зарядки электромобиля через стандартные домашние розетки.Итак, они работают от однофазного источника переменного тока и могут выдавать от 12 до 16 А, а зарядка электромобиля мощностью 24 кВтч занимает около 17 часов. Зарядное устройство уровня 1 не играет большой роли в зарядных станциях.

Зарядное устройство уровня 2 предоставляется в качестве обновления для зарядного устройства уровня 1 , оно может быть установлено в доме , по специальному запросу, при условии, что в доме есть источник питания с разделенной фазой , или может использоваться в общественных / коммерческих зарядных станциях в качестве хорошо.Эти зарядные устройства могут обеспечивать выходной ток до 80 А из-за высокого входного напряжения и могут заряжать электромобиль за 8 часов. Зарядное устройство Level 3 или суперзарядное устройство предназначены только для общественных зарядных станций. Они требуют многофазного переменного тока от сети и потребляют более 240 кВт, что почти в 10 раз больше, чем у обычных кондиционеров в нашем доме. Поэтому для работы этих зарядных устройств требуется специальное разрешение от сети.

Зарядные устройства Уровня 2 и Уровня 3 считаются более эффективными, чем Зарядное устройство Уровня 1 , поскольку преобразование переменного / постоянного и постоянного / постоянного тока происходит в самом EVSE.Из-за огромного размера и сложности зарядных устройств уровня 2 и уровня 3 их нельзя встроить в электромобиль, так как это увеличит вес и снизит эффективность электромобиля.

Зарядная станция Тип

Уровень зарядного устройства

Напряжение и ток сети переменного тока

Зарядное устройство

Время зарядки аккумуляторной батареи 24 кВт / ч

Зарядная станция переменного тока

Уровень 1 - Жилой

Однофазный - 120/230 В и от ~ 12 до 16 А

~ 1.От 44 кВт до ~ 1,92 кВт

~ 17 часов

Зарядная станция переменного тока

Уровень 2 - Коммерческий

, разделенная фаза - 208/240 В и от ~ 15 до 80 А

от ~ 3,1 кВт до ~ 19,2 кВт

~ 8 часов

Зарядная станция постоянного тока

Уровень 3 - Нагнетатель

Однофазный - 300/600 В и ~ 400 А

~ 120 кВт до ~ 240 кВт

~ 30 минут

Типы разъемов для зарядки электромобилей

Так же, как европейцы работают при 220 В 50 Гц, а американцы работают при 110 В 60 Гц, электромобили также имеют разные типы зарядных разъемов в зависимости от страны, в которой они производятся.Это привело к замешательству производителей ESVE, поскольку их нельзя легко сделать универсальными для всех электромобилей. Основные классификации разъемов для зарядных устройств переменного тока и зарядных устройств постоянного тока приведены ниже.

Зарядные розетки переменного тока для электромобилей :

Среди трех розеток наиболее распространенным типом зарядных устройств переменного тока является розетка JSAE1772 , популярная в Северной Америке. Как вы можете видеть, штекер / разъем имеет несколько соединений: три широких контакта предназначены для фазы, нейтрали и заземления, а два маленьких контакта используются для связи между зарядным устройством и электромобилем (интерфейс пилота), мы обсудим это позже.Mennekes или VDE-AR-E используется в Европе для трехфазной системы зарядки переменного тока и, следовательно, может выдавать высокую мощность до 44 кВт. Le-Grand также представляет собой аналогичную розетку с защитной шторкой для предотвращения попадания мусора в розетку для зарядки. Согласно техническим стандартам, только розетки HSAE 1772 и VDE-AR-E предлагается использовать во всех зарядных устройствах переменного тока будущего.

Зарядные розетки постоянного тока для электромобилей :

На стороне зарядного устройства постоянного тока у нас есть розетка CHAdeMO для зарядного устройства , которая является наиболее популярным типом розеток.Он был представлен Японией и вскоре адаптирован Францией и Кореей. Сегодня большинство электромобилей, таких как Nissan Leaf, Kia и т. Д., Имеют эти типы розеток. Разъем имеет два широких контакта для шин питания постоянного тока и контакты для протокола CAN. Как мы знаем, зарядные устройства постоянного тока уровня 3 не используют бортовое зарядное устройство и, следовательно, должны обеспечивать необходимое напряжение и ток для аккумуляторной батареи электромобиля. Это осуществляется путем установления канала связи (пилотного канала) через протокол сети управления (CAN) с BMS аккумуляторной батареи.Затем BMS дает команду зарядному устройству начать процесс зарядки, контролирует его и затем запрашивает зарядное устройство, чтобы оно прекратило зарядку.

Автомобили Tesla имеют свой собственный тип зарядных устройств, называемый суперзарядными устройствами , и, следовательно, имеют свой собственный тип разъемов, как показано выше. Но они продают адаптер, который может преобразовать их порт для зарядки от зарядных устройств CHAdeMO или CSS. Зарядное устройство CDD - еще одна популярная розетка для зарядного устройства, которая сочетает в себе зарядные устройства как переменного, так и постоянного тока.Как вы можете видеть на изображении, зарядное устройство разделено на два сегмента для поддержки постоянного и переменного тока. Он может поддерживать CAN и Power Line Communication (PLC) и широко используется в европейских автомобилях, таких как Audi, BMW, Ford, GM, Porsche и т. Д. Он может поддерживать выход постоянного тока до 400 кВт и выход переменного тока 43 кВт.

Зарядная станция переменного тока EVSE - Зарядные устройства уровня 1 и уровня 2

Зарядная станция уровня 1 и уровня 2 просто должна подавать питание переменного тока на бортовое зарядное устройство в электромобиле, которое затем позаботится о процессе зарядки; это может показаться на первый взгляд.Но они несут ответственность за подтверждение правильного количества энергии от сети, требуемого аккумуляторной батареей электромобиля, посредством связи с ним через пилотный провод. Подсистемы, присутствующие в типичной зарядной станции переменного тока, представленные в учебном документе TI, показаны ниже.

Зарядные устройства уровня 1 имеют максимальный выходной ток 16 А, из-за ограничений бытовых розеток, в то время как зарядные устройства уровня 2 могут обеспечить до 80 А при работе от трехфазного источника питания.Зарядные устройства переменного тока Уровня 1 и Уровня 2 обычно используют стандартные разъемы SAEJ1772.

Как вы можете видеть, линия питания переменного тока (L1 и L2) подключена к разъему J1772 через реле. Это реле будет замкнуто, чтобы начать процесс зарядки, и разомкнуто, когда зарядка будет завершена. Связь с пилотным сигналом используется для определения состояния батареи, и центральная система обработки данных решает, сколько энергии должно подаваться на бортовое зарядное устройство. Мы обсудим это позже.

Блок питания состоит из преобразователя AC / DC , который принимает сеть переменного тока и преобразует ее в 15 В постоянного тока с помощью схемы переключения. Эти 15 В затем подаются на регулятор, который состоит из преобразователя DC / DC , который использует три разных понижающих регулятора для регулирования 12 В, 5 В и 3,3 В, которые используются для питания датчиков, дисплеев и контроллеров в зарядном устройстве. Система измерения состоит из цепей датчика V / I , которые используются для измерения переменного тока и напряжения переменного тока.На приведенной выше блок-схеме трансформатор тока (CT) используется для измерения входного тока, но также можно использовать шунтирующий или магнитный метод. Напряжение измеряется с обеих сторон реле, чтобы узнать, открыто или закрыто реле. Поскольку подсистема измерения имеет дело с переменным напряжением и током, она цифрово изолирована от подсистемы обработки хоста.

Подсистема обработки хоста состоит из основного микроконтроллера, который получает информацию от пилотной связи и на основе информации запускает реле, используя схемы драйвера реле.Он также контролирует ток и напряжение, используя значения, предоставляемые подсистемой измерения, и при необходимости принимает корректирующие меры. Этот контроллер также будет иметь дисплей, EEPROM и RTC для предоставления пользователю полезной информации, такой как время зарядки, текущий статус и т. Д.

Связь с пилотным проводом в EVSE (зарядное устройство переменного тока)

В зарядных устройствах переменного тока скорость зарядки, то есть требуемый входной ток, фактически определяется самим электромобилем. Не всем электромобилям требуется одинаковое количество входного зарядного тока, и, следовательно, зарядное устройство переменного тока должно обмениваться данными с электромобилем, чтобы узнать требуемый входной ток и выполнить квитирование до того, как зарядка действительно может начаться, эта связь называется проводной связью Pilot .

Обычно в зарядных устройствах переменного тока используется кабель J1772, который имеет две точки на зарядном устройстве, кроме линий питания. Эти две сигнальные линии помогают зарядному устройству обмениваться данными с электромобилем через сигналы ШИМ +/- 12 В. По умолчанию сигнальные контакты на выходе EVSE + 12В, при подключении к электромобилю это будет уменьшено до 9В из-за нагрузочного резистора, присутствующего в электромобиле, это сигнализирует EVSE о том, что разъем был подключен к электромобилю. После этого EVSE отправит ШИМ-сигнал величиной 12 В и значением рабочего цикла, соответствующим максимальному току, который он может выдать.Если электромобиль в порядке с этим значением тока, он выполняет квитирование, изменяя сопротивление нагрузки и понижая напряжение ШИМ до 6 В, после чего начинается зарядка.

Приведенный выше график иллюстрирует обмен данными между EV и EVSE. Как вы можете видеть изначально, когда EVSE не подключен к выходу EVSE 12 В, как только он подключается, он падает до 9 В и запускается сигнал ШИМ. В данном случае коэффициент заполнения сигнала ШИМ составляет 50%. означает, что доступный входной ток составляет 30 А (максимальная мощность 60 А).Если бортовые зарядные устройства электромобилей могут работать с этим током, тогда электромобиль сигнализирует о рукопожатии, изменяя сопротивление нагрузки, и теперь сигнал ШИМ падает до 6 В. Зарядка начинается с этого момента и будет продолжаться до тех пор, пока сигнал ШИМ колеблется между 6 В и -12 В. Электромобиль снова изменит сопротивление нагрузки, когда процесс зарядки будет завершен, чтобы подать сигнал зарядному устройству на отключение.

Зарядная станция постоянного тока EVSE - Зарядные устройства 3-го уровня

Зарядные станции третьего уровня сложнее, чем уровни 1 и 2, поскольку преобразование постоянного / постоянного тока для аккумуляторной батареи должно выполняться самим EVSE.Поскольку EVSE постоянного тока обходит бортовое зарядное устройство, он должен знать все жизненно важные параметры аккумуляторной батареи, чтобы безопасно заряжать ее, поэтому между EVSE и BMS электромобиля следует установить CAN или PLC (связь по линии электропередачи). Зарядное устройство уровня 3 обычно использует разъем для зарядного устройства CHAdeMO, но другие разъемы, такие как комбинированный зарядный разъем J1772 и разъем Tesla, также адаптируются различными производителями, эти зарядные устройства могут подавать до 200 А непосредственно на аккумулятор, чтобы зарядить электромобиль менее чем за 30 минут. .Типичная упрощенная блок-схема подсистемы зарядной станции постоянного тока показана ниже.

Система здесь чрезмерно упрощена за счет удаления систем, которые мы обсуждали ранее в системе зарядки переменного тока. Зарядное устройство уровня 3 всегда работает от трехфазного источника переменного тока , поэтому преобразователь переменного / постоянного тока должен принимать трехфазное питание и преобразовывать его в постоянный ток 40 В или выше. Это постоянное напряжение затем будет повышено до более высокого уровня (350-700 В) в соответствии с требованиями аккумуляторной батареи.Выходное напряжение и ток будут определяться BMS EV , которые затем будут переданы в EVSE через связь CAN / PLC. Большинство этих зарядных устройств уровня 3 будет размещено на зарядных станциях для общего доступа, и поэтому устройство человеко-машинного интерфейса (HMI) станет обязательным. Некоторые EVSE также будут иметь беспроводные функции, такие как NFC, Bluetooth, функции шлюза онлайн-платежей и т. Д., Чтобы облегчить общедоступное использование.

Технологическая проблема связана с подсистемами преобразователя переменного тока в постоянный и постоянного тока в модуле.Поскольку зарядное устройство потребляет большой ток от сети, требуется надлежащая система коррекции коэффициента мощности . Кроме того, преобразователи работают с очень сильным током, а силовые электронные переключатели внутри них, такие как MOSFET и IGBT, не могут работать как единое целое. Следовательно, обычно блоки преобразователя делятся на небольшие блоки, которые затем объединяются параллельно для обеспечения высокого тока.

Достижения в EVSE

Некоторые люди, возможно, утверждают, что электромобили не являются полностью экологичными, если они питаются от электроэнергии, вырабатываемой на невозобновляемых электростанциях, таких как угольные, ядерные и т. Д.Хорошо, что EVSE на солнечных батареях постепенно набирают популярность. Из-за размера, эффективности и веса солнечной панели невозможно использовать электромобили напрямую от солнечной энергии. Но EVSE, с другой стороны, может потреблять энергию от солнечной панели вместо сети. Обратной стороной является огромная начальная стоимость и низкая эффективность, поскольку солнечная энергия должна храниться в батареях, а затем снова передаваться на электромобили. Кроме того, эффективность солнечной панели очень низкая (44,5% - это самый высокий показатель на сегодняшний день), и ее технология все еще требует разработки, чтобы сделать ее доступным обновлением.

Еще одним заметным достижением является система Vehicle to Grid (V2G) . При этом аккумулятор в электромобиле может выступать в качестве источника питания для бытовой техники. Современные электромобили поставляются с огромным аккумулятором емкостью до 100 кВт / ч или более, что делает их легким портативным электростанцией. Таким образом, с правильным инвертором мощность этих аккумуляторных блоков может подаваться в сеть в часы пиковой нагрузки. Затем эти электромобили можно отвезти на станции, работающие на солнечной энергии, чтобы снова зарядить их, создав полностью зеленую экосистему.

Установка зарядной станции для электромобилей в Индии

Поскольку электромобили быстро набирают популярность в Индии, мы уже можем заметить, что многие установки EVSE появляются в крупных городах Индии. Поскольку правила все еще стандартизированы для Индии, следующие общие проблемы при создании EVSE в Индии.

1. Низкая скорость зарядки для индийских электромобилей: Электромобили в Индии все еще не готовы к зарядным устройствам уровня 3 или Super, поскольку их аккумуляторные блоки не поддерживают быструю зарядку.Скорость зарядки аккумулятора зависит от его рейтинга C. Индийские электромобили по-прежнему имеют очень низкий рейтинг C, поэтому для большинства электромобилей даже зарядное устройство 2-го уровня не требуется. Это снизит спрос на публичный EVSE

.

2. Проблема с перепродажей электроэнергии: Согласно нормам, прямая перепродажа электроэнергии запрещена. Только DISCOM имеет право продавать электроэнергию. Однако под давлением ISGF зарядные станции могут рассматриваться как ожидание этого в будущем.

3.Слабые распределительные трансформаторы: Большинство распределительных трансформаторов (DT) в Индии уже перегружены. EVSE будет потреблять большую мощность из сети, что делает его серьезной проблемой. Следовательно, полное ОУ в этой области должно быть заменено на более высокие рейтинги. Это будет серьезной проблемой, поскольку в городе начнет появляться новая EVSE. Вы можете прочитать этот технический документ от ISGF, чтобы узнать больше о настройке зарядной станции для электромобилей в Индии.

Автомобильное зарядное устройство USB

с использованием LM7805 IC

Схема автомобильного зарядного устройства USB представляет собой преобразователь постоянного тока, который преобразует напряжение аккумуляторной батареи 12 В в стабильное напряжение 5 В.Эта схема используется для подачи питания от автомобильного прикуривателя на компактный гаджет, который требует 5 вольт. Регулярно выгодно иметь возможность заряжать мобильные телефоны и многочисленные различные гаджеты, которые могут использовать кабели к USB-разъемам для зарядки.

В некоторых случаях автомобили или транспортные средства не имеют USB-подключения, или это может быть набор устройств, которые следует заряжать с помощью зарядного устройства USB во время движения в автомобиле.

Это проект автомобильного зарядного устройства USB, сделанный своими руками.Схема чрезвычайно проста в сборке, используя всего три компонента. Ядром схемы является микросхема LM78M05, которая представляет собой микросхему стабилизатора положительного напряжения 5 В. Эта ИС имеет множество функций, таких как защита от тепловой перегрузки, защита от короткого замыкания, защита безопасных зон и т. Д.

Оборудование Компоненты

Принципиальная схема

Работа цепи

Схема может быть эффективно связана с гнездом для сигар в автомобиле и преобразовывать 12 вольт постоянного тока в 5 вольт постоянного тока и заряжать многочисленные USB-устройства.Выходной ток схемы составляет 500 мА, чего достаточно для зарядки любого USB-гаджета. Схема в основном представляет собой преобразователь постоянного тока в постоянный и может также использоваться для питания многочисленных устройств постоянного тока от 5 до 6 вольт от аккумуляторной батареи транспортного средства. Существуют также другие сопоставимые схемы, которые вы можете использовать для запуска любых устройств на 5 В или 9 В от автомобильного аккумулятора, например, преобразователь 12 В в 5 В и преобразователь 12 В в 9 В с током выхода 1000 мА.

Меры предосторожности s
  • Важно проверить и подтвердить подключения 5-вольтового выходного напряжения цепи с помощью мультиметра.
  • Перед подключением любого USB-устройства для зарядки убедитесь, что схема работает нормально, без ошибок пайки или подключения и дает выход 5 В постоянного тока.

Приложения и способы использования

По своей основной структуре автомобильное зарядное устройство USB используется для зарядки большой группы устройств, от сотовых телефонов и планшетов до аккумуляторов и даже некоторых моделей камер.

Как избежать распространенных ошибок при установке зарядного устройства для электромобилей 2-го уровня

Миа Ямаути


  1. Вы взволнованы (достаточно)? Ваш дом, вероятно, потребляет 100 или 200 ампер тока.Большинство зарядных устройств для электромобилей потребляют 30-50 ампер тока. Если бы зарядное устройство для электромобилей было единственным на всей панели, все было бы в порядке. На самом деле, другие приборы тоже нуждаются в усилителях. Если в вашем доме есть панель на 100 ампер, вам, вероятно, придется перейти на панель на 200 ампер перед использованием зарядного устройства уровня 2 для электромобилей. Эту работу может выполнить лицензированный электрик.
  2. Достаточно ли места на вашей панели физически? Панель большой мощности не поможет, если все выключатели уже подключены. Электрик с первого взгляда может сказать, достаточно ли у вас места.
  3. У вас достаточно высокое напряжение? Обеспечивает ли сеть напряжение 240 В, необходимое для зарядного устройства электромобиля? Этот вопрос - халява. Ответ почти наверняка «да». Практически все дома в США получают питание с разделенной фазой 240 В. Причина, по которой большинство розеток имеют напряжение 120 В, заключается в том, что они подключены только к половине напряжения 240 В.

Если вы ответили «да» на все 3 вопроса : Отлично, установка уровня 2, вероятно, будет довольно простой.Если у вас уже установлена ​​розетка уровня 2, вы можете просто подключить ее самостоятельно. Если вам нужен лицензированный электрик, продолжайте читать, чтобы сэкономить деньги и нервы.



  • Зарядное устройство «в комплекте» + стоимость установки? Будьте подозрительны. Если у вас уже есть панель на 200 А и на ней достаточно места, установка дополнительной розетки на 240 - обычно одна из самых простых задач, которые когда-либо выполнял электрик. Не обязательно соглашаться на «пакетную ставку» для зарядного устройства и установки.Получите бесплатное предложение от электрика, которому вы доверяете, и сделайте покупки. Убедитесь, что они точно понимают, какая работа вам нужна.
  • Остерегайтесь ненужных разрешений . Зарядные устройства уровня 2 можно подключить к панели или просто подключить к розетке на 240 В. Разрешение на электромонтаж может быть более дорогим и сложным. Проводка обычно требуется только для установки зарядного устройства на открытом воздухе. В помещении идеально просто подключить зарядное устройство. Если вы собираетесь заряжать в помещении, выберите зарядное устройство с сетевой розеткой.
  • Включены ли в эту цитату разрешения? Некоторые установщики оплачивают стоимость разрешения, некоторые - нет. Убедитесь, что в кавычки включены все расходы на разрешения для сравнения яблок с яблоками. Также знайте, собираются ли они обрабатывать процесс выдачи разрешений за вас или нет.
  • Сменные зарядные устройства необходимо вручную подключать к порту зарядки каждый раз при зарядке. Если вы забудете, у вас будет ограниченный запас хода для электронного вождения.
  • Беспроводные зарядные устройства обеспечивают автономную зарядку.Автомобильный адаптер получает энергию через воздушный зазор от парковочной площадки, которая находится на подъездной дорожке или на полу гаража. Ваш электромобиль заряжается автономно на обычном парковочном месте. См. Беспроводная зарядка.
Plug-in EVSE (Manual) Plugless EVSE (автономный)
и

Ключевое различие между зарядкой без подключения к сети и зарядкой от розетки заключается в повседневном владении электромобилем.Plugless навсегда устраняет ряд постоянных проблем и опасностей, вызванных системами зарядки плагинов. Это последняя деталь, необходимая для вождения на электротяге, которая действительно превосходит езду на автомобиле с ДВС.

В чем разница в установке? Подключаемые и автономные зарядные устройства
  1. Больше свободы в расположении зарядного устройства: Идеальное место для установки Plugless for i3 - это любое место в пределах прямой видимости, когда вы подъезжаете к парковке.
  2. Автомобильный адаптер (VA) устанавливается на ваш электромобиль для обеспечения беспроводной зарядки авторизованным установщиком Plugless. Установка входит в стоимость системы и занимает не более 2 часов.

Plugless - это зарядное устройство премиум-класса, обеспечивающее максимальное удобство владения электромобилем. Если вы все же решите использовать подключаемое зарядное устройство, просто убедитесь, что ваша цепь на 240 В рассчитана на 50 ампер. Это дает вам возможность перейти на использование Plugless в будущем.

Установка зарядного устройства 2-го уровня может показаться большими деньгами.Суть в том, что зарядное устройство уровня 2 может помочь вам получить больше удовольствия от вашего потрясающего космического корабля. Помните, что это однократный домашний процесс, который обеспечивает удобство в течение многих лет. Он подготовит ваш дом к будущему и поможет вам оставаться полностью заряженным. Если вы выберете зарядное устройство Plugless, оно даже позволит вашему электромобилю заряжаться. Идеальная настройка зарядки буквально выводит все, что вам нравится в вашем электромобиле, на новый уровень.

Остались вопросы по зарядным устройствам уровня 2 и их установке?

Напишите по электронной почте советнику без подключаемых модулей !

Или позвоните нам по телефону +1 (877) 573 8862

Нам нравится получать от вас известия и мы рады помочь.Продолжайте заряжать!

Вам также может понравиться…

Вам также может понравиться:

Подпишитесь, чтобы получать больше интересных статей для таких владельцев электромобилей, как вы:

Установка зарядного устройства для электромобиля

Будущее уже наступило: бензиновые насосы не нужны, а отличные технологии всегда под рукой. Наличие дома зарядной станции для электромобилей значительно улучшит ваши впечатления от владения электромобилем.

Вот несколько факторов, которые следует учитывать при выборе:

Совместимость и другие устройства
При установке специального автомобильного зарядного устройства в вашем доме вы можете гарантировать, что не будет проблем с выходными цепями в вашем доме. дом.Заряжая свои автомобили выходящими цепями, вы потенциально рискуете перегрузить цепи и вызвать срабатывание выключателя. Поскольку большинство людей устанавливают зарядное устройство для электромобилей в гараже, а у многих есть открытый холодильник или морозильник, есть шанс потерять их содержимое, если выключатель сработает. Наличие выделенной цепи исключит такую ​​возможность.

Удобство
Зарядную станцию ​​для электромобиля можно установить в месте, которое наилучшим образом соответствует вашим потребностям, что исключает использование удлинителя и связанные с этим риски.Например, неправильный размер шнура может привести к перегреву и возгоранию. За шнур также можно споткнуться.

Time
Установив у себя дома зарядное устройство для электромобиля, вы получите самую быструю и эффективную зарядку. Использование розетки на 220 В для зарядки вашего автомобиля может вернуть вас к полной зарядке за более короткое время. Схема на 220 В, 50 А и потребляемая мощность 40 А будет заряжать автомобиль в течение ночи, в то время как схема на 110 В, 15 А и потребляемая мощность 10 А будет полностью заряжать электромобиль только за два-три дня.Проще говоря, мощность - это напряжение, умноженное на ток; следовательно, в 2 раза больше напряжения и в 4 раза больше тока, что означает 8-кратную мощность зарядки. А кому не нравится больше власти ?!

Tesla против NEMA

Вот большой вопрос для владельцев Tesla: стоит ли использовать зарядное устройство Tesla? Зарядное устройство Tesla обычно предлагает максимальную мощность зарядки с соответствующей схемой (обычно от 40 до 72 ампер, в зависимости от автомобиля), и выглядит красиво. Розетка NEMA 14-50 обычно рассчитана на ток от 32 до 40 ампер, в зависимости от зарядного кабеля и автомобиля.В большинстве приложений оба получают ~ 40 ампер и заряжаются за ночь. Розетка NEMA 14-50 также может быть адаптирована к другим электромобилям. В целом, любой из них обеспечит специальный результат быстрой зарядки.

В компании Efficient AC, Electric & Plumbing наши электрики из Остина проходят обучение по установке зарядных станций для электромобилей в домах и на предприятиях. По вопросам установки или записи на прием в районе Большого Остина звоните нам по телефону 512-501-2275.

Сколько ампер действительно нужно вашей домашней зарядной станции?

Уровень 2 - это то, что вам нужно.Это уж точно.

При покупке домашней зарядной станции для электромобиля необходимо учитывать множество факторов. Вы, безусловно, хотите быть уверены, что покупаете устройство у уважаемой компании, у которой есть хорошая гарантия и что она рассчитана на долгие годы.

Однако есть еще одно важное соображение: насколько мощная зарядная станция вам нужна? Большинство доступных сегодня электрических и гибридных транспортных средств могут принимать максимум от 16 до 32 ампер при зарядке на 240-вольтовой зарядной станции уровня 2.Однако сегодня доступны зарядные станции, которые могут обеспечивать большую мощность, хотя на самом деле очень немногие электромобили могут принимать ее.

Это может сбить с толку некоторых потребителей, покупающих зарядную станцию, поэтому давайте подробнее рассмотрим, в чем разница между устройством на 30 А и устройством, которое может выдавать 40 А.

Среднее ежедневное расстояние, которое проезжают жители Северной Америки, составляет от 26 до 31 миль. Для электромобилей это требует около 10 кВтч электроэнергии (у большинства электромобилей в среднем от 3 до 4 миль на кВтч.Зарядка электромобиля на 40 А (9,6 кВт) означает, что для зарядки до минимально необходимого дневного количества потребуется чуть больше часа, по сравнению с 1 часом 20 минутами при 30 А (7,2 кВт).

Поскольку большинство водителей электромобилей заряжаются за ночь, это несущественная разница, особенно когда автомобиль остается включенным в течение 8–10 часов. Еще один фактор, который следует учитывать, - это то, что начальная стоимость питания 40А EVSE по сравнению с 30А EVSE может быть очень значительной. Это потому, что для всей схемы необходимо использовать более толстый провод, а необходимый автоматический выключатель стоит дороже.Кроме того, многие бытовые электрические системы не имеют резервной электрической мощности для добавления зарядного устройства на 40 А, поскольку для этого требуется выделенная цепь на 50 А.

По мере того, как автомобильная промышленность все чаще переходит на электромобили, в сочетании с тем фактом, что средняя семья владеет двумя автомобилями, вполне вероятно, что два EVSE на семью скоро станут нормой. Даже если нынешняя мощность позволяет начать с 40A EVSE, любой семье будет непросто добавить второй в будущем. Два блока с возможностью разделения мощности на 30 А (суммарный максимум 32 А) для зарядки двух семейных электромобилей более экономичен, чем необходимость менять зарядный разъем с одного автомобиля на другой каждый вечер.

Покупая домашнюю зарядную станцию, убедитесь, что у вас есть все необходимые функции и качество. Однако убедитесь, что вы не платите за опцию, которую ваш электромобиль не может использовать, установка будет стоить вам дороже и может даже быть несовместимой с электроснабжением вашего дома. Зарядные станции FLO Home обеспечивают ток до 30 А, что более чем достаточно для полной зарядки вашего электромобиля за ночь, и вы готовы к работе на следующее утро.

Линия зарядных станций FLO Home наполнена функциями и деталями, недоступными на большинстве зарядных станций.Они изготовлены из компонентов высочайшего качества и рассчитаны на долгие годы. Вот почему они поставляются с лучшей в отрасли 5-летней ограниченной гарантией . Узнайте, почему FLO Home - это зарядная станция, которая должна быть в вашем гараже.

  • 5-летняя ограниченная гарантия (в среднем по отрасли: 3 года)
  • Прочный, 100% алюминиевый корпус, сертифицирован NEMA 4X
  • Элегантный практичный дизайн
  • Интеллектуальными функциями FLO Home X5 можно управлять в мобильном приложении FLO
Рекомендуемая производителем розничная цена: 1095 долларов (X5 с вольфрамовым корпусом) / 995 долларов (X5 с карбоновым корпусом) / 795 долларов (модель G5).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *