Схема зарядного устройства для автомобильного аккумулятора простейшая: Зарядное устройство для автомобильного аккумулятора своими руками: схемы, варианты, порядок изготовления

Содержание

КАК СДЕЛАТЬ - Простая схема зарядного устройства

     Десульфатацию автомобильных аккумуляторов, а также зарядно-восстановительную тренировку автомобильных аккумуляторов можно производить при помощи простого зарядно-восстановительного устройства, которое восстанавливает засульфатированные аккумуляторы «асиметричным» током.

 

     Кроме методики десульфатации аккумулятора в ручном режиме при помощи простейшего зарядного устройства, как описано в Десульфатация аккумулятора, известен еще один способ тренировки авотомобильного аккумулятора «асиметричным» током, когда в один полупериод аккумулятор заряжается, а следующий разряжается токами 10:1. Такой метод тренировки хорошо зарекомендовал себя не только при десульфатации аккумулятора, но и для профилактики исправных. Картинкаа кликабельна.

     Устройство обеспечивает возможность ускоренного заряда током до 10А, но рекомендуется зарядный ток 5А  и соответственно ток разряда 0.5А.

     Трансформатор можно взять любой, мощностью не менее 200Вт и выходным напряжением 22-25В. Например, можно использовать телевизионный трансформатор ТС-200. Сразу после трансформатора включено реле типаРПУ-0 с напряжением на обмотке 24В или любое другое. Если использовать реле на меньшее напряжения, то потребуется подобрать и последовательно с обмоткой реле включить добавочный резистор. Реле своими контактами подключает зарядно-восстановительное устройство к аккумулятору и предохряняет аккумулятор от разряда в случае пропадания напряжения в электросети.

    Заряд аккумулятора происходит во время одного полупериода через диоды VD1 , VD2. Во время второго полупериода, когда диоды закрыты, аккумулятор разряжается через резистор R4. Ток разряда составляет 0.5А.

    Зарядный ток устанавливается пременным резистором R2 и контролируется по амперметру. Учитывая, что в полупериод заряда часть тока заряда (10%) протекает через разрядный резистор, то показания амперметра необходимо устанавливать 1. 8А – амперметр показывает усредненное значение тока, а заряд производится в течение половины периода.

Немного об используемых деталях:

Трансформатор на напряжение 22-25В, можно телевизионный ТС-200.

Реле в принципе любое с напряжением обмотки 24В. Важно, чтобы контакты реле выдерживали ток не менее 10А. При использовании реле с обмоткой на 12В, его включаем через ограничивающее сопротивление.

Измерительный амперметр типа М42100 или любой на ток 3-5А

R2 может бітьот 3.3 до 15Ком.

Стабилитроны любые на напряжение от 7.5 до 12В.

Транзистор КТ827 модно заменить на КТ825, но при этом необходимо заменить полярность элементов, как показано на втором варианте схемы. Какртинка кликабельна.

     Транзистор должен быть установлен на радиатор площадью не менее 200кв.см. В качестве радиатора можно использовать металлическую стенку корпуса.

      В отличие от схемы полного автомата, описанной в  Десульфатация аккуумулятора схема ,   эта схема отличается простотой и достаточно высокой эффективностью. Ее можно собрать из любых подручных радиоэлементов. При этом требуется соблюсти необходимые напряжения и токи.

Возможно, вас заинтересуют статья Как построить гараж недорого и сопутствующие.

 

Читайте также:

Оставьте комментарий

Добавить комментарий

▶▷▶▷ простейшая схема пускового устройства для автомобильного аккумулятора

▶▷▶▷ простейшая схема пускового устройства для автомобильного аккумулятора
ИнтерфейсРусский/Английский
Тип лицензияFree
Кол-во просмотров257
Кол-во загрузок132 раз
Обновление:13-08-2019

простейшая схема пускового устройства для автомобильного аккумулятора - Полезные схемы для автолюбителя cxemnetavtoelectronics4php Cached Полезные схемы для автолюбителей Бортовые компьютеры, спидометры, тахометры, пробники, ДХО Схема пускового устройства - radiopillru radiopillrushema-puskovogo-ustrojstva Cached Схема пускового устройства - Схемы Схемы и программы для радиолюбителей menu menu Зарядное устройство - это очень просто electshemaruspravochnik-elektrikazaryadnoe Cached Простое зарядное устройство для автомобильного аккумулятора , схема Каждый автолюбитель сталкивался с ситуацией, когда двигатель автомобиля не заводится из-за севшего аккумулятора ЗУ для автомобильного аккумулятора своими руками plusmillionruzu-dla-avtomobilnogo-akkumulatora Cached Нарушения этих правил приводит к уменьшению емкости и срока эксплуатации Потому параметры зарядного устройства для автомобильного аккумулятора подбираются для каждого конкретного Как сделать зарядное устройство для автомобильного otvet4ikinfosdelat-zaryadnoe-ustroystvo Cached Перед тем, как приступить к изготовлению своими руками зарядного устройства для автомобильного аккумулятор, следует оценить свои познания и опыт в области электро- и радиотехники Зарядное Устройство Вза 4 Инструкция - skachatmarket skachatwhole108weeblycomblogzaryadnoe-ustrojstvo-vza Cached Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной Классическая схема зарядного устройства для автомобильного На Рис 4 представлена схема еще одного зарядного Как Починить Зарядное Устройство Для Автомобильного vivautorukak-pochinit-zarjadnoe-ustrojstvo-dlja Cached Для ремонта зарядного устройства для автомобильного аккумулятора перед началом его разборки обязательно надо убедиться в том, что устройство не подключено к электрической цепи Крышка Зарядное устройство для автомобильного аккумулятора своими tokarmasterrurekomendatsiizaryadnoe Cached Схема зарядного устройства для автомобильного аккумулятора с возможностью ручной регулировки тока заряда Ток заряда изменяется переменным резистором Несколько схем зарядных устройств radiopillruneskolko-shem-zaryadnyh-ustrojstv Cached Несколько схем зарядных устройств - Схемы Схемы и программы для радиолюбителей menu menu Доработка китайского зарядного устройства для телефонов wwwembedcomuaremontdorabotka-kitayskogo-zaryadnogo Cached Первое, что я обычно в них извращаю ставлю на вход ntc термистор для защиты от пускового тока и, если влазит в корпус, входной фильтр (двухобмоточный дроссель и 2 кондёра) или просто Promotional Results For You Free Download Mozilla Firefox Web Browser wwwmozillaorg Download Firefox - the faster, smarter, easier way to browse the web and all of 1 2 3 4 5 Next 767

  • простейшая
  • схема пускового уст
  • кового устройства для автомобильного аккумулятора

  • если влазит в корпус
  • схема Каждый автолюбитель сталкивался с ситуацией
  • схема Каждый автолюбитель сталкивался с ситуацией

простейшая схема пускового устройства для автомобильного аккумулятора Картинки по запросу простейшая схема пускового устройства для автомобильного аккумулятора Другие картинки по запросу простейшая схема пускового устройства для автомобильного аккумулятора Жалоба отправлена Пожаловаться на картинки Благодарим за замечания Пожаловаться на другую картинку Пожаловаться на содержание картинки Отмена Пожаловаться Видео Проще не бывает! Регулируемое Пуско зарядное устройство The valeriyvalki YouTube янв г МОЩНОЕ ПУСКО ЗАРЯДНОЕ УСТРОЙСТВО своими руками Evseenko Technology YouTube июл г Схема пускового устройства без импульсного трансформатора Николай Лесорубов YouTube янв г Все результаты Заряднопусковое устройство для автомобильного аккумулятора Зарядно пусковое устройство для автомобильного аккумулятора своими руками с Для изготовления простейшего , но достаточно мощного пускового схема зарядно пускового устройства для автомобильного аккумулятора Пусковое устройство для автомобиля своими руками типа Рейтинг , голосов мая г Для простейшей конструкции потребуется всего две вещи Схема Самодельное пусковое устройство для автомобиля Бытовые имеют ёмкость, достаточную для запуска авто с севшим аккумулятором Не найдено простейшая Классификация пуско Трансформаторный тип Бустеры и Делаем пусковое устройство для автомобиля своими руками meandrorgarchives Похожие янв г Для облегчения жизни аккумулятора и облегчения запуска двигателя Пусковое устройство для легкового автомобиля можно сделать своими руками Для начала рассмотрим схему самого простого пускового устройства , причем автомобильное пусковое устройство своими руками, Пусковое устройство для автомобиля Блоки питания Источники vprlrupublistochniki_pitanijabloki_pitanijapuskovoe Похожие Пусковое устройство для автомобиля поможет вам в мороз и при зимой, особенно если автомобильный аккумулятор не первой свежести, и на улице далеко не плюсовая температура Схема пускового устройства приведена ниже Основная часть устройства простейший трансформаторный Пусковое устройство для авто, схема Автосхемы, схемы для авто avtosxemacomshemapuskovoeustroystvodlyaavtoshemahtml Похожие мар г Схема пускового устройства , которую мы хотим вам предложить, простая , но надежная, смотри рисунок автор данной конструкции, такой метод позволяет не наносить вред автомобильному аккумулятору схема простейшего пускозарядного устройства для wwwzielemannlskhemaprosteishegopuskozariadnogoustroistvadlia схема простейшего пускозарядного устройства для автомобильного схема зарядно пускового устройства для автомобильного аккумулятора инструкций как собрать пускозарядное устройство для Электроника АКБ Рейтинг голос Простая схема пускового прибора для автомобиля Особенности сборки двухфазных пускозарядных устройств для автомобильного аккумулятора Заряднопусковое устройствоавтомат для автомобильного Схемы наших читателей Источники питания Простейшие самостоятельно изготовленные схемы автомобильных пусковых При этом устройство подключается параллельно с аккумулятором и Простое пусковое устройство, схема Поделки для авто авг г Всем известно, что при холодной погоде, аккумулятор понижает свою Схема пускового устройства довольна простая , но имеет Пуско зарядное устройство для автомобиля схема и описание wwwtexnicrukonstravtoavtoavtohtml Похожие Схема пуско зарядного устройства для легковых автомобилей зимой можно разогрев масло в картере авто , завести машину от другого аккумулятора Для нормальной работы пускового устройства требуется на выходе ток не Пусковое устройство своими руками советы и рекомендации по ilovekiarioru Новости дек г Для автомобиля вы можете сделать пусковое устройство своими руками Так, самую главную нагрузку возлагают на себя аккумулятор со стартером Схема пускозарядного прибора будет наглядно демонстрировать что Для этих целей отлично подойдёт простая ножовка по металлу Схема пускового устройства для автомобиля komitart янв г Как сделать пусковое устройство для запуска автомобиля в холодное время года хотим вам предложить, простая , но надежная, смотри рисунок позволяет не наносить вред автомобильному аккумулятору Пусковое устройство для автомобиля портативное своими руками мар г Схема пускового устройства для автомобиля своими руками В этой статье мы рассмотрим самую простейшую схему пускового устройства для автомобиля своими Так как при старте двигателя отдаваемый аккумулятором самодельный портативный пускач для авто подходит к концу Автоматическое заряднопусковое устройство для radiostoragenetavtomaticheskoezaryadnopuskovoeustrojstvodly Рейтинг голосов Схема автоматического устройства для зарядки автомобильного Автоматическое зарядно пусковое устройство для автомобильного аккумулятора Простейшие самостоятельно изготовленные схемы автомобильных пусковых Простое пускозарядное устройство своими руками для ВАЗ Список форумов Обучалка Практика февр г сообщений авторов Посоветуйте схему простого пускозарядного устройства для запуска машины ВАЗ , инжектор Пусковое устройство для авто схемы заряднопусковое устройства для автомобильных dushkzruskhemyzariadnopuskovoeustroistvadliaavtomobilnykhak мар г схемы зарядно пусковое устройства для автомобильных аккумуляторов Схемы зарядных устройств для автомобильных аккумуляторов окт г Простая схема пуско зарядного устройства включает в себя схема пусковое устройства для автомобильного аккумулятора zemiigoricomskhemapuskovoeustroistvadliaavtomobilnogoakkum схема пусковое устройства для автомобильного аккумулятора о сайте Схема пускового устройства , которую мы хотим вам предложить, простая , но Зарядное устройство для автомобильного аккумулятора своими Схемы простого зарядного устройства для автомобильного приобрести заводское зарядное устройство , лучше зарядно пусковое для Простейшие Как сделать зарядное устройства для автомобильного generatorvoltruzaryadnoeustrojjstvodlyaakkumulyatorasvoimiruka Похожие Рейтинг , голосов Зарядное устройство для аккумулятора своими руками Поэтому мы решили немного помочь владельцам авто и предоставить схему простейшего ЗУ с Схема зарядного устройства для автомобильного аккумулятора Наличие в схеме пускового устройства для автомобиля, собираемой своими руками, Схемы зарядных устройств для автомобильных аккумуляторов Простое зарядное устройство для автомобильного аккумулятора , схема Каждый и аккумулятору требуется больший пусковой ток, чтобы его запустить Простейшая схема зарядного устройства включает в себя мощный пусковое устройство автомобильное схема Gosselin Design gosselindesigncompuskovoeustroistvoavtomobilnoeskhemaxml пусковое устройство автомобильное схема Yahoo Search Results Yahoo Орион pw Пуско зарядные устройства для автомобильного аккумулятора Cached Пусковое устройство простая схема на х транзисторах Зарядное устройство для автомобильного аккумулятора своими avtomotoprofrukaksdelatzaryadnoeustroystvodlyaakkumulyatora Похожие Зарядные устройства , которыми производиться зарядка автомобильных АКБ Схема простого зарядного устройства , которое можно сделать самому количество всевозможных зарядных устройств от примитивных и простейших до приборов с Такие устройства называются зарядно пусковыми Очень простое зарядное устройство для АКБ Весёлый Карандашик Рейтинг голосов февр г У когото возникает необходимость в пусковом устройстве , изрядно Пензенский СОВНАРХОЗ г зарядное устройство Зарядное устройство для автомобильных аккумуляторов Вскрыв Электрическую схему зарядного устройства для автомобильных Простая светодиодная лампа Самодельное зарядно пусковое устройство Схема Nahuw net nahuwbahamaonrunetсамодельноезаряднопусковоеус Схема Самодельное пусковое устройство для автомобиля Самодельное Схема по ссылке, Устройство для автомобильных аккумуляторов без вложения денег Схема пускателя простая и состоит из двух основных узлов Пускозарядные устройства своими руками Простое пусковое Электрооборудование Схема пускового устройства , которую мы хотим вам предложить, простая такой метод позволяет не наносить вред автомобильному аккумулятору Простейший чертёж для пускателя на основе трансформатора показан ниже Купить пускозарядное устройство для автомобиля с доставкой Зарядно пусковое устройство А ВВ, амперметр, трансформаторное Переносное пускозарядное устройство для автомобилей AIRLINE предназначено Если автомобильный аккумулятор разряжен на , она уже не В пускозарядном устройстве реализована простая и эффективная схема Заряднопусковое устройство Схема и подробное описание joytaru wwwjoytaru Автоэлектроника Похожие нояб г Зарядно пусковое устройство представленное в этой статье от автомобильного аккумулятора большей стартовой мощности Не найдено простейшая простая схема пускового устройства для автомобильного аккумулятора Home Construction DIY июл г простая схема пускового устройства для автомобильного аккумулятора tm manXML mln answers found found thsd answers starproru Как сделать зарядное устройство для автомобильного аккумулятора blogpotolokrukaksdelatzaryadnoeustrojstvodlyaavtomobilnogoakk схема зарядного устройства для аккумулятора авто В простейшем устройстве используется стрелочный амперметр Нужно учитывать, что от емкости аккумулятора зависит пусковой ток, который определяет возможность Пусковое устройство автомобильное Диагностика и ремонт АКПП В этой статье мы рассмотрим самую простейшую схему пускового устройства для автомобиля своими руками, потому как большинство не обладает Автомобильное пусковое устройство PowerBank Кузовной Разбираем Jump Starter или что внутри пускового устройства для авто с Алиекспресс Простая схема зарядки для мото аккумулятора Hummer H заряднопусковые устройства для автомобильных аккумуляторов wwwnorrlandetsezariadnopuskovyeustroistvadliaavtomobilnykha мар г зарядно пусковые устройства для автомобильных аккумуляторов схема Зарядка аккумулятора асимметричным током простая схема схема и Схемы зарядных устройств для аккумуляторов Мощное пусковое устройство для автомобиля форд ремонт masterarumoschnoepuskovoeustroystvodlyaavtomobilyahtml Для начала рассмотрим схему самого простого пускового устройства , причем данное устройство очень Очень простая схема для повторения, минимум деталей, но в тоже время Как завести авто с севшим аккумулятором ? зарядно пусковые устройства своими руками схемы intersatlvfileszariadnopuskovyeustroistvasvoimirukamiskhemyxml мая г зарядно пусковые устройства своими руками схемы ИП Шелестов Зарядное устройство для автомобильного аккумулятора своими окт г Простая схема пуско зарядного устройства включает в себя пороговый пусковое зарядное устройство электроника схема Zabawa z Judo wwwzabawajudoplpuskovoezariadnoeustroistvoelektronikaskhema мая г пусковое зарядное устройство электроника схема пусковое устройство для автомобильного аккумулятора ПУСКО ЗАРЯДНОЕ Выполнялись зарядники по простейшей схеме трансформатор Для машины, Пусковое устройство для автомобиля своими руками Лада мастер июн г Вы этой статье мы расскажем о Пусковое устройство для автомобиля Аккумулятор верный друг и помощник в самых сложных Схема и тонкости сборки ПУ; Импульсное зарядно пусковое; Мобильные ПУ Простейший чертёж для пускателя на основе трансформатора показан ниже Как сделать пуско зарядное устройство для автомобиля своими autoflitru Советы Аккумулятор Похожие В чём отличие зарядного и пускового устройств ? Рассмотрена самая простая схема такого прибора, однако при пользовании им, следует соблюдать Зарядные и пусковые устройства wwwautouchinfozpustrhtml Похожие и пускозарядное устройство простейшей схемы может собрать любой ученик Автомобильное зарядное устройство пуско зарядное устройство простейшей сборки состоит из мощного трансформатора, диодного моста, которыми пуско зарядное устройство присоединяется к клеммам аккумулятора Схема зарядного и пускового устройства автомобиля Советы youautomobileppuashemazaryadnogoipuskovogoustrojstvaavtomobi Перейти к разделу схема зарядное пусковое устройство для автомобильных Схема пускового устройства довольна простая , Зарядное устройство для автомобильного аккумулятора выбор и krutimotorruzaryadnoeustrojstvoavtomobilnogoakkumulyatoravybor Зарядные устройства для автомобильных аккумуляторов виды двигатель позволяет автономное пусковое устройство бустер, однако Простая схема зарядного устройства данного типа ШИМ контроллер драйвера IR Самодельное зарядное устройство для аккумулятора автомобиля Схем зарядных устройств автомобильных аккумуляторов в Интернете схема самодельного зарядного устройства простая и состоит всего из схема заряднопускового автомобильного устройства wwwprogettorlandouninaitskhemazariadnopuskovogoavtomobilno дек г схема зарядно пускового автомобильного устройства устройство для автомобильного аккумулятора как Похожие Простая схема по Пусковые, зарядные и пускозарядные устройства из чего состоят июн г Для обслуживания аккумуляторов транспортных средств Выбирая автомобильное зарядное устройство , устройство его полезно знать, Простейшая трансформаторная зарядка для АКБ состоит из В основе схемы лежит симисторный регулятор с диодным мостом и резисторами Как собрать зарядное устройство для автомобильного аккумулятора Для сборки зарядного устройства для автомобильного аккумулятора нам потребуются самая простая схема на автоматическое ЗУ для авто АКБ Наличие в схеме пускового устройства для автомобиля, собираемой своими Зарядные устройства для автомобильного аккумулятора и его Обзор пускозарядных устройств для автомобильного аккумулятора размеры, расположение клемм, номинальное напряжение, емкость и пусковой ток и более простая схема зарядки аккумулятора авто без контроля заряда Тест пускозарядных устройств АвтоДела catalogautodelaruarticleview Начнем с комбинированных зарядно пусковых устройств , а точнее с простейшую схему ПЗУ может собрать даже первоклассниквторогодник Тест, автоматических зарядных устройств для автомобильных аккумуляторов схема автомобильное пускозарядное устройство для аккумулятора мар г Схема Зарядно пусковое устройство для автомобильного устройство для аккумулятора , но это еще не все Простая схема защиты зарядное устройство для автомобильного аккумулятора схема wwwdmvilijaltzariadnoeustroistvodliaavtomobilnogoakkumuliator мая г зарядное устройство для автомобильного аккумулятора схема пусковым аккумулятора схема пусковым Лучшее зарядное устройство для Похожие Простейшие самостоятельно изготовленные схемы Вместе с простейшая схема пускового устройства для автомобильного аккумулятора часто ищут пусковое устройство своими руками импульсное пусковое устройство своими руками автономное пусковое устройство для автомобиля своими руками пуско зарядное устройство для дизельных двигателей своими руками диодный мост для пуско зарядного пусковой бустер своими руками простое зарядное устройство для автомобильного аккумулятора самодельные пускозарядные устройства Документы Blogger Duo Hangouts Keep Jamboard Подборки Другие сервисы

простейшая схема пускового устройства для автомобильного аккумулятора

Простая схема зарядного устройства для автомобильного аккумулятора

Самая простая схема зарядного устройства для автомобильного аккумулятора: описание самоделки.

Если Вам срочно нужно зарядить севший аккумулятор в автомобиле, а под рукой нет зарядного, то его можно сделать из подручных материалов.

Такую схему зарядного устройства можно довольно просто собрать своими руками, при отсутствии паяльника и прочих радиоэлементов.

Прежде чем пользоваться таким зарядным устройством, хочу вас предупредить! Все детали, включая аккумуляторную батарею, находятся под опасным для жизни напряжением 220 вольт!
Поэтому соблюдайте элементарные правила электробезопасности!
На рисунке представлена схема простого зарядного устройства для автомобильного аккумулятора.

Как вы заметили, в схеме, всего две детали: лампа накаливания и диод.
При использовании лампы накаливания мощностью 100 Ватт, ток зарядки аккумулятора составляет около 0,25 Ампера. Также можно навесить еще такую же лампу и получить примерно 0,5 Ампера.

Детали: лампа накаливания любая стандартная, на напряжение 250 вольт; диод любой- напряжением 250 вольт и током не ниже 0,5 А.

Вот еще более сложная схема этого зарядного устройства:

В нем уже четыре диода или один диодный мост. Тут от одной 100 Ваттной лампы ток составляет около 0,5 Ампера. Но естественно можно его увеличить навесив параллельно еще лампы накаливания из расчета 1 лампа = 0,5 А.
Мощность диодов вычислите сами в зависимости от количества ламп и напряжением не ниже 250 вольт.

Вообще аккумуляторную батарею следует заряжать 0,1 от ее емкости. То есть если аккумуляторная батарея емкостью 90 ампер/ часов, то ток через нее должен быть 9 ампер. Время с полной разрядки до полного заряда составит около 10-12 часов. Но обычно таким током мало кто заряжает и берут обычно раза в два меньше и время больше.

Это простое зарядное устройство может выручить в ситуации когда неожиданной сел аккумулятор.
Однажды я приехал на дачу и по неловкости забыл выключить габариты. После нескольких часов работы на даче, перед тем как ехать я вставил ключ в замок зажигания и понял, что аккумулятор в ноль разряжен. Поблизости не то, что машин, людей нет, чтоб помощи попросить. Благо на даче было электричество.

Я быстро порылся в кладовке и нашел советскую плату от лампового телевизора. Снял от туда выпрямительную плату с диодами. Ну а лампочку найти не проблема. Собрал все минут за двадцать.
Снял аккумулятор, все соединил, включил в сеть. (будете делать подобное — не перепутайте последовательность действий!). Через часа три, решил попробовать завести, аккумулятор был не новый, но и не старый. Выключил, поставил аккумулятор, завел. Завелась машина без лишних трудностей. Ну а дальше пускай автомобильная система зарядки работает. И я без проблем добрался до дома.Ещё раз хочу напомнить! Такое зарядное устройство не рекомендуется для регулярной зарядки аккумулятора, но как разовая экстренная зарядка в безвыходной ситуации, вполне сгодится. Перед зарядкой, аккумулятор отключайте от бортовой сети и снимайте с автомобиля. При подключением зарядного в розетку, помните, что напряжение 220 вольт опасно для жизни!

Источник

Схема простого зарядного устройства аккумулятора » Паятель.Ру


Нарушение режима эксплуатации аккумулятора (вследствие неправильной работы реле-регулятора автомобиля, или длительного хранения) почти всегда приводит к сульфатизации пластин. В результате внутреннее сопротивление батареи возрастает, и даже в заряженном виде она не может выдать необходимый пусковой ток. Наиболее простой способ реанимации такой батареи это зарядка в тренировочном режиме, когда за один период сетевого напряжение происходит зарядка аккумулятора током в 5-10 ниже емкости батареи, в течении одного полупериода, и разрядка током в 50-100 раз ниже емкости батареи.


Обычно, после десяти часов такого режима большинство засульфатизированных аккумуляторов приходит в норму.

На рисунке показана схема простейшего устройства, реализующего такой режим. Во время положительного полупериода на базе составного транзистора появляется открывающее напряжение, которое устанавливается резисторами R1 и R2. Транзистор открывается и через него на аккумулятор поступает зарядный ток. Величина этого тока зависит от степени открывания VT1, а значит от положения движка R2. Зарядный ток, протекающий через батарею измеряется амперметром Р1.

С переходом сетевого напряжения через нуль транзистор VT1 закрывается, и в течении отрицательной полуволны сетевого напряжения происходит разрядка аккумулятора через мощный резистор R3.

Вольтметр Р2 служит для наблюдения за напряжением на аккумуляторе. Нельзя допускать чтобы оно было больше 14В.

Если аккумулятор сильно засульфатизирован, его внутреннее сопротивление будет велико, и даже при небольшом токе зарядки на нем будет падать повышенное напряжение (16-17В), этого допускать нельзя, и на первом этапе реанимации нужно резистором R2 установить такой ток, при котором напряжение на аккумуляторе будет не больше 14-14,5В, а затем, через 15-30 минут, постепенно увеличивать ток наблюдая чтобы напряжение не превышало 14 В.

Максимальный ток, который выдает это устройство, до 15 А, при необходимости ускоренной зарядке аккумулятора, можно устанавливать ток 10-12 А. Но при этом нужно следить за тем чтобы электролит не закипал (снять одну из крышечек, и если будет видно активное пузырение, уменьшить ток до такого уровня чтобы его не было).

Диоды Д242 можно заменить любыми другими диодами на ток не ниже 10 А, например КД213, Д243, КД202. Транзистор КТ827 можно заменить на КТ825, но при этом изменить полярность подключения диодов, Р1, Р2 и аккумулятора.

Амперметр Р1 — на ток до 3-5 А, но его шкалу нужно переградуировать, потому что его показания будут в 2,5 раза занижены, то есть если амперметр показывает 3 А, то на самом деле это 7,5 А. Вольтметр любой постоянного тока. Показания вольтметра корректировать не нужно, но они будут реальными только при подключенном аккумуляторе.

В качестве основы для трансформатора используется силовой трансформатор ТС200 (можно и ТС 180) от старых ламповых телевизоров. Нужно удалить все его вторичные обмотки, затем намотать новые, — две обмотки по 40 витков (на разных катушках трансформатора). А затем соединить их так же как соединены сетевые обмотки.

Транзистор и диоды должны быть на радиаторах, особенно транзистор. В качестве радиатора для транзистора можно использовать металлический корпус устройства, но при этом не соединять его с другими цепями, либо изолировать транзистор диэлектрическими прокладками (слюда).

Для диодов в качестве радиатора можно использовать металлический кронштейн площадью не менее 50 см2, который укрепить внутри корпуса на изоляционных стойках, чтобы он не имен контакта с корпусом устройства.

Схема и описание простого десульфатирующего устройства

 

Схема и описание простого самодельного десульфатирующего зарядного устройства для 12 вольтовых автомобильных аккумуляторов.


Наиболее простой способ "реанимации" батареи это зарядка в тренировочном режиме, когда за один период сетевого напряжение происходит зарядка аккумулятора током в 5 -10 ниже емкости батареи, в течение одного полупериода, и разрядка током в 50-100 раз ниже емкости батареи. Обычно, после десяти часов такого режима большинство засульфатизированных аккумуляторов приходит в норму. На рисунке показана схема простого зарядного устройства, реализующего такой режим.

Нажмите на рисунок для просмотра.

Во время положительного полупериода на базе составного транзистора появляется открывающее напряжение, которое устанавливается резисторами R1 и R2.

Транзистор открывается и через него на аккумулятор поступает зарядный ток. Величина этого тока зависит от степени открывания VT1, а значит от положения движка R2.

Зарядный ток, протекающий через батарею измеряется амперметром РА1.

С переходом сетевого напряжения через нуль транзистор VT1 закрывается, и в течении отрицательной полуволны сетевого напряжения происходит разрядка аккумулятора через мощный резистор R3.

Вольтметр PV1 служит для наблюдения за напряжением на аккумуляторе.

Нельзя допускать чтобы оно было больше 14 В. Если аккумулятор сильно засульфатизирован, его внутреннее сопротивление будет велико, и даже при небольшом токе зарядки на нем будет падать повышенное напряжение (16 - 17 В), этого допускать нельзя, и на первом этапе "реанимации" нужно резистором R2 установить такой ток, при котором напряжение на аккумуляторе будет не больше 14- 14,5 вольт, а затем, через 15 - 30 минут, постепенно увеличивать ток наблюдая чтобы напряжение не превышало 14 вольт.

При этом нужно следить за тем чтобы электролит не закипал (снять крышки с банок, и если будет видно активное пузырение, уменьшить ток до такого уровня чтобы его не было).

В качестве основы для трансформатора используется силовой трансформатор ТС200 (можно и. ТС 180) от ламповых телевизоров. Нужно удалить все его вторичные обмотки, затем намотать новые - две обмотки по 40 витков (на разных катушках трансформатора). А затем соединить их так же как соединены сетевые обмотки.

Максимальный ток, который выдает это устройство, до 15 А, при необходимости ускоренной зарядки аккумулятора, можно устанавливать ток 10 - 12 А.

Читать далее - Схема устройства для подзарядки автомобильных аккумуляторов

Популярные схемы зарядных устройств:

Схема тиристорного зарядного устройства

Десульфатирующее зарядное устройство

Простое зарядное устройство

Схема автомата включения-выключения зарядного устройства


Простая схема пуско зарядного устройства

Зарядно-пусковое устройство представленное в этой статье позволяет запустить автомобиль в зимнее время. Как известно пуск в зимнее время двигателя внутреннего сгорания автомобиля с подсевшим аккумулятором требует много сил и времени.

Плотность электролита, вследствие продолжительного хранения, существенно понижается, а протекающий внутри аккумулятора процесс сульфатации увеличивает внутреннее сопротивление его, тем самым, уменьшая стартовый ток аккумулятора. Плюс ко всему, в зимнее время повышается вязкость моторного масла, что требует от автомобильного аккумулятора большей стартовой мощности.

Как известно, облегчить пуск автомобиля зимой можно несколькими способами:

  • разогреть масло в картере авто;
  • завести машину от другой машины с надежным аккумулятором;
  • завести «с толкача»;
  • применить зарядно-пусковое устройство (ЗПУ).

Вариант с применением пускового устройства более удобен при хранении автомобиля в гараже либо на платной стоянке, где есть возможность подключить пусковое устройство к электросети. Помимо этого данное зарядно-пусковое устройство поможет не только завести авто с севшим аккумулятором, но и быстро восстановить и зарядить его.

В основном в промышленных образцах зарядно-пускового устройства, аккумулятор подзаряжается от источника питания средней мощности имеющий номинальный ток в пределах до 5А, которого, как правило, не хватает для непосредственного отбора тока стартером автомобиля. Несмотря на то что внутренняя емкость автомобильных аккумуляторных ПЗУ весьма велика (у некоторых моделях до 240 А/ч), но все же после нескольких заводов они, так или иначе «садятся», а быстро восстановить их заряд не получится.

Данное зарядно-пусковое устройство, отличается от промышленного прототипа незначительной массой и возможностью в автоматическом режиме поддерживать рабочее состояние аккумулятора ПЗУ, вне зависимости от срока хранения или эксплуатации. Даже если в ПЗУ нет внутреннего аккумулятора, он все равно может кратковременно выдать пусковой ток до 100А. Также существует неплохая схема зарядного устройства для аккумулятора с регулировкой тока заряда.

Для восстановления пластин аккумулятора и снижения температуры электролита во время зарядки, в зарядно-пусковом устройстве предусмотрен режим регенерации. В данном режиме происходит чередования импульсов зарядного тока и пауз.

Принципиальная схема

Схема пускового зарядного устройства содержит симисторный регулятор напряжения (VS1), силовой трансформатор (T1), выпрямитель на мощных диодах (VD3, VD4) и стартерный аккумулятор (GB1). Ток подзарядки выбирается регулятором тока на симисторе VS1, его ток регулируется переменным резистором R2 и зависит от емкости аккумулятора.

Входная и выходная цепи зарядки имеют конденсаторы фильтра, который уменьшает степень радиопомех при работе симисторного регулятора. Симистор VS1 обеспечивает регулировку тока зарядки при разбросе напряжения сети в пределах от 180 до 220 В.

Обвязка симистора состоит из R1-R2-C3 (RC цепь), динистора VD2 и диодного моста VD1. Константа времени RC — цепи влияет на момент открытия динистора (отсчитывая от начало сетевого полупериода), который включен в диагональ выпрямительного моста через ограничительный резистор R4. Выпрямительный мост осуществляет синхронизацию включение симистора в обоих полупериодах сетевого напряжения. В режиме «Регенерация» применяется только один полупериод сетевого напряжения, что способствует отчистке пластин аккумулятора от имеющейся кристаллизации. Конденсаторы С1 и С2 уменьшают степень помех от симистора в сети до приемлемых уровней.

Детали

В зарядно-пусковом устройстве применен силовой трансформатор от телевизора «Рубин». Возможно также использование трансформатора типа ТСА-270. Перед тем как перемотать вторичные обмотки (первичные остаются без изменений), каркасы отделяются от железа, все бывшие вторичные обмотки (до фольги экранов) удаляют, а на освободившееся место наматывают медным проводом сечением 1,8…2,0 мм2 в один слой (до заполнения) вторичные обмотки. В результате перемотки напряжение одной обмотки должно получиться примерно 15… 17 В.

Для визуального контроля зарядного и пускового тока в схему зарядно-пускового устройства введен амперметр с шунтирующим резистором. Сетевой выключатель SA1 должен быть рассчитан на максимальный ток 10 А. Сетевой переключатель SA2 (типа ТЗ или П1Т) позволяет выбрать максимальное напряжение на трансформаторе в соответствии с напряжением сети. Внутреннего аккумулятора марки 6СТ45 или 6СТ50 должно хватить на 3-5 одновременных пусков. Резисторы в ЗПУ можно применить типа МЛТ или СП, конденсаторы С1,С2 — КБГ-МП, C3 – МБГО, С4 — К50-12, К50-6. Диоды Д160 (без радиаторов) можно поменять на другие с допустимым током более 50 А, симистор — типа ТС. Подсоединение ЗПУ к аккумулятору автомобиля необходимо производить мощными зажимами «Крокодил» (на рабочий ток до 200 А). В устройстве важно применить заземление.

Настройка

При настройке к устройству подсоединяется (соблюдай полярность!) внутренний аккумулятор GB1, и испытывается регулировка зарядного тока резистором R2. Затем проверяется зарядный ток в режиме заряда, пуска и регенерации. Если ток не более 10…12А, то ЗПУ находится в рабочем состоянии. При подсоединении зарядно-пускового устройства к аккумулятору автомобиля, ток заряда вначале должен возрасти примерно 2-3 раза, а через 10 — 30 мин понизиться до первоначального значения. После этого переключатель SA3 щелкается в режим «Пуск», и происходит завод двигателя автомобиля. В случае неудачной попытки завести двигатель, производится дополнительная подзарядка в течение 10 — 30 мин, и попытка повторяется.

С тем, что аккумуляторная батарея для любого автомобиля является крайне важным элементом никто не спорит. Но то, что любой батарее, вне зависимости от ее стоимости, новизны и бренда, требуется периодическое обслуживание, знает не каждый автовладелец. Кроме самого аккумулятора, постоянного внимания требует и генератор, осуществляющий постоянный заряд АКБ в процессе эксплуатации автомобиля. В итоге достаточно часто можно сталкиваться с тем, что аккумулятор оказывается недостаточно заряженным для того, чтобы без проблем запустить двигатель.

Особенно остро такая проблема вырисовывается в зимнее время, когда без посторонней помощи завести авто получается далеко не у каждого автовладельца. Это может быть связано с такими проблемами, как:

  • недозаряд АКБ в результате сбоев в работе авто генератора или иного устройства;
  • недостаток электролита, объем которого нужно периодически восполнять;
  • некорректная плотность электролита;
  • деструктивные процессы в АКБ, препятствующие нормальному процессу заряда.

Все вышеперечисленное не является «приговором» для батареи, и легко устраняется регулярным обслуживанием.

Пуско-зарядное устройство – нужно ли иметь его в гараже

Как правило, большинство автомобилистов периодически сталкиваются с проблемой трудного пуска или его полной невозможности. С наступлением холодов ситуация резко усугубляется. Путей решения уже возникшего затруднения не так много, и завести двигатель, когда сел собственный аккумулятор можно следующим образом:

  • с «толкача»;
  • путем буксировки;
  • прикурить аккумулятор от другого автомобиля;
  • быстро зарядить аккумулятор током большой силы – используется специальное устройство.

Все эти способы далеки от идеала, и невозможны в некоторых случаях. К примеру, буксировать автомобиль с АКПП невозможно, а с инжектором нежелательно. Чтобы не искать донора для прикуривания, на что крайне неохотно идут владельцы автомобилей, полезно иметь в гараже зарядно пусковое устройство для аккумулятора, которое позволяет быстро и безопасно запустить двигатель в любой мороз и при любом состоянии родной батареи.

Зарядно пусковое устройство для автомобильного аккумулятора обладает компактными размерами и высокой эффективностью, поэтому при любых проблемах с аккумулятором становится наилучшим вариантом пуска двигателя. Для его работы потребуется всего лишь электрическая розетка. Использовать портативное зарядно пусковое устройство для автомобильного аккумулятора легко – достаточно подключить плюсовой провод на соответствующую клемму аккумулятора, а минусовой на массу, поближе к стартеру. После включения ПЗУ можно легко завести двигатель, даже если аккумулятор весьма «слаб».

ПЗУ – покупать или сделать самому

При всех достоинствах устройств заводского изготовления, они все же обладают некоторыми недостатками. К их числу относится, прежде всего, высокая стоимость мощных приборов, а те, что подешевле, часто обладают слишком малой мощностью, и для зимней эксплуатации подходят мало. В качестве выхода из такого затруднения можно рассмотреть вариант собственноручного изготовления пуско-зарядного устройства для аккумулятора, для чего не потребуются особые знания в области радиоэлектроники.

Конечно, имеется и очевидный плюс – это совмещенность пускового и зарядного прибора в едином корпусе. Но при наличии отдельного «зарядника» для АКБ изготовить зарядно-пусковое устройство для аккумулятора своими руками вполне целесообразно. Для изготовления простейшего, но достаточно мощного пускового устройства потребуется один трансформатор и пару диодов. Расчетная мощность создаваемого прибора обязана составлять не менее 1,4 кВт – такого хватит для пуска мотора практически с нулевым зарядом аккумулятора. Схема ПЗУ предельно проста, но из года в год приборы, собранные таким образом, серьезно выручают множество автолюбителей.

Перед сборкой данного пускового устройства следует приготовить достаточной длины питающий кабель.

Для обеспечения удобства использования можно монтировать выключатель S1, но он должен выдерживать нагрузку не менее 10А.

Выходные параметры – важные показатели для надежной работы

Вышеприведенная схема зарядно-пускового устройства для автомобильного аккумулятора отличается своей достаточной простотой, но для создания эффективного устройства необходимо тщательно рассчитать выходные параметры – это позволит обеспечить легкий запуск и не повредит самому аккумулятору. Двигатель при попытке пуска "съедает" достаточно много энергии – не меньше 100 А, с напряжением до 14 В. Соответственно, мощность трансформатора обязана составлять не меньше 1400 Вт. Зарядно-пусковое устройство для аккумулятора автомобиля такой мощности легко запустит двигатель и вовсе без аккумулятора.

Конечно, портативное зарядно-пусковое устройство для аккумулятора, даже такой мощности не заменяет аккумулятор, который при пуске все же необходим. Стартер может потреблять при запуске до 200 А, и часть этой мощности как раз и будет обеспечиваться АКБ, пусть даже и не полностью заряженной. После удачной раскрутки коленвала энергопотребление стартера падает практически вдвое, и с этой задачей пусковое устройство вполне справиться уже самостоятельно. К слову сказать, пуско-зарядные устройства, купленные в магазине, обеспечивают не более половины этой мощности, и при сильно разряженном аккумуляторе с задачей пуска двигателя просто не справятся.

Сечение сердечника, используемого в этой конструкции составляет 36 см 2 . Провод, который используется для первичной обмотки должен иметь сечение не меньше 2 мм 2 . Будет отлично, если трансформатор с такими характеристиками будет заводского изготовления. Родная вторичная обмотка подлежит удалению, и меняется на самостоятельно намотанную. В этом случае используется банальный метод подбора. После того как наматывается, к примеру, 10 витков, трансформатор включается в сеть, и замеряется полученное напряжение.

Его необходимо разделить на число уже сделанных самостоятельно витков, т. е. 10 – получается напряжение на каждом витке. Затем необходимо 12 разделить на полученное напряжение, в результате получается требуемое количество витков каждого плеча. Для вторичной намотки подойдет медный провод в качественной изоляции с сечением не меньше 10 мм 2 . После окончания работ по созданию вторичной обмотки подключаются диоды, которые можно взять, к примеру, со старого сварочного аппарата. Если все работы выполнены правильно, контрольный замер тока в самодельном ПЗУ не превысит 13,8 В.

Как не допустить критичного разряда АКБ

Несмотря на то, что схемы зарядно-пускового устройства для АКБ не отличаются сложностью для самостоятельной сборки, использования пуско-зарядных лучше постараться все же избежать. Для этого любой аккумулятор, с момента ввода его в эксплуатацию, требует постоянного технического обслуживания. Стоит отметить, что все проводимые процедуры не отличаются сложностью и вполне могут выполняться самостоятельно:

  • не менее 6 раз в год следует замерять напряжение на АКБ мультиметром;
  • 3-4 раза в год проводить контроль уровня электролита;
  • подвергать батарею полной зарядке на специальном зарядном устройстве;
  • контролировать плотность электролита – важнейший показатель, во многом определяющий работоспособность аккумулятора.

Все эти мероприятия должны носить регулярный характер, что позволит всегда быть уверенным в собственной батарее. Для проведения тестов потребуется минимальное количество «оборудования»:

  • мультиметр, лучше цифровой, поскольку его отличает точность измерений;
  • полая стеклянная трубочка длиной 20-25 см – она потребуется для измерения уровня электролита;
  • для проверки плотности потребуется ареометр.

Чтобы своевременно корректировать уровень потребуется еще дистиллированная вода, которая добавляется в банки при недостатке раствора, и концентрированный электролит, применяемый при падении плотности ниже расчетной для конкретного региона.

По неким причинам у меня в автомобиле уже третью зиму аккумулятор перестает крутить стартер большими морозами. Я решил облегчить жизнь аккумулятора и сделать пусковое устройство для автомобиля. Стоимость пускового устройства заводского исполнения довольно большая, да и выходные параметры оставляют желать лучшего. Для изготовления пускового устройства необходимо всего несколько деталей. Все они дорогостоящие, но достаточно распространенные. Мне удалось добыть их практически за бесценок, купил только сетевой и силовой провод.

Начнем с трансформатора. Мне удалось найти трансформатор с готовой первичной обмоткой на 220В и достаточной мощности. Удаляем вторичные обмотки. На данном трансформаторе первичная обмотка разбита на две части, которые соединены попутно. После удаления обмоток была следующая картина:

Далее наматываем 10 витков любого изолированного провада, я брал из старой автомобильной проводки. Включаем трансформатор в сеть. Измеряем напряжение на только что намотанной вторичной обмотке. Расчитываем напряжение одного витка. При напряжении 240В, это считается максимальное напряжение, напряжение вторичной обмотки должно быть 14,5В. При меньшем напряжении сети выходное напряжение соответственно должно быть ниже, величина расчитывается пропорцией из вышеприведенных величин. Расчитываем количество витков вторичной обмотки, для этого необходимо получившееся напряжение, согласно перещету, разделить на напряжение одного витка.

Следующим шагом по величине окна между катушками и количеству витков расчитываем максимальный диаметр провода. Следует учитывать, что катушки будут две. У меня диаметр получился 5мм. Провод взят был из кабеля АВВГ 5х10, с изоляцией его диаметр был 5мм. Длинну провода можно расчитать по длине одного витка. Уменя такой длины небыло, пришлосьскручивать. Наматываем две вторичные обмотки. Одна катушка наматывается на одной половине трансформатора, другая на другой. После намотки конец катушки откусывается с расчетом намотки еще нескольких витков. Намотанный трансформатор пускового устройства показан на изображении ниже:

Устанавливаем два мощных диода вместе с радиаторами на диэлектрическую поверхность. Хорошо подайдут диоды из сварочного аппарата. В качестве диэлектрической поверхности служит текстолит толщиной 4-5 мм.

Соединяем катушки и диоды согласно схемы. Переключатель ставится по желанию, я не ставил.

Далее производим контрольные замеры. Напряжение на каждой вторичной обмотке должно быть не более 14,5В, соответственномежду крайними выводами двух обмоток 29В. На выходе пускового устройства, за счет падения напряжения на диодах, напряжение будет чуть ниже, около 14В. Напомню эти параметры должны быть при 240В в сети. Если напряжение больше необходимо отмотать необходимое количество витков согласно напряжения одного витка. При меньшем напряжении доматываем, для этого мы и оставляли запас провода при намотке.

Провода от пускозарядного до аккумулятора были взяты от так называемого прикуривателя. Никому этого делать несоветую, через два пуска они расплавились, заменил на сварочные. После этого уменьшились потери в проводах и увеличилась полезная мощность.

Данное пусковое устройство заводит дизельный легковой автомобиль, грузовые не пробывал, но по скорости вращения сказал бы, что и грузовые, с полностью нулевым аккумулятором.

Все вопросы по рассчетам и сборке пускового устройства можно задать на форуме.

Схема автомат зу


Автоматическое зарядное устройство 12 В

Это очень простая схема приставки к вашему уже имеющемуся зарядному устройству. Которая будет контролировать напряжение заряда аккумуляторной батареи и при достижении выставленного уровня - отключать его от зарядника, тем самым предотвращая перезарядку аккумулятора.
Это устройство не имеет абсолютно никаких дефицитных деталей. Вся схема построена всего на одном транзисторе. Имеет светодиодные индикаторы, отображающие состояние: идет зарядка или батарея заряжена.

Кому пригодятся это устройство?


Такое устройство обязательно пригодится автомобилистам. Тем у кого есть не автоматическое зарядное устройство. Это приспособление сделает из вашего обычного зарядного устройства - полностью автоматический зарядник. Вам больше не придется постоянного контролировать зарядку вашей батареи. Все что нужно будет сделать, это поставить аккумулятор заряжаться, а его отключение произойдет автоматически, только после полной зарядки.

Схема автоматического зарядного устройства



Вот собственно и сама схема автомата. Фактически это пороговое реле, которое срабатывает при превышении определенного напряжения. Порог срабатывания устанавливается переменным резистором R2. Для полностью заряженного автомобильного аккумулятора он обычно равен - 14,4 В.
Схему можете скачать здесь - http://www.mediafire.com/file/0ldtxs4ma6mt2q2/12V-Auto-Cut-Off-Charger_circuit_By_hawkar_Fariq.pdf Источник: https://sdelaysam-svoimirukami.ru/?do=lastcomments

Печатная плата



Как делать печатную плату, решать Вам. Она не сложная и поэтому ее запросто можно накидать на макетной плате. Ну или можно заморочиться и сделать на текстолите с травлением.

Настройка


Если все детали исправные настройка автомата сводиться только к выставлению порогового напряжения резистором R2. Для этого подключаем схему к зарядному устройству, но аккумулятор пока не подключаем. Переводим резистор R2 в крайнее нижнее положение по схеме. Устанавливаем выходное напряжение на заряднике 14,4 В. Затем медленно вращаем переменный резистор до тех пор, пока не сработает реле. Все настроено.
Поиграемся с напряжением, чтобы убедиться что приставка надежно срабатывает при 14,4 В. После этого ваш автоматический зарядник готов к работе.

Смотрите видео работы зарядного устройства



В этом видео вы можете подробно посмотреть процесс всей сборки, регулировки и испытания в работе.
Original article in English

sdelaysam-svoimirukami.ru

АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО АВТОМОБИЛЬНОЕ

   Автоматическое зарядное устройство предназначено для зарядки и десульфатации 12-ти вольтовых АКБ ёмкостью от 5 до 100 Ач и оценки уровня их заряда. Зарядное имеет защиту от переполюсовки и от короткого замыкания клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей дозарядкой до полного уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор вручную или выбрать уже заложенные в управляющей программе. 

   Основные режимы работы устройства для заложенных в программу предустановок. 

 >>
Режим зарядки - меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:

- первый этап - зарядка стабильным током 0.1С до достижения напряжения14.6В 

- второй этап -зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С 

- третий этап - поддержание стабильного напряжения 13. 8В, пока ток не упадет до 0.01С. Здесь С - ёмкость батареи в Ач. 

- четвёртый этап - дозарядка. На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала. 

   Для стартерных АКБ применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается дозарядка.

 >> Режим десульфатации — меню «Тренировка». Здесь осуществляется тренировочный цикл: 10 секунд - разряд током 0,01С, 5 секунд - заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее - обычный заряд. 

 >>
Режим теста батареи позволяет оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ. 

 >> Контрольно-тренировочный цикл. Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С - 0.05С (ток 10-ти или 20-ти часового разряда). 

Схема зарядного автомата для 12В АКБ



Принципиальная схема автоматического автомобильного ЗУ



Рисунок платы автоматического автомобильного ЗУ

   Основа схемы - микроконтроллер AtMega16. Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню. Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля. Настроенные параметры сохраняются в энергонезависимой памяти.

   Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM. Более подробно о настройке читайте на форуме.

   Управление основными процессами возложено на микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4, C9, R7, C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера - встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10 R11. 


   Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5 R6 R10 R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине. 

   Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения - на элементах VD1, EP1, R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. 

   В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

О деталях схемы автоматической зарядки


   Резистор R8 – керамический или проволочный, мощностью не менее 10 Вт, R12 - тоже 10Вт. Остальные - 0.125Вт. Резисторы R5, R6, R10 и R11 нужно применять с допустимым отклонением не хуже 0.5%. От этого будет зависеть точность измерений. Транзисторы T1 и Т1 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В. 


   Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2,Т1 иТ2 через изолирующие прокладки размещаются на одном радиаторе площадью 40 квадратных сантиметров. Звукоизлучатель - со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13. 

   ЖКИ – Wh3602 или аналогичный, на контроллере HD44780, KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр 


   Налаживание заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор». 


   Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5, R6, R10, R11, R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично - калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 секунды устройство перейдет в главное меню. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком - либо КУ сильно отличаются от нуля, нужно подобрать другие резисторы делителя R5, R6, R10, R11, R8, иначе в работе устройства возможны сбои. При точных резисторах поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. И в заключение. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.

Переделка БП АТХ под зарядное устройство



Схема электрическая доработки стандартного ATX

   В схеме управления лучше использовать прецизионные резисторы, как указано в описании. При использовании подстроечников параметры не стабильные. проверено на собственном опыте. При тестировании данного ЗУ проводил полный цикл разрядки и зарядки АКБ (разряд до 10,8В и заряд в режиме тренировки, потребовалось около суток). Нагревание ATX БП компьютера не более 60 градусов, а модуля МК еще меньще.


   Проблем в настройке не было, запустилось сразу, только нужна подстройка под максимально точные показания. После демострации работы другу-автолюбителю этого зарядного автомата, сразу заявка поступила на изготовление еще одного экземпляра. Автор схемы - Slon, сборка и тестирование - sterc.

   Форум по АЗУ на МК

   Обсудить статью АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО АВТОМОБИЛЬНОЕ


radioskot.ru

Полностью автоматическое зарядное устройство для аккумуляторов

Привет всем, в этой статье я расскажу, как можно сделать простой импульсный стабилизатор, который может быть использован в качестве автомобильной зарядки, источника питания или лабораторного блока питания.Эта схема отлично заточена под зарядку автомобильных аккумуляторов с напряжением 12 вольт, но стабилизатор универсальный, поэтому им можно заряжать любые типы аккумуляторов, как автомобильных, так и всяких других, даже литий-ионных, если они снабжены платой балансировки.Схема зарядного устройства состоит из 2-х частей, блока питания и стабилизатора, начнём пожалуй со стабилизатора.Стабилизатор построен на популярного шим-контроллера TL494, позволит получить выходное напряжение от 2-х до 20 вольт, с возможностью ограничения выходного тока от 1 до 6 ампер, при желании ток можно поднять до 10 ампер.Процесс заряда будет осуществляться методом стабильного тока и напряжения, это наилучший способ для качественной и безопасной зарядки аккумуляторов. По мере заряда аккумулятора ток в цепи будет падать и в конце процесса будет равен 0, следовательно нет опасности перегрева аккумулятора или зарядного устройства, так что процесс не требует человеческого вмешательства.Возможно также использования этого стабилизатора в качестве лабораторного источника питания.

Теперь несколько о самой схеме

Это импульсный стабилизатор с шим-управлением, то есть КПД куда больше, чем у обычных линейных схем. Транзистор работает в ключевом режиме управляясь шим-сигналом, это снижает нагрев силового ключа. Основной транзистор управляется маломощным ключом, такое включение обеспечивает большое усиление по току и разгружает микросхему ШИМ.По сути это аналог составного транзистора. Транзистор нужен с током на менее 10 ампер, возможно также использование составных транзисторов прямой проводимости. Регулировка выходного напряжения осуществляется с помощью переменного резистора R9, для наиболее точной настройки желательно использовать многооборотный резистор, притом очень советую использовать резистор с мощностью 0.5 ватт.Нижним резистором можно установить верхнюю границу выходного напряжения, а подбором соотношения резисторов R1, R3, устанавливается нижняя граница выходного напряжения.Для более быстрой и точной подстройки этот делитель может быть заменён на многооборотный подстроечный резистор сопротивлением от 10 до 20 ком. За ограничение тока отвечает переменный резистор R6, верхнюю границу выходного тока можно изменить подбором резистора R4.

Обратите внимание на чёткое срабатывание функции ограничения, даже при коротком замыкании, ток не более 6.5 ампер. Регулируется довольно плавно, если использовать многооборотный резистор.

Токовый шунт или датчик тока…, тут хотел бы обратить ваше внимание на то, что входные и выходные земли разделяются шунтом, обратите на это внимание при сборке. В качестве шунта можно использовать отрезок нихромовый проволоки с нужным сопротивлением. В моём же варианте было использование snd-шунты, которые можно найти на платах защиты аккумуляторов от ноутбука. Номинальное сопротивление шунта 0.5 ом +- 50%. При токе в 6 ампер такой шунт справляется очень даже не плохо.Силовой дроссель…  Сердечник взят из выходного дросселя групповой стабилизации компьютерного блока питания, обмотка состоит из 30 витков, намотана двойным проводом, диаметр каждого составляет 1 мм. Тут важен один момент, количество нужно будет подобрать в зависимости от рабочей частоты генератора и материалов магнитопровода. Не верно подобранный дроссель приведёт к сильному нагреву силового ключа при больших токах, это легко понять по характерному свисту при токах в 2-3 ампера, если свист присутствует, то нужно увеличить рабочую частоту генератора.Для этих целей сопротивление резистора R2 снижается до 1 ком и последовательно ему подключается многооборотный подстроечный резистор на 10 ком, таким образом частоту генератора можно менять в пределах от 50 до 550 кГц.

Введите электронную почту и получайте письма с новыми поделками.

После настройки на нужную частоту, подстроечный резистор выпаивается, измеряется его сопротивление, прибавляется к полученному числу сопротивление дополнительного резистора в 1 ком и сборка заменяется одним постоянным резистором близкого сопротивления. Этим настройка завершена…

Силовой диод VD1 очень советую — шотки, с напряжение не менее 60 вольт и током от 10 ампер. При токах в 3-4 ампера тепловыделения почти не наблюдается, если же собираетесь гонять схему на больших токах, то нужен радиатор. Возможно и применение обычных импульсных диодов с нужным током.В качестве источника питания может быть задействован либо импульсный блок питания, либо сетевой трансформатор дополненный диодным выпрямителем и сглаживающим конденсатором. В обоих случаях постоянное напряжение с источника питания должно быть не менее 16\17 вольт и ток до 10 ампер.

Я использовал обыкновенный трансформатор с диодным мостом. Ну вот вроде и всё, всем спасибо за внимание, печатка находиться в архиве.Архив к статье; скачать…

Автор; АКА Касьян

xn--100--j4dau4ec0ao.xn--p1ai

Зарядное устройство автомат для автомобильных АКБ

Это зарядное устройство верой и правдой служит уже года 4, причём оно в отличии от многих других самодельных и промышленных автозарядок имеет несколько преимуществ, которые и сподвигли на создание сего девайса. Во-первых простота и надёжность схемы (без всяких процессоров) и наглядный простой светодиодный индикатор — полоска по вольтам. Псевдо-аналоговый вольтметр на 12 светодиодах был сделан на микросхеме UAA180, которую выпаял с какого-то тахометра. А к контактам АС подключаем трансформатор ~14 В / 5 А.

Схема автоматической зарядки для батарей авто

Автоматизация зарядки основана на так называемом компараторе — система, взятая из старых схем по заряду батареек + немного собственных модификаций. Задача модуля состоит в том, чтобы управлять реле (с контактами на 10 А), которое в свою очередь подает 12 В выпрямленного напряжения от основной вторичной обмотки на свинцовый АКБ.

Контроллер имеет вентилятор на достойном кулере из старого источника питания ПК. В качестве датчика температуры использовались 4 диода 1N4148, соединенных последовательно, получив изменение напряжения примерно 10 мВ / С. Установлен порог переключения примерно 40C, но вентилятор редко включается даже летом.

Корпус готовый из набора. Лицевая панель напечатана на желтой клейкой бумаге, на которой также прикрепил самоклеющуюся пленку. Решение оказалось надёжным и сохранилось в течение 4-х лет в самых трудных условиях (гаражи, подвалы) без повреждений. Под трансформатором, на задней панели и в верхней части, просверлил несколько десятков вентиляционных отверстий. Вентилятор был установлен таким образом, чтобы он вытягивал теплый воздух наружу. В течение многих часов работы корпус зарядного лишь слегка теплый.

Принцип действия автоматического ЗУ

Выпрямитель для заряда АКБ имеет 3 режима работы, выбранных переключателем:

  1. Автоматическая зарядка — заряд начнется только после подключения батареи, если ее напряжение будет больше 10 В и закончится, когда оно достигнет 15 В;
  2. Нет зарядки — переключатель в среднем положении — полезен для замера фактического напряжения батареи;
  3. Непрерывная зарядка — на клеммах постоянно подается напряжение, независимо от того, подключена ли батарея и каково ее реальное напряжение.

Вольтметр имеет нижнюю пороговую настройку измеряемого напряжения и верхнюю. Там использованы потенциометры, чтобы точно установить пороговые значения. Диапазон измеряемого напряжения составляет 6 вольт, поэтому 6 [В] / 12 [LED] = 0,5 В / LED, и на практике оно так и есть. Задача вольтметра — показать, какое примерно напряжение находится на клеммах аккумулятора.

За последние годы это самодельное зарядное устройство зарядило десятки батарей, в том числе у соседей по гаражному массиву. Начиная от новых 80 Ач — до старых 36 Ач и собрало очень лестные отзывы. Несмотря на отсутствие регулировки тока зарядки, схема работает отлично. Чем выше емкость аккумулятора, тем выше начальный зарядный ток (низкое внутреннее сопротивление батареи). Самый высокий ток составляет 6 А при зарядке аккумулятора емкостью 80 Ач. Типичный начальный ток 3-5 А, в зависимости от типа батареи. По завершении процесса система отключается, что слышно щелчком реле.

Какой вольтаж должен быть на авто АКБ

Обратите внимание что газы (то есть разделение воды на кислород и водород), являются признаком окончания зарядки аккумулятора, этот процесс начинается когда напряжение батареи превышает 14,4 В (2,4 В на ячейку). Производители аккумуляторов рекомендуют зарядку до 15 В (2,5 В на ячейку). Превышение этого напряжения может привести к повреждению аккумулятора. Также, по словам производителей, напряжение в установке автомобиля должно составлять 13,9-14,5 В. В конце зарядки ток составляет около 1 А.

Превышение значения 14,5 В приводит к довольно быстрому увеличению электролиза, в случае неоткрытых батарей — это реальная проблема. Для AGM и GEL еще хуже, потому что, если системы рекомбинации не справятся, то даже инвазивная заливка не является вариантом. Возможен уход активной массы и проблемы с АКБ в более позднее время, если не сразу.

Типичный автомобильный аккумулятор, состоящий из 6 ячеек, имеет:

  • электродвижущая сила: приблизительно 12,6 В
  • номинальное напряжение одной ячейки: 2,105 В
  • минимальное зарядное напряжение 10,8 В
  • после окончания заряда минимум: 13,9 В, максимум 14,5 В
  • коэффициент саморазряда аккумулятора : 3-20% в месяц
  • типичный зарядный ток 1 / 10 С
  • долговечность: 500 — 800 циклов.

Напряжение батареи должно быть измерено через 12 часов после зарядки, чтобы обеспечить точные данные. После полной зарядки напряжение быстро падает до 13,2 В, а затем медленно до 12,6 вольт. В случае глубокой разрядки аккумулятора, целесообразно зарядить его постоянным током до напряжения 16 вольт.

2shemi.ru

Автоматическое ЗУ своими руками — DRIVE2

Однажды зимой сел аккумулятор и я решил сделать АЗУ, можно было бы купить новый, но для меня это не интересно))) Нашел в интернете схему и немного переделал её, а именно добавил сигнальную арматуру, кулер для охлаждения, предохранители на 10А, двухполюсный выключатель, вольтметр с амперметром и получилась такая схемка)))

Полный размер


А вот и готовое АЗУ

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Ну и немного фото АЗУ в действии

Полный размер

Полный размер

Полный размер

АКБ заряжен(но не полностью), поэтому ток зарядки не большой


Тест с автомобильной лампочкой 55Вт

Полный размер

Полный размер

Список деталей:
R1 = 4,7 кОм (не меньше 2Вт)
R2 = 10K подстроечный (не меньше 2Вт)
T1 = BC547B (или аналог)
Реле = 12В, 400 Ом, SPDT (я использовал обычное реле от авто на 70А(такое нашел у себя))
TR1 = напряжение вторичной обмотки 14 В, ток 1/10 от емкости АКБ;
Диодный мост = на ток равный номинальному току трансформатора (я использовал на 50А, по той же причине как с реле)
Диоды D1, D2 и D3 = 1N4007;
C1 = 100uF/25V.

www.drive2.ru

Схема простого зарядного устройства для АКБ

Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.

Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.

Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.

Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.

Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для консульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.

Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 ампер\часов.

Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.

Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора,  например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и т.д.

В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.

Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.

переделал на транзистор

Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером. Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.

Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.

Введите электронную почту и получайте письма с новыми поделками.

Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.

Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.

По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.

Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).

Плата в формате .lay; скачать…

Автор; АКА КАСЬЯН

xn--100--j4dau4ec0ao.xn--p1ai

Самодельное зарядное устройство для аккумулятора автомобиля

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля


зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Для зарядки автомобильного аккумулятора служат зарядные устройства. Его можно купить готовое, но при желании и небольшом радиолюбительском опыте можно сделать своими руками, сэкономив при этом немалые деньги.

Схем зарядных устройств автомобильных аккумуляторов в Интернете опубликовано много, но все они имеют недостатки.

Зарядные устройства, сделанные на транзисторах, выделяют много тепла, как правило, боятся короткого замыкания и ошибочного подключения полярности аккумулятора. Схемы на тиристорах и симисторах не обеспечивают требуемой стабильность зарядного тока и издают акустический шум, не допускают ошибок подключения аккумулятора и излучают мощные радиопомехи, которые можно уменьшить, одев на сетевой провод ферритовое кольцо.

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.

Если схема для повторения Вам показалась сложной, то можно собрать более простую, работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.

Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты

от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение. При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ

при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.

Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.

Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.

Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут также установлен предохранитель Пр1 на 1 А и вилка, (взята от

ydoma.info

Автоотключение любого ЗУ автомобиля при завершении зарядки, схема

Всем привет, сегодня рассмотрим несколько универсальных схем, которые позволят отключить зарядное устройство при полной зарядке аккумулятора, иными словами внедрением этих схем можно построить автоматическое зарядное устройство или доработать функцию автоотключения промышленной зарядки.

Сразу хочу пояснить один момент, если зарядное устройство работает по принципу стабильный ток — стабильное напряжение, то нет смысла использовать функцию автоотключения, поскольку естественным образом по мере заряда батареи ток в цепи будет падать и в конце заряда он равен нулю.Схемы, которые мы сегодня рассмотрим, предназначены для работы с автомобильными свинцово — кислотными аккумуляторами, хотя они могут работать с любыми зарядными устройствами, без всякой переделки последних.

Начнём с простых схем…

Первый вариант построен всего на одном транзисторе, переключающим элементом в схеме является реле с напряжением катушки 12 вольт.

Использованы те контакты, которые замкнуты без подачи питания на реле

Резистивный делитель или переменный резистор, задает нужное напряжение, смещение на базе транзистора, тот срабатывая подаёт питание на обмотку реле, вследствие чего реле включается размыкая контакт, который в состоянии покоя был замкнут и через который протекал ток заряда.Используя подстроечный резистор мы можем выставить то напряжение при котором сработает транзистор.

Для настройки схемы удобно использовать регулируемый источник питания, на котором нужно выставить напряжение около 13.5-13.7 вольт, что равноценно напряжению полностью заряженного автомобильного аккумулятора.

Затем медленно вращая подстроечный резистор добиваемся срабатывания транзистора, а следовательно и реле при выставленном напряжении.Теперь проверяем схему еще раз, допустим в начале заряда напряжение на аккумуляторе 12 вольт, по мере заряда оно увеличивается и по достижению порога 13.5 вольт реле срабатывает, отключив зарядное устройство от сети.

Кстати, можно подключить реле следующим образом, в этом случае зарядка не отключается от сети, а просто пропадает выходное напряжение и процесс заряда прекратиться, в этом случае контакты реле должны быть рассчитаны на токи в полтора раза больше максимального выходного тока зарядного устройства.

Транзистор буквально любой обратной проводимости, советую взять транзисторы средней мощности наподобие BD139, диоды в эмиттерной цепи транзистора тоже особо не критичны, ток потребления схемы всего 10-20 миллиампер, но схема имеет несколько недостатков.

Например, низкая помехоустойчивость, из-за которых возможно ложное срабатывание реле и невысокая точность работы, из-за отсутствия источника опорного напряжения и прочих стабилизирующих узлов.

Добавив в базовую цепь ключа стабилитрон, мы решим указанные проблемы и появится возможность довольно точно выставить нужное напряжение срабатывания.

Для настройки советую использовать многооборотный подстроечный резистор. Диод VD1 защищает транзистор от самоиндукции в случае размыкания реле.

Настраиваем схему точно так, как в первом варианте, лампочка имитирует процесс заряда и подключена вместо аккумулятора, при превышении определенного порога, реле срабатывает и лампа потухает.

Вторая схема построена на базе любого таймера NE555, этот вариант похож на предыдущие, микросхема NE555 в своей конструкции содержит два компаратора, пониженное опорное напряжение формирует стабилитрон, порог срабатывания устанавливается подстроечным резистором, как только напряжение на батарее будет равна пороговому, на выходе таймера получим высокий уровень, вследствие чего сработает транзистор.

В этом варианте использовать те контакты реле, которые находятся в разомкнутом состоянии без подачи питания. Во время настройки точку «А» размыкают от выходного контакта и подключают к плюсу зарядного устройства. К выходному контакту реле подключают лампу, второй вывод лампы подключают к массе питания.

В обеих схемах порог срабатывания можно выставить в пределах от 13.5 до 14 вольт, напряжение полностью заряженного автомобильного аккумулятора составляет от 12.6 до 12.8 вольт но при заведенном двигателе напряжение доходит до 14.5 вольт, так что небольшой перезаряд аккумулятора никак не повредит.

Аналогичную схему можно собрать на базе компаратора или операционного усилителя в компараторном включении, принцип работы тот же, что и в случае внедрения таймера NE555. В этой же статье, приведены наиболее простые и доступные варианты.

Все печатки в формате .lay можно скачать для повторения.

Автор; Ака Касьян

xn--100--j4dau4ec0ao.xn--p1ai

Схема самодельного зу для автомобильного аккумулятора

Канал “автомобильные аккумуляторы” представил простую и надежную схему зу для автомобильного акб. Не сложно повторить своими руками, собирается из доступных деталей. Эту схему разработал Сергей Власов.

Купить готовое устройство или радиодетали и модули можно в этом китайском магазине.

Все радиокомпоненты можно взять от старых телевизоров, радиоприемников. Можно заказать и купить, обойдется в 2-3 доллара. Возможно, на рынке дешевле, но надежность нередко вызывает сомнения. Бывали случаи, когда у пользователей портились автомобильные аккумуляторы.

Описание схемы

Схема состоит из 14 резисторов, 5 транзисторов, 2 стабилитронов, диода, потенциометра (часто в телевизорах встречается потенциометр на 10 килоом), подстроечного сопротивления. Нам понадобится тиристор Q 202 и тумблер. Для индикации тока амперметр, для напряжения – вольтметр.

Схема зу работает в двух режимах. Ручной и автоматический. Когда включаем ручной режим, выставляем ток 3 ампера заряда. Он постоянно душит 3 амперами, неважно какое время. Когда переключаем на автоматический заряд, выставляем тоже три ампера. Когда заряд аккумулятора доходит до установленного вами параметра, например 14,7 вольта, стабилитрон закрывается и прекращает заряд аккумулятора.

Понадобится 3 транзистора КТ 315. Два КТ 361. На двух КТ 315 собран триггер. На КТ 361 собран ключевой транзистор. Два транзистора работают как тиристоры. Дальше стоит конденсатор. На 0,47 микрофарада. Любой диод.
Проблема была найти три сопротивления. Два по 15 Ом, один на 9 Ом.
По ссылкам:

Скачать плату.
Схема зу.

остается распечатать и собрать себе такое же автомобильное зу.

Размеры печатной платы. 3,6x36x77 мм.

Чем хорошо это зарядное устройство?

Автоматический режим. Когда автор видеоролика заряжает свой аккумулятор в автомобиле, выставляет на минимум, установив 2 ампера. Можно спокойно ложиться отдыхать. Ничего не кипит, акб полностью заряжается. Ставит нагрузку на акб еще лампочку на несколько Ватт. Для чего это небольшая нагрузка? Это хорошо помогает от сульфатации пластин, которая губит аккумуляторы. Схема настроена на порог отключения 14,7 вольта. Когда батарея набрала емкость до этого параметра, ЗУ отключается. Тем временем лампочка садит аккумулятор, он немного разряжается. Когда он доходит до 14 12 вольт, схема снова включается и акб снова переходит в режим зарядки. Этим способом мы предотвращаем сульфатацию.

В данной схеме автор использует амперметр от магнитофона Весна. Подойдет и другой.

Видео, на котором показано зу для акб авто.

izobreteniya.net

Самодельное зарядное устройство для автомобильного аккумулятора из БП АТХ, схемы

Многие автолюбители отлично знают, что для продления срока службы аккумуляторной батареи требуется периодическая ее подзарядка именно от зарядного устройства, а не от генератора автомобиля.

И чем больше срок службы аккумулятора, тем чаще его нужно заряжать, чтобы восстанавливать заряд.

Без зарядных устройств не обойтись

Для выполнения данной операции, как уже отмечено, используются зарядные устройства, работающие от сети 220 В. Таких устройств на автомобильном рынке очень много, они могут обладать различными полезными дополнительными функциями.

Однако все они выполняют одну работу – преобразуют переменное напряжение 220 В в постоянное – 13,8-14,4 В.

В некоторых моделях сила тока при зарядке регулируется вручную, но есть и модели с полностью автоматической работой.

Из всех недостатков покупных зарядных устройств можно отметить высокую их стоимость, и чем «навороченней» прибор, тем цена на него выше.

 

А ведь у многих под рукой есть большое количество электроприборов, составные части которых вполне могут подойти для создания самодельного зарядного устройства.

Да, самодельный прибор выглядеть будет не так презентабельно, как покупной, но ведь его задача – заряжать АКБ, а не «красоваться» на полке.

Одними из важнейших условий при создании зарядного устройства – это хоть начальное знание электротехники и радиоэлектроники, а также умение держать в руках паяльник и уметь правильно им пользоваться.

Далее рассмотрим несколько схем зарядных устройств для АКБ, которые можно создать из старых электроприборов или составных частей электроники.

ЗУ из лампового телевизора

Первой будет схема, пожалуй, самая простейшая, и справиться с ней сможет практически любой автолюбитель.

Для изготовления простейшего зарядного устройства понадобиться всего лишь две составные части – трансформатор и выпрямитель.

Главное условие, которым должно соответствовать зарядное устройство – это сила тока на выходе из прибора должна составлять 10% от емкости АКБ.

То есть, зачастую на легковых авто применяется батарея на 60 Ач, исходя из этого, на выходе из прибора сила тока должна быть на уровне 6 А. При этом напряжение 13,8-14,2 В.

Если у кого-то стоит старый ненужный ламповый советский телевизор, то лучше трансформатора, чем из него не найти.

Принципиальная схема зарядного устройства из телевизора имеет такой вид.

Зачастую на таких телевизорах устанавливался трансформатор ТС-180. Особенностью его являлось наличие двух вторичных обмоток, по 6,4 В и силой тока 4,7 А. Первичная обмотка тоже состоит из двух частей.

Вначале потребуется выполнить последовательное подключение обмоток. Удобство работ с таким трансформатором в том, что каждый из выводов обмотки имеет свое обозначение.

Для последовательного соединения вторичной обмотки нужно соединить между собой выводы 9 и 9\’.

А к выводам 10 и 10\’ – припаять два отрезка медного провода. Все провода, которые припаиваются к выводам должны иметь сечение не менее 2,5 мм. кв.

Что касается первичной обмотки, то для последовательного соединения нужно соединить между собой выводы 1 и 1\’. Провода с вилкой для подключения к сети нужно припаять к выводам 2 и 2\’. На этом с трансформатором работы завершены.

Далее нужно сделать диодный мост. Для этого потребуется 4 диода, способных работать с током в 10 А и выше. Для этих целей подойдут диодные мосты Д242 или аналоги Д246, Д245, Д243.

На схеме указано, как должно производится подключение диодов – к диодному мосту припаиваются провода, идущие от выводов 10 и 10\’, а также провода, которые будут идти к АКБ.

Не стоит забывать и о предохранителях. Один из них рекомендуется установить на «плюсовом» выводе с диодного моста. Этот предохранитель должен быть рассчитан на ток не более 10 А. Второй предохранитель (на 0,5 А) нужно установить на выводе 2 трансформатора.

Перед началом зарядки лучше проверить работоспособность устройства и проверить его выходные параметры при помощи амперметра и вольтметра.

Иногда бывает, что сила тока несколько больше, чем требуется, поэтому некоторые в цепь установить 12-вольтовую лампу накаливания с мощностью от 21 до 60 Ватт. Эта лампа «заберет» на себя излишки силы тока.

ЗУ из микроволновой печи

Некоторые автолюбители используют трансформатор от сломанной микроволновой печи. Но этот трансформатор нужно будет переделывать, поскольку он является повышающим, а не понижающим.

Необязательно, чтобы трансформатор был исправен, поскольку в нем зачастую сгорает вторичная обмотка, которую в процессе создания устройства все равно придется удалять.

Переделка трансформатора сводится к полному удалению вторичной обмотки, и намотки новой.

В качестве новой обмотки используется изолированный провод сечением не менее 2,0 мм. кв.

При намотке нужно определиться с количеством витков. Можно сделать это экспериментально – намотать на сердечник 10 витков нового провода, после чего к его концам подсоединить вольтметр и запитать трансформатор.

По показаниям вольтметра определяется, какое напряжение на выходе обеспечивают эти 10 витков.

К примеру, замеры показали, что на выходе есть 2,0 В. Значит, 12В на выходе обеспечат 60 витков, а 13 В – 65 витков. Как вы поняли, 5 витков добавляет 1 вольт.

Схема.

Ну а далее все делается, как описано выше – изготавливается диодный мост, производится соединение всех составных элементов и проверяется работоспособность.

Стоит указать, что сборку такого зарядного устройства лучше производить качественно, затем все составные части поместить в корпус, который можно изготовить из подручных материалов. Или смонтировать на основу.

Обязательно следует пометить где «плюсовой» провод, а где — «минусовой», чтобы не «переплюсовать», и не вывести из строя прибор.

ЗУ из блока питания АТХ (для подготовленных)

Более сложную схему имеет зарядное устройство, изготовленное из компьютерного блока питания.

Для изготовления устройства подойдут блоки мощностью не менее 200 Ватт моделей АТ или АТХ, которые управляются контроллером TL494 или КА7500. Важно, чтобы блок питания был полностью исправен. Не плохо себя показала модель ST-230WHF из старых ПК.

Фрагмент схемы такого зарядного устройства представлена ниже, по ней и будем работать.

Помимо блока питания также потребуется наличие потенциометра-регулятора, подстроечный резистор на 27 кОм, два резистора мощностью 5 Вт (5WR2J) и сопротивлением 0,2 Ом или один С5-16МВ.

Начальный этап работ сводится к отключению всего ненужного, которыми являются провода «-5 В», «+5 В», «-12 В» и «+12 В».

Резистор, указанный на схеме как R1 (он обеспечивает подачу напряжения +5 В на вывод 1 контроллера TL494) нужно выпаять, а на его место впаять подготовленный подстроечный резистор на 27 кОм. На верхний вывод этого резистора нужно подвести шину +12 В.

Вывод 16 контроллера следует отсоединить от общего провода, а также нужно перерезать соединения выводов 14 и 15.

В заднюю стенку корпуса блока питания нужно установить потенциометр-регулятор (на схеме – R10). Устанавливать его нужно на изоляционную пластину, чтобы он не касался корпуса блока.

Через эту стенку следует также вывести проводку для подключения к сети, а также провода для подключения АКБ.

Чтобы обеспечить удобство регулировки прибора из имеющихся двух резисторов на 5 Вт на отдельной плате нужно сделать блок резисторов, подключенных параллельно, что обеспечит на выходе 10 Вт с сопротивлением 0,1 Ом.

Далее изготовленная плата устанавливается в корпус и производится подключение всех выводов согласно схеме.

Затем следует проверить правильность соединения всех выводов и работоспособность прибора.

Финальной работой перед завершением сборки является калибровка устройства.

Для этого ручку потенциометра следует установить в среднее положение. После этого на подстроечном резисторе следует установить напряжение холостого хода на уровне 13,8-14,2 В.

Если все правильно выполнить, то при начале зарядки батареи на нее будет подаваться напряжение в 12,4 В с силой тока в 5,5 А.

По мере зарядки АКБ напряжение будет возрастать до значения, установленного на подстроечном резисторе. Как только напряжения достигнет этого значения, сила тока начнет снижаться.

Если все рабочие параметры сходятся и прибор работает нормально, остается только закрыть корпус для предотвращения повреждения внутренних элементов.

Данное устройство из блока АТХ очень удобно, поскольку при достижении полного заряда батареи, автоматически перейдет в режим стабилизации напряжения. То есть перезарядка АКБ полностью исключается.

Для удобства работ можно дополнительно прибор оснастить вольтметром и амперметром.

Итог

Это только несколько видов зарядных устройств, которые можно изготовить в домашних условиях из подручных средств, хотя вариантов их значительно больше.

Особенно это касается зарядных устройств, которые изготавливаются из блоков питания компьютера.

Если у вас есть опыт в изготовлении таких устройств делитесь им в комментариях, многие буду очень признательны за это.

autotopik.ru

СХЕМА АВТОМАТИЧЕСКОГО ЗАРЯДНОГО УСТРОЙСТВА

   Применение надёжных зарядных устройств является одним из главных условий стабильной и продолжительной работы автоаккумулятора. Зарядное устройство Кедр заслужило доверие у большого количества пользователей. Простое в эксплуатации и многофункциональное, это недорогое автоматизированное ЗУ пользуется стабильным спросом у бывалых водителей и у новичков-автомобилистов.

   Характеристики зарядного устройства Кедр-Авто 4А

 - Номинальное напряжение питающей сети, В 220 

 - Частота сети, Гц 50 

 - Номинальное напряжение заряжаемой батареи, В 12 

 - Зарядный ток, А (макс.) 4 A 

 - Номинальная потребляемая мощность, Вт 85


Принципиальная электрическая схема АЗУ


 Печатная плата и подключение АЗУ

   Более подробно в можете прочитать в инструкции к нему:


   Если нет возможности купить его, можно без проблем собрать самому. Что я и сделал. Транзисторы применил импортные вс556b (pnp) и bc337-40 (npn) вместо кт315 и кт361. На фото заводская плата зарядного и моя самодельная.



Заводская плата автоматического зарядного


Самодельная сборка платы

   Собрал данное устройство, проверил - работает отлично, мне нравится. Это зарядное устройство имеет: 

 - режим автомат 

 - режим десульфат 

 - режим постоянного заряда (до полной емкости) 

 - защиту при неправильном подключении и коротком замыкании. 

 - при цикличном режиме после 45 секунд заряда следует 15 сек разряда.


   Будет полезным провести небольшое усовершенствование ЗУ. Полное отключение от сети 220В по окончании заряда, так сказать на "всякий пожарный". Отключение ЗУ Кедр-М от сети при зажигании светодиода "конец зарядки" можно выполнить на симисторе или реле. Команду на включение/отключение можно взять с коллектора транзистора VT1, добавив еще один транзистор, включенный в ключевом режиме, и коммутировать им питание обмотки реле или ток через светодиод оптрона, управляющего симистором. Схему собрал и проверил: vovcanchin.

   Форум по АЗУ КЕДР-М

   Обсудить статью СХЕМА АВТОМАТИЧЕСКОГО ЗАРЯДНОГО УСТРОЙСТВА

radioskot.ru

Простое автомобильное зарядное устройство и схема индикатора

Автомобильный аккумулятор - это типичный свинцово-кислотный аккумулятор, состоящий примерно из 6 ячеек, каждый по 2 В, так что общее напряжение аккумулятора составляет около 12 В. Типичные значения номинальных значений батареи находятся в диапазоне от 20 Ач до 100 Ач. Здесь мы рассматриваем автомобильный аккумулятор номиналом 40 Ач, поэтому требуемый зарядный ток будет около 4 А. В данной статье описывается принцип действия, конструкция и работа простого автомобильного зарядного устройства от сети переменного тока и секция управления с обратной связью для управления зарядкой аккумулятора.

Принцип работы автомобильного зарядного устройства
:

Это простое автомобильное зарядное устройство с индикацией. Аккумулятор заряжается от сети переменного тока 230 В, 50 Гц. Это переменное напряжение выпрямляется и фильтруется, чтобы получить нерегулируемое постоянное напряжение, используемое для зарядки аккумулятора через реле. Это напряжение батареи постоянно контролируется схемой обратной связи, состоящей из делителя потенциала, диода и транзистора. Реле и цепь обратной связи питаются от регулируемого постоянного напряжения (полученного с помощью регулятора напряжения).Когда напряжение аккумулятора превышает максимальное значение, схема обратной связи рассчитывается таким образом, что реле выключается и заряд аккумулятора прекращается.

Также получите представление о том, как работает схема зарядного устройства свинцово-кислотной батареи?

Схема автомобильного зарядного устройства

:

Схема автомобильного зарядного устройства

Зарядное устройство для автомобильного аккумулятора Конструкция схемы:

Чтобы спроектировать всю схему, мы сначала проектируем три разных модуля: блок питания, обратную связь и нагрузочную секцию.

Этапы проектирования источника питания:

  1. Здесь желаемой нагрузкой является автомобильный аккумулятор емкостью около 40 Ач. Поскольку зарядный ток батареи должен составлять 10% от номинала батареи, требуемый зарядный ток будет около 4А.
  2. Теперь требуемый вторичный ток трансформатора будет около 1,8 * 4, т. Е. Ток около 8 А. Поскольку требуемое напряжение нагрузки составляет 12 В, мы можем остановиться на трансформаторе с номиналом 12 В / 8 А. Теперь необходимое среднеквадратичное значение переменного напряжения составляет около 12 В, пиковое напряжение будет около 14.4 В, то есть 15 В.
  3. Поскольку здесь мы используем мостовой выпрямитель, PIV для каждого диода должен более чем в четыре раза превышать пиковое напряжение переменного тока, то есть более 90 В. Здесь мы выбираем диоды 1N4001 с рейтингом PIV около 100 В.
  4. Поскольку здесь мы также разрабатываем регулируемый источник питания, максимально допустимая пульсация будет равна пиковому напряжению конденсатора за вычетом необходимого минимального входного напряжения для регулятора. Здесь мы используем стабилизатор напряжения LM7812, чтобы обеспечить регулируемое напряжение 5 В для реле и таймера 555.Таким образом, пульсация будет около 4 В (пиковое напряжение около 15 В и входное напряжение регулятора около 8 В). Таким образом, расчетная емкость конденсатора фильтра составляет около 10 мФ.

Расчет секции обратной связи и нагрузки:

Проектирование секции обратной связи и нагрузки предполагает подбор резисторов секции делителя напряжения. Поскольку диод будет проводить только тогда, когда напряжение батареи достигнет 14,4 В, номиналы резисторов должны быть такими, чтобы положительное напряжение, подаваемое на диод, было не менее 3 В, когда напряжение батареи примерно равно максимальному.

Имея это в виду и сделав необходимые вычисления, мы выбираем потенциометр 100 Ом и другие резисторы на 100 Ом и 820 Ом каждый.

Также прочтите статью «Работа и применение схемы зарядного устройства солнечной батареи»

Работа цепи зарядного устройства автомобильного аккумулятора:

Работа схемы начинается после подачи питания. Мощность переменного тока 230 В RMS понижается до 15 В RMS с помощью понижающего трансформатора.Это низковольтное переменное напряжение затем выпрямляется мостовым выпрямителем для создания нерегулируемого постоянного напряжения с пульсациями переменного тока. Конденсатор фильтра пропускает через него пульсации переменного тока, создавая на нем нерегулируемое и фильтрованное постоянное напряжение. Здесь выполняются две операции: - 1. Это нерегулируемое напряжение постоянного тока подается непосредственно на нагрузку постоянного тока (в данном случае аккумулятор) через реле. 2. Это нерегулируемое напряжение постоянного тока также подается на регулятор напряжения для создания регулируемого источника постоянного тока 12 В.

Здесь реле представляет собой реле 1С, и общая точка подключена к нормально замкнутому положению, так что ток течет через реле к батарее, и она заряжается.Когда через светодиод проходит ток, он начинает проводиться, указывая на то, что батарея заряжается. Часть тока также протекает через последовательные резисторы, так что напряжение батареи разделяется с помощью устройства делителя потенциала. Первоначально падение напряжения на делителе потенциала недостаточно для смещения диода. Это напряжение равно напряжению батареи и, таким образом, определяет зарядку и разрядку батареи. Первоначально потенциометр настраивается до середины.Поскольку напряжение батареи постепенно увеличивается, оно достигает точки, когда напряжения на делителе потенциала достаточно для прямого смещения диода. Когда диод начинает проводить, переход база-эмиттер транзистора Q2 приводится в состояние насыщения, и транзистор включается.

Поскольку коллектор транзистора подсоединяется к одному концу катушки реле, последний получает питание, и точка общего контакта перемещается в нормально разомкнутое положение. Таким образом, источник питания отключается от батареи, и зарядка батареи прекращается.По прошествии некоторого времени, когда батарея начинает разряжаться и напряжение на делителе потенциала снова достигает положения, при котором диод смещен в обратном направлении или находится в выключенном состоянии, транзистор вынужден отключаться, и таймер теперь находится в выключенном положении, так что нет выхода. Общая точка реле возвращается в исходное положение, то есть в нормально замкнутое положение. Аккумулятор снова начинает заряжаться, и весь процесс повторяется.

Применения цепи зарядного устройства автомобильного аккумулятора:
  1. Эта схема является портативной и может использоваться в местах, где имеется источник переменного напряжения.
  2. Может использоваться для зарядки аккумуляторов игрушечных автомобилей.
Ограничения этой цепи:
  1. Это теоретическая схема и может потребовать некоторых практических изменений.
  2. Зарядка и разрядка аккумулятора может занять больше времени.

Схема и ремонт автомобильного зарядного устройства


Очень часто в автомастерских есть зарядные устройства для зарядки свинцово-кислотных аккумуляторов, однако некоторые зарядные устройства нуждаются в обслуживании из-за того, что время от времени выходят из строя.Вот несколько примеров и принципиальных схем.

1, простая пусковая схема зарядного устройства батареи

Одна из основных пусковых схем зарядного устройства батареи изображена на следующей диаграмме. Преобразователь имеет два выхода, центральный провод - земля, а два выхода (~ 11,8 В) - источник питания переменного тока; один из них напрямую подключен к диоду, другой - к переключателю для контроля высокого и низкого зарядного тока. Выпрямитель MB 40A, который может выдерживать максимальный ток 40A. Предохранитель цепи перегрузки 20A подключается последовательно, чтобы действовать как защита.


MB40 используется только наполовину, что делает это устройство пригодным для обслуживания, мы можем использовать два других диода на стороне земли, если цепь положительного смещения диодов разомкнута. Токовую защиту от перегрузки можно заменить использованием тех же или аналогичных продуктов.

2, Запуск зарядного устройства со световыми индикаторами

Принцип действия зарядного устройства такой же, как и у базового, на выходе имеется защита от перегрузки по току 10А. Отличие состоит в том, что для индикации используются 3 светодиода:
LED 3 для включения питания, D4 - это простой выпрямитель, а R6 - для ограничения тока.
Светодиод 2 индикатора зарядки аккумулятора. Во время зарядки или подключения аккумулятора Q2 имеет положительное смещение и включается, поскольку R4 имеет высокое сопротивление, а напряжение базы Q2 низкое. Когда аккумулятор полностью заряжен, Q1 включен, R4 закорочен, следовательно, напряжение Q2 высокое, и он выключен - тогда светодиод 2 выключен.
LED 1 для индикации состояния батареи. Когда напряжение батареи достаточно высокое, D2 будет включен, значит, LED1 горит, в то же время LED2 выключается Q1.
D3 и Q1 на самом деле являются оптопарой EL817.R4 = 100М.


Печатная плата с компонентами выглядит следующим образом:
Технические характеристики устройства защиты 17M-K: 250 В, 10 А и температура от 50 до 160 ° С.

3, с использованием зарядного устройства SCR

SCR действует как диод для выпрямления переменного тока, когда он проводится при выключенном транзисторе. когда батарея полностью заряжена, выходное напряжение достаточно высокое, чтобы включить транзистор и выключить SCR, батарея все еще будет заряжаться. Автоматическое зарядное устройство

Схема проектов

Свинцово-кислотная батарея

является самой популярной.Хотя они очень большого размера. Но у них есть преимущество: дешево, легко купить. Если вам нужна долгая жизнь. Вам следует использовать приведенную ниже схему автоматического зарядного устройства.

Наилучшая зарядка
Обычно эти типы батарей могут работать в течение 3-4 лет при правильной зарядке. Меня тошнит каждый раз, когда батарея выходит из строя раньше положенного срока. Я не хочу, чтобы ты был похож на меня. Не делайте этого!

  • Перегрев зарядки
    Главное, аккум не любит горячий ! Ни в коем случае не используйте и не храните их в слишком жарком месте.ИЛИ Если во время использования может произойти короткое замыкание или большой ток, используйте их, они будут слишком горячими. Во время зарядки не происходит быстрой зарядки большим током и высоким напряжением.
  • Только постоянное напряжение!
    Мы должны заряжать их только постоянным током.
  • Зарядка от перенапряжения
    Обычно производитель аккумуляторов указывает соответствующее напряжение.
    Мы должны использовать заряд постоянного напряжения.
    —12 В, максимальное напряжение батареи 14,8 В, в режиме ожидания - 13,8 В
    —6 В, максимальное напряжение батареи 7.5 В, в режиме ожидания - 6,8 В
  • Сильноточная быстрая зарядка
    Но горячая -
    Таким образом, вам следует использовать начальный ток менее 30%. Например, аккумулятор 12В / 7Ач у вас должен начальный ток меньше 2А. Если мы используем 1А, батарея будет заряжаться примерно на 7 часов.
  • Недолго
    Кроме того, если вы заряжаете его слишком долго. Аккумулятор тоже сильно нагрелся. Таким образом, когда аккумулятор полностью заряжен, прекратите его зарядку.

Эти две цепи помогают облегчить вашу жизнь.

Простая схема автоматического зарядного устройства

Это первая схема автоматического зарядного устройства. Мы используем концепцию схемы: без использования микросхем и сложных устройств. Используйте существующие продукты, чтобы получить больше преимуществ.

Мы можем использовать эту схему для всех батарей. Просто нужно понимать требования к зарядке аккумулятора.

  • Предназначен для аккумуляторов 12 В. Но если вы уже понимаете принцип работы. Я считаю, что вы определенно можете адаптироваться к батарее 6V или другим.
  • Вам следует использовать входное напряжение 15 В или 1,5 напряжения батареи.
  • Самое важное —Должен использовать ток зарядного устройства 10% от тока батареи. Например аккумулятор 2,5 Ач. Используйте зарядный ток 0,25А. На полную загрузку уйдет 10-12 часов.

Как это работает

Прежде всего, я думаю: «Когда… Зарядить? И когда остановиться? »

Обычно мы должны заряжать аккумулятор, если напряжение ниже 12,4 В. Затем напряжение АКБ повышается и максимальное напряжение 14.4В. Она полна. Нам нужно отключить ток зарядки.

Во-вторых, нам нужно использовать схему компаратора.

Я часто использую операционные усилители IC, такие как LM339, LM311, LM324, LM301. Но иногда мы не можем их купить.

И это наша работа только в простом стиле.

Вначале мы изучаем основной принцип работы электронных компонентов.

Знакомьтесь, стабилитрон

Мне нравится использовать диод, стабилитрон, они оба являются клапанами для электрических токов. Ток будет течь в одном направлении.Но стабилитрон подключен обратно. Затем он блокирует ток, пока напряжение не превысит определенный уровень.

Пробую их проверить с стабилитроном 12 вольт ток через него будет протекать при напряжении выше 12В.

Итак, я использую стабилитрон для обнаружения напряжения выше 13 В для управления системой останова зарядного устройства.

Реле и батарея отключения SCR

Затем я использую реле для управления током в батарее. Потому что дешево и легко используется.

Далее я использую SCR для использования в качестве переключателя быстрого управления.

Простое зарядное устройство с автоматическим отключением аккумуляторов

Приходит посмотреть на схему. Использую от аккумулятора 12В 7Ач и ниже. Значит ток зарядки 2А.

Итак, я использую трансформатор 2А, 12В в нерегулируемом источнике питания. Под нагрузкой или при зарядке - от 13 до 15 В постоянного тока.

Допустим, напряжение АКБ 12,4В. Реле не работает. Зарядный ток непрерывно протекает через аккумулятор.

Пока напряжение АКБ не поднимется до 13.8В. Начинает иметь ток, протекающий через стабилитрон к смещению SCR1.

SCR1 работает. Затем также запускается воспроизведение, втяните контакты NO и C.

Значит, на батарею нет тока.

Как установить и использовать

Вы можете посмотреть видео ниже, я его тестирую. Этот проект всегда будет отключать аккумулятор. Когда напряжение падает на 13,6 В.

После этого загорится светодиод LED2 (желтый). Пока реле вытащит из контакта NC-C. Который отсутствует ток к батарее и напряжение ниже.

Затем вы можете снова зарядить, нажав SW2 для сброса, снова зарядите их.

Сильноточная зарядка

Если вы хотите зарядить сильноточную батарею. Например, аккумулятор на 45Ач. Вы должны использовать ток менее 5А. И ток менее 15А.

Также необходимо использовать сильноточный источник питания. Компоненты внутри находятся под высоким током. Например трансформатор 10A-15A, диоды невесты 25A, реле 20A и многое другое.

Думаю, эта схема не подходит для сильноточного аккумулятора.Потому что это может быть ошибка зарядки. Вам нужно использовать заряд постоянного напряжения в режиме ШИМ.

Зарядное устройство 12 В с автоматическим отключением от источника питания SCR

В приведенной выше схеме может возникать ошибка, и ее трудно настроить. Я предлагаю автоматическое зарядное устройство для сухой батареи с использованием SCR для батареи 12 В. Кроме того, он использует батарею на 6 В. Это похоже на приведенную выше схему. Стабилитрон и SCR являются основными частями. Но вместо реле работает SCR. SCR работает в импульсном режиме постоянного тока на фильтрах с конденсатором.

Как работает эта схема

Как схема ниже.Для начала, AC220V будет течь к трансформатору, чтобы преобразовать его в 15 вольт. Затем перейдите к мостовому диоду к выпрямителю переменного тока в постоянный импульс 15 В. LED1 - индикатор питания схемы.

Начало работы SCR1. Потому что 15 В течет к R3, чтобы ограничить ток, чтобы уменьшиться и течь через диод D5.

Он защищает обратное напряжение перед смещением на вывод G SCR1.

Когда SCR1 проводит ток, направьте 15 В через провод K к положительной клемме аккумуляторной батареи.

В идеале, SCR1 будет проводить ток и очень быстро останавливать ток попеременно с частотой 100 Гц.

Так как напряжение 15 В от мостового диода является двухполупериодным выпрямителем. Итак, выходная частота 50 Гц + 50 Гц. Ток этой функции представляет собой непрерывную положительную половину синусоидальной волны.

Который отличается от напряжения с конденсаторным фильтром, гладким, как прямая линия.

Значит, SCR1 не проводит ток все время. Когда есть положительное напряжение для смещения на выводе G.

Так как форма волны напряжения является импульсом постоянного тока, а не плавной.

SCR перестанет проводить ток.Если отключение - это не положительное напряжение.

Затем сигнал положительного напряжения снова поступает на SCR1. Он снова начнет проводить токи, это было перевернуто с частотой 100 Гц.

Контроль уровня заряда батареи

Для начала положительное напряжение батареи проходит через R2 для уменьшения тока. А C1 будет фильтровать ток для сглаживания.

Во-вторых, ток течет через VR1, чтобы разделить напряжение. Затем стабилитрон ZD1 пропускает перенапряжение на вывод G SCR2.

Регулируем уровень VR1 для установки полной батареи. Пока напряжение на отрицательном полюсе ZD1 не превысит 6,8 В или около 7,3 В.

После этого ZD1 является потоком коллапса напряжения насыщения на подводящий провод G SCR2. Это заставляет SCR2 проводить ток. By R4 является помощником SCR2 в необычайно стабильной работе.

Когда SCR2 работает, возникает отрицательное напряжение, ведущее от K к A. Это приводит к свечению светодиода LED2.

И в то же время SCR1 перестанет проводить ток.


Распиновка TO-220 и TO-92 SCR

Так как вывод G SCR1 получает отрицательное напряжение от SCR2.В случае, если батарея имеет более низкое напряжение, напряжение на отрицательном полюсе ZD1 ниже 6,8 В.

Это приводит к тому, что вывод G SCR2 не получает положительного напряжения. Но он может получить только отрицательное напряжение через R4, в результате SCR2 не проводит ток.

Список деталей
Резисторы 0,5 Вт 5%
R1, R5: 2K
R2: 1,5 кОм
R3: 560 Ом
R4: 10K
VR1: 10 кОм Потенциометр
C1: 100 мкФ 25 В, электролитический конденсатор
SCR7 SCR2: 2N EC103 или 2N5060SCR
ZD1: 6.8V 1W
D1-D4: 1N5404_Diode
D5: 1N4002_Diode
LED1, LED2: 5M LED, как вы хотите, печатная плата
и другие и т. Д.

Как сделать и настроить

  • После того, как вы подготовите все компоненты. Затем мы успешно припаяли его к печатной плате, как показано на следующем рисунке. Например, у прибора положительный - отрицательный. Правильная ли полярность?


Компоновка компонентов зарядного устройства для сухих аккумуляторов


Точка пайки зарядного устройства для сухих аккумуляторов


Полная сборка всех деталей на печатной плате


Аккумулятор 12 В 2.5A

  • В целях безопасности первым делом найдите полное напряжение аккумулятора, подключенное к цепи для правильной полярности.
  • Подайте AC220V. Затем поверните VR1 по часовой стрелке, пока светодиод 2 не погаснет.
  • Для медленного вращения VR1 по часовой стрелке, пока не загорится светодиод 2, затем немедленно остановитесь. Не вращайте слишком много.
  • Принцип работы LED2 загорится, когда напряжение батареи достигнет полного. Итак, в первый раз аккумулятор должен быть полностью заряжен.

Примечание:
Извините, я не могу показать вам схему печатной платы.Но можно использовать перфорированную доску .

Пожалуйста, посмотрите видео ниже, чтобы лучше понять этот проект.

Модификация схемы

Эта схема может изменять напряжение батареи 3-х размеров 6В, 9В, 12В. Мы можем поменять каждое значение детали как аккуратный заряженный аккумулятор.

В обычной цепи мы используем аккумулятор на 12 В. Например, смотрите на корпусе аккумулятор заявлен как 12В 20Ач. Смысл в том, что он может питать токи 20 ампер в час.

Когда вы знаете, что напряжение на аккумуляторе заряжено, теперь мне нужно выбрать трансформатор, который будет использоваться. Используемые трансформаторы тока можно выбрать от 3А.

  • Аккумулятор 6В ; Напряжение выходного трансформатора: 9 В; -Напряжение стабилитронов: 3,3 В ; —R3 и R5: 1K
  • батарея 9V ; Напряжение выходного трансформатора: 12В; -Напряжение стабилитронов: 4,7В ; —R3 и R5: 1,5K
  • Аккумулятор 12 В ; Напряжение выходного трансформатора: 15В; - Напряжение стабилитронов: 6.8В ; —R3 и R5: 2K

Нажмите, чтобы узнать больше:


Зарядное устройство для свинцово-кислотных аккумуляторов 6 В или 12 В
Easy Many circuit легко для вас

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Всегда старайтесь сделать Electronics Learning Easy .

555 Универсальное автоматическое зарядное устройство

В этой схеме мы делаем универсальное автоматическое зарядное устройство 555. С помощью этой схемы можно заряжать любые типы аккумуляторных батарей с напряжением от 6 до 24 В.Максимальный выходной ток этой цепи составляет 10 А.

Эту схему также можно модифицировать для зарядки аккумуляторов с напряжением ниже 6 В. Для этого вам нужно будет изменить значение стабилитрона на 2,4-2,5 В. Выберите источник питания, который по крайней мере на 1,5–3 В выше напряжения недостаточного заряда аккумулятора. А ток блока питания нужно подбирать по 1/10 АХ АКБ. Если вы хотите зарядить аккумулятор 6 В 10 Ач, используйте источник питания постоянного тока 7,5 В и 1 А.

Компоненты оборудования

1
S.no. Компонент Значение Количество
1 Аккумулятор - 1
2 IC NE555
4 Транзистор 2N3906 1
5 Реле - 1
6 904 904 904 904 904 904 904 904 904 904 904 Стабилитрон 3.3 В 1
8 Резистор 1 кОм, 10 кОм, 8,2 кОм, 470 Ом 2, 1, 1, 1
9 Переменный резистор 10 Конденсатор 10 нФ 1
11 Светодиод - 1
12 Переключатель - 904 Источник питания 1
Принципиальная схема

Рабочее объяснение

Мы используем микросхему таймера 555, которая подключена как компаратор для определения напряжения батареи.Переменный резистор 100 кОм используется для установки точки срабатывания. Точка срабатывания установит точку напряжения, при которой вы хотите, чтобы аккумулятор прекратил заряжаться и отключился от цепи.

Точка срабатывания должна быть установлена ​​в соответствии с типом батареи, батарея на 6 В показывает 7,2 В на цифровом мультиметре, когда она полностью заряжена при подключенном источнике питания. Таким образом, точка срабатывания, установленная для батареи 6 В, должна быть 7,2 В.

Регулировка цепи

  • Возьмите регулируемый блок питания и установите напряжение 14.4 В, если вы используете 12 В, потому что при полной зарядке 12 В на цифровом мультиметре отображается 14,4 В.
  • Снимите блок питания и аккумулятор, подключенный к цепи, и поместите этот регулируемый блок питания вместо аккумулятора.
  • Отрегулируйте регулируемый резистор, пока не загорится светодиод.
  • Снимите регулируемый источник питания, подключите фактический источник питания и аккумулятор в цепи.
  • Теперь, когда аккумулятор полностью зарядится, он автоматически отключится от источника питания и загорится светодиод.
  • Та же процедура будет применяться для батарей с другим напряжением. Напряжение в регулируемом источнике питания будет установлено в соответствии с напряжением батареи, отображаемым на цифровом мультиметре при полной зарядке.

Простая английская Википедия, бесплатная энциклопедия

Схематический символ батареи

Батарея преобразует химическую энергию в электрическую с помощью химической реакции. Обычно химические вещества хранятся внутри батареи. Он используется в цепи для питания других компонентов.Батарея производит электричество постоянного тока (DC) (электричество, которое течет в одном направлении и не переключается туда и обратно).

Использование электричества из розетки в здании дешевле и эффективнее, но аккумулятор может обеспечивать электричеством в районах, где нет распределения электроэнергии. Это также полезно для движущихся вещей, например электромобилей и мобильных телефонов.

Батареи могут быть первичными или вторичными. Первичный блок выбрасывается, когда он больше не может обеспечивать электричество.Вторичный аккумулятор можно заряжать и использовать повторно.

Батарея может состоять из одной ячейки или нескольких элементов . Каждая ячейка имеет анод, катод и электролит. Электролит - это основной материал внутри батареи. Часто это кислота, к которой прикасаться опасно. Анод реагирует с электролитом с образованием электронов (это отрицательный конец или -). Катод вступает в реакцию с электролитом и забирает электроны (это положительный конец или + ). [1] Электрический ток возникает, когда провод соединяет анод с катодом, и электроны перемещаются от одного конца к другому. (Но аккумулятор может быть поврежден просто проводом, соединяющим два конца, поэтому между двумя концами также необходима нагрузка . Нагрузка - это то, что замедляет электроны и обычно делает что-то полезное, например, лампочку в фонарик, или электроника в калькуляторе). [2]

Батареи, подключенные параллельно - показаны на схеме и на чертеже

Электролит может быть жидким или твердым.Батарея называется аккумуляторной батареей с влажным или сухим элементом, в зависимости от типа электролита.

Химические реакции, происходящие в батарее, являются экзотермическими реакциями. Этот тип реакции вызывает тепло. Например, если вы оставите свой ноутбук включенным на долгое время, а затем коснетесь аккумулятора, он будет теплым или горячим.

Аккумуляторная батарея заряжается путем обращения вспять химической реакции, происходящей внутри батареи. Но перезаряжаемый аккумулятор можно заряжать только определенное количество раз (время перезарядки).Даже встроенные батареи нельзя заряжать вечно. Более того, каждый раз, когда батарея заряжается, ее способность удерживать заряд немного снижается. Неперезаряжаемые батареи не следует заряжать, так как могут вытечь различные вредные вещества, например гидроксид калия.

Элементы могут быть подключены, чтобы сделать батарею большего размера. Соединение плюса одной ячейки с минусом следующей ячейки называется соединением их последовательно . Напряжение каждой батареи складывается.Две батареи по шесть вольт, соединенные последовательно, дают 12 вольт. [3]

Соединение плюса одной ячейки с плюсом другой, а минус с минусом называется соединением их параллельно . Напряжение остается прежним, но ток складывается. Напряжение - это давление, проталкивающее электроны по проводам, оно измеряется в вольтах. Ток - это то, сколько электронов может пройти одновременно, он измеряется в амперах. Комбинация тока и напряжения - это мощность (ватты = вольт x ампер) батареи.

Батареи бывают разных форм, размеров и напряжений.

Элементы AA, AAA, C и D, включая щелочные батареи, имеют стандартные размеры и форму и имеют напряжение около 1,5 В. Напряжение ячейки зависит от используемых химикатов. Электрический заряд, который он может передать, зависит от размера ячейки, а также от того, какие химические вещества. Заряд аккумулятора обычно измеряется в ампер-часах. Поскольку напряжение остается неизменным, больший заряд означает, что более крупный элемент может подавать больше ампер или работать в течение более длительного времени.

Первая батарея была изобретена в 1800 году Алессандро Вольта. В наши дни его аккумулятор называют гальваническим. [4]

В современных небольших батареях жидкость иммобилизируется в виде пасты, и все это помещается в герметичный корпус. Из-за этого из аккумулятора ничего не может вылиться. В более крупных аккумуляторах, таких как автомобильные, все еще есть жидкость, и они не герметичны. Разновидность батареи, в которой в качестве электролита используются расплавленные соли, была изобретена во время Второй мировой войны.

  • Сухие элементы, элементы, не содержащие жидкости (или содержащие иммобилизованную жидкость, такую ​​как паста или гель) в качестве электролита
    • Первичная ячейка, ячейки, которые нельзя перезарядить
      • Щелочная батарея, «щелочная», не перезаряжаемая
      • Батарея ртутная, неперезаряжаемая
      • Аккумулятор Leclanche, «сверхмощный», неперезаряжаемый
      • Литиевая батарея неперезаряжаемая, «таблетка»
      • Батарея из оксида серебра, неперезаряжаемая, батарейка для часов
      • Вольтаическая свая, первая батарея Аллесандро Вольтаса
    • Вторичный элемент, элементы, которые можно перезаряжать
  • Влажные элементы, элементы, содержащие жидкость в качестве электролита
  • Топливный элемент, перезаряжаемый за счет добавления топлива

Топливные элементы и солнечные элементы не являются батареями, потому что они не накапливают энергию внутри себя.

Конденсатор не является батареей, потому что он не накапливает энергию в химической реакции. Конденсатор может накапливать электричество и производить электричество намного быстрее, чем батарея, но обычно он стоит слишком дорого, чтобы сделать его настолько большим, насколько может быть батарея. Ученые и инженеры-химики работают над улучшением конденсаторов и аккумуляторов для электромобилей.

Небольшие электрические генераторы, приводимые в действие руками и ногами, могут обеспечивать питание небольших электрических устройств. Радиоприемники с часовым механизмом, факелы с часовым механизмом и подобные устройства также имеют заводную пружину для хранения механической энергии.

Создавайте собственные решения для зарядки аккумуляторов электромобилей

Приведенное ниже примечание по применению должно помочь разработчикам создавать собственные решения для зарядки аккумуляторов электромобилей. При необходимости можно получить помощь от компании.

Популярность электромобилей (EV) в Индии быстро растет. Согласно опросу, рынок электромобилей в Индии вырастет с 3 миллионов единиц в 2019 году до 29 миллионов единиц к 2027 году с среднегодовым темпом роста 21.1 процент. В результате возрастет спрос на зарядные устройства переменного / постоянного тока, интеллектуальные зарядные устройства для электромобилей.

Для эффективной зарядки аккумуляторов и обеспечения их длительного срока службы нам нужна интеллектуальная система управления аккумулятором или система зарядки. Для реализации такой системы зарядки электромобилей компания Holtek разработала интеллектуальные зарядные устройства для электромобилей на основе их недорогого флэш-микроконтроллера (MCU) ASSP HT45F5Q-X для зарядки аккумуляторов электромобилей.

В настоящее время доступны три конструкции зарядных устройств для электромобилей, подходящие для индийского рынка - с характеристиками 48 В / 4 А, 48 В / 12 А и 48 В / 15 А - для быстрой разработки продукта.Эта интеллектуальная система зарядки на основе полупроводников может поддерживать как литий-ионные, так и свинцово-кислотные батареи.

Блок-схема зарядного устройства для электромобилей показана на рис. 1. Здесь устройство для зарядки аккумуляторов ASSP flash MCU HT45F5Q-X является сердцем схемы зарядного устройства электромобиля со встроенными операционными усилителями (OPA) и цифро-аналоговыми преобразователями ( ЦАП), которые необходимы для зарядки аккумулятора.

Рис. 1: Блок-схема зарядного устройства EV

Технические характеристики зарядного устройства flash MCU серии HT45F5Q-X показаны на рис.2. Разработчики могут выбрать подходящий микроконтроллер из серии HT45F5Q-X в соответствии с требованиями своего приложения.

Рис. 2: Технические характеристики HT45F5Q-X

Характеристики и работа зарядного устройства EV для спецификации 48 В / 12 А кратко описаны ниже. Эта конструкция зарядного устройства для электромобилей использует микроконтроллер HT45F5Q-2 для реализации функции управления зарядкой аккумулятора.

MCU включает в себя модуль зарядки аккумулятора, который можно использовать для управления зарядкой с обратной связью с постоянным напряжением и постоянным током для эффективной зарядки аккумулятора.Внутренняя структурная схема микроконтроллера HT45F5Q-2 представлена ​​на рис. 3.

Рис. 3: Блок-схема HT45F5Q-2

Модуль зарядки аккумулятора в HT45F5Q-2 имеет встроенные OPA и DAC, необходимые для процесса зарядки. Следовательно, конструкция снижает потребность во внешних компонентах, таких как шунтирующие регуляторы, OPA и DAC, которые обычно используются в обычных схемах зарядки аккумуляторов. В результате периферийная схема стала компактной и простой, что привело к уменьшению площади печатной платы и низкой общей стоимости.

Работа зарядного устройства EV

Входное питание зарядного устройства EV - это переменное напряжение в диапазоне от 170 до 300 В.Зарядное устройство EV использует конструкцию полумостового LLC-резонансного преобразователя из-за его мощных и высокоэффективных характеристик, чтобы получить мощность постоянного тока для зарядки аккумулятора.

В конструкции используется выпрямительная схема для преобразования входного переменного напряжения в высоковольтное выходное постоянное напряжение, а также имеется фильтр электромагнитных помех (EMI) для устранения высокочастотного шума от входного источника питания. ИС контроллера широтно-импульсной модуляции (ШИМ), такая как UC3525, может использоваться для управления полевыми МОП-транзисторами полумостового LLC-преобразователя.

Процесс зарядки аккумулятора контролируется MCU HT45F5Q-2. Он контролирует уровень напряжения аккумулятора и зарядного тока и передает обратную связь на ИС ШИМ-контроллера. На основе обратной связи контроллер PWM изменяет рабочий цикл своего сигнала PWM и управляет схемой MOSFET для получения переменного выходного напряжения и тока для зарядки аккумулятора.

Для лучшей защиты HT45F5Q-2 изолирован от остальной части схемы (т. Е. Высоковольтных компонентов) с помощью оптопары.Светодиодные индикаторы уровня заряда аккумулятора позволяют узнать о состоянии зарядки.

Процесс зарядки аккумулятора

Изменение зарядного напряжения и тока во время процесса зарядки графически проиллюстрировано на рис. 4. Если напряжение аккумулятора слишком низкое при подключении для зарядки, сначала будет установлен низкий зарядный ток (т. Е. Непрерывный заряд (TC)) и зарядка процесс начнется.

Рис. 4: Кривая зарядки аккумулятора

Когда напряжение аккумулятора увеличивается до заданного уровня (Vu), для зарядки применяется постоянное напряжение (CV) и постоянный ток (CC), и продолжается до тех пор, пока аккумулятор не будет полностью заряжен.Батарея считается полностью заряженной, когда напряжение достигает VOFF. Когда зарядный ток падает до Iu, устанавливается конечное напряжение (FV). Ниже описывается процесс контроля напряжения, тока и температуры в этом зарядном устройстве для электромобилей.

(а) Контроль напряжения

Напряжение зарядки определяется на основе начального напряжения аккумулятора, когда он подключен для зарядки. По мере зарядки напряжение зарядки изменяется соответствующим образом, и, наконец, когда аккумулятор полностью заряжен, устанавливается окончательное напряжение.Уровни напряжения зарядки для зарядного устройства 48 В / 12 А поясняются ниже.

  • Если напряжение аккумулятора <36 В, зарядка TC (0,6 A), настройка напряжения FV (56 В)
  • Если напряжение батареи <40 В, зарядка TC (0,6 A), установка напряжения CV (58 В)
  • Если напряжение аккумулятора> 40 В, зарядка CC (12,0 A), установка напряжения CV (58 В)
  • При полной зарядке устанавливается напряжение FV (56 В). Если напряжение аккумулятора ниже FV, зарядный ток будет сброшен до CC (12,0 А).

(б) Текущий контроль

Ток зарядки устанавливается в зависимости от напряжения аккумулятора.Первоначально, если напряжение батареи слишком низкое, для зарядки батареи будет установлен ток капельной зарядки. Как только напряжение аккумулятора достигает определенного уровня, для зарядки подается постоянный ток, пока аккумулятор не зарядится полностью. Уровни выбора зарядного тока для зарядного устройства 48 В / 12 А перечислены ниже.

  • Ток зарядки <1,2 А, определение окончания зарядки
  • Ток зарядки> 0,2 А, определение начала зарядки

(c) Защита от перегрева

Зарядное устройство EV имеет термистор с отрицательным температурным коэффициентом (NTC) для контроля температуры и вентилятор для регулирования нагрева.При повышении температуры автоматически включается вентилятор для отвода тепла; он отключается, когда температура снижается до нижнего установленного порога. Кроме того, вентилятор включается при высоком токе зарядки и выключается при низком токе зарядки.

  • Когда температура NTC> 110 ° C, зарядный ток будет снижен до 50% от зарядного тока и будет периодически контролироваться

(d) Светодиодные индикаторы состояния зарядки

Они перечислены ниже.

  • Зарядка TC, красный индикатор медленно мигает (0,3 сек горит, 0,3 сек выкл)
  • CC, зарядка CV, красный свет быстро мигает (0,1 с горит, 0,1 с не горит)
  • Когда не заряжается, горит зеленый свет
  • Когда время зарядки превышает восемь часов, загораются красный и зеленый свет

(e) Продолжительность зарядки

Когда продолжительность зарядки превышена (продолжительность зависит от емкости аккумулятора), напряжение падает до FV, ток снижается до TC, и зарядное устройство постоянно контролирует напряжение аккумулятора.

Схема и сборка печатной платы

Схема зарядного устройства Holtek EV для типа 48V / 12A показана на рис. 5 для справки, а его печатная плата показана на рис. 6.

Рис. 5: Схема зарядного устройства электромобиля на 48 В / 12 А
Скачать оригинал:
Нажмите здесь

Флэш-MCU HT45F5Q-2 ASSP также может использоваться для разработки решений с более высокой мощностью. Он предлагает программируемую опцию для установки пороговых значений параметров, что делает его очень удобным для зарядных устройств электромобилей.Holtek предоставляет технические ресурсы, такие как блок-схема, схемы приложений, файлы печатных плат, исходный код и т. Д., Чтобы помочь дизайнерам в быстрой разработке продукта и ускорить вывод продукта на рынок.

Рис. 6: Сборка печатной платы зарядного устройства для электромобилей

Платформа для разработки зарядных устройств для электромобилей серии HT45F5Q-X также будет доступна в ближайшее время. Используя этот программный инструмент, пользователи смогут легко выбрать напряжение / ток зарядки и другие параметры для создания программы. Это приложение также сможет сгенерировать программу, содержащую стандартный процесс зарядки, тем самым значительно упростив процесс разработки.


Кришна Чайтанья Камасани, директор Holtek Semiconductor по операциям в Индии

Учебное пособие по физике: разность электрических потенциалов

В предыдущем разделе Урока 1 было введено понятие электрического потенциала. Электрический потенциал - это зависящая от местоположения величина, которая выражает количество потенциальной энергии на единицу заряда в определенном месте. Когда кулон заряда (или любое заданное количество заряда) обладает относительно большим количеством потенциальной энергии в данном месте, то это место называется местом с высоким электрическим потенциалом.Точно так же, если кулон заряда (или любое заданное количество заряда) обладает относительно небольшим количеством потенциальной энергии в данном месте, то это место называется местом с низким электрическим потенциалом. Когда мы начнем применять наши концепции потенциальной энергии и электрического потенциала к цепям, мы начнем ссылаться на разницу в электрическом потенциале между двумя точками. Эта часть Урока 1 будет посвящена пониманию разности электрических потенциалов и ее применению к движению заряда в электрических цепях.

Рассмотрим задачу перемещения положительного испытательного заряда в однородном электрическом поле из точки A в точку B, как показано на схеме справа. При перемещении заряда против электрического поля из точки A в точку B над зарядом должна будет работать внешняя сила. Работа, проделанная с зарядом, изменяет его потенциальную энергию на более высокое значение; и объем проделанной работы равен изменению потенциальной энергии. В результате этого изменения потенциальной энергии также существует разница в электрическом потенциале между точками A и B.Эта разность электрических потенциалов представлена ​​символом ΔV и формально называется разностью электрических потенциалов . По определению, разность электрических потенциалов - это разность электрических потенциалов (V) между конечным и начальным местоположениями, когда над зарядом выполняется работа по изменению его потенциальной энергии. В форме уравнения разность электрических потенциалов равна

.

Стандартной метрической единицей измерения разности электрических потенциалов является вольт, сокращенно В и названный в честь Алессандро Вольта.Один вольт эквивалентен одному джоулю на кулон. Если разность электрических потенциалов между двумя местоположениями составляет 1 вольт, то один кулоновский заряд получит 1 джоуль потенциальной энергии при перемещении между этими двумя местоположениями. Если разность электрических потенциалов между двумя точками составляет 3 вольта, то один кулон заряда получит 3 джоуля потенциальной энергии при перемещении между этими двумя точками. И, наконец, если разность электрических потенциалов между двумя местоположениями составляет 12 вольт, то один кулон заряда получит 12 джоулей потенциальной энергии при перемещении между этими двумя местоположениями.Поскольку разность электрических потенциалов выражается в вольтах, ее иногда называют напряжением .


Разность электрических потенциалов и простые схемы

Электрические цепи, как мы увидим, все связаны с движением заряда между различными местами и соответствующими потерями и увеличением энергии, которые сопровождают это движение. В предыдущей части Урока 1 концепция электрического потенциала была применена к простой электрической цепи с батарейным питанием.В этом обсуждении было объяснено, что необходимо проделать работу с положительным тестовым зарядом, чтобы переместить его через ячейки от отрицательного вывода к положительному выводу. Эта работа увеличит потенциальную энергию заряда и, таким образом, увеличит его электрический потенциал. Когда положительный тестовый заряд перемещается через внешнюю цепь от положительного вывода к отрицательному выводу, он уменьшает свою электрическую потенциальную энергию и, таким образом, имеет низкий потенциал к тому времени, когда он возвращается к отрицательному выводу.Если в цепи используется 12-вольтовая батарея, то каждый кулон заряда получает 12 джоулей потенциальной энергии при прохождении через батарею. Точно так же каждый кулон заряда теряет 12 джоулей электрической потенциальной энергии при прохождении через внешнюю цепь. Потеря этой электрической потенциальной энергии во внешней цепи приводит к увеличению световой энергии, тепловой энергии и других форм неэлектрической энергии.

С четким пониманием разности электрических потенциалов, роли электрохимической ячейки или совокупности ячеек (т.е., аккумулятор) в простой схеме можно правильно понять. Ячейки просто поставляют энергию для работы с зарядом, чтобы переместить его от отрицательного вывода к положительному. Предоставляя энергию для заряда, элемент способен поддерживать разность электрических потенциалов на двух концах внешней цепи. Как только заряд достигает клеммы с высоким потенциалом, он естественным образом течет по проводам к клемме с низким потенциалом. Движение заряда по электрической цепи аналогично движению воды в аквапарке или движению американских горок в парке развлечений.В каждой аналогии необходимо проделать работу на воде или на американских горках, чтобы переместить ее из места с низким гравитационным потенциалом в место с высоким гравитационным потенциалом. Когда вода или американские горки достигают высокого гравитационного потенциала, они естественным образом движутся вниз обратно в место с низким потенциалом. Для водных прогулок или американских горок задача по подъему автомобилей с водой или горками до высокого потенциала требует энергии. Энергия подается водяным насосом с приводом от двигателя или цепью с приводом от двигателя.В электрической цепи с батарейным питанием элементы служат в качестве зарядного насоса для подачи энергии на заряд, чтобы поднять его из положения с низким потенциалом через элемент в положение с высоким потенциалом.

Часто удобно говорить об электрической цепи, такой как простая схема, обсуждаемая здесь, как о состоящей из двух частей - внутренней цепи и внешней цепи. Внутренняя цепь - это часть цепи, в которой энергия подается на заряд.Для простой схемы с батарейным питанием, о которой мы говорили, часть схемы, содержащая электрохимические элементы, является внутренней схемой. Внешняя цепь - это часть схемы, в которой заряд движется за пределы ячеек по проводам на своем пути от клеммы с высоким потенциалом к ​​клемме с низким потенциалом. Движение заряда по внутренней цепи требует энергии, поскольку это движение на вверх по высоте в направлении против электрического поля .Движение заряда по внешней цепи является естественным, поскольку это движение в направлении электрического поля. Когда на положительном выводе электрохимической ячейки, положительный тестовый заряд имеет высокое электрическое давление , точно так же, как вода в аквапарке находится под высоким давлением после того, как ее перекачивают на вершину водной горки. Находясь под высоким электрическим давлением, положительный испытательный заряд самопроизвольно и естественным образом перемещается по внешней цепи в место с низким давлением и низким потенциалом.

Когда положительный тестовый заряд проходит через внешнюю цепь, он встречает различные типы элементов схемы. Каждый элемент схемы служит устройством преобразования энергии. Лампочки, двигатели и нагревательные элементы (например, в тостерах и фенах) являются примерами устройств преобразования энергии. В каждом из этих устройств электрическая потенциальная энергия заряда преобразуется в другие полезные (и бесполезные) формы. Например, в лампочке электрическая потенциальная энергия заряда преобразуется в световую энергию (полезная форма) и тепловая энергия (бесполезная форма).Движущийся заряд воздействует на лампочку, производя две разные формы энергии. При этом движущийся заряд теряет свою электрическую потенциальную энергию. При выходе из элемента схемы заряд находится под меньшим напряжением. Место непосредственно перед входом в лампочку (или любой элемент схемы) является местом с высоким электрическим потенциалом; и место сразу после выхода из лампочки (или любого элемента цепи) - это место с низким электрическим потенциалом. Ссылаясь на диаграмму выше, местоположения A и B являются местоположениями с высоким потенциалом, а местоположения C и D - местоположениями с низким потенциалом.Потеря электрического потенциала при прохождении через элемент схемы часто упоминается как падение напряжения . К тому времени, когда положительный тестовый заряд возвращается к отрицательному выводу, он достигает 0 вольт и готов к повторному включению и подаче напряжения обратно на положительный вывод высокого напряжения .

Диаграммы электрических потенциалов

Диаграмма электрических потенциалов - удобный инструмент для представления разностей электрических потенциалов между различными точками электрической цепи.Ниже показаны две простые схемы и соответствующие им диаграммы электрических потенциалов.

В цепи A есть D-элемент на 1,5 В и одна лампочка. В цепи B есть 6-вольтовая батарея (четыре 1,5-вольтовых D-элемента) и две лампочки. В каждом случае отрицательный полюс батареи является положением 0 В. Положительный полюс батареи имеет электрический потенциал, равный номинальному напряжению батареи. Аккумулятор заряжает и перекачивает его от клеммы низкого напряжения к клемме высокого напряжения.Таким образом батарея создает разность электрических потенциалов на двух концах внешней цепи. Находясь на под электрическим давлением , заряд теперь будет перемещаться по внешней цепи. Поскольку его электрическая потенциальная энергия преобразуется в энергию света и тепловую энергию в местах расположения лампочек, заряд снижает свой электрический потенциал. Общее падение напряжения на внешней цепи равно напряжению батареи, когда заряд перемещается от положительного вывода обратно к 0 вольт на отрицательном выводе.В случае контура B во внешней цепи есть два падения напряжения, по одному на каждую лампочку. В то время как величина падения напряжения в отдельной лампочке зависит от различных факторов (которые будут обсуждаться позже), совокупная величина падения должна равняться 6 вольтам, полученным при прохождении через батарею.

Разность электрических потенциалов на двух вставках бытовой электросети зависит от страны.Используйте виджет Household Voltages ниже, чтобы узнать значения напряжения в домашних условиях для различных стран (например, США, Канады, Японии, Китая, Южной Африки и т. Д.).


Проверьте свое понимание

1. Перемещение электрона в электрическом поле изменило бы ____ электрона.

а. масса офб. сумма заряда нац.потенциальная энергия

2. Если бы электрическая цепь была аналогична водной цепи в аквапарке, то напряжение батареи было бы сопоставимо с _____.

а. скорость, с которой вода течет через контур

г. скорость, с которой вода течет по контуру

г. расстояние, на котором вода протекает через контур

г. давление воды между верхом и низом контура

e.помеха, вызванная препятствиями на пути движущейся воды

3. Если бы электрическая цепь в вашем Walkman была аналогична водной цепи в аквапарке, тогда батарея была бы сопоставима с _____.

а. люди, которые сползают с возвышенности на землю

г. препятствия, стоящие на пути движущейся воды

г. насос, который перекачивает воду с земли на возвышения

г.трубы, по которым течет вода

e. расстояние, на котором вода протекает через контур

4. Что из нижеперечисленного относится к электрической схеме вашего фонарика?

а. Заряд движется по контуру очень быстро - почти со скоростью света.

г. Аккумулятор поставляет заряд (электроны), который движется по проводам.

г.Батарея обеспечивает заряд (протоны), который движется по проводам.

г. Заряд расходуется по мере прохождения через лампочку.

e. Батарея вырабатывает энергию, повышающую уровень заряда от низкого до высокого напряжения.

ф. ... ерунда! Ничего из этого не соответствует действительности.


5. Если аккумулятор обеспечивает высокое напряжение, он может ____.

а. делать много работы в течение своего срока службы

г. много работать над каждым обнаруженным зарядом

г. протолкнуть много заряда через цепь

г. длиться долго


На схеме внизу справа показана лампочка, подключенная проводами к + и - клеммам автомобильного аккумулятора. Используйте диаграмму, чтобы ответить на следующие четыре вопроса.

6. По сравнению с точкой D, точка A имеет _____ электрический потенциал.

а. 12 В выше в

г. 12 В ниже в

г. точно такой же

г. ... невозможно сказать

7. Электрическая потенциальная энергия заряда равна нулю в точке _____.

8. Требуется энергия, чтобы заставить сдвинуть положительный тестовый заряд ___.

а. через провод из точки А в точку Б

г. через лампочку из точки B в точку C

г. по проводу от точки C до точки D

г. через батарею из точки D в точку A

9. Энергия, необходимая для перемещения +2 C заряда между точками D и A, составляет ____ Дж.

а. 0,167b. 2.0c. 6.0d. 12e. 24

10.Следующая схема состоит из D-ячейки и лампочки. Используйте символы>, <и = для сравнения электрического потенциала в точках A и B и от C до D. Укажите, добавляют ли устройства энергию к заряду или удаляют ее.

11. Используйте свое понимание математической взаимосвязи между работой, потенциальной энергией, зарядом и разностью электрических потенциалов, чтобы заполнить следующие утверждения:

а.9-вольтовая батарея увеличит потенциальную энергию заряда в 1 кулон на ____ джоулей.

г. 9-вольтовая батарея увеличит потенциальную энергию 2 кулонов заряда на ____ джоулей.

г. 9-вольтовая батарея увеличит потенциальную энергию заряда 0,5 кулонов на ____ джоулей.

г. Аккумулятор ___-вольт увеличит потенциальную энергию 3 кулонов заряда на 18 джоулей.

e. Аккумулятор ___-вольт увеличит потенциальную энергию 2 кулонов заряда на 3 джоуля.

ф. Батарея на 1,5 В увеличит потенциальную энергию заряда ____ кулонов на 0,75 джоулей.

г. 12-вольтовая батарея увеличит потенциальную энергию ____ кулонов заряда на 6 джоулей.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *