Схема зарядки от usb: СХЕМА ЗАРЯДНОГО УСТРОЙСТВА ОТ USB

Содержание

Распиновка микро usb разъема для зарядки своими руками

Проблемы при зарядке различных устройств через USB часто возникают, когда используются нештатные зарядники. При этом зарядка происходит довольно медленно и не полностью либо вовсе отсутствует.

Следует сказать и о том, что зарядка через USB возможна не со всеми мобильными устройствами. Этот порт у них имеется только для передачи данных, а для зарядки применяется отдельный круглое гнездо.

Выходной ток в компьютерных USB составляет не больше пол-ампера для USB 2.0, а для USB 3.0 – 0,9 А. Ряду девайсов этого может быть недостаточно для нормального заряда.

Бывает, что в вашем распоряжении имеется зарядник, но он не заряжает ваш гаджет (об этом может сообщить надпись на дисплее или будет отсутствовать индикация заряда). Такое ЗУ не поддерживается вашим девайсом, и возможно это из-за того, что ряд гаджетов до начала процесса зарядки сканирует присутствие определенного напряжения на пинах 2 и 3. Для других девайсов может быть важным присутствие перемычки между этими пинами, а также их потенциал.

Таким образом, если устройство не поддерживает предлагаемый тип зарядника, то процесс зарядки не начнется никогда.

Чтобы девайс начал заряжаться от предоставленного ему зарядника, необходимо обеспечить на 2 и 3 пине USB, необходимые напряжения. Для разных устройств эти напряжения тоже могут отличаться.

Для многих устройств требуется, чтобы пины 2 и 3 имели перемычку или элемент сопротивления, номинал которого не больше 200 Ом. Такие изменения можно сделать в гнезде USB_AF, которое находится в вашем ЗУ. Тогда зарядку станет возможно производить стандартным Data-кабелем.

Гаджет Freelander Typhoon PD10 требует той же схемы подключения, но напряжение заряда должно быть на уровне 5,3 В.

В случае если у зарядника отсутствует гнездо USB_AF, а шнур выходит прямо из корпуса ЗУ, то можно припаять к кабелю штекеры mini-USB или micro-USB. Соединения необходимо произвести, как показано на следующей картинке:

Различная продукция фирмы Apple имеет такой вариант соединения:

При отсутствии элемента сопротивления номиналом 200 кОм на пинах 4 и 5 устройства фирмы Motorola не могут осуществить полный заряд.

Для зарядки Samsung Galaxy необходимо наличие перемычки на пинах 2 и 3, а также элемента сопротивления на 200 кОм на контактах 4 и 5.

Полный заряд Samsung Galaxy Tab в щадящем режиме рекомендуется производить при использовании двух резисторов номиналом 33 кОм и 10 кОм, как изображено на картинке ниже:

Такое устройство, как E-ten может заряжаться любым ЗУ, но лишь при условии, что пины 4 и 5 будут соединены перемычкой.

Такая схема реализована в кабеле USB-OTG. Но в этом случае необходимо использовать дополнительный переходник USB папа-папа.

Универсальное ЗУ Ginzzu GR-4415U и другие аналогичные устройства имеют гнезда с различным соединением резисторов для зарядки девайсов iPhone/Apple и Samsung/HTC. Распиновка этих портов выглядит так:

Чтобы зарядить навигатор Garmin, необходим тот же кабель с перемычкой на контактах 4 и 5. Но в этом случае устройство не может заряжаться во время работы. Для того чтобы навигатор мог подзаряжаться, необходимо заменить перемычку на резистор номиналом 18 кОм.

Для зарядки планшетов обычно необходимо 1-1,5 А, но как было упомянуто ранее, USB-порты не смогут нормально заряжать их, поскольку USB 3.0 выдаст максимум 900 мА.

В некоторых моделях планшетов для зарядки имеется круглое коаксиальное гнездо. Плюсовой пин гнезда mini-USB/micro-USB в таком случае не имеет соединения с контроллером заряда аккумулятора. По утверждениям некоторых пользователей таких планшетов, если соединить плюс от гнезда USB с плюсом коаксиального гнезда перемычкой, то зарядка может осуществляться через USB.

А можно и изготовить переходник для подключения в коаксиальное гнездо, как показано на рисунке ниже:

Вот схемы перемычек с указанием напряжения и номиналов резисторов:

В итоге, чтобы осуществлять зарядку различных гаджетов от неродных ЗУ необходимо убедиться в том, что зарядка выдает напряжение 5 В и ток не меньше 500 мА, и внести изменения в гнезде или штекере USB согласно требованиям вашего устройства.

АВТОР: Алексей Алексеевич.


 

Распиновка USB разъемов для зарядки телефонов

Большинство современных мобильных телефонов, смартфонов, планшетов и других носимых гаджетов, поддерживает зарядку через гнездо USB mini-USB или micro-USB. Правда до единого стандарта пока далеко и каждая фирма старается сделать распиновку по-своему. Наверное чтоб покупали зарядное именно у неё. Хорошо хоть сам ЮСБ штекер и гнездо сделали стандартным, а также напряжение питания 5 вольт. Так что имея любое зарядное-адаптер, можно теоретически зарядить любой смартфон. Как? Изучайте варианты распиновки USB и читайте далее.

Распиновка USB разъемов для Nokia, Philips, LG, Samsung, HTC

Бренды Nokia, Philips, LG, Samsung, HTC и многие другие телефоны распознают зарядное устройство только если контакты Data+ и Data- (2-й и 3-й) будут закорочены. Закоротить их можно в гнезде USB_AF зарядного устройства и спокойно заряжать свой телефон через стандартный дата-кабель.

Распиновка USB разъемов на штекере

Если зарядное устройство уже обладает выходным шнуром (вместо выходного гнезда), и вам нужно припаять к нему штекер mini-USB или micro-USB, то не нужно соединить 2 и 3 контакты в самом mini/micro USB.

При этом плюс паяете на 1 контакт, а минус — на 5-й (последний).

Распиновка USB разъемов для Iphone

У Айфонов контакты Data+ (2) и Data- (3) должны соединяться с контактом GND (4) через резисторы 50 кОм, а с контактом +5V через резисторы 75 кОм.

Распиновка зарядного разъема Samsung Galaxy

Для заряда Самсунг Галакси в штекере USB micro-BM должен быть установлен резистор 200 кОм между 4 и 5 контактами и перемычка между 2 и 3 контактами.


Распиновка USB разъемов для навигатора Garmin

Для питания или заряда навигатора Garmin требуется особый дата-кабель. Просто для питания навигатора через кабель нужно в штекере mini-USB закоротить 4 и 5 контакты. Для подзаряда нужно соединить 4 и 5 контакты через резистор 18 кОм.

Схемы цоколёвки для зарядки планшетов

Практически любому планшетному компьютеру для заряда требуется большой ток — раза в 2 больше чем смартфону, и заряд через гнездо mini/micro-USB во многих планшетах просто не предусмотрен производителем. Ведь даже USB 3.0 не даст более 0,9 ампер. Поэтому ставится отдельное гнездо (часто круглого типа). Но и его можно адаптировать под мощный ЮСБ источник питания, если спаять вот такой переходник.

Распиновка зарядного гнезда планшета Samsung Galaxy Tab

Для правильного заряда планшета Samsung Galaxy Tab рекомендуют другую схему: два резистора: 33 кОм между +5 и перемычкой D-D+; 10 кОм между GND и перемычкой D-D+.

Распиновка разъёмов зарядных портов

Вот несколько схем напряжений на контактах USB с указанием номинала резисторов, позволяющих эти напряжения получить. Там, где указано сопротивление 200 Ом нужно ставить перемычку, сопротивление которой не должно превышать это значение.

Классификация портов Charger

  • SDP (Standard Downstream Ports) – обмен данными и зарядка, допускает ток до 0,5 A.
  • CDP (Charging Downstream Ports) – обмен данными и зарядка, допускает ток до 1,5 A; аппаратное опознавание типа порта (enumeration) производится до подключения гаджетом линий данных (D- и D+) к своему USB-приемопередатчику.
  • DCP (Dedicated Charging Ports) – только зарядка, допускает ток до 1,5 A.
  • ACA (Accessory Charger Adapter) – декларируется работа PD-OTG в режиме Host (с подключением к PD периферии – USB-Hub, мышка, клавиатура, HDD и с возможностью дополнительного питания), для некоторых устройств – с возможностью зарядки PD во время OTG-сессии.

Как переделать штекер своими руками

Теперь у вас есть схема распиновки всех популярных смартфонов и планшетов, так что если имеете навык работы с паяльником — не будет никаких проблем с переделкой любого стандартного USB-разъема на нужный вашему девайсу тип. Любая стандартная зарядка, которая основывается на использовании USB, предусматривает использование всего лишь двух проводов – это +5В и общий (минусовой) контакт.

Просто берёте любую зарядку-адаптер 220В/5В, от неё отрезаете ЮСБ коннектор. Отрезанный конец полностью освобождается от экрана, в то время как остальные четыре провода зачищаются и залуживаются. Теперь берем кабель с разъемом USB нужного типа, после чего также отрезаем от него лишнее и проводим ту же самую процедуру. Теперь остается просто спаять между собой провода согласно схемы, после чего соединение изолировать каждое отдельно. Полученное в итоге дело сверху заматывается изолентой или скотчем. Можно залить термоклеем — тоже нормальный вариант.

Бонус: все остальные разъёмы (гнёзда) для мобильных телефонов и их распиновка доступны в единой большой таблице — смотреть.


ЗАРЯЖАЕМ АККУМУЛЯТОР ЧЕРЕЗ USB

   Очень простая схема USB зарядки для пальчиковых (AA) и мизинчиковых (AAA) никель-металл-гидридных аккумуляторов. Схема состоит всего из нескольких деталей, которые очень просто найти каком-нибудь ненужном электроприборе или купить в радиомагазине.

Схема принципиальная для заряда AA от USB

Список деталей устройства

  • Импульсный диод 1N4007 - 2x
  • Резистор 0.5W 9,7 Ом - 2x
  • Резистор 0. 25W 10 Ом - 2x
  • Светодиод (любой цвет) - 2x
  • Вилка USB - 1x

   Время зарядки конечно же зависит от тока, который мы будем подавать на аккумуляторы, а также ёмкости самих перезаряжаемых батареек. К примеру китайские аккумуляторы UltraFire с реальной ёмкостью примерно 0,4-0,5 Ампер*часов заряжаются у меня полностью за 2-3 часа.

   Естественно, данное "зарядное устройство" в отличии от более сложных не оповещает вас об окончании заряда, поэтому не забывайте следить за процессом, ведь перезаряд может негативно повлиять на Ni-MH аккумуляторы. А два миниатюрных светодиода любого цвета служат как индикатор, они показывают заряжается аккумулятор или нет. Можно для уменьшения размера платы использовать светодиоды для поверхностного монтажа (SMD).

   Удобнее всего припаять USB вход прямо на плату зарядки, которая получится весьма компактных размеров. Лично у меня размеры платы получились крайне малы, а именно: 2,8 х 1,5 см.

   Напряжение зарядки ~4.85V, ток зависит от сопротивления применяемых резисторов, при указанных номиналах примерно до 160 mA.

   У меня вышел ток зарядки 141.2 mA.

   Хочу заметить, что при длительной зарядки наблюдается небольшое нагревание резисторов на 9,7 Ом, и чтобы такого не было, возьмите резисторы мощностью не 0,5 Вт как указано в схеме, а 1 Вт и больше.

   В заключение хочу сказать, что качество зарядки таким вот прибором остается желать лучшего. Но если нужно по быстрому собрать схему и зарядить аккумулятор, то это самое то. Я лично заряжал несколько месяцев подряд Ni-MH аккумуляторы родом из поднебесной и ничего - с ними всё хорошо. Также добавлю, что более чем до 1,4 вольт не следует заряжать аккумуляторы во избежание перегрева и износа. Скачать плату можно здесь: usb-charger-aa.lay в архиве. Автор - EGOR.

   Форум по устройствам заряда

   Форум по обсуждению материала ЗАРЯЖАЕМ АККУМУЛЯТОР ЧЕРЕЗ USB

Зарядное устройство для телефона схема usb

Схемы распайки зарядных устройств различных производителей.

Проблемы с зарядкой по USB обычно появляются при использовании постороннего (не родного) зарядного устройства. Гаджет может заряжаться медленно, не полностью, а может и вовсе отказаться заряжаться. Собственно, этой проблеме и посвящена сия статья. Но сперва я должен высказать несколько важных замечаний касаемо зарядки по USB вообще.

  1. Как это ни странно, некоторые мобильные устройства вообще не поддерживают зарядку через гнездо USB mini/micro, хоть и оборудованы им. К примеру, некоторые планшеты снабжены отдельным (круглым) гнездом для подключения зарядного устройства (ЗУ).
  2. При зарядке устройства от USB компьютера следует понимать, что порт USB способен выдать ток не более 0,5 ампера ( USB 2.0 ) или не более 0,9 ампера (USB 3.0). И если для заряда устройства требуется больший ток (1÷2 ампера), то время заряда может оказаться мучительно долгим, вплоть до бесконечности. Придётся искать ЗУ подходящей мощности.
  3. Чтобы понимать, какие вообще контакты за что отвечают в разъёмах USB и как они нумеруются, прочтите статью « Распиновка USB 2.0 ». Вкратце: первый контакт в USB это +5 вольт, а последний — «земля».

Итак, вы подключили гаджет к левому/самодельному зарядному устройству, а он не заряжается, да ещё и пишет, что зарядное устройство не поддерживается. Это связано с тем, что перед тем как позволить себе заряжаться, некоторые мобильные устройства замеряют напряжения на 2 и 3 контактах USB и по этим напряжениям определяет тип зарядного порта. А некоторые — просто проверяют наличие перемычки между контактами 2 и 3 или ещё и контролируют потенциал этой связки. Если гаджет не рассчитан на подключение к данному типу зарядного порта или тип порта не определён, то зарядное устройство будет отвергнуто. Подробно вся эта кухня описана в статье « Типы зарядных портов ».

Практическая сторона вопроса заключается в том, чтобы гаджет увидел нужные ему напряжения на контактах 2 и 3, а это обеспечивается подключением различных сопротивлений между контактами USB зарядного устройства. В конце статьи приводится чертёж различных типов зарядного порта (без привязки к моделям гаджетов) с указанием напряжений на контактах 2 и 3. Там же указано, какими сопротивлениями этого можно добиться. А прямо сейчас мы посмотрим, чего ждут определённые модели гаджетов от порта зарядного устройства.

Nokia, Fly, Philips, LG, Explay, Dell Venue и многие другие устройства признают зарядное устройство только если контакты Data+ и Data- (2-й и 3-й) будут закорочены или замкнуты резистором не более 200 Ом ▼

Закоротить контакты 2 и 3 можно в гнезде USB_AF зарядного устройства и спокойно заряжать свой телефон через стандартный дата-кабель. Эту же схему поддерживает планшет Freelander PD10 Typhoon, но кроме этого ему требуется повышенное напряжение заряда, а именно — 5,3 вольта.
Если же зарядное устройство уже обладает выходным шнуром (вместо выходного гнезда), и вам нужно припаять к нему штекер mini/micro USB, то не забудьте соединить 2 и 3 контакты в самом mini/micro USB. При этом плюс паяете на 1 контакт, а минус — на 5-й (последний). ▼

Samsung, HTC и другие «Корейцы»: один резистор 30 кОм между +5 и перемычкой D-D+; другой резистор 10 кОм между GND и перемычкой D-D+ ▼

iPhone и прочей продукции «Apple». От этого же порта охотно заряжается планшет Freelander PX1. ▼

Претендующее на универсальность автомобильное зарядное устройство «Ginzzu GR-4415U» и его аналоги оборудованы двумя выходными гнёздами: «HTC/Samsung» и «Apple» или «iPhone». Распиновка этих гнёзд приведена ниже. ▼

Старая Motorola «требует» резистор 200 кОм между 4 и 5 контактами штекера USB micro-BM. Без резистора аппарат заряжается не до полной победы. ▼

Аппарат E-ten («Енот») не интересуется состоянием этих контактов, и поддержит даже простое зарядное устройство. Но у него есть интересное требование к зарядному кабелю — «Енот» заряжается только если в штекере mini-USB закорочены контакты 4 и 5. ▼

Для питания или заряда навигатора Garmin требуется особый дата-кабель. Просто для питания навигатора через дата-кабель нужно в штекере mini-USB закоротить 4 и 5 контакты. Для подзаряда нужно соединить 4 и 5 контакты через резистор 18 кОм. ▼

Отдельная тема — зарядка планшетов. Как правило, планшету для заряда требуется приличный ток (1÷1,5 ампер), и заряд через гнездо mini/micro-USB во многих планшетах просто не предусмотрен производителем. Ведь даже USB 3.0 не даст более 0,9 ампер.
Правда, некоторые модели планшетов можно медленно и печально заряжать в выключенном состоянии.
На Ютубе один парень предлагает установить в планшете 3Q перемычку между первым контактом гнезда mini/micro-USB (это +5 В) и плюсовым (центральным) контактом круглого (коаксиального) зарядного гнезда. Дескать, тока от USB этому планшету хватает, просто + гнезда USB не подключен к контроллеру заряда аккумулятора. После установки перемычки планшет якобы заряжается. В принципе, это выход, если само круглое зарядное гнездо уже раздолбано.
Напротив, если круглое гнездо в порядке, но по какой-то причине вам хочется брать питание для заряда именно от USB компьютера или зарядного устройства с таким разъёмом, то можно сделать такой переходник. ▼

Правда, к теме этой статьи он отношения не имеет.

Типы зарядных портов

Повторюсь, подробную информацию можно почерпнуть в статье Типы зарядных портов . Здесь же приведу сводную схему напряжений на контактах USB с указанием номинала резисторов, позволяющих те или иные напряжения получить. Там, где указано сопротивление 200 Ом нужно ставить перемычку, сопротивление которой не должно превышать те самые 200 Ом.

Итак, если вы хотите переделать обычное ЗУ в USB-зарядку для телефона:
  • удостоверьтесь, что устройство выдаёт около 5 вольт постоянного напряжения
  • узнайте, способно ли это ЗУ дать ток не менее 500 мА
  • внесите необходимые изменения в коммутацию гнезда USB-AF или штекера USB-mini/micro

Смежные материалы:

Все материалы по теме « Компьютер»
Все материалы по теме «Мобильное»
Все материалы по теме «Зарядное устройство»

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Большинство современных мобильных телефонов, смартфонов, планшетов и других носимых гаджетов, поддерживает зарядку через гнездо USB mini-USB или micro-USB. Правда до единого стандарта пока далеко и каждая фирма старается сделать распиновку по-своему. Наверное чтоб покупали зарядное именно у неё. Хорошо хоть сам ЮСБ штекер и гнездо сделали стандартным, а также напряжение питания 5 вольт. Так что имея любое зарядное-адаптер, можно теоретически зарядить любой смартфон. Как? Изучайте варианты распиновки USB и читайте далее.

Распиновка USB разъемов для Nokia, Philips, LG, Samsung, HTC

Бренды Nokia, Philips, LG, Samsung, HTC и многие другие телефоны распознают зарядное устройство только если контакты Data+ и Data- (2-й и 3-й) будут закорочены. Закоротить их можно в гнезде USB_AF зарядного устройства и спокойно заряжать свой телефон через стандартный дата-кабель.

Распиновка USB разъемов на штекере

Если зарядное устройство уже обладает выходным шнуром (вместо выходного гнезда), и вам нужно припаять к нему штекер mini-USB или micro-USB, то не нужно соединить 2 и 3 контакты в самом mini/micro USB. При этом плюс паяете на 1 контакт, а минус — на 5-й (последний).

Распиновка USB разъемов для Iphone

У Айфонов контакты Data+ (2) и Data- (3) должны соединяться с контактом GND (4) через резисторы 50 кОм, а с контактом +5V через резисторы 75 кОм.

Распиновка зарядного разъема Samsung Galaxy

Для заряда Самсунг Галакси в штекере USB micro-BM должен быть установлен резистор 200 кОм между 4 и 5 контактами и перемычка между 2 и 3 контактами.

Распиновка USB разъемов для навигатора Garmin

Для питания или заряда навигатора Garmin требуется особый дата-кабель. Просто для питания навигатора через кабель нужно в штекере mini-USB закоротить 4 и 5 контакты. Для подзаряда нужно соединить 4 и 5 контакты через резистор 18 кОм.

Схемы цоколёвки для зарядки планшетов

Практически любому планшетному компьютеру для заряда требуется большой ток — раза в 2 больше чем смартфону, и заряд через гнездо mini/micro-USB во многих планшетах просто не предусмотрен производителем. Ведь даже USB 3. 0 не даст более 0,9 ампер. Поэтому ставится отдельное гнездо (часто круглого типа). Но и его можно адаптировать под мощный ЮСБ источник питания, если спаять вот такой переходник.

Распиновка зарядного гнезда планшета Samsung Galaxy Tab

Для правильного заряда планшета Samsung Galaxy Tab рекомендуют другую схему: два резистора: 33 кОм между +5 и перемычкой D-D+; 10 кОм между GND и перемычкой D-D+.

Распиновка разъёмов зарядных портов

Вот несколько схем напряжений на контактах USB с указанием номинала резисторов, позволяющих эти напряжения получить. Там, где указано сопротивление 200 Ом нужно ставить перемычку, сопротивление которой не должно превышать это значение.

Классификация портов Charger

  • SDP (Standard Downstream Ports) — обмен данными и зарядка, допускает ток до 0,5 A.
  • CDP (Charging Downstream Ports) — обмен данными и зарядка, допускает ток до 1,5 A; аппаратное опознавание типа порта (enumeration) производится до подключения гаджетом линий данных (D- и D+) к своему USB-приемопередатчику.
  • DCP (Dedicated Charging Ports) — только зарядка, допускает ток до 1,5 A.
  • ACA (Accessory Charger Adapter) — декларируется работа PD-OTG в режиме Host (с подключением к PD периферии — USB-Hub, мышка, клавиатура, HDD и с возможностью дополнительного питания), для некоторых устройств — с возможностью зарядки PD во время OTG-сессии.

Как переделать штекер своими руками

Теперь у вас есть схема распиновки всех популярных смартфонов и планшетов, так что если имеете навык работы с паяльником — не будет никаких проблем с переделкой любого стандартного USB-разъема на нужный вашему девайсу тип. Любая стандартная зарядка, которая основывается на использовании USB, предусматривает использование всего лишь двух проводов — это +5В и общий (минусовой) контакт.

Просто берёте любую зарядку-адаптер 220В/5В, от неё отрезаете ЮСБ коннектор. Отрезанный конец полностью освобождается от экрана, в то время как остальные четыре провода зачищаются и залуживаются. Теперь берем кабель с разъемом USB нужного типа, после чего также отрезаем от него лишнее и проводим ту же самую процедуру. Теперь остается просто спаять между собой провода согласно схемы, после чего соединение изолировать каждое отдельно. Полученное в итоге дело сверху заматывается изолентой или скотчем. Можно залить термоклеем — тоже нормальный вариант.

Бонус: все остальные разъёмы (гнёзда) для мобильных телефонов и их распиновка доступны в единой большой таблице — смотреть.

Схемы распайки зарядных устройств различных производителей.

Проблемы с зарядкой по USB обычно появляются при использовании постороннего (не родного) зарядного устройства. Гаджет может заряжаться медленно, не полностью, а может и вовсе отказаться заряжаться. Собственно, этой проблеме и посвящена сия статья. Но сперва я должен высказать несколько важных замечаний касаемо зарядки по USB вообще.

  1. Как это ни странно, некоторые мобильные устройства вообще не поддерживают зарядку через гнездо USB mini/micro, хоть и оборудованы им. К примеру, некоторые планшеты снабжены отдельным (круглым) гнездом для подключения зарядного устройства (ЗУ).
  2. При зарядке устройства от USB компьютера следует понимать, что порт USB способен выдать ток не более 0,5 ампера ( USB 2.0 ) или не более 0,9 ампера (USB 3.0). И если для заряда устройства требуется больший ток (1÷2 ампера), то время заряда может оказаться мучительно долгим, вплоть до бесконечности. Придётся искать ЗУ подходящей мощности.
  3. Чтобы понимать, какие вообще контакты за что отвечают в разъёмах USB и как они нумеруются, прочтите статью « Распиновка USB 2.0 ». Вкратце: первый контакт в USB это +5 вольт, а последний — «земля».

Итак, вы подключили гаджет к левому/самодельному зарядному устройству, а он не заряжается, да ещё и пишет, что зарядное устройство не поддерживается. Это связано с тем, что перед тем как позволить себе заряжаться, некоторые мобильные устройства замеряют напряжения на 2 и 3 контактах USB и по этим напряжениям определяет тип зарядного порта. А некоторые — просто проверяют наличие перемычки между контактами 2 и 3 или ещё и контролируют потенциал этой связки. Если гаджет не рассчитан на подключение к данному типу зарядного порта или тип порта не определён, то зарядное устройство будет отвергнуто. Подробно вся эта кухня описана в статье « Типы зарядных портов ».

Практическая сторона вопроса заключается в том, чтобы гаджет увидел нужные ему напряжения на контактах 2 и 3, а это обеспечивается подключением различных сопротивлений между контактами USB зарядного устройства. В конце статьи приводится чертёж различных типов зарядного порта (без привязки к моделям гаджетов) с указанием напряжений на контактах 2 и 3. Там же указано, какими сопротивлениями этого можно добиться. А прямо сейчас мы посмотрим, чего ждут определённые модели гаджетов от порта зарядного устройства.

Nokia, Fly, Philips, LG, Explay, Dell Venue и многие другие устройства признают зарядное устройство только если контакты Data+ и Data- (2-й и 3-й) будут закорочены или замкнуты резистором не более 200 Ом ▼

Закоротить контакты 2 и 3 можно в гнезде USB_AF зарядного устройства и спокойно заряжать свой телефон через стандартный дата-кабель. Эту же схему поддерживает планшет Freelander PD10 Typhoon, но кроме этого ему требуется повышенное напряжение заряда, а именно — 5,3 вольта.
Если же зарядное устройство уже обладает выходным шнуром (вместо выходного гнезда), и вам нужно припаять к нему штекер mini/micro USB, то не забудьте соединить 2 и 3 контакты в самом mini/micro USB. При этом плюс паяете на 1 контакт, а минус — на 5-й (последний). ▼

Samsung, HTC и другие «Корейцы»: один резистор 30 кОм между +5 и перемычкой D-D+; другой резистор 10 кОм между GND и перемычкой D-D+ ▼

iPhone и прочей продукции «Apple». От этого же порта охотно заряжается планшет Freelander PX1. ▼

Претендующее на универсальность автомобильное зарядное устройство «Ginzzu GR-4415U» и его аналоги оборудованы двумя выходными гнёздами: «HTC/Samsung» и «Apple» или «iPhone». Распиновка этих гнёзд приведена ниже. ▼

Старая Motorola «требует» резистор 200 кОм между 4 и 5 контактами штекера USB micro-BM. Без резистора аппарат заряжается не до полной победы. ▼

Аппарат E-ten («Енот») не интересуется состоянием этих контактов, и поддержит даже простое зарядное устройство. Но у него есть интересное требование к зарядному кабелю — «Енот» заряжается только если в штекере mini-USB закорочены контакты 4 и 5. ▼

Для питания или заряда навигатора Garmin требуется особый дата-кабель. Просто для питания навигатора через дата-кабель нужно в штекере mini-USB закоротить 4 и 5 контакты. Для подзаряда нужно соединить 4 и 5 контакты через резистор 18 кОм. ▼

Отдельная тема — зарядка планшетов. Как правило, планшету для заряда требуется приличный ток (1÷1,5 ампер), и заряд через гнездо mini/micro-USB во многих планшетах просто не предусмотрен производителем. Ведь даже USB 3.0 не даст более 0,9 ампер.
Правда, некоторые модели планшетов можно медленно и печально заряжать в выключенном состоянии.
На Ютубе один парень предлагает установить в планшете 3Q перемычку между первым контактом гнезда mini/micro-USB (это +5 В) и плюсовым (центральным) контактом круглого (коаксиального) зарядного гнезда. Дескать, тока от USB этому планшету хватает, просто + гнезда USB не подключен к контроллеру заряда аккумулятора. После установки перемычки планшет якобы заряжается. В принципе, это выход, если само круглое зарядное гнездо уже раздолбано.
Напротив, если круглое гнездо в порядке, но по какой-то причине вам хочется брать питание для заряда именно от USB компьютера или зарядного устройства с таким разъёмом, то можно сделать такой переходник. ▼

Правда, к теме этой статьи он отношения не имеет.

Типы зарядных портов

Повторюсь, подробную информацию можно почерпнуть в статье Типы зарядных портов . Здесь же приведу сводную схему напряжений на контактах USB с указанием номинала резисторов, позволяющих те или иные напряжения получить. Там, где указано сопротивление 200 Ом нужно ставить перемычку, сопротивление которой не должно превышать те самые 200 Ом.

Итак, если вы хотите переделать обычное ЗУ в USB-зарядку для телефона:
  • удостоверьтесь, что устройство выдаёт около 5 вольт постоянного напряжения
  • узнайте, способно ли это ЗУ дать ток не менее 500 мА
  • внесите необходимые изменения в коммутацию гнезда USB-AF или штекера USB-mini/micro

Смежные материалы:

Все материалы по теме « Компьютер»
Все материалы по теме «Мобильное»
Все материалы по теме «Зарядное устройство»

НАШ САЙТ РЕКОМЕНДУЕТ:

Метки:  

Зарядка гаджетов через USB

Проблемы с зарядкой по USB обычно появляются при использовании постороннего (не родного) зарядного устройства. Гаджет может заряжаться медленно, не полностью, а может и вовсе отказаться заряжаться. Собственно, этой проблеме и посвящена сия статья. Но сперва я должен высказать несколько важных замечаний касаемо зарядки по USB вообще.

  1. Как это ни странно, некоторые мобильные устройства вообще не поддерживают зарядку через гнездо USB mini/micro, хоть и оборудованы им. К примеру, некоторые планшеты снабжены отдельным (круглым) гнездом для подключения зарядного устройства (ЗУ).
  2. При зарядке устройства от USB компьютера следует понимать, что порт USB способен выдать ток не более 0,5 ампера (USB 2.0) или не более 0,9 ампера (USB 3.0). И если для заряда устройства требуется больший ток (1÷2 ампера), то время заряда может оказаться мучительно долгим, вплоть до бесконечности. Придётся искать ЗУ подходящей мощности.
  3. Чтобы понимать, какие вообще контакты за что отвечают в разъёмах USB и как они нумеруются, прочтите статью «Распиновка USB 2.0». Вкратце: первый контакт в USB это +5 вольт, а последний — «земля».

Итак, вы подключили гаджет к левому/самодельному зарядному устройству, а он не заряжается, да ещё и пишет, что зарядное устройство не поддерживается. Это связано с тем, что перед тем как позволить себе заряжаться, некоторые  мобильные  устройства замеряют напряжения на 2 и 3 контактах USB и по этим  напряжениям  определяет  тип  зарядного  порта.  А  некоторые  — просто  проверяют  наличие  перемычки  между  контактами   2  и  3 или ещё и контролируют потенциал этой связки. Если гаджет не рассчитан на подключение к данному типу зарядного порта или тип порта не определён, то зарядное устройство будет отвергнуто. Подробно вся эта кухня описана в статье «Типы зарядных портов».

Практическая сторона вопроса заключается в том, чтобы гаджет увидел нужные ему напряжения на контактах 2 и 3, а это обеспечивается подключением различных сопротивлений между контактами USB зарядного устройства. В конце статьи приводится чертёж различных типов зарядного порта (без привязки к моделям гаджетов) с указанием напряжений на контактах 2 и 3. Там же указано, какими сопротивлениями этого можно добиться. А прямо сейчас мы посмотрим, чего ждут определённые модели гаджетов от порта зарядного устройства.

Nokia, Fly, Philips, LG, Explay, Dell Venue и многие другие устройства признают зарядное устройство только если контакты Data+ и Data- (2-й и 3-й) будут закорочены или замкнуты резистором не более 200 Ом ▼
Закоротить контакты 2 и 3 можно в гнезде USB_AF зарядного устройства и спокойно заряжать свой телефон через стандартный дата-кабель. Эту же схему поддерживает планшет Freelander PD10 Typhoon, но кроме этого ему требуется повышенное напряжение заряда, а именно — 5,3 вольта.
Если же зарядное устройство уже обладает выходным шнуром (вместо выходного гнезда), и вам нужно припаять к нему штекер mini/micro USB, то не забудьте соединить 2 и 3 контакты в самом mini/micro USB. При этом плюс паяете на 1 контакт, а минус — на 5-й (последний). ▼

Samsung, HTC и другие «Корейцы»: один резистор 30 кОм между +5 и перемычкой D-D+; другой резистор 10 кОм между GND и перемычкой D-D+ ▼

iPhone и прочей продукции «Apple». От этого же порта охотно заряжается планшет Freelander PX1. ▼

Претендующее на универсальность автомобильное зарядное устройство «Ginzzu GR-4415U» и его аналоги оборудованы двумя выходными гнёздами: «HTC/Samsung» и «Apple» или «iPhone». Распиновка этих гнёзд приведена ниже. ▼

Старая Motorola «требует» резистор 200 кОм между 4 и 5 контактами штекера USB micro-BM. Без резистора аппарат заряжается не до полной победы. ▼

Аппарат E-ten («Енот») не интересуется состоянием этих контактов, и поддержит даже простое зарядное устройство. Но у него есть интересное требование к зарядному кабелю — «Енот» заряжается только если в штекере mini-USB закорочены контакты 4 и 5. ▼

Для питания или заряда навигатора Garmin требуется особый дата-кабель. Просто для питания навигатора через дата-кабель нужно в штекере mini-USB закоротить 4 и 5 контакты. Для подзаряда нужно соединить 4 и 5 контакты через резистор 18 кОм. ▼

Отдельная тема — зарядка планшетов. Как правило, планшету для заряда требуется приличный ток (1÷1,5 ампер), и заряд через гнездо mini/micro-USB во многих планшетах просто не предусмотрен производителем. Ведь даже USB 3.0 не даст более 0,9 ампер.
Правда, некоторые модели планшетов  можно медленно и печально заряжать в выключенном состоянии.
На Ютубе один парень предлагает установить в планшете 3Q перемычку между первым контактом гнезда mini/micro-USB (это +5 В) и плюсовым (центральным) контактом круглого (коаксиального) зарядного гнезда. Дескать, тока от USB этому планшету хватает, просто + гнезда USB не подключен к контроллеру заряда аккумулятора. После установки перемычки планшет якобы заряжается. В принципе, это выход, если само круглое зарядное гнездо уже раздолбано.
Напротив, если круглое гнездо в порядке, но по какой-то причине вам хочется брать питание для заряда именно от USB компьютера или зарядного устройства с таким разъёмом, то можно сделать такой переходник.

Правда, к теме этой статьи он отношения не имеет.

Типы зарядных портов

Повторюсь, подробную информацию можно почерпнуть в статье Типы зарядных портов. Здесь же приведу сводную схему  напряжений на контактах USB с указанием номинала резисторов, позволяющих те или иные напряжения получить. Там, где указано сопротивление 200 Ом нужно ставить перемычку, сопротивление которой не должно превышать те самые 200 Ом.

Схема кликабельна ▼

Итак, если вы хотите переделать обычное ЗУ в USB-зарядку для телефона:

  • удостоверьтесь, что устройство выдаёт около 5 вольт постоянного напряжения
  • узнайте, способно ли это ЗУ дать ток не менее 500 мА
  • внесите необходимые изменения в коммутацию гнезда USB-AF или штекера USB-mini/micro

Смежные материалы:

Все материалы по теме «Компьютер»
Все материалы по теме «Мобильное»
Все материалы по теме «Зарядное устройство»



Поделиться новостью в соцсетях

Зарядное устройство для батареи из двух Ni-MH аккумуляторов АА от USB

Несмотря на то, что сейчас есть очень много портативной аппаратуры, питающейся от встроенных аккумуляторов, остается еще и много аппаратуры, рассчитанной на питание от гальванических элементов типо-размера «ААА» или «АА». Это создает определенные трудности эксплуатации, потому что гальванические элементы приходится часто менять, а стоят они не так уж и мало. Есть выход из положения в использовании вместо них аккумуляторов такого же типоразмера («ААА» или «АА»).

Но это требует приобретения зарядного устройства. К тому же, если гальванический элемент можно использовать до самого конца, а потом выбросить, то аккумулятор разряжать слишком сильно крайне не рекомендуется, так как это приводит к резкому снижению его срока службы.

Здесь приводится схема зарядного устройства для батареи из двух аккумуляторов типо-размера «АА» или «ААА», которое можно встроить в сам аппарат. Схема будет ограничивать разряд аккумулятора и индицировать то, что он уже заряжен, и зарядку следует прекратить. А источником питания данного устройства будет служить типовой стандартный блок питания -зарядное устройство для сотовых телефонов и других «гаджетов», с выходным разъемом типа «USB» и выходным напряжением 5V.

Для большинства Ni-MH аккумуляторов типо-размера «АА» или «ААА» номинальным является напряжение 1. 2-1.3V, при этом разрядка ниже 0,9V не допускается, потому что может повредить аккумулятор. А напряжение полной зарядки 1,45-1,5V. Соответственно, для батареи из двух аккумуляторов, значения будут: минимальное напряжение 1,8V, номинальное 2,4-2,6V, полная зарядка 2,9-ЗV.

Принципиальная схема 

На рисунке показана схема встроенного блока зарядного устройства. Он рассчитан на батарею состоящую из двух последовательно включенных Ni-MH аккумуляторов номинальным напряжением 1.2-1.3V каждый типо-размера «АА» или «ААА».

Рис. 1. Схема зарядного устройства от USB для батареи из двух Ni-MH аккумуляторов АА.

Схема состоит из двух узлов, - узла контроля разрядки и узла контроля зарядки.

Узел контроля разрядки выполнен на микросхеме А1 типа KIA7019 представляющей собой индикатор снижения напряжения ниже 1,9V (об этом говорят цифры «19» в маркировке).

Суть работы микросхемы в следующем. Выводами 1 и 2 она подключается к источнику напряжения, величину которого нужно контролировать. На выходе микросхемы есть транзисторный ключ с открытым коллектором. Его коллектор выведен на вывод 3, а эмиттер соединен с выводом 2.

Пока напряжение более 1,9V этот транзистор закрыт. Но при снижении напряжения до 1,9V и ниже, он открывается. В данной схеме питание на потребитель поступает через ключ на полевом транзисторе КП501. Пока напряжение батареи более 1,9V выходной ключ микросхемы А1 закрыт.

И на затвор полевого транзистора VТ1 поступает открывающее напряжение через резистор R1. Он открыт, и через его канал питание поступает на потребитель.

Как только аккумуляторная батарея разряжается на столько, что напряжение на ней опускается до 1,9V или ниже, ключ на выходе микросхемы А1 открывается. Он шунтирует затворную цепь полевого транзистора VТ1 и напряжение на его затворе снижается на столько, что VТ1 закрывается.

Питание на потребитель перестает поступать. Таким образом происходит ограничение разряда аккумулятора, - если он разряжен слишком сильно потребитель просто отключается.

Узел, контролирующий зарядку аккумуляторной батареи выполнен на микросхеме А2. Эта микросхема по своей работе и назначению аналогична А1, но у неё другое пороговое напряжение. Это КІА7029, и, следовательно, пороговым для неё является напряжение 2,9V.

Зарядка осуществляется от внешнего зарядного устройства, в качестве которого используется универсальное зарядное устройство для сотовых телефонов. Его выходное напряжение 5V, а разъем для подключения типа USB. При подключении такого зарядного устройства ток от него поступает на аккумуляторную батарею через резистор R3 и диоды VD1 и VD2. Резистор служит для ограничения величины зарядного тока, а диоды снижают напряжение на суммарную величину прямого напряжения на каждом из них.

Пока аккумулятор еще не заряжен полностью напряжение на нем будет ниже 2,9V, поэтому выходной ключ микросхемы А2 будет открыт. Через него будет поступать ток на светодиод HL1, который своим свечением индицирует что в данный момент идет процесс зарядки аккумуляторов. После того как аккумуляторы будут полностью заряжены, напряжение на аккумуляторной батарее достигнет величины в 2,9V.

Выходной транзистор микросхемы А2 закроется и светодиод HL1 погаснет. Это будет означать то, что зарядка завершена и нужно отключить зарядное устройство.

Детали и конструкция

Как уже сказано выше, это встраиваемая схема, которую можно встроить внутрь портативного аппарата, питающегося от батареи из двух аккумуляторов «АА» или «ААА».

Схема простая, содержит мало деталей и эти детали малогабиритны, поэтому, если это, например, портативный радиоприемник или какой-то пульт дистанционного управления, проблем с поиском места для монтажа быть не должно.

Если же слишком уж тесно, можно схему контроля разрядки разместить внутри аппарата, а схему контроля зарядки разместить в корпусе выносного зарядного устройства. Но в этом случае, будет невозможна зарядка от любого универсального зарядного устройство для сотовых телефонов, а только от переделанного.

Рис. 2. Цоколевка KIA7019, KIA7029, КП501.

Аппарат, питающийся от данной схемы не должен потреблять ток более 150 мА. Иначе может выйти из строя транзистор VТ1. В принципе, для карманного радиоприемника или какого-то пульта управления, этого более чем достаточно, но если нужен более высокий выходной ток нужно подумать о другом ключе.

Нужно заменить транзистор КП501 более мощным, но при этом выбрать такой полевой ключевой транзистор на замену, который полностью открывается при напряжении исток-затвор не более 2V. Иначе схема просто не будет работать.

Можно отказаться от отключения потребителя, и сделать только индикацию. Транзистор VТ1 из схемы исключается и потребитель подключается непосредственно к аккумуляторной батарее. А вместо R1 нужно подключить красный индикаторный светодиод. Он будет загораться, когда аккумулятор сильно разряжен.

Но это не самое лучшее решение, потому что светодиод будет еще больше разряжать аккумулятор.

Лыжин Р. РК-01-2019.

Как сделать USB динамо зарядку своими руками

Это пошаговое руководство по созданию своими руками портативной USB зарядки, использующей велосипедную динамо-втулку в качестве источника энергии. Также смотрите инструкцию по сборке универсальной USB зарядки с литий-ионным аккумулятором на солнечной энергии. Если вы плохо дружите с электроникой, то вы можете купить готовую коммерческую USB-зарядку.

Необходимые инструменты и компоненты.

Инструменты, необходимые для создания USB динамо зарядки:

  • Паяльник, олово
  • Мультиметр (необязательно)
  • Тиски (необязательно)
  • Стриппер (необязательно)

Необходимые компоненты для создания универсальной USB зарядки с питанием от динамо:

  • Плата Veroboard (8,22 евро)
  • Разъём USB-A (необязательно, также можно использовать дополнительный USB-кабель Micro или Mini USB)
  • Стабилизатор напряжения LDO (с малым падением напряжения) на 5 В LM2940 (CT) (1,31 евро)
  • Кулер для стабилизатора напряжения LDO (необязательно) (0,5 евро)
  • Конденсатор C1 на 2200 мкФ 16 В (0,65 евро)
  • Миниатюрный дисковый танталовый конденсатор C4 на 47 мкФ (0,22 евро)
  • Миниатюрный дисковый танталовый конденсатор C5 на 22 мкФ (0,5 евро)
  • Мостовой выпрямитель на 1,5 A 100 В (0,5 евро)
  • Термоусадочные трубки (необязательно)
  • Коробка и рубашки ABS (необязательно) (1,17 евро)
  • Кабельный сальник контргайки или уплотнительное кольцо (необязательно)
  • Разъём для динамо-втулки

Цены невысокие из-за того, что компоненты заказывались в больших объёмах. У вас могут выйти другие цены.

Принципиальная электрическая схема USB зарядки с питанием от динамо-втулки:

Приступаем в сборке зарядки для USB устройств с питанием от динамо.

Шаг 1: Плата Veroboard.

Вырежьте участок платы Veroboard размером приблизительно 17 мм х 40 мм. Плата на фотографии ниже слишком длинная, приблизительно 65 мм в длину.

Шаг 2: Установка танталовых конденсаторов.

Припаяйте два миниатюрных дисковых танталовых конденсатора на стабилизатор напряжения. Следите, чтобы во время пайки не перегрелись компоненты и соблюдайте полярность (длинная ножка положительная).

Расположите конденсатор на 22 мкФ справа, а на 0,47 мкФ слева. Отрицательные полюсы должны оказаться посередине.

Шаг 3: Подготовка конденсатора C1.

Установите на конденсатор C1 термоусадочные трубки. Согните ножки (длинная ножка положительная) как показано на фотографии ниже. Постарайтесь сохранить ножки по возможности как можно более длинными, чтобы конденсатор было легче разместить внутри коробки ABS.

Шаг 4: Размещение компонентов на плате.

Чтобы правильно разместить компоненты на плате Veroboard, смотрите на первую фотографию ниже: три параллельные полоски посередине планки служат главными электрическими дорожками для компонентов. Полоса слева соответствует положительной стороне на принципиальной схеме.

Длинную ножку конденсатора C1 (+) необходимо разместить на самой левой полосе из трёх полос. Короткую ножку необходимо припаять на среднюю полосу.

Ножки мостового выпрямителя должны располагаться следующим образом. Положительные ножки (подписаны) идут слева. Отрицательные ножки должны идти по средней полосе. Провода от входящего переменного тока нужно подпаять на внешних полосках платы (слева и справа, как изображено на фотографии выше).

И наконец припаяйте стабилизатор напряжения.

Прежде чем продолжить собирать зарядное USB-устройство, посмотрите всё ли вы сделали правильно.

Приготовьте провод, который идет к динамо-втулке, и подсоедините его к ножкам мостового выпрямителя. Здесь полярность не имеет значения, поскольку мы имеем дело с переменным током. Подсоедините динамо-втулку, крутаните колесо и измерьте выходное напряжение на положительном и отрицательном выходах платы.

У нас должно получиться около 5 В.

Если ничего не работает, то проверьте полярность конденсаторов и других компонентов.

Теперь мы можем отрезать всё лишнее на плате Veroboard и согнуть конденсатор C1, чтобы он смог поместиться внутри коробки ABS.

Подсоедините кулер с помощью односторонней заклёпки. Она идеально подходит для этой цели, так как не занимает дополнительное пространство (особенно в высоту).

Прежде чем подсоединить провода, просверлите в коробке маленькое отверстие для кабельного сальника контргайки, установите его и пропустите через него провода.

Далее подключите разъём USB-A или Mini и Micro USB кабель напрямую к выходным ножкам стабилизатора напряжения. Подключите провода от динамо-втулки к мостовому выпрямителю.

Чтобы плата смогла поместится в контейнере, мне пришлось отпилить углы.

При использовании контейнера ABS, который указан в списке необходимых компонентов выше, вам необходимо дополнительно вырезать два отверстия на дне контейнера.

Итак у нас получилось стильное зарядное USB устройство с питанием от динамо-втулки. Для обеспечения водонепроницаемости я загерметизировал контейнер полимерной смолой. Герметизируйте контейнер только после того, как убедитесь, что зарядное устройство работает.

Второй вариант зарядного USB устройства с уплотнительным кольцами:

Зарядное устройство USB

LiPo Руководство по подключению

Введение

Мы любим LiPo аккумуляторы! Они упаковывают ударный пуансон в крошечную плоскую упаковку. И когда придет время, их невероятно легко перезарядить. Если вы хотите сделать свой проект мобильным и легко перезаряжаемым, мы не можем порекомендовать достаточно этого сочетания: LiPo-аккумулятор емкостью 850 мАч и встраиваемое зарядное устройство USB LiPo.

В этом руководстве объясняется, как использовать зарядное устройство USB LiPo с любыми из наших одноэлементных аккумуляторов LiPo.Мы сосредоточимся на комплекте LiPo Charger и Battery Retail, но эту информацию можно применить к этому зарядному устройству и любой совместимой батарее.

Необходимые материалы

Рекомендуемая литература

Аккумуляторные технологии

Основы батарей, используемых в портативных электронных устройствах: литий-полимерные, никель-металлгидридные, плоские и щелочные.

Входы и выходы

На этой странице мы разберем зарядное устройство USB, исследуя все входы, выходы и характеристики платы.

Вход зарядного устройства - источник питания

Во-первых, вам понадобится что-то для питания зарядного устройства, чтобы оно могло регулировать мощность аккумулятора. Подключите источник питания к одному из этих двух входов: цилиндрическому разъему (внешний диаметр 5,5 мм, центральный полюс 2,1 мм, центрально-положительный) или разъему mini-B USB .

Ваш источник питания Напряжение питания должно быть между 4,75 и 6В . Источник питания USB 5 В - от кабеля mini-B, подключенного к USB-порту компьютера или к настенному адаптеру - является идеальным источником питания.Или, если вы хотите использовать вход для цилиндрического разъема, мы рекомендуем сетевой адаптер на 5 В.

Текущие требования источника питания будут зависеть от того, как вы установили ток заряда на плате. По умолчанию ток заряда установлен на 500 мА , поэтому убедитесь, что ваш источник питания может с этим справиться. USB-порты компьютеров и ноутбуков здесь вызывают наибольшее подозрение; 500 мА - это определенный максимум, который может подавать порт, и часто они настроены на еще более низкий выход, чем это (например, 100 мА).

Вы можете безопасно подключить к плате как настенный блок питания 5 В, так и USB-источник питания.На плате есть некоторая защита (диоды!) От обратного тока. Источник более высокого напряжения будет подавать питание на микросхему.

Предупреждение: В то время как микросхема может потреблять до 6 В для максимального напряжения, она может принимать только 1500 мА для максимального тока. Если вы используете блок питания 6 В / 2 А в качестве источника питания, то с большой вероятностью вы сожжете микросхему на плате. Если вам нужен сетевой адаптер с цилиндрическим разъемом, мы рекомендуем блок питания 5 В / 2 А.

Выход зарядного устройства - одноэлементный литий-полимерный аккумулятор

Следующим шагом после подключения источника питания к зарядному устройству является подключение аккумулятора.Эта плата будет заряжать только очень специфичную батарею, убедитесь, что она соответствует следующим требованиям:

  • Только одноэлементные батареи - Ваш LiPo должен иметь номинальное выходное напряжение около 3,7 В и достигать около 4,2 В при полной зарядке. Это означает только одноэлементный LiPo. Если у вас многоэлементный аккумулятор с номинальным напряжением 7,4 В или более, это зарядное устройство не для вас.
  • Химический состав батареи - Зарядное устройство работает только с литий-полимерными батареями или литий-ионными батареями .
  • Рассмотрение емкости - Чтобы избежать взрывов (которые доставляют удовольствие только на короткое время), вам не следует заряжать эти LiPos током выше 1С. Это означает, что батарее емкостью 500 мАч не следует давать ток заряда более 500 мА, а батарее емкостью 100 мАч не следует заряжать более 100 мА. Эта плата предназначена для зарядки 500 мА из коробки, но изменить эту скорость достаточно легко. См. Следующую страницу, если емкость аккумулятора меньше 500 мАч.

Все наши совместимые батареи оканчиваются белым разъемом JST , который можно подключить непосредственно к соответствующему черному разъему рядом с этикеткой BATT IN → .Если ваша батарея оканчивается каким-то странным разъемом, отличным от JST, вы также можете использовать незаполненный 0,1-дюймовый разъем непосредственно за разъемом JST. При желании к этому разъему можно припаять провода или другие разъемы.

Системный выход

Зарядное устройство LiPo USB Charger легко встраивается в проект . Разъем ← SYS OUT позволяет подключить выход батареи к остальным частям вашего проекта.

Вы можете использовать заголовок «SYS OUT» для включения 3.3V Arduino Pro. И все это при оставлении аккумулятора подключенным к зарядному устройству.

Как и в случае подключения батареи, вы можете использовать либо разъем JST, либо ближайший 0,1-дюймовый заголовок для подключения вашего проекта.

Выход SYS OUT подключит ваш проект напрямую к вашей батарее. Это означает, что напряжение питания батареи (где-то между 3,6 и 4,2 В) будет питать ваш проект. Убедитесь, что вы регулируете это по мере необходимости.

Светодиодный индикатор состояния зарядки

Встроенный красный светодиодный индикатор Charging может использоваться для индикации состояния заряда вашей батареи.

Состояние заряда Состояние светодиода
Без батареи Плавающий (должен быть ВЫКЛЮЧЕН, но может мерцать)
Выключение Плавающий (должен быть ВЫКЛЮЧЕН, но может мерцать)
Зарядка НА
Зарядка завершена ВЫКЛ.

Если вы хотите добавить свой собственный, более крупный светодиод, есть незанятое место, где вы можете припаять либо 3-миллиметровый, либо 5-миллиметровый светодиод вместо крошечного (но яркого!) Красного светодиода.Однако убедитесь, что вы соблюдаете правильную полярность.

Установка тока заряда

Перед тем, как подключить аккумулятор к зарядному устройству, вы должны знать о емкости аккумулятора и токе заряда , обеспечиваемом зарядным устройством. В целях безопасности * вы должны поддерживать ток заряда на уровне 1С или ниже. Это означает, что вы должны заряжать аккумулятор емкостью 850 мАч при токе не более 850 мА, а аккумулятор емкостью 100 мАч - при 100 мА или менее.

Ток заряда контролирует, насколько быстро ваша батарея будет заряжаться .Если у вас аккумулятор емкостью 1000 мАч, зарядка на 1000 мА полностью зарядит его за 1 час. Зарядка на 500 мА будет означать, что полная зарядка займет в два раза больше времени - 2 часа. Так что больший ток заряда лучше ... если он не превышает спецификации вашего аккумулятора.

Показанный компонент платы зарядного устройства LiPo USB - MCP73831 - имеет функцию программируемого тока заряда . Его можно настроить на подачу в любом месте от 15 мА до 500 мА на аккумулятор. Чтобы запрограммировать это значение, резистор подключается от контакта PROG к земле.На плате уже есть два резистора, которые могут установить ток заряда на 500 мА и 100 мА. Для выбора между ними используется небольшая перемычка. Вы также можете добавить свой собственный резистор, чтобы установить собственный ток заряда.

Выбор перемычки

Рядом со светодиодным индикатором состояния заряда расположены три неизолированные контактные площадки, образующие двустороннюю перемычку . Центральная площадка подключается к контакту PROG MCP73831, а две внешние площадки подключаются к паре резисторов. Метки рядом с этими внешними контактными площадками указывают установленный ими зарядный ток.

Если вы внимательно посмотрите на самом деле на эту перемычку, вы можете увидеть небольшую дорожку, соединяющую среднюю площадку с внешней площадкой с маркировкой 500mA . Таким образом, эта плата сконфигурирована для подачи тока 500 мА по умолчанию .

Чтобы изменить ток заряда на 100 мА, вам нужно отрезать эту небольшую дорожку между контактными площадками (рекомендуется нож для хобби) и приложить каплю припоя для подключения штыря с маркировкой 100 мА к центральной контактной площадке.

Пользовательский ток заряда

Если вам не подходят ни 100 мА, ни 500 мА, имеется незаполненная площадь основания резистора, позволяющая установить собственный ток заряда.

Перед добавлением резистора отключите обе перемычки , описанные в разделе выше. Затем используйте это уравнение для выбора резистора:

Например, если вы хотите зарядить аккумулятор емкостью 400 мАч ровно на 400 мА, припаивайте резистор 2,5 кОм (возможно, вам придется последовательно соединить 2,2 кОм и 330).


* Большинство аккумуляторов включают в себя защиту от перегрузки по току - реализованную на маленькой печатной плате под желтой лентой - которая предохранит аккумулятор от взрыва, если вы подадите слишком большой ток. Но лучше не полагаться на эту схему: вы сэкономите силы и рассудок.

Ресурсы и дальнейшее развитие

Теперь, когда у вас есть пополняемый источник энергии, как вы собираетесь его использовать? Нужно вдохновение? Ознакомьтесь с этими руководствами:

Simple USB Charging Circuits - Electronics Projects Circuits

MP4, MP3-плеер, мобильные телефоны, различные устройства можно заряжать от адаптера зарядного устройства USB-порта компьютера, также эти устройства обычно разработаны в соответствии со стандартным USB-кабелем и ПК с одним USB-соединением кабель от зарядки... Проекты электроники, Простая схема зарядки USB "Схема зарядного устройства, проекты силовой электроники, проекты простых схем", Дата 2014/06/22

MP4, MP3-плеер, мобильные телефоны, различные устройства можно заряжать от компьютера Адаптер зарядного устройства USB-порта также в этих устройствах обычно разрабатывается в соответствии со стандартным USB-кабелем и ПК с одним соединительным кабелем USB от зарядного адаптера может быть сделан. Сделано в Китае. Плеер mp4, который я изучал для использования в очень простом зарядном устройстве, имеет схему зарядки.

Адаптер зарядного устройства представляет собой довольно простой выход на 5 В, который примерно состоит из двух частей: секции SMPS и секции управления зарядкой.

Сделано в Китае. Схема цепи литий-ионного зарядного устройства

Цепь секции SMPS. секция управления простая однотранзисторная (S9015) схема с 3,7-вольтовой схемой зарядки литий-ионной батареи красный светодиод горит постоянным зеленым светодиодом соединение батареи установлено, когда батарея полностью заряжена после мигания нескольких моделей я изучил Раздел управления одинаковым количеством разницы в токе перезаряжаемой аккумуляторной батареи по мощности SMPS и сопротивлению R1 составляет 180.Литий-ионный аккумулятор 250 мА для 5,6 Ом. Аккумулятор 480,680 мА для 1,5 Ом. Используется пила 2,7 Ом. Часть SMPS, которая является дефектной частью управления адаптером зарядного устройства за пределами 5-вольтового источника, и проверенная мной схема зарядки работает нормально, имеет проигрыватель mp4.

Если аккумуляторная батарея плеера или другое устройство в процессе зарядки Если это так, прямое подключение батареи происходит во второй цепи D1 и элементы C1 добавить причину плеера во входной цепи адаптера + секция этих элементов не является зарядным устройством, подключенным напрямую + аккумулятор не доходит до плеера в цепи этих элементов по прошествии зарядки идет процесс.

BC547 NPN транзистор представляет собой приложение для зарядного устройства мобильных телефонов осуществляется с

источник: http://www.pablox.cq.sk/Elektrotechnika/Liion/Liion.htm

USB Схема мобильного зарядного устройства | Дорожное зарядное устройство для мобильного телефона

Теперь зарядка ваших мобильных телефонов стала легкой благодаря USB-розеткам, имеющимся в ноутбуке и ПК. Для зарядки вашего мобильного телефона эта схема обеспечивает регулируемое напряжение 4,7 В. 5 В постоянного тока и 100 мА тока поступают от USB-розетки, чего достаточно для медленной зарядки мобильного телефона.Мы можем использовать эту схему для зарядки мобильного телефона, пока мы в пути. Таким образом, мы можем рассматривать его как Схема зарядного устройства для мобильных телефонов .

Порт USB мобильного телефона используется для зарядки, так как порт USB является очень полезным источником напряжения, который может заряжать мобильный телефон. В настоящее время на ноутбуках, доступных на рынке, имеется от двух до четырех портов USB. USB на самом деле относится к универсальной последовательной шине. Это одно из новейших воплощений метода, который используется как для получения информации, так и для получения информации с вашего компьютера.Нас беспокоит тот факт, что через порт USB на внешние устройства подается напряжение ± 5 вольт, которое может подаваться на выводе номер 1, а на контакте номер 4 оно равно 0 В. Через порт USB может поступать ток до 100 мА, чего более чем достаточно для этого небольшого приложения.

Схема подключения мобильного зарядного устройства USB: Схема подключения мобильного зарядного устройства USB - ElectronicsHub.Org

C компоненты, используемые в этой цепи:

  • R1-470E
  • C1-100uF / 25V
  • T1- BC547
  • Стабилитрон-4.7В /. 5W
  • Диод-1N4007

Описание компонентов:

  • Резистор: Протекание тока в цепи контролируется резистором.
  • Конденсатор: В основном используется для хранения зарядов. Это два типа поляризованных и неполяризованных, электролитический конденсатор является примером поляризованного, в то время как керамический и бумажный неполяризованные.
  • Транзистор: Это используется для увеличения мощности сигнала или для размыкания или замыкания цепи.
  • Стабилитрон: Когда напряжение достигает точки пробоя, он начинает работать, но в состоянии обратного смещения.
  • Диод: Он имеет два вывода, которые называются анодом и катодом. Это позволяет току течь только в прямом направлении, останавливая ток в обратном направлении.
Схема мобильного зарядного устройства USB Описание:

Большое количество мобильных аккумуляторов работают от 3,6 вольт от 1000 до 1300 мАч.Эти батареи представляют собой комбинацию трех литиевых элементов с номинальным напряжением 1,2 вольта для каждого. А для быстрой зарядки мобилы нужны 4,5 вольта и диапазон тока 300-500 мА.

Если вы хотите повысить эффективность своей батареи, лучше заряжать ее медленно. Схема, описанная ниже, работает при регулируемом напряжении 4,7 и обеспечивает достаточный ток для медленной зарядки ваших мобильных телефонов. Напряжение на выходе гармонизируется транзистором T1.В то время как выходное напряжение контролируется стабилитроном ZD, а полярность выхода, на который подается питание, защищается D1.

USB-штекер типа «A» должен быть подключен к передней части схемы. Чтобы упростить идентификацию полярности, соедините контакт 1 с проводом красного цвета, а провод черного цвета - с контактом 4. Теперь подключите выход схемы к соответствующему контакту зарядного устройства, чтобы подключить его к вашим мобильным телефонам. После того, как все части схемы соберутся вместе, вставьте штекер USB в розетку и измерьте выходной сигнал на схеме с помощью мультиметра.Если у вас правильный выход и если полярность подключена правильно, то подключите к нему свой мобильный телефон.

Теперь вы получите легко доступный маркер с несколькими зарядными устройствами, просто купите его и легко зарядите свой мобиль, когда вы в поезде или автобусе, поскольку каждый теперь носит с собой ноутбук или блокнот.

Примечание: Необходимо соблюдать особую осторожность, чтобы полярность была подключена правильным образом, если она будет подключена неправильным способом, это приведет к повреждению аккумулятора вашего мобильного телефона.

Для создания мобильного зарядного устройства USB необходим кабель USB, и кабель должен иметь как минимум один штекер с полосой на задней стороне около 5 см, имеющей внешнюю прокладку и защиту от «открытого» конца кабеля USB. Как правило, USB-кабели состоят из четырех кабелей красного цвета, а также черного и зеленого (вместе с протестующими). Поскольку для передачи данных используется зеленый и белый провод, в этом проводе нет необходимости, поэтому эти провода можно обрезать (при этом нам нужно обратить внимание на то, чтобы провода внутри их прокладки не были открыты).Обычно провод черного цвета является отрицательным, а провод красного цвета - положительным. 5V - это напряжение, которое мы получаем от порта USB. И ток более 500 мА не может подаваться на устройство, подключенное к USB-порту. Подключив шнур питания с помощью USB-штекера, проверьте правильную полярность.

USB зарядка без страха

Зарядка смартфона от USB без страха

Время от времени многие из нас сталкиваются с одной и той же проблемой при попытке зарядить свой смартфон или планшет от порта USB - он просто не заряжается или заряжается медленнее, чем от оригинального зарядного устройства.Недавно я купил автомобильное зарядное устройство USB для питания своего Samsung Galaxy Tab Pro 10.1 в дороге и обнаружил, что оно не работает. Несмотря на то, что Galaxy Tab на самом деле видит подключенное зарядное устройство, он просто отмечает его как нераспознанный источник питания. Причина проста - Galaxy Tab Pro не считает зарядное устройство «родным зарядным устройством».

Что такое "родное" зарядное устройство?

Родное зарядное устройство для смартфона или планшета часто имеет специальную сигнатуру напряжения на линиях передачи данных USB, позволяющую устройству распознавать зарядное устройство и определять максимальный зарядный ток, который оно может потреблять от источника питания.Намерение двоякое. Во-первых, это не позволяет устройству потреблять слишком много тока от зарядного устройства. Во-вторых, предотвращает зарядку от нераспознанных источников питания. Ключевым словом здесь является «непризнанный», поскольку получение прибыли от продажи дополнительных аксессуаров для устройств (зарядных устройств), безусловно, является бизнес-стратегией.

DCP - специальный порт для зарядки

Спецификация

USB определяет новый тип порта - USB для зарядки аккумулятора. В выделенном USB-порте для зарядки линии передачи данных D + и D– должны быть закорочены вместе с максимальным последовательным сопротивлением 200 Ом.Или просто закоротил. Некоторым мобильным устройствам этого достаточно для начала зарядки.

Устройства Samsung

Устройствам

Samsung требуется напряжение 1,2 В на линиях передачи данных D + и D-, см. Схему ниже. Делитель напряжения R1 / R2 обеспечивает необходимое напряжение на контактах D + и D- разъема USB, чтобы его можно было распознать как стандартное зарядное устройство Samsung. Вот и все. Единственная проблема заключается в том, что полностью разряженный аккумулятор Galaxy Tab может потреблять даже более 500 мА от порта USB, когда USB 2.0, ограничивающая максимальную токовую нагрузку до 500 мА. Спецификация USB 3.0 вносит здесь улучшения и увеличила максимальный ток до 900 мА. Значения резистора делителя не являются критическими, поскольку коэффициент делителя остается прежним, то есть 0,24 или ближе.

Если вы хотите сделать свой собственный разделитель, вы можете загрузить файлы проекта Eagle.

Ниже представлен USB-адаптер для зарядки китайского производства для устройств Samsung, реализующий схему выше.На этикетке написано, что это TF-USB-P1000 V1.0, но это просто фальшивка ...

Устройства Apple iPhone и iPad

Зарядные устройства Apple

также указывают максимальный зарядный ток по напряжениям на линиях D- и D +. Возможные конфигурации перечислены в таблице.

Конфигурация # D + Д- Максимальный ток
1 500 мА
2 2.7В 1A
3 2,7 В 2.1A
4 2,7 В 2,7 В 2.4A

Адаптер для конфигурации №1 будет выглядеть так:

Контроллер порта зарядки USB

Контроллер выделенного USB-порта для зарядки TPS2514 компании

Texas Instrument специально разработан для реализации всех схем зарядки, упомянутых выше.Функция автоопределения контролирует напряжение линии передачи данных USB и автоматически обеспечивает правильные электрические сигнатуры на линиях данных D + и D–. Обратите внимание, что в таблице данных чипа никогда не упоминались Samsung или Apple, в частности, по-видимому, из-за проблем с авторскими правами. Вместо этого он упомянул режим 1,2 В и различные режимы зарядки Apple, такие как Divider 1, Divider 2 и Divider 3. Существует две модификации чипа. TPS2514 имеет делители 1 и 2 для конфигурации №2 и №3, тогда как TPS2514A только Apple Divider 3 для конфигурации №4.Оба чипа поддерживают зарядку DCP и Samsung. Обратите внимание, что разделитель 1 или разделитель 2 настраивается путем переключения подключения к линиям передачи данных USB. Другими словами, он предварительно смонтирован, и сделать это на лету невозможно.

С устройством TPS2514 реализовать USB-адаптер для зарядки очень просто, см. Схему ниже. При зарядке устройств Apple ток ограничен до 1А, так как схема зарядки делителя 1 реализована с D + = 2,0 В и D− = 2,7 В. Также старайтесь использовать кабели для зарядки хорошего качества.Один особенно плохой кабель, который я использовал, привел к значительному падению напряжения, вынудившему мое устройство Samsung переключиться в режим медленной зарядки.

Файлы проекта

Eagle находятся здесь.

Примечание. Проблема на самом деле более сложная, и есть гораздо больше, помимо обеспечения правильного напряжения на выводах D + и D-. Большинство телефонов / планшетов имеют сложную схему контроллера заряда, и если напряжение питания под нагрузкой опускается ниже 5,25 В, ток зарядки также ограничивается.Например, ток изменения моего планшета Galaxy Tab Pro составляет 1,7 А при напряжении 5,25 В с использованием схемы TPS2514, приведенной выше, и подключения к оригинальному зарядному устройству Samsung, рассчитанному на 5,3 В / 2 А. При переключении на стороннее зарядное устройство 5 В с номиналом 5 В / 2,1 А ток упал до 1,37 А при зарядном напряжении 5,07 В. И, наконец, при зарядке от настольного порта USB 3 ток около 0,58 А при напряжении 4,79 В.

QC 2.0 / 3.0 Зарядка через USB

См. Зарядное устройство USB QC 2.0 / 3.0

»Велосипед iPhone и зарядка через USB - Схема зарядки Mile42

Хорошо, вот ситуация: мне нужно зарядить пару литий-железо-фосфатных батарей от выхода переменного тока велосипедной динамо-машины, напряжение которой меняется в зависимости от того, как быстро я езжу.Я также хотел бы заряжать аккумуляторы, когда я не на велосипеде и в цивилизации. Мне нужна зарядная цепь, способная выполнять следующие функции:

  1. Допускается вход переменного тока с диапазоном от 1 до 20 вольт.
  2. Принять вход постоянного тока от какого-либо сетевого адаптера - возможно, 12 вольт
  3. Зарядка аккумуляторов до 7,4 В (Предел заряда аккумуляторных элементов LiFePO4 x 2)
  4. Прекратить зарядку, когда в аккумуляторах напряжение 7,4 В или выше (очень важно!)
  5. Используйте мощность эффективно (так как ее будет немного)

Перечисленные вместе, эти требования довольно устрашающи для начинающего инженера, такого как я.Особенно, когда онлайн-поиск выявляет только сложные или неполные решения:

  • Система "Ride And Charge", включающая специальное дополнение к велосипедному фонарю. Очень старомодное и неполное решение.
  • Регулятор и схема зарядки Павла Даниелевича - элегантные и законченные, но собрать которые мне не под силу.
  • Грубое решение Шелдона Брауна по подключению динамо-машины напрямую к выпрямителю и батарее, что в принципе довольно умно, но очень плохо для LiFePO4 или других литиевых элементов.
  • Зарядное устройство USB без аккумуляторов от JeffB и его товарищей по команде. Популярное в поисковых системах в Интернете, но неполное и очень неэффективное решение.
  • Решение для бутылок и кривошипов Марка Хоэкстры опубликовано в журнале Make. Дополнительные баллы за стиль, но не подходят для моих батарей или требований к питанию.
  • Универсальный зарядный блок от Марка и Джу, удивительно полное решение, которое больше, чем мне нужно, и выходит за рамки моих возможностей.
  • DynaLader USB2, зарядное устройство с динамо-приводом и подключенным USB-портом. Подобно тому, что я строю. Если бы он имел более одного порта, был более прочным и заряжал литий-ионные элементы, я бы, вероятно, купил его.

Так что же делать относительному новичку вроде меня? Продолжайте поиски в Интернете! После долгого труда я, в конце концов, наткнулся на проект, собранный Алексом Локхартом, который показал путь к успеху. (Прочтите его рассказ о путешествии, он полон хороших мыслей и идей.)

The TuneCharger

Центральным элементом его системы является небольшая плата из Франции, известная как TuneCharger. (На странице Алекса есть прекрасное описание того, как это работает.) Эта доска элегантно удовлетворяет всем пяти пунктам моего списка требований. Он даже заряжает аккумуляторы в импульсном режиме, что является наиболее эффективным способом сделать это. Это так же просто, как подключить концентратор или сетевой адаптер к одному концу и подключить батарею и регулятор к другому концу. Плата также была успешно протестирована ее создателями с батареями LiFePO4.

Что такого хорошего в импульсной зарядке?

Как описано на странице Axeon Power: «Импульсные зарядные устройства подают зарядный ток в батарею импульсами. Скорость зарядки… можно точно контролировать, изменяя ширину импульсов, обычно около одной секунды. Во время процесса зарядки кратковременный отдых периоды от 20 до 30 миллисекунд между импульсами позволяют стабилизировать химические воздействия в батарее за счет выравнивания реакции по всему объему электрода перед возобновлением заряда.Это позволяет химической реакции идти в ногу со скоростью поступления электрической энергии.

Что насчет этой отрыжки, о которой я вижу упоминания? Что в этом такого хорошего?

Вы можете купить одну плату TuneCharger и отправить ее из Франции примерно за 76 евро, что по текущему обменному курсу составляет около ста долларов. Я сказал вам, что купил дорогие запчасти !! Перед отправкой создатели с радостью установят для вас прошивку, которая остановит зарядку аккумулятора при указанном вами напряжении, чтобы вы могли заряжать литий-ионные аккумуляторы прямо из коробки.Я заказал свой комплект на семь вольт, оставив мне некоторый запас ниже максимальной емкости батарей, чтобы продлить срок их службы.

Первая плата TuneCharger так и не пришла… Даже после шести недель ожидания. Я отправил в компанию электронное письмо с вопросом о том, что произошло, и они объяснили, что, вероятно, это было потеряно где-то между Францией и США. Они прислали еще один бесплатно, также рассчитанный на 7 вольт, и он прибыл в целости и сохранности примерно через 10 дней. Молодцы.

Теперь, когда у меня была зарядная плата, мне понадобился способ подключить ее к велосипеду и адаптеру постоянного тока, который я нашел по всему дому. Поскольку я планирую подключить TuneCharger к динамо-машине на велосипеде, имеет смысл купить розетку, которая подходит к вилке, уже подключенной к динамо-машине. Но какого размера вилка?

[фото вилки здесь]

У меня нет документации по этому поводу. Вместо этого я взял несколько крошечных отверток, которые разбросал по своему ящику с инструментами, расположил их в порядке от наибольшего к наименьшему и вставлял их в вилку, пока не нашел ту, которая была немного слишком большой, и ту, которая была чуть меньше, которая справлялась. подходить.Я склеил их вместе и принес в магазин электроники, где с их помощью нашел подходящий разъем и две подходящие розетки.

Находясь в магазине, я также купил за 20 баксов провод, пригоршню зажимов из крокодиловой кожи и очень дешевый и непрочный вольтметр.

А Вольтметр

Если вы собираетесь заняться подобным проектом, вы, , должны получить вольтметр . Работать на электронных устройствах без вольтметра - все равно что готовить без вкусовых ощущений.Вы будете следовать рецепту, и все будет хорошо, но потом вы обнаружите, что бросили в тесто для печенья два стакана соли. Эти куки отправятся в корзину. Подайте на компонент слишком большое напряжение, и вы выбросите его в мусор. Вольтметр за 20 долларов быстро окупается, придаст вам уверенности и научит вас электричеству во время работы.

Где я могу узнать, как пользоваться вольтметром? Это трудно?

Я не планирую много использовать эту штуку.Где я могу найти в Интернете дешевую штуку?

Если дешево - это слово, отправляйтесь в Radio Shack. Вольтметр в той ссылке примерно такой же, как и тот, который я использовал. Это тот продукт, который вы ожидаете выпадать из торгового автомата.

Первая пайка

Ладно, больше не могу этого избежать. Пора вытащить паяльник.

Ой, пойдем, пайка - это действительно необходимо?

Сочувствую. Паяльники - один из тех специализированных инструментов, которые используются только для одной цели, и если вам придется купить паяльник для этого проекта, вы, возможно, никогда не воспользуетесь им снова.

Но зато паяльник не очень дорогой, как идут специальные инструменты. Есть комплекты примерно за 20 баксов - примерно по цене молотка. А если вы любитель - а я так полагаю, раз уж вы удосужились прочитать эту страницу, - тогда вы сочтете этот опыт стоящим, а навыки полезными.

Могу я просто скручивать вещи вместе?

Скручивание вещей вместе, вы довольно далеко продвинетесь в области электромонтажа, если ваш проект не будет сильно перемещаться.Но когда вы закрепите свое изделие на велосипеде и будете подпрыгивать через выбоины, детали, которые вы скручены вместе, распадутся, расшатываются или ломаются. Если вам нужно что-то, что заряжает батареи от динамо-машины и имеет порт USB, но вы не хотите иметь дело с какой-либо проводкой, вам следует приобрести DynaLader USB2, обернуть его хорошим слоем ленты и прекратить работу. Не волнуйтесь, я не обижусь.

Если вам нужно что-то получше, чем то, что предлагает DynaLader, вам нужно соединить части вместе.Скручивания не хватит. Так что сделайте решительный шаг со мной и возьмите паяльник. Возможно, он есть на вашем рабочем месте или у вашего соседского фаната. Его, наверное, можно полить шоколадом.

Важные вещи, которые нужно иметь на паяльной станции:

  1. Паяльник (дух)
  2. Немного припоя (мммёп)
  3. Действительно яркий свет, который можно перемещать, чтобы устранить тени
  4. Очень устойчивая третья рука, растущая из вашей груди (или, кроме этого, тиски, установленные на столе).Или большая пара тисков из хозяйственного магазина. Они могут удерживать мелкие предметы на месте, и вы можете вращать их, наклонять, перемещать по столу и легко обходить их.
  5. Пара кусачков для откусывания кусков лишнего металла при неаккуратной пайке.
  6. Вентиляция, чтобы отводить пары от лица человека на работе, чтобы компоненты не образовывали маленькие глиняные глазные яблоки и не гуляли в стиле Better Off Dead.

Как избежать появления дыма? Насколько я должен волноваться?

При сжигании обычно образуется канцерогенный дым.Если дым попадет в глаза или легкие, это будет чертовски больно и загрязняет внутреннюю часть вашего тела. Факторы, которые следует учитывать, - это токсичность и уровень воздействия.

Что касается паров припоя, то они довольно токсичны. Более токсично, чем приставлять лицо к костру, но менее токсично, чем приставлять лицо к выхлопной трубе только что заведенной машины. Если вы собираетесь паять вещи каждый день в течение нескольких часов, вы можете сделать себе одолжение, соорудив импровизированный вытяжной шкаф, как в этом руководстве.Но если вы собираетесь паять вещи всего на пару часов в год , вытяжной шкаф может оказаться нецелесообразным тратить ваше время. Просто припаяйте возле пары открытых окон и попробуйте аккуратно подуть на паяемую деталь, чтобы дым не попадал на ваше лицо. Обдув детали замедлит ее нагрев, но не настолько, насколько вы заметите.

Вы также можете использовать плоскогубцы для затягивания проволочных петель вокруг предметов, например:

Так или иначе, сначала я отрезал какой-то провод и начал припаивать его к маленьким зажимам типа «крокодил».На этом этапе мне помогла Шерила, которая хотела попробовать свои силы в пайке. Она отлично с этим справилась.

Где я могу узнать, как это сделать?

Мне посчастливилось узнать о пайке в школе электроники. Если у вас есть время, я рекомендую вам записаться на курсы начального уровня в общественном колледже. Это будет практическая работа и очень весело.

Но если у вас нет времени рассказать всю Марту Стюарт об этом проекте, используйте это руководство в качестве руководства.Это лучший фильм, который я видел в сети. А вот несколько демонстрационных видеороликов, любезно предоставленных проектом НАСА Radio Jove.

Паяльник «холодный». Прорыв или уловка?

Не уловка, но есть компромиссы. Лично я бы не стал беспокоиться. Прочтите этот анализ, если вам интересно.

Затем я припаял провода к маленьким розеткам постоянного тока. Это немного сложнее, но пока вы держите железо прижатым к детали, а не к припою, у вас все будет хорошо.

После подключения к розетке питания следующее, что я сделал, - это подключил ее к настенному адаптеру и проверил напряжение, исходящее от проводов, с помощью моего недорогого вольтметра. Таким образом, я мог без сомнения знать, какой из трех проводов мне следует использовать. Я наклеил на них маленькие ярлыки, а затем подключил их к плате TuneCharger (пока адаптер питания отключен).

Затем я взял один из моих проводов с зажимами из крокодиловой кожи и два провода с зажимами из крокодиловой кожи только на одном конце и подключил батареи последовательно к другому концу TuneCharger.Я прикрепил вольтметр к батареям, чтобы посмотреть напряжение, и подключил адаптер питания.

Как мне узнать, как правильно подключить TuneCharger?

Справочное руководство TuneCharger содержит полезную схему на страницах 4.1 и 4.2. Совместите знаки "плюс" со знаками "плюс" на батареях и разъеме питания.

TuneCharger мигнул на секунду, затем начал очень быстро щелкать и начал заряжать батареи. Пока я смотрел, напряжение батарей увеличилось на несколько сотых вольта.Красиво и гладко.

Вслед за этим успехом я отключил адаптер питания и подключил кабель, идущий от моего колесного генератора, а затем запустил колесо. TuneCharger загорелся, индикаторы изменились на состояние «зарядка», и он начал щелкать. Конечно, медленнее, чем с настенным адаптером. Но щелчки - это хорошо.

Похоже, я прикрыл зарядную сторону. Это было просто.

Пришло время вернуть электричество из батарей.Для этого мне понадобится схема регулятора.

К выходу батареи…

качества в крохотной дорогой упаковке

Разборка миниатюрного зарядного устройства для iPhone размером с кубический дюйм от Apple показывает технологически продвинутый импульсный источник питания с обратным ходом, который выходит за рамки обычного зарядного устройства. Он просто принимает входной сигнал переменного тока (от 100 до 240 вольт) и производит 5 ватт плавной мощности 5 вольт, но схема для этого на удивление сложна и новаторская.

Как это работает

Адаптер питания iPhone - это импульсный источник питания, в котором входное питание включается и выключается примерно 70 000 раз в секунду, чтобы получить точное требуемое выходное напряжение. Благодаря своей конструкции импульсные источники питания, как правило, компактны и эффективны и выделяют меньше тепла по сравнению с более простыми линейными источниками питания.

Более подробно, мощность линии переменного тока сначала преобразуется в постоянное напряжение высокого напряжения [1] с помощью диодного моста. Постоянный ток включается и выключается транзистором, управляемым микросхемой контроллера источника питания.Прерванный постоянный ток подается на обратноходовой трансформатор [2], который преобразует его в переменный ток низкого напряжения. Наконец, этот переменный ток преобразуется в постоянный ток, который фильтруется для получения плавной мощности без помех, и эта мощность выводится через разъем USB. Схема обратной связи измеряет выходное напряжение и отправляет сигнал на контроллер IC, который регулирует частоту переключения для получения желаемого напряжения.

На виде сбоку выше показаны некоторые из более крупных компонентов. Зарядное устройство состоит из двух печатных плат, каждая размером чуть меньше одного дюйма.[3] Верхняя плата является первичной и имеет схему высокого напряжения, а нижняя плата, вторичная, имеет схему вывода низкого напряжения. Входной переменный ток сначала проходит через плавкий резистор (полосатый), который разорвет цепь в случае катастрофической перегрузки. Входной переменный ток преобразуется в высоковольтный постоянный ток, который сглаживается двумя большими электролитическими конденсаторами (черный с белым текстом и полосой) и катушкой индуктивности (зеленый).

Затем высоковольтный постоянный ток прерывается с высокой частотой переключающим транзистором MOSFET, который представляет собой большой трехконтактный компонент в верхнем левом углу.(Второй транзистор фиксирует скачки напряжения, как будет объяснено ниже.) Прерванный постоянный ток поступает на обратноходовой трансформатор (желтый, едва видимый за транзисторами), у которого есть выходные провода низкого напряжения, идущие к вторичной плате ниже. (Эти провода были обрезаны во время разборки.) Вторичная плата преобразует низкое напряжение трансформатора в постоянный ток, фильтрует его, а затем подает через разъем USB (серебряный прямоугольник в нижнем левом углу). Серый ленточный кабель (едва виден в правом нижнем углу под конденсатором) обеспечивает обратную связь от вторичной платы к микросхеме контроллера, чтобы поддерживать стабилизированное напряжение.

На приведенном выше рисунке более четко показан обратноходовой трансформатор (желтый) над разъемом USB. Большой синий компонент представляет собой специальный Y-образный конденсатор [4] для уменьшения помех. Микросхема контроллера видна над трансформатором в верхней части первичной платы. [5]

Схема в деталях

Первичная

На первичной плате с обеих сторон размещены компоненты для поверхностного монтажа. На внутренней стороне (диаграмма вверху) находятся большие компоненты, а на внешней стороне (диаграмма внизу) - микросхема контроллера.(Крупные компоненты были удалены на схемах и обозначены курсивом.) Входное питание подключается к углам платы, проходит через 10 & Ом; плавкий резистор и выпрямляется до постоянного тока четырьмя диодами. Две демпфирующие цепи R-C поглощают электромагнитные помехи, создаваемые мостом. [6] Постоянный ток фильтруется двумя большими электролитическими конденсаторами и катушкой индуктивности, создавая 125–340 В постоянного тока. Обратите внимание на толщину дорожек на печатной плате, соединяющих эти конденсаторы и другие сильноточные компоненты, по сравнению с тонкими дорожками управления.

Источником питания управляет 8-контактная микросхема контроллера квазирезонансного SMPS STMicrosystems L6565. [7] Микросхема контроллера управляет переключающим транзистором MOSFET, который прерывает постоянный ток высокого напряжения и подает его на первичную обмотку обратноходового трансформатора. Контроллер IC принимает множество входных сигналов (обратная связь по вторичному напряжению, входное напряжение постоянного тока, первичный ток трансформатора и измерение размагничивания трансформатора) и регулирует частоту переключения и синхронизацию для управления выходным напряжением через сложную внутреннюю схему.Резисторы считывания тока позволяют ИС узнать, сколько тока проходит через первичную обмотку, которая определяет, когда транзистор должен быть выключен.

Второй переключающий транзистор, вместе с некоторыми конденсаторами и диодами, является частью резонансной фиксирующей цепи, которая поглощает скачки напряжения на трансформаторе. Эта необычная и инновационная схема запатентована Flextronics. [8] [9]

Контроллер IC требует питания постоянного тока для работы; это обеспечивается вспомогательной цепью питания, состоящей из отдельной вспомогательной обмотки трансформатора, диода и конденсаторов фильтра.Поскольку микросхема контроллера должна быть включена, прежде чем трансформатор сможет начать генерировать энергию, вы можете задаться вопросом, как решается эта проблема с курицей и яйцом. Решение состоит в том, что высоковольтный постоянный ток снижается до низкого уровня с помощью резисторов пусковой мощности, чтобы обеспечить начальную мощность для ИС до тех пор, пока трансформатор не запустится. Вспомогательная обмотка также используется ИС для определения размагничивания трансформатора, которое указывает, когда следует включить переключающий транзистор. [7]

Вторичная

На вторичной плате переменный ток низкого напряжения от трансформатора выпрямляется высокоскоростным диодом Шоттки, фильтруется катушкой индуктивности и конденсаторами и подключается к выходу USB.Конденсаторы танталовых фильтров обеспечивают высокую емкость в небольшом корпусе.

USB-выход также имеет определенные сопротивления, подключенные к контактам для передачи данных, чтобы указать iPhone, какой ток может обеспечить зарядное устройство, через собственный протокол Apple. [10] IPhone отображает сообщение «Зарядка не поддерживается с этим аксессуаром», если зарядное устройство имеет неправильное сопротивление.

Вторичная плата содержит стандартную схему обратной связи импульсного источника питания, которая контролирует выходное напряжение с помощью регулятора TL431 и обеспечивает обратную связь с микросхемой контроллера через оптрон.Вторая цепь обратной связи отключает зарядное устройство для защиты, если зарядное устройство перегревается или выходное напряжение слишком высокое. [11] Ленточный кабель обеспечивает эту обратную связь с основной платой.

Изоляция

Поскольку источник питания может иметь внутреннее напряжение до 340 В постоянного тока, безопасность является важной проблемой. Строгие правила регулируют разделение между опасным линейным напряжением и безопасным выходным напряжением, которые изолированы сочетанием расстояния (называемого утечкой и зазором) и изоляции.Стандарты [12] несколько непонятны, но между двумя цепями требуется расстояние примерно 4 мм. (Как я уже говорил в «Крошечном, дешевом, опасном»: внутри (поддельного) зарядного устройства для iPhone дешевые зарядные устройства полностью игнорируют эти правила безопасности.)

Вы можете ожидать, что на первичной плате будет опасное напряжение, а на вторичной плате будет безопасное напряжение, но вторичная плата состоит из двух областей: опасной зоны, соединенной с первичной платой, и зоны низкого напряжения. Граница изоляции между этими областями составляет около 6 мм в зарядном устройстве Apple, что можно увидеть на приведенной выше диаграмме.Эта граница изоляции гарантирует, что опасные напряжения не могут достичь выхода.

Есть три типа компонентов, которые пересекают границу изоляции, и они должны быть специально разработаны для обеспечения безопасности. Ключевым компонентом является трансформатор, который обеспечивает подачу электроэнергии на выход без прямого электрического подключения. Изнутри трансформатор хорошо изолирован, как будет показано ниже. Второй тип компонентов - это оптопары, которые отправляют сигнал обратной связи от вторичной обмотки к первичной.Внутри оптопара содержит светодиод и фототранзистор, поэтому две стороны соединены только светом, а не электрической цепью. (Обратите внимание на силиконовую изоляцию на вторичной стороне оптопар, чтобы обеспечить дополнительную безопасность.) Наконец, Y-конденсатор - это конденсатор особого типа [4], который позволяет избежать электромагнитных помех (EMI) между высоковольтной первичной обмоткой и низковольтной. напряжение вторичное.

На рисунке выше показаны некоторые методы изоляции.На вторичной плате (слева) установлен синий Y-конденсатор. Обратите внимание на отсутствие компонентов в середине вторичной платы, образующих границу изоляции. Компоненты справа от вторичной платы подключены к первичной плате серым ленточным кабелем, поэтому они находятся под потенциально высоким напряжением. Другое соединение между платами - это пара проводов от трансформатора обратного хода (желтый), подающего выходную мощность на вторичную плату; они были вырезаны, чтобы разделить доски.

Схема

Я собрал примерную схему, показывающую схему зарядного устройства.[13] Щелкните, чтобы увеличить версию.

Эти цепи очень маленькие

Глядя на эти изображения, легко потерять представление о том, насколько эти компоненты очень малы и как зарядное устройство вмещает всю эту сложность в один дюйм. На следующем слегка увеличенном изображении показаны четверть, рисовое зерно и горчичное зерно для сравнения размеров. Большинство компонентов представляют собой устройства для поверхностного монтажа, которые припаяны непосредственно к печатной плате. Самые маленькие компоненты, такие как резистор, показанный на рисунке, известны как размер «0402», потому что они есть.04 дюйма на 0,02 дюйма. Резисторы большего размера слева от горчичного зерна обрабатывают большую мощность и известны как размер «0805», так как их размер составляет 0,08 x 0,05 дюйма.

Разборка трансформатора

Обратный трансформатор является ключевым компонентом зарядного устройства, самым большим и, вероятно, самым дорогим компонентом. [14] Но что внутри? Я разобрал трансформатор, чтобы узнать.

Трансформатор имеет размеры примерно 1/2 на 1/2 на 1/3 дюйма. Внутри трансформатора есть три обмотки: первичная обмотка высокого напряжения, вспомогательная обмотка низкого напряжения для подачи питания на схемы управления и обмотка высокого напряжения. -токовая низковольтная выходная обмотка.Выходная обмотка подключается к черному и белому проводам, выходящим из трансформатора, а другие обмотки подключаются к контактам, прикрепленным к нижней части трансформатора.

Снаружи трансформатор покрыт парой слоев изоляционной ленты. Вторая строка начинается с «FLEX» для Flextronics. Две заземленные жилы провода намотаны вокруг трансформатора с внешней стороны для обеспечения экранирования.

После удаления экрана и ленты две половинки ферритового сердечника можно снять с обмоток.Феррит - довольно хрупкий керамический материал, поэтому при снятии сердечник сломался. Сердечник окружает обмотки и содержит магнитные поля. Размер каждого сердечника составляет примерно 6 мм x 11 мм x 4 мм; этот стиль ядра известен как EQ. Круглая центральная часть немного короче концов, что создает небольшой воздушный зазор, когда части сердечника соединяются вместе. Этот воздушный зазор 0,28 мм сохраняет магнитную энергию для обратноходового трансформатора.

Под следующими двумя слоями ленты находится обмотка из 17 витков тонкой лакированной проволоки, которая, как мне кажется, является еще одной защитной обмоткой, возвращающей паразитные помехи на землю.

Под экраном и еще двумя слоями ленты находится 6-витковая вторичная выходная обмотка, подключенная к черному и белому проводам. Обратите внимание, что эта обмотка представляет собой проволоку большого сечения, так как она питает выход 1 А. Также обратите внимание, что обмотка имеет тройную изоляцию, что является требованием безопасности UL, чтобы гарантировать, что первичная обмотка высокого напряжения остается изолированной от выхода. Это то место, где обманывают дешевые зарядные устройства - они просто используют обычный провод вместо тройной изоляции, а также экономят на ленте.В результате вас мало что защитит от высокого напряжения, если есть дефект изоляции или скачок напряжения.

Под следующим двойным слоем ленты находится 11-витковая первичная силовая обмотка большого калибра, которая питает ИС контроллера. Поскольку эта обмотка находится на первичной стороне, тройная изоляция не требуется. Его просто покрывают тонким слоем лака.

Под последним двойным слоем ленты находится первичная входная обмотка, состоящая из 4 слоев примерно по 23 витка в каждом.На эту обмотку подается высоковольтный ввод. Поскольку сила тока очень мала, провод может быть очень тонким. Поскольку у первичной обмотки примерно в 15 раз больше витков, чем у вторичной обмотки, вторичное напряжение будет 1/15 первичного напряжения, но в 15 раз больше тока. Таким образом, трансформатор преобразует вход высокого напряжения в выход низкого напряжения с высоким током.

На последней картинке показаны все компоненты трансформатора; слева направо показаны слои от внешней ленты до самой внутренней намотки и шпульки.

Огромная прибыль Apple

Я был удивлен, узнав, насколько огромна прибыль Apple от этих зарядных устройств. Эти зарядные устройства продаются примерно за 30 долларов. (если не подделка), но это почти вся прибыль. Samsung продает очень похожие Зарядное устройство для куба примерно за 6-10 долларов, которое я тоже разобрал (подробности напишу позже). Зарядное устройство Apple более качественное, и, по моим оценкам, внутри него стоят дополнительные компоненты на сумму около доллара. [14] Но он продается на 20 долларов дороже.

Отзыв о безопасности зарядного устройства Apple в 2008 году

В 2008 году Apple отозвала зарядные устройства для iPhone из-за дефекта, когда штыри переменного тока могли выпасть из зарядного устройства и застрять в розетке. [15] К неисправным зарядным устройствам были прикреплены штыри с помощью того, что было описано как не более чем клей и «выдавать желаемое за действительное». [15] Apple заменила зарядные устройства на обновленную модель, обозначенную зеленой точкой, показанной выше (которая неизбежно имитирует поддельные зарядные устройства).

Я решил посмотреть, какие улучшения безопасности Apple внесла в новое зарядное устройство, и сравнить с другими аналогичными зарядными устройствами.Я попытался вытащить штыри из зарядного устройства Apple, зарядного устройства Samsung и поддельного зарядного устройства. Поддельные зубцы достали с помощью плоскогубцев, так как их практически ничем не закрепляло, кроме трения. Штыри Samsung пришлось долго тянуть и крутить плоскогубцами, так как у них есть маленькие металлические язычки, удерживающие их на месте, но в конце концов они вышли.

Когда я перешел к зарядному устройству Apple, зубцы не сдвинулись с места, даже когда я очень сильно тянул плоскогубцами, поэтому я вытащил Dremel и протер его через корпус, чтобы выяснить, что удерживает зубцы.У них есть большие металлические фланцы, встроенные в пластик корпуса, поэтому штырь не может вырваться из-за разрушения зарядного устройства. На фотографии показана вилка Apple (обратите внимание на толщину пластика, удаленного с правой половины), контакт поддельного зарядного устройства, удерживаемый только за счет трения, и контакт Samsung, удерживаемый небольшими, но прочными металлическими язычками.

Я впечатлен усилиями, которые Apple приложила, чтобы сделать зарядное устройство более безопасным после отзыва. Они не просто немного улучшили штыри, чтобы сделать их более безопасными; очевидно, кому-то было сказано сделать все возможное, чтобы убедиться, что зубцы не могут вырваться снова ни при каких обстоятельствах.

Что делает зарядное устройство Apple для iPhone особенным

Адаптер питания Apple, безусловно, представляет собой высококачественный источник питания, предназначенный для выработки тщательно отфильтрованной мощности. Apple явно приложила дополнительные усилия, чтобы уменьшить помехи от электромагнитных помех, вероятно, чтобы зарядное устройство не мешало работе сенсорного экрана. [16] Когда я открыл зарядное устройство, я ожидал найти стандартный дизайн, но я сравнил зарядное устройство с зарядным устройством Samsung и несколькими другими высококачественными промышленными разработками [17], и Apple выходит за рамки этих разработок по нескольким направлениям.

Входной переменный ток фильтруется через крошечное ферритовое кольцо на пластиковом корпусе (см. Фото ниже). Выход диодного моста фильтруется двумя большими конденсаторами и катушкой индуктивности. Два других демпфера R-C фильтруют диодный мост, который я видел только в других источниках питания аудио, чтобы предотвратить гудение 60 Гц; [6] возможно, это улучшает впечатление от прослушивания iTunes. В других разобранных мною зарядных устройствах не используется ферритовое кольцо, а обычно используется только один конденсатор фильтра. Плата первичной схемы имеет заземленный металлический экран над высокочастотными компонентами (см. Фото), которого я больше нигде не видел.Трансформатор имеет экранирующую обмотку для поглощения электромагнитных помех. В выходной цепи используются три конденсатора, включая два относительно дорогих танталовых [14] и катушку индуктивности для фильтрации, когда многие источники питания используют только один конденсатор. Конденсатор Y обычно не используется в других конструкциях. Резонансная зажимная схема является в высшей степени инновационной. [9]

Конструкция Apple обеспечивает дополнительную безопасность несколькими способами, о которых говорилось ранее: сверхсильными контактами переменного тока и сложной схемой отключения при перегреве / перенапряжении.Дистанция изоляции Apple между первичной и вторичной обмотками, похоже, выходит за рамки нормативных требований.

Выводы

Зарядное устройство для iPhone от Apple вмещает множество технологий в небольшом пространстве. Apple приложила дополнительные усилия, чтобы обеспечить более высокое качество и безопасность, чем зарядные устройства других известных брендов, но за это качество приходится платить.

Если вас интересуют источники питания, ознакомьтесь с другими моими статьями: «Крошечные, дешевые, опасные»: «Внутри (поддельного) зарядного устройства для iPhone», где я разбираю зарядное устройство за 2 доллара.79 зарядное устройство для iPhone и обнаружите, что оно нарушает многие правила безопасности; не покупайте ни одного из них. Также обратите внимание на то, что Apple не произвела революцию в источниках питания; новые транзисторы сделали, что исследует историю импульсных источников питания. Чтобы увидеть, как адаптер Apple разобран, посмотрите видеоролики, созданные scourtheearth и Ladyada. Наконец, если у вас есть интересное зарядное устройство, которое вам не нужно, отправьте его мне, и, возможно, я опишу его подробный разбор.

Также смотрите комментарии к Hacker News.

Примечания и ссылки

[1] Вы можете задаться вопросом, почему напряжение постоянного тока внутри блока питания намного выше, чем напряжение в сети. Напряжение постоянного тока примерно в sqrt (2) раз больше напряжения переменного тока, поскольку диод заряжает конденсатор до пика сигнала переменного тока. Таким образом, входное напряжение от 100 до 240 вольт переменного тока преобразуется в постоянное напряжение от 145 до 345 вольт внутри. Этого недостаточно, чтобы официально считаться высоким напряжением, но для удобства я назову это высоким напряжением. Согласно стандартам, все, что ниже 50 В переменного тока или 120 В постоянного тока, считается сверхнизким напряжением и считается безопасным при нормальных условиях.Но для удобства я буду называть выход 5 В низким напряжением.

[2] В источнике питания Apple используется обратная схема, в которой трансформатор работает «в обратном направлении», чем вы могли ожидать. Когда в трансформатор подается импульс напряжения, выходной диод блокирует выход, поэтому выход отсутствует - вместо этого создается магнитное поле. Когда подача напряжения прекращается, магнитное поле разрушается, вызывая выход напряжения из трансформатора. Источники питания с обратной связью очень распространены для источников питания с малой мощностью.

[3] Размер первичной платы составляет около 22,5 мм на 20,0 мм, а вторичной платы - около 22,2 мм на 20,2 мм. [4] Для получения дополнительной информации о конденсаторах X и Y см. Презентацию Kemet и «Проектирование источников питания с низким током утечки».

[5] Для наглядности перед тем, как делать снимки в этой статье, была снята изоляция. Конденсатор Y был покрыт черной термоусадочной трубкой, сбоку цепи была обмотана лента, плавкий резистор был закрыт черной термоусадочной трубкой, а над USB-разъемом была черная изолирующая крышка.

[6] Демпфирующие цепи могут использоваться для уменьшения шума 60 Гц, создаваемого диодным мостом в источниках питания аудиосистемы. Подробный справочник по демпферам R-C для диодов источника питания аудиосигнала приведен в разделе «Расчет оптимальных демпферов», а образец конструкции - «Конструкция источника питания усилителя аудиосигнала».

[7] Источником питания управляет микросхема контроллера квазирезонансного SMPS (импульсного источника питания) L6565 (техническое описание). (Разумеется, чип мог быть чем-то другим, но схема точно соответствует L6565 и никакому другому чипу, который я исследовал.)

Для повышения эффективности и уменьшения помех в микросхеме используется метод, известный как квазирезонанс, который впервые был разработан в 1980-х годах. Выходная цепь спроектирована таким образом, что при отключении питания напряжение трансформатора будет колебаться. Когда напряжение достигает нуля, транзистор снова включается. Это известно как переключение при нулевом напряжении, потому что транзистор переключается, когда на нем практически нет напряжения, что сводит к минимуму потери мощности и помехи во время переключения.Схема остается включенной в течение переменного времени (в зависимости от требуемой мощности), а затем снова выключается, повторяя процесс. (Для получения дополнительной информации см. Исследование квазирезонансных преобразователей для источников питания.)

Одним из интересных следствий квазирезонанса является то, что частота переключения меняется в зависимости от нагрузки (типичное значение составляет 70 кГц). В ранних источниках питания, таких как блок питания Apple II, для регулирования мощности использовались простые цепи переменной частоты. Но в 1980-х годах эти схемы были заменены микросхемами контроллеров, которые переключались с фиксированной частотой, но изменяли ширину импульсов (известную как ШИМ).Теперь усовершенствованные ИС контроллеров вернулись к регулированию частоты. Но, кроме того, в сверхдешевых подделках используются схемы переменной частоты, практически идентичные Apple II. Таким образом, и высокопроизводительные, и недорогие зарядные устройства теперь вернулись к переменной частоте.

Мне потребовалось много времени, чтобы понять, что маркировка «FLEX01» на микросхеме контроллера указывает на Flextronics, а X на микросхеме был от логотипа Flextronics: . Я предполагаю, что на чипе есть такая маркировка, потому что он производится для Flextronics.Маркировка «EB936» на микросхеме может быть собственным номером детали Flextronics или кодом даты.

[8] Я думал, что Flextronics - это просто сборщик электроники, и я был удивлен, узнав, что Flextronics занимается множеством инновационных разработок и имеет буквально тысячи патентов. Я думаю, что Flextronics заслуживает большего признания за свои разработки. (Обратите внимание, что Flextronics - это другая компания, чем Foxconn, которая производит iPad и iPhone и вызывает разногласия по поводу условий работы).

Изображение выше взято из патента Flextronics 7,978,489: «Интегрированные преобразователи мощности» описывает адаптер, который выглядит так же, как зарядное устройство для iPhone.Сам патент представляет собой сумку из 63 различных пунктов формулы (пружинные контакты, экраны EMI, термоклейкий материал), большинство из которых фактически не имеют отношения к зарядному устройству iPhone.

[9] Патент Flextronics 7 924 578: Квазирезонансная схема резервуара с двумя выводами описывает резонансную схему, используемую в зарядном устройстве iPhone, которая показана на следующей диаграмме. Транзистор Q2 приводит в действие трансформатор. Транзистор Q1 является фиксирующим транзистором, который направляет скачок напряжения от трансформатора на резонансный конденсатор C13.Инновационная часть этой схемы заключается в том, что Q1 не требует специальной схемы управления, как другие схемы с активными фиксаторами; он питается от конденсаторов и диодов. В большинстве источников питания зарядных устройств, напротив, используется простой зажим резистор-конденсатор-диод, который рассеивает энергию в резисторе. [18]

Более поздние патенты Flextronics расширяют резонансный контур с помощью еще большего количества диодов и конденсаторов: см. Патенты 7 830 676, 7 760 519 и 8,000 112

[10] Apple указывает тип зарядного устройства с помощью запатентованной технологии сопротивлений на контактах USB D + и D-.Подробнее о протоколах зарядки USB см. В моих предыдущих ссылках.

[11] Одна загадочная особенность зарядного устройства Apple - вторая цепь обратной связи, отслеживающая температуру и выходное напряжение. Эта схема на вторичной плате состоит из термистора, второго регулятора 431 и нескольких других компонентов для контроля температуры и напряжения. Выход подключен через второй оптрон к другим схемам на другой стороне вторичной платы. Два транзистора подключены к SCR-подобной защелке лома, которая закорачивает вспомогательное питание, а также отключает микросхему контроллера.Эта схема кажется чрезмерно сложной для этой задачи, тем более, что многие микросхемы контроллеров имеют эту функцию. Я могу неправильно понять эту схему, потому что кажется, что Apple излишне занимала место и дорогие компоненты (возможно, стоимостью 25 центов), реализуя эту функцию в таких условиях. сложный способ.

[12] Обратите внимание на загадочную надпись «Для использования с оборудованием информационных технологий» на внешней стороне зарядного устройства. Это означает, что зарядное устройство соответствует стандарту безопасности UL 60950-1, который определяет различные требуемые изоляционные расстояния.Краткий обзор изоляционных расстояний см. В разделе «Разделение цепей i-Spec» и в некоторых из моих предыдущих ссылок.

[13] Некоторые примечания к используемым компонентам: На первичной плате корпус JS4 представляет собой два диода в одном корпусе. Входные диоды с маркировкой 1JLGE9 представляют собой диоды 1J 600V 1A. Коммутационные транзисторы представляют собой N-канальные полевые МОП-транзисторы 1HNK60, 600 В, 1 А. Значения многих резисторов и конденсаторов указываются с помощью стандартной трехзначной маркировки SMD (две цифры, а затем мощность десять, что дает Ом или пикофарады).

На вторичной плате конденсатор «330 j90» представляет собой танталовый полимерный конденсатор 300 мФ 6,3 В Sanyo POSCAP (j означает 6,3 В, а 90 - код даты). 1R5 указывает на индуктивность 1,5 мкГн. GB9 - это прецизионный шунтирующий стабилизатор с низким катодным током AS431I, регулируемый по низкому катодному току, а 431 - это обычный регулятор TL431. SCD34 - это выпрямитель Шоттки на 3 А, 40 В. YCW - это неопознанный транзистор NPN, а GYW - неопознанный транзистор PNP. Конденсатор Y с маркировкой «MC B221K X1 400V Y1 250V» представляет собой Y-конденсатор 220 пФ.Конденсатор «107A» представляет собой танталовый конденсатор емкостью 100 мкФ 10 В (A означает 10 В). Оптопары PS2801-1. (Все эти обозначения компонентов следует рассматривать как предварительные, наряду со схемой.)

[14] Чтобы получить приблизительное представление о том, сколько стоят компоненты в зарядном устройстве, я посмотрел цены на некоторые компоненты на сайте octopart.com. Эти цены - лучшие цены, которые я смог найти после краткого поиска, в количестве 1000 штук, пытаясь точно сопоставить детали. Я должен предположить, что цены Apple значительно лучше этих цен.

9010 1A, 600 В (1 Дж), диод
Компонент Цена
0402 Резистор SMD $ 0,002
0805 Конденсатор SMD $ 0,007
SMD транзистор 0,08
$ 0,06
термистор $ 0,07
Конденсатор Y $ 0,08
3.Электролитический конденсатор 3 мкФ, 400 В $ 0,10
TL431 $ 0,10
1,5 мкГн индуктивность $ 0,12
SCD 34 диод
SCD 34 диод 9010
$ 0,22
Разъем USB $ 0,33
Танталовый конденсатор 100 мкФ $ 0,34
L6565 IC $ 0.55
Танталовый полимерный конденсатор 330 мкФ
(Sanyo POSCAP)
$ 0,98
Обратный трансформатор $ 1,36

Несколько заметок. Подходящие трансформаторы обычно изготавливаются по индивидуальному заказу, и цены везде разные, поэтому я не очень уверен в этой цене. Я думаю, что цена POSCAP высока, потому что я искал точного производителя, но танталовые конденсаторы в целом довольно дороги. Удивительно, насколько дешевы резисторы и конденсаторы SMD: доли копейки.

[15] Об отзыве зарядных устройств Apple было объявлено в 2008 году. Сообщения в блогах показали, что штыри на зарядном устройстве были прикреплены только с помощью 1/8 дюйма металла и небольшого количества клея. Apple отзывает адаптеры питания iPhone 3G в проводной сети, предоставляет более подробную информацию.

[16] Низкокачественные зарядные устройства мешают работе с сенсорными экранами, и это подробно описано в Noise Wars: Projected Capacity наносит ответный удар. (Клиенты также сообщают о проблемах с сенсорным экраном из-за дешевых зарядных устройств на Amazon и других сайтах.)

[17] Существует множество промышленных проектов USB-преобразователей переменного / постоянного тока в диапазоне 5 Вт.Образцы образцов доступны в iWatt, Fairchild, STMicroelectronics, Texas Instruments, ON Semiconductor и Maxim.

[18] Когда диод или транзистор переключается, он создает всплеск напряжения, которым можно управлять с помощью демпферной цепи или схемы ограничения. Для получения дополнительной информации о демпферах и зажимах см. «Пассивные демпферы без потерь для высокочастотного преобразования ШИМ» и «Справочное руководство по импульсным источникам питания».

BU-411: Зарядка от порта USB

Ознакомьтесь с ограничениями при зарядке аккумулятора с помощью зарядного устройства USB.

Универсальная последовательная шина (USB) была представлена ​​в 1996 году и с тех пор стала одним из самых распространенных и удобных интерфейсов для электронных устройств. Compaq, DEC, IBM, Intel, NEC и Nortel внесли свой вклад в разработки с целью упрощения подключения периферийных устройств к ПК, а также обеспечения большей скорости передачи данных, чем это было возможно с более ранними интерфейсами. Порт USB также можно использовать для зарядки личных устройств, но с учетом ограничения тока в 500 мА в оригинальной конструкции это могло быть второстепенным.

Типичная сеть USB состоит из хоста, которым часто является ПК, и периферийных устройств, таких как принтер, смартфон или фотоаппарат. Данные передаются в обоих направлениях, но питание однонаправлено и всегда течет от хоста к устройству. Хост не может получать питание от внешнего источника.

Благодаря наличию 5 В и 500 мА для версий USB 1.0 и 2.0 и 900 мА для USB 3.0, USB может заряжать небольшой одноэлементный литий-ионный аккумулятор. Однако существует опасность перегрузки концентратора USB при подключении слишком большого количества устройств.Зарядка устройства, потребляющего 500 мА, подключенного вместе с другими нагрузками, превысит ограничение по току порта, что приведет к падению напряжения и возможному сбою системы. Чтобы предотвратить перегрузку, некоторые хосты включают схемы ограничения тока, которые отключают питание при перегрузке.

Оригинальный порт USB может заряжать только небольшую одноэлементную литий-ионную батарею. Заряд батареи 3,6 В начинается с подачи постоянного тока до пика напряжения 4,20 В на элемент, после чего напряжение достигает пика, и ток начинает спадать.(См. BU-409: Зарядка литий-ионных аккумуляторов.) Из-за падения напряжения в кабеле и разъемах, которое составляет около 350 мВ, а также потерь в цепи зарядки, напряжение питания 5 В может быть недостаточно высоким для полной зарядки аккумулятора. . Это небольшая проблема; аккумулятор заряжается только примерно до 70% заряда и обеспечивает немного меньшее время работы, чем при полностью заряженном состоянии. Преимущество: литий-ионный аккумулятор прослужит дольше, если он не будет полностью заряжен.

Стандартные USB-штекеры A и B, как показано на Рисунке 1, имеют четыре контакта и экран.Контакт 1 подает + 5 В постоянного тока, а контакт 4 образует землю, которая также подключается к экрану. Два более коротких контакта, 2 и 3, помечены D- и D + и несут данные. При зарядке аккумулятора эти контакты не выполняют никакой другой функции, кроме согласования тока.

Рис. 1: Конфигурация контактов стандартных USB-разъемов A и B, вид со стороны сопрягаемых разъемов.

Контакт 1 имеет + 5 В постоянного тока (красный провод), а 4 - заземление (черный провод).Корпус соединяется с землей и обеспечивает экранирование. Контакт 2 (D-, белый провод) и контакт 3 (D +, зеленый провод) несут данные.


Помимо стандартных конфигураций типа A и типа B с 4 контактами, есть также USB Mini-A, Mini-B, Micro-A и Micro-B, которые включают идентификационный контакт для разрешения обнаружения конец кабеля подключен. Внешний контакт 1 положительный, а контакт 4 отрицательный. Кабели USB обычно бывают стандартного типа A на одном конце и типа B, Mini-B или Micro-B на другом.Новый разъем типа C, описанный ниже, имеет 24 контакта и работает по стандарту USB 3.1.


Power Delivery

USB 2.0 с током 500 мА имеет ограничения при зарядке аккумулятора смартфона или планшета большего размера. Продолжение работы смартфона на ярком экране во время зарядки может привести к полной разрядке аккумулятора, поскольку USB не может удовлетворить и то, и другое. Для подключения высокоскоростного диска требуется более 500 мА, и это может вызвать проблемы с питанием исходного USB-порта.

В 2008 году USB 3.0 решил проблему нехватки электроэнергии, повысив ток до 900 мА. Этот текущий потолок был выбран, чтобы тонкий провод заземления не мешал высокоскоростной передаче данных при полной нагрузке.

Из-за потребности в большей мощности Форум разработчиков USB выпустил в 2007 году спецификацию зарядки аккумулятора, которая обеспечивает более быстрый способ зарядки от USB-хоста. Это привело к тому, что выделенный порт зарядного устройства (DCP) служил зарядным устройством USB, обеспечивая токи 1500 мА и выше при подключении DCP к розетке переменного тока или транспортному средству.Чтобы активировать DCP, контакты D- и D + внутренне соединены резистором на 200 Ом или меньше. Это отличает DCP от исходных USB-портов, по которым передаются данные. Некоторые продукты Apple ограничивают ток заряда, подключая резисторы разных номиналов к контактам D + и D-.

Для поддержки зарядки и передачи данных при использовании DCP предлагается Y-образный кабель, который подключается к исходному USB-порту для потоковой передачи данных и к порту DCP для удовлетворения потребностей в зарядке. Это кажется логичным решением, но в спецификации соответствия USB указано, что «использование Y-кабеля запрещено на любом периферийном USB-устройстве», что означает, что «если периферийное USB-устройство требует больше энергии, чем допускается спецификацией USB, для которой оно разработано. , то он должен быть автономным.«Y-образные кабели и так называемые адаптеры зарядки аксессуаров (ACA) используются без видимых трудностей.

Возникает вопрос: «Могу ли я вызвать повреждение, подключив свое устройство к зарядному устройству USB, которое выдает ток, превышающий 500 мА и 900 мА?» Ответ: нет . Устройство рисует только то, что ему нужно, и не более того. Аналогия - включение лампы или тостера в розетку переменного тока. Лампа требует небольшого тока, в то время как тостер работает на максимуме. Большая мощность зарядного устройства USB сократит время зарядки.


Режим сна и зарядки

В большинстве случаев выключение компьютера также приводит к отключению USB. Некоторые ПК оснащены USB-портом для спящего режима и зарядки , который остается включенным и может использоваться для зарядки электронных устройств, когда компьютер выключен. USB-порты спящего режима и зарядки могут быть окрашены в красный или желтый цвет, но стандарта не существует. Dell добавляет значок молнии и называет его «PowerShare», в то время как Toshiba использует термин «USB Sleep-and-Charge». USB-порты спящего режима и зарядки также могут быть помечены аббревиатурой USB над рисунком батареи.


USB 3.1 - разъем Type-C

Как и в случае с большинством других успешных технологий, на протяжении многих лет USB породил несколько версий разъемов и кабелей. Зарядные устройства USB не всегда работают так, как рекламируется, и время зарядки велико. Несовместимость между конкурирующими системами существует добровольно или по надзору.

Компании, контролирующие стандарты USB, знают о недостатках и выпустили разъем типа C и кабель на основе стандарта USB 3.1. Вместо использования четырех контактов, как в классических типах A и B, разъем типа C имеет 24 контакта и является двусторонним, что означает, что его можно подключать любым способом.Он поддерживает 900 мА и по команде подает ток 1,5 А и 3,0 А по шине питания 5 В при потоковой передаче данных. Это приводит к потребляемой мощности 7,5 и 15 Вт соответственно, в отличие от 2,5 Вт при использовании оригинального USB (ток, умноженный на напряжение, = мощность). Тип C может достигать 5 А при 12 В или 20 В, обеспечивая 60 Вт и 100 Вт соответственно. На рисунке 2 показана распиновка разъема USB Type-C.

Рисунок 2: Конфигурация контактов разъема USB Type-C.
Стороны A и B являются зеркальными отражениями.Некоторые контакты подключаются параллельно, чтобы получить более высокую мощность и более надежное соединение.


Новые устройства поставляются с разъемом USB-C и USB 3.1, но потребители просят два или три обычных порта USB 3.0 на своих гаджетах для поддержки того, что так хорошо работало в прошлом. USB 3.1 обратно совместим с USB 2.0 и USB 3.0, а также с классическими разъемами типа A и типа B. При переходе к типу C адаптеры доступны для преобразования, но ожидается более низкая скорость передачи данных с адаптерами, чем у USB 3.1 предложения.

При наличии более высоких токов и напряжений в системе Type-C по сравнению со стандартными разъемами A и B, устройство может быть повреждено при подаче неправильной цифровой команды. Команды могут поступать от устройства или адаптера, запрашивающего измененные требования к мощности. При экспериментировании с более высокими напряжениями и токами в разъемах USB рекомендуется использовать только совместимые или заслуживающие доверия бренды.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *